

FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

Client:

Site Address:

Jim Pigott

Pigotts Autoparts, Sheriff Hutton Road, Strensall, YO32 5XH

Project Number: Report Reference (Revision):

Date:

January 2024

FRA01 (A)

21273

Associates: Robert Thomson BA(Hons) CEng MIStructE Sebastian Reid MSc CEng MICE MCIHT

Dudleys Consulting Engineers Ltd trading as Dudleys Registered office: Tithe House, 35 Town Street, Leeds, LS18 5LJ Registered in England & Wales: 6997283

CONTENTS

1.0	INTRODUCTION	. 2
2.0	CONSULTATION AND EVIDENCE	.2
3.0	SITE DESCRIPTION	.3
4.0	SITE PROPOSALS	.4
5.0	FLOOD RISK VULNERABILITY	.5
6.0	FLOOD ZONE COMPATABILITY	.5
7.0	FLUVIAL FLOODING (RIVERS AND SEA)	.6
8.0	PLUVIAL FLOODING (SURFACE WATER)	.7
9.0	GROUNDWATER FLOODING	.8
10.0	EXISTING SEWERS FLOODING	.8
11.0	FLOODING FROM RESERVOIRS	.9
12.0	DRAINAGE ASSESSMENT	10
13.0	CONCLUSION AND RECOMMENDATIONS	11

APPENDICES

Appendix A – Topographical Survey	12
Appendix B – Environment Agency Flood Map	13
Appendix C – Proposed Site Layout	14
Appendix D – Drainage Strategy and Calculations	15

Revision	Date	Author	Checked by;	Comments
-	03.11.21	George Dermentzoglou	Seb Reid	Initial issue
	29.01.24	George Dermentzoglou	Andy Walker	Section 12 & Appendices
				C and D updated

This report been prepared for the sole benefit, use and information of the Client, for the purposes set out in the report or instructions commissioning it. The liability of Dudley's Consulting Engineers Ltd in respect of the information contained in the report will not extend to any third party. This document should not be used in whole or part by any third parties without the express written permission of Dudley's Consulting Engineers Ltd.

1.0 INTRODUCTION

- 1.1 Dudley's Consulting Engineers have prepared this site-specific Flood Risk Assessment and Drainage Strategy for a proposed residential development located 1km north of Strensall, in North Yorkshire.
- 1.2 The assessment investigates the potential flood risk impacts of the proposed redevelopment in accordance with the National Planning Policy Framework (NPPF) and supporting Planning Practice Guidance. This FRA is considered proportionate to the degree of flood risk and to the scale, nature and location of the development, and has been prepared in accordance with non-statutory technical standards for sustainable drainage, published March 2015, planning policy guidance, NPPF climate change allowances updated in 2022, and is compliant with updates to NPPF Policy, which was recently revised in December 2023.

2.0 CONSULTATION AND EVIDENCE

2.1 The development is located within the Foss Internal Drainage Board area as shown in the image below. Historically, the site discharges unrestricted into an existing ditch, along the northern boundary, which then discharges into River Foss at a location 1km to the south.

- 2.2 Planning policy requires that the site be developed in accordance with NPPF requirements in terms of flood risk management, climate change allowances and reduced runoff from the development. City of York Council SuDS Guidance states that for minor developments (less than 10 residential properties) a higher discharge rate than the greenfield can be proposed to achieve the minimum 75mm orifice for the flow control unit, which results to a flow rate of 3.0 l/s.
- 2.3 On the above basis, a climate change factor of 40%, a reduction of the existing runoff to 3.0 l/s and an attenuation system to ensure that runoff from the site in the 1:100 + climate change event is managed and stored within the site, will be considered in the drainage strategy.

3.0 SITE DESCRIPTION

3.1 The existing site is an autoparts, car sales and scrap yard located about 1km north of Strensall. It is bounded with Sheriff Hutton Road to the east, an existing drain and greenfields to the north, and greenfield areas to the west and south. A location site map view can be found below.

- 3.2 The site is overall flat with couple of buildings and most of the area is covered with scrap vehicles. Along the north boundary of the site there is an existing ditch which is under the Foss Internal Drainage Board ownership. There are three existing connections from the site into this ditch and the adjacent ditch on the east boundary. One connection for the treated foul water to the ditch at the north and two connections for the surface water to the ditch at the east.
- 3.3 The existing site Topographic Survey is included in Appendix A. The plan shows that the existing ground levels are around 19.40 19.60 to the east and 19.20 19.40 to the west of the site. The survey does not indicate any levels of the existing ditch at the eastern boundary and the IDB ditch at the northern boundary however, is assumed that the eastern ditch discharges into the main ditch at the northeast corner of the site.
- 3.4 For the purposes of the proposed drainage strategy, the existing bed levels of the drain and ditch have been assumed using lidar data which indicated the invert levels for the 2no proposed locations.

4.0 SITE PROPOSALS

4.1 The proposed development layout can be found in Appendix C. The proposals include the erection of 6no dwellings, 3 large and 3 small, with associated car parking bays. The existing entrance will be retained with a new access road to be constructed. Please refer to the snapshot below.

- 4.2 The car parking bays and part of the turning head are proposed to be permeable paving construction, with either porous tarmac or block paving finish. The total site area is 5,000m² with an impermeable area of 1,250m² including plots and surrounding paths, of which 230m² will be permeable pavement. The remainder area will be soft landscape with proposed and existing trees.
- 4.3 A 9.0m wide easement is proposed from the top of the ditch embankment along the northern boundary of the site in accordance with the Foss Internal Drainage Board Byelaws and Guidance.

5.0 FLOOD RISK VULNERABILITY

- 5.1 The Flood Risk Vulnerability Classification has been determined in accordance with Planning Practice Guidance, Flood Risk and Coastal Change. For multi-occupancy sites, the Flood Risk Vulnerability should be based upon the most vulnerable part of the site.
- 5.2 The Flood Risk Vulnerability Classification is 'More Vulnerable'. This classification includes 'Residential institutions such as residential care homes, children's homes, social services homes, prisons and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs and hotels.

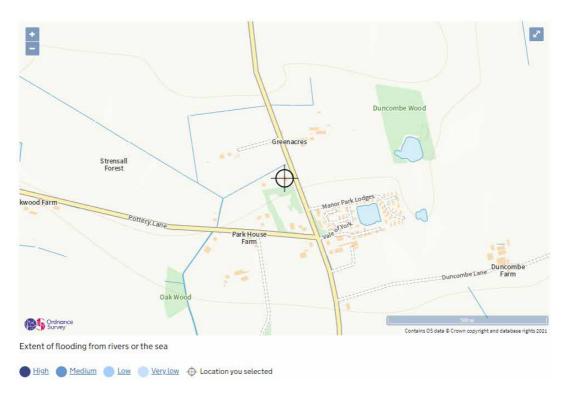
6.0 FLOOD ZONE COMPATABILITY

6.1 The Flood Zone Compatibility has been reviewed in accordance with Planning Practice Guidance, Flood Risk and Coastal Change, paragraph 067.

Flood Zones	Flood Risk Vulnerability Classification				
	Essential Highly More Less vulnerable vulnerable		Less vulnerable	Water compatible	
Zone 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Zone 2	\checkmark	Exception Test required	\checkmark	\checkmark	\checkmark
Zone 3a †	Exception Test required +	Х	Exception Test required	\checkmark	\checkmark
Zone 3b *	Exception Test required *	Х	Х	Х	√*

Flood Risk Vulnerability and Flood Zone Compatibility

Key:


✓ Development is appropriate

X Development should not be permitted

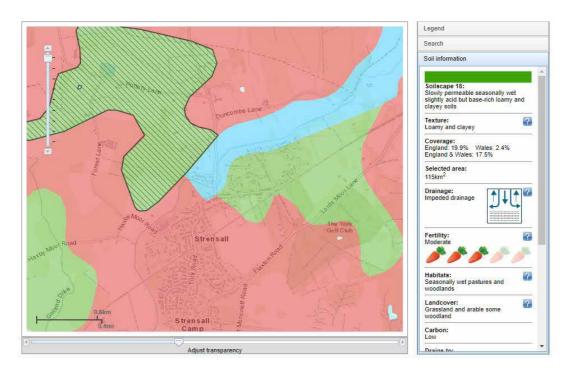
- 6.2 The site is located within Flood Zone 1 with a very low risk of flooding, as it is indicated in the Environment Agency Flood Zone map which can be found in Appendix B.
- 6.3 The vulnerability classification is 'More Vulnerable'. The scheme proposal therefore does not require an Exception Test in accordance with Planning Practice Guidance.

7.0 FLUVIAL FLOODING (RIVERS AND SEA)

- 7.1 Fluvial flooding occurs when high flows exceed the capacity of the river channel and spill out onto the floodplain, usually after a period of prolonged or heavy rainfall.
- 7.2 The Environment Agency Flood Map (rivers and sea) shows that the development is located in a 'very low' area having a less than 1 in 1,000 annual probability of river flooding. It is shown as 'clear' on the map below.
- 7.3 Therefore, there is very low flooding risk from the adjacent rivers and watercourses.

8.0 PLUVIAL FLOODING (SURFACE WATER)

- 8.1 The Environment Agency Flood Map showing Risk of Flooding from Surface Water is shown below.
 This type of flooding can be difficult to predict, much more so than river or sea flooding as it is hard to forecast exactly where or how much rain will fall in any storm.
- 8.2 The map indicates that the site generally has a 'very low' chance of flooding from surface water indicating a probability of flooding is less than 1 in 1,000. The site has no flow paths across the site shown on EA mapping and any potential risk is located within the drain and ditch embankments.
- 8.3 The proposed redevelopment should ensure that surface water is managed across the site preventing ponding or flooding due to surface water. As the existing ground levels are to be retained, the risk of flooding to the proposed development is deemed to be unchanged.



Extent of flooding from surface water

High 🕘 Medium 🔵 Low 🔿 Very Low 🔶 Location you selected

9.0 GROUNDWATER FLOODING

- 9.1 Groundwater flooding occurs when water levels in the ground rise above surface levels this is more likely to occur in low lying areas.
- 9.2 The geology maps available from the British Geological Survey show that the solid geology underlying the site is Mercia mudstone formation with clay and silty deposits.
- 9.3 Cranfield University Soilscapes map below shows that the site is located in loamy and clayey soils with impeded drainage which indicates a very slow infiltration into the ground.

9.4 The effects of ground water flooding on the site are considered to be low. This is based on the requirement that the development is above ground level and that water will be directed away from the development.

10.0 EXISTING SEWERS FLOODING

- 10.1 Flooding caused by the existing sewer network occurs when the network is over capacity or there is a blockage in the system.
- 10.2 No existing adoptable sewers are recorded in the area and all the existing private drainage network is to be removed to allow the construction of the new development. Therefore, there is no risk of flooding from any sewers around the site.

11.0 FLOODING FROM RESERVOIRS

- 11.1 Reservoir flooding is unlikely to happen and if so, measures are in place to monitor and protect reservoirs in event of an unlikely catastrophic event. As the enforcement authority for the Reservoirs Act 1975 in England, the Environment Agency ensure that reservoirs are inspected regularly and essential safety work is carried out. These laws are being currently reviewed and it is expected that the requirements for monitoring and maintenance will become more stringent.
- 11.2 However, in the unlikely event that a reservoir dam failed, a large volume of water would escape at once and flooding could happen with little or no warning.
- 11.3 The Environment Agency Flood Map showing Risk of Flooding from Reservoirs is shown below. The development is out of a reservoir failure flood path therefore the risk is considered minimum.

12.0 DRAINAGE ASSESSMENT

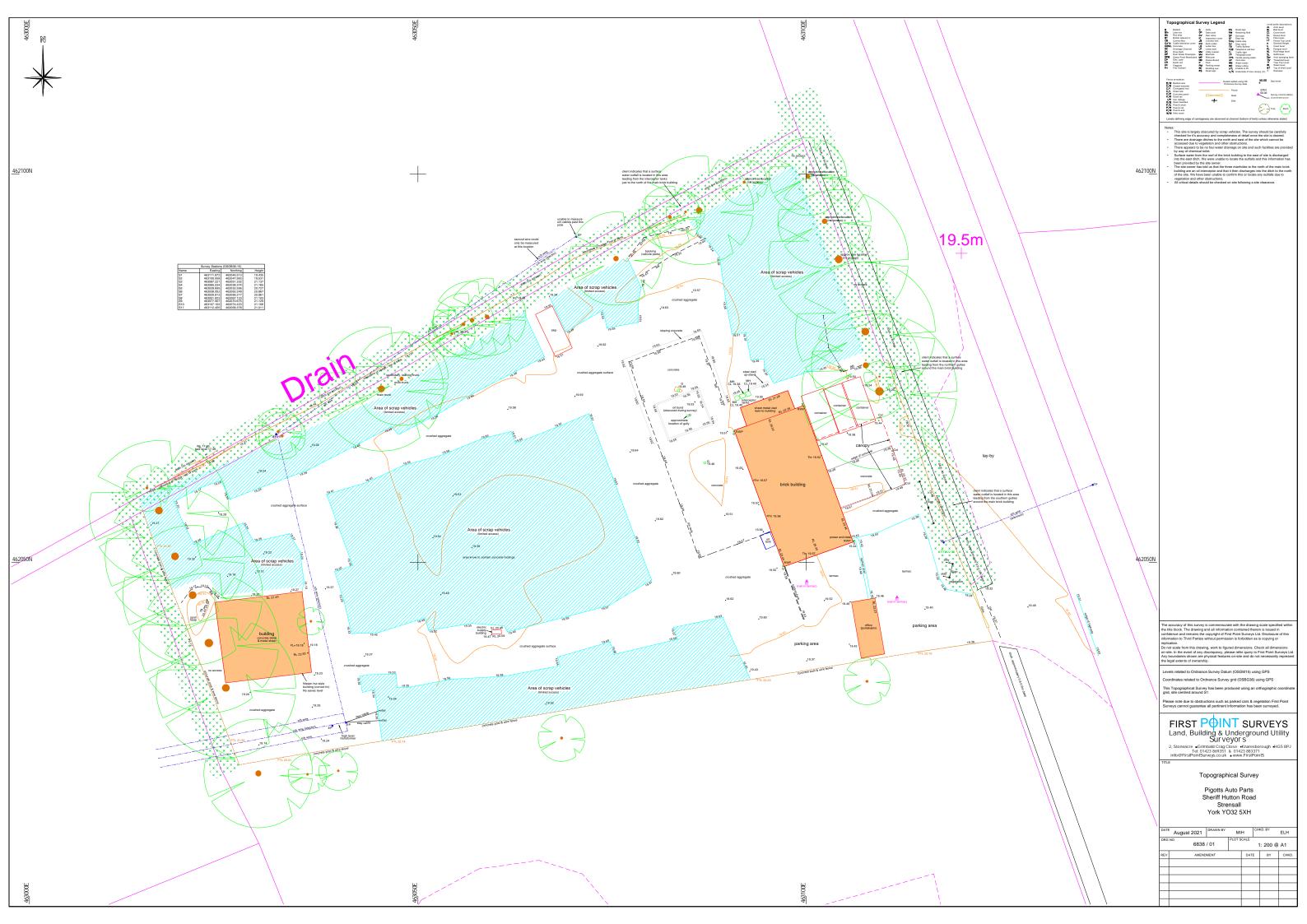
Proposed Foul Water Network

- 12.1 The proposed foul water network will need to accommodate foul flows from building toilets and kitchens. Prior to the discharge into the existing ditch, the flows will be treated in a foul water treatment plant, which will be located at the top of the site, and tanker access will be provided via the adjacent car parking bays.
- 12.2 The proposed foul water network will be private, and the proposed design can be found in 'Drainage Strategy and Calculations' in Appendix D.

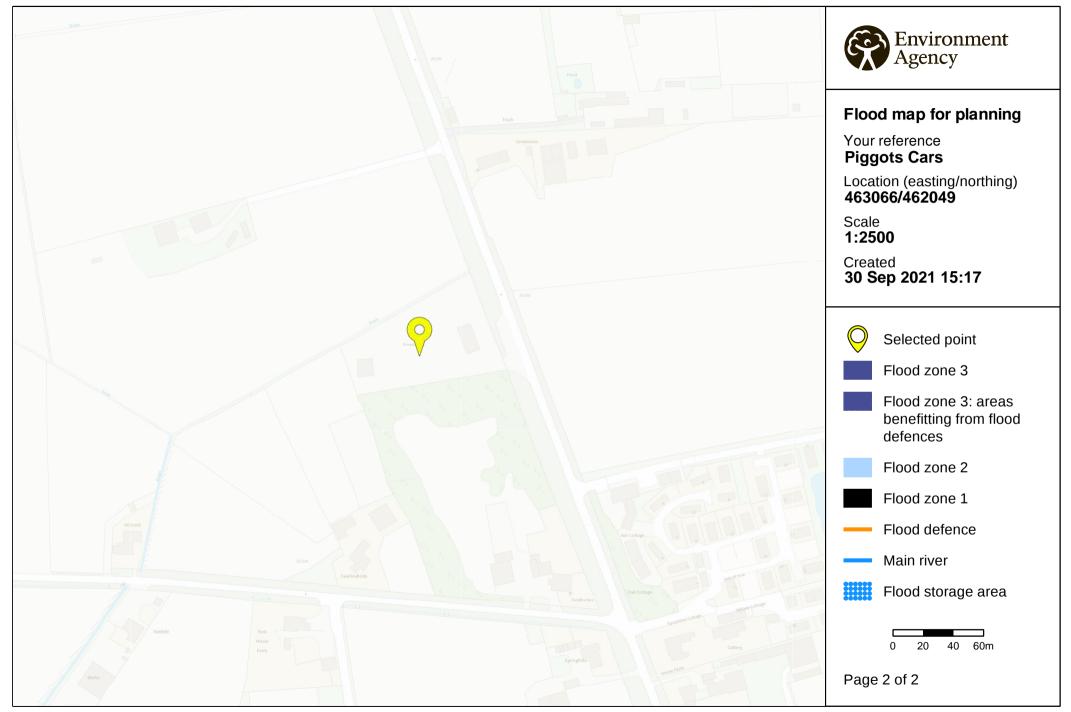
Proposed Surface Water Network

- 12.3 The surface water discharge will follow the ground, watercourse, sewer, hierarchy in accordance with the principles laid down in CIRIA Report 697 'The SUDS Manual' 2016 and in accordance with local and national planning policy. The site wide drainage strategy has considered the potential for discharge in accordance with the aforementioned hierarchy.
- 12.4 Discharge into a soakaway is unlikely to be feasible due to the existing ground conditions and the impeded drainage which does not provide sufficient infiltration.
- 12.5 There is no surface, foul or combined public sewer in the wider area.
- 12.6 Therefore, the discharge into the existing ditch is the preferred option. There are three existing outfall points, which are proposed to be abandoned. A new singly combined outfall, along with a new headwall, is proposed for the discharge of surface water for the development.
- 12.7 Prior to the discharge of the surface water into the ditch, a flow control unit will restrict the runoff rate at 3.0l/s, which has been sized based on the requirement of a min 75mm orifice.
- 12.8 An underground geocellular storage tank is proposed to cater for the 1 in 100 years + 40% climate change critical storm event, with a total volume of 22.8m³.
- 12.9 To manage water quality and to comply with SuDS requirements, permeable paving is proposed for the car parking bays, which will manage the water collection and improve the water quality.
- 12.10 The surface water system will remain private and will be maintained by a management company, appointed by the landowner, in accordance with the manufacturers specifications and guidance.
- 12.11 There is low risk of potential pollution from the proposed development and use of the site and therefore a hydrodynamic vortex separator is proposed to comply with the CIRIA SuDS Manual.
- 12.12 A drainage design has been produced on the above basis and can be found in Appendix D.

13.0 CONCLUSION AND RECOMMENDATIONS

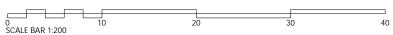

- 13.1 The site is located within a Flood Zone 1 which comprises land assessed as having less than a 1 in1,000 year annual probability of flooding due to rivers.
- 13.2 The site has a 'very low' chance of flooding from surface water indicating a probability of flooding is less than 1 in 1000 and flood risk has been managed within the design of the development.
- 13.3 The effects of ground water flooding on the site are low. This is based on the requirement that the development is above ground level and that the risk to the site is low.
- 13.4 There is no risk from existing sewers or in the event of a reservoir failure.
- 13.5 The foul water drainage system will discharge into the existing ditch after being treated into the proposed package treatment works.
- 13.6 The surface water system will discharge into the existing ditch after being attenuated on site and the runoff rate is restricted at 3.0 l/s in the flow control unit.
- 13.7 A single combined outfall is proposed, as per Foss IDB request, with a new headwall to be constructed. A bespoke permit for the discharge of surface and foul water must be obtained.
- 13.8 All the above proposals are indicated in the 'Proposed Drainage Strategy' plan in Appendix D.

George Dermentzoglou M.Eng. Civil Engineer GMICE On behalf of Dudleys Consulting Engineers



APPENDIX A – TOPOGRAPHICAL SURVEY

APPENDIX B – ENVIRONMENT AGENCY FLOOD MAP



© Environment Agency copyright and / or database rights 2021. All rights reserved. © Crown Copyright and database right 2021. Ordnance Survey licence number 100024198.

APPENDIX C – PROPOSED SITE LAYOUT

otts Auto	Site Plan &		Kennedy	Butler		
Parts,	Elevation as	0.47E	Feb 2022	1:200 @A	1	
	Proposed	208 No.	660	01-PL	M	

arb

RIBA WW

APPENDIX D – DRAINAGE STRATEGY AND CALCULATIONS

Tithe House 35 Town Street Horsforth Leeds LS18 5LJ T: 0113 258 3611 E: info@dudleys.co.uk

DRAINAGE STRATEGY AND CALCULATIONS

Client:	Jim Pigott
Site Address:	Pigotts Autoparts, Sheriff Hutton Road, Strensall, YO32 5XH
Project Number:	21273
Report Reference (Revision):	CALC01 (A)
Date:	January 2024

Author:	George Dermentzoglou	Date:	January 2024	
Checker:	Andy Walker	Date:	January 2024	

 Directors:
 Andy Walker
 BEng CEng MIStructe
 Paul Brownlow
 MEng CEng MICE MIStructe
 Peter Dixon
 BEng (Hons) CEng FIStructe

 Associates:
 Robert Thomson
 BA(Hons) CEng MIStructe
 Sebastian Reid
 MSc CEng MICE MCIHT

Dudleys Consulting Engineers Ltd trading as Dudleys Registered office: Tithe House, 35 Town Street, Leeds, LS18 5L Registered in England & Wales: 6997283

G dudleys Structural & Civil Consultants

Ref No.	21237-CALC01(A)	Sheet No.	i
Calcs By:	George D	Date	January 2024

CLIENT:	Jim Pigott
PROJECT TITLE:	Pigotts Autoparts
ARCHITECT:	Paul Butler Architects

DESIGN PHILOSOPHY:

The existing site is an autoparts, car sales and scrap yard located about 1km north of Strensall. To the east of the site is Sheriff Hutton Road, to the north is an existing ditch and to the west and south greenfield land. The site is overall flat with couple of buildings and most of the area covered with scrap vehicles. Along the north boundary of the site there is an existing ditch which is under the Foss Internal Drainage Board responsibility. This ditch flows towards southwest and eventually discharges into River Foss. There are three existing connection points from the site into this ditch and the ditch along the eastern site boundary.

The proposals include the demolition of all the existing buildings and structures, and the construction of 3 large and 3 small dwellings with associated car parking bays and an access road via the existing entrance.

Soakaways have been identified as not being suitable solution for surface water disposal due to the loamy and clayey ground conditions and impeded drainage, which results to a very slow ground infiltration.

No surface or other public sewers have been identified in the wider area.

Following the above, surface water is proposed to discharge into the existing ditch, replicating how the site drains, with a single combined connection via a new headwall to be constructed at the ditch embankment.

An underground attenuation geocellular tank, with a total storage volume of 22.8m³, is proposed to cater for the 1 in 100 years + 40% climate change critical storm event with no above ground flooding.

A flow control will be provided, downstream of the tank, to restrict the flow to 3.0 l/s prior to discharging into the ditch. The reason behind this minimum rate is to achieve a minimum 75mm orifice for the flow control unit, which is a requirement for minor developments (less than 10 residential properties).

A hydrodynamic vortex separator is proposed to reduce any pollution hazard from the site even though the risk from the proposed residential use is considered very low in accordance with the CIRIA SuDS Manual.

The proposed permeable pavement construction at the car parking bays will allow the management of the surface water flows and will also provide a benefit on the water quality discharging into the existing ditch.

The surface water system will remain private and will be maintained by a competent management company, appointed by the developer, in accordance with the manufacturers recommendations and guidance.

The proposed foul water will be treated in a package plant, located at the top of the site, with tanker access via the parking bays, before discharging into the ditch via a single combined outfall and a new headwall.

A consultation with the Foss IDB is required to obtain a bespoke permit, which will allow the construction of the new headwall within the 9m easement zone and the discharge of surface and foul water into the ditch.

Gdudleys Structural & Civil Consultants

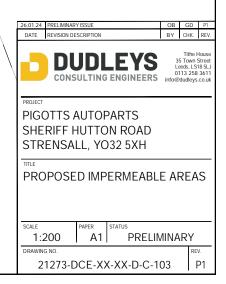
Ref No.	21237-CALC01(A)	Sheet No.	ii
Calcs By:	George D	Date	January 2024

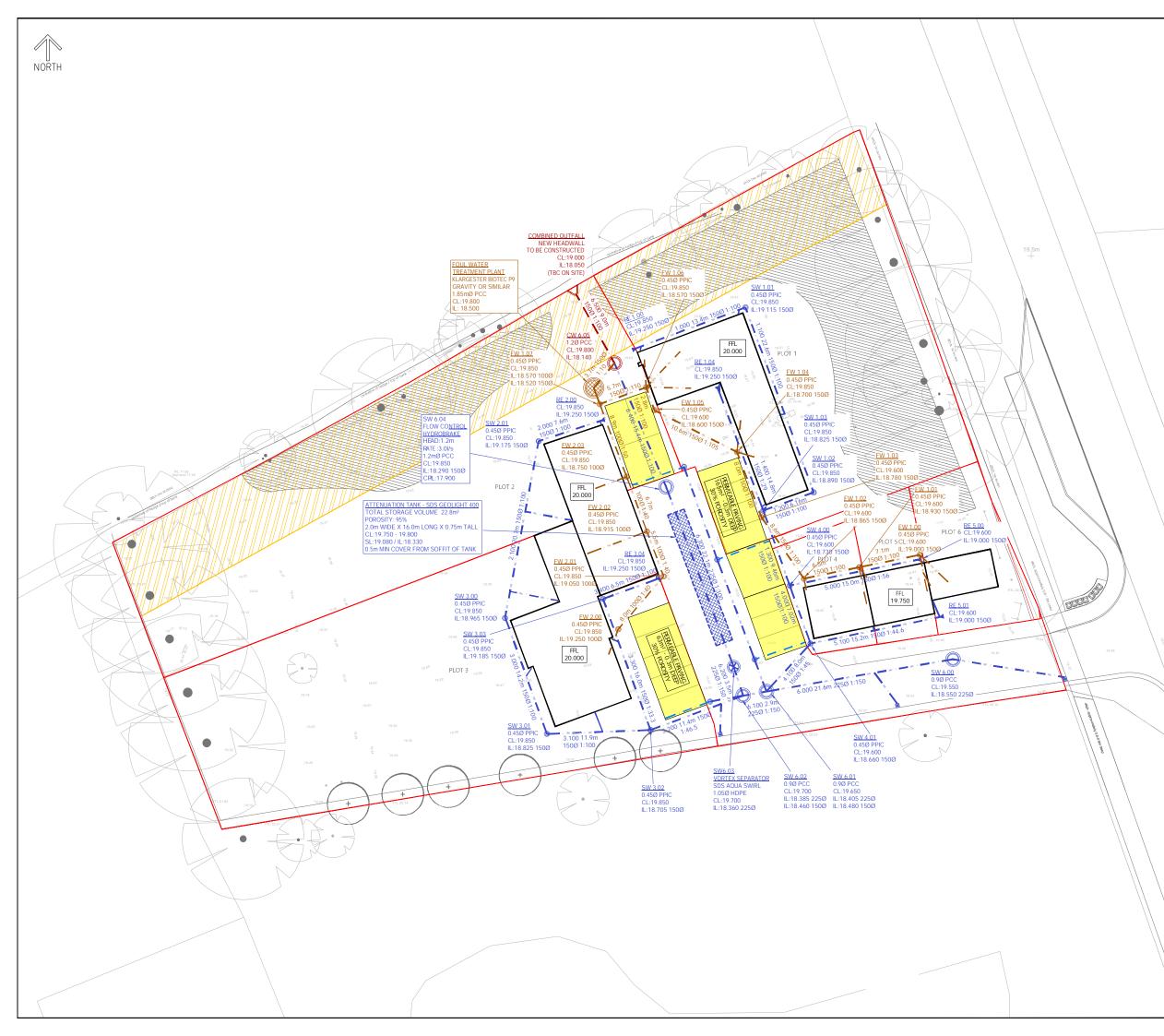
CODES OF PRACTICE				
Proposed Outfalls	Discharge Outfall Point	SW -> Existing Ditch (north boundary) FW -> Existing Ditch (north boundary)		
	Soakaways Viable / Rate	Not viable due to the previous site use and the ground conditions		
	Watercourse Discharge Available	Existing ditch along northern boundary		
	Surface Water Sewer	None		
	Combined Sewer	None		
	Invert Level of Outfall	Around 18.0m, to be confirmed on site		
Drainage Assessment	Scenarios to be Tested	1:1, 1:30, 1:100, 1:100 + 40% CC		
	Proposed FFLs	Plots 1-3: 20.000 - Plots 4-6: 19.750		
	Total Site Area	5,000 m ² / 0.500 ha		
	Existing Impermeable Area	2,650 m ² / 0.265 ha		
	Proposed Impermeable Area	1,250 m ² / 0.125 ha		
	Attenuation Storage Method	SDS Geolight 400 Geocellular Tank 16.0m x 2.0m x 0.75m deep (95% voids)		
	Proposed Attenuation Storage Volume	22.8 m ³ for up to 1:100 year + 40% CC		
	Flow Control Unit	Hydrobrake - Flow: 3.0 l/s - Head: 1.2m (min 75mm orifice)		
Hydraulic	M5-60 / R	17.000 / 0.400		
Assessment	MADD	0.0		
	Global Time of Entry	5 mins		
	Summer / Winter Coeffs	1.0 / 1.0		
SuDS	Water Quality Methods Used	Permeable paving, Vortex Separator		
	Hydrocarbon Interceptor	Vortex Separator		
	Silt Capture	Yes, in Flow Control MH and Separator		
	Ponds / Swales	No		
	Permeable Pavement	Yes, at the car parking bays		
Information Provided	21273-DCE-XX-XX-D-C-103-P1 - Proposed Impermeable Areas			
	21273-DCE-XX-XX-D-C-100-P2 - Proposed Drainage Strategy			
	Surface Water Hydraulic Calculations V2			
	Hydrodynamic Vortex Separator Technical Specification			
	Attenuation Tank Technical Specification			
	Hydrobrake Flow Control Technical Specification			

DO NOT SCALE

 \wedge

ABNORMAL HAZARD REFERENCE


DESIGNERS HAZARD IDENTIFICATION IT IS ASSUMED THAT ALL WORKS WILL BE UNDERTAKEN BY A COMPETENT CONTRACTOR WORKING, WHERE APPROPRIATE TO AN APPROVE METHOD STATEMENT. IN ADDITION TO THE HAARADS TYPICALLY ASSOCIATED WITH THE TYPES OF CONSTRUCTION BETALED ON THIS DRAWING AN AN AND AND AND AND ADDITION DETALED ON THIS DRAWING AND AND AND ADDITION DETALED ON THIS DRAWING AND AND ADDITION DETALED ON THIS DRAWING AND AND ADDITION DETALED AND ADDITION THIS SCHEME HAVE BEEN IDENTIFIES



- 1. THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL ARCHITECT'S DRAWINGS AND ENGINEER'S DRAWINGS AND SPECIFICATIONS.
- 2. PLEASE DO NOT SCALE FROM THIS DRAWING.
- 3. IF A DISCREPANCY IS IDENTIFIED ON THIS DRAWING, PLEASE INFORM DUDLEYS CONSULTING ENGINEERS LTD.
- 4. CONTRACTOR IS TO CHECK ALL DRAWINGS AND REPORT ANY DISCREPANCIES IMMEDIATELY.
- 5. ALL FFL AND EXTERNAL LEVELS ARE PROPOSED. THE FINAL LEVELS TO BE CONFIRMED BY THE ARCHITECT.
- THIS DRAWING IS BASED OFF THE FOLLOWING INFORMATION:
 a. 638 401 TOPOGRAPHICAL SURVEY BY FIRST POINT SURVEYS DATED AUGUST 2021
- b. 01-PL REVISION M SITE LAYOUT PLAN BY PAUL BUTLER ARCHITECTS DATED NOVEMBER 2022

KEY

	SITE AND PLOT BOUNDARIES
77777	PROPOSED IMPERMEABLE AREAS SITE TOTAL AREA: 0.125ha
	PROPOSED SURFACE WATER SEWER
	PROPOSED COMBINED OUTFALL SEWER

DO NOT SCALE

 \wedge

ABNORMAL HAZARD REFERENCE

DESIGNERS HAZARD IDENTIFICATION IT IS ASSUMED THAT ALL WORKS WILL BE UNDERTAKEN BY A COMPETENT CONTRACTOR WORKING, WHERE APROPRATE TO AN APPROVE DIETHOD STATEMENT. IN ADDITION TO THE HAZARDS TYPICALLY ASSOCIATED WITH THE TYPES OF CONSTRUCTION DETALE DO NT HIS DRAWING, ANY KNOWN ABNORMAL HAZARDS SPECIFIC TO THIS SOLMEM HAVE BEEN DENTIFIED

- THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL ARCHITECT'S DRAWINGS AND ENGINEER'S DRAWINGS AND SPECIFICATIONS.
- 2. PLEASE DO NOT SCALE FROM THIS DRAWING.
- IF A DISCREPANCY IS IDENTIFIED ON THIS DRAWING, PLEASE INFORM DUDLEYS CONSULTING ENGINEERS LTD
- 4. CONTRACTOR IS TO CHECK ALL DRAWINGS AND REPORT ANY DISCREPANCIES IMMEDIATELY.
- 5. ALL FFL AND EXTERNAL LEVELS ARE PROPOSED. THE FINAL LEVELS TO BE CONFIRMED BY THE ARCHITECT.
- 6. THIS DRAWING IS BASED OFF THE FOLLWING
- a. 6838 / 01 TOPOGRAPHICAL SURVEY BY FIRST POINT SURVEYS DATED AUGUST 2021
- D1-PL REVISION M SITE LAYOUT PLAN BY PAUL BUTLER ARCHITECTS DATED NOVEMBER 2022 <u>DRAINAGE NOTES</u>
- ALL COVER AND INVERT LEVELS ARE IN METRES TO ORDNANCE DATUM.
- 8. SURFACE WATER TO DISCHARGE INTO THE EXISTING DITCH VIA AN ATTENUATION TANK & FLOW CONTROL.
- 9. FOUL WATER TO DISCHARGE INTO THE EXISTING DITCH VIA A FOUL WATER TREATMENT PLANT.
- 10. A SINGLE COMBINED OUTFALL / HEADWALL WILL BE PROVIDED AT THE DITCH EMBANKMENT.
- ALL MANHOLES TO BE CONSTRUCTED AS NOTED AND INSTALLED IN ACCORDANCE WITH MANUFACTURES SPECIFICATION.
- 12. ALL PIPES TO BE PVC OR SIMILAR AND INSTALLED TO SOFFIT LEVEL.
- 13. SEWERS TO BE LAID IN CLASS "S" BEDDING (150mm GRANULAR BED AND SURROUND).

	<u>KEY</u>
	SITE AND PLOT BOUNDARIES
77777	9m EASEMENT ZONE FROM TOP OF DITCH BANK
- SV	PROPOSED SURFACE WATER SEWER
	PROPOSED FOUL WATER SEWER
	PROPOSED COMBINED WATER SEWER
	PROPOSED PERMEABLE PAVING AT CAR PARKING BAYS
	100Ø PERFORATED PIPE WRAPPED IN GEOTEXTILE
1	PROPOSED GULLY

	26.01.24		TO SUIT LATEST SITE ANNING COMMENTS	OB	GD	P2			
	03.11.21	PRELIMINAR	Y ISSUE		GD	SR	P1		
	DATE	REVISION DE	SCRIPTION		BY	CHK.	REV.		
				EYS ENGINEERS	0	Tithe F 5 Town 3 eeds, LS 113 258 dudleys	Street 18 5LJ 3611		
	SHE	RIFF H	IUTTC	PARTS ON ROAD 032 5XH					
\	PROPOSED DRAINAGE STRATEGY								
	scale 1:2	200	PAPER A1	STATUS PRELII	MINA	RY			
	DRAWIN	G NO.				RE	V.		
	2	1273-D	CE-X	X-XX-D-C-1	00		22		

DUDLEYS CONSULTING ENGINEERS	File: 21273 Flow Model V2.pfdPage 1Network: Storm NetworkPigoΣ s AutopartsGeorge DermentzoglouSheriī HuΣ on Road26/01/2024Hydraulic Calcula⊖ons
Desigr	Se t ngs
Rainfall Methodology FSR N Return Period (years) 1 Addi@onal Flow (%) 0 FSR Region England and Wales M5-60 (mm) 17.000 Ra@o-R 0.400 CV 1.000 Time of Entry (mins) 5.00	aximum Time of Concentraθon (mins) 30.00 Maximum Rainfall (mm/hr) 50.0 Minimum Velocity (m/s) 1.00 Connecθon Type Level Soκ ts Minimum Backdrop Height (m) 0.000 Preferred Cover Depth (m) 1.200 Include Intermediate Ground x Enforce best pracθce design rules x
<u>N</u>	<u>odes</u>
(ha) (mins) Level	ameter Eas e ng Northing Depth (mm) (m) (m) (m)
(m) RE1.00 0.002 5.00 19.850 SW1.01 0.002 5.00 19.850 SW1.02 0.004 5.00 19.850 SW1.03 0.002 5.00 19.850 RE1.04 0.006 5.00 19.850 RE2.00 0.003 5.00 19.850 SW2.01 0.010 5.00 19.850 SW3.00 0.003 5.00 19.850 SW3.01 0.002 5.00 19.850 SW3.02 0.008 5.00 19.850 SW3.03 19.850 SW3.03 19.850 SW4.00 0.003 5.00 19.850 SW4.01 0.003 5.00 19.600 RE5.00 0.003 5.00 19.600 RE5.01 0.003 5.00 19.600 RE5.01 0.003 5.00 19.600 SW6.00 0.011 5.00 19.550 SW6.01 0.051 5.00 19.650 SW6.02 0.006 5.00 19.700 SW6.03 19.700 SW6.04 19.850 CW6.05 19.800 HEADWALL 19.000	230 463074.568 462079.138 0.600 450 463087.152 462083.837 0.735 450 463094.999 462062.603 0.960 450 463089.200 462060.528 1.025 230 463084.044 462074.383 0.600 230 463070.592 462070.855 0.600 450 463063.382 462084.477 0.675 450 463059.533 462048.178 0.885 450 463076.234 462035.318 1.145 450 463070.796 462050.375 0.665 230 463077.762 462052.933 0.600 450 463092.239 462051.905 0.870 450 463094.623 462045.255 0.940 230 463106.941 462054.874 0.600 230 463109.483 462048.291 0.600 900 463110.997 462039.744 1.245 900 463089.557 462039.261 1.315 1050 463085.799 462042.567 1.340 1200 463078.035 462063.234 1.560 1200 463072.116 462077.451 1.660 463067.710 462085.345 0.950
	nks
Length ks (mm) / US Node Node (m) n (n 1.000 RE1.00 SW1.01 13.433 0.600 19.2 1.100 SW1.01 SW1.02 22.638 0.600 19.2 1.200 SW1.02 SW1.03 6.159 0.600 18.8 1.300 SW1.03 SW4.00 9.460 0.600 18.8 1.400 RE1.04 SW1.03 14.800 0.600 19.2	ILDS ILFallSlopeDiaT of CRaini)(m)(m)(1:X)(mm)(mins)(mm/hr)5019.1150.13599.51505.2245.81518.8900.225100.61505.6044.49018.8250.06594.81505.7044.02518.7300.095100.01505.8643.5
(m) 1.000 1.007 17.8 0.3 0.450 1.100 1.001 17.7 0.6 0.585 1.200 1.032 18.2 1.3 0.810 1.300 1.005 17.8 2.5 0.875	DS Σ Area Σ Add Pro Pro Depth (ha) InÑow Depth Velocity (m) (I/s) (mm) (m/s) 0.585 0.002 0.0 14 0.387 0.810 0.004 0.0 20 0.473 0.875 0.008 0.0 27 0.592 0.720 0.016 0.0 38 0.709 0.875 0.006 0.0 18 0.781

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

		ENGIN	S Ti	udleys Con the House 5 Town Stre eds, LS18	eet		Net Geo	e: 21273 F twork: Sto orge Derm 01/2024	orm Netw	ork	Sheriī	Autoparts HuΣ on Ro Ilic Calcula	ad
							<u>Links</u>						
Name		JS ode	DS Node	Leng (m)		mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)			Rain m/hr)
2.000			SW2.01	7.60		0.600	19.250	19.175	0.075	101.3	150	5.13	46.2
2.100			SW3.00	20.70		0.600	19.175	18.965	0.210	98.6	150	5.47	44.9
3.000			SW3.01	14.20		0.600	18.965	18.825	0.140	101.4	150	5.71	44.0
3.100			SW3.02	11.9		0.600	18.825	18.705	0.120	99.2	150	5.90	43.3
3.200			SW6.02	11.40		0.600	18.705	18.460	0.245	46.5	150	6.03	42.9
3.300			SW3.02	16.00		0.600	19.185	18.705	0.480	33.3	150	5.26	45.6
3.400			SW3.03	6.50		0.600	19.250	19.185	0.065	100.0	150	5.11	46.2
4.000			SW4.01	7.0		0.600	18.730	18.660	0.070	100.0	150	5.97	43.1
4.100	SW	4.01	SW6.01	8.00	00	0.600	18.660	18.480	0.180	44.4	150	6.06	42.8
5.000	RE5	5.00	SW4.00	14.9	99	0.600	19.000	18.730	0.270	55.6	150	5.18	45.9
5.100	RE5	5.01	SW4.01	15.20	00	0.600	19.000	18.660	0.340	44.7	150	5.17	46.0
6.000	SW	6.00	SW6.01	21.60	00	0.600	18.550	18.405	0.145	149.0	225	5.34	45.4
6.100	SW	6.01	SW6.02	2.90	00	0.600	18.405	18.385	0.020	145.0	225	6.10	42.6
6.200			SW6.03	3.50		0.600	18.385	18.360	0.025	140.0	225	6.16	42.5
6.300			SW6.04	22.10		0.600	18.360	18.290	0.070	315.7	225	6.66	40.9
6.400			CW6.05	15.40		0.600	18.290	18.140	0.150	102.7	150	6.92	40.1
6.500	CW	6.05	HEADWA	ALL 9.04	40	0.600	18.140	18.050	0.090	100.4	150	7.07	39.7
		Na	me Ve	el Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro		
			(m.		(I/s)	Depth	Depth	(ha)	In Ň ow	Depth	Velocity	/	
						(m)	(m)		(I/s)	(mm)	(m/s)		
		2.0			0.5	0.450	0.525	0.003	0.0	17	0.434	ļ	
		2.1			2.1	0.525	0.735	0.013	0.0	35	0.681		
		3.0			2.5	0.735	0.875	0.016	0.0	38	0.710		
		3.1			2.8	0.875	0.995	0.018	0.0	40	0.737		
		3.2			4.5	0.995	1.090	0.029	0.0	42	1.108		
		3.3			0.5	0.515	0.995	0.003	0.0	13	0.640		
		3.4			0.5	0.450	0.515	0.003	0.0	17	0.437		
		4.0			3.4	0.720	0.790	0.022	0.0	45	0.780		
		4.1			4.3	0.790	1.020	0.028	0.0	41	1.115		
		5.0			0.5	0.450	0.720	0.003	0.0	15	0.536		
		5.1			0.5 1.8	0.450 0.775	0.790	0.003	0.0	14 31	0.583		
		6.0 6.1			1.0 13.9	1.020	1.020 1.090	0.011 0.090	0.0 0.0	87	0.530 0.967		
		6.2			19.2	1.020	1.115	0.090	0.0	104	1.067		
		6.3			18.5	1.115	1.335		0.0	131	0.773		
		6.4			18.1	1.410	1.510		0.0	129	1.123		
		6.5			17.9	1.510	0.800	0.125	0.0	125	1.139		
						<u>Pipel</u>	ine Sche	<u>dule</u>					
	Link	Leng	th Slop	be Dia	Link	US	CL U	S IL US	Depth	DS CL	DS IL	DS Depth	
		(m)				e (n	n) (I		(m)	(m)	(m)	(m)	
	1.000	13.4	33 9 9	.5 150	Circul	ar 19.8	350 19	.250	0.450	19.850	19.115	0.585	
	1.100							.115	0.585	19.850	18.890	0.810	
	1.200							.890	0.810	19.850	18.825	0.875	
	1.300	9.4	60 100	.0 150	Circul	ar 19.8	350 18	.825	0.875	19.600	18.730	0.720	
		Link	US	Dia	Node		MH	DS	Dia	Node	Mł	1	
			Node	(mm)	Туре		уре	Node	(mm)	Туре	Тур		
		1.000	RE1.00	230	Manho	le Ado	ptable	SW1.01	450	Manhole	e Adopt	able	
		1.100	SW1.01		Manho		ptable	SW1.02	450	Manhole			
		1.200	SW1.02		Manho		ptable	SW1.03	450	Manhole			
		1.300	SW1.03	3 450	Manho	le Ado	optable	SW4.00	450	Manhole	e Adopt	able	
			Г	10w + v108	Convei	ht © 10	00 2024	Coursesures	Tachnal	ogioa Itd			

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

	EYS	Tithe H 35 Tov	ys Consu House vn Stree LS18 5L	t		Network:	3 Flow Mod Storm Netw ermentzoglo 24	ork	Pig Sh	ge 3 JoΣ s Auto eriī HuΣ c draulic Ca	
					Pipeline S	<u>chedule</u>					
Link	•	Slope	Dia	Link	US CL		US Depth	DS CL	DS I		•
1 400	(m)		(mm)	Туре	(m)	(m)	(m)	(m)	(m)		
1.400 2.000	14.800 7.600	34.8 101.3	150 150	Circular Circular	19.850 19.850	19.250 19.250	0.450 0.450	19.850 19.850	18.82 19.1).875).525
2.000	20.700	98.6	150	Circular	19.850 19.850	19.250	0.430	19.850	18.9).735
3.000		101.4	150	Circular	19.850	18.965	0.735	19.850	18.82).875
3.100	11.900	99.2	150	Circular	19.850	18.825	0.875	19.850	18.70).995
3.200	11.400	46.5	150	Circular	19.850	18.705	0.995	19.700	18.40		.090
3.300	16.000	33.3	150	Circular	19.850	19.185	0.515	19.850	18.70	05 C).995
3.400	6.500	100.0	150	Circular	19.850	19.250	0.450	19.850	19.18	85 C).515
4.000		100.0	150	Circular	19.600	18.730	0.720	19.600	18.60).790
4.100	8.000	44.4	150	Circular	19.600	18.660	0.790	19.650	18.48		.020
5.000	14.999	55.6	150	Circular	19.600	19.000	0.450	19.600	18.73).720
5.100	15.200	44.7	150 225	Circular	19.600	19.000 19.550	0.450	19.600	18.60).790
6.000		149.0	225	Circular	19.550	18.550	0.775	19.650	18.40		.020
6.100 6.200		145.0 140.0	225 225	Circular Circular	19.650 19.700	18.405 18.385	1.020 1.090	19.700 19.700	18.38 18.36		.090 .115
6.300		315.7		Circular	19.700	18.360	1.115	19.700	18.29		.335
6.400		102.7	150	Circular	19.850	18.290	1.410	19.800	18.14		.510
6.500		100.4	150	Circular	19.800	18.140	1.510	19.000	18.0		.800
			io N	lada	N AL L	DC	Dia	No	do	N /1 1	
LI	nk US Nod			Node Type	MH	DS Node	Dia (mm)	No		MH	
1 /	00 RE1.0	•		Type anhole	Type Adoptable		• •	5.		Type Adoptable	1
	00 RE1.0			anhole	Adoptable					Adoptable	
	00 SW2.			anhole	Adoptable					Adoptable	
	000 SW3.			anhole	Adoptable					Adoptable	
	00 SW3.			anhole	Adoptable					Adoptable	
3.2	200 SW3.	02 4	150 Ma	anhole	Adoptable	SW6.02	900	Man	hole /	Adoptable	2
	300 SW3.			anhole	Adoptable					Adoptable	
	00 RE3.0			anhole	Adoptable					Adoptable	
	000 SW4.			anhole	Adoptable					Adoptable	
	00 SW4.			anhole	Adoptable					Adoptable	
	00 RE5.0			anhole	Adoptable					Adoptable	
	00 RE5.0			anhole	Adoptable						
	00 SW6. 00 SW6.			anhole anhole	Adoptable Adoptable					Adoptable Adoptable	
	00 SW6. 200 SW6.			anhole	Adoptable					Adoptable	
	300 SW6.				Adoptable					Adoptable	
	00 SW6.				Adoptable					Adoptable	
	500 CW6.			anhole	Adoptable			Junce			
					Manhole S	Schedule					
Node	Eas e ng	N	orthing	CL (m)	Depth		Connec e	ons	Link	IL (m)	Dia (mm)
RE1.00	(m) 463074.5	68 16'	(m) 2079.138	(m) 3 19.85	(m) 0 0.600	(mm) 230				(m)	(mm)
NL 1.00	4.0074.0	00 402	2017.130	5 17.00	0.000	230	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
							G				
									1.000	19.250	150
SW1.01	463087.1	52 462	2083.837	7 19.85	0 0.735	450		1	1.000	19.115	150
							6				
							1-4	0	1.100	19.115	150
							Ŭ	0	1.100	17.113	150

PigoΣ s Autoparts Sherii Huz on Road Hydraulic CalculaOons

Manhole Schedu	ıle

	Eas e ng (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connec e on	12	Link	IL (m)	Dia (mm)
SW1.02	463094.999	462062.603	19.850	0.960	450		1	1.100	18.890	150
							0	1.200	18.890	150
SW1.03	463089.200	462060.528	19.850	1.025	450	1	1	1.400	18.825	150
						2	2	1.200	18.825	150
						0	0	1.300	18.825	150
RE1.04	463084.044	462074.383	19.850	0.600	230	Q	0	1.400	19.250	150
RE2.00	463070.592	462070.855	19.850	0.600	230	0 ¢ €				
01/0 01	4/20/2 202	4/00/0 477	10.050	0 (75	450		0	2.000	19.250	150
SW2.01	463063.382	462068.477	19.850	0.675	450	\mathcal{P}^{1}	1	2.000	19.175	150
						0	0	2.100	19.175	150
SW3.00	463059.533	462048.178	19.850	0.885	450		1	2.100	18.965	150
						ő	0	3.000	18.965	150
SW3.01	463064.354	462034.871	19.850	1.025	450		1	3.000	18.825	150
							0	3.100	18.825	150
SW3.02	463076.234	462035.318	19.850	1.145	450	2	1 2	3.300 3.100	18.705 18.705	150 150
							0	3.200	18.705	150
SW3.03	463070.796	462050.375	19.850	0.665	450	(P	1	3.400	19.185	150
						ŏ	0	3.300	19.185	150
RE3.04	463077.762	462052.933	19.850	0.600	230	•	0	2 400	10.050	150
SW4.00	463092.239	462051.905	19.600	0.870	450		0	3.400 5.000	19.250 18.730	150 150
3004.00	403092.239	402031.905	19.000	0.070	450		2	1.300	18.730	150
						A 0	0	4.000	18.730	150
SW4.01	463094.623	462045.255	19.600	0.940	450	2	1	5.100	18.660	150
							2	4.000	18.660	150
	4/040/014	4/0054037	10 (22	0.400	000	v	0	4.100	18.660	150
RE5.00	463106.941	462054.874	19.600	0.600	230	0 <	0	5.000	19.000	150

Manhole Schedule

				inole Sch						
Node	Eas e ng (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connec e or	าร	Link	IL (m)	Dia (mm)
RE5.01	463109.483	462048.291	19.600	0.600	230					
						of)				
							0	5.100	19.000	150
SW6.00	463110.997	462043.450	19.550	1.000	900					
							0	6.000	18.550	225
SW6.01	463089.557	462039.744	19.650	1.245	900		1	6.000	18.405	225
						A	2	4.100	18.480	150
						040	0	(100	10.405	225
SW6.02	463086.890	462039.261	19.700	1.315	900	0	0	6.100 6.100	18.405 18.385	225 225
5110.02	+05000.070	402037.201	17.700	1.515	700	6-1	2	3.200	18.460	150
						2				
0.1.(, 0.0	1/0005 700		10 700	1.0.10	1050		0	6.200	18.385	225
SW6.03	463085.799	462042.567	19.700	1.340	1050		1	6.200	18.360	225
						1	0	6.300	18.360	225
SW6.04	463078.035	462063.234	19.850	1.560	1200	°	1	6.300	18.290	225
							0	6.400	18.290	150
CW6.05	463072.116	462077.451	19.800	1.660	1200	0	1	6.400	18.140	150
						Ø	0	(500	10.140	150
HEADWALL	463067.710	462085.345	19.000	0.950		1	0	6.500 6.500	18.140 18.050	150 150
	403007.710	402003.343	17.000	0.750			I	0.000	10.000	150
						1				
			<u>Simu</u>	ila e on Se	t ngs					
	Rainfall Meth	odology FSR				Analysis		d Norr	nal	
	FSI	Region Eng	land and V	Wales		Skip Steady	, State	e x		
	M5-	60 (mm) 17.0				n Down Time	•	,		
	C	Ra 0 o-R 0.40				onal Storage (r				
		nmer CV 1.00 'inter CV 1.00				ck Discharge R k Discharge Vo				
			0		D o. 10.0					
1!	5 30 0	50 120	5to 180	rm Dura 240	3 60	480 60	0	720	960	

5 A			2 X	
Return Period (years)	Climate Change (CC %)	Addi e onal Area (A %)	Addi e onal Flow (Q %)	
1	0	0	0	
30	0	0	0	
100	0	0	0	
100	40	0	0	

(m)

0.000

(m²)

63.0

(m²)

0.0

(m)

0.300

(m²)

63.0

(m²)

0.0

(m)

0.301

(m²)

0.0

(m²)

0.0

Node SW6.04 Online Hydro-Brake® Control

Flap Valve x Replaces Downstream Link ✓ Invert Level (m) 18.290 Design Depth (m) 1.200 Design Flow (I/s) 3.0 <u>Node SW</u>	Objec⊖ve (HE) Minimise upstream st Sump Available ✓ Product Number CTL-SHE-0079-3000-1200-3 Min Outlet Diameter (m) 0.100 Min Node Diameter (mm) 1200 76.04 Depth/Area Storage Structure	0
Base Inf Соек cient (m/hr) 0.00000 Side Inf Соек cient (m/hr) 0.00000		18.290 340
Depth Area Inf Area (m) (m ²) (m ²) 0.000 32.0 0.0	DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m)(m²)(m²)0.75032.00.00.7510.00.0	
Node SW	6.01 Depth/Area Storage Structure	
Base Inf Соек cient (m/hr) 0.00000 Side Inf Соек cient (m/hr) 0.00000		19.150 92
Depth Area Inf Area (m) (m²) (m²) 0.000 165.0 0.0	DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m)(m²)(m²)0.300165.00.00.3010.00.0	
Node SW	6.02 Depth/Area Storage Structure	
Base Inf Coeκ cient (m/hr) 0.00000 Side Inf Coeκ cient (m/hr) 0.00000		19.200 54
Depth Area Inf Area	Depth Area Inf Area Depth Area Inf Area	

Dudleys ConsulOng Tithe House 35 Town Street Leeds, LS18 5LJ

15 minute summer RE5.01

15 minute summer SW6.01

15 minute summer

60 minute summer

60 minute summer

60 minute summer

15 minute summer SW6.00 6.000

SW6.02

SW6.03

SW6.04

CW6.05

5.100

6.100

6.200

6.300

6.500

Hydro-Brake[®]

File: 21273 Flow Model V2.pfd Network: Storm Network George Dermentzoglou 26/01/2024 Page 7 PigoΣ s Autoparts Sheriī HuΣ on Road Hydraulic Calcula⊖ons

	Result:	s for 1 year	Cri e cal S	Storm Dur	a e on. Lo	owest	mass bal	ance	<u>: 99.51%</u>		
Node Even	t	US	Peak	Level	Depth	In ň c	w No	de	Flood	St	atus
		Node	(mins)	(m)	(m)	(I/s		(m³)	(m³)		
15 minute win	ter R	E1.00	11	19.264	0.014			0006	0.0000	OK	
15 minute win	ter S	N1.01	11	19.134	0.019			030	0.0000	OK	
15 minute sum	nmer S	N1.02	11	18.915	0.025			041	0.0000	OK	
15 minute sum		N1.03	11	18.862	0.037			059	0.0000	OK	
15 minute sum		E1.04	11	19.268	0.018			0007	0.0000	OK	
15 minute sum		E2.00	10	19.267	0.017			0007	0.0000	OK	
15 minute sum		N2.01	10	19.208	0.033			052	0.0000	OK	
15 minute sum		N3.00	11	19.002	0.037			060	0.0000	OK	
15 minute sum	nmer S	N3.01	11	18.865	0.040	2	2.7 0.0	064	0.0000	OK	
15 minute sum	nmer S	N3.02	11	18.746	0.041	4	.3 0.0	065	0.0000	OK	
15 minute sum	nmer S	N3.03	11	19.198	0.013	C	0.5 0.0	020	0.0000	OK	
15 minute sum	nmer R	E3.04	10	19.268	0.018	C	0.5 0.0	0007	0.0000	OK	
15 minute sum	nmer SV	N4.00	11	18.775	0.045	3	6.1 0.0	072	0.0000	OK	
15 minute sum	nmer SV	N4.01	11	18.700	0.040	4	.0 0.0	064	0.0000	OK	
15 minute sum	nmer R	E5.00	10	19.015	0.015	C	0.5 0.0	0006	0.0000	OK	
15 minute sum	nmer R	E5.01	10	19.014	0.014	C	0.5 0.0	0006	0.0000	OK	
15 minute sum	nmer SV	N6.00	10	18.580	0.030	1	.7 0.0)192	0.0000	OK	
15 minute sum	nmer S	N6.01	11	18.524	0.119	13	.0 0.0)756	0.0000	OK	
15 minute sum	nmer S	N6.02	11	18.512	0.127	18	8.1 0.0)810	0.0000	OK	
60 minute sum	nmer S	N6.03	45	18.503	0.143	12	.3 0.1	239	0.0000	OK	
60 minute sum	nmer S	N6.04	45	18.503	0.213	12	.3 6.7	/103	0.0000	SURCH	HARGED
60 minute sum	nmer C	W6.05	46	18.181	0.041	2	2.8 0.0)465	0.0000	OK	
60 minute sum	nmer H	EADWALL	46	18.090	0.040	2	2.8 0.0	0000	0.0000	OK	
Link Event	US	Lin	k	DS	Ou ŋ	low	Velocity	Flo	w/Cap	Link	Discharge
(Upstream Depth)	Node			Node	(/	s)	(m/s)			Vol (m ³	
15 minute winter	RE1.00			SW1.01		0.3	0.299		0.017	0.013	
15 minute winter	SW1.01			SW1.02		0.6	0.369		0.033	0.0359	
15 minute summer	SW1.02			SW1.03		1.1	0.431		0.063	0.016	
15 minute summer	SW1.03			SW4.00		2.3	0.590		0.130	0.0370	
15 minute summer	RE1.04			SW1.03		0.9	0.523		0.030	0.0338	
15 minute summer	RE2.00			SW2.01		0.5	0.242		0.026	0.0149	
15 minute summer	SW2.07			SW3.00		1.9	0.608		0.106	0.0649	
15 minute summer	SW3.00			SW3.01		2.4	0.654		0.133	0.051	
15 minute summer	SW3.01			SW3.02		2.6	0.691		0.149	0.0456	
15 minute summer	SW3.02			SW6.02		4.3	0.991		0.163	0.053	
15 minute summer	SW3.03			SW3.02		0.5	0.213		0.015	0.0370	
15 minute summer	RE3.04			SW3.03		0.5	0.504		0.026	0.0060	
15 minute summer	SW4.00			SW4.01		3.1	0.759		0.176	0.0290	
15 minute summer	SW4.0			SW6.01		4.0	1.042		0.149	0.0324	
15 minute summer	RE5.00			SW4.00		0.5 0.5	0.211		0.019	0.039	
is minua summar		5 100		N/1/1/11		11 5	11/63		11111/	11113/19	

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

SW4.01

SW6.01

SW6.02

SW6.03

SW6.04

CW6.05

HEADWALL

0.5

1.6

12.9

18.0

12.3

2.8

2.8

0.263

0.157

0.583

0.785

0.629

0.728

0.017

0.039

0.300

0.410

0.423

0.159

0.0349

0.2634

0.0644

0.0803

0.7243

0.0349

12.8

	Dudleys Consul O ng	File: 21273 Flow Model V2.pfd	Page 8
	Tithe House	Network: Storm Network	PigoΣ s Autoparts
DUDLEYS	35 Town Street	George Dermentzoglou	Sherii Huz on Road
	Leeds, LS18 5LL	26/01/2024	Hydraulic Calcula O ons

120 minute summer

120 minute summer

15 minute summer

15 minute summer

120 minute summer

120 minute summer

120 minute summer

120 minute summer

60 minute winter

120 minute summer SW6.00

SW4.00

SW4.01

RE5.00

RE5.01

SW6.01

SW6.02

SW6.03

SW6.04

CW6.05

4.000

4.100

5.000

5.100

6.000

6.100

6.200

6.300

6.500

Hydro-Brake[®]

<u>R</u>	<u>esults fo</u>	<u>r 30 year</u>	Cri e cal S	Storm Dur	a e on. Lo	west ma	ss balance:	99.51%		
Node Event		US	Peak	Level	Depth	In ň ow	Node	Flood	Stat	us
	1	lode	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)		
15 minute summe	r RE1	.00	11	19.270	0.020	0.7	0.0009	0.0000	OK	
15 minute summe	r SW	1.01	11	19.143	0.028	1.4	0.0045	0.0000	OK	
15 minute summe	r SW	1.02	11	18.930	0.040	2.9	0.0064	0.0000	OK	
120 minute summ	er SW	1.03	98	18.901	0.076	2.5	0.0120	0.0000	OK	
15 minute summe	r RE1	.04	10	19.277	0.027	2.2	0.0011	0.0000	OK	
15 minute summe	r RE2	.00	11	19.275	0.025	1.1	0.0011	0.0000	OK	
15 minute summe	r SW	2.01	10	19.228	0.053	4.8	0.0084	0.0000	OK	
15 minute summe	r SW	3.00	11	19.026	0.061	5.8	0.0097	0.0000	OK	
120 minute summ	er SW	3.01	98	18.900	0.075	2.9	0.0120	0.0000	OK	
120 minute summ		3.02	98	18.900	0.195	4.7	0.0311	0.0000	SURCHA	RGED
15 minute summe		3.03	11	19.204	0.019	1.1	0.0031	0.0000	OK	
15 minute summe			10	19.277	0.027	1.1	0.0011	0.0000	OK	
120 minute summ		4.00	98	18.901	0.171	3.5	0.0271	0.0000	SURCHA	
120 minute summ		4.01	98	18.901	0.241	4.5	0.0382	0.0000	SURCHA	RGED
15 minute summe			11	19.022	0.022	1.1	0.0009	0.0000	OK	
15 minute summe			11	19.021	0.021	1.1	0.0009	0.0000	OK	
120 minute summ		6.00	96	18.900	0.350	2.4	0.2227	0.0000	SURCHA	
120 minute summ	er SW	6.01	100	18.900	0.495	12.8	0.3150	0.0000	SURCHA	
120 minute summ		6.02	100	18.900	0.515	17.7	0.3278	0.0000	SURCHA	
120 minute summ		6.03	100	18.900	0.540	17.2	0.4677	0.0000	SURCHA	
120 minute summ		6.04	96	18.899	0.609	16.9	19.2096	0.0000	SURCHA	RGED
60 minute winter		6.05	34	18.182	0.042	2.9	0.0475	0.0000	OK	
30 minute winter	HEA	DWALL	20	18.091	0.041	2.9	0.0000	0.0000	OK	
Link Event	US	Lin	k	DS	0u ŋ			w/Cap	Link	Discharge
(Upstream Depth)	Node			Node	(1/:		n/s)		Vol (m³)	Vol (m³)
	RE1.00	1.000		SW1.01			0.383	0.039	0.0251	
	SW1.01	1.100		SW1.02			0.459	0.079	0.0692	
	SW1.02	1.200		SW1.03			0.535	0.155	0.0328	
	SW1.03	1.300		SW4.00			0.616	0.141	0.1253	
	RE1.04	1.400		SW1.03			0.519	0.072	0.0664	
	RE2.00	2.000		SW2.01			0.305	0.062	0.0286	
	SW2.01	2.100		SW3.00			0.772	0.265	0.1271	
	SW3.00	3.000		SW3.01			0.821	0.331	0.1008	
	SW3.01	3.100		SW3.02			0.707	0.162	0.1575	
	SW3.02	3.200		SW6.02			0.904	0.179	0.2007	
	SW3.03	3.300		SW3.02			0.273	0.036	0.0703	
15 minute summer	RE3.04	3.400		SW3.03		1.1	0.643	0.062	0.0112	

SW4.01

SW6.01

SW4.00

SW4.01

SW6.01

SW6.02

SW6.03

SW6.04

CW6.05

HEADWALL

3.5

4.5

1.1

1.1

1.4

12.0

17.2

16.9

2.9 2.9 0.796

0.955

0.242

0.297

0.136

0.518

0.640

0.637

0.736

0.197

0.168

0.046

0.041

0.032

0.279

0.393

0.581

0.165

0.1236

0.1408

0.0785

0.1117

0.8591

0.1153

0.1392

0.8789

0.0359

32.5

	Dudleys Consul O ng	File: 21273 Flow Model V2.pfd	Page 9
DUDI FYS	Tithe House	Network: Storm Network	PigoΣ s Autoparts
DUDLEYS CONSULTING ENGINEERS	35 Town Street	George Dermentzoglou	Sherii Huz on Road
Sonsoering Engineering	Leeds, LS18 5LJ	26/01/2024	Hydraulic Calcula O ons

<u>[</u>	Results fo	or 100 year	Cri e cal	Storm Du	ira e on. l	owest m	nass balance	e: 99.51%	<u>)</u>	
Node Event		US	Peak	Level	Depth	In ň ow	Node	Flood	Stat	15
NOUE LVEIII			(mins)	(m)	(m)	(I/s)	Vol (m ³)	(m ³)	5141	us
15 minute sumr		1.00	10	19.274	0.024	1.0	0.0010	0.0000	OK	
120 minute win		/1.01	118	19.274	0.024	0.8	0.0010	0.0000	OK	
120 minute win		1.01	118	19.186	0.296	1.2	0.0470	0.0000	SURCHA	PCED
120 minute win		1.02	118	19.186	0.270	2.4	0.0573	0.0000	SURCHA	
15 minute sumr		1.04	10	19.281	0.031	2.9	0.0013	0.0000	OK	
15 minute sumr		2.00	11	19.279	0.029	1.4	0.0013	0.0000	OK	
15 minute sumr		2.01	10	19.236	0.027	6.2	0.0097	0.0000	OK	
120 minute win		/3.00	116	19.186	0.221	2.5	0.0351	0.0000	SURCHA	RGED
120 minute win		/3.01	116	19.186	0.361	2.5	0.0574	0.0000	SURCHA	
120 minute win		3.02	116	19.186	0.481	4.1	0.0764	0.0000	SURCHA	
15 minute sumr		3.03	11	19.207	0.022	1.4	0.0035	0.0000	OK	
15 minute sumr		3.04	10	19.280	0.030	1.4	0.0013	0.0000	OK	
120 minute win		4.00	118	19.186	0.456	3.2	0.0724	0.0000	SURCHA	RGFD
120 minute win		4.01	116	19.186	0.526	4.0	0.0836	0.0000	SURCHA	
120 minute win		5.00	118	19.186	0.186	0.9	0.0078	0.0000	SURCHA	
120 minute win		5.01	118	19.186	0.185	0.8	0.0078	0.0000	SURCHA	
120 minute win	ter SW	6.00	116	19.185	0.635	1.6	0.4041	0.0000	SURCHA	RGED
120 minute win	ter SW	6.01	116	19.185	0.780	11.5	2.2746	0.0000	SURCHA	RGED
120 minute win	ter SW	6.02	116	19.185	0.800	14.9	0.5090	0.0000	SURCHA	RGED
120 minute win	ter SW	6.03	116	19.185	0.825	14.4	0.7146	0.0000	SURCHA	RGED
120 minute win	ter SW	6.04	116	19.184	0.894	14.0	23.8268	0.0000	SURCHA	RGED
15 minute sumr	ner CW	/6.05	12	18.182	0.042	2.9	0.0475	0.0000	OK	
60 minute winte	er HE <i>l</i>	ADWALL	31	18.091	0.041	2.9	0.0000	0.0000	OK	
Link Event	US	Link		DS	Ou ŋ	low Ve	locity Flo	w/Cap	Link	Discharge
(Upstream Depth)	Node			Node	(1/		m/s)	•	Vol (m³)	Vol (m ³)
15 minute summer	RE1.00	1.000	:	SW1.01	· ·	, ,	0.421	0.054	0.0309	. ,
120 minute winter	SW1.01	1.100		SW1.02			0.375	0.040	0.2919	
120 minute winter	SW1.02	1.200		SW1.03		1.2	0.450	0.066	0.1084	
120 minute winter	SW1.03	1.300	:	SW4.00		2.4	0.623	0.136	0.1665	
15		1 400		0111 00		2.0	0 550	0.005	0 1150	

15 minute summer	RE1.00	1.000	SW1.01	1.0	0.421	0.054	0.0309	
120 minute winter	SW1.01	1.100	SW1.02	0.7	0.375	0.040	0.2919	
120 minute winter	SW1.02	1.200	SW1.03	1.2	0.450	0.066	0.1084	
120 minute winter	SW1.03	1.300	SW4.00	2.4	0.623	0.136	0.1665	
15 minute summer	RE1.04	1.400	SW1.03	2.9	0.553	0.095	0.1158	
15 minute summer	RE2.00	2.000	SW2.01	1.4	0.322	0.079	0.0345	
15 minute summer	SW2.01	2.100	SW3.00	6.1	0.820	0.342	0.1544	
120 minute winter	SW3.00	3.000	SW3.01	2.2	0.650	0.125	0.2500	
120 minute winter	SW3.01	3.100	SW3.02	2.5	0.682	0.142	0.2095	
120 minute winter	SW3.02	3.200	SW6.02	4.0	0.879	0.153	0.2007	
15 minute summer	SW3.03	3.300	SW3.02	1.4	0.285	0.045	0.1525	
15 minute summer	RE3.04	3.400	SW3.03	1.4	0.689	0.079	0.0133	
120 minute winter	SW4.00	4.000	SW4.01	3.2	0.762	0.179	0.1236	
120 minute winter	SW4.01	4.100	SW6.01	3.7	0.910	0.139	0.1408	
120 minute winter	RE5.00	5.000	SW4.00	-0.7	0.198	-0.027	0.2641	
120 minute winter	RE5.01	5.100	SW4.01	0.6	0.237	0.023	0.2676	
120 minute winter	SW6.00	6.000	SW6.01	1.4	0.129	0.034	0.8591	
120 minute winter	SW6.01	6.100	SW6.02	11.2	0.506	0.260	0.1153	
120 minute winter	SW6.02	6.200	SW6.03	14.4	0.613	0.327	0.1392	
120 minute winter	SW6.03	6.300	SW6.04	14.0	0.748	0.481	0.8789	
120 minute winter	SW6.04	Hydro-Brake®	CW6.05	2.9				
15 minute summer	CW6.05	6.500	HEADWALL	2.9	0.736	0.165	0.0359	25.7

	Dudleys Consul O ng	File: 21273 Flow Model V2.pfd	Page 10
DUDI FYS	Tithe House	Network: Storm Network	PigoΣ s Autoparts
DUDLEYS CONSULTING ENGINEERS	35 Town Street	George Dermentzoglou	Sherii Huz on Road
Sonsoering Engineering	Leeds, LS18 5LJ	26/01/2024	Hydraulic Calcula O ons

Results for 100 year +40% CC Criecal Storm Duraeon. Lowest mass balance: 99.51%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	In ň ow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute winter	RE1.00	172	19.398	0.148	0.3	0.0062	0.0000	ОК
180 minute winter	SW1.01	172	19.398	0.283	2.4	0.0449	0.0000	SURCHARGED
180 minute winter	SW1.02	172	19.398	0.508	2.6	0.0807	0.0000	SURCHARGED
180 minute winter	SW1.03	172	19.398	0.573	2.4	0.0911	0.0000	SURCHARGED
180 minute winter	RE1.04	172	19.398	0.148	0.9	0.0062	0.0000	ОК
180 minute winter	RE2.00	172	19.398	0.148	0.4	0.0062	0.0000	ОК
180 minute winter	SW2.01	172	19.398	0.223	1.9	0.0354	0.0000	SURCHARGED
180 minute winter	SW3.00	172	19.398	0.433	2.3	0.0688	0.0000	SURCHARGED
180 minute winter	SW3.01	172	19.398	0.573	2.6	0.0911	0.0000	SURCHARGED
180 minute winter	SW3.02	172	19.398	0.693	3.9	0.1102	0.0000	SURCHARGED
180 minute winter	SW3.03	172	19.398	0.213	0.4	0.0338	0.0000	SURCHARGED
180 minute winter	RE3.04	172	19.398	0.148	0.4	0.0062	0.0000	ОК
180 minute winter	SW4.00	172	19.398	0.668	2.9	0.1062	0.0000	FLOOD RISK
180 minute winter	SW4.01	172	19.398	0.738	3.3	0.1173	0.0000	FLOOD RISK
180 minute winter	RE5.00	172	19.398	0.398	0.4	0.0167	0.0000	FLOOD RISK
180 minute winter	RE5.01	172	19.398	0.398	0.5	0.0167	0.0000	FLOOD RISK
180 minute winter	SW6.00	172	19.398	0.848	1.6	0.5392	0.0000	FLOOD RISK
180 minute winter	SW6.01	172	19.398	0.993	10.4	12.9191	0.0000	FLOOD RISK
180 minute winter	SW6.02	172	19.398	1.013	13.5	4.3884	0.0000	SURCHARGED
180 minute winter	SW6.03	172	19.397	1.037	12.8	0.8984	0.0000	SURCHARGED
180 minute winter	SW6.04	172	19.397	1.107	12.5	24.0667	0.0000	SURCHARGED
30 minute winter	CW6.05	219	18.182	0.042	2.9	0.0475	0.0000	ОК
30 minute winter	HEADWALL	219	18.091	0.041	2.9	0.0000	0.0000	ОК

Link Event	US	Link	DS	Ou n low	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
180 minute winter	RE1.00	1.000	SW1.01	0.3	0.293	0.017	0.2361	
180 minute winter	SW1.01	1.100	SW1.02	-1.8	0.365	-0.104	0.3985	
180 minute winter	SW1.02	1.200	SW1.03	-2.0	0.422	-0.111	0.1084	
180 minute winter	SW1.03	1.300	SW4.00	2.1	0.562	0.117	0.1665	
180 minute winter	RE1.04	1.400	SW1.03	0.9	0.475	0.030	0.2602	
180 minute winter	RE2.00	2.000	SW2.01	0.4	0.232	0.023	0.1336	
180 minute winter	SW2.01	2.100	SW3.00	1.9	0.615	0.106	0.3644	
180 minute winter	SW3.00	3.000	SW3.01	2.3	0.640	0.129	0.2500	
180 minute winter	SW3.01	3.100	SW3.02	2.4	0.645	0.134	0.2095	
180 minute winter	SW3.02	3.200	SW6.02	3.5	0.828	0.135	0.2007	
180 minute winter	SW3.03	3.300	SW3.02	0.4	0.205	0.013	0.2817	
180 minute winter	RE3.04	3.400	SW3.03	0.4	0.474	0.023	0.1143	
180 minute winter	SW4.00	4.000	SW4.01	2.5	0.711	0.143	0.1236	
180 minute winter	SW4.01	4.100	SW6.01	2.9	0.826	0.107	0.1408	
180 minute winter	RE5.00	5.000	SW4.00	0.6	0.192	0.027	0.2641	
180 minute winter	RE5.01	5.100	SW4.01	0.9	0.202	0.034	0.2676	
180 minute winter	SW6.00	6.000	SW6.01	1.3	0.123	0.032	0.8591	
180 minute winter	SW6.01	6.100	SW6.02	10.1	0.464	0.235	0.1153	
180 minute winter	SW6.02	6.200	SW6.03	12.8	0.554	0.293	0.1392	
180 minute winter	SW6.03	6.300	SW6.04	12.5	0.705	0.431	0.8789	
180 minute winter	SW6.04	Hydro-Brake [®]	CW6.05	2.9				
30 minute winter	CW6.05	6.500	HEADWALL	2.9	0.736	0.165	0.0359	47.9

SDS Aqua-Swirl™

Hydrodynamic Vortex Separator

Water Infrastructure Systems

SDS Aqua-Swirl™is a custom engineered, flow through water quality device that utilises hydrodynamic separation technology to maximise the removal of sediment, debris and free floating oil within surface water runoff.

When connected to a SDS SYMBiotIC[™]system, SDS Aqua-SwirI[™] provides real time data on a broad range of key operating factors such as pollutant loads and silt capture level.

- \rightarrow BBA HAPAS approved
- \rightarrow HDPE plastic construction
- ightarrow No moving parts
- \rightarrow Sealed baffle
- ightarrow Large debris storage chamber
- \rightarrow Lifting supports
- \rightarrow Compact dimensions
- \rightarrow Available in 9 different sizes
- \rightarrow Bespoke sizing available

SDS Aqua-Swirl[™]is sized according to water quality treatment flow rates which are based on the initial movement of pollutants into the storm drainage system. This flow rate typically represents approximately 90% to 95% of the total pollutants in the runoff volume. The treatment flow rate of the SDS Aqua-Swirl™ system is engineered to meet or exceed the local water quality treatment criteria and form an intrinsic part of the SuDS solution train.

sdslimited.com

: +44 (0)1934 751303 : info@sdslimited.com

Features	Benefits
Available with performance monitoring via SDS SYMBiotIC™.	Provides bespoke suite of operating data, such as silt levels and pollutants, viewable via a secure web portal dashboard with live notifications via email and text.
BBA HAPAS certified.	Approved for installation under roads and pavements; adoptable by the Highways Agency.
Manufactured from HDPE high strength plastic Weholite.	Offers a durable, light weight and low cost alternative to concrete. Easy and quick to install resulting in substantial cost savings.
Specialised sealed baffle.	Delivers the most effective performance of any vortex separator.
Internal bypass with pollution retention.	Able to treat localised rain and larger storm events while retaining captured pollutants.
NJDEP verified performance.	Verification accepted by UK Government environmental regulators (as cited in the CIRIA C753 SuDS Manual).
Single swirl chamber.	Simplifies inspection and maintenance facilities with no special equipment required.
Compact dimensions.	Reduces ground excavation and product installation costs.
Small footprint design.	Can be retro-fitted with minimal disruption to existing infrastructure utilities or surface features, extending the ability to meet new regulations.
Certified installation lifting supports.	Easy installation without the need for large, expensive cranes.
Suitable for use during site construction programme.	Can be put into operation prior to completion of the site build, with the inclusion of a planned maintenance schedule.
Available in 9 different standard sizes and also bespoke.	Provides greater design flexibility and assists the removal of sediments at a greater rate than comparable systems.

SPECIFICATIONS

SDS Aqua-Swirl™ Model No.	Maximum ID pipe connection (mm) BYP ¹	Chamber Internal Diameter (mm)	Water Quality Treatment Flow Rate NJDEP (I/s) Fine	Water Quality Treatment Flow Rate (I/s) OK110 Coarse	Oil/debris storage capacity litres	Sediment storage capacity m ³	Aqua- Swirl™ Weight kg
AS-2	375	750	16	30	136	0.3	300
AS-3	500	1050	31	53	416	0.6	700
AS-4	600	1200	40	77	644	0.8	1000
AS-5	750	1500	63	120	1382	1.3	110 0
AS-6	900	1800	91	173	1439	1.8	1400
AS-7	1050	2100	123	235	1987	2.5	1700
AS-8	1200	2400	161	307	2612	3.3	220 0
AS-9	1350	2800	220	418	3596	4.4	2600
AS- 10	1500	3000	252	480	4164	5.1	3100

¹BYP (Internal Bypass) provides full treatment of the first flush of water while the peak design storm is diverted and channelled through the main conveyance pipe.

Notes:

Details of pollution mitigation indices, head loss and CAD details, standard drawings and installation Guides available upon request. The sediment storage capacity has been calculated in accordance with the relevant test protocol and is not a physical maximum; any additional sediment capacity required is achieved with bespoke deeper units. For assistance in design and specific sizing using historical rainfall data, please contact SDS.

sdslimited.com

SDS GEOlight®

Stormwater Management System

Product Profile

SDS GEOlight[®] is an ultra lightweight honeycombed modular structure made from recycled PVC. The ready to install units are preformed to provide an underground stormwater storage facility, for the application of stormwater attenuation or infiltration.

The high void rate (>95%), high compressive strength (to 1000KN/m²) and low resistance to water flow makes SDS GEOlight[®] an ideal material for cost efficient and maintainable underground water storage during storm conditions.

SDS GEOlight® Benefits

- → High compressive strength can be located under all roads, car parks and amenity area surfaces.
- → Reduced excavation costs the very high void rate (95%) minimises the required volume of earthworks.
- → Speed of installation –1000m³ reservoir, completed in one week.
- \rightarrow Light and easy to handle.
- → Excellent hydraulic characteristics.
- → The honeycomb structure is highly permeable, offering low resistance to water flow.
- → SDS GEOlight[®]'s unique lateral and vertical filling arrangement requires a minimum amount of pipework and stone.
- → Depth of tank invert reduced by using patented lateral supply.

- Simplified distribution pipe network, easy maintenance
 dispensing with costly and complicated pipework configurations.
- → Modular format offers design flexibility to overcome topographical contraints and architectural requirements.
- → Greatly reduces the risk of flooding when used as stormwater storage.
- → Can also be used for water recycling and combining with irrigation systems.
- → Can virtually eliminate pollution when used in combination with specialist separation and filtration technology such as SDS Aqua-Swirl[™] and SDS Aqua-Filter[™].
- → Design service available, including calculations.

Water Infrastructure Systems

SD

APPLiCATiOn S

RETAIL

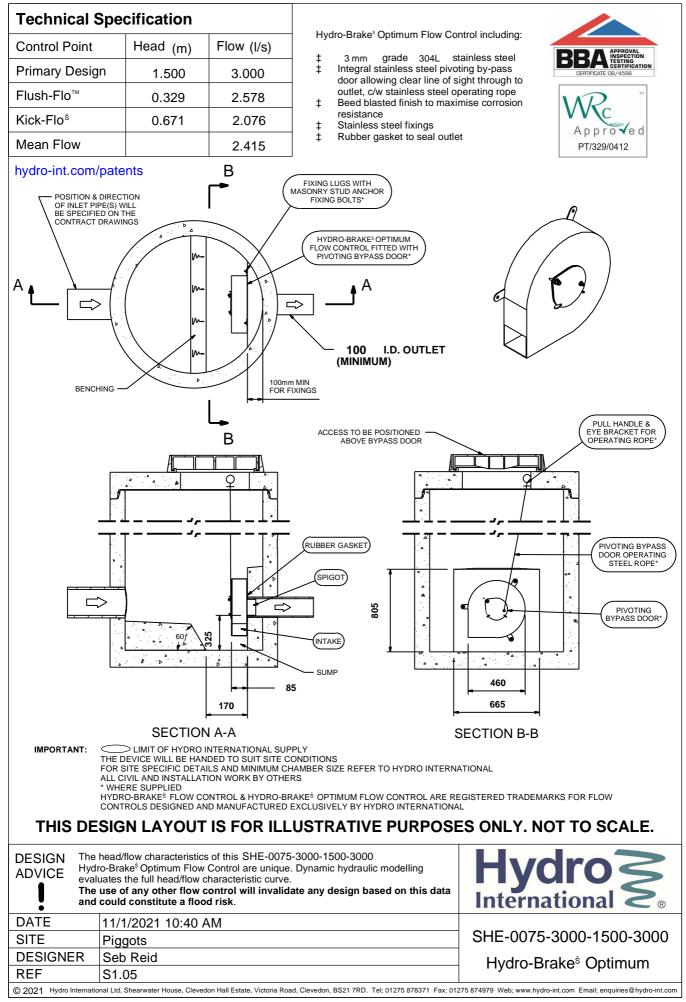
in FRASTRUCTURE

in DUSTRIAL

RESIDEn TIAL

COMMERCIAL

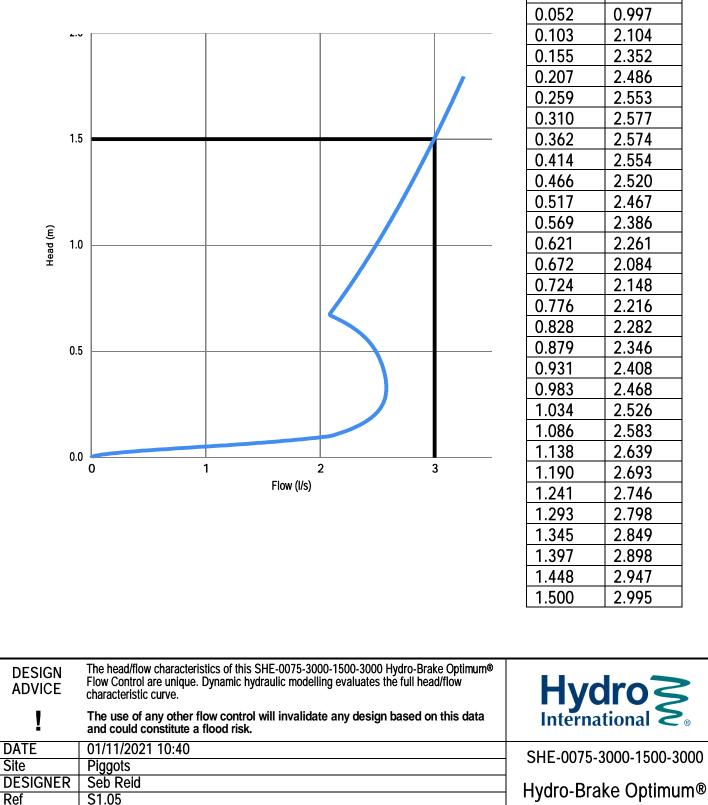
PUBLIC SECTOR


sdslimited.com

	SDS GEOlight [®] 400	SDS GEOlight [®] 600	SDS GEOlight [®] 800				
and the second second							
	APPLICATIONS						
	Stormwater Management						
	Attenuation / Infiltration						
	Bacterial filter-bed for biological treatment						
	Hydrocarbon Separation						
	Fi	Itration and Separation Uni	its				
		SPECIFICATIONS					
Material		Recycled Rigid PVC					
Colour	Dark grey to black						
Standard length of a block	2000 mm	2000 mm	2000 mm				
Standard width of a block	500 mm	500 mm	500 mm				
Standard height of a block*	750 mm	750 mm	750 mm				
	*Other block sizes available on request						
Void Ratio	> 95%	> 95%	> 95%				
Compressive Strength	420 kN/m ²	610 kN/m ²	800 kN/m²				
		ADVANTAGES					
		Highly cost effective					
		Reduced excavation costs					
		High void capacity					
		Good UV resistance					
	(Good hydrocarbon resistanc	е				
		<i>j</i>					

GEO DS/1021

sdslimited.com


seb.reid@dudleys.co.uk

Technical Specification					
Control Point	Head (m)	Flow (I/s)			
Primary Design	1.500	3.000			
Flush-Flo	0.329	2.578			
Kick-Flo®	0.671	2.076			
Mean Flow		2.415			

hydro-int.com/patents

Head (m)	Flow (I/s)
0.000	0.000
0.052	0.997
0.103	2.104
0.155	2.352
0.207	2.486
0.259	2.553
0.310	2.577
0.362	2.574
0.414	2.554
0.466	2.520
0.517	2.467
0.569	2.386
0.621	2.261
0.672	2.084
0.724	2.148
0.776	2.216
0.828	2.282
0.879	2.346
0.931	2.408
0.983	2.468
1.034	2.526
1.086	2.583
1.138	2.639
1.190	2.693
1.241	2.746
1.293	2.798
1.345	2.849
1.397	2.898
1.448	2.947
1.500	2.995

SHE-00)75-300	0-1500	-3000

© 2018 Hydro International, Shearwater House, Clevedon Hall Estate, Victoria Road, Clevedon, BS21 7RD. Tel 01275 878371 Fax 01275 874979 Web www.hydro-int.com Email designtools@hydro-int.com