Energy and Sustainability Strategy

New Caretakers Dwelling, Central Mosque, Manzil Way, Oxford, OX4 1DJ

PR11278

Date: 25/01/2024

Suite L, The Kidlington Centre, High Street, Kidlington, OX5 2DL

www.erscltd.co.uk

Notice

This document has been prepared for the titled project or named part thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of ERS Consultants Ltd being obtained. This document, which may include extracts from or refer to British Standards, is the sole copyright of ERS Consultants Ltd. It shall not be reproduced in whole or in part without written permission of ERS Consultants Ltd. ERS Consultants Ltd accepts no responsibility or liability for the consequences of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purpose agrees, and will by such use or reliance be taken to confirm his agreement to indemnify ERS Consultants Ltd Limited for all loss of damage resulting therefrom.

Document History

Client: Nick Turner

Project: New Caretakers Dwelling, Central Mosque

Document title: Energy & Sustainability Strategy

ERS reference: PR11278

Revision	Remarks	Author	Checked	Approved	Date
00		Michael	RD	Yes	25/01/2024
		McKinney			

Contents

Notice	2
Document History	2
Contents	3
Executive summary	5
Baseline – (CO2 emissions Part L of the Building Regulation)	6
Be Lean – Use less energy	6
Be Clean – Supply energy efficiently	6
Be Green – Use renewable energy	7
Energy & carbon demand summary	8
Introduction	11
Site & proposal	11
	11
Policy context	11
Calculation methodology	12
Be Lean – Use less energy	14
Active design measures	18
Overheating Risk analysis	20
Be Lean CO ₂ emissions & savings	22
Be Clean – Supply energy efficiently	23
Low Carbon Energy Sources	23
Be Green – Use renewable energy	24
Renewable technologies feasibility study	
Detailed assessment of Photovoltaic Panels	
Be Green CO ₂ emissions & savings	26
Flood zone risk assessment for planning	27
Study approach	
Flood vulnerability	27

New Caretakers Dwelling, Central Mosque, Manzil Way, Oxford, OX4 1DJ Energy & Sustainability Strategy

Conclusion	28
Appendix A - Low or Zero Carbon Energy Sources	30
Biomass As a fuel	30
Geothermal Energy:	30
Ground source earth coupling options	31
Vertical Closed Loop System	31
Horizontal Closed Loop System	32
Vertical Open Boreholes System	32
Air Source Heat Pumps	33
CHP	34
Solar thermal collectors	34
Photovoltaic	35
Wind energy	36
Appendix B-Fuel prices and emission factors	39
Appendix C and D, E, and F	40

Executive summary

ERS Consultants Ltd has been appointed to prepare an Energy & Sustainability Statement for the site located at New Caretakers Dwelling, Central Mosque, Manzil Way, Oxford, OX4 1DJ.

The proposal is for the development of a house. This report will be focusing on implementing careful design and sustainable measures to address the current housing needs in the area.

Proposed schedules of accommodation are as follows:

Total Number of Dwellings = 1 Bungalow

1 Bungalow

• Type = 1 x 1 Bedroom property

Total combined floor area for the habitable dwelling: 62.47 m²

This energy and sustainability strategy outlines the key measures to be incorporated in the design, in regards to sustainability, carbon emissions, renewable energy and environmental impact of the considered development in accordance with guidance from the following documents and policies:

- Oxford City local plan (Policy RE1)
- The National Planning Policy Framework (NPPF) July 2021

In line with Oxford City Local plan Policy RE1, the development would need to achieve a 40% reduction in regulated CO₂ emissions over a part L 2013 compliant scheme. As this development will be completed under the 2021 Part L document, the carbon factors and figures that have been determined in that document will be used. Part L1 2021 also represents a 31% improvement the previous Part L 2013 document.

This energy & sustainability statement will demonstrate how a selection of sustainable energy efficient measures and low-carbon technologies are used in the reduction of carbon emissions for the development.

A detailed calculation has been undertaken to establish the energy consumption and carbon emissions of the proposed development.

The methodology used to determine the expected operational CO₂ emissions for the development is in accordance with the standard three-step Energy Hierarchy and the CO₂ savings achieved for each step are outlined below:

Baseline – (CO2 emissions Part L of the Building Regulation)

Initially in the energy assessment, it must be established that the regulated CO₂ emissions of the development comply with Part L SAP10 Standards of the Building Regulations using the approved compliance software for SAP. The baseline regulated CO₂ emissions calculated for the site **0.70 Tonnes CO₂/Year**.

Be Lean – Use less energy

Emphasis will be put on the buildings fabric performance in order to reduce energy consumption, as less heating and cooling will be lost through the high-performance fabric. Fabric first measures include levels of insulation beyond Building Regulation 2021 requirements which will help in achieving low air tightness levels.

With the addition of the lean fabric improvements the energy regulated CO₂ emissions are shown to reduce by **41.58%** (**0.41 Tonnes CO₂/Year**) for the proposed site.

Be Clean – Supply energy efficiently

Once demand for energy has been minimised, all planning applications must demonstrate how their energy systems will exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly to reduce CO2 emissions.

When selecting the proposed heating system, it is imperative to consider carbon dioxide emissions, as all combustion processes can emit oxides of Nitrogen (NOx) and, solid or liquid fuelled appliances (such as those using biomass or biodiesel) can also emit Particulate Matter. These pollutants contribute to Oxford's poor air quality and can have negative impacts on the health of local residents and occupiers of the development. It is important that these impacts are taken into account in determining the heating strategy of a development.

The space conditioning and hot water system network in this stage of the development will have no changes as there is no need to better the proposed systems applied at the previous development stage of the project.

In this project there will be no direct heating networks or CHP incorporated so therefore, the Be Clean scenario will not further reduce CO2 emissions on site for the proposed development, therefore meaning there are no changes to be implemented to the development.

There is no change from the previous stage and the CO2 emissions remain the same at 41.58% (0.41 Tonnes CO₂/Year) for the proposed site.

Be Green - Use renewable energy

At this stage of the project, various low-zero carbon options were considered to meet the required reduction. As an air source heat pump is already proposed, at this stage a model with a higher efficiency beyond the notional standards of Part L 2021 will be implemented. For the as-built stage the heat pump is to be sized appropriately and have an MCS certificate to commission the installation.

By implementing this change, the regulated carbon emissions have been reduced by **50.14% (0.35 Tonnes CO₂/Year)** from the baseline.

This concludes this proposed development using the proposed specification in this report completes the 40% Carbon Emissions Reduction against future Part L Building Regulations standards by using the Part L 2021 carbon emission factors.

This development has taken this approach to compliance as the development is to be completed under Part L 2021.

Energy & carbon demand summary

Table 1 Energy and Carbon Reductions for Site Wide Reduction							
	Primary energy kWh/year Energy Consumption Savings (%)		Total CO ₂ Emissions (Tonnes CO ₂ /Year)	CO ₂ Emissions Savings (%)			
Baseline	3,736		0.70				
Be Lean	4,290	-14.84%	0.41	41.58%			
Be Clean	4,290	00.00%	0.41	00.00%			
Be Green	3,670	16.60%	0.35	8.56%			
Total Reduction		1.76%		50.14%			

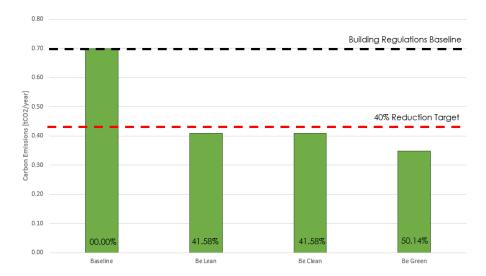


Fig.1 CO₂ Reduction for Site-wide carbon reduction

SAP calculations always refer to 'regulated' energy loads, which are those addressed by building regulations, 'unregulated' loads, for example is energy used by white goods and cooking.

As shown in Table 1, the provisional baseline annual carbon dioxide emissions of the proposed development have been calculated to achieve 0.70 Tonnes $CO_2/Year$ for the site and through the design development this has been reduced to 50.14% (0.35 Tonnes $CO_2/Year$).

Table 2: Proposed Fabric Specifications								
Fabric Construction and Insulation								
Element Type U-Value								
Heat Loss Floor	Ground Floor - Solid	0.12						
External Walls	Cavity Wall	0.17						
Roof	Pitched – insulated at joists	0.12						
Windows	Window	Double glazed, argon filled, 16mm unit with low-e coat and thermally broken lintel, IG or similar; G-Value of 63%; Aluminium frame;	1.20					
Half Glazed Door	Half Glazed Door	Double glazed, argon filled, 16mm unit with low-e coat and thermally broken lintel, IG or similar; G-Value of 63%; Aluminium frame;	1.20					

	Ta	ble 3: Pr	roposec	l System	Specif	ication	าร			
			Spac	ce Heatin	g					
Main Heating System		SAP default Air Source Heat Pump with an MCS Certificate used for Energy Statement calculations; Connected to radiators;								
Heating Controls	Time an	Time and temperature zone control;								
Secondary Heating	N/A;									
			Wate	er Heatin	g					
Heat source	From	Main He	ating	Cylinder	Size	300 lit	troc	Insulation		80mm
WWHRS Instantaneous System 1		N/A		WWHRS Instantar System 2				N/A	Λ.	
Water Use <=125 l/p/d		Yes		Cold Wa Source	ter	From Mains				
Shower(s)	or ui	oination l nvented ater syste	hot	Flow Rate [I/min]	;	I XI/min I			cted to the Hot Iter Cylinder	
Bath Count		1		Cylinder	Cylinder Pipework is fully insulated where possible; Full cylinder heating controls installed;					
Solar Thermal	Not Ins	stalled;				·				
			Ve	entilation						
Mechanical Ventilation System	Inte	rmittent	Extract;		Number of Wetrooms, excluding kitchen			1		
Cooling system	Not	installed	l;							
Pressure Test Blower Do	5.00	m³/hm²	@ 50 Pa	Please no	ote ERS c	an prov	ide Air I	Leakage	Testing	l
				Other						
Detailing (linear thermal bridging junctions – formerly ACDs)	Enhanced construction details from the insulation manufacturer have been used where available. The dwelling must be constructed to this standard, and the relevant forms must be completed as building work progresses. Any deviation from this will require an update to the SAP calculations as the psi-values will change; Building Alliance Recognised Construction Details; Masonry Cavity Wall Hybrid; 90mm / 0.019W/mK / 0.28W/mK									
Lighting	No. Fittings	12	Power [W]	2		cacy n/W]	75	_	acity m]	150
Tariff and Meters	Stand	dard		mart Electricity Meter Yes Smart Gas Meter			No			
PV/Renewables	N/A;									

Please note: There may be upgrades compared to your original specification to achieve building regulation approval under the relevant Approved Document Part L. Failure to implement these upgrades may result in a Building Regulation Failure at final stage. Please ensure any changes to the specification are made through this office to ensure ongoing compliance.

Introduction

Site & proposal

The site is located at New Caretakers Dwelling, Central Mosque, Manzil Way, Oxford, OX4 1DJ

Gross Internal Area for the dwelling: 62.47m²

The approximate site location of the proposed development is shown in the site plan Fig.2.

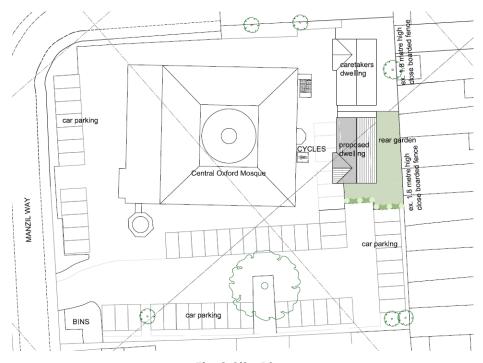


Fig.2 Site Plan

Policy context

This energy and sustainability statement will seek to respond to the energy policies that apply to this development. The most relevant applicable energy policies in the context of the proposed development are presented below.

- Oxford City local plan (Policy RE1)
- The National Planning Policy Framework (NPPF) July 2021

All the aforementioned policies focus on zero carbon targets for residential developments with a minimum 40 per cent on site reduction beyond Part L 2021.

Calculation methodology

The sections below present the methodology followed in determining carbon emissions reduction savings for the proposed scheme.

The methodology employed by the energy and sustainability statement is in line with the GLA's Guidance on preparing energy assessments.

The baseline CO₂ emissions are first established, i.e., the emissions of a scheme that is compliant with Part L 2021 of the Building Regulations.

The approved software used to model and calculates the energy performance and carbon emissions are SAP 10 Online version by Elmhurst Energy Systems Ltd.

To calculate our results for the site-wide development a suitable sample number of units is selected and the results are scaled up as per the proposed development Gross Internal Area.

The TER which is used as the baseline figure for the carbon reductions for each domestic element is multiplied by its floor area to establish the total baseline emissions.

Baseline:

The baseline for this property is calculated using the Part L 2021 notional specification, and is effectively the target against which compliance is achieved and all further reductions are judged. The full specification for the baseline can be found in Table 1.1 of the Approved Document L Volume 1, 2021 edition.

Be Lean: use less energy

The demand for energy is reduced through a range of passive and active energy efficiency measures; as part of this step the dwelling fabric u-values and glazing have been improved to a high standard, in addition to this suitable heating systems are utilised as per the specifications in Table 2 and 3.

Be Clean: supply energy efficiently

As much of the remaining energy demand is supplied as efficiently as possible in the previous stage, we consider the option of communal and network-based heating strategies, but due to high costs and the scale of the development this is not a viable option.

Be Green: use renewable energy

Renewable and low-zero carbon technologies are incorporated to offset part of the carbon emissions of the development. The uptake of renewable technologies is based on feasibility and viability considerations, including their compatibility with the energy system determined in the previous step.

The implementation of the Energy Hierarchy determines the total regulated carbon savings that can be feasibly and viably achieved on site.

The 40% improvement for the development against the baseline emissions is compared to the relevant targets for each element and in case of a shortfall; savings through offsite measures should be achieved.

The Conclusions section summarizes the energy strategy and associated carbon savings for the proposed development.

The carbon emissions factors used in all calculations in this document are those used for Part L of the Building Regulations. The relevant factors are reproduced in Table 4 below.

Table 4 Carbon Emission Factors for selected fuel type								
Fuel Emissions kg CO2e per kWh Primary energy fa								
Mains Gas	0.210	1.130						
Bulk/Bottled LPG	0.241	1.141						
Liquid Fuels	0.024	1.286						
Heating Oil	0.298	1.180						
Wood Pellets	0.053	1.325						
Grid Electricity	0.136	1.501						

^{*} Table extracted from the document SAP Version 10.2 (21-04-2022). Table 12: Fuel prices, emission factors and primary energy factors, Page 189. this can be found in the appendix of the report.

Be Lean – Use less energy

The proposals incorporate a range of passive and active design measures that will reduce the energy demand for space conditioning, hot water, and lighting.

Measures will also be put in place to reduce the risk of overheating, the regulated carbon saving achieved in this step of the Energy Hierarchy is **41.58%** when compared against the baseline level for the development.

Passive design measures

Materials and Waste

A site waste management plan that provides details of waste minimisation, sorting, reuse and recycling procedures is required for all levels in the planning guidance. Sustainable waste management should follow the hierarchy described in *BS 5906*: Waste management in buildings. Code of practice. This outlines the following principles in decreasing order of desirability:

- Reuse land and buildings wherever feasible and consistent with maintaining and enhancing local character and distinctiveness.
- Reuse and recycle materials that arise through demolition and refurbishment, including the reuse of excavated soil and hardcore within the site.
- Prioritise the use of materials and construction techniques that have smaller ecological and carbon footprints, help to sustain or create good air quality, and improve resilience to a changing climate where appropriate.
- Incorporate green roofs and/or walls into the structure of buildings where technically feasible to improve water management in the built environment, provide space for biodiversity and aid resilience and adaptation to climate change.
- Consider the lifecycle of the building and public spaces, including how they
 can be easily adapted and modified to meet changing social and
 economic needs and how materials can be recycled at the end of their
 lifetime.

Space is provided and appropriately designed to foster greater levels of recycling of domestic waste.

Using Recycled/Recyclable Materials and Sourcing them Responsibly

The following measures will be put in place to minimise environmental impact

Regard for reuse & efficient use of materials: Material efficiency will be a priority for the design team and will be one of the key considerations during detailed design. Potential measures for reducing the material demand and for designing out waste will be explored by all key design team disciplines at each design stage, according to the first stages of the Waste Hierarchy.

Regard will be given to reducing the use of virgin materials, such as ensuring a recycled aggregate of content 10-15% in concrete, for example.

Specifically, the following notes have been made on the durability and recycling potential of project materials:

- Brick in the wall finishes has a long usable life and can be reclaimed / re-used in the future. It can also be recycled although it is a more a down-cycle into rubble material for aggregates.
- Window glass, carpeting, and concrete can also be down-cycled.
- The hard landscaping has many timber elements (seats, benches, fences, the acoustic fence) which is a renewable material and is likely to be FSC certified. It can also be recycled or down-cycled into chipboard / crushed timber.
- Off-site construction and Prefabrication; An effective way of managing materials
 efficiency is through off-site construction or 'Prefabrication', meaning that major
 components of buildings are manufactured off-site and assembled on-site. This
 has many benefits, as factory environments help to ensure quality of
 construction, reduce waste because of spoilage on site (e.g., due to poor
 storage practices or inclement weather) and encouraging the re-use of
 materials that otherwise may be wasted. This will be actively explored particularly
 in relation to the houses.
- Similarly, the use of pre-made sections, such as pre-cast floor slabs in the flatted element will reduce waste and maximise material efficiency. A study by the HSE concluded that waste reductions approaching 70% were possible when compared with traditional techniques.
- The design seeks to use prefabrication for some internal spaces and will be used, subject to the availability of skilled labour and resources within a reasonable distance of the site.

The design utilises stacking, repeating floor plans where possible within the site
constraints, making the use of modular construction possible. If this is a viable
option it would reduce transport journeys, reduce site congestion and increase
safety.

Environmentally conscious materials

- Materials with the lowest environmental impact tend to have only minimal processing requirements and contain as many naturally occurring constituents as possible. The design team will ensure that 'good practice' is implemented in the specification of materials, making conscious decisions to specify more natural products and wider environmental impact of the materials will be considered when choosing between different options. This could include reviewing Environmental Product Declarations.
- Furthermore, efforts will be made to use materials with low/zero Global Warming Potential (GWP), low Ozone Depletion Potential (ODP) and low embodied energy.
- Local and responsible sourcing Transport associated with extracting, processing
 and delivering materials can contribute significantly to their carbon and
 environmental footprint. A robust system of responsible materials sourcing will
 ensure that native materials will be used as a matter of preference, before any
 are sourced internationally. It is reasonable to expect as well that deliveries will
 be made using fuel efficient vehicles.
- The responsible sourcing of materials will be a key consideration in the selection of suppliers, and a sustainable procurement strategy will be produced for the development prior to construction.
- Materials from suppliers who participate in responsible sourcing schemes such as the BRE BES 6001:2008 Responsible Sourcing Standard will be prioritised where economically possible.

Where there are suitable opportunities to recycle a proportion of the material recovered from the existing site it should always be done.

Enhanced U-values

The heat loss of different building fabric elements is dependent upon their U-value. A building with low U-Values provide better levels of insulation and reduced heating demand during the cooler months.

The proposed development will incorporate high levels of insulation and high-performance glazing beyond Part L 2021 targets and notional building specifications, to reduce the demand for space conditioning (heating and/or cooling).

Table 5 demonstrates the improved performance of the proposed building fabric beyond the Building Regulations requirements.

Table 5 Proposed fabric U-Values							
Domestic (U-Values in W/m²k)							
Element	Part L 2021 Building Regulation	Proposed					
Wall	0.26	0.17 (External Wall)					
Floor	0.18	0.12 (Ground floor)					
Roof	0.16	0.12 (Plane Roof)					
Windows/ Glazed Doors	1.40	1.20					

These u-values are recommended but may change during the construction stage, to meet site constraints, any worsening of the u-values must ensure the required 40% reduction in Carbon is met before completion;

Air tightness improvement

Heat loss may also occur due to air infiltration. Although this cannot be eliminated altogether, good construction detailing and the use of best practice construction techniques can minimise the amount of air infiltration.

The proposed development will aim to improve upon the Part L 2021 minimum standards for air tightness by targeting air permeability rates of **5.00m³/m².h at 50Pa for the unit**, should the air test be below 3.00m³/m².h at 50Pa Mechanical ventilation will be required.

Reducing the need for artificial lighting

The development has been designed to maximize daylight in all habitable spaces as a way of improving the health and wellbeing of its occupants.

Natural light Natural lighting reduces the energy used for artificial lighting and creates a healthier internal environment. Issues to consider include how much of the sky is visible through a window (the more, the better), the dimensions of the interior living/working space and distance from the window, and the proportion of glazed surfaces. The depth of the room is an important factor in determining the amount of natural light received. Naturally dark rooms may be lit naturally through measures such as sun tubes which 'pipe' sunlight from sunny areas to internal areas.

Glare created by natural or artificial light can be uncomfortable for people both inside and outside a building. This can be minimised if considered early in the design process through building layout (e.g., low eaves height) or building design (e.g. blinds, brise soleil screening). If considered together with a lighting strategy this can reduce energy consumption.

All of the habitable areas will benefit from suitable level glazed fenestration to increase the amount of daylight within the internal spaces where possible. This is expected to reduce the need for artificial lighting whilst delivering pleasant, healthy spaces for occupants.

Active design measures

High efficacy & low energy lighting

Where artificial lighting will be needed it will low energy lighting without compensating for luminance, and will accommodate LED.

Water

Policy RE1 requires water efficiency in new development to meet the highest national standard. For residential development, this is defined in the supporting text as the 'optional Building Regulation' for water efficiency in new dwellings, which is 125 litres per day per person, or a tighter standard if one becomes available nationally. If a new, tighter national standard is introduced, this will be adopted automatically by virtue of Policy RE1.

For all developments, the submitted information should set out an approach to water management that reduces water usage and waste and priorities demand reduction measures over supply measures.

Reducing water use

Development, whether new construction or change of use and refurbishment, can save water by including measures such as:

- systems for greywater reuse
- aerated washbasin/kitchen taps and shower heads,
- tapered and low-capacity baths,
- sensor and low flush toilets, shower timers, and,
- water efficient white goods and appliances such as washing machines and dishwashers.

Water use during construction can be reduced through measures including:

- closed loop wheel washers,
- waterless wheel washing using angled steel grids to remove debris,
- high pressure low volume power hoses, recirculating water where possible,
- limiting the water used for flushing building services by stopping it as soon as the flush water turns clear, and
- employing a regime for monitoring water use and water waste.

Choosing the best location for a boiler can reduce water consumption and heat loss. By minimising the length of hot water pipes the volume of water that must be drawn off each time a tap or shower is used can be reduced. Positioning hot water pipes above pipes carrying cold water will reduce heat transfer. Further heat loss can be reduced by insulating the piping.

For all new dwellings, a completed "water efficiency calculator for new dwellings" worksheet that accords with Part G of the building regulations' Approved Documents should be provided prior to occupation. The calculation must demonstrate that the new dwellings will achieve a maximum water usage of 125 litres per person per day.

Rainwater harvesting

Rainwater harvesting is the collection of rainwater directly from a surface it falls on (e.g., a roof). Once collected and stored it can be used for non-potable purposes such as watering gardens, supplying washing machines and flushing toilets, thereby reducing consumption of potable water. Potable water is produced through a purification process and is pumped over large distances, both of which require energy and result in embodied carbon that is not present in water harvested locally. In a residential development, rainwater can be captured for domestic use using water butts connected to a down pipe. Larger systems can use water stored in underground water tanks.

Consultants Ltd

Schemes should be designed to include space for water storage. In residential developments, down pipes should be carefully placed so that water collection and use is convenient for residents.

Greywater re-use

Water that is recycled from bathrooms and kitchens for non-potable uses is known as greywater. Greywater systems must ensure treatment on a regular basis to prevent a build-up of bacteria, and some systems are powered, which entails an energy cost. As a result, greywater reuse is generally less preferable than water use minimisation measures.

Water recycling systems are better suited to new developments rather than retrofitting in existing buildings because of the excavation required for storage tanks and changes needed to the plumbing system, and they are generally more cost effective for new developments and developments of a larger scale.

Recycling systems should be backed up by a mains supply or a sufficiently large reserve storage system to meet higher demands during dry spells. Storage tanks will need an overflow to allow excess water to be released which should be able to flow into a soakaway.

Controls and Monitoring

Advanced lighting and space conditioning controls will be incorporated, specifically:

- For areas of infrequent use, occupant sensors will be fitted for lighting,
 whereas day lit areas will incorporate daylight sensors where appropriate;
- Heating and cooling systems controls will comprise time and temperature controls, both centrally for the whole building, and locally for each space;
- Smart metering to be installed on all new dwellings for adequate monitoring;

Overheating Risk analysis

Passive solar gain refers to the process whereby a building is heated by the sun, either directly from sunlight passing through a window and heating the inside of the building, or indirectly as sunlight warms the external fabric of the building and the heat travels to the interior. The level of passive solar gain can significantly impact upon the quality of a building, how it is used and the energy needed for it to be inhabited comfortably. Passive solar gain can reduce the need for mechanical heating, which in turn reduces energy use and carbon emissions.

Key factors that influence passive solar gain include the physical characteristics of the site, immediate surroundings, orientation of buildings, external design, internal layout and the construction materials used.

Whilst passive solar gain can reduce the carbon emissions associated with heating, if used incorrectly it can lead to overheating, which in turn can lead to the installation of mechanical cooling equipment (e.g., air conditioning). Mechanical cooling increases energy consumption and requires maintenance, resulting in costs and carbon emissions. Mechanical cooling units also produce heat that requires dissipation. The need for mechanical cooling can be avoided or lessened by designing-in passive ventilation and passive cooling measures. Developments should not incorporate mechanical cooling unless passive measures have been fully explored and appraised and proposals that include mechanical cooling should clearly demonstrate that passive measures would not be adequate.

The potential overheating for the development is to be assessed in accordance to Part O of the Building Regulation. Utilising the simplified approach is the first protocol to ensure the scheme does not over heat, where the simplified approach fails to meet the required reduction, a dynamic simulation will need to be undertaken.

The following list includes some of the key considerations in the design of new schemes:

- Rooms that are most frequently occupied should benefit from a southerly aspect, but with appropriate measures to avoid overheating.
- Orientation and layout of habitable rooms, and window size and orientation, should be carefully considered in relation to the path of the sun.
- Rooms that include a concentration of heat generating appliances (e.g., kitchens)
 or are less frequently occupied (e.g. bathrooms) should be located in the cooler
 part of the building, generally the northern side.
- Deep projections that overshadow windows should be avoided, particularly on south facing elevations. Projections should be sized appropriately so that they provide shading from the sun during the hottest part of the year but allow solar gain in the colder months.
- Where there is a chance that overheating can occur (e.g., due to large expanses of glazing on roofs and south facing elevations), design measures such as roof overhangs, brise soleil, external shuttering, photochromatic and thermochromic glass and a lighter colour palette can help.

- Zonal heating and ventilation systems and controls can be used allowing areas subject to high solar gain to occupy their own temperature control zone.
 Dynamic controls reduce energy waste.
- Use of materials to build in thermal mass to absorb excess heat during warmer periods and release it slowly during cooler periods (e.g., day/night, summer/winter).
- Buildings should be designed for passive ventilation:
 - cross ventilation with windows located on opposite walls and/or roof mounted turbines or wind cowls that assist with circulation of air by drawing air through windows or top floor openings and
 - o passive stack ventilation (PSV) that uses pressure differences to draw in fresh air from outside to replace rising warm air which is released from the top of the building. A heat exchanger can be placed where the air escapes the building to reduce heat loss.

Be Lean CO₂ emissions & savings

By means of energy efficiency measures and suitable heating systems, regulated CO₂ emissions for the property are shown to reduce by **41.58**% compared to the baseline.

Be Clean - Supply energy efficiently

There are no changes from the previous stage, however research into low carbon energy sources is still completed as a due diligence for the alternative solutions. Carbon Emissions Reduction is shown to remain at **41.58%** compared to the baseline.

Low Carbon Energy Sources

Combined Heat and Power (CHP)

The presence of a year-round base hot water generation heat load in residential units is favourable to CHP. To date, there are readily available micro gas fired CHP units (such as EC power) on the market. At this stage gas fired CHP will be provisionally incorporated into the development's LZC strategy, however, the carbon reductions due to CHP are extremely sensitive to the system design, unit selection and running time.

CHP (Combined Heat & Power) is a great technology to use, however the system itself needs to run on a 24-hour basis. The heat generated would be exceeding the demand and needs for this site, and would require to have an outlet area which can profit from this excess; however, this development does not have a space that benefit from this; therefore, this option has considered not feasible for this development.

Heat Networks

All new developments should look connect, or be connection ready, where a heat distribution network already exists. The investigation of opportunities should cover all scales and should not be limited to district heating systems.

Where such networks exist and developments should propose to connect to them, the energy statement should set out details showing how connection will occur (a connection strategy). Where such networks exist, and developments do not propose to connect to them, the energy statement must set out clear reasons as to why the connection is not feasible, or why an alternative source of energy would be more sustainable.

Be Green - Use renewable energy

Renewable technologies feasibility study

Methods of generating on-site renewable energy (Green) were assessed, once Lean and Clean measures were considered.

This section provides an overview of the technologies considered, a brief assessment of their feasibility, a proposed mixture of suitable technologies.

The proposed development will benefit from an energy efficient building fabric which will reduce the energy consumption of the proposed development in the first instance.

A range of renewable technologies were subsequently considered including:

- Biomass;
- Ground/water source heat pumps;
- Wind energy;
- Photovoltaic panels, and,
- Solar thermal panels.

In determining the appropriate renewable technology for the site, the following factors were considered:

- CO₂ savings achieved;
- Site constraints;
- Financial benefit
- Any potential visual impacts

Demand profiles

The balance of technologies chosen will depend on the development's energy demand patterns.

Keeping in mind that the space heating energy demand changes according to the season. While hot water energy demand will provide a significant base load throughout the year.

Electrical demand is likely to be moderate throughout the year. Lighting loads will be highest during the evening but will continue at reduced levels throughout the night and during the day.

Feasibility

At this early stage in the design, it is possible only to outline the likely feasibility of specific technologies. Further descriptions of the LZC technologies below are included in Appendix A.

	Table 6. Renewable an	d Low Ze	ero Carbon T	echnologie	S	
Renewable Technology	Comments	Lifetime (Years)	Maintenance	External Impact	Site Feasibility	Adopted for Site
BIOMASS	Burning of wood pellets releases high NOx emissions and there are limitations for their storage and delivery within an urban location.	20	High	High	1	
PV	PV panels would generate significant carbon savings, whilst having minimal impact on the appearance of the building and no adverse impact on the amenity of neighbouring buildings.	25	Low	Med	9	
Solar Thermal	Solar thermal array mounted on the roof may contribute to carbon reductions, but will reduce the amount of available roof space where Photo voltaics are proposed	25	Low	Med	7	
Air/Ground Source Heat Pump	Ground loops requires space, additional time at the beginning of the construction process and very high capital costs, however in terms of the air source heat pump solution is a viable and costeffective solution to meet the required carbon reductions.	20	Med	Low	9	
Wind	Due to insufficient open area for installation of a stand-alone wind turbine and planning issues this option has not considered in this development.	25	Med	High	0	

Detailed assessment of Photovoltaic Panels

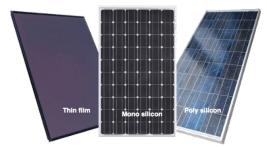


Fig 3. Photovoltaic Panels

Four types of solar cells are available on the market at present and these are monocrystalline, polycrystalline, thin film and hybrid panels as seen in Figure 3. Although mono-crystalline and hybrid cells are the most expensive, they are also the most efficient with an efficiency rate of 12-20%. Poly-crystalline cells are cheaper but they are less efficient (9-15%). Thin film cells are only 5-8% efficient but can be produced as thin and flexible sheets.

Air Source Heat Pumps is considered as a highly efficient low zero carbon technology solution to meet the required carbon reductions for the houses.

Photovoltaic Panel is considered a suitable technology as the development provides an extent of roof space for the installation of PV panels. In addition to this the PV arrays are relatively easy to install when compared to other renewable systems and provide a significant amount of CO₂ savings. While suitable, however, it is not required to meet the reduction set by RE1, so is not implemented at this stage.

Be Green CO₂ emissions & savings

The incorporation of renewable technologies will further reduce CO₂ emissions of the Site by a further **50.14%** compared to the baseline.

Sustainable Urban Drainage Systems (SuDS)

SuDS offer multiple benefits – they can help to manage flood risk, improve water quality, provide opportunities for water efficiency, enhance landscape and visual quality, provide amenity value and offer opportunities for biodiversity. The design of SuDS should explore fully the potential to deliver these benefits.

SuDS limit the volume and rate of surface water entering the public sewer system. They therefore have the potential to play an important role in helping to ensure the sewerage network has the capacity to cater for population growth and is resilient to the effects of climate change.

Flood zone risk assessment for planning

The Environment Agency has developed a flood risk map for planning to identify the relative risk of flooding for proposed development planning locations. Flood zones assume that no defences are present and so where these do exist, they are only indicative of the potential for flooding.

Fig 4. Environment Agency Flood Zone Interactive Map

The whole of the development lies within flood zone 1 of the Environment Agency's flood risk map as seen in fig. 4. Land located within flood zone 1 is at low risk of flooding having an associated annual probability of flooding of less than 1 in 1000 (0.1%).

Study approach

In accordance with Planning Practice Guidance for Flood Risk document, land within flood zone 1 is suitable for all uses. Assessment of this site has been based upon the Environment Agency's flood interactive map, the topographical site survey and the architect's proposed development layout.

Flood vulnerability

Based on the Environment Agencies flood map, the development site is located within Flood Zone 1 and in accordance with Planning Practice Guidance for Flood Risk neither a sequential or exception test is required.

Conclusion

Following the implementation of the three-step Energy Hierarchy, the regulated CO₂ savings for the site are calculated at **50.14%**, against Part L 2021 SAP 10 performance standards.

Overall, the proposed development has been designed to meet energy policies set out by the proposed development local and national planning requirements, which demonstrates the client and the design team's commitment to enhancing sustainability of the scheme.

Table 8. Summarizes the implementation of the Energy Hierarchy for the proposed scheme and details the CO₂ emissions and savings against the baseline scheme for each step of the hierarchy. After all steps were implemented, the reduction exceeds the 40% requirement over a Part L1A 2021 baseline as set by Oxford City Local Plan RE1.

Table 8. Energy and Carbon Reductions for Site Wide Reduction							
	Primary energy kWh/year Energy Consumption Savings (%)		Total CO ₂ Emissions (Tonnes CO ₂ /Year)	CO ₂ Emissions Savings (%)			
Baseline	3,736		0.70				
Be Lean	4,290	-14.84%	0.41	41.58%			
Be Clean	4,290	00.00%	0.41	00.00%			
Be Green	3,670	16.60%	0.35	8.56%			
Total Reduction		1.76%		50.14%			

Based on the results and outline figures, the proposed development **New Caretakers Dwelling, Central Mosque, Manzil Way, Oxford, OX4 1DJ** will satisfy the relevant policies for sustainable design and construction requirements of energy consumption and carbon emissions.

The new development will be designed with a high level of insulation and low air permeability to reduce heat loss as much as is practically possible. Also, the use of low energy lighting and A – Rated White goods are essential for the reduction of energy consumption.

The control strategy for the property must also be carefully designed to ensure the most economical operation of all equipment.

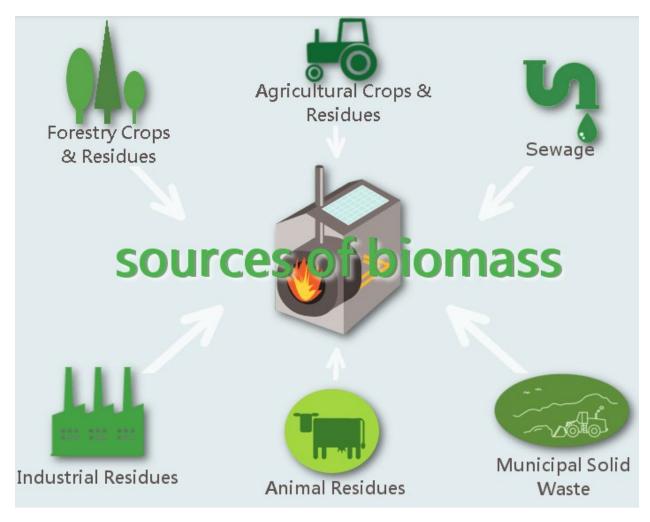
The proposed development site is not in a close proximity of an existing heat network making this an unviable solution to improve the heating system in the dwelling at time of this application. This means the most suitable heating system is a highly efficient Air Source Heat Pump, which will provide hot water via a storage cylinder.

All buildings are to have suitable meter/smart meter management installed on every household, so that the homeowner can benefit from accurate savings to allow for suitable management of energy usage.

The baseline annual energy consumption of the site on this development have been calculated to be <u>0.70 Tonnes CO₂/Year</u> of CO₂ emissions. By incorporating on-site renewable/ LZC technologies the total CO₂ emissions will be reduced to <u>0.35 Tonnes CO₂/Year</u>, equivalent to a <u>50.14%</u> reduction over Part L 2021 requirements.

Different possible renewable energy options have been identified; bearing in mind that selection is a complex process which requires a more detailed estimation of energy demand patterns; therefore, further analysis will be undertaken as the design progresses.

Post construction the dwelling is to have suitable testing to be provided to ensure the dwellings satisfy the requirements of this document and building regulation standards at the time of completion. This report is to be provided along with as As-Built SAP worksheets, EPC and Air testing, for all conditioned spaces in the development.



Appendix A - Low or Zero Carbon Energy Sources

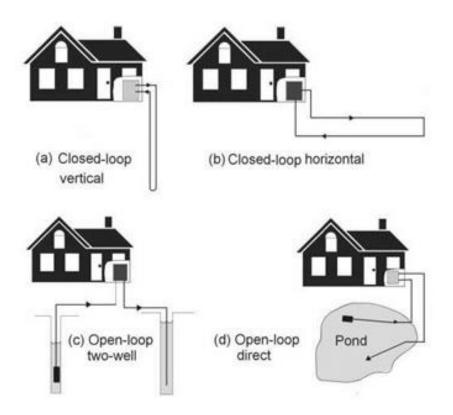
Biomass As a fuel

Biomass is a renewable energy source, generated from burning wood, plants and other organic matter, such as manure or household waste. It releases CO2 when burned, but considerably less than fossil fuels. We consider biomass a renewable energy source, if the plants or other organic materials being burned are replaced.

Biomass is known for its versatility, given it can be used to generate heat, electricity, be used in combined heat and power units and be used as liquid fuel. In domestic settings, it tends to be found in the form of wood-fueled heating systems.

Geothermal Energy:

Geothermal energy technologies use the heat energy stored in ground; either for direct-use applications: such as using the grounds' heat to defrost a driveway or the indirect use with additional equipment such as a geothermal heat pump. Most commercial installations couple a heat pump with the ground to upgrade the low-



grade heat from the ground or ground water to a higher-grade heat, where it can be used for heating purposes.

The suitability of a ground source system depends heavily on the type of earth coupling heat exchange system used:

Ground source earth coupling options

The right choice of appropriate heat exchanger depends on several factors such as: size of space heating/hot water system, available site area for the heat exchangers, and local ground conditions. Due to the specialist nature of this technology, we recommend that a specialist is employed to size the heat exchangers based on a desktop study of the site's geological conditions – this normally being required in advance of any other contractor appointment.

Vertical Closed Loop System

A frequently used and simple ground source heat exchanger, for a small to medium size project, is a closed loop vertical system. The system comprises of vertically drilled boreholes, usually up to 100 m deep, into which are inserted two polyethylene pipes with a U-shape connector at the base of the hole – effectively providing a flow down to the bottom of the hole and return back up to the surface. All the flow and return loops are connected together across the site - completing the entire heat exchange loop.

E R S

Water is pumped around the loop and is then circulated around the heat pump to achieve the required heat exchange. The distance between boreholes is dependent on ground conditions but is typically a minimum of a 6mx6m grid, to prevent overlapping of the heat exchange process between loops.

Horizontal Closed Loop System

Horizontal closed loop heat exchangers are usually applied to small projects such as individual houses, which usually require a relatively low heat output. Consisting of horizontal trenches 1.5-2m deep, with either straight pipes or 'slinky' coiled pipes, these require significant excavation work and significant site area to achieve appreciable outputs as such are not normally suited to medium to large projects.

Vertical Open Boreholes System

A further option is a vertical open borehole system. The system involves the abstraction and discharge of natural ground water using boreholes; into which pumps are inserted, connected to collapsible pipework. Each borehole pump abstracts ground water, circulates it around the heat pump and then discharges the water back to the ground via an absorbing well, some distance from the original abstraction borehole. The system is capable of providing very high rates of heat exchange for a relatively small number of boreholes, which makes it very efficient in terms of site area required. However, this depends greatly on the availability of ground water, which in turn varies according to location. A major downside of this system is that the extraction of water from deep boreholes via pumps consumes a lot of energy, as the water has to be physically lifted to the surface by the pump – this in effect reduces the carbon emissions saved by this system as a whole.

Ground source heat exchange options in summary:

Vertical loop system - closed boreholes

- moderate heat capacity
- relatively low installation cost

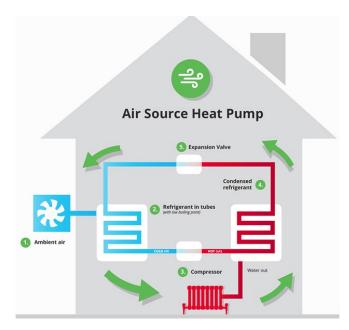
Vertical open system - open boreholes

- high heat capacity
- high running energy
- high installation cost

Horizontal loop system – straight pipes

- low capacity,
- high installation cost
- extensive ground excavation work

Horizontal coiled loop system – 'slinky' pipes

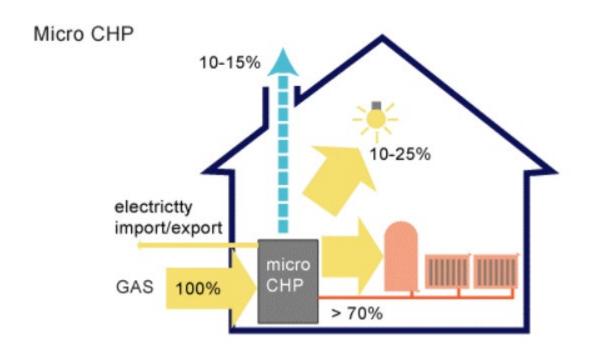

- good capacity
- low installation cost
- extensive ground excavation work

Air Source Heat Pumps

Heat pumps are basically refrigeration units which work in reverse – instead of cooling being produced and heat rejected, the unit produces heat and rejects cooling. Conventional heat pumps use air as the medium to reject this 'coolth' to atmosphere. Ground source units use the ground as a means of improving the unit efficiency because the ground is a constant 11-13 °C at depths of 50m down – this suits the heat pump much better during the coldest weather than the extremes of air temperature. Reversible heat pumps can also be used for cooling, however this is not being considered further for this project.

A heat pump consumes electrical power to drive the compressor and other ancillary elements. The ratio between total energy input and heat energy output of the heat pump is a measure of its efficiency – usually referred to as 'Coefficient of Performance' - COP. A ground source heat pump has a higher COP than an air cooled heat pump – this additional energy effectively being the grounds' natural contribution to the system.

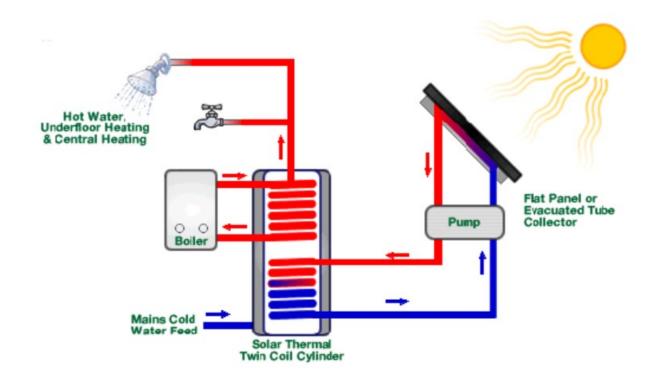
The heat produced by a heat pump is usually used to either provide space heating say to underfloor heating or radiators or the heat is used to generate domestic hot water via a storage vessel.



CHP

Combined heat and power (CHP) is a process involving simultaneous generation of heat and electricity, where the heat generated in the process in harnessed via heat recovery equipment. CHP at the large commercial size is now fairly common in premises which have a simultaneous demand for heating and electricity for long periods, such as hospitals, recreational centres and hotels. In addition, small CHP systems are now becoming available for individual houses, group residential units and small non-domestic premises. Compared with using centrally generated electricity supplied via the grid, CHP can offer a more efficient and economic method of supplying energy demand, if installed and operated appropriately, owing to the utilization of heat which is normally rejected to the atmosphere from central generating stations, and by reducing network distribution losses due to local generation and use.

Heat generated will be used for space and water heating, and additional heat storage may be used to lengthen use periods, to assist in warm-up and to improve overall energy efficiency. For overall good energy efficiency, as with all CHP, usage must be heat demand led. Thus, a sophisticated control system is required and users should be made aware of efficient operating practices.



Solar thermal collectors

Solar thermal collectors (flat plate or evacuated tubes) convert solar thermal energy into heat for hot water generation. These are usually located on a roof oriented south

facing in an ideal slope of 45 degree. Solar collectors properly sized and designed provide approx 50% of annual hot water demand.

Photovoltaic

Photovoltaic modules convert sunlight directly into DC electricity and can be integrated into buildings. Photovoltaics (PVs) are distinct from other renewable energy technologies since they have no moving parts to be maintained and are silent. PV systems can be incorporated into buildings in various ways: on sloped roofs and fl at roofs, in façades, atria and shading devices. Modules can be mounted using frames or they can be fully incorporated into the actual building fabric;

for example, PV roof tiles are now available which can be fitted in place of standard tiles.

Currently, a PV system will cost between £1500 and £2500 per kWp, and frequently part of this cost can be offset owing to the displacement of a conventional cladding material. Costs have fallen significantly since the first systems were installed (1980s) and are predicted to fall further still.

While single crystal silicon remains the most efficient flat plate technology (15–16% conversion efficiency); it also has the least potential for cost reduction. PV cells made from poly-crystalline silicon have become popular as they are less expensive to produce, although they have a slightly lower efficiency.

Thin film modules are constructed by depositing extremely thin layers of photosensitive materials on a low-cost backing such as glass, stainless steel or plastic. As much less semiconductor material is required as for crystalline silicon cells, material costs are potentially much lower. Efficiencies are much lower, around 4–5%, although this can be boosted to 8–10% by depositing two or three layers of thin film material. Thin film production also requires less handling as the films are produced as large, complete modules and not as individual cells that have to be mounted in frames and wired together. Hence, there is the potential for significant cost reductions with volume production.

Since PVs generate DC output, an inverter and other equipment is needed to deliver the power to a building or the grid in an acceptable AC form. The cost of the inverter and these 'Balance of System' (BOS) components can approach 30% of the total cost of a PV system. Hence, simplification and cost reductions in these components over the coming years will also be necessary to make PV systems affordable.

Wind energy

Wind power is the most successful and fastest spreading renewable energy technology in the UK with a number of individual and group installations of varying size, capacity and location. Traditionally, turbines are installed in non-urban areas with a strong trend for large offshore wind farms. In parallel with the design and development of ever-bigger machines, which are deemed to be more efficient and cost-effective, it is being increasingly recognized that smaller devices installed at the point of use, i.e. urban

settings, can play an important role in reducing carbon emissions if they become mainstream.

At present there is a wide range of available off-the-shelf wind products, many manufactured in the UK and EU with proven good performance and durability. The dominant type is horizontal axis wind turbines (HAWT), which are typically ground mounted. Vertical axis wind turbines (VAWT) have limited market presence and there is a trade-off between lower efficiency and potentially higher resistance to extreme conditions. Capacity ranges from 500W to more than 1.5MW, but, for practical purposes and in built-up areas in particular, machines of more than 1kW and below 500kW are likely to be considered.

Wind technology is also currently one of the most cost-effective renewable energy technologies, which is attributable to the large scale of installations reducing the unit output cost. Individual building or community wind projects, although smaller, have the advantage of feeding electricity directly into the building's electricity circuit, thus sparing costly distribution network development and avoiding distribution losses. The downside is the still high capital cost per kW installed for smaller turbines, plus location constraints, such as visual intrusion and noise. The wind regime in urban areas is also a concern owing to higher wind turbulence which reduces the potential electricity output.

In most cases, wind turbines are connected to the electricity grid and all generated energy is used regardless of the building demand fluctuations. The output largely depends on the wind speed and the correlation between the two is a cube function. This means that in short periods of above-average wind speeds the generation increases exponentially. As a result, it is difficult to make precise calculations of the annual output of a turbine, but average figures can provide useful guidance to designers and architects. In reasonably windy areas (average wind speed of 6m/s) the expected output from 1kW installed is about 2500kWh annually.

The cost per kW installed varies considerably by manufacturer and size of machine with an indicative bracket of £2,500–£5,000. With a lifespan of more than 20 years, wind turbines can save money if design and planning are carried out in a robust way.

Building-integrated wind turbines are starting to be a reality in the UK, but potential projects may face difficulties with obtaining planning permission. There are a few examples now of permitted development rights for certain rooftop turbines in some local councils. A number of horizontal axis devices specifically designed for building integration are now available commercially, having design and reliability parameters relevant to the urban context. Building-mounted vertical axis devices are under development. At present, turbines installed near buildings, as well as community installations for groups of buildings, should be regarded as the larger wind energy source related to buildings, when they contribute to the carbon emissions from these premises using 'private wire' networks. However, the contribution of several building-

New Caretakers Dwelling, Central Mosque, Manzil Way, Oxford, OX4 1DJ Energy & Sustainability Strategy

integrated turbines in a development is likely to become significant in the next few years.

Appendix B-Fuel prices and emission factors

Seat		Standing	Unit Price	Emission Kg CO2	PE Fuel
bolk LPG	Gas fuels:	Charge £	p/kWh	p/kWh	Factor Code
Debtided LPG (for main heating system) 1.120 0.241 1.131 3 5 1.120 0.241 1.133 3 5 1.120 0.241 1.133 3 5 1.120 0.241 1.133 3 5 1.120 0.241 1.133 3 5 1.120 0.241 1.133 3 5 1.120 0.241 1.133 7 1.120 0.241 1.133 7 1.120 0.241 1.133 7 1.120 0.241 1.133 7 1.120 0.241 1.133 7 1.120 0.241 1.133 7 1.120 0.241 1.133 7 1.120 0.241 1.134 7 1.120 0.241 1.130 7 1.120 0.241 1.130 7 1.130 7 1.130 1.130 7 1.130 1.130 7 1.130 1.130 7 1.130 1.130 7 1.130 1.130 7 1.130 1.130 7 1.130 1.130 7 1.130 1.130 7 1.130	mains gas	_	• •	0.210	1.130 1
11.20	bulk LPG	62	6.74	0.241	1.141 2
	bottled LPG (for main heating system)		9.46	0.241	1.141 3
Diagoas (including anaerobic digestion) 62 6.74 0.024 1.286 7 Diagoas (including anaerobic digestion) 1.287 1.280 7 Diagoas (including anaerobic digestion) 2.28 2.298 1.180 7 Diagoas (including anaerobic digestion) 2.298 1.294 1.180 7 Diagoas (including anaerobic digestion) 2.298 1.294 1.298	bottled LPG (for secondary heating)		11.20	0.241	1.133 5
Name	LPG subject to Special Condition 11F (a)	92	3.64	0.241	1.163 9
Nearing oil	biogas (including anaerobic digestion)	62	6.74	0.024	1.286 7
bio-liquid HVO from used cooking oil rel 6.79 0.036 1.180 73 830K 0 0.195 1.180 73 830K 0 0.105 1.180 1.180 73 830K 0 0.105 1.180 1.	Liquid fuels:				
Displication of PAME from animal/vegetable oils (e) 6.79 0.018 1.180 73 1.830 K (o) 0.214 1.136 75 1.830 K (o) 0.214 1.136 75 1.830 K (o) 0.105 1.472 76 76 1.830 K (o) 0.105 1.472 76 76 1.306 K (o) 1.472 76 76 1.306 K (o) 1.472 76 76 1.306 K (o) 1.472 76 1.306 K (o) 1.472 76 77 77 77 77 77 77	heating oil			0.298	1.180 4
B30k (0					
Solid fuels: (g)	bio-liquid FAME from animal/vegetable oils ^(e)				
Solid fuels: (g)	·				
house coal	bioethanoi trom any biomass source		4/	0.105	1.4/2 /6
anthracite	Solid fuels: (g)				
manufactured smokeless fuel wood logs wood pellets (in bags for secondary heating) wood pellets (bulk supply for main heating) wood pellets (bulk supply for main heating) wood chips dual fuel appliance (mineral and wood) Electricity: (□) \$1	house coal		5.58		
wood logs wood pellets (in bags for secondary heating) wood pellets (bulk supply for main heating) wood pellets (bulk supply for main heating) wood chips dual fuel appliance (mineral and wood) Electricity: (a) standard tariff 81					
wood pellets (in bags for secondary heating) wood pellets (bulk supply for main heating) wood pellets (bulk supply for main heating) wood chips dual fuel appliance (mineral and wood) Electricity: (a) standard tariff 81					
wood pellets (bulk supply for main heating) 6.25 0.053 1.325 23 wood chips 3.72 0.023 1.046 21 dual fuel appliance (mineral and wood) 4.77 0.087 1.049 10 Electricity: (w) 81 16.49 0.136 (s) 1.5010t) 1 5 thour tariff (high rate) (m) 7 19.60 0.136 (s) 1.501 (t) 1.501 (t) 7-hour tariff (high rate) (m) 32 9.40 0.136 (s) 1.501 (t) 1.501 (t) 10-hour tariff (high rate) (m) 21 20.54 0.136 (s) 1.501 (t) 1.501 (t) 10-hour tariff (low rate) fib) 12.27 0.136 (s) 1.501 (t) <	S .				
wood chips duel fuel appliance (mineral and wood) 3,72 (0.023) (1.046) (1.049)	. , , ,				
Selectricity: (a) Selectricity: (b) Selectricity: (c) Sele	wood pellets (bulk supply for main heating)		6.25	0.053	
Standard tariff Standard t	·				
standard tariff 7-hour tariff (high rate) (h) 7-hour tariff (high rate) (h) 7-hour tariff (high rate) (h) 7-hour tariff (low rate) (h) 7-hour tariff (low rate) (h) 10-hour tariff (high rate) (h) 10-hour tariff (low rate) fib) 18-hour tariff (low rate) fib) 18-hour tariff (low rate) (h) 26 17-41 18-hour tariff (low rate) 00 19-hour tariff (low rate) 00 10-hour tariff (low rate) fib) 11-501 (t) 10-hour tariff (low rate) fib) 10-hour	· · · · · · · · · · · · · · · · · · ·		4.77	0.087	1.049 10
7-hour tariff (high rate) (h) 7-hour tariff (high rate) (h) 7-hour tariff (low rate) (h) 7-hour tariff (low rate) (h) 7-hour tariff (low rate) (h) 9.40 31 10-hour tariff (high rate) ("> 21 34 12.27 0.136 (a) 1.501 (t) 33 18-hour tariff (high rate) ("> 26 17.41 0.136 (s) 1.501 (0) 38 18-hour tariff (low rate) 00 18-hour tariff (low rate) 00 18-hour tariff (low rate) 00 24-hour heating tariff 26 14.17 40 24-hour heating tariff 27 28 19.60 0.136 (s) 1.501 (0) 18-hour tariff (low rate) 00 19.60 19.70 19	Electricity: (a)				
7-hour tariff (high rate) (h) 7-hour tariff (low rate) (h) 7-hour tariff (low rate) (h) 7-hour tariff (low rate) (h) 10-hour tariff (high rate) ("> 21 34 10-hour tariff (low rate) fib) 10-hour tariff (low rate) fib) 18-hour tariff (high rate) ("> 26 17.41 10.136 (s) 1.501 (t) 33 18-hour tariff (low rate) 00 18-hour tariff (low rate) 00 18-hour tariff (low rate) 00 24-hour heating tariff 26 37 14.17 21.0136 (s) 1.501 (0) 38 14.17 24-hour heating tariff 26 37 15.59 (0) 27 28 29 29 10.136 (s) 1.501 (t) 20.136 (s) 1.501 (t) 20.136 (s) 1.501 (t) 20.136 (s) 20.501 (t) 20.136 (s) 20.136 (s) 20.501 (t) 20.136 (s) 20.136 (s) 20.501 (t) 20.136 (s) 20.501 (t) 20.136 (s) 20.136	standard tariff		16.49	0.136 (s)	1.5010t)
7-hour tariff (low rate) (h) 7-hour tariff (low rate) (h) 10-hour tariff (high rate) ("> 21 20.54 31 10-hour tariff (low rate) fib) 12.27 18-hour tariff (lim rate) ("> 26 17.41 0.136 (s) 1.501 (t) 38 18-hour tariff (low rate) ("> 38 18-hour tariff (low rate) 00 24-hour heating tariff 26 14.17 0.136 (s) 1.501 (t) 40 24-hour heating tariff 26 14.04 0.136 (s) 1.501 0) 8-bectricity sold to grid, PV 60 electricity sold to grid, other 5.59 (0) 0.136 (s) 0.501 0) 60 electricity, any tariff 0) N/A 39 Heat networks: (k) P2 0) heat from boilers - mains gas 4.44 0.210 1.130 1.180 heat from boilers - oil (assumes 'gas oil') heat from boilers that can use mineral oil or biodiesel					
7-hour tariff (low rate) (h) 10-hour tariff (high rate) ("> 21	7-hour tariff (high rate) (h)		19.60	0.136 (s)	1.5010t)
10-hour tariff (high rate) ("> 21 20.54 0.136 (s) 1.501 (t) 10-hour tariff (low rate) fib) 12.27 0.136 (a) 1.501 (0 18-hour tariff (high rate) ("> 26 17.41 0.136 (s) 1.501 (0 18-hour tariff (low rate) 00 14.17 0.136 (s) 1.501 (t) 24-hour heating tariff 26 14.04 0.136 (s) 1.501 (t) 24-hour heating tariff 26 14.04 0.136 (s) 1.501 0) electricity sold to grid, PV 5.59 (0 0.136 (s) 0.501 0) electricity sold to grid, other 5.59 (1) 0.136 (s) 0.501 0) electricity, any tariff 0) N/A 0.136 (s) 0.501 0) heat from boilers - mains gas 4.44 0.210 1.130 heat from boilers - oil (assumes 'gas oil') 4.44 0.335 1.180 heat from boilers that can use mineral oil or biodiesel 4.44 0.335 1.180		32			
10-hour tariff (high rate) ("> 21 34 12.27 3.36 (s) 1.501 (t) 34 12.27 3.3 1.501 (t) 34 12.27 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.	/-hour fariff (low rate) (h)			0.136 (s)	1.501 (†)
10-hour tariff (low rate) fib) 18-hour tariff (high rate) ("> 26 17.41 0.136 (s) 1.501 (0 38 18-hour tariff (low rate) 00 18-hour tariff (low rate) 00 24-hour heating tariff 26 14.04 0.136 (s) 1.501 (t) 40 24-hour heating tariff 26 15.59 (0 0.136 (s) 0.501 0) 60 electricity sold to grid, other 5.59 (0 0.136 (s) 0.501 0) 60 electricity, any tariff 0) 18-hour tariff (low rate) 00 19-hour tariff (low rate) 00 10-hour tariff (low rate) 00 10-hour tariff (low rate) 00 10-hour tariff (low rate) ("> 10-hour tariff (low rate) (") 40 10-hour tariff (low rate) (") 40 11-501 (t) 40	10	0.1			
10-hour tariff (low rate) fib)	10-nour fariff (nigh rafe) (">		20.54	0.136 (s)	1.501 (†)
18-hour tariff (high rate) ("> 26 17.41 0.136 (s) 1.501 (0 38 18-hour tariff (low rate) 00 14.17 40 40 24-hour heating tariff 26 14.04 0.136 (s) 1.501 (t) 40 24-hour heating tariff 26 14.04 0.136 (s) 1.501 0) 35 60 60 60 60 60 60 60 6	10 hour tariff (low rato) fib)	54	12.27	0.134 (a)	1 501 (0
18-hour tariff (high rate) ("> 26 38 17.41 0.136 (s) 1.501 (0 18-hour tariff (low rate) 00 14.17 40 0.136 (s) 1.501 (t) 24-hour heating tariff 26 14.04 0.136 (s) 1.501 0) electricity sold to grid, PV 5.59 (0 0 0.136 (s) 0.501 0) electricity, any tariff 0) N/A 36 0.136 (s) 0.501 0) Heat networks: (k) 92 0) heat from boilers - mains gas 4.444 10.210 1.130 1.130 1.141	10-11001 family flow falley floy			0.130 (d)	1.501 (0
18-hour tariff (low rate) 00 18-hour heating tariff 26	18-hour tariff (high rate) (">	26		0.134 (a)	1 501 /0
18-hour tariff (low rate) 00 14.17 40 0.136 (s) 1.501 (t) 24-hour heating tariff 26 35 14.04 0.136 (s) 1.501 0) electricity sold to grid, PV 5.59 (0 0 0.136 (s) 0.501 0) electricity sold to grid, other 5.59 () 36 0.136 (s) 0.501 0) electricity, any tariff 0) N/A 36 0.136 (s) 1.501 0t) Heat networks: (k) 92 0) 4.44 0.210 1.130 heat from boilers - mains gas 4.44 0.241 1.141 heat from boilers - oil (assumes 'gas oil') 4.44 0.335 1.180 heat from boilers that can use mineral oil or biodiesel 4.44 0.335 1.180			17.41	0.136 (5)	1.301 (0
24-hour heating tariff 26	18-hour tariff (low rate) 00		14.17	0.136 (s)	1.501 (†)
electricity sold to grid, PV electricity sold to grid, other electricity, any tariff 0) Heat networks: (k) heat from boilers - mains gas heat from boilers - oil (assumes 'gas oil') heat from boilers that can use mineral oil or biodiesel 935 5.59 (0 0.136 (s) 0.501 0) 80,000 N/A 0.136 (s) 1.501 0†) N/A 0.136 (s) 1.501 0†) 82 0) 1.130 1.141 52 1.180	((-)	
electricity sold to grid, PV electricity sold to grid, other electricity, any tariff 0) Heat networks: (k) heat from boilers - mains gas heat from boilers - oil (assumes 'gas oil') heat from boilers that can use mineral oil or biodiesel 935 5.59 (0 0.136 (s) 0.501 0) 8,74 0.136 (s) 1.501 0†) 8,79 1.180 1.180	24-hour heating tariff	26	14.04	0.136 (s)	1.501.0)
electricity sold to grid, other 5.59 () 0.136 (s) 0.501 0) electricity, any tariff 0) N/A 0.136 (s) 1.501 0t) Heat networks: (k) 92 0) heat from boilers - mains gas 4.44 0.210 1.130 heat from boilers - LPG 4.44 0.241 1.141 heat from boilers - oil (assumes 'gas oil') 4.44 0.335 1.180 heat from boilers that can use mineral oil or biodiesel 4.44 0.335 1.180	0	35		01.00 (0)	
electricity sold to grid, other 5.59 () 0.136 (s) 0.501 0) electricity, any tariff 0) N/A 0.136 (s) 1.501 0t) Heat networks: (k) 92 0) heat from boilers - mains gas 4.44 0.210 1.130 heat from boilers - LPG 4.44 0.241 1.141 52 heat from boilers - oil (assumes 'gas oil') 4.44 0.335 1.180 heat from boilers that can use mineral oil or biodiesel 4.44 5.6	electricity sold to grid, PV		5.59 (0	0.136 (s)	0.501 0)
electricity, any tariff 0) **Part **N/A**			60		
electricity, any tariff 0) Heat networks: (k) heat from boilers - mains gas heat from boilers - LPG heat from boilers - oil (assumes 'gas oil') heat from boilers that can use mineral oil or biodiesel N/A 39 4.44 0.210 1.130 1.141 52 4.44 0.335 1.180	electricity sold to grid, other			0.136 (s)	0.501 0)
Heat networks: (k) heat from boilers - mains gas heat from boilers - LPG heat from boilers - oil (assumes 'gas oil') heat from boilers that can use mineral oil or biodiesel 39 4.44 0.210 1.130 1.141 52 4.44 0.335 1.180 53 heat from boilers that can use mineral oil or biodiesel			36		011
Heat networks: (k) heat from boilers - mains gas 4.44 0.210 1.130 heat from boilers - LPG 4.44 0.241 1.141 heat from boilers - oil (assumes 'gas oil') 4.44 0.335 1.180 heat from boilers that can use mineral oil or biodiesel 4.44 0.335 1.180	electricity, any tariff 0)			0.136 (s)	1.501 ^{Ot)}
heat from boilers - mains gas 4.44 51 heat from boilers - LPG 4.44 0.210 1.130 1.141 52 heat from boilers - oil (assumes 'gas oil') 4.44 0.335 1.180 53 heat from boilers that can use mineral oil or biodiesel 4.44 56		00.01	39		
heat from boilers - LPG 4.44 0.241 1.141 52 heat from boilers - oil (assumes 'gas oil') 4.44 0.335 1.180 heat from boilers that can use mineral oil or biodiesel 4.44 0.335 1.180		92 0)			
heat from boilers - LPG $\begin{array}{cccccccccccccccccccccccccccccccccccc$	heat from boilers - mains gas			0.210	1.130
52 heat from boilers - oil (assumes 'gas oil') 4.44 53 heat from boilers that can use mineral oil or biodiesel 4.44 56 0.335 1.180	lea est forme le elle en LDC			0.041	1 1 4 1
heat from boilers - oil (assumes 'gas oil') 4.44 53 heat from boilers that can use mineral oil or biodiesel 4.44 0.335 1.180 53 1.180	neat from boilers - LPG			0.241	1.141
heat from boilers that can use mineral oil or biodiesel 53 4.44 0.335 1.180	heat from hoilers - oil (assumes 'aas oil')			0 335	1 180
heat from boilers that can use mineral oil or biodiesel 4.44 0.335 1.180	Tiodi Ilotti bollots oli (dissotties gas oli)			0.000	1.100
56	heat from boilers that can use mineral oil or biodies	el		0.335	1.180
heat from boilers using HVO from used cooking oil 4.44 0.036 1.180					
	heat from boilers using HVO from used cooking oil		4.44	0.036	1.180

	57		
heat from boilers FAME from animal/vegetable oils (a)	4.44 58	0.018	1.180
heat from boilers - B30D 0)	4.44 55	0.269	1.090
heat from boilers - coal	4.44 54	0.375	1.064
heat from electric heat pump	4.44 41	0.136 (s)	1.501 0)
heat recovered from waste combustion	4.44 42	0.015 0')	0.063
heat from boilers - biomass	4.44 43	0.029	1.037
heat from boilers - biogas (landfill or sewage gas)	4.44 44	0.024	1.286
heat recovered from power station	3.77 45	0.015 0')	0.063
high grade heat recovered from process (Appendix C4.3)	3.77 47	0.011	0.051
low grade heat recovered from process (Appendix C4.4)	3.77 49	0.136 001)	1.501 (001)
heat recovered from geothermal or other natural processes	3.77 46	0.011	0.051
heat from CHP	3.77 48	as above0D	as above0D

Appendix C and D, E, and F

This appendix contains the following reports used in producing the content of this Energy and Sustainability Statement.

Appendix C - Flood risk map for planning to show the location of the site with regards to the relevant flood zone areas.

Appendix D - SAP calculation reports for the selected units that were used to base the calculations on for this report. (All hierarchy steps)

Appendix E - Floor Plans and Elevations used for the SAP Calculations.

Appendix F – Sample water calculations.

Flood map for planning

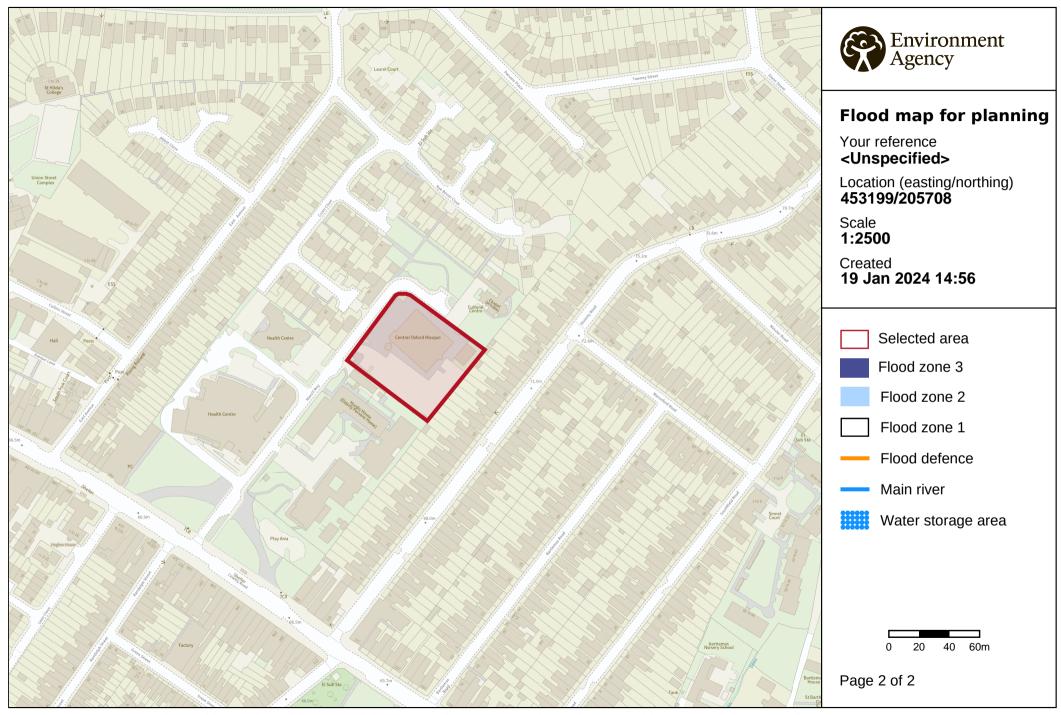
Your reference Location (easting/northing) Created

<Unspecified> 453199/205708 19 Jan 2024 14:56

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Property Reference	ce	F	R11278 - Care	taker Dwelling					Is	sued on Dat	te	19/01/2024	
Assessment Refe	rence	C	02 - Be Lean					Prop Type Re	f				
Property		C	Caretakers Dwe	lling, Central Mo	osque, Manzil Wa	ay, Oxford, Ox	xfordshire, OX4	4 1DJ					
SAP Rating					76 C		DER	6.53		TER		11.19	
Environmental					95 A		% DER < TER	₹				41.64	
CO ₂ Emissions (t/	year)				0.37		DFEE	37.6	5	TFEE		43.12	
Compliance Chec	k				See BREL		% DFEE < TF	EE				12.70	
% DPER < TPER					-14.84		DPER	68.6	7	TPER		59.80	
Assessor Details		Mr Irai	Maghounaki							Asses	sor ID	V571-000)1
Client		IVIII. IIIG	wagnounak							7,0000		V0/1 000	71
SAP 10 WORKSHEET CALCULATION OF I	OWELLING EN	MISSIONS F	OR REGULATI	ONS COMPLIAN	ICE								
Ground floor Total floor area Dwelling volume	a TFA = (1a	a)+(1b)+(1	c)+(1d)+(1e)(1n)	6	2.4700		Area (m2) 62.4700			(2b) =		(1b) - (3b (4) (5)
2. Ventilation r											n	n3 per hour	
Number of open of Number of open f Number of chimme Number of flues Number of flues Number of intern Number of passiv Number of fluele	flues eys / flues attached fattached fed chimneys mittent extre vents	to solid f to other h s tract fans	uel boiler eater	fire							0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 2 * 10 = 0 * 10 = 0 * 40 =		(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design	ethod	eys, flues	and fans	= (6a)+(6b)	+(6c)+(6d)+(6e)+(6f)+	(6g)+(7a)+(7b)+(7c) =			/ (5) =	0.1334 Yes Blower Door 5.0000	(8)
Infiltration rat Number of sides	ie.								(20) = 1 -	10 075	(10)	0.3834	(18) (19)
Infiltration rat	e adjusted		de shelter	factor						$= (18) \times$		0.7750	
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Effective ac	0.3788 0.5718	0.3714 0.5690	0.3640 0.5662		0.3194 0.5510	0.2823 0.5398	0.2823 0.5398	0.2748 0.5378	0.2971 0.5441	0.3194 0.5510	0.3343 0.5559		
3. Heat losses a	and heat lo	oss parame	eter										
Element HG Door Windows (Uw = 1. Heat Loss Floor	.20)			Gross m2	Openings m2	Net 1. 11.	m2 .9100 .5800 .4700	U-value W/m2K 1.2000 1.1450 0.1200	A x U W/K 2.2920 13.2595 7.4964	110	value xJ/m2K	A x K kJ/K 6871.7000	(26a) (27) (28a)
External Walls Plane Roof Total net area of Fabric heat loss				60.6700 62.4700	13.4900	62.	.4700 .6100	0.1700 0.1200 30) + (32) =	8.0206 7.4964 = 38.5649		0.0000	6605.2000 562.2300	
Party Walls Internal Walls							.5300 .2000	0.0000	0.0000	9	0.0000	430.6000 550.8000	(32) (32c)
E3 Sill E4 Jamb E5 Grour E10 Eave	rameter (The Bridges ent of lintels and floor (nees (insulated)	MP = Cm / (including normal) tion at ce	TFA) in kJ/s other stee siling level siling level	l lintels)				Le 10. 9. 20. 25.	.5100 .6000 .4000 .2800 .9300	+ (32a) i-value 0.0170 0.0200 0.0160 0.0620 0.0670 0.0550	Tot 0.17 0.19 0.32 1.56 1.00 0.56	240.4439 887 920 864 574	

SAP 10 Online 2.13.2 Page 1 of 7

E16 Corner (normal) 4.8000 0.0400 E18 Party wall between dwellings 4.8000 0.0440 P1 Party wall - Ground floor 8.9700 0.0430 P4 Party wall - Roof (insulation at ceiling level) Thermal bridges (Sum(L x Psi) calculated using Appendix K)	0 0.2112 0 0.3857 0 0.3588 4.9817 (36	6)
Point Thermal bridges Total fabric heat loss (33) + (36)	(36a) = 0.0000 (36a) = 43.5466 (37)	7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nov Dec	
(38)m 28.2886 28.1507 28.0156 27.3809 27.2621 26.7093 26.7093 26.6069 26.9222 27.262 Heat transfer coeff		
Jan Feb Mar Apr May Jun Jul Aug Sep Oct HLP 1.1499 1.1477 1.1455 1.1354 1.1335 1.1246 1.1246 1.1230 1.1280 1.133 HLP (average)	Nov Dec 35 1.1373 1.1414 (40 1.1354	0)
	31 30 31	
4. Water heating energy requirements (kWh/year)		
Assumed occupancy	2.0505 (42	2)
Hot water usage for mixer showers 58.6004 57.7198 56.4365 53.9812 52.1692 50.1485 48.9999 50.2735 51.6696 53.839 Hot water usage for baths	92 56.3472 58.3759 (42	2a)
25.3233 24.9472 24.4176 23.4411 22.7099 21.8991 21.4612 21.9871 22.5597 23.427 Hot water usage for other uses	73 24.4239 25.2377 (42	2b)
35.6296 34.3340 33.0383 31.7427 30.4471 29.1515 29.1515 30.4471 31.7427 33.038 Average daily hot water use (litres/day)	33 34.3340 35.6296 (42 109.8969 (43	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct	Nov Dec	
Daily hot water use 119.5533 117.0010 113.8924 109.1650 105.3262 101.1991 99.6126 102.7077 105.9720 110.304 Energy conte 189.3432 166.6078 175.0484 149.4414 141.7893 124.4361 120.4728 127.1736 130.6741 149.682 Energy content (annual) Total =		
Distribution loss (46)m = 0.15 x (45)m 28.4015 24.9912 26.2573 22.4162 21.2684 18.6654 18.0709 19.0760 19.6011 22.452	24 24.5982 28.0059 (46	6)
Water storage loss: Store volume	300.0000 (47	7)
b) If manufacturer declared loss factor is not known : Hot water storage loss factor from Table 2 (kWh/litre/day) Volume factor from Table 2a Temperature factor from Table 2b Enter (49) or (54) in (55)	0.0115 (51 0.7368 (52 0.5400 (53 1.3784 (55	2) 3)
Total storage loss 42.7290 38.5939 42.7290 41.3506 42.7290 41.3506 42.7290 42.7290 41.3506 42.7290		
If cylinder contains dedicated solar storage 42.7290 38.5939 42.7290 41.3506 42.7290 41.3506 42.7290 42.7290 41.3506 42.7290		
Primary loss 23.2624 21.0112 23.2624 22.5120 23.2624 22.5120 23.2624 23.2624 23.2624 22.5120 23.262 Combi loss 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		
255.3346 226.2129 241.0398 213.3040 207.7807 188.2987 186.4642 193.1650 194.5367 215.674		
PV diverter 0.0000 0.00	0.0000 0.0000 (63 00 0.0000 0.0000 (63	3b)
FGHRS 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000		
255.3346 226.2129 241.0398 213.3040 207.7807 188.2987 186.4642 193.1650 194.5367 215.674 Total per year (kWh/year) = 12Total per year (kWh/year)		4)
Electric shower(s) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 (64	4a)
Total Energy used by instantaneous electric shower(s) (kWh/year) = Heat gains from water heating, kWh/month 115.7497 103.0812 110.9967 100.7794 99.9381 92.4651 92.8503 95.0783 94.5392 102.562		
113.7497 103.0012 110.9907 100.7794 99.9301 92.4031 92.6303 93.0763 94.3392 102.302	20 103.0102 114.0720 (03	J)
5. Internal gains (see Table 5 and 5a)		
Metabolic gains (Table 5), Watts		
	Nov Dec 70 102.5270 102.5270 (66	6)
Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 90.5456 100.2469 90.5456 93.5637 90.5456 93.5637 90.5456 90.5456 93.5637 90.545	56 93.5637 90.5456 (67	7)
Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 179.1306 180.9894 176.3052 166.3332 153.7454 141.9145 134.0108 132.1520 136.8362 146.808	32 159.3960 171.2269 (68	8)
Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 33.2527 33.2527 33.2527 33.2527 33.2527 33.2527 33.2527 33.2527 33.2527 33.2527 33.2527		
Pumps, fans 3.0000 3.0000 3.0000 3.0000 0.0000 0.0000 0.0000 0.0000 3.0000 0.0000 0.0000 0.0000 3.0000 0.00		
-82.0216 -82		
155.5776 153.3946 149.1891 139.9713 134.3253 128.4238 124.7988 127.7934 131.3045 137.852 Total internal gains 482.0118 491.3890 472.7980 456.6264 435.3744 417.6602 403.1133 404.2491 415.4625 431.964		
6. Solar gains		
	ccess Gains actor W Le 6d	
Northeast 2.4000 11.2829 0.6300 0.8000 0. Southeast 4.9800 36.7938 0.6300 0.8000 0.	.7700 9.4580 (75 .7700 63.9983 (77 .7700 16.5514 (81	7)
Solar gains 90.0076 161.9556 244.5421 341.4629 417.5746 429.9976 408.1370 348.9934 277.7339 185.182	10.0011 (01	,

SAP 10 Online 2.13.2 Page 2 of 7

7. Mean interna Temperature dur												21.0000	(85)
Utilisation fac						Jun	Jul	Aug	Sep	Oct	Nov	Dec	(00)
tau alpha util living are	58.0825 4.8722	58.1942 4.8796	58.3041 4.8869	58.8258 4.9217	58.9245 4.9283	59.3882 4.9592	59.3882 4.9592	59.4748 4.9650	59.2087 4.9472	58.9245 4.9283	58.7252 4.9150	58.5184 4.9012	
ucii iiving are	0.9856	0.9720	0.9427	0.8598	0.7093	0.5195	0.3791	0.4248	0.6602	0.8956	0.9713	0.9881	(86)
MIT Th 2	19.8749 19.9603	20.0808 19.9621	20.3599 19.9638	20.6948 19.9720	20.9051 19.9736	20.9834 19.9808	20.9971 19.9808	20.9951 19.9821	20.9492 19.9780	20.6739 19.9736	20.2231 19.9705	19.8383 19.9672	
util rest of ho	0.9814 18.6807	0.9641 18.9399	0.9267 19.2849	0.8244 19.6820	0.6490 19.9000	0.4414 19.9720	0.2923 19.9799	0.3327 19.9805	0.5778 19.9468	0.8601 19.6708	0.9618 19.1277	0.9845 18.6396	(90)
Living area fra	19.3110	19.5420	19.8522	20.2165	20.4305	20.5058	20.5168	20.5160	fLA = 20.4758	Living area 20.2002	19.7058	0.5278 19.2723	(92)
Temperature adj adjusted MIT	19.3110	19.5420	19.8522	20.2165	20.4305	20.5058	20.5168	20.5160	20.4758	20.2002	19.7058	0.0000 19.2723	
8. Space heatin		ment											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Ext temp.	0.9781 559.4818 4.3000	0.9602 627.3557 4.9000	0.9247 663.3019 6.5000	0.8335 665.1999 8.9000	0.6768 577.3070 11.7000	0.4822 408.7014 14.6000	0.3381 274.3219 16.6000	0.3813 287.2192 16.4000	0.6193 429.2775 14.1000	0.8688 536.1892 10.6000	0.9587 542.4487 7.1000	0.9815 538.7668 4.2000	(95)
	1078.3155	1049.7942	955.5168	802.6524	618.1931	414.9176	275.1766	288.7485	449.2980	679.7785	895.6307	1074.6539	(97)
Space heating r	386.0122 requiremen	283.8787 t - total pe	217.4079 er year (kW	98.9657 h/year)	30.4192	0.0000	0.0000	0.0000	0.0000	106.8304	254.2911	398.7000 1776.5052	(98a)
Solar heating k	0.0000	0.0000 on - total p	0.0000 per year (k	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating k Space heating r Space heating p	386.0122 requiremen			98.9657 tion - total	30.4192 per year	0.0000 (kWh/year)	0.0000	0.0000	0.0000	106.8304 (98c)	254.2911	398.7000 1776.5052 28.4377	
9a. Energy requ													
Fraction of spa Fraction of spa Efficiency of m Efficiency of m Efficiency of s	ace heat f main space main space	rom main sys heating sys heating sys	stem(s) stem 1 (in stem 2 (in	%) %)	n (Table 11)						0.0000 1.0000 170.0000 0.0000 0.0000	(202) (206) (207)
O b	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating r	386.0122	283.8787		98.9657	30.4192	0.0000	0.0000	0.0000	0.0000	106.8304	254.2911	398.7000	(98)
	170.0000	170.0000	170.0000	170.0000	170.0000	0.0000	0.0000	0.0000	0.0000	170.0000	170.0000	170.0000	(210)
	227.0660	166.9875	127.8870	58.2151 2)	17.8937	0.0000	0.0000	0.0000	0.0000	62.8414	149.5830	234.5294	(211)
Space heating f	0.0000 fuel (main			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating f			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
	255.3346	226.2129	241.0398	213.3040	207.7807	188.2987	186.4642	193.1650	194.5367	215.6740	227.8509	252.6974	
	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000	170.0000 170.0000	
	150.1968	133.0664	141.7881	125.4730	122.2239	110.7640	109.6848	113.6265	114.4334	126.8670	134.0300	148.6455	(219)
Space cooling f (221)m Pumps and Fa Lighting	0.0000 0.0000 25.2898	0.0000 0.0000 20.2884	0.0000 0.0000 18.2675	0.0000 0.0000 13.3836	0.0000 0.0000 10.3378	0.0000 0.0000 8.4461	0.0000 0.0000 9.4305	0.0000 0.0000 12.2582	0.0000 0.0000 15.9221	0.0000 0.0000 20.8907	0.0000 0.0000 23.5960	0.0000 0.0000 25.9927	(231)
Electricity gen (233a)m						0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		(233a)
Electricity gen (234a)m	nerated by 0.0000	wind turbin 0.0000	nes (Append 0.0000	ix M) (negat 0.0000	ive quanti 0.0000	ty) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
Electricity gen (235a)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235a)
Electricity use (235c)m	0.0000	0.0000	0.0000	0.0000	0.0000	N) (negati 0.0000	ve if net g 0.0000	eneration) 0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
Electricity gen (233b)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233b)
Electricity gen (234b)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
Electricity gen (235b)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235b)
Electricity use (235d)m Annual totals k	0.0000	0.0000	0.0000	by micro-CHI 0.0000	0.0000	0.0000	ve if net g 0.0000	eneration) 0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Space heating f Space heating f Space heating f	fuel - mai: fuel - mai:	n system 2										1045.0031	(213)
Efficiency of w Water heating f Space cooling f	water heat fuel used											0.0000 170.0000 1530.7994 0.0000	(219)
Electricity for Total electrici Electricity for	ity for th	e above, kWh		ix L)								0.0000 204.1035	
Energy saving/g PV generation Wind generation		technologie	es (Appendi	ces M ,N and	d Q)							0.0000	

SAP 10 Online 2.13.2 Page 3 of 7

Hydro-electric c Electricity gene Appendix Q - spe Energy saved or Energy used Total delivered	erated - Miecial featu generated	cro CHP (Apres										0.0000 0.0000 -0.0000 0.0000 2779.9059	(236) (237)
12a. Carbon diox	ide emissi	ons - Indi	vidual hea	ting systems	including m	nicro-CHP							
Space heating - Total CO2 associ Water heating (c Space and water Pumps, fans and Energy for light Total CO2, kg/ye EPC Dwelling Car	main system ated with other fuel) heating electric kee ing	n 1 community : eep-hot	systems					Energy kWh/year 1045.0031 1530.7994 0.0000 204.1035	kg (1	Emissions kg CO2/year 163.3449 0.0000 215.4179 378.7628 0.0000 29.4584 408.2213 6.5300	(261) (373) (264) (265) (267) (268) (272)
13a. Primary ene	ergy - Indi	vidual heat	ing syste	ms including	micro-CHP								
Space heating - Total CO2 associ Water heating (c Space and water Pumps, fans and Energy for light Total Primary er Dwelling Primary	main system ated with of ther fuel) heating electric ker ing hergy kWh/ye	m 1 community : eep-hot										mary energy kWh/year 1649.7236 0.0000 2327.3232 3977.0468 0.0000 313.0607 4290.1075 68.6700	(275) (473) (278) (279) (281) (282) (286)
SAP 10 WORKSHEET CALCULATION OF 1	FOR New B	uild (As De	esigned)		.2, February	, 2022)			-	height (m) 2.4000		Volume (m3) 149.924	
Total floor area Dwelling volume 2. Ventilation r	rate								3a)+(3b)+(3c)+(3d) + (3e)		149.9280 m3 per hour	
Number of open of Number of open f Number of chimne Number of flues Number of flues Number of intern Number of jassiv Number of fluele	flues eys / flues attached to attached to ed chimneys mittent ext: ye vents	o solid fue o other hea ract fans	el boiler	fire							0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 2 * 10 = 0 * 10 = 0 * 40 =	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.0000 0.0000	(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	ethod AP50	ys, flues a	and fans	= (6a)+(6b)	+(6c)+(6d)+((6e) + (6f) + (6g)+(7a)+(7b)+(7c) =		20.0000	0 / (5) =	es per hour 0.1334 Yes Blower Door 5.0000 0.3834 3	(8)
Shelter factor Infiltration rat	e adjusted	to include	e shelter	factor					(20) = 1 - (21)		x (19)] = x (20) =	0.7750 0.2971	
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750			
Effective ac	0.3788 0.5718	0.3714 0.5690	0.3640 0.5662		0.3194 0.5510	0.2823 0.5398	0.2823 0.5398	0.2748 0.5378		0.3194 0.5510			
3. Heat losses a Element TER Semi-glazed TER Opening Type Heat Loss Floor	and heat lo	ss paramete	er			Net 1. 11.			A x U W/K 1.9100 13.2595 8.1211		K-value kJ/m2K	A x K kJ/K	
External Walls Plane Roof				60.6700 62.4700	13.4900	47.	1800 4700	0.1800 0.1100	8.4924 6.8717				(29a) (30)

SAP 10 Online 2.13.2 Page 4 of 7

Total net area of external elements Aum Fabric heat loss, W/K = Sum (A \times U) Party Walls	n(A, m2)			.6100 (26)(30) + (32) 0.0000	= 38.65 0.00				(31) (33) (32)
Thermal mass parameter (TMP = Cm / TFA) List of Thermal Bridges R1 Element E2 Other lintels (including oth E3 Sill E4 Jamb E5 Ground floor (normal) E10 Eaves (insulation at ceilin E12 Gable (insulation at ceilin E16 Corner (normal) E18 Party wall between dwelling P1 Party wall - Ground floor P4 Party wall - Ground floor Thermal bridges (Sum(L x Psi) calculate Point Thermal bridges Total fabric heat loss	ner steel lintels) ng level) ng level) gs on at ceiling level				10 9 20 25 14 10 4 4 8	.5100 .6000 .4000 .2800 .9300 .3500 .8000 .9700	Psi-value 0.0500 0.05500 0.0500 0.1600 0.0600 0.0600 0.0600 0.0900 0.0600 0.1200 33) + (36)	Tot 0.52 0.48 1.02 4.04 0.89 0.62 0.43 0.28 0.71 1.07 (36a) = + (36a) =	55 00 00 48 58 10 20 80	(36)
	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1001
Heat transfer coeff 77.0445 76.9066 7	28.0156 27.3809 76.7714 76.1367	27.2621 76.0179	26.7093 75.4651	26.7093 75.4651	26.6069 75.3627	26.9222 75.6780	27.2621 76.0179	27.5023 76.2582	27.7535 76.5094	
	Mar Apr 1.2289 1.2188 31 30	May 1.2169	Jun 1.2080	Jul 1.2080	Aug 1.2064 31	Sep 1.2114	Oct 1.2169	Nov 1.2207	76.1361 Dec 1.2247 1.2188 31	(40)
4. Water heating energy requirements (k	(Wh/year)								2.0505	(42)
	56.4365 53.9812	52.1692	50.1485	48.9999	50.2735	51.6696	53.8392	56.3472	58.3759	(42a)
	24.4176 23.4411	22.7099	21.8991	21.4612	21.9871	22.5597	23.4273	24.4239	25.2377	(42b)
Hot water usage for other uses 35.6296 34.3340 3 Average daily hot water use (litres/day	33.0383 31.7427	30.4471	29.1515	29.1515	30.4471	31.7427	33.0383	34.3340	35.6296 109.8969	
Jan Feb Daily hot water use	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
119.5533 117.0010 11	13.8924 109.1650 75.0484 149.4414	105.3262 141.7893	101.1991 124.4361	99.6126 120.4728	102.7077 127.1736	105.9720 130.6741	110.3048 149.6826 Total = S	115.1051 163.9883 Sum(45)m =	119.2432 186.7060 1825.3637	
Distribution loss $(46)m = 0.15 \times (45)m$	n 26.2573 22.4162	21.2684	18.6654	18.0709	19.0760	19.6011	22.4524	24.5982	28.0059	(46)
Water storage loss: Store volume a) If manufacturer declared loss factor Temperature factor from Table 2b Enter (49) or (54) in (55)	or is known (kWh/d	lay):							300.0000 2.1127 0.5400 1.1409	(48) (49)
	35.3664 34.2256	35.3664	34.2256	35.3664	35.3664	34.2256	35.3664	34.2256	35.3664	(56)
Primary loss 23.2624 21.0112 2	corage 35.3664 34.2256 23.2624 22.5120 0.0000 0.0000	35.3664 23.2624 0.0000	34.2256 22.5120 0.0000	35.3664 23.2624 0.0000	35.3664 23.2624 0.0000	34.2256 22.5120 0.0000	35.3664 23.2624 0.0000	34.2256 22.5120 0.0000	35.3664 23.2624 0.0000	(59)
WWHRS -26.7897 -23.6930 -2 PV diverter -0.0000 -0.0000 -	33.6773 206.1790 24.8099 -20.5436 -0.0000 -0.0000	200.4181 -19.1459 -0.0000	181.1737 -16.3833 -0.0000	179.1016 -15.3567 -0.0000	185.8024 -16.3303 -0.0000	187.4116 -16.9508 -0.0000 0.0000	208.3114 -19.9831 -0.0000	220.7259 -22.6384 -0.0000	245.3348 -26.2936 -0.0000	(63a) (63b)
	0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
221.1824 195.8699 20 12Total per year (kWh/year)	08.8673 185.6354	181.2722	164.7904	163.7449				198.0874 Sum(64)m =		(64)
Electric shower(s)	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Heat gains from water heating, kWh/mont	:h	al Energy us							0.0000	
109.8597 97.7611 10	05.1067 95.0793	94.0480	86.7651	86.9603	89.1883	88.8392	96.6725	99.9162	108.9828	(65)
5. Internal gains (see Table 5 and 5a)										
Metabolic gains (Table 5), Watts Jan Feb		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m 102.5270 102.5270 10 Lighting gains (calculated in Appendix	02.5270 102.5270	102.5270	102.5270	102.5270		102.5270				(66)
91.8657 101.7084 9 Appliances gains (calculated in Appendi	91.8657 94.9279 ix L, equation L13	91.8657 or L13a), al	94.9279 so see Tabl	91.8657 Le 5	91.8657	94.9279	91.8657	94.9279	91.8657	
179.1306 180.9894 17 Cooking gains (calculated in Appendix I	L, equation L15 or	L15a), also	see Table 5	5		136.8362			171.2269	
33.2527 33.2527 3 Pumps, fans 3.0000 3.0000 Losses e.g. evaporation (negative value	3.0000 3.0000	33.2527 3.0000	33.2527 0.0000	33.2527 0.0000	33.2527 0.0000	33.2527 0.0000	33.2527 3.0000		33.2527 3.0000	
-82.0216 -82.0216 -8 Water heating gains (Table 5)		-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	(71)
147.6608 145.4779 14 Total internal gains	11.2724 132.0546	126.4086	120.5070	116.8821	119.8767	123.3878	129.9362	138.7725	146.4823	(72)
475.4152 484.9338 46	66.2014 450.0738	428.7777	411.1075	396.5167	397.6525	408.9099	425.3681	449.8545	466.3329	(73)
6. Solar gains										
[Jan]	Area m2	Solar flux Table 6a		g		FF data	Acce fact		Gains W	

SAP 10 Online 2.13.2 Page 5 of 7

					W/m2		Table 6b	or Tab	le 6c	Table	6d		
Northeast Southeast Northwest			2.4 4.9 4.2	800 000	11.2829 36.7938 11.2829		0.6300 0.6300 0.6300	0 0 0	.7000 .7000 .7000	0.77 0.77 0.77	00	8.2757 55.9985 14.4825	(77)
Solar gains Total gains	78.7567		213.9744 680.1758	298.7801 748.8539	365.3778 794.1555				243.0172 651.9270	162.0348 587.4029	95.7090 545.5634	66.5085 532.8414	
7. Mean inter	rnal tempera	ture (heati	ng season)									21.0000	/OE)
Utilisation 1	factor for g Jan	ains for li	ving area, Mar	nil,m (see Apr	Table 9a) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(65)
tau alpha util living a	54.1553 4.6104	54.2524 4.6168	54.3479 4.6232	54.8010 4.6534	54.8866 4.6591	55.2887 4.6859	55.2887 4.6859	55.3638 4.6909	55.1332 4.6755	54.8866 4.6591	54.7137 4.6476	54.5341 4.6356	
	0.9882	0.9782	0.9574	0.8966	0.7723	0.5878	0.4352	0.4839	0.7221	0.9209	0.9773	0.9901	
MIT Th 2 util rest of	19.7125 19.8934 house	19.9104 19.8952	20.1945 19.8969	20.5636 19.9050	20.8364 19.9065	20.9647 19.9136	20.9930 19.9136	20.9886 19.9149	20.9101 19.9109	20.5637 19.9065	20.0801 19.9035	19.6776 19.9003	
MIT 2	0.9846 18.4275	0.9718 18.6779	0.9445 19.0332	0.8660 19.4805	0.7121 19.7757	0.4985 19.8945	0.3305 19.9114	0.3744 19.9111	0.6355 19.8538	0.8904 19.4929	0.9693 18.9007	0.9870 18.3882	(90)
Living area f MIT Temperature a	19.1057	19.3284	19.6461	20.0521	20.3355	20.4593	20.4822	20.4798	20.4113	= Living are 20.0581	19.5231	0.5278 19.0687 0.0000	
adjusted MIT	19.1057	19.3284	19.6461	20.0521	20.3355	20.4593	20.4822	20.4798	20.4113	20.0581	19.5231	19.0687	(93)
8. Space heat	ing require	ment											
	4.3000		Mar 0.9410 640.0340 6.5000	Apr 0.8706 651.9471 8.9000	May 0.7371 585.3913 11.7000	Jun 0.5445 428.6861 14.6000	Jul 0.3859 290.8241 16.6000	Aug 0.4322 303.8567 16.4000	Sep 0.6775 441.6535 14.1000	Oct 0.8953 525.8837 10.6000	Nov 0.9659 526.9372 7.1000	Dec 0.9840 524.3035 4.2000	(95)
Heat loss rat	1140.6946	1109.6370	1009.2452	849.0847	656.4535	442.1735	292.9734	307.4635	477.6238	718.9823	947.3647	1137.5978	(97)
Space heating	444.1087 g requiremen	338.2272 at - total pe		141.9391 h/year)	52.8703	0.0000	0.0000	0.0000	0.0000	143.6654	302.7078	456.2910 2154.5025	(98a)
Solar heating	0.0000 g contributi	0.0000 on - total	0.0000 per year (k	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating Space heating Space heating	444.1087 g requiremen	338.2272 at after sol			52.8703 1 per year	0.0000 (kWh/year)	0.0000	0.0000	0.0000	143.6654	302.7078) / (4) =	456.2910 2154.5025 34.4886	
9a. Energy re	equirements	- Individua	l heating s	ystems, inc	luding micro	O-CHP							
Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of	space heat f f main space f main space	rom main sy: heating sy: heating sy:	stem(s) stem 1 (in s stem 2 (in s	%) %)	m (Table 11)							0.0000 1.0000 92.3000 0.0000 0.0000	(202) (206) (207)
Space heating	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	444.1087	338.2272			52.8703	0.0000	0.0000	0.0000	0.0000	143.6654	302.7078	456.2910	(98)
Space heating	92.3000 g fuel (main	92.3000 heating sy	92.3000 stem)	92.3000	92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	
Space heating		366.4433 (main heat 0.0000			57.2809	0.0000	0.0000	0.0000	0.0000	0.0000	327.9608	494.3564 0.0000	
Space heating				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating	g fuel (seco 0.0000	ndary) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating	g requiremen												
Efficiency of		195.8699 er 85.2731	208.8673 84.6751	185.6354 83.4655	181.2722 81.6690	164.7904 79.8000	163.7449 79.8000	169.4721 79.8000	170.4609 79.8000	188.3283 83.4604	198.0874 85.0078	219.0413 79.8000 85.6663	(216)
Fuel for wate	er heating,			222.4098	221.9595	206.5043	205.1941	212.3710	213.6101	225.6498	233.0228	255.6913	
Space cooling (221)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(221)
Pumps and Fa Lighting Electricity	19.0879		7.3041 13.7877 div M) (neg	7.0685 10.1014	7.3041 7.8026	7.0685 6.3748	7.3041 7.1178	7.3041 9.2520	7.0685 12.0175	7.3041 15.7676	7.0685 17.8094	7.3041 19.6184	
(233a)m Electricity	-48.9640	-64.7111	-87.3040	-92.0050	-94.4009	-86.5279 cy)	-85.4921	-82.9938	-77.9826	-70.9767	-52.2902	-42.8641	(233a)
(234a)m Electricity		hydro-elec					tity)	0.0000	0.0000	0.0000	0.0000		(234a)
(235a)m Electricity v							ive if net o		0.0000	0.0000	0.0000		(235a)
(235c)m Electricity ((233b)m		0.0000 PVs (Appendation				0.0000		0.0000	0.0000	0.0000	0.0000 -56.0550	0.0000	(235c)
Electricity (234b) m		wind turbi					0.0000	0.0000	0.0000	0.0000	0.0000		(234b)
Electricity (235b)m	generated by 0.0000	hydro-elec 0.0000	tric genera 0.0000	tors (Appen 0.0000	dix M) (nega 0.0000	ative quant 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		(235b)
Electricity (235d)m	0.0000	electricity 0.0000	generated 1	oy micro-CH 0.0000		N) (negati 0.0000			0.0000	0.0000	0.0000		(235d)
Annual totals Space heating Space heating	g fuel - mai g fuel - mai	n system 2										2334.2389	(213)
Space heating	y ruer - sec	onuary										0.0000	(C13)

SAP 10 Online 2.13.2 Page 6 of 7

Efficiency of water heater			79.8000	
Water heating fuel used Space cooling fuel			2731.1977 (0.0000 (
Space cooling rues			0.0000 ((221)
Electricity for pumps and fans:				
Total electricity for the above, kWh/year			86.0000 (
Electricity for lighting (calculated in Appendix L)			154.0501 ((232)
Energy saving/generation technologies (Appendices M ,N and Q)				
PV generation			-3087.7363 (,
Wind generation			0.0000 (
Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N)			0.0000 (0.0000 (
Appendix Q - special features			0.0000 ((233)
Energy saved or generated			-0.0000 (
Energy used			0.0000 (
Total delivered energy for all uses			2217.7504 ((238)
12a. Carbon dioxide emissions - Individual heating systems including micro-CHP				
124. Carbon drowing commissions individual nearing systems including micro con				
	Energy		Emissions	
	kWh/year		kg CO2/year	(0.61)
Space heating - main system 1 Total CO2 associated with community systems	2334.2389	0.2100	490.1902 (0.0000 (
Water heating (other fuel)	2731.1977	0.2100	573.5515 (
Space and water heating			1063.7417 (
Pumps, fans and electric keep-hot	86.0000		11.9293 (
Energy for lighting	154.0501	0.1443	22.2342 ((268)
Energy saving/generation technologies				
PV Unit electricity used in dwelling	-886.5124		-120.5277	
PV Unit electricity exported	-2201.2239	0.1266	-278.6034	(0.60)
Total CO2, kg/year			-399.1311 (698.7740 (
EPC Target Carbon Dioxide Emission Rate (TER)			11.1900 (
13a. Primary energy - Individual heating systems including micro-CHP				
		Primary energy factor	Primary energy	
		kg CO2/kWh	kWh/year	
Space heating - main system 1	2334.2389	1.1300	2637.6899 (
Total CO2 associated with community systems	0001 1000	1 1200	0.0000 (
Water heating (other fuel) Space and water heating	2731.1977	1.1300	3086.2534 (5723.9434 (
Pumps, fans and electric keep-hot	86.0000	1.5128	130.1008 (
Energy for lighting	154.0501		236.2871 (
Provey assing/generation technologies				
Energy saving/generation technologies PV Unit electricity used in dwelling	-886.5124	1.5025	-1332.0282	
PV Unit electricity exported	-2201.2239		-1022.7326	
Total			-2354.7608 (
Total Primary energy kWh/year			3735.5704 (
Target Primary Energy Rate (TPER)			59.8000 ((287)

SAP 10 Online 2.13.2 Page 7 of 7

Property Reference	ce	P	R11278 - Caret	taker Dwelling					Is	sued on Dat	te	19/01/2024	
Assessment Refe	rence	00	01 - Be Green					Prop Type Ref					
Property		С	aretakers Dwel	lling, Central Mo	osque, Manzil Wa	ay, Oxford, Ox	ofordshire, OX4	4 1DJ					
SAP Rating					79 C		DER	5.58		TER		11.19	
Environmental					96 A		% DER < TER	1				50.13	
CO ₂ Emissions (t/	year)				0.32		DFEE	37.65	5	TFEE		43.12	
Compliance Chec	k				See BREL		% DFEE < TF	EE				12.70	
% DPER < TPER					1.76		DPER	58.75	5	TPER		59.80	
Assessor Details		Mr Irai	Maghounaki							Asses	sor ID	V571-000)1
Client		IVIII. II CIJ	Magnounan							7,0000		1071 000	71
SAP 10 WORKSHEET CALCULATION OF I	DWELLING EN	MISSIONS FO	OR REGULATIO	ONS COMPLIAN	ICE								
								Area	Storey	neight		Volume	
Ground floor Total floor area Dwelling volume	a TFA = (1a	a) + (1b) + (1c	c)+(1d)+(1e)(1n)	6	2.4700		(m2) 62.4700 (1b) x		2b) =(3n) =		(1b) - (3b (4) (5)
2. Ventilation													
Number of open of Number of open of Number of chimne Number of flues Number of blocken Number of blocken Number of passif Number of flues of Number of flues of Number of flues of flues of Number of Number of flues of Number	flues eys / flues attached to attached to ed chimneys mittent ext ve vents	to solid for to other he s tract fans	uel boiler	fire							0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 2 * 10 = 0 * 10 = 0 * 40 =		(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design	ethod	eys, flues	and fans	= (6a)+(6b)	+(6c)+(6d)+(6e)+(6f)+	(6g)+(7a)+(7b)+(7c) =			/ (5) =	o.1334 Yes Blower Door 5.0000	(8)
Infiltration rat Number of sides	ie.											0.3834	(18) (19)
Shelter factor Infiltration rat	e adjusted	d to inclu	de shelter	factor				(20) = 1 - (21)	[0.075 x] = (18) x		0.7750 0.2971	
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Effective ac	0.3788 0.5718	0.3714 0.5690	0.3640 0.5662		0.3194 0.5510	0.2823 0.5398	0.2823 0.5398	0.2748 0.5378	0.2971 0.5441	0.3194 0.5510	0.3343 0.5559		
3. Heat losses a	and heat lo	oss paramet	ter										
Element HG Door Windows (Uw = 1.	.20)			Gross m2	Openings m2	Net 1. 11.	m2 .9100 .5800	U-value W/m2K 1.2000 1.1450	A x U W/K 2.2920 13.2595	k	value :J/m2K	A x K kJ/K	(26a) (27)
Heat Loss Floor External Walls Plane Roof Total net area of Fabric heat loss	of external			60.6700 62.4700	13.4900	47. 62.	.1800 .4700 .6100	0.1200 0.1700 0.1200 30) + (32) =	7.4964 8.0206 7.4964 38.5649	140	.0000	6871.7000 6605.2000 562.2300	(29a)
Party Walls Internal Walls	, w/n - St	(A A U)					.5300	0.0000	0.0000		.0000	430.6000 550.8000	(32)
Heat capacity Cn Thermal mass par List of Thermal K1 Eleme	rameter (TN Bridges		TFA) in kJ/1	m2K					.(30) + (32)	+ (32a)	.(32e) =	240.4439	
E2 Other E3 Sill E4 Jamb E5 Grour E10 Eave	r lintels nd floor (res (insulat	normal) tion at ce:	other stee)				10. 9. 20. 25. 14.	5100 6000 4000 2800 9300	0.0170 0.0200 0.0160 0.0620 0.0670 0.0550	0.17 0.19 0.32 1.56 1.00	87 220 64 674 103	

SAP 10 Online 2.13.2 Page 1 of 7

E18 Par P1 Part	ty wall - G ty wall - B	etween dwell Ground floor Roof (insula	tion at ce	iling level Appendix K	.)			4.8	.8000 .8000 .9700	0.0400 0.0440 0.0430 0.0400	0.19 0.21 0.38 0.35	12 57	(36)
Point Thermal b Total fabric he	oridges		_						(:	33) + (36)	(36a) = + (36a) =	0.0000 43.5466	
Ventilation hea	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(20)
(38) m Heat transfer of Average = Sum(3	71.8353	28.1507	28.0156 71.5622	27.3809	27.2621 70.8087	26.7093	26.7093 70.2559	26.6069 70.1535	26.9222 70.4688	27.2621 70.8087	27.5023	27.7535 71.3002 70.9269	
HLP	Jan 1.1499	Feb 1.1477	Mar 1.1455	Apr 1.1354	May 1.1335	Jun 1.1246	Jul 1.1246	Aug 1.1230	Sep 1.1280	Oct 1.1335	Nov 1.1373	Dec 1.1414	(40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	1.1354	
4. Water heatin													
Assumed occupar	 ncy											2.0505	(42)
Hot water usage	58.6004	57.7198	56.4365	53.9812	52.1692	50.1485	48.9999	50.2735	51.6696	53.8392	56.3472	58.3759	(42a)
Hot water usage	25.3233	24.9472	24.4176	23.4411	22.7099	21.8991	21.4612	21.9871	22.5597	23.4273	24.4239	25.2377	(42b)
Hot water usage Average daily h	35.6296	34.3340	33.0383 'day)	31.7427	30.4471	29.1515	29.1515	30.4471	31.7427	33.0383	34.3340	35.6296 109.8969	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte Energy content	119.5533 189.3432 (annual)	117.0010 166.6078	113.8924 175.0484	109.1650 149.4414	105.3262 141.7893	101.1991 124.4361	99.6126 120.4728	102.7077 127.1736	105.9720 130.6741	110.3048 149.6826 Total = S	115.1051 163.9883 um(45)m =	119.2432 186.7060 1825.3637	
Distribution lo	28.4015	= 0.15 x (4 24.9912	26.2573	22.4162	21.2684	18.6654	18.0709	19.0760	19.6011	22.4524	24.5982	28.0059	(46)
Water storage 1 Store volume												300.0000	(47)
b) If manufact Hot water sto Volume factor Temperature f Enter (49) or (orage loss r from Tabl factor from	factor from e 2a n Table 2b			lay)							0.0115 0.7368 0.5400 1.3784	(52) (53)
Total storage 1		38.5939	42.7290	41.3506	42.7290	41.3506	42.7290	42.7290	41.3506	42.7290	41.3506	42.7290	
If cylinder cor	42.7290	38.5939	42.7290	41.3506	42.7290	41.3506	42.7290	42.7290	41.3506	42.7290	41.3506	42.7290	
Primary loss Combi loss Total heat requ	23.2624 0.0000 uired for w	21.0112 0.0000 water heatin	23.2624 0.0000 ng calculate	22.5120 0.0000 ed for each	23.2624 0.0000 month	22.5120 0.0000	23.2624	23.2624	22.5120 0.0000	23.2624 0.0000	22.5120 0.0000	23.2624	
			241.0398	213.3040	207.7807	188.2987 0.0000	186.4642 0.0000	193.1650 0.0000	194.5367 0.0000	215.6740	227.8509	252.6974 0.0000	
PV diverter Solar input	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63c)
FGHRS Output from w/h	0.0000 n 255.3346	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
12Total per yea		ar)						Total pe	er year (kWl	h/year) = S	um (64) m =	2602.3590 2602	
21000110 0110#01	0.0000	0.0000	0.0000	0.0000 Tot	0.0000 al Energy us	0.0000 sed by insta	0.0000 antaneous e	0.0000 Lectric show	0.0000 wer(s) (kWh	0.0000 /year) = Su	0.0000 m(64a)m =	0.0000	
Heat gains from	m water hea 115.7497	ting, kWh/m 103.0812	110.9967	100.7794	99.9381	92.4651	92.8503	95.0783	94.5392	102.5626	105.6162	114.8728	(65)
5. Internal gai	ins (see Ta	able 5 and 5	ia)										
Metabolic gains	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m Lighting gains	(calculate	ed in Append	lix L, equa	tion L9 or	102.5270 L9a), also s	ee Table 5							
Appliances gair	ns (calcula	ated in Appe	endix L, eq	uation L13	90.5456 or L13a), al	so see Tab	le 5	90.5456	93.5637	90.5456	93.5637	90.5456	
Cooking gains ((calculated	l in Appendi	x L, equat:	ion L15 or		see Table 5	5		136.8362			171.2269	
Pumps, fans	3.0000	3.0000	3.0000	3.0000	33.2527 3.0000	0.0000	33.2527 0.0000	33.2527 0.0000	33.2527 0.0000	33.2527 3.0000	33.2527 3.0000	33.2527 3.0000	
	-82.0216	-82.0216			-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	(71)
	155.5776		149.1891	139.9713	134.3253	128.4238	124.7988	127.7934	131.3045	137.8529	146.6892	154.3990	(72)
Total internal		491.3890	472.7980	456.6264	435.3744	417.6602	403.1133	404.2491	415.4625	431.9647	456.4071	472.9295	(73)
6. Solar gains													
									75				
[Jan]				m2		Speci: or :		Specific or Tabl		Acce fact Table	or 6d	Gains W	
Northeast Southeast Northwest			2.4 4.9 4.2	000 800 000	11.2829 36.7938 11.2829		0.6300 0.6300 0.6300	0. 0. 0.	.8000 .8000 .8000	0.77 0.77 0.77	00	9.4580 63.9983 16.5514	(77)
Solar gains Total gains												76.0097 548.9393	

SAP 10 Online 2.13.2 Page 2 of 7

7. Mean internal temp	erature (heati	ng season)										
Temperature during he Utilisation factor fo					Th1 (C)						21.0000	(85)
Jan tau 58.08 alpha 4.87		Mar 58.3041 4.8869	Apr 58.8258 4.9217	May 58.9245 4.9283	Jun 59.3882 4.9592	Jul 59.3882 4.9592	Aug 59.4748 4.9650	Sep 59.2087 4.9472	Oct 58.9245 4.9283	Nov 58.7252 4.9150	Dec 58.5184 4.9012	
util living area 0.98	0.9720	0.9427	0.8598	0.7093	0.5195	0.3791	0.4248	0.6602	0.8956	0.9713	0.9881	(86)
MIT 19.87 Th 2 19.96 util rest of house		20.3599 19.9638	20.6948 19.9720	20.9051 19.9736	20.9834 19.9808	20.9971 19.9808	20.9951 19.9821	20.9492 19.9780	20.6739 19.9736	20.2231 19.9705	19.8383 19.9672	
0.98 MIT 2 18.68 Living area fraction		0.9267 19.2849	0.8244 19.6820	0.6490 19.9000	0.4414 19.9720	0.2923 19.9799	0.3327 19.9805	0.5778 19.9468 ft.A =	0.8601 19.6708 Living area	0.9618 19.1277	0.9845 18.6396 0.5278	(90)
MIT 19.31 Temperature adjustmen		19.8522	20.2165	20.4305	20.5058	20.5168	20.5160	20.4758	20.2002	19.7058	19.2723	
adjusted MIT 19.31	10 19.5420	19.8522	20.2165	20.4305	20.5058	20.5168	20.5160	20.4758	20.2002	19.7058	19.2723	(93)
8. Space heating requ	irement											
Jan	Feb	Mar			Jun	Jul		Con	Oct	Nov	Dec	
Utilisation 0.97 Useful gains 559.48 Ext temp. 4.30	0.9602 18 627.3557	0.9247 663.3019 6.5000	Apr 0.8335 665.1999 8.9000	May 0.6768 577.3070 11.7000	0.4822 408.7014 14.6000	0.3381 274.3219 16.6000	Aug 0.3813 287.2192 16.4000	Sep 0.6193 429.2775 14.1000	0.8688 536.1892 10.6000	0.9587 542.4487 7.1000	0.9815 538.7668 4.2000	(95)
Heat loss rate W 1078.31	55 1049.7942	955.5168	802.6524	618.1931	414.9176	275.1766	288.7485	449.2980	679.7785	895.6307	1074.6539	(97)
Space heating kWh 386.01 Space heating require		217.4079 er year (kW	98.9657 h/year)	30.4192	0.0000	0.0000	0.0000	0.0000	106.8304	254.2911	398.7000 1776.5052	(98a)
Solar heating kWh 0.00 Solar heating contrib		0.0000 per year (k	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating kWh 386.01 Space heating require Space heating per m2	22 283.8787 ment after sol		98.9657 tion - total	30.4192 l per year	0.0000 (kWh/year)	0.0000	0.0000	0.0000	106.8304 (98c)	254.2911	398.7000 1776.5052 28.4377	
9a. Energy requiremen	ts - Individua	l heating s	ystems, inc	luding mic	ro-CHP							
Fraction of space hea Fraction of space hea Efficiency of main sp Efficiency of main sp Efficiency of seconda	t from main sy ace heating sy ace heating sy	stem(s) stem 1 (in stem 2 (in	%) %)	n (Table 11	1)						0.0000 1.0000 219.3000 0.0000 0.0000	(202) (206) (207)
Jan Space heating require	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
386.01 Space heating efficien	22 283.8787	217.4079 ing system	98.9657 1)	30.4192	0.0000	0.0000	0.0000	0.0000	106.8304	254.2911	398.7000	(98)
219.30 Space heating fuel (m.	219.3000	219.3000	219.3000	219.3000	0.0000	0.0000	0.0000	0.0000	219.3000	219.3000	219.3000	(210)
176.02 Space heating efficie	ncy (main heat			13.8711	0.0000	0.0000	0.0000	0.0000	48.7143	115.9558	181.8057	
0.00 Space heating fuel (m	ain heating sy		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.00 Space heating fuel (so	econdary)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water heating		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
	46 226.2129	241.0398	213.3040	207.7807	188.2987	186.4642	193.1650	194.5367	215.6740	227.8509	252.6974 190.4000	
Efficiency of water he (217)m 190.40 Fuel for water heating	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	
	118.8093	126.5965	112.0294	109.1285	98.8964	97.9329	101.4522	102.1726	113.2741	119.6696	132.7192	(219)
(221)m 0.00 Pumps and Fa 0.00 Lighting 25.28	0.0000	0.0000 0.0000 18.2675	0.0000 0.0000 13.3836	0.0000 0.0000 10.3378	0.0000	0.0000 0.0000 9.4305	0.0000 0.0000 12.2582	0.0000 0.0000 15.9221	0.0000 0.0000 20.8907	0.0000 0.0000 23.5960	0.0000 0.0000 25.9927	(231)
Electricity generated (233a)m 0.00	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233a)
Electricity generated (234a)m 0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
Electricity generated (235a)m 0.00 Electricity used or no	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235a)
(235c)m 0.00 Electricity generated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
(233b)m 0.00 Electricity generated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233b)
(234b)m 0.00 Electricity generated	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 itv)	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
(235b)m 0.00 Electricity used or n	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 eneration)	0.0000	0.0000	0.0000	0.0000	(235b)
(235d)m 0.00 Annual totals kWh/yea		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Space heating fuel - : Space heating fuel - : Space heating fuel - :	main system 2 secondary										810.0799 0.0000 0.0000	(213)
Efficiency of water how Water heating fuel use Space cooling fuel											190.4000 1366.7852 0.0000	
Electricity for pumps Total electricity for Electricity for light	the above, kW		ix L)								0.0000 204.1035	
Energy saving/generat PV generation Wind generation	ion technologi	es (Appendi	ces M ,N and	d Q)							0.0000	

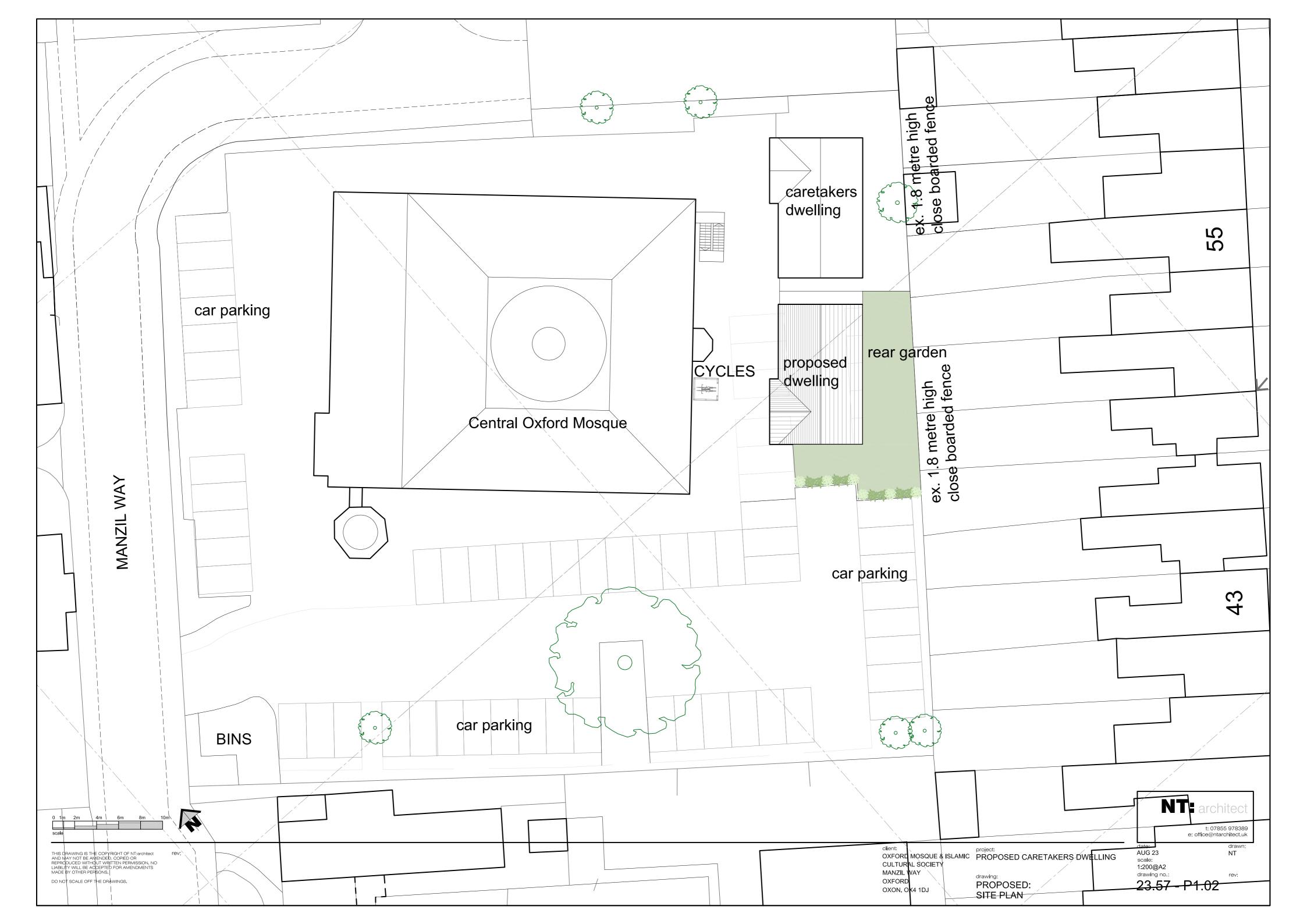
SAP 10 Online 2.13.2 Page 3 of 7

Hydro-electric of Electricity gene Appendix Q - spe Energy saved or Energy used Total delivered	erated - Mic ecial featur generated	ero CHP (Ap										0.0000 0.0000 -0.0000 0.0000 2380.9686	(235) (236) (237)
12a. Carbon diox	cide emissio	ons - Indiv	vidual heat	ing systems	including m	icro-CHP							
Space heating - Total CO2 associ Water heating (c Space and water Pumps, fans and Energy for light Total CO2, kg/ye EPC Dwelling Car	Emission kg	Emissions kg CO2/year 126.6240 0.0000 192.3374 318.9614 0.0000 29.4584 348.4198 5.5800	(261) (373) (264) (265) (267) (268) (272)										
13a. Primary ene													
Space heating - Total CO2 associ Water heating (C Space and water Pumps, fans and Energy for light Total Primary Dwelling Primary	main system ated with opther fuel) heating electric kering ergy kWh/ye	n 1 community s eep-hot										mary energy kWh/year 1278.8555 0.0000 2077.9672 3356.8227 0.0000 313.0607 3669.8834 58.7500	(275) (473) (278) (279) (281) (282) (286)
SAP 10 WORKSHEET CALCULATION OF T	POR New BY	nild (As De	esigned)		.2, February	2022)			-	height (m) 2.4000		Volume (m3) 149.9280	(1b) - (3b (4)
2. Ventilation r	rate								3a)+(3b)+(3c)+(3d)+(3e)		149.9280 m3 per hour	(5)
Number of open of Number of open f Number of chimme Number of flues Number of flues Number of blocke Number of intern Number of passiv Number of fluele	Flues eys / flues attached to attached to ed chimneys mittent ext: ye vents	o solid fue o other hea ract fans	el boiler	fire							0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 = 2 * 10 = 0 * 10 = 0 * 40 =	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.0000 0.0000	(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	ethod AP50	ys, flues a	and fans	= (6a) + (6b)	+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+(7b)+(7c) =		20.0000	0 / (5) =	es per hour 0.1334 Yes Blower Door 5.0000 0.3834 3	(17)
Shelter factor Infiltration rat	e adjusted	to include	e shelter :	factor					(20) = 1 - (21)		x (19)] = x (20) =	0.7750 0.2971	
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750			
Effective ac	0.3788 0.5718	0.3714 0.5690	0.3640 0.5662	0.3268 0.5534	0.3194 0.5510	0.2823 0.5398	0.2823 0.5398	0.2748 0.5378		0.3194 0.5510			
3. Heat losses a Element TER Semi-glazed TER Opening Type Heat Loss Floor External Walls Plane Roof	and heat los	ss paramete	er			Net. 1. 11. 62. 47.			A x U W/K 1.9100 13.2595 8.1211 8.4924 6.8717		K-value kJ/m2K	A x K kJ/K	

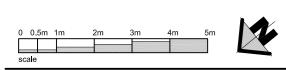
SAP 10 Online 2.13.2 Page 4 of 7

Total net area of external element Fabric heat loss, W/K = Sum (A x U Party Walls				.6100 (26)(.5300	30) + (32) 0.0000	= 38.65 0.00				(31) (33) (32)
Thermal mass parameter (TMP = Cm , List of Thermal Bridges K1 Element E2 Other lintels (includin E3 Sill E4 Jamb E5 Ground floor (normal) E10 Eaves (insulation at c E12 Gable (insulation at c E16 Corner (normal) E18 Party wall between dwe P1 Party wall - Ground flo P4 Party wall - Roof (insulation) Thermal bridges (Sum(L x Psi) calc Point Thermal bridges Total fabric heat loss	ng other steel lintels ceiling level) ceiling level) ceilings coor	el)			L 100 9 20 25 14 10 4 8 8	Psi-value 0.0500 0.05500 0.0500 0.1600 0.0600 0.0600 0.0600 0.0800 0.1200 33) + (36)	Tot. 0.52 0.48 1.02 4.04 0.89 0.62 0.43 0.28 0.71 1.07	(35)(36)(37)		
Ventilation heat loss calculated r Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(20)
(38)m 28.2886 28.150° Heat transfer coeff 77.0445 76.906° Average = Sum(39)m / 12 =			26.7093 75.4651	26.7093 75.4651	26.6069 75.3627	26.9222 75.6780	27.2621 76.0179	27.5023 76.2582	27.7535 76.5094 76.1361	
Jan Feb 1.2333 1.2312 HLP (average) Days in mont 31 26		May 8 1.2169 0 31	Jun 1.2080 30	Jul 1.2080 31	Aug 1.2064 31	Sep 1.2114 30	Oct 1.2169 31	Nov 1.2207 30	Dec 1.2247 1.2188 31	(40)
4. Water heating energy requiremen										
Assumed occupancy									2.0505	(42)
Hot water usage for mixer showers 58.6004 57.7198 Hot water usage for baths	3 56.4365 53.981	2 52.1692	50.1485	48.9999	50.2735	51.6696	53.8392	56.3472	58.3759	(42a)
25.3233 24.9472 Hot water usage for other uses	2 24.4176 23.441	1 22.7099	21.8991	21.4612	21.9871	22.5597	23.4273	24.4239	25.2377	(42b)
35.6296 34.3340 Average daily hot water use (litre		7 30.4471	29.1515	29.1515	30.4471	31.7427	33.0383	34.3340	35.6296 109.8969	
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot water use 119.5533 117.0010 Energy conte 189.3432 166.6078 Energy content (annual)			101.1991 124.4361	99.6126 120.4728	102.7077 127.1736	105.9720 130.6741	110.3048 149.6826 Total = S	115.1051 163.9883 um(45)m =	119.2432 186.7060 1825.3637	
Distribution loss (46)m = 0.15 x 28.4015 24.9912		2 21.2684	18.6654	18.0709	19.0760	19.6011	22.4524	24.5982	28.0059	(46)
Water storage loss: Store volume a) If manufacturer declared loss Temperature factor from Table 21 Enter (49) or (54) in (55)		/day):							300.0000 2.1127 0.5400 1.1409	(48) (49)
Total storage loss 35.3664 31.9439		6 35.3664	34.2256	35.3664	35.3664	34.2256	35.3664	34.2256	35.3664	(56)
If cylinder contains dedicated so: 35.3664 31.9439 Primary loss 23.2624 21.0112 Combi loss 0.0000 0.0000	35.3664 34.225 2 23.2624 22.512 0 0.0000 0.000	0 23.2624 0 0.0000	34.2256 22.5120 0.0000	35.3664 23.2624 0.0000	35.3664 23.2624 0.0000	34.2256 22.5120 0.0000	35.3664 23.2624 0.0000	34.2256 22.5120 0.0000	35.3664 23.2624 0.0000	(59)
Total heat required for water heat 247.9720 219.5629 WWHRS -26.7897 -23.6930 PV diverter -0.0000 -0.0000	233.6773 206.179 -24.8099 -20.543	0 200.4181 6 -19.1459	181.1737 -16.3833 -0.0000	179.1016 -15.3567 -0.0000	185.8024 -16.3303 -0.0000	187.4116 -16.9508 -0.0000	208.3114 -19.9831 -0.0000	220.7259 -22.6384 -0.0000	245.3348 -26.2936 -0.0000	(63a)
Solar input 0.0000 0.0000 FGHRS 0.0000 0.0000		0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63c)
Output from w/h 221.1824 195.8699	208.8673 185.635	4 181.2722	164.7904	163.7449				198.0874 um(64)m =		
12Total per year (kWh/year) Electric shower(s)					TOTAL P	er year (xw	n/year, - 5	um(04)m -	2267	
0.0000 0.0000	T	0 0.0000 otal Energy u	0.0000 sed by insta	0.0000 antaneous e	0.0000 lectric sho	0.0000 wer(s) (kWh	0.0000 /year) = Su	0.0000 m(64a)m =	0.0000	
Heat gains from water heating, kWl 109.8597 97.761:	n/month L 105.1067 95.079	3 94.0480	86.7651	86.9603	89.1883	88.8392	96.6725	99.9162	108.9828	(65)
5. Internal gains (see Table 5 and	i 5a)									
Metabolic gains (Table 5), Watts Jan Feb				Jul	Aug	Sep	Oct	Nov	Dec	
	102.5270 102.527	0 102.5270		102.5270		102.5270			102.5270	(66)
91.8657 101.7084 Appliances gains (calculated in Appliances ga	91.8657 94.927 ppendix L, equation L1	9 91.8657 3 or L13a), a	94.9279 lso see Tab	91.8657 le 5	91.8657	94.9279	91.8657	94.9279	91.8657	(67)
179.1306 180.9894 Cooking gains (calculated in Apper	1 176.3052 166.333 ndix L, equation L15 o	2 153.7454 r L15a), also	141.9145 see Table 5	134.0108		136.8362			171.2269	
33.2527 33.2527 Pumps, fans 3.0000 3.0000 Losses e.g. evaporation (negative	3.0000 3.000	7 33.2527 0 3.0000	33.2527 0.0000	33.2527 0.0000	33.2527 0.0000	33.2527 0.0000	33.2527 3.0000	33.2527 3.0000	33.2527 3.0000	
	5 -82.0216 -82.021	6 -82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	-82.0216	(71)
147.6608 145.4779 Total internal gains	9 141.2724 132.054			116.8821	119.8767		129.9362	138.7725	146.4823	
	3 466.2014 450.073	8 428.7777	411.1075	396.5167	397.6525	408.9099	425.3681	449.8545	466.3329	(73)
6. Solar gains										
[Jan]	Area m2	Solar flux Table 6a		g fic data	Specific	FF data	Acce fact		Gains W	

SAP 10 Online 2.13.2 Page 5 of 7


					W/m2		Table 6b	or Tab	le 6c	Table	6d		
Northeast Southeast Northwest			2.4 4.9 4.2	800 000	11.2829 36.7938 11.2829		0.6300 0.6300 0.6300	0 0 0	.7000 .7000 .7000	0.77 0.77 0.77	00	8.2757 55.9985 14.4825	(77)
Solar gains Total gains		141.7111 626.6449	213.9744 680.1758	298.7801 748.8539	365.3778 794.1555	376.2479 787.3554	357.1199 753.6366	305.3692 703.0217	243.0172 651.9270	162.0348 587.4029	95.7090 545.5634	66.5085 532.8414	
7. Mean inter	rnal tempera	ture (heati	ng season)									21.0000	(85)
Utilisation :	factor for g Jan	ains for li	ving area, Mar	nil,m (see Apr	Table 9a) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(03)
tau alpha util living a	54.1553 4.6104 area	54.2524 4.6168	54.3479 4.6232	54.8010 4.6534	54.8866 4.6591	55.2887 4.6859	55.2887 4.6859	55.3638 4.6909	55.1332 4.6755	54.8866 4.6591	54.7137 4.6476	54.5341 4.6356	
MIT	0.9882 19.7125	0.9782 19.9104	0.9574	0.8966	0.7723	0.5878	0.4352	0.4839	0.7221	0.9209	0.9773	0.9901	
Th 2 util rest of	19.8934	19.8952	19.8969	19.9050	19.9065	19.9136	19.9136	19.9149	19.9109	19.9065	19.9035	19.6776 19.9003	
MIT 2 Living area	0.9846 18.4275	0.9718 18.6779	0.9445 19.0332	0.8660 19.4805	0.7121 19.7757	0.4985 19.8945	0.3305 19.9114	0.3744 19.9111	0.6355 19.8538	0.8904 19.4929 Living are	0.9693 18.9007	0.9870 18.3882 0.5278	(90)
MIT Temperature a	19.1057 adjustment	19.3284	19.6461	20.0521	20.3355	20.4593	20.4822	20.4798	20.4113	20.0581	19.5231	19.0687 0.0000	(92)
adjusted MIT	19.1057	19.3284	19.6461	20.0521	20.3355	20.4593	20.4822	20.4798	20.4113	20.0581	19.5231	19.0687	(93)
8. Space heat	ting require	ment											
	4.3000		Mar 0.9410 640.0340 6.5000	Apr 0.8706 651.9471 8.9000	May 0.7371 585.3913 11.7000	Jun 0.5445 428.6861 14.6000	Jul 0.3859 290.8241 16.6000	Aug 0.4322 303.8567 16.4000	Sep 0.6775 441.6535 14.1000	Oct 0.8953 525.8837 10.6000	Nov 0.9659 526.9372 7.1000	Dec 0.9840 524.3035 4.2000	(95)
Heat loss rat	1140.6946	1109.6370	1009.2452	849.0847	656.4535	442.1735	292.9734	307.4635	477.6238	718.9823	947.3647	1137.5978	(97)
Space heating	444.1087 g requiremen	338.2272 t - total p		141.9391 h/year)	52.8703	0.0000	0.0000	0.0000	0.0000	143.6654	302.7078	456.2910 2154.5025	(98a)
Solar heating	0.0000 g contributi	0.0000 on - total	0.0000 per year (ki	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating Space heating Space heating	444.1087 g requiremen	338.2272 at after sol			52.8703 l per year	0.0000 (kWh/year)	0.0000	0.0000	0.0000	143.6654	302.7078) / (4) =	456.2910 2154.5025 34.4886	
·•	3 1 -									,	, , , ,		, ,
9a. Energy re	equirements		l heating s	ystems, inc	luding micro	-CHP							
Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of	space heat f f main space f main space	rom main sy: heating sy: heating sy:	stem(s) stem 1 (in s stem 2 (in s	%) %)	m (Table 11)							0.0000 1.0000 92.3000 0.0000 0.0000	(202) (206) (207)
_	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	444.1087	338.2272			52.8703	0.0000	0.0000	0.0000	0.0000	143.6654	302.7078	456.2910	(98)
Space heating	92.3000 g fuel (main	92.3000 heating sy	92.3000 stem)	92.3000	92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	
Space heating		366.4433 (main heat 0.0000			57.2809	0.0000	0.0000	0.0000	0.0000	0.0000	327.9608	494.3564 0.0000	
Space heating				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating		ndary) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water heating		it											
Efficiency of	f water heat		208.8673	185.6354	181.2722	164.7904	163.7449	169.4721	170.4609	188.3283	198.0874	219.0413 79.8000	(216)
(217)m Fuel for wate		85.2731 kWh/month 229.6973	84.6751 246.6692	83.4655 222.4098	81.6690 221.9595	79.8000 206.5043	79.8000 205.1941	79.8000 212.3710	79.8000 213.6101	83.4604 225.6498	85.0078 233.0228	85.6663 255.6913	
Space cooling (221)m	g fuel requi 0.0000	rement 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(221)
Pumps and Fa Lighting Electricity	19.0879		7.3041 13.7877	7.0685 10.1014	7.3041 7.8026	7.0685 6.3748	7.3041 7.1178	7.3041 9.2520	7.0685 12.0175	7.3041 15.7676	7.0685 17.8094	7.3041 19.6184	
(233a)m Electricity	-48.9640	-64.7111	-87.3040	-92.0050	-94.4009	-86.5279	-85.4921	-82.9938	-77.9826	-70.9767	-52.2902	-42.8641	(233a)
(234a)m Electricity	0.0000 generated by	0.0000 hydro-elec	0.0000 tric genera	0.0000 tors (Appen	0.0000 dix M) (nega	0.0000 ative quant	tity)	0.0000	0.0000	0.0000	0.0000		(234a)
(235a)m Electricity v							ive if net o		0.0000	0.0000	0.0000		(235a)
(235c)m Electricity ((233b)m		0.0000 PVs (Appendation -87.1563				0.0000		0.0000	0.0000	0.0000	0.0000 -56.0550	0.0000	(235c)
Electricity ((234b)m		wind turbi					0.0000	0.0000	0.0000	0.0000	0.0000		(234b)
Electricity (235b) m		hydro-elec					tity)	0.0000	0.0000	0.0000	0.0000		(235b)
Electricity (235d)m	used or net 0.0000				P (Appendix		ive if net o	generation)	0.0000	0.0000	0.0000		(235d)
Annual totals Space heating Space heating	g fuel - mai g fuel - mai	n system 2										2334.2389	(213)
Space heating	g fuel - sec	ondary										0.0000	(215)

SAP 10 Online 2.13.2 Page 6 of 7


Efficiency of water heater			79.8000	
Water heating fuel used Space cooling fuel			2731.1977 (0.0000 (
Space cooling rues			0.0000 ((221)
Electricity for pumps and fans:				
Total electricity for the above, kWh/year			86.0000 (
Electricity for lighting (calculated in Appendix L)			154.0501 ((232)
Energy saving/generation technologies (Appendices M ,N and Q)				
PV generation			-3087.7363 (,
Wind generation			0.0000 (
Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N)			0.0000 (
Appendix Q - special features			0.0000 ((233)
Energy saved or generated			-0.0000 (
Energy used			0.0000 (
Total delivered energy for all uses			2217.7504 ((238)
12a. Carbon dioxide emissions - Individual heating systems including micro-CHP				
12a. Carbon dioxide emissions - individual neating systems including micro-car				
	Energy	Emission factor	Emissions	
	kWh/year		kg CO2/year	
Space heating - main system 1 Total CO2 associated with community systems	2334.2389	0.2100	490.1902 (0.0000 (
Water heating (other fuel)	2731.1977	0.2100	573.5515 (
Space and water heating			1063.7417 ((265)
Pumps, fans and electric keep-hot	86.0000		11.9293 (
Energy for lighting	154.0501	0.1443	22.2342 ((268)
Energy saving/generation technologies				
PV Unit electricity used in dwelling	-886.5124	0.1360	-120.5277	
PV Unit electricity exported	-2201.2239	0.1266	-278.6034	
Total CO2, kg/year			-399.1311 (698.7740 (
EPC Target Carbon Dioxide Emission Rate (TER)			11.1900 (
13a. Primary energy - Individual heating systems including micro-CHP				
		Primary energy factor	Primary energy	
		kg CO2/kWh	kWh/year	
Space heating - main system 1	2334.2389		2637.6899 ((275)
Total CO2 associated with community systems			0.0000 (
Water heating (other fuel) Space and water heating	2731.1977	1.1300	3086.2534 (5723.9434 (
Pumps, fans and electric keep-hot	86.0000	1.5128	130.1008 (
Energy for lighting	154.0501		236.2871 (
Energy saving/generation technologies PV Unit electricity used in dwelling	-886.5124	1.5025	-1332.0282	
PV Unit electricity used in dwelling PV Unit electricity exported	-2201.2239		-1022.7326	
Total			-2354.7608 (
Total Primary energy kWh/year			3735.5704 (
Target Primary Energy Rate (TPER)			59.8000 ((287)

SAP 10 Online 2.13.2 Page 7 of 7

GROUND FLOOR PLAN

OXFORD MOSQUE & ISLAMIC

OXFORD MOSQUE & ISLAMIC

PROPOSED CARETAKERS DWELLING CULTURAL SOCIETY MANZ**I**L WAY

OXFORD

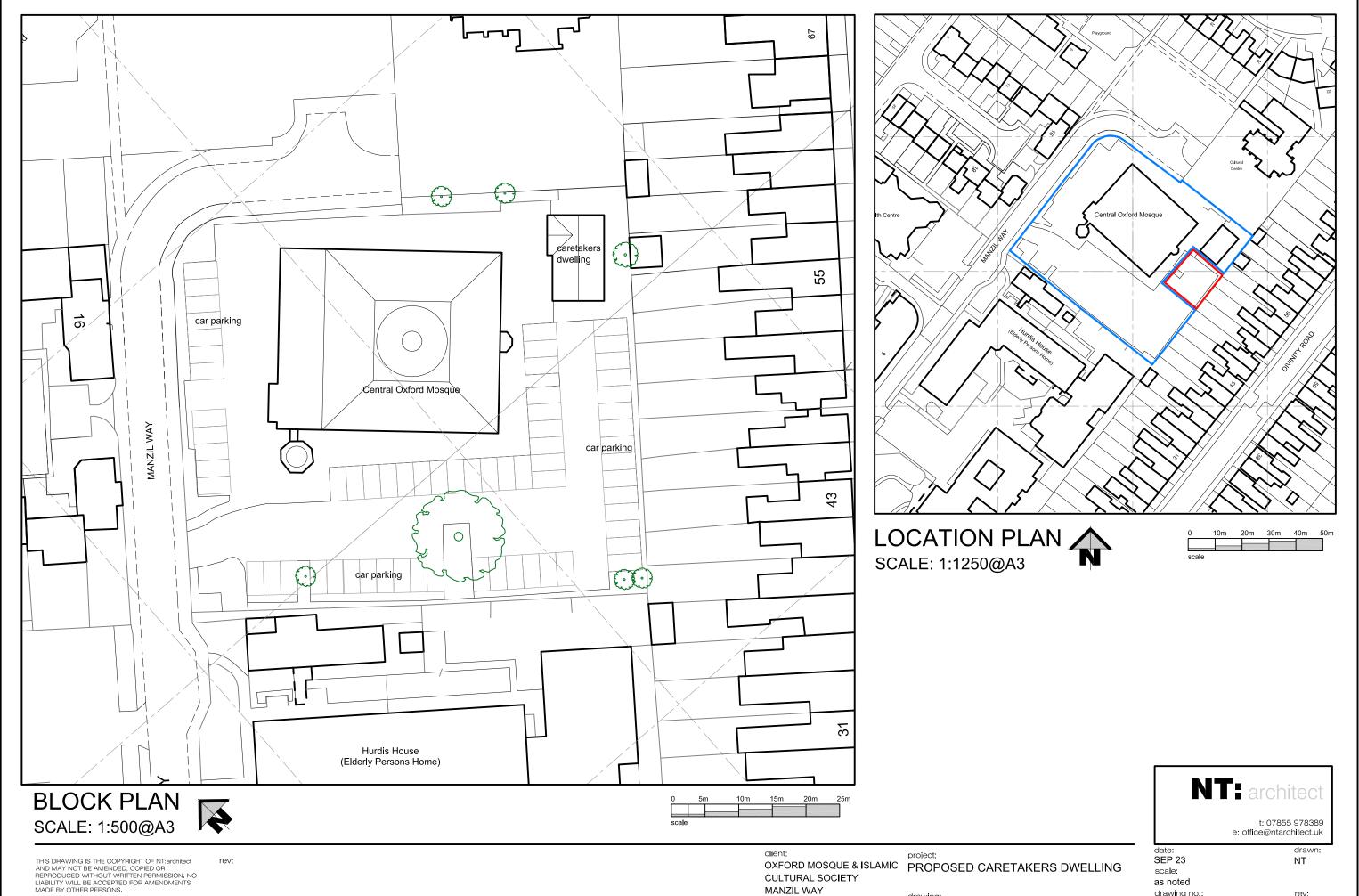
OXON, OX4 1DJ

provision):

REAR GARDEN:

drawing: PROPOSED: FLOOR PLANS & ELEVATIONS

113.5m²


(excluding cycle, bin, path and parking

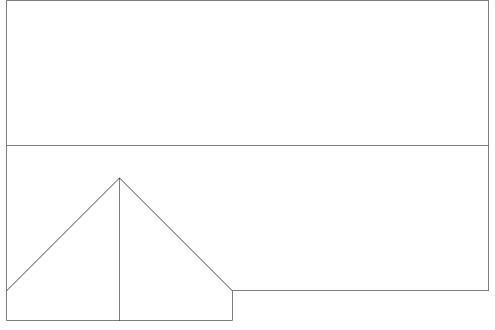
NT: architect t: 07855 978389 e: office@ntarchitect.uk

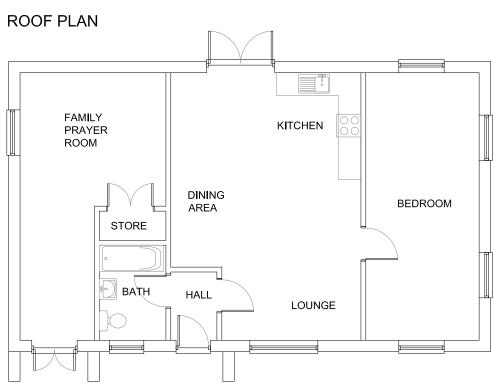
scale:

drawn: **NT** AUG 23 1:100@A2 drawing no.: 23.57 - P2.01

DO NOT SCALE OFF THE DRAWINGS.

DO NOT SCALE OFF THE DRAWINGS.


MANZIL WAY OXFORD OXON. OX4 1DJ


drawing:

EXISTING: LOCATION & BLOCK PLANS as noted

drawing no.: 23.57 - \$1.01

GROUND FLOOR PLAN

THIS DRAWING IS THE COPYRIGHT OF NT: architect AND MAY NOT BE AMENDED, COPIED OR REPRODUCED WITHOUT WRITTEN PERMISSION. NO LIABILITY WILL BE ACCEPTED FOR AMENDMENTS MADE BY OTHER PERSONS.

DO NOT SCALE OFF THE DRAWINGS.

client: OXFORD MOSQUE & ISLAMIC PROPOSED CARETAKERS DWELLING CULTURAL SOCIETY MANZIL WAY OXFORD

OXON. OX4 1DJ

drawing: **EXISTING:** FLOOR PLANS & ELEVATIONS NT: architect t: 07855 978389 e: office@ntarchitect.uk

date: drawn: AUG 23 NT scale: 1:100@A3 drawing no.: 23.57 - \$2.01 rev:

breglobal

Job no: Date: Assessor name:

Registration no:

Development name:

PR11278 19/01/2024 Iraj Maghounaki

BRE400012

Appendix F of the Energy Statement

BRE Global 2008. BRE Certification is a registered trademark owned by BRE Global and may not be used without BRE Global's written permission.

Permission is given for this tool to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out. Whilst every care is taken in preparing the Wat 1 assessment tool, BREG cannot accept responsibility for any inaccuracies or for consequential loss incurred as a result of such inaccuracies arising through the use of the Wat 1 tool.

PRINTING: before printing please make sure that in "Page Setup" you have selected the page to be as "Landscape" and that the Scale has been set up to 70% (maximum)

WATER EFFICI	ENCY CALCU	ILATOR	FOR	IEW DV	VELLIN	GS - (B	ASIC C	ALCUL.	ATOR)												
	House Type:	pe: Type 1		Type 2		Type 3		Тур	oe 4	Type 5		Type 6		Type 7		Type 8		Type 9		Type 10	
	Description:	SAN	1PLE																		
Installation Type	Unit of measure	Capacity/ flow rate	Litres/ person/ day																		
Is a dual or single flush WC specified?		Dual																			
	Full flush volume	6	8.76		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
wc	Part flush volume	3	8.88		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Taps (excluding kitchen and external taps)	Flow rate (litres / minute)	6	11.06		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Are both a Bath &	Shower Present?	Bath &	Shower																		
Bath	Capacity to overflow	155	17.05		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Shower	Flow rate (litres / minute)	8	34.96		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Kitchen sink taps	Flow rate (litres / minute)	6	13.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Has a wash	ing machine been specified?	N	О																		
Washing Machine	Litres / kg		17.16		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Has a dishwashe	r been specified?	N	0																		
Dishwasher	Litres / place setting		4.50		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Has a waste o	lisposal unit been specified?	No	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
Water Softener	Litres / person / day	0	0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00		0.00
	Calcu	lated Use	115.4		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0
	Normalisat	tion factor	0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91		0.91
Code for	Total Consun	nption	105.0		0.0		0.0		0.0		0.0	_	0.0		0.0		0.0		0.0		0.0
Sustainable Homes	Mandatory	level	Level 3/4		•						1		-		1		1		1		4
	External u	ise	5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0		5.0
Building Regulations 17.K	Total Consur	nption	110.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0		0.0
galationo 77.it	17.K Compli	ance?	Yes		-		-		-		-		-		-		-		-		-

(BASIC CALC.) 1 of 1