Mr Trevor Brook

Bretton Mill Haigh Barnsley

Flood Risk Assessment Prepared by EWE Associates Ltd Final RevA January 2024

EWE Associates Ltd 7 Waveney Close Burton Upon Stather Scunthorpe North Lincolnshire DN15 9DT t: 01724 721099 M: 07875 972270 e: lea.favill@eweassociates.com

This document has been prepared solely as a Flood Risk Assessment for Mr Trevor Brook. EWE Associates Ltd accepts no responsibility or liability for any use that is made of this document other than by the Client for the purposes for which it was originally commissioned and prepared.

CLIENT DETAILS

Mr Trevor Brook Mill Farm Bretton Mill Haigh Near Barnsley S75 4BY

CONTRACT

This report describes work commissioned by Mr Trevor Brook following instruction during December 2023. Mr Trevor Brook representative for the contract was Mr Michael Townsend. Lea Favill of EWE Associates Ltd carried out the work.

Date:	2 nd January 2024		
Prepared by:		l	Lea Favill Director

REVISION HISTORY

Draft Report Rev0 issued 20 th December 2023	
 1No copy issued to Michael Townsend 	
Final Report RevA issued 2 nd January 2024	
- 1No copy issued to Michael Townsend	

CONTENTS

1.	INTRODUCTION	5
	Terms of Reference	
	Approach to the Assessment	5
	Application of Sequential & Exceptions Test	7
2.	DETAILS OF THE SITE	8
	Site Location	8
	Site Details	
	Site Description	
	Site Photographs	9
3.	INITIAL ASSESSMENT	10
	Environment Agency Flood Map	10
	Environment Agency Reservoir Flood Map	
	Environment Agency Surface Water Flood Map	
	Past Flooding History SFRA Flooding History	
	Environment Agency Flooding History	
	Environment Agency Reservoir Flood Risk	
	Environment Agency Surface Water Flood Risk	
	Overland Flow & Ponding Groundwater Flooding	
	Sewer Flooding	
	Possible Flooding Mechanisms	
4.	FLOOD RISK ASSESSMENT	13
	Requirements of the Environment Agency	
	Increase in Surface Water Runoff due to Development	
	Existing Drainage	
	Catchment Area	
	Drainage Strategy	
	Proposed Surface Water Drainage – Pond Sustainable Urban Drainage	
_		
5.	FOUL DRAINAGE	
	Existing Foul Drainage	
	Proposed Foul Drainage	10
6.	ADOPTION & MAINTENACE	17
	Adoption & Maintenance	17
	Management Company Details	
	Construction Crate Tank Maintenance	
		17
7.	MITIGATION MEASURES	18
	Raising Floor Levels/Land Raising	
	Emergency Access & Egress	
	Control of Runoff	18
8.	CONCLUSION	19

Mr Trevor Brook Proposed Residential Dwellings Bretton Mill Haigh – Flood Risk Assessment Final Report RevA January 2024 Reference: 2023/3096

APPENDICES: APPENDIX A: -**EXISTING SITE** APPENDIX B: -MASTERPLAN APPENDIX C: -DRAINAGE STRATEGY PLAN APPENDIX D: -RUNOFF CALCULATION APPENDIX E: -WINDES CALC APPENDIX F: -CONSTRUCTION CHECKLIST APPENDIX G: -SEWER PLAN LIST OF TABLES

Table 1-1: Flood Risk Vulnerability and Flood Zone 'Compatibility'	7
Table 2-1: Location Plan	8
Table 2-2: Site Details	8
Table 4-1: SUDS Techniques	5

1. INTRODUCTION

Terms of Reference

This report was commissioned by Mr Trevor Brook to support a planning application for the construction of 4 residential dwellings within an existing farm yard refereed to as Bretton Mill within Haigh near Barnsley. The location of the site is shown on Table 2-1.

The development site lies within Zone 1 of the Environment Agency Flood Map (version 2.8.2), being the zone with risk of 1 in 1,000 year (0.1% Annual Exceedance Probability) or less for river and tidal/coastal flooding. The development site is located directly to the north of existing development and is less than 1 hectare.

It is usual for the Agency to raise an objection to development applications within the floodplain or Zone 2 or 3 of the flood map until the question of flood risk has been properly evaluated. The Agency will also object to developments where the total site area is in excess of 1 hectare until suitable consideration has been given to surface water runoff.

Approach to the Assessment

As there are two sources of flood risk – River Dearne and onsite surface water runoff – it is necessary to determine flood water levels at the site for the desired return periods emanating from these sources. Consideration has also been given to the site flooding from either overland flow or ponding of localised rainfall within the site.

Wakefield Council commissioned JBA to undertake a level 1 SFRA for the area during 2016. References have been taken from the SFRA and used within this report.

The River Dearne is located directly to the south of the site and the bank top level is at least 3m lower than the existing site. The Environment Agency flood map and surface water flood map shows the site is not within the extreme flood area. It is therefore considered that the site is outside of the extreme flood area and the risk from the River Dearne is low and no further consideration has been given to this mechanism.

The proposed development will reduce the paved and roofed area within the site from 2490m² to 1462m². The roofed or paved areas within the site are supported by formalised drainage which conveys flows to the River Dearne. The existing method of draining the site will be appraised. EWE Associates Ltd have undertaken a drainage feasibility study for the proposed development.

A walk over of the site was conducted by Mr Lea Favill, a senior river engineer during December 2023; during the visit a photograph survey of the site was undertaken.

The requirements for flood risk assessments are generally as set out in National Planning Policy Framework (NPPF). The detail and complexity of the study required should be appropriate to the scale and potential impact of the development. For the purposes of this study, the following have been considered: -

- Available information on historical flooding in the area.

- Site level information.

- Details of structures, which may influence hydraulics of the watercourse and consideration of the effect of blockage of structures.
- Estimates of design levels, equivalent to a 200-year (coastal/tidal) and a 100-year (fluvial) return period flood event.
- Allowances for increased flows resulting from the effects of climate change.
- Allowances for sea level rise resulting from the effects of climate change.

Assess the existing runoff characteristics and the potential impact the proposed development will have on the runoff.

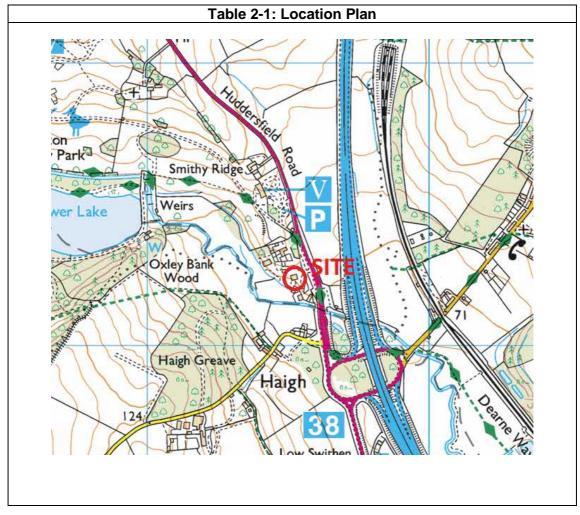
Further guidance is also provided in the CIRIA Research Project 624 "Development and Flood Risk: Guidance for the Construction Industry".

Application of Sequential & Exceptions Test

The development site lies within Zone 1 of the Environment Agency Flood Map (version 2.8.2), being the zone with risk of 1 in 1,000 year (0.1% AEP) or less for river and tidal/coastal flooding. The proposed development is residential, as such considered to be more vulnerable.

Flood Vulner classif		Essential Infrastructur e	Water compatible	Highly Vulnerable	More Vulnerable	Less Vulnerable
Floo d Zone	Zone 1					
20110	Zone 2			Exception Test required		
	Zone 3a	Exception Test required		×	Exception Test required	
	Zone 3b	Exception Test required		×	×	×

Table 1-1: Flood Risk Vulnerability and Flood Zone 'Compatibility'


Development is appropriate

× Development should not be permitted

It is considered therefore, that a sequential test and exceptions test will not be required for this development project.

2. DETAILS OF THE SITE

Site Location

Site Details

Table 2-2:	Site Details
Site Name	Bretton Mill Haigh
Existing Land Use	Agricultural Buildings/Yard
Proposed Development	Residential
Grid Reference	SE 29520 12240
County	South Yorkshire
Local Planning Authority	Wakefield Council
Internal Drainage Board	Not Applicable
Others	Not Applicable
Post Code	S75 4BY

EWE Associates Ltd 7 Waveney Close, Burton Upon Stather, Scunthorpe, North Lincolnshire, DN15 9DT T: 07875 972270

Site Description

The proposed development site is currently agricultural yard with several buildings. The existing buildings and paved areas within the site are formally drained to the River Dearne. An aerial photograph of the existing site is provided below.

The total site covers an area of 3200m². The existing roofed and paved area has been estimated at 2490m². The land within the site boundary lies at a level of between 73mOD up to 76mOD.

The site is located within the centre of Haigh which is to the north west of Barnsley and to the south west of Wakefield. There is existing development to all sides of the proposed development site and Huddersfield Road is to the east.

The proposal is to provide 4 residential dwellings which includes parking areas and an access road. The impermeable area within the proposed development site has been estimated at 1462m² and includes roofed areas and access roads. The proposed masterplan is provided at Appendix B of this report.

Site Photographs

3. INITIAL ASSESSMENT

Environment Agency Flood Map

Environment Agency Reservoir Flood Map

🔵 when river levels are normal 🥘 when there is also flooding from rivers \, 🕀 Location you selected

Environment Agency Surface Water Flood Map

High Medium Low Very Low Cocation you selected

Past Flooding History

A search on the British Hydrological Society Chronology of British Hydrological Events website¹ found no records of past flooding within the site.

Undertaking an internet-based search for flooding in the area provided no further information.

SFRA Flooding History

The SFRA contained no references to the site being flooded.

Environment Agency Flooding History

The Environment Agency provided no further information.

Environment Agency Reservoir Flood Risk

The Environment Agency reservoir risk map shows that the site to be located just outside an area which could be affected by a reservoir failure. However, if the failure occurs during an extreme event within the River Dearne the site could be affected. The area appears to be at risk from the Lower Lake which is to the west utilising the River Dearne as a flood route conduit to the site. The reservoir flood map shows the consequences of a full breach of the dam structure with the reservoir at full capacity, as such a worst-case scenario. However, the flood maps do not consider the

EWE Associates Ltd

7 Waveney Close, Burton Upon Stather, Scunthorpe, North Lincolnshire, DN15 9DT T: 07875 972270

¹ <u>http://www.dundee.ac.uk/geography/cbhe/</u>

probability of such a failure. Following discussions with Yorkshire Water who are responsible for reservoirs it was commented that the probability of failure is low as the reservoir is inspected and maintained in accordance with the Reservoirs Act. As such the dam is regularly inspected for defects and any necessary works undertaken prior to a failure. As such the probability of a failure is extremely low.

Environment Agency Surface Water Flood Risk

The Environment Agency surface water risk map that the site is within a very low risk area. There is some shallow ponding within the River Dearne to the south, however, this will not impact on the proposed development.

Overland Flow & Ponding

There is higher ground to the north which is likely to flood route towards the site into the watercourse to the south. There are no depressed areas within the site which could encourage ponding, therefore, this flood mechanism has not been considered further.

Groundwater Flooding

Information on groundwater flooding is limited within the area. The SFRA makes no comment regards the potential for ground water flooding in the district. The site is underlain with permeable soils allowing good infiltration. As such, the risk of high ground water levels are considered to be low.

Sewer Flooding

Yorkshire Water is the statutory water undertaker and is responsible for the public sewer systems within the area. Yorkshire Water maintains a register of historical sewer flooding events (DG5 Register) within the area. There are no reported incidents close to the site. The SFRA provided no further information.

Possible Flooding Mechanisms

As there is a single remaining source of flood risk – onsite runoff– it is necessary to determine flood water levels at the site for the desired return periods emanating from this source.

The proposed development will reduce the impermeable area within the site; however, consideration will need to be given to the existing drainage route and the drainage characteristics in order to evaluate the impact that surface water runoff from the site will have on the site and elsewhere.

4. FLOOD RISK ASSESSMENT

Requirements of the Environment Agency

The Environment Agency, as part of its development control procedures, generally require finished floor levels to be set above the 1% AEP plus climate change flood water level at the site. The development is residential in nature, as such, it is considered that access and egress from the development site will be essential during times of extreme floods.

Increase in Surface Water Runoff due to Development

Existing Drainage

The existing site is approximately 3200m² in area and is agricultural yard and buildings that appears to be supported by any formalised drainage which discharges to the adjacent River Dearne. The existing buildings and paved areas within the site equate to 2490m².

There is a disused mill race which runs through the site and the River Dearne to the south. There are no surface water or combined sewer within close proximity of the site either.

Based on previous work in the area and the soil maps the site is assumed to be of a low permeability as such infiltration drainage is unlikely to be a practical option for the development. Using the Modified Rational brownfield runoff estimation method a 1 year runoff rate of 28.6l/s has been estimated. The calculation sheet is provided at Appendix D of this report. Adopting a 30% reduction for betterment provides a discharge restriction of 20l/s.

Catchment Area

The catchment area was calculated from proposed layout drawing provide by the architect. The total impermeable area has been estimated at 1462m².

Drainage Strategy

The proposed drainage strategy is as follows and is illustrated on the drainage layout drawing provided at Appendix C of this report.

Individual parking areas and access roads will be supported by shallow permeable paving which will be connected to a tradition piped system. The piped drainage will discharge into a crate tank located within the lower part of the site with a discharge to the adjacent River Dearne. All attenuation systems will be designed up to and including 1 in 100 year plus climate change 40% event.

All roof drainage will be linked into the adjacent drainage system.

Proposed Surface Water Drainage – Pond

The dwellings, parking areas and access road will have a total impermeable area of 1462m². The surface water drainage will discharge into a 0.8m deep crate tank. Primary water quality treatment will be provided within the permeable paving.

An assessment of the required balance volume for the areas has been made using the estimated post development impermeable areas for each of the sub catchments. Using WinDes Source Control software developed by Microdrainage the required attenuation has been calculated for the 1 in 100 year plus climate change (40%) event based on a discharge rate of 20l/s.

The outputs from calculations using the WinDes Source Control Software developed by Micro Drainage is provided at Appendix E of this report.

Table 2-1: Size of Infiltration Devices for 100yr+CC40% event

Area	Size of storage Device (m)
Dwellings and access road -	Crate tank 52m2 by 0.8m deep Peak
Maximum drained area = 1462m ²	volume of 44.1m3 required

Sustainable Urban Drainage

The Environment Agency requires that adequate pollution control is incorporated into the proposed drainage system in order to prevent deterioration of the quality of the water environment. However, this is only applicable for surface water originating from access roads and communal parking areas, which needs to be passed through a petrol/oil interceptor or equivalent system prior to discharge into the existing surface water sewer or infiltration system. It is noted however, that this will not apply to surface water originating from roof drainage.

To reduce the impact of surface water runoff from the development in accordance with the requirements of the Environment Agency and Local Authority, the employment of SUDS techniques to limit runoff volumes and rates from the site are recommended. SUDS techniques can also be used to provide an appropriate level of treatment to the runoff.

It is normal practice to ensure that the 1 in 30 year event is maintained within the drainage system and the 1 in 100 year is permitted to flood the surface as long as there is no flooding to buildings and the flood volume is contained within the site boundary in specific areas proposed for this purpose.

The following section will provide some possible SUDS techniques which could be employed on the site to balance flows in excess of the 1 in 30 year event. SUDS techniques will also provide treatment to the runoff to remove a proportion of the pollution and protect the quality of the downstream watercourses. Following guidance from CIRIA Report C522 the following levels of treatment will be provided:

- Roofs 1 level
- Driveways 1 level

• Roads and communal parking areas – 2 levels.

The level of treatment indicates the number of SUDS techniques that will be used to treat pollution. For example if two levels are required the runoff may enter a filter drain that leads to a basin or pond before outfall. It is recommended that source control techniques are used. In practice there will be little outflow from these techniques for a 1 in 2 year storm as most of the rainfall will be held within the system and will disperse via evapotranspiration. Further detail of the potential to use SUDS within this site it provided overleaf within Table 4-1. The precise combination of methods used will be dependent upon the site constraints identified at the final design stage.

Initial data suggests that the site is underlain by an impermeable layer which is unlikely to allow infiltration at a reasonable rate therefore making infiltration drainage impractical.

The impermeable area within the site has been estimated at 1462m² following development. It is considered that the site currently drains to the River Dearne to the south.

The development site is considered to be small with limited space set aside, in which to incorporate appropriate SUDs techniques. As such, the following SUDS techniques shown below in Table 4-1 have been considered for use at this site.

SUDs Group	Suitability for Proposed Development
Retention	×
Wetland	×
Infiltration	×
Filtration	×
Detention	×
Open Channel	×
Source Control	Permeable paving to parking and access roads

Table 4-1: SUDS Techniques

5. FOUL DRAINAGE

Existing Foul Drainage

There are no foul sewers within the development site or close by which are accessible. Adjacent developments use septic tanks and package treatment plants with outfalls to the adjacent river. The sewer plan is provided at Appendix G.

Proposed Foul Drainage

Consideration should be given to a package treatment plant with a discharge to the watercourse.

6. ADOPTION & MAINTENACE

Adoption & Maintenance

The piped drainage system, crate tank and permeable paving within the site will be the responsibility of the private land owner.

Management Company Details

Mr Trevor Brook

Construction

The Proposed drainage system is simple in design however, its construction is essential to ensure that the system functions as it has been designed. As such it is recommended that construction inspection check list is adopted during the construction phase of the works to ensure that the drainage system is correctly installed. The inspection checklist is provided at Appendix F of this report and has been taken from the CIRIA Sustainable Drainage Systems Manual.

Crate Tank Maintenance

Following construction regular inspection is recommended. The main concern is to reduce the level of siltation and vegetation within the bed of the tank. It is recommended that this tank is inspected on a 6 monthly basis and the tank is cleared once a year. A log book should be completed which will show the inspection and maintenance history of the system. The log book, site plan and construction check list should form maintenance manual for the system.

The maintenance plan has been tabulated below and will be the responsibility of the appointed management company.

Maintenance Schedule	Required action	Frequency
Monitoring	Inspect tank for debris, siltation and vegetation build-up.	6 Monthly
	Inspect outlet structures	6 monthly
	Inspect tank for deformation	6 monthly
Regular	Debris removal from tank bed and manholes	6 Monthly
Maintenance	Remove silt and vegetation from tank	12 Monthly
Occasional Maintenance	Repairs to manholes and tank	12 monthly
Remedial actions	Repair deformation of topsoil once settlement stopped	As required
	Repair deformation of areas adjacent to manholes once settlement stopped	As required

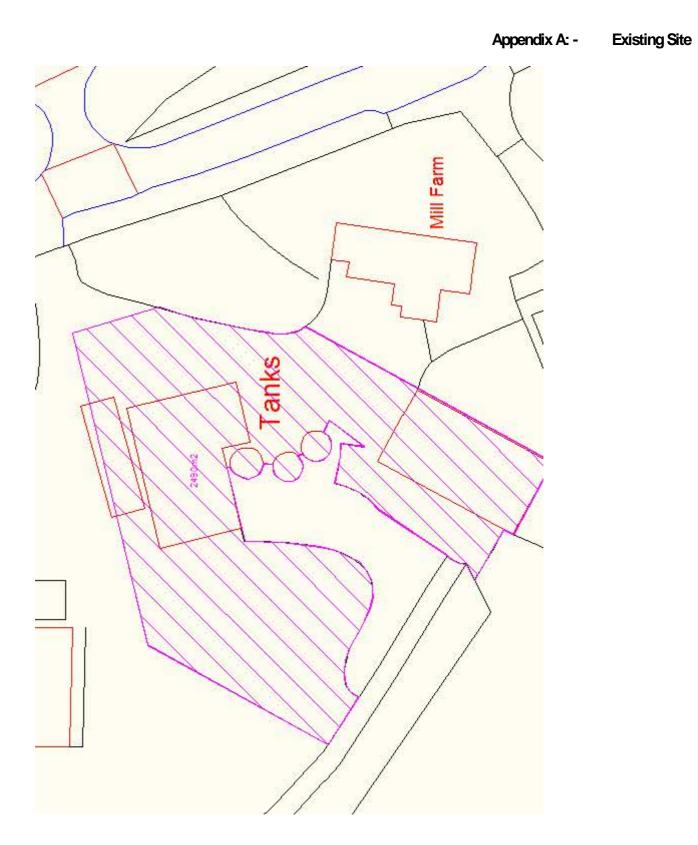
7. MITIGATION MEASURES

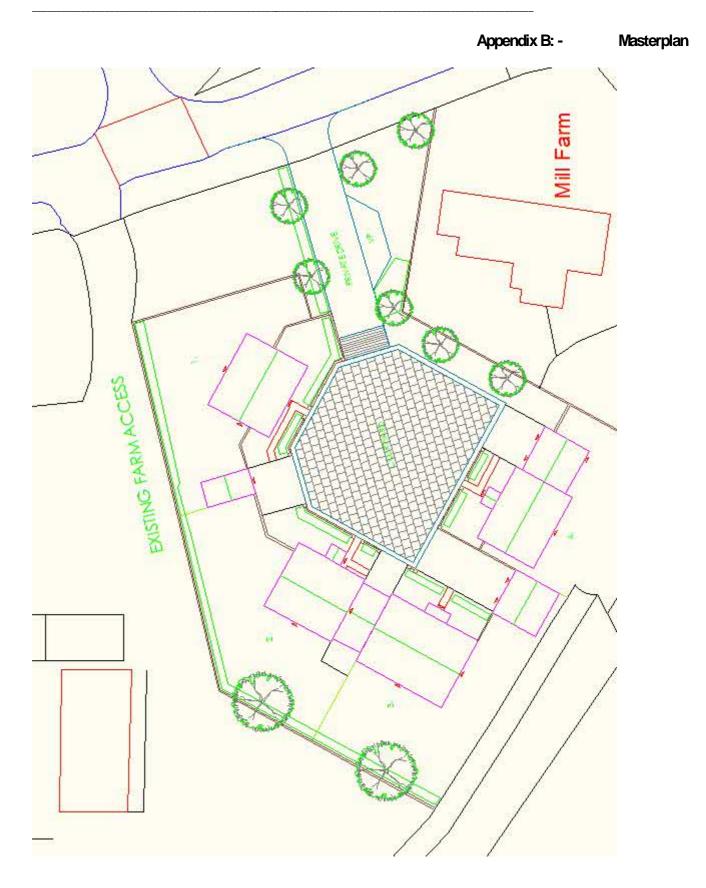
Raising Floor Levels/Land Raising

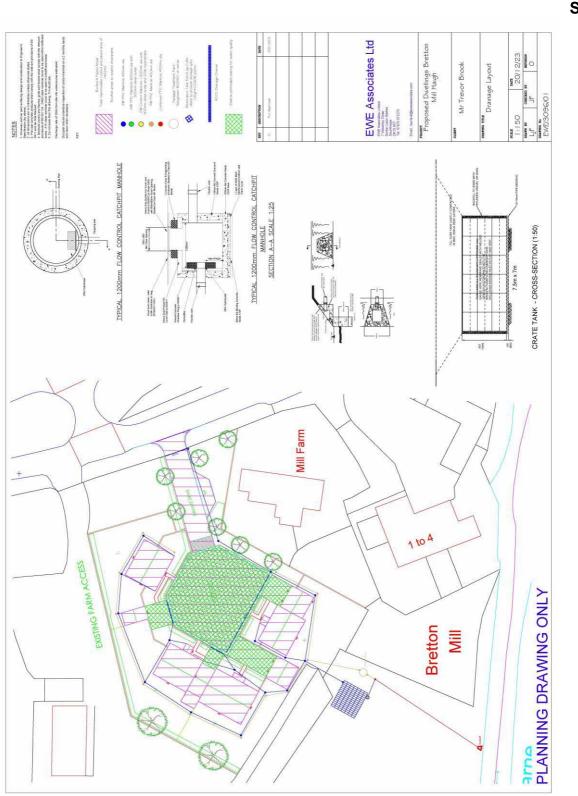
The flood risk from tidal, fluvial, and ordinary watercourses is considered to be low. Ground floor levels of any buildings should be elevated a minimum of 150mm above the external ground level to reduce risk of localised flooding.

Emergency Access & Egress

It is considered that dry access and egress will be available at all times from the development.


Control of Runoff


Consideration has been given to the hierarchy for surface water disposal which recommends the SUDs approach which includes infiltration as the first tier. At this stage it is considered that infiltration drainage is not a practical solution therefore a discharge to the watercourse is required.


It is considered that following the development there will be a reduction in impermeable area and subsequently runoff from the site will also be reduced to approximately 1462m². The proposal includes a crate tank and restricted discharge to the watercourse of 20l/s.

8. CONCLUSION

It is concluded that there is a low risk of flooding from fluvial sources. A SUDs based drainage strategy has been developed which ensures that onsite runoff is treated and control in the appropriate manner.

Drainage Strategy Plan

Appendix C: -

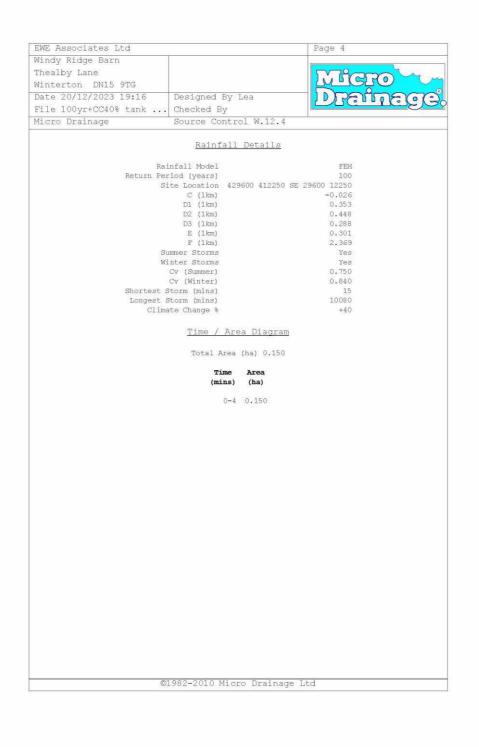
Appendix D: -

Runoff Calculation

Modified Rational N	ieruoa		Post Development	Return Period	flood Rainfall	1	years vears		
_ength (m)	76	Im	Rainfall Duration	Rainfall Duration		Effective	Rainfall Intensity	110-00-00-00-00-00-00-00-00-00-00-00-00-	FLOW
Area (ha)	0.249	Ha	(hours)	(days)	(mm)	Depth (mm)	(mm/hr)	FLOW (I/s)	(l/s/ha
lax Height	76.0	mAOD	0.15	0.006	6.1	6.2	40.7	28.6	114.7
lin Height	73.0	mAOD	0.25	0.010	6.24	6.3	25.0	17.5	70.4
eltaH	3.0		0.5	0.021	8.28	8.4	16.6	11.6	46.7
lope (%)	3.95		0.75	0.031	9.75	9.9	13.0	9,1	36.7
e (mins)	9.09	mins	1	0.042	10.95	11.1	11.0	7.7	30.9
RF	0.998		1.25	0.052	11.98	12.2	9.6	6.7	27.0
AAR	648.000	mm	1.5	0.063	12.88	13.1	8.6	6.0	24.2
ICWI	75	mm	1.75	0.073	13.7	13.9	7.8	55	22.1
IMP	100.0	%	2	0.083	14.45	14.7	7.2	5.1	20.4
OIL	0.40	100	2.25	0.094	15.15	15.4	6.7	47	19.0
ercentage Runoff PR	78.05		2.5	0.104	15.8	16.0	6.3	4.4	17.8
EEPSTOR	0.37		2.75	0.115	16.41	16.7	6.0	42	16.8
EEFSTOR	10.02	1	3	0.125	16.99	17.2	5.7	4.0	16.0
			3.25	0.125	17.54	17.2	5.4	3.8	15.2
	0.7007								
v	0.7805		3.5	0.146	18.06	18.3	5.2	3.6	14.6
ir 🦾	1.3		3.75	0.156	18.56	18.8	4.9	3.5	14.0
rowable outflow			4	0.167	19.05	19.3	4.8	3.3	13.4
year	28.56	Vs.	4.25	0.177	19.51	19.8	4.6	3.2	12.9
							0.0760		
Aodified Rational N	letnoa			Return Period	flood	30	years		
		- Co.	Post Development		Rainfall	50	years		
ength (m)	76	m	Rainfall Duration	Rainfall Duration		Effective	Rainfall Intensity	FLOW (I/s)	FLOW
rea (ha)	0.249	На	(hours)	(days)	(mm)	Depth (mm)	(mm/hr)	ALCONDUCTION OF	(l/s/ha
lax Height	76.0	mAOD	0.15	0.006	20.4	21.2	136.0	95.5	383.6
lin Height	73.0	mAOD	0.25	0.010	21.23	21.5	84.9	59.6	239.5
eltaH	3.0		0.5	0.021	26.37	26.8	52.7	37.0	148.8
lope (%)	3,95		0.75	0.031	29.88	30.3	39.8	28.0	112.4
e (mins)	9.09	mins	1	0.042	32.65	33.1	32.7	22.9	92.1
RF	0.998		1.25	0.052	34.95	35.5	28.0	19.6	78.9
AAR	648.000	mm	1.5	0.063	36.95	37.5	24.6	17.3	69.5
ICWI	75	mm	1.75	0.073	38.73	39.3	22.1	15.5	62.4
IMP	100.0	%	2	0.083	40.33	40.9	20.2	14.2	56.9
OIL	0.40	1001.0	2.25	0.094	41.8	42.4	18.6	13.0	52.4
ercentage Runoff PR	78.05		2.5	0.104	43.16	43.8	17.3	12.1	48.7
EEPSTOR	0.37		2.75	0.115	44.42	45.1	16.2	11.3	45.6
	-		3	0 125	45.61	46.3	15.2	10.7	42.9
			3.25	0.135	46.73	47.4	14.4	10.1	40.6
ev.	0.7805	1	3.5	0.146	47.79	48.5	13.7	9.6	38.5
r	13	1	3.75	0.156	48,79	49.5	13.0	9.1	36.7
Wentership or different	1.0	1	4	0.167	49.75	50.5	12.4	8.7	35.1
nowable outflow	05.50	V/s	4.25		50.67	50.5	12.4	8.4	33.6
10 year	95.52	₩S	4.25	0.177	50.67	51.4	11.9	8.4	33.6
Aodified Rational M	lethod			Return Period	flood	100	vears		
			Post Development		Rainfall	140	years		
ength (m)	76	m	Rainfall Duration	Rainfall Duration	Rainfall Depth	Effective	Rainfall Intensity	FLOW (I/s)	FLOW
rea (ha)	0.249	Ha	(hours)	(days)	(mm)	Depth (mm)	(mm/hr)	PLOW (US)	(l/s/ha
lax Height	76.0	mAOD	0.15	0.006	29.2	29.6	194.7	136.7	549.1
lin Height	73.0	mAOD	0.25	0.010	35.2	35.7	140.8	98.9	397.2
eltaH	3.0		0.5	0.021	37.03	37.6	74.1	52.0	208.9
lope (%)	3.95	1	0.75	0.031	41.49	42.1	55.3	38.9	156.0
e (mins)	9.09	mins	1	0.042	44.97	45.6	45.0	31.6	126.8
RF	0.998		1.25	0.052	47.84	48.5	38.3	26.9	108.0
AAR	648.000	mm	1.5	0.063	50.32	51.1	33.5	23.6	94.6
	75	mm	1.75	0.073	52.52	53.3	30.0	21.1	84.7
			2	0.083	54.49	55.3	27.2	19.1	76.9
CWI	100.0	%							
ICWI IMP		%		0.094	56.29	5/1		17.6	70.6
ICWI IMP OIL	100.0 0.40	%	2.25	0.094	56.29 57.94	57.1 58.8	25.0	17.6	70.6
ICWI IMP IOIL Iercentage Runoff PR	100.0 0.40 78.05	%	2.25 2.5	0.104	57.94	58.8	23.2	16.3	65.4
ICWI IMP OIL ercentage Runoff PR	100.0 0.40	%	2.25 2.5 2.75	0.104 0.115	57.94 59.48	58.8 60.4	23.2 21.6	16.3 15.2	65.4 61.0
ICWI IMP IOIL Iercentage Runoff PR	100.0 0.40 78.05	%	2.25 2.5 2.75 3	0.104 0.115 0.125	57.94 59.48 60.92	58.8 60.4 61.8	23.2 21.6 20.3	16.3 15.2 14.3	65.4 61.0 57.3
ICWI IMP OIL ercentage Runoff PR EEPSTOR	100.0 0.40 78.05 0.37	%	2.25 2.5 2.75 3 3.25	0.104 0.115 0.125 0.135	57.94 59.48 60.92 62.27	58.8 60.4 61.8 63.2	23.2 21.6 20.3 19.2	16.3 15.2 14.3 13.5	65.4 61.0 57.3 54.0
UCWI PIMP SOIL Percentage Runoff PR DEEPSTOR	100.0 0.40 78.05	%	2.25 2.5 2.75 3	0.104 0.115 0.125	57.94 59.48 60.92	58.8 60.4 61.8	23.2 21.6 20.3	16.3 15.2 14.3	65.4 61.0 57.3

73 ¥s

4 4.25


65.92 67.02

Max	Image: Constraint of the second sec	Check Court Ilts Max epth (m) .781 .788 .742 .611 .471 .351 .253	for 10 for 10 Drain Ti Ma Infilt: (1/	rol W.1 00 year me: 24 x ration (<u>Return</u> minutes. Max	Max E Outflow (1/s) 17.1	Max	Status	2 20
Max mmary of Maxe (m) mmer 72.18 mmer 72.18 mmer 72.19 mmer 71.65 mmer 71.55 mmer 71.55 mmer 71.55 mmer 71.55	Image: Constraint of the second sec	Check Court Ilts Max epth (m) .781 .788 .742 .611 .471 .351 .253	ced By for 10 Drain Ti Ma Infilt: (1/	crol W.2 00 year me: 24 x ration ((s) 0.0 0.0	Return minutes. Max Control (1/s) 17.1	Max E Outflow (1/s) 17.1	Max Volume (m³)	Status	
Max mmary of Maxe (m) mmer 72.18 mmer 72.18 mmer 72.19 mmer 71.65 mmer 71.55 mmer 71.55 mmer 71.55 mmer 71.55	Image: Constraint of the second sec	Check Court Ilts Max epth (m) .781 .788 .742 .611 .471 .351 .253	ced By for 10 Drain Ti Ma Infilt: (1/	crol W.2 00 year me: 24 x ration ((s) 0.0 0.0	Return minutes. Max Control (1/s) 17.1	Max E Outflow (1/s) 17.1	Max Volume (m³)	Status	
Max mmary of Maxe (m) mmer 72.18 mmer 72.18 mmer 72.19 mmer 71.65 mmer 71.55 mmer 71.55 mmer 71.55 mmer 71.55	Image: Constraint of the second sec	Check Court Ilts Max epth (m) .781 .788 .742 .611 .471 .351 .253	ced By for 10 Drain Ti Ma Infilt: (1/	crol W.2 00 year me: 24 x ration ((s) 0.0 0.0	Return minutes. Max Control (1/s) 17.1	Max E Outflow (1/s) 17.1	Max Volume (m³)	Status	20
Max Max Leve (m) mmer 72.16 mmer 72.16 mmer 72.10 mmer 71.66 mmer 71.65 mmer 71.55 mmer 71.55 mmer 71.55 mmer 71.55	Image: Constraint of the second sec	Check Court Ilts Max epth (m) .781 .788 .742 .611 .471 .351 .253	ced By for 10 Drain Ti Ma Infilt: (1/	crol W.2 00 year me: 24 x ration ((s) 0.0 0.0	Return minutes. Max Control (1/s) 17.1	Max E Outflow (1/s) 17.1	Max Volume (m³)	Status	
Max Leve (n) nmer 72.14 nmer 72.14 nmer 72.14 nmer 72.10 nmer 71.65 nmer 71.55 nmer 71.55 mmer 71.55 mmer 71.55	S Resu H 1 D 31 0 31 0 12 0 11 0 0 11 0 0 11 0 0 12 0 11 0 0 12 0 11 0 0 12 0 11 0 0 12 0 11 0 0 12 0 11 0 0 12 0 10 0 12 0 10 1	Lilts Lalf 1 Max epth (m) .781 .788 .742 .611 .471 .351 .253	for 10 for 10 Drain Ti Ma Infilt: (1/	00 year me: 24 x ration ('s) 0.0 0.0	Return minutes. Max Control (1/s) 17.1	Max E Outflow (1/s) 17.1	Max Volume (m³)		
Max Leve (m) nmer 72.18 nmer 72.19 nmer 72.19 nmer 72.01 nmer 71.61 nmer 71.65 nmer 71.55 nmer 71.55 nmer 71.55	H 1 De 31 0 31 0 38 0 38 0 38 0 38 0 31 0 51 0 51 0 51 0 51 0 51 0 51 0 51 0 5	11ts Max epth (m) .781 .788 .742 .611 .471 .351 .253	for 10 Drain Ti Ma Infilt: (1/	00 year me: 24 x ration ('s) 0.0 0.0	Return minutes. Max Control (1/s) 17.1	Max E Outflow (1/s) 17.1	Max Volume (m³)		
Max Leve (m) nmer 72.18 nmer 72.19 nmer 72.19 nmer 72.01 nmer 71.61 nmer 71.65 nmer 71.55 nmer 71.55 nmer 71.55	H 1 D 31 0 38 0 42 0 41 0 51 0 53 0 14 0 51 0 53 0 14 0 51 0 53 0	Max epth (m) .781 .788 .742 .611 .471 .351 .253	Drain Ti Ma Infilt: (1/	me : 24 x ration ('s) 0.0 0.0	minutes. Max Control (1/s) 17.1	Max E Outflow (1/s) 17.1	Max Volume (m³)		
Leve (m) nmer 72.14 nmer 72.14 nmer 72.14 nmer 72.05 nmer 71.65 nmer 71.65 nmer 71.55 nmer 71.55 nmer 71.55	1 0 31 0 38 0 12 0 11 0 51 0 53 0 14 0 31 0 53 0 14 0 31 0 53 0 14 0 51 0 53 0 14 0 53 0 15 0 16 0 17 0 18 0 19 0 10 0 1	Max epth (m) .781 .788 .742 .611 .471 .351 .253	Ma Infilt: (1/	x ration ('s) 0.0 0.0	Max Control (1/s) 17.1	Max E Outflow (1/s) 17.1	Volume (m ³)		
Leve (m) nmer 72.14 nmer 72.14 nmer 72.14 nmer 72.05 nmer 71.65 nmer 71.65 nmer 71.55 nmer 71.55 nmer 71.55	31 0 38 0 42 0 41 0 71 0 51 0 53 0 14 0 31 0 75 0	epth (m) .781 .788 .742 .611 .471 .351 .253	Infilt: (1/	ration ('s) 0.0 0.0	Control (1/s) 17.1	Σ Outflow (1/s) 17.1	Volume (m ³)		
(m) numer 72.11 numer 72.12 numer 72.14 numer 72.02 numer 71.02 numer 71.02 numer 71.65 numer 71.55 numer 71.55 numer 71.55	31 0 38 0 42 0 41 0 51 0 53 0 14 0 31 0 75 0	(m) .781 .788 .742 .611 .471 .351 .253	(1/	(s) 0.0 0.0	(1/s) 17.1	(1/s) 17.1	(m³)	OF	
nmer 72.11 nmer 72.10 nmer 72.10 nmer 72.00 nmer 71.60 nmer 71.60 nmer 71.60 nmer 71.50 nmer 71.55 nmer 71.55 nmer 71.55	31 0 38 0 42 0 41 0 51 0 53 0 44 0 91 0 75 0	.781 .788 .742 .611 .471 .351 .253		0.0	17.1	17.1		0 2	
nmer 72.10 nmer 72.00 nmer 72.00 nmer 71.00 nmer 71.00 nmer 71.00 nmer 71.00 nmer 71.50 nmer 71.50 nmer 71.50 nmer 71.50 nmer 71.50	38 0 12 0 11 0 51 0 53 0 14 0 31 0 32 0 33 0	.788 .742 .611 .471 .351 .253		0.0			38.6	OK	
nmer 72.14 nmer 72.03 nmer 71.87 nmer 71.75 nmer 71.65 nmer 71.65 nmer 71.55 nmer 71.55 nmer 71.55	42 0 11 0 71 0 51 0 53 0 14 0 91 0 75 0	.742 .611 .471 .351 .253			17.1				
nmer 72.00 nmer 71.07 nmer 71.67 nmer 71.66 nmer 71.65 nmer 71.55 nmer 71.55 nmer 71.55 nmer 71.55	L1 0 71 0 51 0 53 0 L4 0 91 0 75 0	.611 .471 .351 .253		0.0		17.1		ΟK	
nmer 71.8° nmer 71.65 nmer 71.65 nmer 71.65 nmer 71.55 nmer 71.55 nmer 71.55 nmer 71.55	71 0 51 0 53 0 14 0 91 0 75 0	.471 .351 .253			17.1	17.1		ОК	
nmer 71.75 nmer 71.65 nmer 71.65 nmer 71.55 nmer 71.55 nmer 71.55 nmer 71.55 nmer 71.55	51 0 53 0 14 0 91 0 75 0	.351 .253		0.0	17.0	17.0		ΟK	
nmer 71.65 nmer 71.65 nmer 71.57 nmer 71.57 nmer 71.55 nmer 71.53 nmer 71.53	53 0 L4 0 91 0 75 0	.253		0.0	17.1	17.1		OK	
nmer 71.63 nmer 71.55 nmer 71.55 nmer 71.55 nmer 71.53 nmer 71.53	L4 0 91 0 75 0			0.0	17.1	17.1	17.4	OK	
nmer 71.59 nmer 71.57 nmer 71.55 nmer 71.53 nmer 71.53	91 0 75 0	· Z14		0.0	16.0	16.0	12.5 10.6	0 K	
nmer 71.57 nmer 71.55 nmer 71.53 nmer 71.53	75 0			0.0	13.7	13.7 11.9			
nmer 71.55 nmer 71.53 nmer 71.53				0.0	11.9 10.5				
nmer 71.53 nmer 71.53				0.0	8.8				
nmer 71.53				0.0	6.8				
				0.0	5.2				
				0.0	4.3	4.3	5.2		
nmer 71.49				0.0	3.1				
nmer 71.48				0.0	2.4				
nmer 71.4				0.0	2.0				
nmer 71.40				0.0	1.7				
		sto	rm	Rain	Time-H	eak			
		Eve	nt	(mm/hr)	(min	s)			
	15	min	Summer	172.925		16			
						26			
						42			
						10000			
						2872			
	8640	min	Summer	1.406	4	376			
		30 60 120 240 360 600 720 960 2160 2880 4320 5760 7200	30 min 60 min 120 min 180 min 240 min 360 min 480 min 720 min 960 min 1440 min 2160 min 2880 min 4320 min 5760 min 7200 min	30 min Summer 60 min Summer 120 min Summer 240 min Summer 240 min Summer 480 min Summer 600 min Summer 720 min Summer 1440 min Summer 2160 min Summer 2880 min Summer 4320 min Summer 5760 min Summer	30 min Summer 101.645 60 min Summer 59.747 120 min Summer 35.119 180 min Summer 25.737 240 min Summer 25.737 240 min Summer 20.643 360 min Summer 15.128 480 min Summer 15.128 400 min Summer 15.128 600 min Summer 10.226 720 min Summer 7.330 1440 min Summer 5.583 2160 min Summer 3.505 4320 min Summer 3.505 4320 min Summer 1.965 7200 min Summer 1.962 5760 min Summer 1.963 7200 min Summer 1.963	240 min Summer 20.643 360 min Summer 15.128 480 min Summer 10.226 720 min Summer 10.226 720 min Summer 8.892 960 min Summer 7.330 1440 min Summer 5.583 2160 min Summer 4.252 1 2880 min Summer 3.505 1 4320 min Summer 1.969 2 5760 min Summer 1.969 2	30 min Summer 101.645 26 60 min Summer 59.747 42 120 min Summer 55.119 76 180 min Summer 25.737 108 240 min Summer 25.737 108 240 min Summer 15.128 190 480 min Summer 12.134 248 600 min Summer 10.226 308 720 min Summer 7.330 490 1440 min Summer 5.583 734 2160 min Summer 3.505 1460 4320 min Summer 2.502 2192 5760 min Summer 2.502 2192 5760 min Summer 1.969 2872 7200 min Summer 1.636 3664	30 min Summer 101.645 26 60 min Summer 59.747 42 120 min Summer 55.119 76 180 min Summer 25.737 108 240 min Summer 25.737 108 240 min Summer 15.128 190 480 min Summer 12.134 248 600 min Summer 10.226 308 720 min Summer 8.892 368 960 min Summer 7.330 490 1440 min Summer 5.583 734 2160 min Summer 3.505 1460 4320 min Summer 3.505 1460 4320 min Summer 1.969 2872 7200 min Summer 1.636 3664	30 min Summer 101.645 26 60 min Summer 59.747 42 120 min Summer 55.119 76 180 min Summer 25.737 108 240 min Summer 25.737 108 240 min Summer 12.134 134 360 min Summer 12.134 248 600 min Summer 10.226 308 720 min Summer 7.330 490 1440 min Summer 5.583 734 2160 min Summer 3.505 1460 4320 min Summer 2.502 2192 5760 min Summer 1.969 2872 7200 min Summer 1.636 3664

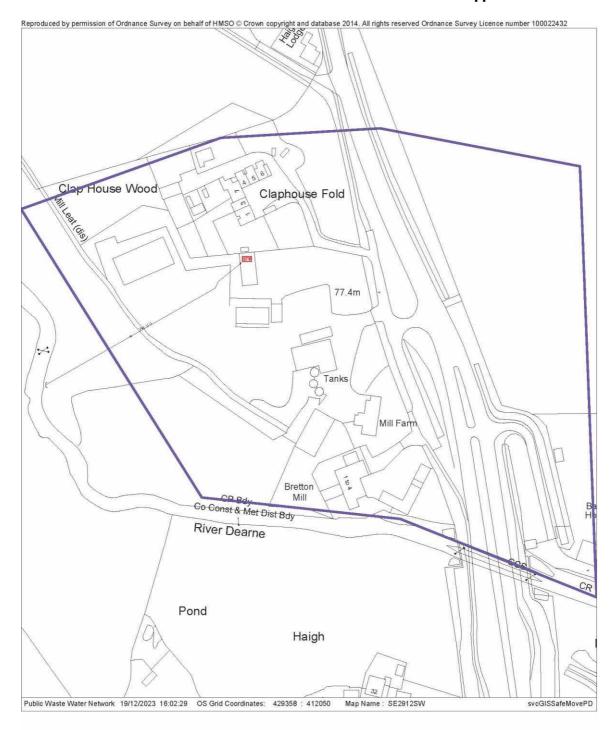
EWE Associates Ltd 7 Waveney Close, Burton Upon Stather, Scunthorpe, North Lincolnshire, DN15 9DT T: 07875 972270

EWE Associates Ltd						Page 2			
lindy Ridge Barn						-			
'healby Lane						5772	\neg	- La	
Ninterton DN15 9T0	2					LUB	SPIC		
ate 20/12/2023 19:	5.¥	Decio	ned By	Tea			adr	Sar	
	AVEL SUP			пеа		L		EPE	
File 100yr+CC40% ta	ank								
ficro Drainage		Source Control W.12.4							
Summar	y of Re	sults	for 10	0 year	Return	Period (+40%)		
Storm	Max	Max	Ma		Max	Max	Max	Status	
Event	Level (m)	Depth (m)	Infilt: (1/		Control (1/s)	Σ Outflow (1/s)	Volume (m³)		
10080 min Summer	71.464	0.064		0.0	1.5	1.5	3.2	ОК	
15 min Winter				0.0	17.1	17.1	43.7	O K	
30 min Winter	72.345	0.945		0.0	17.1	17.1	44.1	O K	
60 min Winter		0.824		0.0	17.0	17.0	40.7	O K	
120 min Winter		0.619		0.0	17.1	17.1	30.6	ΟK	
	71.783			0.0	17.1	17.1	18.9	O K	
240 min Winter		0.271		0.0	16.5	16.5	13.4	O K	
360 min Winter 480 min Winter				0.0	13.0	13.0	10.1	O K	
480 min Winter 600 min Winter	71.576	0.176		0.0	10.6 9.0	10.6 9.0	7.8	OK	
720 min Winter				0.0	7.8	7.8	7.2	0 K	
960 min Winter				0.0	6.5	6.5	6.5	0 K	
1440 min Winter		0.113		0.0	4.9	4.9	5.6	ΟK	
2160 min Winter	71.499	0.099		0.0	3.8	3.8	4.9	O K	
2880 min Winter	71.490	0.090		0.0	3.1	3.1	4.4	0 K	
4320 min Winter				0.0	2.2	2.2	3.8	O K	
5760 min Winter				0.0	1.8	1.8	3.4	0 K	
7200 min Winter 8640 min Winter				0.0	1.5	1.5	3.1 2.9	ОК	
		0.000							
		Stor Ever		Rain (mm/hr)	Time-Po (mins				
	10		Summer	1.23		136			
				172.925		16			
			Winter	101.645		27			
			Winter	35.119		82			
			Winter	25.73		110			
			Winter	20.643		134			
			Winter	15.128		190			
			Winter	12.134	4	250			
			Winter	10.220		308			
			Winter	8.892		370			
			Winter	7.330		490			
			Winter Winter	5.583		736 100			
			Winter	4.25.		456			
			Winter	2.502		152			
			Winter	1.969		872			
			Winter	1.630		656			
	8	640 min	Winter	1.400	6 4	400			

EWE Associates Ltd						Page 3		
Windy Ridge Barn								-
Thealby Lane						1 <u>77</u> 8	CRA	n'y
Winterton DN15 9TG						1 AC	Char	
Date 20/12/2023 19:				Lea		TO T	-11-	200
File 100yr+CC40% ta	ank	Check	ed By					
Micro Drainage		Sourc	e Cont	rol W.	12.4			
Summary Storm Event	Max	Max	Ма	x	Max	Period (Max Σ Outflow	Max	Status
10080 min Winter	(m)	(m)	(1/	(s) 0.0	(1/s) 1,1	(1/s)	(m³) 2.7	OK
10000 WIN WINCEL	/1.400	stor			Time-1		2.1	U-R
		Even		(mm/hr				
	10	080 min	Winter	1.23	7	1984		
					ainage 1			

		Page 5		
		2		
		5779	James	~
		Lu l	SHO	Ch
Designed By 1	Lea		anas	670
			e e e e e	EB
	ol W.12.4			
Model D	<u>etails</u>			
e is Online Co	over Level (m	73.000		
Cellular Stora	<u>age Structu</u>	ire		
ficient Base (m/)	hr) 0.00000			
		rea (m²) Inf	. Area (m²)	
52.0	2.800	0.0	78.0	
63.5	3.000	0.0	78.0	
69.3	3.200	0.0	78.0	
	3.400	0.0	78.0	
78.0	4.200	0.0	78.0	
78.0	4.400	0.0	78.0	
78.0	4.600	0.0	78.0	
10 - St. 29-3				
10.0	5.000	0.0	/6.0	
ydro-Brake® O	utflow Cont	rol		
		Invert Level	(m) 71.400	
(m) Flow (1/s)	Depth (m) F	low (l/s) De	pth (m) Flo	w (l/s)
	3.000	29.8	7.000	45.5
				47.1
				48.6 50.1
	5.000	38.4	9.000	51.6
	5.500	40.3	9.500	53.0
600 27.7	6,500	43.8		
	Checked By Source Contro <u>Model I</u> ge is Online Co Cellular Stor ficient Base [m/ ficient Base [m/ ficient Side (m/ Inf. Area (m²) 52.0 57.6 63.5 63.5 63.5 63.7 75.1 78.0 78.0 78.0 78.0 78.0 78.0 78.0 78.0	Source Control W.12.4 Model Details ge is Online Cover Level (m) Cellular Storage Structu Invert Level (m) ficient Base (m/hr) 0.00000 Inf. Area (m ²) Depth (m) 52.0 57.8 63.5 63.5 75.1 3.400 78.0	Checked By Control W.12.4 Model Details ge is Online Cover Level (m) 73.000 Cellular Storage Structure Invert Level (m) 71.400 Safety Factor ficient Base (m/hr) 0.00000 Inf. Area (m²) Depth (m) Area (m²) 52.0 2.600 57.8 2.800 63.5 3.000 75.1 3.400 78.0 3.800 78.0 4.200 78.0 4.800 78.0 5.000 78.0 5.000 78.0 5.000 78.0 5.000 78.0 5.000 78.0 5.000 78.0 5.000 78.0 5.000 78.0 5.000 78.0 5.000 78.0 5.000 78.0	Checked By Concerning Source Control W.12.4 Model Details ge is Online Cover Level (m) 73.000 Cellular Storage Structure Invert Level (m) 71.400 Safety Factor 2.0 ficient Base (m/hr) 0.00000 Thf. Area (m²) Depth (m) Area (m²) 52.0 2.600 57.8 2.800 63.5 3.000 69.3 3.200 75.1 3.400 78.0 </td

Appendix F: -


Construction Checklist

Phase and inspection item	Inspection date	Condition*	Date phase completed	Remarks/remedial works
Pre-excavation				
Runoff from areas of bare soil diverted to site control				
Runoff from contaminated areas diverted to site control				
Excavation				
Soil is not smeared or compacted so that permeability is reduced				
Excavation is to required size and gradient and is located in correct position				
Side slopes are correct				
All debris (eg loose roots) removed from base feature				
There is no groundwater seepage in the base of the feature		1		
Depth of excavation is correct				
Construction				
Earthworks materials to specification with test results				
Filter materials in accordance with specification with test results				
Compaction acceptable				
Inlets and outlets constructed in accordance with drawings and specification and drawings				
Construction to required line and levels				
Planting				
Planting in accordance with specification				
Planting established				
Handover inspection				
No silting from construction				
No erosion or bare areas of plant- ing				
All litter removed and inlets and outlets operating correctly				

CIRIA C609

303

Appendix G: - Sewer Plan

Registered office, Yorkshire water Services Limited. 1 Western House, Halifax Road, Bradford BD625Z. Registered in England and wales No. 2366682

EWE Associates Ltd 7 Waveney Close, Burton Upon Stather, Scunthorpe, North Lincolnshire, DN15 9DT T: 07875 972270

5