

Drainage Strategy Report

For

Mr Agron Nuzi

16 GENTIAN ROAD, BLACKBIRD LEYS, OXFORD OX4 6QE

Date: JANUARY 2024

Ref: M18/SuDS/060/AUG23

TOUCH OF ESTEEM	Project 16 C	ENTIAN ROAD, OXFORD	, BLACKBIRD LE OX3 6QE	ΞΥS,	Job Ref. M18/SuDS/00	50/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strate	egy Report		Sheet no./rev.	
LONDON N17GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

Revision:

Document Control

Purpose/Status	Date	Rev.	Comments	Rev. By	Chk'd By
-	-	-	-	-	-

Disclaimer

This document has been prepared in accordance with the scope of Model 18 Ltd appointment with its client and is subject to the terms of that appointment. It is addressed to and for the sole use and reliance of Model 18 Ltd client. Model 18 Ltd accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part) use or rely on the contents of this document, without the prior written permission of a Director of Model 18 Ltd. Any advice, opinions or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

© Model 18 Ltd 2019

MODEL 18 LIMITED	Project 16 C	GENTIAN ROAD, OXFORD	, BLACKBIRD OX3 6QE	LEYS,	Job Ref. M18/Sul	DS/060/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strat	egy Report		Sheet no./rev.	2
ISLINGTON LONDON N1 7GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date
Contents PROJECT DESCRIPTION						
Proposed scheme descriptio	on				••••••	б
Site geology						7
Infiltration rates						7
Catchment Area						8
Existing Surface Waters	strategy					8
SuDS design philosophy.						8
Source control						8
Proposed Storm Water D	rainage Syst	em				
SuDS on this Developme	nt					
Managing SuDS						
SuDS Scheme Checklist						10
General Requirements						10
Perforated Soakaway Co	oncrete Cho	mber			• • • • • • • • • • • • • • • • • • • •	11
Below ground drainage	pipes					11
Spillage – Emergency Ac	ction				••••••	12
Soakaway design					• • • • • • • • • • • • • • • • • • • •	
SEE DRAWINGS						15
Appendix – A (Test Pictures))					

	Project 16 C	ENTIAN ROAD, OXFORD	, BLACKBIRD LE OX3 6QE	ΞΥS,	Job Ref. M18/SuDS/00	50/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strate	egy Report		Sheet no./rev.	
LONDON N17GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

PROJECT DESCRIPTION

SUDS Strategy report for 16 Gentian Road, Blackbird Leys. Perforated Soakaway design in accordance with BRE Digest 365/SUDS. Also attached are pictures taken during infiltration test for the soakaway design values highlighted in yellow in the calculations section of the report. The soakaway location added to report shown on site plan attached.

MODEL 18 LIMITED	Project 16 C	ENTIAN ROAD, OXFORD	, BLACKBIRD LE OX3 6QE	EYS,	Job Ref. M18/SuDS/0 0	50/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strate	egy Report		Sheet no./rev.	
LONDON N17GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

<u>Notes:</u>

Architectural provided by others.

The dimensions used within these calculations are for design purposes only. Detailed measurements are to be taken from site by the building contractor. Should any inconsistencies occur inform the Engineer immediately.

Reference Drawings:

Dwg No.

TOUCH OF ESTEEM	Project 16 C	ENTIAN ROAD, OXFORD	, BLACKBIRD LE OX3 6QE	EYS,	Job Ref. M18/SuDS/00	60/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strate	egy Report		Sheet no./rev. 5	
LONDON N17GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

1. Executive Summary

The site lies within the Northfield brook catchment, which in turn delivers into Littlemore brook which deliver into River Thames.

The design team have detailed a Soakaway as the primary SuDS strategy for the areas of new extension roof.

The use of SuDS techniques on site will treat and control the run-off rates and volumes to acceptable values whilst retaining the hydrological connectivity to the Northfield Brooke.

MODEL 18 LIMITED	Project 16 C	GENTIAN ROAD, OXFORD	, BLACKBIRD LE OX3 6QE	EYS,	Job Ref. M18/SuDS/0 0	60/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strate	egy Report		Sheet no./rev.	
LONDON N17GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

2. Introduction

The proposed development is at 16 Gentian Road, Blackbird Leys, Oxford OX4 6QE (see Figure 1).

Figure 1

Proposed scheme description

The proposal is for the "Erection of two storey building to create 2 X 1 bed flats (Use Class C3). Provision of parking, private amenity space, bin, and cycle stores". In plan, the extensions add approximately 68.0m² of additional roof (impermeable) area to the site.

MODEL 18 LIMITED	Project 16 C	GENTIAN ROAD	, BLACKBIRD LE OX3 6QE	EYS,	Job Ref. M18/SuDS/0	50/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strat	egy Report		Sheet no./rev. 7	
LONDON N1 7GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

Site geology

Reference to the BGS published mapping identifies the site to be underlain by Alluvium is a general term for clay, silt, sand, and gravel. The site has no identified superficial deposits. An extract of the BGS map is shown in Figure 2.

Figure 2

Infiltration rates

Permeability testing in line with the BRE365 methodology will be required to establish an in-situ permeability. For initial design a conservative value of 5.0 x 10-6ms-1is used. This is considered a very low and hence conservative value. On site percolation testing is expected to show the permeability is greater than the above value as used in this report, or alternatively the sizing will be adjusted accordingly.

	Project 16 C	ENTIAN ROAD, OXFORD	, BLACKBIRD LE OX3 6QE	ΞΥS,	Job Ref. M18/SuDS/00	50/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strate	egy Report		Sheet no./rev. 8	
LONDON N17GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

Catchment Area

The site lies within the Northfield Brook catchment, which in turn delivers water to the Littlemore Brook, to River Thames. This is an area with sensitivity to local hydrology. The primary objective regarding hydrology in the area is to direct surface water back to the ground to maintain the hydrological connectivity to River Thames.

Existing Surface Water strategy

Currently it is noted by the owner that the surface water arising from the existing roof (and the water arising from the previous outbuilding) drains (and drained) to an existing utility company network sewer which is disconnected from the local hydrology and hence disconnected from the Northfield brook.

3. SuDS Principles

SuDS design philosophy

The CIRIA SuDS manual provides the design philosophy: "SuDS design should, as much as possible, be based around the following:

- using surface water run-off as a resource
- managing rainwater close to where it falls
- managing run-off at the surface
- allowing rainwater to soak into the ground
- promoting evapotranspiration
- slowing and storing run-off to mimic natural run-off characteristics
- reducing contamination of run-off through pollution prevention and controlling the run-off at source
- treating run-off to reduce the risk of urban contaminants causing environmental pollution "

Source control

The following are widely recognised as source control SuDS. Sedum roofing.

MODEL 18 LIMITED	Project 16 C	ENTIAN ROAD, OXFORD	BLACKBIRD LE OX3 6QE	EYS,	Job Ref. M18/SuDS/0 0	60/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strate	egy Report		Sheet no./rev. 9	
LONDON N17GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

Infiltration devices. Typically, soakaways.

Rainwater harvesting.

Bio-retention planting, rain gardens.

Permeable paving, porous asphalt. These provide both infiltration and short-term storage volumes thus reducing overall un-mitigated run-off volumes.

Proposed Storm Water Drainage System

The proposed storm water drainage system is as shown on drawing No. A121

The storm water drainage system within the site has been designed to cater for a 100year storm return period with a 40% allowance for climate change. On site storage/attenuation has been provided within the SuDS components.

The SuDS system aims to manage the rainfall and control the flow and volume of water leaving the development.

The prevention of pollution will be achieved by adopting the healthy household habits for clean water. The property owner will be responsible for the maintenance of the SuDS system.

SuDS on this Development

During rainfall events the surface water run-off from the building roof will be collected by gutter and downpipe and from the terrace area via gullies, both will then be conveyed through the site by below ground pipes into the soakaway.

The runoff will be contained on site within the attenuation tank for storm events up to and including the 100-year event will an allowance of 40% for climate change.

Managing SuDS

The SuDS have been designed for easy maintenance to comprise:

- Regular day to day care litter collection, regular gardening to control vegetation growth and checking inlets where water enters the SuDS feature.
- Occasional tasks checking the SuDS feature and removing any silt that builds up in the SuDS feature.
- Remedial Work repairing damage where necessary.

TOUCH OF ESTEEM	Project 16 C	ENTIAN ROAD, OXFORD	, BLACKBIRD LE OX3 6QE	ΞΥS,	Job Ref. M18/SuDS/0 0	60/AUG23
20-22 WENLOCK ROAD	Section	SuDS Strate	egy Report		Sheet no./rev.	
LONDON N17GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

SuDS Scheme Checklist

The following lists the SuDS components and extra features which are found on site:

- The reinforced concrete attenuation tank, this will accept surface water runoff from the roof and terrace areas.
- Manholes, Inspection Chambers, and rodding eyes are used on bends or where pipes come together, they allow access and cleaning to the system if necessary.
- Inlet Structures such as rainwater down pipes and drainage gullies, these should be always free from obstruction to allow free flow through the drainage network.
- Below ground drainage pipes, these convey water into and out of the attenuation system, these should be always free from obstruction to allow free flow.

4. Sustainable Drainage Maintenance Specification

General Requirements

- Avoid use of weedkillers and pesticides to prevent chemical pollution
- Avoid de-icing agents wherever possible
- Protect all below ground drainage through careful selection and placement of hard and soft landscaping

GENERAL REQUIREMENTS				
General Requirements	Frequency			

TOUCH OF ESTEEM	Project 16 GENTIAN ROAD, BLACKBIRD LEYS, OXFORD OX3 6QE			Job Ref. M18/SuDS/O	60/AUG23	
20-22 WENLOCK ROAD	Section	SuDS Strat	egy Report		Sheet no./rev. 11	
ISLINGTON LONDON N1 7GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

Litter: Collect all litter or other debris and remove it from site at each visit.

Monthly or as required

Perforated Soakaway Concrete Chamber

• Attenuation systems are designed to provide storage upstream of a flow control device.

SOAKAWAY SYSTEMS					
Regular Maintenance	Frequency				
Inspect and identify any areas that are not operating correctly.	Monthly or as				
Remove debris from the catchment surface (where it may cause risk to performance)	required				
Remove sediment from inlet structures and inspection chambers.					
Maintain vegetation to designed limits within the vicinity of below ground tanked					
systems to avoid damage to the system.					
Remedial work					
Repair physical damage if necessary	As required				
Monitoring					
inspect all inlets, outlets, and vents to ensure that they are in good condition and	Annually				
operating as designed.					
Survey inside of tanks for sediment build up and remove if necessary.	Every 5 years or as				
	required				

Below ground drainage pipes

• Below ground drainage pipes convey water to the SuDS system. They should be always free from obstruction to allow free flow.

BELOW GROUND DRAINAGE PIPES	
Regular Maintenance	Frequency

MODEL 18 LIMITED	Project Job Ref. 16 GENTIAN ROAD, BLACKBIRD LEYS, M18/Su OXFORD OX3 6QE					060/AUG23
20-22 WENLOCK ROAD	Section SuDS Strategy Report				Sheet no./rev.	12
LONDON N1 7GU	Calc. by	Date 08/09/2022	Chk'd by	Date	App'd by	Date
Inspect and identify any area that are not operating correctly. If required, take remedial action. Remove debris from catchment surface (where it may cause risk to performance) Remove sediment from pre-treatment inlet structures and inspection chambers. Maintain vegetation to designed limits within the vicinity of below ground pipes and tanks to avoid damage to system.					Monthly for 3 months then annually Annually or as required Monthly or as required	
	Remedial	work				_
Repair physical damages if necessary					As required	_
	Monitor	ing				
Inspect all inlets, outlets, o condition and operating c	nd vents to ei is designed	sure that they a	are in good		Annually	
Survey inside of pipe runs	for sediment	build up and re	emove if nece	ssary	Every 5 years or as required	

Spillage – Emergency Action

Most spillages on developments of this type are of compounds that do not pose a serious risk to the environment if they enter the drainage in a slow and controlled manner with time available for natural breakdown in a treatment system. Therefore, small spillages of oil, milk or other known organic substances should be removed where possible using absorbent material.

5. Summary

The use of SuDS techniques on site, as detailed above, will treat, and control the run-off rates and volumes to acceptable values whilst retaining the hydrological connectivity to the Northfield brook. See attached soakaway crate and drawing.

	Project				Job Ref.		
MODEL 18 LIMITED	16 (JENTIAN ROAD	, BLACKBIRD LE	EYS,	M18/SuDS/o	60/AUG23	
TOUCH OF ESTEEM		OXFORD OX3 6QE					
Section Sheet no./re				Sheet no./rev.			
ISLINGTON		SuDS Strat	egy Report	1	13	1	
LONDON N1 7GU	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	22	08/09/2022	BC				
SOAKAWAY DESIGN	SOAKAWAY DESIGN						
In accordance with BRE	Digest 365 - S	oakaway desi	gn				
	0 2 2				Tedds calcula	tion version 2.0.05	
Design rainfall intensity							
Location of catchment a	irea;	Oxford	1				
Impermeable area drain	ed to the syste	em; A = 77 •	3 m ²				
Return period;		Period	= 100 yr				
Ratio 60 min to 2 day rai	nfall of 5 yr re	turn period;		r =	0.400		
5-year return period rain	fall of 60 minu	utes duration;		M5	_60min = 19.0 m	nm	
Increase of rainfall inten	sity due to glo	bal warming;		Pclin	nate = 40 %		
Soakaway / infiltration t	rench details						
Soakaway type;		Rectar	igular				
Minimum depth of pit (b	elow incomin	g invert); d	= 1600 mm				
Width of pit;		W = 25	00 mm				
Length of pit;		= 250	0 mm				
Percentage free volume	• 9	V _{free} = 4	40 %				
Soil infiltration rate (BR	E digest 365)						
Length of trial pit;	0 , ,	I _{trial} = 3	00 mm				
Width of trial pit;		b _{trial} =	300 mm				
Depth of trial pit (below	invert);	d _{trial} =	500 mm				
Free volume (if fill used)	* *	V _{trial} = 1	00 %;				
75% depth of pit;		d ₇₅ = (c	$I_{\text{trial}} \times 0.75) = 3$	75.00 mm			
50% depth of pit;		d ₅₀ = (0	$d_{\text{trial}} \times 0.50) = 2$	250.00 mm			
25% depth of pit;		$d_{25} = (c_{10})^{-1}$	$I_{\text{trial}} \times 0.25) = 12$	25.00 mm			
Test 1 - time to fall from	75% depth to 2	25% depth; T	1 = 20 min				
Test 2 - time to fall from	75% depth to 2	25% depth; T	2 = 32 min				
Test 3 - time to fall from	Test 3 - time to fall from 75% depth to 25% depth: T3 = 45 min						
Longest time to fall fron	n 75% depth to	25% depth; t	_g = max(T1, T2	, T3) = 45 min			
Storage volume from 75	% to 25% depth	1; V _{p75 25} :	= $(I_{trial} \times b_{trial} \times$	$(d_{75} - d_{25})) \times V_t$	rial = 0.02 m ³		
Internal surface area to	50% depth;	a _{p50} = ($(I_{trial} \times b_{trial}) + ($	$(I_{trial} + b_{trial}) \times 2$	$\times d_{50}$ = 0.39 m ²	2	
Surface area of soakawa	iy to 50% stora	ge depth; A	$I_{s50} = 2 \times (I_{trial} +$	$b_{trial}) \times d_{trial}/2$	2 = 0.300 m ²		
		/		,	-		

			Project 16	Project Job R 16 GENTIAN ROAD, BLACKBIRD LEYS, OXFORD OX3 6QE				SuDS/060/AUC	i23
20 [.]	-22 WENLOCK	ROAD	Section				Sheet no./re	Sheet no./rev.	
ISL				SuDS Stra	ategy Report			14	
LO	NDON N1 7GU	J	Calc. by	Date	Chk'd by	Date	App'd by	Date	
	-		22	08/09/2022	BC BC				
	Soil infiltra	tion rate;		f = V _p	_{975_25} / (a _{p50} × 1	t _{lg}) = 21.4×10	-6 m/s		
	Wetted are	ea of pit 50% f	ull;	a _{s50} =	$l \times d + w \times d$	= 8000000	mm ²		
	Table equa	ations							
	Inflow (cl.	3.3.1);		I = M	100 × A				
	Outflow (c	1.3.3.2);		0 = a	$_{s50} imes f imes D$				
	Storage (cl	l.3.3.3);		S = I ·	- 0				
									_
	Duratio n, D (min)	Growth factor Z1	M5 rainfalls (mm)	Growth factor Z2	100 year rainfall, M100 (mm)	Inflow (m³)	Outflow (m³)	Storage required (m³)	
	5;	0.37;	9.9;	1.91;	19.0;	1.46;	0.05;	1.41	
	10;	0.52;	13.9;	1.97;	27.5;	2.12;	0.10;	2.02	
	15;	0.63;	16.8;	2.00;	33.8;	2.61;	0.15;	2.46	
	30;	0.80;	21.4;	2.02;	43.3;	3.34;	0.31;	3.04	
	60;	1.00;	26.6;	2.00;	53.1;	4.11;	0.62;	3.49	
	120;	1.21;	32.1;	1.95;	62.7;	4.85;	1.23;	3.62	
	240;	1.45;	38.5;	1.90;	73.2;	5.66;	2.46;	3.20	
	360;	1.60;	42.6;	1.87;	79.7;	6.16;	3.69;	2.47	
	600;	1.79;	47.7;	1.83;	87.2;	6.74;	6.15;	0.59	
	1440;	2.24;	59.6;	1.74;	104.0;	8.04;	14.77;	0.00	
	Required s	torage volum	ie;	S _{req} =	3.62 m ³				
	Soakaway	storage volur	ne;	$S_{act} =$	$I \times d \times w \times V_{f}$	_{free} = 4.00 m ³	3		
						P	ASS - Soakaw	ay storage vo	lume
	Time for er	mptying soak	away to half v	/olume; t _{s50} =	$S_{req} \times 0.5 / (a$	s ₅₀ × f); = 2hr	56min 29s		
	PASS - Soakaway discharge time less than or equal to 24 hours								

Provide 2500mm (w) x 2500mm (l) Crates Soakaway.

ппп	

MODEL 18 LIMITED	Project 16 GENTIAN ROAD, BLACKBIRD LEYS, OXFORD OX3 6QE			Job Ref. M18/SuDS/0	60/AUG23	
20-22 WENLOCK ROAD	Section	SuDS Strat	egy Report		Sheet no./rev.	
LONDON N1 7GU	Calc. by	Date 08/09/2022	Chk'd by	Date	App'd by	Date

Appendix – A (Test Pictures)

MODEL 18 LIMITED	Project 16 GENTIAN ROAD, BLACKBIRD LEYS, OXFORD OX3 6QE			Job Ref. M18/SuDS/060/AUG23		
20-22 WENLOCK ROAD	Section	SuDS Strat	egy Report		Sheet no./rev.	
ISLINGTON LONDON N1 7GU	Calc. by	Date 08/09/2022	Chk'd by BC	Date	App'd by	Date

١				
-		ŀ		
	έ.	ł		
		-		
•	٩,			
ς,		e,		
	٦.		r.	
		-		

in	
ning	