

ROMA CAPITAL GROUP LTD

PRIMA WINDOWS SITE, NONNINGTON CT15 4HF

PHASE 2 GEOENVIRONMENTAL REPORT

Reference: 1637/SI

19th September 2023

CLIENT: Roma Capital Group Ltd 78 Sandgate High St Sandgate Kent CT20 3BX

> SITE: Prima Windows Easehole Street Nonnington Kent CT15 4HF

PHASE 2 GEOENVIRONMENTAL REPORT

Reference: 1637/SI

STATUS FINAL

19th September 2023

Prepared By:

Peter Baxter Associates Kestner Works Bredgar Road Gillingham Kent ME8 6PL Tel: 01634 717974

www.peterbaxterassociates.co.uk

FOREWORD

CONTENTS

1.0	SUMMARY	1
2.0	SITE DESCRIPTION	3
2.1	Site Location and Description	3
2.2	Proposed Development	3
2.3	Site Investigation Objectives	3
2.4	Published Geology	3
2.5	Historic and Future Coalmining	4
2.6	Geological Hazards and Radon	4
3.0	FIELDWORK	5
3.1	Description of Field Works	5
3.2	Ground Conditions and Observations	5
3.3	Existing Foundations of Retaining Wall	6
3.4	Insitu Testing	6
3.5	Infiltration Testing	6
3.6	Intrusive Environmental Investigation	7
4.0	LABORATORY TESTING	8
4.1	General	8
4.2	Atterberg Limits Testing	8
4.3	Sulphate and pH Testing	8
4.4	Chalk SMC Testing	8
4.5	Environmental Testing	8
5.0	ENVIRONMENTAL RISK ASSESSMENT	10
5.1	Summary of Phase 1 Desk Study Report	10
5.2	Acceptance Criteria	10

5.3	Environmental Test Results	10
5.4	Generic Environmental Risk Assessment	11
6.0	CONCLUSIONS AND RECOMMENDATIONS	12
6.1	Conclusions	12
6.2	Recommended Foundation Types and Design Parameters	13
6.3	Recommended Design Infiltration Rate	13
6.4	Recommended Design Sulphate Class	13
6.5	Further Environmental Actions	13

REFERENCES

- Reference 1 Desk Study Report, Peter Baxter Associates Ltd, 1455/DS 8th October 2021
- Reference 2 BS 5930: Code of Practice for Site Investigations, BSI 2015
- Reference 3 BS EN 10175 Investigation of Potentially Contaminated Sites 2011
- Reference 4 BS1377 and BS EN ISO 17892: Methods of Test for Civil Engineering Purposes
- Reference 5 Land Contamination Risk Management, Environment Agency 2021
- Reference 6 LQM/CIEH S4ULs for Human Health Risk Assessment 2016
- Reference 7 C4SLs, DEFRA
- Reference 8 CIRIA 143 The Standard Penetration Test Methods and Use
- Reference 9 NHBC Specification Chapter 4.2 Building Near Trees
- Reference 10 BS8004 2015 Code of Practice for Foundations
- Reference 11 BRE 365 Soakaway Design
- Reference 12 BRE Special Digest 250
- Reference 13 CIRIA 574 Engineering in Chalk
- Reference 14 CDP Architecture 843-PO5 Sept 2021 Proposed Analytical Site Plan

FIGURES

- 1637/Figure 1 Borehole and Trial Pit, Location Plan
- 1637/Figure 2 Illustration of Conceptual Model

TABLES

Table 1	Summary of Chalk Levels
Table 2	Summary of Acceptance Criteria and Environmental Analysis Results
Table 3	Preliminary Environmental Risk Assessment
Table 4	Generic Environmental Risk Assessment
APPENDICES	
Appendix A	DESK STUDY DATA
Appendix A1	Geological Maps
Appendix B	FIELD DATA
Appendix B1	Borehole Logs
Appendix B2	Trial Pit Logs
Appendix B3	Infiltration Test Reports
Appendix C	LABORATORY TEST REPORTS
Appendix C1	Atterberg Limits Test Reports
Appendix C2	Sulphate and pH Test Reports
Appendix C3	Chalk SMC Test Report
Appendix C4	Environmental Test Reports
Appendix D	PHOTOGRAPHS

FOREWORD

- 1. This document has been prepared by Peter Baxter Associates Ltd with all reasonable skill, care and diligence within the terms of the contract with the Client and within the limitations of the resources devoted to it by agreement with the client.
- 2. This document is confidential to the Client and Peter Baxter Associates Ltd accepts no responsibility whatsoever to third parties to whom this document, or any part thereof, is made known. Any such party relies upon the document at their own risk.
- This document shall not be used unless the document status is 'Final', and Peter Baxter Associates Ltd's fees have been settled in full.
- 4. Unless specifically assigned or transferred within the terms of the agreement, the consultant asserts and retains all Copyright, and other intellectual Property Rights in and over the Report and its contents.

1.0 SUMMARY

- 1.1 The Client, Roma Capital Group Ltd, plans to redevelop a former industrial site of 1.4ha in area, situated off Easehole Street, in the village of Nonnington, Kent CT15 4HF (the Site), with 27 houses with gardens. The eastern half of the Site is a field, used for grazing and the western half is still in use for industrial purposes. The two halves are divided by a 3m high retaining wall. The Site slopes upwards from west to east and is surrounded by agricultural land on three sides and existing housing to the south. The Site and proposed development are shown on Figure 1, and photographs of the Site are presented in Appendix D.
- 1.2 Peter Baxter Associates (PBA) was commissioned by the Client to carry out a Phase 2 environmental investigation combined with a geotechnical site investigation to inform foundation and drainage design. PBA had conducted an earlier Desk Study of the Site. (Reference 1).
- 1.3 This Site Investigation Report describes the Site's geology, field works, visual observations and laboratory testing, gives recommended foundations and foundation design parameters, a recommended infiltration rate and sulphate class, and assesses the environmental risks.
- 1.4 The investigation was carried out between 7th and 11th August 2023, and comprised three boreholes denoted BH1 to BH3 drilled to 5.5m depth, 25 boreholes denoted WS2 to WS26 drilled to between 1m and 3.5m depth, three trial pits excavated up to 2.4m depth, and one infiltration test. Twenty nine near surface soil samples were tested for contamination, and geotechnical soil testing was conducted on recovered samples. Investigation locations are shown in Figure 1.
- 1.5 The Site's natural soils may be summarised as stiff to very stiff orange brown silty Clay of low volume change potential between ground level and 2.2m depth, over structureless low density Chalk. In the industrial part of the Site, the concrete slab and hardstanding thickness varied from 0.15m to 0.3m. Made Ground was present under the concrete hardstanding and in a track leading to the eastern field. This Made Ground comprised clay with ash and brick fragments. Topsoil depths ranged up to 0.3m. The observed ground conditions were consistent with those reported on geological maps as shown in Appendix A1. Groundwater was not observed in any trial pit or borehole. Strata depths are summarised in Table 1, and the strata are detailed in logs presented in Appendix B.
- 1.6 The results of 29 soil contamination tests are summarised in Table 2 and indicated compliance with the selected Acceptance Criteria for residential gardens with vegetable uptake, with the exception of five locations where the level of lead exceeded the limit of

200mg/kg soil. At these locations, topsoil would be imported to form the gardens, and the made ground would be removed as part of the demolition works. The exceedances at the five locations were therefore considered sufficiently low to not require remedial works. The result of three leaching "WAC" tests indicated that the samples conformed to the limits for inert waste.

- 1.7 Strip footings founding in chalk are considered satisfactory for the development. The recommended allowable bearing capacity is 250kPa. At three locations, provisionally identified as Plots 1, 2, and 16, the chalk is at depths greater than 2m, and deep trench fill is recommended in such locations in preference to founding on the clay. Piled foundations may also be considered. The pile design would be the responsibility of a specialist contractor, but as an illustration a 5m deep bored pile 0.45m in diameter, penetrating the chalk by 4m, is estimated to have a safe working load of 300kN.
- 1.8 The recommended design infiltration rate of the chalk is 7.2×10^{-5} m/s.
- 1.9 The recommended design sulphate class for all concrete in contact with the ground is DS-1.
- 1.10 No environmental remedial actions for soil contamination are considered necessary.Undetected contamination may affect this conclusion.

2.0 SITE DESCRIPTION

2.1 Site Location and Description

- 2.1.1 The Site is a 1.4ha plot of land off Easehole Street, at the northern limit of the village of Nonnington, Kent CT15 4HF. The National Grid Coordinates of the Site are 626330E, 152170N. Nonnington is in a rural area of East Kent, approximately halfway between Canterbury and Dover.
- 2.1.2 The Site is rectangular and orientated north west to south east. The half of the Site nearest Easehole Street is industrial, occupied by the Prima Windows factory and offices and by a steel fabricator; Northbourne Engineering. This half is paved with concrete and contains large industrial units. Four large above ground tanks are present on site. The other half of the Site is an open field. To the south of the Site are houses and the other sides of the Site are bounded by agricultural land. The Site slopes upwards from Easehole Road. There is a thatched barn converted to a house along most of the Easehole Street frontage. The Prima Windows factory is non-operational but other units were still in use. A 3m high retaining wall divides the two parts of the Site.
- 2.1.3 The Site is shown on Figure 1 and is illustrated in photographs in Appendix D

2.2 Proposed Development

2.2.1 The Client plans to develop the Site for housing, with 27 units (Reference 14) The houses would be a mixture of detached, semidetached, and terraced properties. The barn conversion would remain.

2.3 Site Investigation Objectives

- 2.3.1 The objectives of this site investigation were to derive sufficient soil information to quantify the environmental risk of onsite soil contamination and to enable foundation and soakaway design.
- 2.3.2 The investigation methodology was developed by PBA and agreed with the Client. It is detailed in Section 3.

2.4 Published Geology

2.4.1 Reference 1 indicated that the Site geology was Chalk of the Seaford Chalk Formation.A geological fault appears to run to the west of the Site. No worked ground is shown within 1000m. Geological maps are included in Appendix A1.

2.5 Historic and Future Coalmining

- 2.5.1 Nonnington is above the East Kent coalfield, which was worked until the late 1980s. The Site was 2km east of the former Snowdown Colliery. Coal Mining Reports from the Coal Authority are included in Reference 1. These reports stated that the site is not considered to be susceptible to coal mining-related ground instability and stated that any identified coal mining features are considered unlikely to impact the value or security of the Site.
- 2.5.2 A coal mining licence for East Kent issued in 2017 is understood to relate to mining and minerals below 500 feet (152m). The Client has stated that they own the mining rights to 500 feet depth, and that this reservation of the mining rights does not allow surface access to the Site or extraction shallower than 152m depth. Mining up to 152m depth will therefore not occur without the Client's permission and will not affect any development of the site or future house sales on the site. In these circumstances future coal mining beneath the Site is therefore not expected, and environmental risks from this mining were not considered further.

2.6 Geological Hazards and Radon

- 2.6.1 Reference 1 indicated no hazards from compressible ground, landslides, running sand or shrinking or swelling clay. A very low risk was reported for collapsible ground and ground dissolution.
- 2.6.2 The Site was in an area of intermediate radon risk with a probability of between 5% and 10% of properties being above the Action Level. Basic radon protection measures are necessary for residential properties unless further investigation indicates that this is unnecessary.

3.0 FIELDWORK

3.1 Description of Field Works

- 3.1.1 Between 7th and 11th August 2023, three boreholes denoted BH1 to BH3 were drilled to 5.5m depth, 25 boreholes denoted WS2 to WS26 were drilled to between 1m and 3.5m depth, three trial pits were excavated to 2.4m, and one infiltration test was carried out. Concrete coring was carried out where necessary to allow borehole drilling through hardstanding area.
- 3.1.2 Borehole logs are presented in Appendix B1 of this report, trial pit logs in Appendix B2, and the infiltration test is reported in Appendix B3. Insitu SPT testing was carried out in the boreholes as detailed in Section 3.4, and the findings are discussed in Section 3.2. A summary of strata depths is given as Table 1.
- 3.1.3 Twenty nine soil contamination samples were recovered from shallow depths from the boreholes and pits. The test results are summarised in Table 2, the reports are included in Appendix C4, and the implications of the test results are discussed in Section 5.
- 3.1.4 The borehole and pit locations were surveyed by a land surveyor engaged by PBA. The locations are shown on Figure 1.
- 3.1.5 The field works were monitored on a visiting basis by a PBA geologist and the author. Recovered borehole samples were logged by a PBA geologist and combined with the drillers logs to produce the borehole logs. Boreholes were backfilled with bentonite and the trial pits were backfilled with arisings. Concrete cores were replaced in their holes.
- The site investigation was carried out in accordance with BS5930 (Reference 2) and BS
 EN 10175 (Reference 3). The boreholes were drilled with a window sample technique.
 PBA'S window sampling, diamond drilling, and excavation contractor was CK Drilling Ltd of Maidstone Kent.

3.2 Ground Conditions and Observations

3.2.1 The Site's natural soils may be summarised as stiff to very stiff orange brown silty Clay between 0m and 2.2m in depth, over structureless Chalk. Where present the concrete thickness varied from 0.15m to 0.3m. The concrete hardstanding was observed to be reinforced with one layer of 200mm x 200mm mesh placed at the bottom of the slab with 40mm cover. Made Ground was present under the concrete hardstanding and in a track leading to the eastern field. This Made Ground comprised clay with ash and brick fragments. Topsoil depths ranged up to 0.3m. Borehole logs are presented in Appendix B1 and trial pit logs in Appendix B2. Groundwater was not observed in any trial pit or borehole.

- 3.2.2 The observed ground conditions were consistent with those reported on geological maps as shown in Appendix A1.
- 3.2.3 At location WS1, the initial concrete was cored, then a second slab was found 0.4m deep below a layer of Made Ground. This borehole was abandoned and a contamination sample recovered from the nearby TP1.
- 3.2.4 No visual signs of contamination were observed in the recovered samples.

3.3 Existing Foundations of Retaining Wall

3.3.1 One trial pit, TP3, exposed the base of an existing brick retaining wall. The wall was founded directly on chalk at 0.4m below ground level. No corbelling of the brickworks was observed. A photo is included in Appendix D.

3.4 Insitu Testing

- 3.4.1 Standard Penetration Testing (SPT testing) was carried out in the boreholes. The results are reported in the borehole logs in Appendix B1. The SPT values recorded in the clay ranged from 10 to 12 blows per 300mm penetration, The SPT values recorded in the chalk ranged from 7 to 31 blows per 300mm penetration.
- 3.4.2 The SPT values may be correlated to soil strengths by empirical relationships detailed in References 8, 10, and 13.

3.5 Infiltration Testing

- 3.5.1 The infiltration test was conducted in TP1 on 10th August and witnessed by the author. The test location was selected by the Client and is situated close to the lowest point on the Site, as shown on Figure 1. Mains water from a towed bowser was flooded into the pit over three cycles. The water level and times were recorded until the water level fell to a level corresponding to at least 25% of its original level.
- 3.5.2 The pit was 0.4m wide, 1.5m long, and 2.4m deep. The soils were reinforced concrete 150mm thick over cohesive Made Ground to 0.4m below ground level, over firm dark brown silty Clay to 2.3m, over structureless chalk.
- 3.5.3 The test report is included in Appendix B3. A photo of the pit is included in Appendix D. The soil infiltration rates were calculated using the method given in BRE 365 (Reference 11) by a spreadsheet. The lowest result was 1.9 x10⁻⁴ m/s. This compares to a lowest value of 7.2 x10⁻⁵ m/s recorded in separate testing carried out by PBA in 2022 in the eastern field area. The soil infiltration rates are discussed in Section 6.3.

3.6 Intrusive Environmental Investigation

- 3.6.1 The Desk Study Report (Reference 1) assessed the environmental risks of the Site from on site contaminated soils as low to moderate as tabulated in the preliminary risk assessment in Table 3 and discussed in Section 5.1. The Desk Study Report recommended that near surface soil samples be recovered and tested for a range of contaminants.
- 3.6.2 Twenty nine soil samples were taken from each borehole location and from TP1. The sampling frequency was defined in accordance with Reference 3 and was greater than the number of proposed houses. The sample locations were selected to cover the proposed garden and landscape areas, subject to existing infrastructure, as illustrated in Figure 1.
- 3.6.3 The test parameters were asbestos trace, the "CLEA" suite of heavy metals, oils and selected volatile organic compounds (TPH-CWG) and polyaromatic hydrocarbons (PAH).
- 3.6.4 Three samples from locations WS2, WS3, and WS8 were also tested for contaminant leaching to the method detailed in BS EN 12457 (the "WAC Test").
- 3.6.5 The results of the environmental testing are summarised on Table 2, reported in Appendix C4, and are discussed along with their environmental implications in Section 5.4.

4.0 LABORATORY TESTING

4.1 General

4.1.1 Geotechnical testing was carried out by Peter Baxter Associates Laboratories, Gillingham, Kent, in accordance with BS 1377 and BS EN ISO 17892 (Reference 4). Contamination testing was carried out by DETS Environmental, Lenham Heath, Kent. The laboratories were all UKAS or MCERTS accredited for the tests carried out except for the sulphate and pH testing.

4.2 Atterberg Limits Testing

4.2.1 Ten samples of Clay, recovered from boreholes across the Site from depths between 0.8m and 1.7m, were tested for Atterburg Limits and natural moisture content. The test reports are presented in Appendix C1. The plasticity indexes ranged between 5% and 19% The percentage of material smaller than 425 microns ranged from 63% to 100%. These values indicate that the clay may be classed as low volume change potential (Reference 9). The moisture contents were less than the plastic limits in all samples.

4.3 Sulphate and pH Testing

4.3.1 Six samples, recovered from boreholes across the Site from depths between 0m and 1.2m, were tested for water soluble sulphate and pH. The test reports are included in Appendix C2. Water soluble sulphate contents ranged from 0.12g/l to 0.17g/l.

4.4 Chalk SMC Testing

4.4.1 Three samples of Chalk, recovered from TP2, WS4, and BH3 from depths between 0.9m and 1.5m, were tested for saturation moisture content (SMC) and intact dry density. The test report is included in Appendix C3. The SMC values varied from 28% to 31% and the intact dry densities from 1.37Mg/m³ to 1.54Mg/m³. These values indicate a Chalk of low density (Reference 13).

4.5 Environmental Testing

- 4.5.1 Table 2 summarises the contamination test results of the 29 soil samples recovered from near surface. The test report is included in Appendix C4.
- 4.5.2 The test parameters were asbestos trace, the "CLEA" suite of heavy metals, petroleum hydrocarbons and selected volatile organic compounds (TPH-CWG) and polyaromatic hydrocarbons (PAH).
- 4.5.3 Asbestos was not detected. Levels of petroleum hydrocarbons, polyaromatic

hydrocarbons, and volatile organic compounds benzene, toluene, ethylbenzene, and xylene were lower than the selected Acceptance Criteria for residential gardens with vegetable uptake, assuming a soil organic matter content of 1%. Levels of heavy metals were lower than the selected Acceptance Criteria with the exception of five locations where the level of lead exceeded the limit of 200mg/kg soil. At these locations, the lead levels ranged from 207mg/kg, to 355mg/kg.

- 4.5.4 The result of three leaching "WAC" tests indicated that the samples conformed to the limits for inert waste.
- 4.5.5 These results, and the derivation of the Acceptance Criteria, are discussed further in Section 5.

5.0 ENVIRONMENTAL RISK ASSESSMENT

5.1 Summary of Phase 1 Desk Study Report

- 5.1.1 The Site history was detailed in Reference 1 as agricultural until 1976, when the current industrial buildings were shown on an historic map. No off site sources of contamination were indicated.
- 5.1.2 The Site was reported to overlie a high vulnerability principal aquifer.
- 5.1.3 The environmental risks to on site receptors from onsite sources were assessed as low to moderate from potential soil contamination from hospital use.
- 5.1.4 The site was used for double glazing manufacturing and is currently used for steel fabricating. The environmental risks to onsite and offsite receptors from these onsite industrial sources were assessed as low to moderate.
- 5.1.5 The conceptual model is presented as Figure 2 and the preliminary risk assessment is tabulated in Table 3. Further environmental investigation was considered necessary, comprising thirty shallow depth soil samples tested for a standard range of organic contaminants, comprising total petroleum hydrocarbons, total petroleum hydrocarbons, and volatile chemicals benzene, ethylene, toluene, and xylene.

5.2 Acceptance Criteria

- 5.2.1 The generic Acceptance Criteria for the Site were derived from the LQM/CIEH S4UL levels for human health risk assessment (Reference 6) and "C4SL" limits (Reference 7). Given the end use of the Site, the levels given for residential gardens with vegetable uptake were adopted. The Soil Organic Matter content was taken as 1%. The adopted Acceptance Criteria are given in Table 2, shaded in yellow.
- 5.2.2 The lowest Acceptance Criteria were generally adopted when contaminants had varying criteria from multiple sources.

5.3 Environmental Test Results

- 5.3.1 Table 2 summarises the contamination test results of the 29 soil samples recovered from near surface. The test report is included in Appendix C4.
- 5.3.2 Asbestos was not detected. Levels of petroleum hydrocarbons, polyaromatic hydrocarbons, and volatile organic compounds benzene, toluene, ethylbenzene, and xylene were lower than the selected Acceptance Criteria for residential gardens with vegetable uptake, assuming a soil organic matter content of 1%. Levels of heavy metals were lower than the selected Acceptance Criteria with the exception of five locations

where the level of lead exceeded the limit of 200mg/kg soil. At these locations, the lead levels ranged from 207mg/kg to 355mg/kg.

5.3.3 The result of three leaching "WAC" tests indicated that the samples conformed to the limits for inert waste.

5.4 Generic Environmental Risk Assessment

- 5.4.1 A generic environmental risk assessment based on the results discussed above and the recommendations of Reference 5 is presented as Table 4 and concluded that the environmental risk to Site Occupants and controlled waters from the on-site source of contaminated soil, via the pathways of vegetable uptake, gas and vapour inhalation, dermal contact, ingestion, dust, and infiltration, was low.
- 5.4.2 In the five locations where subsoil and made ground lead levels exceeded the Acceptance Criteria, topsoil would be imported or moved from the eastern field to form the gardens. The made ground at these locations would be removed as part of the demolition works. The exceedances at the five locations were considered sufficiently low to not require remedial works. An illustration of the conceptual model used is presented as Figure 2.
- 5.4.3 No environmental remediation works are considered necessary.
- 5.4.4 Undetected contamination may be present which would affect the environmental risk assessments.

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

- 6.1.1 A former industrial site and field totalling 1.4ha in area, off Easehole Street in the village of Nonnington, Kent CT15 4HF (the Site) is to be redeveloped with 27 houses with gardens and associated access roads and landscaping. The Site slopes upwards from west to east and is surrounded by agricultural land on three sides and existing housing to the south.
- 6.1.2 Following a Phase 1 environmental Desk Study by PBA (Reference 1), which assessed the environmental risks from onsite soil contamination as low to moderate, PBA carried out an intrusive geoenvironmental investigation between 7th and 11th August 2023. The objectives of this site investigation were to quantify the environmental risk of onsite soil contamination and derive sufficient soil information to enable foundation and soakaway design.
- 6.1.3 Three boreholes denoted BH1 to BH3 were drilled to 5.5m depth, 25 boreholes denoted WS2 to WS26 were drilled to between 1m and 3.5m depth, three trial pits were excavated up to 2.4m depth, and one infiltration test was carried out. The investigation locations are shown in Figure 1. Borehole logs are presented in Appendix B1 of this report, trial pit logs in Appendix B2, and the infiltration test is reported in Appendix B3. A summary of strata depths is given as Table 1, and the results of 29 shallow soil contamination samples are summarised in Table 2.
- 6.1.4 The Site's natural soils may be summarised as stiff to very stiff orange brown silty Clay of low volume change potential between ground level and 2.2m depth, over structureless low density Chalk. In the industrial part of the Site, the concrete thickness varied from 0.15m to 0.3m. Made Ground was present under the concrete hardstanding and in a track leading to the eastern field. This Made Ground comprised clay with ash and brick fragments. Topsoil depths ranged up to 0.3m. The observed ground conditions were consistent with those reported on geological maps as shown in Appendix A1. Groundwater was not observed in any trial pit or borehole.
- 6.1.5 The soil contaminant testing results, summarised in Table 2, indicated compliance with the selected Acceptance Criteria for residential gardens with vegetable uptake, with the exception of five locations where the level of lead exceeded the limit of 200mg/kg soil. At these locations, topsoil would be imported or moved from the eastern field to form the gardens and the made ground would be removed as part of the demolition works. The exceedances at the five locations were therefore considered sufficiently low to not require remedial works. The result of three leaching "WAC" tests indicated that the

samples conformed to the limits for inert waste.

6.2 Recommended Foundation Types and Design Parameters

- 6.2.1 Strip footings founding in chalk are considered satisfactory for the development. The recommended allowable bearing capacity is 250kPa, from Reference 13 for structureless low density chalk. For some houses, provisionally identified as Plots 1, 2, and 16, the chalk is at depths greater than 2m. Deep trench fill foundations are recommended in such locations in preference to founding on the clay, to identify possible solution features and to avoid differential settlement.
- 6.2.2 Alternatively piled foundations may be considered. The pile design would be the responsibility of a specialist contractor based on this report, a pile load schedule, and References 10 and 13, but as an illustration a 5m deep bored pile 0.45m in diameter, penetrating the chalk by 4m, is estimated to have a safe working load of 300kN.
- 6.2.3 The foundations and ground floor slabs must incorporate heave precautions as detailed in Reference 9 for low volume change potential soils.

6.3 Recommended Design Infiltration Rate

6.3.1 The recommended design infiltration rate of the chalk is 7.2×10^{-5} m/s, being the lowest measured value of the testing described in Section 3.5.

6.4 Recommended Design Sulphate Class

6.4.1 Water soluble sulphate contents in the sands and gravels ranged from 0.12g/l to 0.17g/l.A design sulphate class of DS-1 is defined in Reference 12 for such concentrations and is recommended for design.

6.5 Further Environmental Actions

6.5.1 No environmental remedial actions for soil contamination are considered necessary.

Peter Baxter BEng CEng MICE (Director)

For and on behalf of Peter Baxter Associates Ltd

FIGURES

TABLES

Project: Nonnington Prima Works Phase 2

Client: Roma Capital

Table 1 - Summary of Chalk Levels

Borehole	Concrete	GL (mAOD)	Chalk depth	Chalk Level	SPT Value	Remarks
	Thickness		(m)	(mAOD)		
	(m)					
BH1		43.73	2.50	41.23	10	
BH2		43.73	0.90	42.83	10	
BH3		43.79	0.90	42.89	14	
WS1						Not drilled
WS2	0.30	40.00	1.60	38.40	9	
WS3	0.28	40.00	1.00	39.00	11	
WS4	0.30	41.26	0.50	40.76	9	
WS5	0.26	39.85	2.20	37.65	9	
WS6				0.00		Not drilled
WS7	0.30	40.09	2.45	37.64	10	
WS8		40.22	1.80	38.42		
WS9						Not drilled
WS10	0.20	40.00	1.80	38.20		
WS11		40.00	2.30	37.70		
WS12A		38.62	0.70	37.92	17	
WS13		41.00	0.90	40.10		
WS14A		42.23	2.00	40.23	11	
WS15		40.44	0.20	40.24		
WS16		43.75	1+			Chalk not found
WS17		43.70	0.80	42.90		
WS18		44.50	0.50	44.00		
WS19		46.50	0.25	46.25		
WS20		46.70	0.25	46.45		
WS21		43.79	1+			Chalk not found
WS22A		43.90	2.20	41.70	11	
WS23		44.00	0.30	43.70		
WS24		44.50	1+			Chalk not found
WS25A		44.60	1.90	42.70	14	
WS26		46.00	0.50	45.50		
TP1		40.00	2.20	37.80		
TP2		45.17	0.40	44.77		
TP3		41.35	0.20	41.15		

Project: Nonnington Prima Windows Site 1637.00 August 2023

Client: Roma Capital

Table 2 - Summary of Acceptance Criteria and Chemical Analysis Results

TP/BH Depth (m) Lab Sample Ref Date Sampled	Generic A Criteria	cceptance (mg/kg)	TP1 (C1) 0.60 670525 10/08/23	BH3 0.20 670526 10/08/23	BH3 (C6) 2.50 670527 10/08/23	BH3 (C9) 3.00 670528 10/08/23	C2 0.35 670529 11/08/23	C3 0.10 670530 11/08/23	C4 0.10 670531 11/08/23	C5 0.00 670532 11/08/23	C7 0.20 670533 11/08/23	C8 0.15 670534 11/08/23	C10 0.10 670535 11/08/23
Parameter	LQM/CIEH S4UL	C4SL	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)	Measured Values (mg/kg)
Asbestos Screen Arsenic (As) Barium (Ba) Beryllium (Be) W/S Boron Cadmium (Cd) Chromium (Cd) Chromium (Cr) Copper (Cu) Lead (Pb) Mercury (Hg) Nickel (Ni) Selenium (Se) Vanadium (V) Zinc (Zn)	37 1.7 290 11 910 2400 1.2 180 250 410 3700	37 200	Not Detected 5 32 < 0.5 < 1 < 0.2 10 7 12 < 1 8 < 2 15 25	Not Detected 11 79 1.1 < 1 0.6 18 27 85 < 1 17 < 2 31 94	Not Detected < 2 5 < 0.5 < 1 0.3 < 2 8 < 3 < 1 < 3 < 2 3 9	Not Detected < 2 5 < 0.5 < 1 0.3 < 2 8 < 3 < 1 < 3 < 2 9	Not Detected 3 19 < 0.5 < 1 < 0.2 4 33 17 < 1 5 < 2 9 21	Not Detected 14 102 0.7 < 1 < 0.2 8 28 355 < 1 9 < 2 20 89	Not Detected 10 40 0.5 < 1 < 0.2 11 30 22 < 1 19 < 2 15 51	Not Detected 11 83 0.6 < 1 0.8 10 325 213 < 1 14 < 2 29 538	Not Detected 8 59 0.7 < 1 0.6 16 19 43 < 1 14 < 2 25 68	Not Detected 3 23 < 0.5 < 1 0.3 6 11 40 < 1 7 < 2 10 27	Not Detected 16 91 1 1.2 0.2 11 48 230 <1 14 <2 30 77
TPH Benzene Toluene Ethylbenzene p & m-xylene o-xylene MTBE	1900 0.370 660 260 310	0.42	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002 < 0.005	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002 < 0.005	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002 < 0.005	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002 < 0.005	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002 < 0.005	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.002 < 0.005	< 42 < 0.002 < 0.005 < 0.002 < 0.002 < 0.002 < 0.005
PAH Total Naphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(ghi)perylene	2.3 170 210 170 95 2400 280 620 7.20 15 2.60 77 2.20 27 0.24 320		< 1.6 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <td>< 1.6 < 0.1 < 0.1</td> <td>< 1.6 < 0.1 < 0.1</td> <td>< 1.6 < 0.1 <td>$\begin{array}{c} 10.2 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.83 \\ 0.13 \\ 2.08 \\ 1.86 \\ 0.91 \\ 1.06 \\ 1.06 \\ 1.06 \\ 0.40 \\ 0.95 \\ 0.50 \\ < 0.1 \\ 0.44 \end{array}$</td><td>< 1.6 < 0.1 < 0.1</td><td>< 1.6 < 0.1 <td>$\begin{array}{c} 2.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.14 \\ < 0.1 \\ 0.35 \\ 0.36 \\ 0.21 \\ 0.20 \\ 0.23 \\ < 0.1 \\ 0.23 \\ 0.17 \\ < 0.1 \\ 0.18 \end{array}$</td><td>$\begin{array}{c} 6.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.76 \\ 0.15 \\ 1.23 \\ 1.07 \\ 0.53 \\ 0.56 \\ 0.55 \\ 0.18 \\ 0.48 \\ 0.31 \\ < 0.1 \\ 0.26 \end{array}$</td><td>$\begin{array}{c} 3 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.12 \\ 0.62 \\ 0.12 \\ 0.60 \\ 0.47 \\ 0.31 \\ 0.29 \\ 0.22 \\ < 0.1 \\ 0.22 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \end{array}$</td><td>2 < 0.1 < 0.1 < 0.1 < 0.1 0.16 < 0.1 0.37 0.34 0.22 0.22 0.25 < 0.1 0.22 0.13 < 0.1 0.12</td></td></td>	< 1.6 < 0.1 < 0.1	< 1.6 < 0.1 < 0.1	< 1.6 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <td>$\begin{array}{c} 10.2 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.83 \\ 0.13 \\ 2.08 \\ 1.86 \\ 0.91 \\ 1.06 \\ 1.06 \\ 1.06 \\ 0.40 \\ 0.95 \\ 0.50 \\ < 0.1 \\ 0.44 \end{array}$</td> <td>< 1.6 < 0.1 < 0.1</td> <td>< 1.6 < 0.1 <td>$\begin{array}{c} 2.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.14 \\ < 0.1 \\ 0.35 \\ 0.36 \\ 0.21 \\ 0.20 \\ 0.23 \\ < 0.1 \\ 0.23 \\ 0.17 \\ < 0.1 \\ 0.18 \end{array}$</td><td>$\begin{array}{c} 6.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.76 \\ 0.15 \\ 1.23 \\ 1.07 \\ 0.53 \\ 0.56 \\ 0.55 \\ 0.18 \\ 0.48 \\ 0.31 \\ < 0.1 \\ 0.26 \end{array}$</td><td>$\begin{array}{c} 3 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.12 \\ 0.62 \\ 0.12 \\ 0.60 \\ 0.47 \\ 0.31 \\ 0.29 \\ 0.22 \\ < 0.1 \\ 0.22 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \end{array}$</td><td>2 < 0.1 < 0.1 < 0.1 < 0.1 0.16 < 0.1 0.37 0.34 0.22 0.22 0.25 < 0.1 0.22 0.13 < 0.1 0.12</td></td>	$\begin{array}{c} 10.2 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.83 \\ 0.13 \\ 2.08 \\ 1.86 \\ 0.91 \\ 1.06 \\ 1.06 \\ 1.06 \\ 0.40 \\ 0.95 \\ 0.50 \\ < 0.1 \\ 0.44 \end{array}$	< 1.6 < 0.1 < 0.1	< 1.6 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 <td>$\begin{array}{c} 2.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.14 \\ < 0.1 \\ 0.35 \\ 0.36 \\ 0.21 \\ 0.20 \\ 0.23 \\ < 0.1 \\ 0.23 \\ 0.17 \\ < 0.1 \\ 0.18 \end{array}$</td> <td>$\begin{array}{c} 6.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.76 \\ 0.15 \\ 1.23 \\ 1.07 \\ 0.53 \\ 0.56 \\ 0.55 \\ 0.18 \\ 0.48 \\ 0.31 \\ < 0.1 \\ 0.26 \end{array}$</td> <td>$\begin{array}{c} 3 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.12 \\ 0.62 \\ 0.12 \\ 0.60 \\ 0.47 \\ 0.31 \\ 0.29 \\ 0.22 \\ < 0.1 \\ 0.22 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \end{array}$</td> <td>2 < 0.1 < 0.1 < 0.1 < 0.1 0.16 < 0.1 0.37 0.34 0.22 0.22 0.25 < 0.1 0.22 0.13 < 0.1 0.12</td>	$\begin{array}{c} 2.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.14 \\ < 0.1 \\ 0.35 \\ 0.36 \\ 0.21 \\ 0.20 \\ 0.23 \\ < 0.1 \\ 0.23 \\ 0.17 \\ < 0.1 \\ 0.18 \end{array}$	$\begin{array}{c} 6.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.76 \\ 0.15 \\ 1.23 \\ 1.07 \\ 0.53 \\ 0.56 \\ 0.55 \\ 0.18 \\ 0.48 \\ 0.31 \\ < 0.1 \\ 0.26 \end{array}$	$\begin{array}{c} 3 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 0.12 \\ 0.62 \\ 0.12 \\ 0.60 \\ 0.47 \\ 0.31 \\ 0.29 \\ 0.22 \\ < 0.1 \\ 0.22 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \end{array}$	2 < 0.1 < 0.1 < 0.1 < 0.1 0.16 < 0.1 0.37 0.34 0.22 0.22 0.25 < 0.1 0.22 0.13 < 0.1 0.12

Notes

Adopted Generic Acceptance Criteria are shaded in yellow Yellow shaded values exceed the adopted Generic Acceptance Criteria

Residential land use with homegrown produce adopted Soil Organic Matter taken as 1%

Refer to contents page for Full References

LQM/CIEH S4ULs Copyright Land Quality Management Limited reproduced with permission All rights reserved

C11	C12	C12A
0.30	0.20	0.20
670536	670537	670538
11/08/23	08/08/23	10/08/23
Measured Values	Measured Values	Measured Values
(mg/kg)	(mg/kg)	(mg/kg)
Not Detected 15 86 0.8 1.1 0.2 11 46 207	Not Detected 38 79 1.8 < 1 0.5 18 54 54 154	Not Detected 9 62 0.8 < 1 0.6 16 20 48
< 1	< 1	< 1
13	54	15
< 2	< 2	< 2
27	29	27
108	138	70
< 42	< 42	< 42
< 0.002	< 0.002	< 0.002
< 0.005	< 0.005	< 0.005
< 0.002	< 0.002	< 0.002
< 0.002	< 0.002	< 0.002
< 0.002	< 0.002	< 0.002
< 0.005	< 0.005	< 0.005
$\begin{array}{c} 10.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ < 0.1 \\ 1.18 \\ 0.21 \\ 2.05 \\ 1.72 \\ 1.01 \\ 0.99 \\ 0.90 \\ 0.34 \\ 0.89 \\ 0.48 \\ < 0.1 \\ 0.36 \end{array}$	< 1.6 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.29 0.24 0.15 0.16 0.16 < 0.1 0.15 < 0.1 < 0.1 < 0.1	< 1.6 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Project: Nonnington Prima Windows Site 1637.00 Client: Roma Capital

Table 2 - Summary of Acceptance Criteria and Chemical Analysis Results

No No Series	Parameter
Abseitos Screen Assenic (As) Servin (Ba) And Detected 37 Not Detected 18 Not Detected 112 Not Detected 9 Not Detected 9 Not Detected 8 Not Detected 8 Not Detected 8 Not Detected 9 Not Detec	
o-xylene < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <<<	Asbestos Screen Arsenic (As) Barium (Ba) Beryllium (Be) W/S Boron Cadmium (Cd) Chromium (Cd) Chromium (Cr) Copper (Cu) Lead (Pb) Mercury (Hg) Nickel (Ni) Selenium (Se) Vanadium (V) Zinc (Zn) TPH Benzene Toluene Ethylbenzene p & m-xylene o-xylene MTBE PAH Total Naphthalene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Acenaphthylene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene

Notes

Notes

Adopted Generic Acceptance Criteria are shaded in yellow Adopted Generic Acceptance Criteria are shaded in yellow Yellow shaded values exceed the adopted Generic Acceptan Yellow shaded values exceed the adopted Generic Acceptance Criteria Residential land use with homegrown produce adopted Residential land use with homegrown produce adopted Soil Organic Matter taken as 1% Refer to contents page for Full References

Soil Organic Matter taken as 1% Refer to contents page for Full References

LQM/CIEH S4ULs Copyright Land Quality Management LLQM/CIEH S4ULs Copyright Land Quality Management Limited reproduced with permission All rights reserved All rights reserved

	Source	On site contamination Off Site contamination									_				
		Contaminate	d soils				Contaminate	d waters	Landfills	Backfilled	Coal Mining	Fuel	Industries	Waste	
	D. dl							344.4		quarries		stations		Transfer	d
	Pathway	Innalation	Dermal	Ingestion	water	Vegetable	Migrating	water	Migrating	Migrating	Migrating	Migrating	Migrating	Migrating	
		dust and	Contact		supply	Ортаке	gases,	supply	gases and	gases and	gases and	gases and	gases and	gases and	
		infiltration			pipework		and waters	pipework	vapours	vapours	vapours	vapours	vapours	vapours	а
	Eutura residents		Low/		Low/	Low/	Low	Low	No risk	Low	Low	No risk	Low	No risk	-
	i uture residents	moderate	moderate	moderate	moderate	moderate	LOW	LOW	INO HSK	LOW	LOW	INO HSK	LOW	NUTISK	
	Groundworkers	Low/	Low/	Low/	Low/	Low/	Low	Low	No risk	Low	Low	No risk	Low	No risk	
		moderate	moderate	moderate	moderate	moderate									
ors	Pets and livestock	Low/	Low/	Low/	Low/	Low/	Low	Low	No risk	Low	Low	No risk	Low	No risk	
pto		moderate	moderate	moderate	moderate	moderate									
ece	Neighbouring site	Low/	Low/	Low/	Low/	Low/	Low	Low							
Å	occupants	moderate	moderate	moderate	moderate	moderate									_
	Controlled waters	No risk													
	Sensitive land use	No risk													
	Comments	Part of site has history of industrial use and tanks on site	Part of site has history of industrial use and tanks on site	Part of site has history of industrial use and tanks on site	Part of site has history of industrial use and tanks on site	Part of site has history of industrial use and tanks on site	Groundwater table expected to be low	Groundwater table expected to be low	No risk. No landfills identified within 1000m	Low risk. No quarries identified within 300m	No risk from historic mining. Future underground coal mining extremely unlikely	No risk. No fuel stations identified within 1000m	Low risk. No off site contaminative industries identified within 1000m	No risk. No waste transfer identified within 1000m	
	Recommended further investigation	Yes	Yes	Yes	Yes	Yes	None	None	None	None	None	None	None	None	

•

Prima Windows Site, Nonington CT15 4HF Project Number 1637 Date September 2023

Water ischarges	Pollution Incidents	
Migrating gases, vapours, nd waters	Migrating gases and vapours	Comments
Low	Low	
Low	Low	
Low	Low	
Low risk. No water discharges identified within 1000m	Low risk. No pollution incidents identified within 1000m	
None	None	

TABLE 4 GENERIC RISK ASSESSMENT AND CONCEPTUAL MODEL

	Source	On site conta	mination						Off Site conta	amination							
		Contaminated	d soils				Contaminated	d waters	Landfills	Backfilled	Coal Mining	Fuel	Industries	Waste	Water	Pollution	
										quarries		stations		Transfer	discharges	Incidents	
	Pathway	Inhalation	Dermal	Ingestion	Water	Vegetable	Migrating	Water	Migrating	Migrating	Migrating	Migrating	Migrating	Migrating	Migrating	Migrating	Comments
		dust and	Contact		supply	Uptake	gases,	supply	gases and	gases and	gases and	gases and	gases and	gases and	gases,	gases and	
		vapours,			pipework		vapours,	pipework	vapours	vapours	vapours	vapours	vapours	vapours	vapours,	vapours	
		infiltration					and waters								and waters		
	Future residents	Low	Low	Low	Low	Low	Low	Low	No risk	Low	Low	No risk	Low	No risk	Low	Low	
	Groundworkers	Low	Low	Low	Low	Low	Low	Low	No risk	Low	Low	No risk	Low	No risk	Low	Low	
ptors	Pets and livestock	Low	Low	Low	Low	Low	Low	Low	No risk	Low	Low	No risk	Low	No risk	Low	Low	
Rece	Neighbouring site occupants	Low	Low	Low	Low	Low	Low	Low									
	Controlled waters	No risk															
	Sensitive land use	No risk															
	Comments	Contamination testing indicated compliance with Acceptance Critera	Groundwater table lower than 38mAOD	Groundwater table lower than 38mAOD	No risk. No landfills identified within 1000m	Low risk. No quarries identified within 300m	No risk from historic mining. Future underground coal mining extremely unlikely	No risk. No fuel stations identified within 1000m	Low risk. No off site contaminative industries identified within 1000m	No risk. No waste transfer identified within 1000m	Low risk. No water discharges identified within 1000m	Low risk. No pollution incidents identified within 1000m					
	Recommended further investigation	None	None	None	None	None	None	None	None	None	None	None	None	None	None	None	

.

Prima Windows Site, Nonington CT15 4HF Project Number 1637 Date September 2023

APPENDICES

APPENDIX A DESK STUDY DATA

APPENDIX A1 Geological Maps

Geology 1:50,000 Maps Legends

Superficial Geology

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age		
	HEAD	Head	Silt and Gravel	Not Supplied - Quaternary		
	HEAD	Head	Clay, Silt, Sand and Gravel	Not Supplied - Quaternary		
	HEAD Head		Clay and Silt	Not Supplied - Quaternary		
	CWF	Clay-with-flints Formation	Clay, Silt, Sand and Gravel	Not Supplied - MIOCENE		

Bedrock and Faults

Map Colour	Lex Code	Rock Name	Rock Type	Min and Max Age		
	TAB	Thanet Formation	Sand, Silt and Clay	Not Supplied - Thanetian		
	MACK Margate Chalk Member		Chalk	Not Supplied - Santonian		
	SECK	Seaford Chalk Formation	Chalk	Not Supplied - Coniacian		
/		Faults				

Envirocheck

LANDMARK INFORMATION GROUP[®]

Geology 1:50,000 Maps

This report contains geological map extracts taken from the BGS Digital Geological map of Great Britain at 1:50,000 scale and is designed for users carrying out preliminary site assessments who require geological maps for the area around the site. This mapping may be more up to date than previously published paper maps.

The various geological layers - artificial and landslip deposits, superficial geology and solid (bedrock) geology are displayed in separate maps, but superimposed on the final 'Combined Surface Geology' map. All map legends feature on this page. Not all layers have complete nationwide coverage, so availability of data for relevant map sheets is indicated below.

Geology 1:50,000 Maps Coverage Map ID: 2 Map ID: Map Sheet No: 290 Map Sheet No: 289 Dover 1966 Map Name: Map Name: Canterbury Map Date: 1982 Map Date: Bedrock Geology: Available Bedrock Geology: Available Superficial Geology: Available Superficial Geology: Available Artificial Geology: Not Available Artificial Geology: Not Available Faults: Not Supplied Faults: Not Supplied Landslip: Available Landslip: Available Rock Segments: Not Supplied Rock Segments: Not Supplied

Geology 1:50,000 Maps - Slice A

v15.0 28-Sep-2021

LANDMARK INFORMATION GROUP[®]

Artificial Ground and Landslip

Artificial ground is a term used by BGS for those areas where the ground surface has been significantly modified by human activity. Information about previously developed ground is especially important, as it is often associated with potentially contaminated material, unpredictable engineering conditions and unstable ground.

Artificial ground includes:

 Made ground - man-made deposits such as embankments and spoil heaps on the natural ground surface.
 Worked around - areas where the ground has been cut away such as

- Worked ground - areas where the ground has been cut away such as quarries and road cuttings.

- Infilled ground - areas where the ground has been cut away then wholly or partially backfilled.

 Landscaped ground - areas where the surface has been reshaped.
 Disturbed ground - areas of ill-defined shallow or near surface mineral workings where it is impracticable to map made and worked ground separately.

Mass movement (landslip) deposits on BGS geological maps are primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground. The dataset also includes foundered strata, where the ground has collapsed due to subsidence.

Artificial Ground and Landslip Map - Slice A

 Order Details:
 285513079_1_1

 Order Number:
 285513079_1_1

 Customer Reference:
 1455

 National Grid Reference:
 626330, 152170

 Slice:
 A

 Site Area (Ha):
 1.14

 Search Buffer (m):
 1000

Site Details:

Prima Systems, Unit 1, The Old Malt House, Easole Street, NONINGTON, CT15 4HF $\,$

Landmark®	Tel: Fax: Web:	0844 844 9952 0844 844 9951 www.envirocheck.co.uk
v15.0 28-Sep-2021		Page 2 of 5

LANDMARK INFORMATION GROUP®

Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place'. Other superficial strata may be held in the Mass Movement dataset where they have been moved, or in the Artificial Ground dataset where they are of man-made origin.

Most of these Superficial deposits are unconsolidated sediments such as gravel, sand, silt and clay, and onshore they form relatively thin, often discontinuous patches or larger spreads.

Superficial Geology Map - Slice A

Order Details: Order Number: Customer Reference: National Grid Reference: Slice: Site Area (Ha): Search Buffer (m):	285513079_1_1 1455 626330, 152170 A 1.14 1000
Site Details: Prima Systems, Unit 1, The CT15 4HF	Old Malt House, Easole Street, NONINGTON,

0844 844 9952 0844 844 9951 Landmark Fax Web www.envirocheck.co.ul v15.0 28-Sep-2021

LANDMARK INFORMATION GROUP[®]

Bedrock and Faults

Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BGS Faults and Rock Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. coal seam, gypsum bed). Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrock sequence, most faults and mineral veins primarily affect the bedrock but cut across the strata and post date its deposition.

Order Details: Order Number: Customer Reference: National Grid Reference: Slice: Slite Area (Ha): Search Buffer (m):	285513079 1455 626330, 15 A 1.14 1000	1_1 2170	
Site Details: Prima Systems, Unit 1, The C CT15 4HF	Old Malt Hou	se, Eas	ole Street, NONINGTON,
	8	Tel: Fax: Web:	0844 844 9952 0844 844 9951 www.envirocheck.co.uk

v15.0 28-Sep-2021

Page 4 of 5

LANDMARK INFORMATION GROUP®

Combined Surface Geology

The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.

Additional Information

More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the 'BGS Lexicon of Named Rock Units'. This database can be accessed by following the 'Information and Data' link on the BGS website.

Contact

British Geological Survey Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Telephone: 0115 936 3143 Fax: 0115 936 3276 email: enquiries@bgs.ac.uk website: www.bgs.ac.uk

Landmark

v15.0 28-Sep-2021

Combined Geology Map - Slice A

Order Details:	
Order Number:	285513079_1_1
Customer Reference:	1455
National Grid Reference:	626330, 152170
Slice:	A
Site Area (Ha):	1.14
Search Buffer (m):	1000
Site Details: Prima Systems, Unit 1, The CT15 4HF	Old Malt House, Easole Street, NONINGTON,

Tel

Fax

Web

Page 5 of 5

0844 844 9952

0844 844 9951

www.envirocheck.co.uk
APPENDIX B FIELD DATA APPENDIX B1 Borehole Logs

					•			••••			3			
Project Site CT	Name:	Nonningto	n, Prima	Windows	Client: I	Roma Capit	al Group	Ltd		Date: 10/0	8/2023			
Locatio CT15 4	n: Prim	a Windows	s Site Nor	nnington	Contrac	ctor: Peter E	Baxter As	sociates L	td					
Project	No. : 1	637			Crew N	ame: CK D	rilling			Drilling Eq	uipment: W	/indowless	Sampler	-
Bore	hole N BH1	umber	Hole	e Type CP	43	Level 8.73m AoD		Logged kb	Ву	S 1	cale :50	Pag Sh	e Numbe eet 1 of 1	er I
Well	Water	Sam	ble and li	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrip	ition		
	Junco	Depth (m) Туре	Resul	ts	(11)	(11)		TOPSO	IL				
		0.80 1.20 1.80 2.00 3.00 3.50 4.00	D SPT D SPT SPT D SPT	N=10 (4,4/3 N=12 (2,2/3 N=10 (2,2/2 N=10 (2,3/2	,3,2,2) ,3,3,3) ,2,3,3)	0.30 1.60 2.30 2.50	43.43 42.13 41.43 41.23		Very stif CLAY Very stif with cha Firm to Slightly damp	f orange brown f pale brown lk pieces stiff pale bro red as struc gravelly san	wn slightly g slightly gra wn very silty tureless CHA dy SILT. Grav	ravelly very velly silty Cl CLAY LK compos /el is very w	silty LAY sed of reak	1 1 1 1 1 1 1 1 1 1
		5.00	SPT	N=14 (2,3/3	,3,4,4)	5.45	38.28			End of	Borehole at 5	.450m		5 5 6
														7
H	lole Diame	eter	Casing	Diameter			Chiselling			D- 11 -	Inclination	and Orientatio	n	41-11
Depth Ba	ase D	Diameter D	epth Base	Diameter	Depth To	op Depth Ba	se Dura	ition	ΓοοΙ	Depth Top	Depth Base	Inclination	Orienta	ation
Demi												<u> </u>		
Kemar	ΓKS												AGS	

					-	0.00		• · · · -			3		
Projec Site C	ct Name T15 4H	Nonnington,	Prima	Windows	Client: I	Roma Capi	tal Group	Ltd		Date: 10/0	8/2023		
Locati CT15	ion: Prim 4HF Ph	a Windows S ase 2	ite Nor	nnington	Contrac	ctor: Peter E	Baxter As	sociates L	_td				
Projec	ct No. : 1	637			Crew N	lame: CK D	rilling			Drilling Eq	uipment: V	Vindowless	Sampler
Bor	ehole N BH2	umber	Hole	e Type CP	43	Level 3.73m AoD		Logged kb	Ву	S 1	cale ·50	Page	e Number
Well	Water	Sample	and li	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrir	otion	
	Strikes	Depth (m)	Туре	Resul	ts	(m)	(m)		TOPSO	IL			
		0.70	D			0.30	43.43		Stiff bro chalk pi	wn slightly g eces	ravelly very	silty CLAY wi	th
		1.20	SPT	N=10 (2,3/3	5,2,2,3)	0.90	42.83		Recove gravelly	red as struct sandy SILT.	ureless CHA Gravel is ve	ALK compose ery weak	ed of 1 -
		2.00	SPT	N=12 (2,2/2	2,3,3,4)								2 -
													-
		3.00	SPT	N=9 (2,3/2,	,2,2,3)				damp				3 -
		4.00	SPT	N=11 (2,2/3	,3,2,3)								4 -
													-
		5.00	SPT	N=25 (2,3/1	2,6,4,3)	5.45	38.28					450	5 -
										End of	Borenole at 5	5.450m	
													6 -
													7 -
													-
													8
													9 -
													-
					Γ					T			10 -
Depth	Hole Diame Base [eter Diameter Dept	Casing th Base	Diameter Diameter	Depth Te	op Depth Ba	Chiselling ise Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientation	Orientation
Rema	arks												AGS

					•	0.00		•			9			
Projec Site C	t Name: T15 4HI	: Nonningtor = Phase 2	n, Prima	Windows	Client: I	Roma Capi	al Group	Ltd		Date: 10/0	8/2023			
Locati	on: Prim	a Windows	Site Nor	nnington	Contrac	ctor: Peter E	Baxter As	sociates L	td					
Proied	<u>4 nr Fil</u> t No. : 1	<u>ase z</u> 637			Crew N	ame: CK D	rillina			Drilling Eq	uipment: W	/indowless	Sampler	
Bor	ehole N	umber	Hole	туре	12			Logged	Ву	S	cale	Page	e Number	
	Watar	Samn	۷۱ با has ما	/LO n Situ Testir	43	Dopth		KD			:50	Sne		
Well	Strikes	Depth (m)	Туре	Resul	is	(m)	(m)	Legend		Strat	um Descrip	otion		
	Strikes	Depth (m) 1.20 2.00 3.00 4.00	Type SPT SPT SPT SPT	Result N=14 (2,3/3 N=31 (5,10/8 N=9 (2,2/2, N=29 (2,2/3,	,3,4,4) 3,7,7,9) 2,2,3) 11,8,7)	(m) 0.30 0.90	(m) 43.49 42.89		TOPSO Very stif with cha Recove sandy s yellow b	IL ff brown slig alk pieces red as struct ity GRAVEL brown staine	tureless CHA Gravel is w d.	very silty CL/	AY ed of faces	2 4
		5.00	SPT	N=12 (2,3/2	,3,3,4)	5.45	38.34			End of	Borehole at 5	i.450m		5 6 7 9 9
Depth	Base [Diameter De	epth Base	Diameter	Depth Te	op Depth Ba	se Dura	ition	Tool	Depth Top	Depth Base	Inclination	Orientatio	<u>n</u>
Rema	arks												AGS	

		ク				•	0100			<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-09			
Projec Site C	t Name T15 4H	: Nonning F Phase 2	ton, P 2	Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 11/0	8/2023			
Locati	on: Prim	na Windov	ws Site	e Nor	nnington	Contrac	tor: Peter B	axter As	sociates L	td					
Projec	rt No. : 1	637				Crew Na	ame: CK Dr	illing			Drilling Eq	uipment: W	/indowless	Sampler	
Bor	ehole N	umber		Hole	Туре		Level		Logged	Ву	S	cale	Pag	e Number	
	C02			C	P	40	.00m AoD		kb		1	:25	She	eet 1 of 1	
Well	Water Strikes	San	nple a	and Ir	n Situ Testir	ng	Depth (m)	Level (m)	Legend		Strat	um Descrip	otion		
		Depth (I	m)	Туре	Resul	IS	()	()		CONCF	RETE				
															-
							0.30	39.70	****			rown sand o	ravel and b	rick	-
										pieces)		own sand, g		ICK	_
							0.60	39.40							_
							0.00	00.40	××	Stiff bro	wn slightly g	gravelly sand	ly CLAY		_
		0.80		D					××						_
									×					1	_
									×—×_					'	-
									~××						_
									*^						_
									××						_
							1.60	38.40		Recove	red as struct	ureless CHA	LK compos	ed of	-
										on white	e sandy SILT				_
															_
		2.00		SPT	N=9 (2,3/2,	2,2,3)								2	_
															_
															_
							2.45	37.55			End of	Borehole at 2	.450m		_
															-
															_
															-
														3	
															_
															_
															-
															_
															_
														4	_
															-
															_
															_
															-
															_
															_
															_
											1			5	
Depth I	Hole Diame Base [_{eter} Diameter	Depth	Casing I Base	Diameter Diameter	Depth To	p Depth Ba	Chiselling se Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientation	n Orientation	1
Rema	arks														
GL INTE	errea													AGS	
														Auo	

		2					0100					9		
Projec Site C	t Name T15 4HI	: Nonning ⁻ Phase 2	ton, 2	Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 11/08/202	3		
Locati CT15	on: Prim 4HF Ph	∖a Windo ase 2	ws Si	ite Nor	nington	Contrac	tor: Peter B	axter As	sociates L	_td				
Projec	ct No. : 1	637				Crew N	ame: CK Dı	rilling			Drilling Equipme	ent: Window	less Sample	er
Bor	ehole N C03	umber		Hole W	e Type /LS	40	Level .00m AoD		Logged kb	Ву	Scale 1:25		Page Numb Sheet 1 of	er 1
Well	Water	Sar	nple	and li	n Situ Testir	ng	Depth	Level	Leaend		Stratum D	escription		
	Strikes	Depth (m)	Туре	Resul	ts	(m)	(m)	. 1975-199	CONCR	PETEE			
										Conton				
							0.28	39.72		MADE (GROUND (brown s	and, gravel a	and chalk)	
							0.60	39.40		Very stif CHALK	f pale brown sligh	tly gravelly C	LAY/	
							1.00	39.00		Basaya	rad as atructurales		magad of	- 1 -
		1.20		SPT	N=11 (2,2/2	,3,3,3)				gravelly	sandy SILT. Grave	el is very wea	k	
							1.45	38.55			End of Boreho	ble at 1.450m		
														2 -
														3 —
														4 _
	Hole Diame	eter		Casing	Diameter			Chiselling			Inc	lination and Orie	entation	5 -
Depth	Base [Diameter	Dept	h Base	Diameter	Depth To	p Depth Ba	se Dura	tion	Tool	Depth Top Depth	n Base Inclin	ation Orient	tation
Rema	arks													
GL infe	erred												AGS	S

		9			•	0100			21 m		-09			
Projec Site C	t Name T15 4H	: Nonningt F Phase 2	ton, Prima	a Windows	Client: I	Roma Capit	al Group	Ltd		Date: 11/08	3/2023			
Locati CT15	on: Prin 4HF Ph	na Windov ase 2	vs Site No	onnington	Contrac	ctor: Peter E	Baxter As	sociates L	_td					
Projec	ct No. : 1	637			Crew N	lame: CK Di	rilling			Drilling Equ	uipment: N	/indowless	Sampler	
Bor	ehole N C04	umber	Ho	е Туре СР	41	Level .26m AoD		Logged kb	Ву	Sc 1:	ale :25	Pa Sh	ge Numbe leet 1 of 1	er
Wall	Water	San	ple and	In Situ Testi	ng	Depth	Level	Logond		Strati		tion		
vveii	Strikes	Depth (r	n) Type	Resu	lts	(m)	(m)	Legend		Stratt	in Descrip	nion		
									CONCR	KETE				
						0.30	40.96		MADE (and bric	GROUND (da k pieces)	ark brown/bl	ack sand, g	ravel	-
						0.50	40.76		Recove cream s weak	red as structu slightly gravel	ureless CHA ly sandy SIL	LK compos T. Gravel is	sed of s very	
		0.90	D											-
		1.00	SPT	N=9 (2,1/2	,2,3,2)	1.00	40.26		Recove Gravel i	red as off wh s very weak	ite slightly g	ravelly sand	dy SILT.	1
						1.45	39.81			End of E	Borehole at 1	.450m		-
														2 —
														3
														1111
														4
														· - -
														111
	Hole Diam	eter	Casin	g Diameter			Chiselling				Inclination	and Orientatio	on	5 —
Depth	Base [Diameter	Depth Base	Diameter	Depth T	op Depth Ba	se Dura	tion	Tool	Depth Top	Depth Base	Inclination	Orienta	ition
Rema	arks													
													AGS	

					-						3		
Projec Site C	t Name: T15 4HI	: Nonningto - Phase 2	on, Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 11/0	8/2023		
Locati CT15	on: Prim 4HF Ph:	na Window ase 2	s Site No	nnington	Contrac	tor: Peter E	Baxter As	sociates L	.td				
Projec	:t No. : 1	637			Crew Na	ame:				Drilling Eq	uipment:		
Bor	ehole N C05	umber	Hole (e Type CP	39	Level .85m AoD		Logged	Ву	So 1	cale :25	Page	e Number et 1 of 1
W/611	Water	Sam	ple and l	n Situ Testir	ng	Depth	Level	Legend		Strat	um Descrin	tion	
vven	Strikes	Depth (n	n) Type	Resul	ts	(m)	(m)	Legenu				lion	
									CONCF	RETE			-
						0.26	39.59		MADE	GROUND (bi	rown sand, g	ravel, brick a	and –
						0.50	39.35		asn) Stiff bro	own sandy CL	_AY		
										, -			
						0.80	39.05		Stiff pal	e brown sligh	ntly gravelly s	silty CLAY wi	ith –
		1.00	D					××_	chalk pi	leces			1 -
								^××					-
													-
								××					-
								××					-
								××					-
								××					-
								××					-
								××					2
						2.20	37.65	<u>, × × -</u>	Recove	red as struct	ureless CHA	LK compose	ed of
									slightly	gravelly sand	dy SILT. Grav	/el is very we	eak –
													-
													-
													-
		3.00	SPT	N=9 (3,/3,2	2,2,2)								3 —
													-
						3.45	36.40	<u> </u>		End of I	Borehole at 3	.453m	
													-
													-
													4 —
													-
													-
													-
													-
													-
													-
													5 —
	Hole Diame	eter	Casing	Diameter			Chiselling				Inclination	and Orientation	
Depth	Base C	Diameter I	Depth Base	Diameter	Depth To	p Depth Ba	se Dura	tion	Tool	Depth Top	Depth Base	Inclination	Orientation
Rema	arke											<u> </u>	
													AGS

		9				0100			21 m		-09			
Projec Site C	t Name	: Nonningto F Phase 2	on, Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 11/0	8/2023			
Locati CT15	ion: Prim 4HF Ph	ase 2	s Site Nor	nington	Contrac	tor: Peter E	Baxter As	sociates L	td					
Projec	ct No. : 1	637			Crew N	ame: CK Di	rilling			Drilling Eq	luipment: W	/indowless	Sampler	
Bor	ehole N C07	umber	Hole (Type P	40	Level .09m AoD		Logged kb	Ву	S 1	cale I:25	Pag Sh	e Numbe eet 1 of 1	er
\//all	Water	Sam	ple and li	n Situ Testir	ng	Depth	Level	Legend		Strat		tion		
wein	Strikes	Depth (m	i) Type	Resul	ts	(m)	(m)		CONCE	RETE				
						0.30	39.79		MADE (fragmer	GROUND (k its)	prown sand,	brick and co	ncrete	
						0.70	39.39		Stiff dar	k grey sand	y CLAY with	chalk pieces	6	-
		1.00	D			0.90	39.19		Stiff bro	wn sandy C	LAY			1
		1.70	D			1.70	38.39		Stiff pale pieces	e brown slig	htly gravelly	CLAY with c	halk	-
		2.00	SPT	N=10 (2,2/2	2,2,3,3)									2
						2.45	37.64	<u> </u>		End of	Borehole at 2	.452m		1 1
				Diameter			Chicallian							3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Depth	Base [Diameter C	Depth Base	Diameter	Depth To	op Depth Ba	se Dura	tion	Tool	Depth Top	Depth Base	Inclination	Orienta	ition
Rema	arks				<u> </u>			I		I	1		AGS	

	シ			I	CICU	1331						
Project Nam Site CT15 4	e: Nonning	jton, Prima 2	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 11/08/2023			
Location: Pr	ima Windo Phase 2	ws Site No	nnington	Contrac	tor: Peter E	Baxter As	sociates L	.td				
Project No. :	1637			Crew Na	ame: CK Di	rilling			Drilling Equipment:	Windowles	s Sampler	-
Borehole C0	Number 8	Hole	e Type CP	40.	Level .22m AoD		Logged kb	Ву	Scale 1:25	Pa Sł	ge Numbe neet 1 of 1	er
Well Wate	r Sar	mple and I	n Situ Testi	ng	Depth	Level	Legend		Stratum Descr	iption		
Strike	s Depth (m) Type	Resu	lts	(m)	(m)		TOPSC	DIL			_
	2.00	D SPT	N=7 (1,2/2	,1,2,2)	0.30	39.92 38.42 37.77		TOPSC Stiff pal pieces	e brown slightly gravelly pred as structureless Ch gravelly sandy SILT. Gr End of Borehole at	ALK off whit avel is very v 2.000m	e veak.	
Hole Dia	meter	Casing	Diameter			Chiselling			Inclinatio	on and Orientation	on	5 -
Depth Base	Diameter	Depth Base	Diameter	Depth To	p Depth Ba	se Dura	ition	Tool	Depth Top Depth Bas	e Inclination	Orienta	ation

											_	3			
Projec Site C	t Name: T15 4HI	Nonning	iton, F 2	Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 11/08	8/2023			
Locati CT15	on: Prim 4HF Ph	a Windov ase 2	ws Sit	e Nor	nington	Contrac	tor: Peter B	axter As	sociates L	_td					
Projec	:t No. : 1	637				Crew N	ame: CK Dr	illing			Drilling Equ	ipment: W	/indowles	s Sample	r
Bor	ehole N C10	umber		Hole C	Type CP	40	Level .00m AoD		Logged kb	Ву	Sc 1:	ale 25	Pa SI	ge Numb	er 1
Well	Water	Sar	nple a	and Ir	n Situ Testir	ng	Depth	Level	Legend		Stratu	ım Descrip	tion		
	Ourkes	Depth (m) '	Туре	Resul	ts	(11)	(11)	전문화관	CONCF	RETE				
							0.20	39.80 39.20		MADE (pieces)	GROUND (bro	own sand, g vn very silty	ravel and l	prick	
		1.20		D			1.60	38.40		Very stif	ff pale brown	slightly grav	velly CLAY		
							1.80	38.20		Recove off white weak	red as structu e slightly grav	ireless CHA elly sandy (LK compo CHALK. Gr	sed of avel is	2
							2.45	37.55			End of B	iorehole at 2	.450m		3
Depth I	Base [ner Diameter	Depth	Base	Diameter	Depth To	op Depth Ba	se Dura	tion	Tool	Depth Top	Depth Base	Inclination	Orient	ation
Rema	arks												<u> </u>		
GL infe	erred													AGS	

		ノ						001		7 1111	ing L	-09			
Projec Site C	t Name T15 4H	: Nonning F Phase 2	iton, F 2	Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 11/08	3/2023			
Locati <u>CT15</u>	on: Prin <u>4HF Ph</u>	na Windov ase 2	ws Sit	e Nor	nington	Contrac	tor: Peter B	Baxter As	sociates L	td					
Projec	ct No. : 1	637				Crew Na	ame: CK Dı	rilling			Drilling Equ	uipment: N	/indowlws	ss Sample	r
Bor	ehole N C11	umber		Hole C	Type P	40	Level .00m AoD		Logged kb	Ву	Sc 1:	ale :25	Pa Si	ge Numb heet 1 of	er 1
Well	Water Strikes	Sar	nple a	and Ir	n Situ Testir	ıg	Depth (m)	Level	Legend		Stratu	um Descrip	tion		
		Depth (m)	Туре	Result	IS	()	()		Grass o	ver TOPSOII	_			
							0.20	39.80		MADE (GROUND (br	own sand, a	sh, gravel	and	
							0.40	39.60	<u>×</u>	Very stif	f orange brov	wn very silty	CLAY		
									×× ××						-
									× <u>×</u> ×						-
		1.00		D					×_^_×						- - 1
									<u>^×</u> ×						-
									<u>×_×_×</u>						-
									××_ ××_						-
							1.60	38.40	<u> </u>	Very stif chalk pi	f pale brown eces	slightly grav	elly CLAY	with	-
															-
															2 —
									· · · · · · · · ·						-
							2.30	37.70		Recover slightly g	red as structu gravelly sand	ureless CHA ly SILT . Gra	LK compo vel is wea	sed of k.	-
										Occasio	onal flint grav	el			-
															-
															-
											End of E	Borehole at 3	.000m		3 —
															-
							3.45	36.55							
															-
															-
															4
															-
															-
															5 —
Depth	Hole Diam Base [eter Diameter	Depth	Casing Base	Diameter Diameter	Depth To	p Depth Ba	Chiselling se Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientat	ion n Orient	ation
Rema	arks					<u> </u>		1	I		<u> </u>				
GL INfe	erred													AGS	

					•	0.00		••••			3			
Projec Site C	t Name T15 4H	: Nonnington F Phase 2	, Prima	Windows	Client: I	Roma Capit	al Group	Ltd		Date: 10/0	8/2023			
Locati	on: Prin	a Windows	Site No	nnington	Contrac	ctor: Peter E	Baxter As	sociates L	td					
Proied	<u>4 nr Fil</u> ct No. : 1	<u>ase 2</u> 637			Crew N	ame: CK D	rillina			Drillina Ea	uipment: V	Vindowles	s Sampler	r
Bor	ehole N	umber	Hole	туре		Level		Logged	By	S	cale	Pa	ge Numbe	ər
	C12A		V	/LS	38	8.62m AoD		kb	-	1	:25	Sh	neet 1 of 1	1
Well	Water Strikes	Sampl	e and I	n Situ Testir Resul	ng ts	Depth (m)	Level (m)	Legend		Strat	um Descrip	otion		
		1.00	SPT	N=17 (2,3/4	ł,4,3,6)	0.30	38.32 37.92		MADE (dark gre Very stif	GROUND (p ey clay, grave f brown sligh red as struct SILTGrav	bea shingle/s el, ash and b ntly gravelly tureless CH/ rel is weak. (stone overly rick pieces very silty C ALK compos Occasional	ring) LAY sed of flint	1
										End of	Borehole at 1	1.450m		3
Depth	Hole Diamo Base [eter Diameter De	Casing pth Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling se Dura	ition	Tool	Depth Top	Inclination Depth Base	and Orientation	on Orienta	5 —
_												<u> </u>		
Rema	arks												AGS	

		ノ			•		1001		21 m	ing L	-09			
Project Site C	t Name T15 4H	: Nonning F Phase 2	ton, Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 10/0	8/2023			
Locatio	on: Prin 4HF Ph	na Windov ase 2	vs Site No	nnington	Contrac	tor: Peter E	Baxter As	sociates L	td					
Project	t No. : ′	1637			Crew Na	ame: CK D	rilling			Drilling Eq	uipment: V	/indowless	Sampler	
Bore	ehole N	umber	Hole	е Туре		Level		Logged	Ву	So	cale	Pag	je Numbe	er
	C13		V	VLS	41.	.00m AoD		kb		1	:25	Sh	eet 1 of 1	
Well	Water Strikes	San Donth (nple and I	n Situ Testir	ng to	Depth (m)	Level (m)	Legend		Strate	um Descrip	otion		
						0.40 0.80 0.90 1.00	40.60 40.20 40.10 40.00		MADE (ash and Very stit CLAY Very stit	GROUND (gr I brick pieces ff orange bro ff pale brown te CHALK End of f	ass over bro) wn slightly g CLAY Borehole at 1	own sandy o gravelly very .000m	silty	1
														2
														-
	Hole Diam	eter	Casing	Diameter			Chiselling				Inclination	and Orientatic	'n	3
Depth B	lase	Diameter	Depth Base	Diameter	Depth To	p Depth Ba	se Dura	tion	Tool	Depth Top	Depth Base	Inclination	Orienta	ation
Remo	rke													
GL infe	rred												AGS	

	9			•		001		<i>.</i>			
Project Name Site CT15 4H	: Nonningto	on, Prima	Windows	Client: R	oma Capit	al Group	Ltd		Date: 10/08/2023		
Location: Prin	na Window	s Site Nor	nnington	Contract	or: Peter B	axter As	sociates L	td			
Proiect No. : 1	1637			Crew Na	me: CK Dr	illina			Drilling Equipment: V	Vindowless San	npler
Borehole N	lumber	Hole	Туре		Level		Logged	Ву	Scale	Page Nu	' ımber
C14A	\	C	P	42.2	23m AoD		kb		1:25	Sheet 1	of 1
Well Strikes	Sam	ple and Ir	n Situ Testing	g	Depth	Level	Legend		Stratum Descrip	otion	
Ourkes	Depth (m	ı) Type	Results	s	(11)	(11)		MADE	GROUND (brown clay, g	ravel and brick	
	1.20	D			0.40	41.83		Very stif	f orange brown very silty	CLAY	
					1.50	40.73		Very stif pieces	f pale brown very silty C	LAY with chalk	
					2.00	40.23		Recove off white	red as structureless CH/ e sandy SILT. Occasiona	ALK composed of I flint gravel	2
	3.00	SPT	N=11 (2,3/3, <i>i</i>	2,3,3)	3.45	38.78			End of Borehole at 3	3.450m	3
Hole Diam Depth Base	eter Diameter [Casing Depth Base	Diameter Diameter	Depth Top	Depth Bas	Chiselling se Dura	tion	Tool	Inclination Depth Top Depth Base	and Orientation Inclination C	

	2	ノ			I	CIUC	1331		21 m				
Projec Site C	ct Name T15 4H	: Nonning F Phase 2	iton, Prima 2	a Windows	Client:	Roma Capi	tal Group	Ltd		Date: 11/08/2023			
Locati CT15	ion: Prin 4HF Ph	na Windov ase 2	ws Site No	onnington	Contrac	ctor: Peter E	Baxter As	sociates L	.td				
Projec	ct No. : 1	637			Crew N	ame: CK D	rilling			Drilling Equipment:	Windowless	Sampler	-
Bor	ehole N	umber	Ho	le Type	10			Logged	Ву	Scale	Pag	e Numbe	er
	Water	Sar	nple and	In Situ Test	ina +0	Depth	Level	KD		1.25			
Well	Strikes	Depth (m) Type	e Resu	ilts	(m)	(m)	Legend		Stratum Descr	iption		
									TOPSC	DIL			1 1
						0.20	40.24		Recove	ered as structureless CH	IALK compose	ed of	-
									off white	e gravelly sandy SILT. C	sravel is very v	меак	_
													_
													-
													_
													1 —
													-
													_
						1.45	38.99			End of Borebole at	1 450m		-
													-
													_
													-
													2 —
													-
													-
													-
													_
													-
													-
													3 —
													_
													-
													-
													-
													_
													4 —
													-
													_
													_
													-
													_
													_
					_								5 —
Depth	Hole Diam Base [eter Diameter	Casin Depth Base	g Diameter Diameter	Depth T	op Depth Ba	Chiselling ase Dura	ation	Tool	Inclination Depth Top Depth Bas	on and Orientation e Inclination	Orienta	ation
Rema	arks												
												AGS	

	2	リ			I	ercc	1331		JIII		Jy			
Projec Site C	ct Name T15 4H	: Nonning F Phase 2	iton, Prima 2	a Windows	Client: I	Roma Capit	al Group	Ltd		Date: 11/08/2	2023			
Locati CT15	on: Prin 4HF Ph	na Windov ase 2	ws Site No	onnington	Contrac	tor: Peter E	Baxter As	sociates L	.td					
Projec	ct No. : 1	637			Crew N	ame: CK D	rilling			Drilling Equip	ment: Win	dowless	Sampler	
Bor	ehole N	umber	Hol	e Type	13	Level		Logged	Ву	Scal	e	Page	Numbe	r
	Water	Sar	nple and	In Situ Testi	na	Depth	Level	KD		1.23)	She		
Well	Strikes	Depth (m) Type	Resul	lts	(m)	(m)	Legend		Stratum	Descriptio	on		
									MADE (pieces)	GROUND (brow	n clay, grav	el and bric	:k	1 1
						0.20	43.55		Very sti	ff orange brown	very silty C	LAY		-
								×_×_×						
								<u>xx</u>						
								<u>×_×_×</u>						
								××						
						1.00	42.75	<u>× </u>		End of Bor	ehole at 1 00)0m		1 —
												John		
														2 —
														-
														3 —
														-
														4
														+ -
														-
														-
														-
														5 —
Denth	Hole Diam	eter Diameter	Casin Depth Base	g Diameter	Denth T		Chiselling		Tool	Depth Top	Inclination and	d Orientation	Oriento	tion
Doput		umotol	Jopui Dase						1001			induUT	Unchild	
Rema	arks		I	1	1		I	I		I				
													AUS	

		/			•	0100			-		9	
Projec Site C	t Name T15 4H	Nonningtor F Phase 2	i, Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 10/08/20	23	
Locati CT15	on: Prim <u>4HF Ph</u>	na Windows ase 2	Site Nor	nnington	Contrac	tor: Peter B	Baxter As	sociates L	td			
Projec	ct No. : 1	637			Crew N	ame: CK Dr	rilling			Drilling Equipm	ent: Window	less Sampler
Bor	ehole N C17	umber	Hole W	e Type /I S	43	Level .70m AoD		Logged kb	Ву	Scale 1:25		Page Number Sheet 1 of 1
W/all	Water	Samp	e and li	n Situ Testir	ng	Depth	Level	Logond		Strotum F		
vven	Strikes	Depth (m)	Туре	Resul	ts	(m)	(m)	Legend			Jeschption	
	Surikes	Depth (m)	Type	Resul	ts	(m) 0.00 0.80 1.00	(m) 43.70 42.90 42.70		Off white	EROUND (brown f brown silty CLA e CHALK/brown s End of Boreh	ilty CLAY ole at 1.000m	nd ash)
	Hole Diame	eter	Casing	Diameter			Chiselling			In	clination and Orie	ntation
Depth	Base [Diameter De	pth Base	Diameter	Depth To	op Depth Bas	se Dura	tion	Tool	Depth Top Dept	th Base Inclina	ation Orientation
Rema	arks											
GL infe	erred											AGS

	シ			Г	ercu	1221		ווווכ	III Y L	JUY			
Project Nar Site CT15 4	ne: Nonning IHF Phase	jton, Prima 2	Windows	Client: F	Roma Capit	tal Group	Ltd		Date: 10/08	8/2023			
Location: P CT15 4HF	rima Windo Phase 2	ws Site Nor	nnington	Contrac	tor: Peter E	Baxter As	sociates L	_td					
Project No.	: 1637			Crew N	ame: CK D	rilling			Drilling Equ	uipment: W	/indowless	Sampler	
Borehole C	Number	Hole W	e Type /LS	44	Level .33m AoD		Logged kb	Ву	Sc 1:	ale 25	Page She	e Numbe et 1 of 1	r
Well Wate Strike	er Sa es Depth	mple and li	n Situ Testi Resu	ng Its	Depth (m)	Level (m)	Legend		Stratu	ım Descrip	tion		
Hole Di	ameter	Casing	Diameter		0.50	43.83 43.33		TOPSC off white flint grav	red as structu e silty GRAVE rel End of E	Jreless CHA <u>L. G</u> ravel is Borehole at 1	LK compose weak	d of	
Hole Di Depth Base	Diameter	Depth Base	Diameter	Depth To	p Depth Ba	ise Dura	tion	Tool	Depth Top	Depth Base	Inclination	Orienta	tion
Remarks												I Ags	

		ク				CICC	1331						
Projec Site C	t Name T15 4H	: Nonning F Phase 2	ton, Prima 2	Windows	Client: F	Roma Capit	tal Group	Ltd		Date: 08/08/2023			
Locati CT15	on: Prin 4HF Ph	na Windov ase 2	ws Site No	nnington	Contrac	tor: Peter E	Baxter As	sociates L	_td				
Projec	xt No. : 1	637			Crew N	ame: CK D	rilling			Drilling Equipment: V	Vindowless	Sampler	
Bor	ehole N C19	umber	Hole V	e Type /LS	45	Level .00m AoD		Logged kb	Ву	Scale 1:25	Pag Sh	e Numbe eet 1 of 1	er
Wall	Water	Sar	nple and I	n Situ Testii	ng	Depth	Level	Logond		Stratum Dagari	ntion		
vven	Strikes	Depth (m) Type	Resul	ts	(m)	(m)		TODOO		puon		
	Strikes	Depth (m) Type	Resul	ts	(m) 0.25 1.00	(m) 44.75 44.00		TOPSC sandy s flint grav	DIL red as structureless CH silty GRAVEL. Gravel is v ref End of Borehole at	ALK compos weak	ed of	
Depth I	Hole Diam Base [eter Diameter	Casing Depth Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling Ise Dura	tion	Tool	Inclination Depth Top Depth Base	n and Orientatio	n Orientz	
												AGS	

		/			•	0100			-		-09			
Projec Site C	t Name T15 4H	Nonnington, F Phase 2	Prima	Windows	Client: I	Roma Capit	al Group	Ltd		Date: 07/0	8/2023			
Locati CT15	on: Prim <u>4HF Ph</u>	na Windows S ase 2	Site Nor	nnington	Contrac	tor: Peter E	Baxter As	sociates L	td					
Projec	xt No. : 1	637			Crew N	ame: CK D	rilling			Drilling Eq	uipment: V	/indowles	s Sampler	•
Bor	ehole N C20	umber	Hole W	e Type /I S	46	Level .70m AoD		Logged kb	Ву	So 1	cale :25	Pa	ge Numbe neet 1 of 1	er I
W/all	Water	Sample	and li	n Situ Testir	ng	Depth	Level	Logond		Strat	um Deserir	tion		
vveii	Strikes	Depth (m)	Туре	Resul	ts	(m)	(m)	Legend	TODOO	Stratt	um Descrip	Duon		
						0.25	46.45		TOPSO Recover off white	IL e sandy silty End of f	ureless CH/ GRAVEL. G	ALK compo ravel is we	sed of ak	1
														3 4
Depth	Hole Diamo Base [eter Diameter Dep	Casing oth Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling se Dura	tion	Tool	Depth Top	Inclination Depth Base	and Orientati Inclination	on Orienta	
Dom	arko											 		
rtema GL infe	ar KS erred												AGS	

	2	ノ				CICC	1331		JI 111		'Y			
Projec Site C	t Name	: Nonning F Phase 2	ton, Prima	a Windows	Client: F	Roma Capit	tal Group	oLtd		Date: 07/08/20	23			
Locati CT15	ion: Prim 4HF Ph	na Windov	ws Site No	onnington	Contrac	tor: Peter E	Baxter As	sociates L	td					
Projec	t No. : 1	637			Crew N	ame: CK D	rilling			Drilling Equipm	ent: Wind	lowless S	Sampler	
Bor	ehole N C21	umber	Ho	le Type NLS	43	Level .79m AoD		Logged kb	Ву	Scale 1:25		Page Shee	Numbe et 1 of 1	er
Well	Water	Sar	nple and	In Situ Testi	ng	Depth	Level	Legend		Stratum D	Description	ı		
	Ounces	Depth (m) Type	e Resu	lts	(11)	(11)		TOPSO	DIL				
														-
						0.30	43.49		Very sti	ff brown slightly gr	avelly very	silty CLA	Y	-
														_
														-
														-
						0.90 1.00	42.89 42.79		Very sti	ff pale brown silty	CLAY			- - 1 —
										End of Boreh	ole at 1.000)m		· -
														=
														-
														-
														-
														-
														2 —
														-
														-
														_
														-
														_
														3 —
														-
														-
														-
														-
														-
														4 —
														-
														-
														-
														-
														5 —
Denth	Hole Diam	eter Diameter	Casin Depth Base	g Diameter	Denth Tr	n Denth Po	Chiselling		Tool	In Depth Top	clination and	Orientation	Oriento	ition
Deput			Doput Dast						1001			omauUII	Unerita	
Rema	arks			·						. 1				
GL INTE	erred												AGS	
													neo	

	2	7				0100	001		7 1111			
Project N Site CT1	pject Name: Nonnir e CT15 4HF Phase cation: Prima Wind 15 4HF Phase 2 oject No. : 1637 Borehole Number C22A ell Water Strikes Depth		, Prima	Windows	Client: I	Roma Capit	al Group	Ltd		Date: 11/08/2023		
Location: CT15 4H	: Prim IF Pha	a Windows S	Site Nor	nnington	Contrac	ctor: Peter B	axter As	sociates L	td			
Project N	lo. : 1	637			Crew N	lame: CK Dı	rilling			Drilling Equipment: V	Vindowless Samp	er
Boreho	ole Nu	umber	Hole	туре	42			Logged	Ву	Scale	Page Num	ber
	CZZA	Sample	e and li	∍r n Situ Testir	ן 43 ומ	Denth		KD		1.25	Sheet 10	
Well Str	rikes	Depth (m)	Туре	Resul	ts	(m)	(m)	Legend		Stratum Descri	otion	
						0.30	43.40		TOPSO Very sti	llL ff orange brown slightly ରୁ	gravelly silty CLAY	
		1.20	D					· · · · · · · · · · · · · · · · · · ·				1
						1.60	42.10		Very sti with cha	ff pale brown slightly gra alk pieces	velly silty CLAY	2
						2.20	41.50		Recove off white weak	red as structureless CH/ e slightly gravelly sandy	ALK composed of SILT. Gravel is	
		3.00	SPT	N=11 (2,2/2	2,3,3,3)	3.45	40.25			End of Borehole at 3	3.450m	3
												4
Hole Depth Base	e Diame e D	ter Dep	Casing oth Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling se Dura	tion	Tool	Inclination	and Orientation	5 —
Remark	s											
GL inferre	d										AG	1 S

	٦,	リ			Γ	EICU	1221			ing L	_Uy			
Projec Site C	t Name T15 4H	: Nonningt F Phase 2	ton, Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 08/0	8/2023			
Locati CT15	on: Prim 4HF Ph	na Window ase 2	vs Site Nor	nington	Contrac	tor: Peter E	Baxter As	sociates L	td					
Projec	xt No. : 1	637			Crew Na	ame: CK D	rilling			Drilling Eq	uipment: W	/indowless	Sampler	
Bor	ehole N C23	umber	Hole W	Type /LS	43	Level .70m AoD		Logged kb	Ву	So 1	cale :25	Pag She	e Numbe eet 1 of 1	er
Well	Water Strikes	Sam	ple and Ir	n Situ Testii	ng	Depth (m)	Level	Legend		Strat	um Descrip	tion		
		Depth (r	n) lype	Resul	ts	()	()		TOPSO	IL				_
														-
						0.30	43.40		Very stif	ff orange bro	wn slightly g	ravelly silty	CLAY	-
								××						-
								× × ×						-
														-
						1.00	42.70	××		End of I	Borehole at 1	000m		1 —
										End of				-
														-
														-
														-
														-
														- - -
														2 -
														-
														-
														-
														-
														-
														3 —
														-
														-
														-
														-
														-
														4 _
														-
														-
														-
														-
														5 —
Depth	Hole Diame Base r	eter Diameter	Casing	Diameter Diameter	Depth To	Depth Ra	Chiselling		ΤοοΙ	Depth Top	Inclination	and Orientation	n Orienta	ation
					_ = 0,000 10								Chonte	
Rema	arks	I								-				
~													AGS	

	2	リ			I	ercu	1331		JI 111				
Projec Site C	ct Name T15 4H	: Nonning F Phase 2	jton, Prima 2	Windows	Client: F	Roma Capit	tal Group	oLtd		Date: 07/08/2023			
Locati CT15	ion: Prin 4HF Ph	na Windo ase 2	ws Site No	nnington	Contrac	tor: Peter E	Baxter As	ssociates L	td				
Projec	ct No. : 1	637			Crew N	ame: CK D	rilling			Drilling Equipment:	Windowless	Sampler	
Bor	ehole N	umber	Hole	е Туре		Level		Logged	Ву	Scale	Page	e Number	
	U24	Sar	v v	vLS n Situ Testir	144 10	.30III AOD		KD		1:25	Sne		
Well	Strikes	Depth (m) Type	Resul	ts	(m)	(m)	Legend		Stratum Desc	ription		
									TOPSO	DIL			11
						0.30	44.00		Very sti CLAY	ff orange brown slightly	y gravelly very	silty	
						1.00	43.30			End of Borehole a	t 1.000m	1	-
												2	
													111
													111
													1 1 1
													1 1 1
												3	1.1
													111
												4	
													1 1 1
													111
												5	_
Depth	Hole Diam	eter Diameter	Casing Depth Base	Diameter Diameter	Depth Tr	p Depth Ba	Chiselling	ation	Tool	Inclinati	ion and Orientation	n Orientation	
Rema	arks											AGS	

		ノ					1001		21 m	ing L	JUg			
Projec Site C	t Name	: Nonning F Phase 2	ton, Prima	Windows	Client: F	Roma Capit	al Group	Ltd		Date: 07/08	/2023			
Locati	ion: Prin 4HE Ph	na Windov	vs Site No	nnington	Contract	tor: Peter E	Baxter As	sociates L	td					
Projec	ct No. : 1	637			Crew Na	ame: CK D	rilling			Drilling Equ	ipment: W	/indowless	s Sample	r
Bor	ehole N	umber	Hole	е Туре		Level		Logged	Ву	Sca	ale	Pa	ge Numb	er
	C25A		(CP	45.	00m AoD		kb		1:2	25	Sh	neet 1 of	1
Well	Water Strikes	San	nple and l	n Situ Testii	ng	Depth (m)	Level (m)	Legend		Stratu	m Descrip	tion		
		Depth (I	m) Type	Resul	ts	()	()		TOPSO	IL				
		1.00	D	N=14 (2.2/2	34.4.3)	0.30 0.70 1.90	44.70 44.30 43.10		Very stil with cha	f orange brown slightly sandy silty CLAY Ik pieces f pale brown silty CLAY with zones of lay red as structureless CHALK composed of e gravelly sandy SILT. Gravel is weak				
		2.00	SPI	N=14 (2,2/s	3,4,4,3)	2.45	42.55		off white	e gravelly sand	dy SILT. Gra	avel is wea	k	2
	Hole Diam	eter	Casing	Diameter			Chiselling				Inclination	and Orientatio	20	3
Depth	Base [Diameter	Depth Base	Diameter	Depth To	p Depth Ba	se Dura	tion	Tool	Depth Top	Depth Base	Inclination	Orient	ation
Rom	arke											 		
GL infe	erred												AGS	

	2	リ			I	CICC	1331		JIII	ing L	_0g			
Projec Site C	t Name	Nonning	ton, Prima	Windows	Client: F	Roma Capi	tal Group	Ltd		Date:				
Locati CT15	on: Prim 4HF Ph	a Windov	ws Site Nor	nnington	Contrac	tor: Peter E	Baxter As	sociates L	td					
Projec	rt No. : 1	637			Crew N	ame: CK D	rilling			Drilling Eq	uipment: V	Vindowle	ess Sample	r
Bor	ehole N	umber	Hole	е Туре		Level		Logged	Ву	S	cale	P	age Numb	er
	C26	Sar	// Il bae alag	/LS n Situ Testii	na	Donth		KD		1	:25		Sheet 1 of	1
Well	Strikes	Depth (m) Type	Resul	lts	(m)	(m)	Legend		Strat	um Descri	ption		
									TOPSC	NL				_
						0.30			Very sti	ff orange bro	wn slightly	gravelly s	silty CLAY	
						0.50			Recove	red as struct	ureless CH	ALK com	posed of	
									off white	e sandy SILT	with pocke	ts of brow	n clay	
						1.00								- 1 -
						1.00				End of I	Borehole at	1.000m		
														-
														=
														2 —
														-
														-
														-
														3 —
														-
														-
														-
														-
														4 _
														-
														-
														-
														5 —
Depth	Hole Diame Base [eter Diameter	Casing Depth Base	Diameter Diameter	Depth To	op Depth Ba	Chiselling ase Dura	tion	Tool	Depth Top	Inclination	n and Orient Inclinati	ation on Orient	tation
,			,							P				
Rema	arks			1	1	<u> </u>		I		1	1			
													AUD	2

APPENDIX B2 Trial Pit Logs

AP 18 ATS
84.7.0°

Trial Pit Log

	٦ ک)				11			og				
Projec Site C	t Name: T15 4HF	Nonningto	on, Prima	Windows	Client: Roma	a Capital G	roupLtd		Date: 10/08/20	23			
Locati CT15	on: Prim 4HF Pha	a Windows	s Site Nor	nnington	Contractor: F	Peter Baxte	er Associate	es Ltd					
Projec	t No. : 1	637			Crew Name:				Equipment: Mir	nidigger			
Loc	ation Nu TP1	umber	Locati (on Type CP	Leve 40.00m	el I AoD	Logg	jed By PB	Scale 1:25		P	age Numb Sheet 1 of	er 1
Well	Water Strikes	Sampl	e and In	Situ Testing	Depth	n Level (m)	Legend		Stratum De	escription			
		Deptin (ii	i) Type	Results				Reinforce	d concrete slab				-
		0.60	В		0.15 0.40 2.30 2.40	40.00 39.85 39.60 37.70		Firm dark	e concrete slab ROUND brick rubble brown silty CLAY	e at 2.200r	atrix		
÷٦	Dime	ensions	1 1th		Tre	nch Support	and Comm	ent Remarka		Doto	Pump	oing Data	
Rema	arks		201	r II Stable	None	<u>u</u>		rtemarKS			Rate	AGS	

HE HE ALE	
84 5 0 V	

	REAL PROPERTY OF						Tr	ial F	Pit Lo	og				
Projec Site C	t Name: T15 4HI	Nonning Phase 2	ton, Pri	ma Windows	° Cli	ent: Roma C	apital Gr	oupLtd		Date: 10/08/202	23			
Locati CT15	on: Prim 4HF Ph	ia Windov ase 2	vs Site	Nonnington	Co	ontractor: Pet	er Baxte	r Associate	s Ltd					
Projec	ct No. : 1	637			Cr	ew Name:				Equipment: Mir	nidigger			
Loo	cation Nu TP2	umber	Loo	cation Type CP		Level 45.17m Ac	ъD	Logg P	ed By 'B	Scale 1:25		Pa Sl	ge Numb heet 1 of 1	er 1
Well	Water	Sam	ple and	In Situ Test	ting	Depth	Level	Legend		Stratum De	scription			
Well	Water Strikes	Samı Depth (1.00	ple and m) Ty F	In Situ Test pe Res	ults	Depth (m) 0.30	Level (m) 45.17 44.87		TOPSOIL White CH/	Stratum De	scription gs at 50-10	DOmm		
Pit	Dime Length	ensions Pit W	/idth	Pit Stability Stable	/ S	Trenct horing Used None	n Support	and Comme	ent Remarks		Date	Pumpii Rate	ng Data Rema	5 —
Rema	arks												AGS	3

AR STS
et for
-

Trial Dit Loa

)				Iſ			og			
Project Name: Site CT15 4H	: Nonningto	on, Prima	Windows	Client: Roma C	Capital Gro	oupLtd		Date: 10/08/202	23		
Location: Prim	a Windows	s Site Nor	nnington	Contractor: Pe	ter Baxter	Associate	es Ltd				
Project No. : 1	<u>637</u>			Crew Name:				Equipment: Mir	nidigger		
Location N	umber	Locatio	on Type	Level	٥D	Logg	ed By	Scale		Page Numb	er 1
Water	Samp	le and In	∠r Situ Testino	Denth			D	1.20		Sheet 1 Of	
Well Strikes	Depth (m	n) Type	Results	(m)	(m)	Legend		Stratum De	scription		
Strikes	Depth (m	n) Type	Results	 (m) 0.40 1.30 	(m) 41.35		Structure	End of Borehold	e at 1.300m		
Dime Pit Length	ensions Pit Wid	dth I	Pit Stability Stable	Trenc Shoring Used	h Support :	and Comme	ent Remarks		P Date R	umping Data Rate Rema	arks
Remarks Retaining wall fo	oundations a	at 0.4m dep	opth in chalk.⊺	No corbells						AGS	5

APPENDIX B3 Infiltration Test Report

Trial Pit No:	SA01	Test No:	1	Date:	10/08/2023
Length (m):	1.500		Datum Height:	0.00	m agl
Width (m):	0.40		Granular infill:	None	
Depth (m):	2.40		Porosity of infill:	1	(assumed)
	Elapsed time	Water Depth	Elapsed time	Water Depth	
	(minutes)	(m below datum)	(minutes)	(m below datum)	
	0	2.000			
	1	2.060			
	2	2.095			
	3	2.120			
	4	2.160			
	5	2.190			
	6	2.200			
	7	2.240			
	8	2.260			
	9	2.280			
	10	2.300			
	15	2.400			

	Soil infiltration rate (m/s):	1.9E-4
--	-------------------------------	--------

Remarks	Results processed following BRE 365 (2007). Very Fast draining	

Client:	PETER BAXTER	5401
Site:	NONNINGTON	SAUT

Project: **Nonnington Infiltration Test** Job No. 1504

24/03/2022

Date:

Client:

Soakaway Test

Roma Capital

Location: TPA-1

<u>Trial Pit Details</u>	Depth (m)	r Depth Length Width Effective Storage V (m) (m) (m) (m3)		Volume		
Dimensions	0.90	2.40	0.32		0.14	
Minimum dip to water (mbgl) 0.72		Volume (m3)			Depth (m)	
75% Full		0.10368			0.77	
25% Full		0.03456			0.86	
Volume Outflowing		0.06912				
		Area (m2)		Time (24hr)	Elapsed Time (mins)	Dip to water (mbGL)
Mean surface Area		1.2576			0 1 3	0.72 0.74 0.77
Time (mins) 75% full		3			8 13 18	0.82 0.86 0.90
Time (mins) 25% full		13				0.00

Remarks:

Project: Nonnington Infiltration Test

Roma Capital

Job No. 1504 Date: 24/03/2022

Soakaway Test

Client:

Location: TPA-2

Trial Pit Details	Depth (m)	r Length (m)	Width (m)	Effective Storage Volume (m3)		
Dimensions	0.90	2.40	0.32		0.16	
Minimum dip to water (mbgl) 0.695		Volume (m3)			Depth (m)	
75% Full		0.11808			0.75	
25% Full		0.03936			0.85	
Volume Outflowing		0.07872				
		Area (m2)		Time (24hr)	Elapsed Time (mins)	Dip to water (mbGL)
Mean surface Area		1.3256			0 2 3	0.70 0.71 0.72
Time (mins) 75% full	I	6			7 12 17	0.76 0.81 0.86
Time (mins) 25% full		16			22	0.89
	1					

Nonnington Infiltration Test Project:

Job No. 1504

24/03/2022

Date:

Client: **Roma Capital**

Soakaway Test

Location: TPA-3

<u>Trial Pit Details</u>	Depth (m)	r Length (m)	Width (m)	Effec	tive Storage (m3)	Volume
Dimensions	0.90	2.40	0.32		0.21	
Minimum dip to water (mbgl) 0.625		Volume (m3)			Depth (m)	
75% Full		0.1584			0.69	
25% Full		0.0528			0.83	
Volume Outflowing		0.1056				
		Area (m2)		Time (24hr)	Elapsed Time (mins)	Dip to water (mbGL)
Mean surface Area		1.516			0 1 2	0.63 0.65 0.66
Time (mins) 75% full		4			7 12 17	0.73 0.78 0.82
Time (mins) 25% full		18			22	0.87

Nonnington Infiltration Test Project:

Job No. 1504

24/03/2022

Date:

Client: **Roma Capital**

Soakaway Test

Location: TPB-1

<u>Trial Pit Details</u>	Depth (m)	r Length (m)	Width (m)	Effective Storage Volume (m3)		
Dimensions	1.60	2.00	0.35		0.25	
Minimum dip to water (mbgl) 1.24		Volume (m3)			Depth (m)	
75% Full		0.189			1.33	
25% Full		0.063			1.51	
Volume Outflowing		0.126				
		Area (m2)		Time (24hr)	Elapsed Time (mins)	Dip to water (mbGL)
Mean surface Area		1.546			0 1 2	1.24 1.27 1.30
Time (mins) 75% full		3.2			3 6 11	1.32 1.37 1.43
Time (mins) 25% full		22			17 26 36	1.43 1.49 1.54 1.60

Project: Nonnington Infiltration Test

Job No. 1504 Date: 24/03/2022

Client: Roma Capital

Soakaway Test

Location: TPB-2

	ļ	r				
Trial Pit Details	Depth (m)	Length	Width (m)	Effec	tive Storage	Volume
	(111)	(11)	(111)		(110)	
Dimensions	1.60	2.00	0.35		0.25	
Minimum dip to water (mbgl)		Volume			Depth	
1.25		(m3)			(m)	
75% Full		0.18375			1.34	
25% Full		0.06125			1.51	
Volume Outflowing		0.1225				
		Area		Time (24hr)	Elapsed Time	Dip to water
		(m2)			(mins)	(IIIBOE)
		(m2)			(mins) 0	1.25
Mean surface Area		(m2) 1.5225			(mins) 0 1	1.25 1.27
Mean surface Area		(m2) 1.5225			(mins) 0 1 2	1.25 1.27 1.29
Mean surface Area		(m2) 1.5225			(mins) 0 1 2 3	1.25 1.27 1.29 1.31
Mean surface Area Time (mins) 75% full		(m2) 1.5225 5			(mins) 0 1 2 3 13 23	1.25 1.27 1.29 1.31 1.47 1.55
Mean surface Area Time (mins) 75% full Time (mins) 25% full		(m2) 1.5225 5 18.5			(mins) 0 1 2 3 13 23 28	1.25 1.27 1.29 1.31 1.47 1.55 1.58
Mean surface Area Time (mins) 75% full Time (mins) 25% full		(m2) 1.5225 5 18.5			(mins) 0 1 2 3 13 23 28	1.25 1.27 1.29 1.31 1.47 1.55 1.58
Mean surface Area Time (mins) 75% full Time (mins) 25% full		(m2) 1.5225 5 18.5			(mins) 0 1 2 3 13 23 28	1.25 1.27 1.29 1.31 1.47 1.55 1.58
Mean surface Area Time (mins) 75% full Time (mins) 25% full		(m2) 1.5225 5 18.5			(mins) 0 1 2 3 13 23 28	1.25 1.27 1.29 1.31 1.47 1.55 1.58
Mean surface Area Time (mins) 75% full Time (mins) 25% full		(m2) 1.5225 5 18.5			(mins) 0 1 2 3 13 23 28	1.25 1.27 1.29 1.31 1.47 1.55 1.58

Project:	Nonnington Infiltration Test
----------	------------------------------

Roma Capital

Soakaway Test

Client:

Location: TPB-3

Trial Pit Details	Depth (m)	r Length (m)	Width (m)	Effective Storage Volume (m3)		
Dimensions	1.60	2.00	0.35		0.27	
Minimum dip to water (mbgl) 1.22		Volume (m3)			Depth (m)	
75% Full		0.1995			1.32	
25% Full		0.0665			1.51	
Volume Outflowing		0.133				
		Area (m2)		Time (24hr)	Elapsed Time (mins)	Dip to water (mbGL)
Mean surface Area		1.593			0 2 5	1.22 1.27 1.32
Time (mins) 75% full		5			12 15	1.41 1.48
Time (mins) 25% full		21			25 35	1.52 1.55 1.59

