Structural Calculations

Address: 19 Belmont Park, London, SE13 5BJ

Job no: 1666

	Address: 19 Belmont Park, London, SE13 5BJ	Job no: 1666
	Part of structure : Loading on members	Sheet no 2
	Made by : SW	Checked by

Structural Calculations for the proposed additional floor to 19 Belmont Park, London, SE13 5BJ.
The property is a two storey midterraced house. It is of traditional construction, with cavity masonry elevation walls, suspended timber floors and timber roof with tile finish. The rafters are supported by timber purlin and diagonal struts that are in turn supported on internal loadbearing wall.

	Address: 19 Belmont Park, London, SE13 5BJ		Job no: 1666
	Part of structure : Loading on members		Sheet no 3
	Made by : SW		Checked by
UNFACTURED LOADING	DEAD LOAD	LIVE LOAD	WIND LOAD
Pitched Roof			
Wind			0.70kN/m2
Imposed		0.75 kN/m2	
Tiles	$0.70 \mathrm{kN} / \mathrm{m} 2$		
Insulation	$0.05 \mathrm{KN} / \mathrm{m} 2$		
Rafters, Battens \& Lining	$0.20 \mathrm{kN} / \mathrm{m} 2$		
Total on Slope	$0.95 \mathrm{kN} / \mathrm{m} 2$		
Load on plan (11 degrees)	0.97 kN/m2		
Existing Flat Ceiling (over Firs	Floor)		
Imposed		0.25 kN/m2	
Plasterboard and skim	$0.20 \mathrm{kN} / \mathrm{m} 2$		
Joists	$0.05 \mathrm{kN} / \mathrm{m} 2$		
Total on plan	1.22 kN/m2	1.00 kN/m2	0.70 kN/m2
Ceiling			
Imposed		0.25 kN/m2	
Joists + insulation	$0.10 \mathrm{kN} / \mathrm{m} 2$		
Plasterboard	$0.15 \mathrm{kN} / \mathrm{m} 2$		
Total	0.25 kN/m2	0.25 kN/m2	
Timber Floor			
Imposed		$1.50 \mathrm{kN} / \mathrm{m} 2$	
Joists	$0.13 \mathrm{kN} / \mathrm{m} 2$		
Insulation	$0.04 \mathrm{kN} / \mathrm{m} 2$		
Floor Boards	$0.18 \mathrm{kN} / \mathrm{m} 2$		
Ceiling	$0.15 \mathrm{kN} / \mathrm{m} 2$		
Total	$0.50 \mathrm{kN} / \mathrm{m} 2$	1.50 kN/m2	
Cavity Wall			
Brickwork	$2.04 \mathrm{kN} / \mathrm{m} 2$		
Plaster	$0.20 \mathrm{kN} / \mathrm{m} 2$		
Blockwork	$1.80 \mathrm{kN} / \mathrm{m} 2$		
Total	4.00 kN/m2		

	Address: 19 Belmont Park, London, SE13 5BJ	Job no : 1666
	Part of structure : Loading on members	Sheet no 4
	Made by : SW	Checked by

1. Load on Ceiling Beam $R / 1$

Beam self weight
sw= $0.2 \mathrm{kn} / \mathrm{m}$

REACTION RA
$\mathrm{RA}_{\text {dead }}=\quad 3.41 \mathrm{KN}$
REACTION RB

RA ${ }_{\text {lue }}=\quad 2.83 \mathrm{KN}$
RB $_{\text {DeAD }}=3.41 \mathrm{KN}$
RBive $=2.83 \mathrm{KN}$
2. Load on Steel Beam 2/1
$\begin{array}{llll}\text { Steel Beam spans } & 5.80 \mathrm{~m} & \mathrm{o}\end{array}$

* *Load from Second Floor

			on	5.00	m	/p	
	LOAD			SPAN			
Dead $=$	0.50	kN/m2	x	5.0	m	x	0.5
Live =	1.50	kN/m2	x	5.0	m	x	0.5

3. Load on Steel Beam 2/2

Beam self weight
$\mathrm{sw}=\quad 0.4 \mathrm{kn} / \mathrm{m}$

REACTION RA

RA dead $=$	5.15	KN
RAlue $=$	11.96	KN

$\mathrm{RB}_{\text {ofad }}=5.15 \mathrm{KN}$
RBuve $\quad 11.96 \mathrm{KN}$
4. LOAD ON Existing Fundation

	Address: 19 Belmont Park, London, SE13 5BJ	Job no: 1666
	Part of structure : Loading on members	Sheet no 5
	Made by : SW	Checked by

	Project 17 Belmont Park, London, SE13 5BJ				Job no. 1665	
	Calcs for				Start page no./Revision 6	
	Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

TIMBER RAFTER DESIGN (BS5268-2:2002)

TEDDS calculation version 1.0.03

11 degrees

Rafter details

Breadth of timber sections
Depth of timber sections
Rafter spacing
Rafter slope
Clear span of rafter on horizontal
Clear span of rafter on slope
Rafter span
Timber strength class
Section properties
Cross sectional area of rafter
Section modulus
Second moment of area
Radius of gyration

Loading details

Rafter self weight
Dead load on slope
Imposed load on plan
Imposed point load
Modification factors
Section depth factor
Load sharing factor
Consider long term load condition
Load duration factor
Total UDL perpendicular to rafter
Notional bearing length
Effective span

Check bending stress

Bending stress parallel to grain
Permissible bending stress
Applied bending stress
$\mathrm{b}=50 \mathrm{~mm}$
$\mathrm{h}=175 \mathrm{~mm}$
$\mathrm{s}=400 \mathrm{~mm}$
$\alpha=11.0 \mathrm{deg}$
$\mathrm{L}_{\mathrm{clh}}=3900 \mathrm{~mm}$
$\mathrm{L}_{\mathrm{cl}}=\mathrm{L}_{\mathrm{clh}} / \cos (\alpha)=3973 \mathrm{~mm}$

Single span

C16
$\mathrm{A}=\mathrm{b} \times \mathrm{h}=8750 \mathrm{~mm}^{2}$
$Z=b \times h^{2} / 6=255208 \mathrm{~mm}^{3}$
$\mathrm{l}=\mathrm{b} \times \mathrm{h}^{3} / 12=\mathbf{2 2 3 3 0 7 2 9} \mathrm{mm}^{4}$
$r=\sqrt{ }(I / A)=50.5 \mathrm{~mm}$
$\mathrm{F}_{\mathrm{j}}=\mathrm{b} \times \mathrm{h} \times \rho_{\mathrm{char}} \times \mathrm{g}_{\mathrm{acc}}=0.03 \mathrm{kN} / \mathrm{m}$
$\mathrm{F}_{\mathrm{d}}=0.75 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{F}_{\mathrm{u}}=0.75 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{F}_{\mathrm{p}}=0.90 \mathrm{kN}$
$\mathrm{K}_{7}=(300 \mathrm{~mm} / \mathrm{h})^{0.11}=1.06$
$\mathrm{K}_{8}=\mathbf{1 . 1 0}$
$\mathrm{K}_{3}=\mathbf{1 . 0 0}$
$\mathrm{F}=\mathrm{F}_{\mathrm{d}} \times \cos (\alpha) \times \mathrm{s}+\mathrm{F}_{\mathrm{j}} \times \cos (\alpha)=0.321 \mathrm{kN} / \mathrm{m}$
$\mathrm{L}_{b}=\mathrm{F} \times \mathrm{L}_{\mathrm{cl}} /\left[2 \times\left(\mathrm{b} \times \sigma_{\mathrm{cp} 1} \times \mathrm{K}_{8}-\mathrm{F}\right)\right]=5 \mathrm{~mm}$
$L_{\text {eff }}=L_{c l}+L_{b}=3978 \mathrm{~mm}$
$\sigma_{\mathrm{m}}=5.300 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=6.186 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{m _m a x}=F \times$ Leff $^{2} /(8 \times Z)=2.485 \mathrm{~N} / \mathrm{mm}^{2}$

Project 17 Belmont Park, London, SE13 5BJ				Job no.	65
Calcs for	TIMBER	RAFTER		Start page n	vision 7
Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

Check compressive stress parallel to grain

Compression stress parallel to grain
Minimum modulus of elasticity
Compression member factor
Permissible compressive stress
Applied compressive stress

$$
\begin{aligned}
& \sigma_{\mathrm{c}}=6.800 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{E}_{\min }=5800 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~K}_{12}=0.52 \\
& \sigma_{\mathrm{C} _ \text {adm }}=\sigma_{\mathrm{c}} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=3.887 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{c} _ \text {max }}=\mathrm{F} \times \mathrm{L}_{\text {eff }} \times(\cot (\alpha)+3 \times \tan (\alpha)) /(2 \times \mathrm{A})=0.417 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Shear stress parallel to grain
Permissible shear stress
Applied shear stress

Check deflection

Permissible deflection
Bending deflection
Shear deflection
Total deflection

Consider medium term load condition

Load duration factor
Total UDL perpendicular to rafter
Notional bearing length
Effective span

Check bending stress

Bending stress parallel to grain
Permissible bending stress
Applied bending stress

Check compressive stress parallel to grain

Compression stress parallel to grain
Minimum modulus of elasticity
Compression member factor
Permissible compressive stress
Applied compressive stress

$$
\begin{aligned}
& \tau=0.670 \mathrm{~N} / \mathrm{mm}^{2} \\
& \tau_{\text {adm }}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.737 \mathrm{~N} / \mathrm{mm}^{2} \\
& \tau_{\max }=3 \times \mathrm{F} \times \mathrm{L}_{\text {eff }} /(4 \times \mathrm{A})=0.109 \mathrm{~N} / \mathrm{mm}^{2} \\
& \quad \text { PASS }- \text { Applied shear stress wi } \\
& \\
& \delta_{\text {adm }}=0.003 \times \text { Leff }=\mathbf{1 1 . 9 3 5 \mathrm { mm }} \\
& \delta_{\mathrm{b}}=5 \times \mathrm{F} \times \mathrm{L}_{\text {eff }^{4} /\left(384 \times \mathrm{E}_{\text {mean }} \times \mathrm{I}\right)=5.321 \mathrm{~mm}}^{\delta_{\mathrm{s}}=} 12 \times \mathrm{F} \times \mathrm{L}_{\text {eff }}{ }^{2} /\left(5 \times \mathrm{E}_{\text {mean }} \times \mathrm{A}\right)=0.158 \mathrm{~mm} \\
& \delta_{\text {max }}=\delta_{\mathrm{b}}+\delta_{\mathrm{s}}=5.479 \mathrm{~mm}
\end{aligned}
$$

PASS - Applied shear stress within permissible limits

PASS - Total deflection within permissible limits

```
\(\mathrm{K}_{3}=1.25\)
\(\mathrm{F}=\left[\mathrm{F}_{\mathrm{u}} \times \cos (\alpha)^{2}+\mathrm{F}_{\mathrm{d}} \times \cos (\alpha)\right] \times \mathrm{s}+\mathrm{F}_{\mathrm{j}} \times \cos (\alpha)=0.610 \mathrm{kN} / \mathrm{m}\)
\(L_{b}=F \times L_{c l} /\left[2 \times\left(b \times \sigma_{c p 1} \times K_{8}-F\right)\right]=\mathbf{1 0} \mathbf{m m}\)
\(L_{\text {eff }}=L_{c l}+L_{b}=3983 \mathrm{~mm}\)
\(\sigma_{\mathrm{m}}=5.300 \mathrm{~N} / \mathrm{mm}^{2}\)
\(\sigma_{\mathrm{m} \_ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=7.733 \mathrm{~N} / \mathrm{mm}^{2}\)
\(\sigma_{m \_m a x}=F \times\) Leff \(^{2} /(8 \times Z)=4.737 \mathrm{~N} / \mathrm{mm}^{2}\)
```


PASS - Applied bending stress within permissible limits

$\sigma_{\mathrm{c}}=6.800 \mathrm{~N} / \mathrm{mm}^{2}$
$E_{\text {min }}=5800 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{K}_{12}=0.47$
$\sigma_{c _ \text {_adm }}=\sigma_{\mathrm{c}} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=4.393 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c_{-} \max }=\mathrm{F} \times \mathrm{Leff} \times(\cot (\alpha)+3 \times \tan (\alpha)) /(2 \times \mathrm{A})=0.795 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain

Euler stress
Euler coefficient
Combined axial compression and bending check
$\sigma_{e}=\pi^{2} \times \mathrm{E}_{\text {min }} / \lambda^{2}=9.209 \mathrm{~N} / \mathrm{mm}^{2}$
$K_{\text {eu }}=1-\left(1.5 \times \sigma_{c_{_} \max } \times \mathrm{K}_{12} / \sigma_{e}\right)=0.939$
$\sigma_{\text {m_max }} /\left(\sigma_{\text {m_adm }} \times K_{\text {eu }}\right)+\sigma_{c _ \text {max }} / \sigma_{c _ \text {adm }}=0.833<1$

	Project 17 Belmont Park, London, SE13 5BJ				Job no.1665	
	Calcs for TIMBER RAFTER				Start page no./Revision8	
	Calcs by SW	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 25 / 04 / 2022 \end{array}$	Checked by	Checked date	Approved by	Approved date

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Shear stress parallel to grain
Permissible shear stress
Applied shear stress

```
\tau=0.670 N/mm
\tauadm = \tau }\times\mp@subsup{\textrm{K}}{3}{}\times\mp@subsup{\textrm{K}}{8}{}=0.921 N/mm2,
\tau
```

PASS - Applied shear stress within permissible limits

Check deflection

Permissible deflection
Bending deflection
Shear deflection
Total deflection
$\delta_{\text {adm }}=0.003 \times$ Leff $=\mathbf{1 1 . 9 4 9} \mathbf{m m}$
$\delta_{b}=5 \times F \times$ Leff $^{4} /\left(384 \times E_{\text {mean }} \times \mathrm{I}\right)=\mathbf{1 0 . 1 6 8 ~ m m}$
$\delta_{s}=12 \times \mathrm{F} \times \mathrm{Lefft}^{2} /\left(5 \times \mathrm{E}_{\text {mean }} \times \mathrm{A}\right)=\mathbf{0 . 3 0 1} \mathrm{mm}$
$\delta_{\max }=\delta_{\mathrm{b}}+\delta_{\mathrm{s}}=10.469 \mathrm{~mm}$
PASS - Total deflection within permissible limits

Consider short term load condition

Load duration factor
$\mathrm{K}_{3}=\mathbf{1 . 5 0}$
Total UDL perpendicular to rafter
Notional bearing length
Effective span
$\mathrm{F}=\mathrm{F}_{\mathrm{d}} \times \cos (\alpha) \times \mathrm{s}+\mathrm{F}_{\mathrm{j}} \times \cos (\alpha)=0.321 \mathrm{kN} / \mathrm{m}$
$L_{b}=\left[F \times L_{c l}+F_{p} \times \cos (\alpha)\right] /\left[2 \times\left(b \times \sigma_{c p 1} \times K_{8}-F\right)\right]=9 \mathrm{~mm}$
$L_{\text {eff }}=L_{c l}+L_{b}=3982 \mathrm{~mm}$

Check bending stress

Bending stress parallel to grain
Permissible bending stress
Applied bending stress

$$
\begin{aligned}
& \sigma_{\mathrm{m}}=5.300 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{m} _a d m}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=9.279 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{m} _\max }=\mathrm{F} \times \mathrm{Leff}^{2} /(8 \times \mathrm{Z})+\mathrm{F}_{\mathrm{p}} \times \cos (\alpha) \times \mathrm{L}_{\text {eff }} /(4 \times \mathrm{Z})=5.936 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain

Compression stress parallel to grain
Minimum modulus of elasticity
Compression member factor
Permissible compressive stress
Applied compressive stress
$\sigma_{\mathrm{c}}=6.800 \mathrm{~N} / \mathrm{mm}^{2}$
$E_{\text {min }}=5800 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{K}_{12}=\mathbf{0 . 4 3}$
$\sigma_{c _a d m}=\sigma_{\mathrm{c}} \times \mathrm{K}_{3} \times \mathrm{K}_{8} \times \mathrm{K}_{12}=\mathbf{4 . 7 8 0} \mathrm{N} / \mathrm{mm}^{2}$
$\sigma_{c _\max }=F \times L_{\text {eff }} \times(\cot (\alpha)+3 \times \tan (\alpha)) /(2 \times A)+F_{p} \times \sin (\alpha) / A=0.437 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain

Euler stress
Euler coefficient
Combined axial compression and bending check

$$
\begin{aligned}
& \sigma_{\mathrm{e}}=\pi^{2} \times \mathrm{E}_{\text {min }} / \lambda^{2}=9.214 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~K}_{\text {eu }}=1-\left(1.5 \times \sigma_{\mathrm{c} _ \text {max }} \times \mathrm{K}_{12} / \sigma_{\mathrm{e}}\right)=0.970 \\
& \sigma_{\mathrm{m} _ \text {max }} /\left(\sigma_{\mathrm{m} _ \text {adm }} \times \mathrm{K}_{\text {eu }}\right)+\sigma_{\mathrm{c}_{\text {_ }}} \text { max } / \sigma_{\mathrm{c}_{\mathrm{c}} \text { adm }}=0.751<1
\end{aligned}
$$

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Shear stress parallel to grain
Permissible shear stress
Applied shear stress
$\tau=0.670 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\text {adm }}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=1.106 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\max }=3 \times \mathrm{F} \times$ Leff $/(4 \times \mathrm{A})+3 \times \mathrm{F}_{\mathrm{p}} \times \cos (\alpha) /(2 \times \mathrm{A})=0.261 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied shear stress within permissible limits

Check deflection

Permissible deflection
Bending deflection
Shear deflection
Total deflection
$\delta_{\text {adm }}=0.003 \times$ Leff $=11.946 \mathrm{~mm}$
$\delta_{b}=L_{\text {eff }}{ }^{3} \times\left(5 \times F \times\right.$ Leff $\left./ 384+F_{p} \times \cos (\alpha) / 48\right) /\left(E_{\text {mean }} \times I\right)=11.254 \mathrm{~mm}$
$\delta_{s}=12 \times L_{\text {eff }} \times\left(F \times L_{\text {eff }}+2 \times F_{p} \times \cos (\alpha)\right) /\left(5 \times E_{\text {mean }} \times A\right)=0.378 \mathrm{~mm}$
$\delta_{\text {max }}=\delta_{\mathrm{b}}+\delta_{\mathrm{s}}=11.632 \mathrm{~mm}$

	Project 17 Belmont Park, London, S				Job no.1665	
	Calcs for TIMBER RAFTER				Start page no./Revision 9	
	Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

\qquad	Project 19 Belmont Park, London, SE13 5BJ				Job no.1666	
	Calcs for				Start page no./Revision 10	
	Calcs by SW	$\begin{aligned} & \text { Calcs date } \\ & 03 / 05 / 2022 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

TIMBER BEAM ANALYSIS \& DESIGN TO BS5268-2:2002

Applied loading

Beam loads

Dead full UDL $0.100 \mathrm{kN} / \mathrm{m}$ Imposed full UDL $0.100 \mathrm{kN} / \mathrm{m}$
Dead self weight of beam $\times 1$

Load combinations

Load combination 1
Support A
Dead $\times 1.00$
Imposed $\times 1.00$
Span $1 \quad$ Dead $\times 1.00$
Imposed $\times 1.00$
Support B Dead $\times 1.00$
Imposed $\times 1.00$

Analysis results

Maximum moment
Design moment
Maximum shear
Design shear
Total load on beam
$\mathrm{M}_{\text {max }}=\mathbf{0 . 4 2 3 \mathrm { kNm } \quad \mathrm { M } _ { \text { min } } = \mathbf { 0 . 0 0 0 } \mathrm { kNm } , ~}$
$M=\max \left(\operatorname{abs}\left(M_{\max }\right), \operatorname{abs}\left(M_{\text {min }}\right)\right)=0.423 \mathrm{kNm}$
$F_{\text {max }}=0.434 \mathrm{kN}$ $\mathrm{F}_{\text {min }}=\mathbf{- 0 . 4 3 4 \mathrm { kN }}$
$\mathrm{F}=\max \left(\mathrm{abs}\left(\mathrm{F}_{\max }\right), \mathrm{abs}\left(\mathrm{F}_{\text {min }}\right)\right)=0.434 \mathrm{kN}$
$W_{\text {tot }}=0.868 \mathrm{kN}$

\qquad	Project 19 Belmont Park, London, SE13 5BJ				Job no.1666	
	Calcs for				Start page no./Revision 11	
	Calcs by SW	Calcs date 03/05/2022	Checked by	Checked date	Approved by	Approved date

Reactions at support A
Unfactored dead load reaction at support A
Unfactored imposed load reaction at support A
Reactions at support B
Unfactored dead load reaction at support B
Unfactored imposed load reaction at support B

$R_{A_{-} \max }=0.434 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{-} \text {Dead }}=0.239 \mathrm{kN}$
$R_{A _I m p o s e d}=0.195 \mathrm{kN}$
$R_{B_{_} \max }=\mathbf{0 . 4 3 4} \mathrm{kN}$
$R_{B _ \text {min }}=0.434 \mathrm{kN}$

Rb_Dead $=0.239 \mathrm{kN}$
RB_Imposed $=0.195 \mathrm{kN}$

Timber section details

Breadth of sections	$\mathrm{b}=\mathbf{5 0} \mathbf{~ m m}$
Depth of sections	$\mathrm{h}=\mathbf{1 2 5} \mathrm{mm}$
Number of sections in member	$\mathrm{N}=\mathbf{1}$
Overall breadth of member	$\mathrm{bb}=\mathrm{N} \times \mathrm{b}=\mathbf{5 0} \mathrm{mm}$
Timber strength class	C 16

Member details

Service class of timber
1
Load duration
Long term
Length of bearing
$L_{b}=100 \mathrm{~mm}$
The beam is part of a load-sharing system consisting of four or more members

Section properties

Cross sectional area of member
$\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}=\mathbf{6 2 5 0} \mathrm{mm}^{2}$
Section modulus
$Z_{x}=N \times b \times h^{2} / 6=130208 \mathrm{~mm}^{3}$
$Z_{y}=h \times(N \times b)^{2} / 6=52083 \mathrm{~mm}^{3}$
Second moment of area
$\mathrm{l}_{\mathrm{x}}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}^{3} / 12=8138021 \mathrm{~mm}^{4}$
$\mathrm{l}_{\mathrm{y}}=\mathrm{h} \times(\mathrm{N} \times \mathrm{b})^{3} / 12=1302083 \mathrm{~mm}^{4}$
Radius of gyration
$\mathrm{i}_{\mathrm{x}}=\sqrt{ }\left(\mathrm{I}_{\mathrm{x}} / \mathrm{A}\right)=36.1 \mathrm{~mm}$
$\mathrm{i}_{y}=\sqrt{ }\left(\mathrm{l}_{\mathrm{y}} / \mathrm{A}\right)=\mathbf{1 4 . 4} \mathrm{mm}$

Modification factors

Duration of loading - Table 17
$K_{3}=1.00$
Bearing stress - Table 18
$\mathrm{K}_{4}=\mathbf{1 . 0 0}$
Total depth of member - cl.2.10.6
$K_{7}=(300 \mathrm{~mm} / \mathrm{h})^{0.11}=\mathbf{1 . 1 0}$
Load sharing - cl.2.9
$\mathrm{K}_{8}=\mathbf{1 . 1 0}$
Lateral support - cl.2.10.8
Ends held in position and members held in line, as by purlins or tie rods at centres not more than 30 times the breadth of the member
Permissible depth-to-breadth ratio - Table 19
4.00

Actual depth-to-breadth ratio
$\mathrm{h} /(\mathrm{N} \times \mathrm{b})=\mathbf{2 . 5 0}$
PASS - Lateral support is adequate

Compression perpendicular to grain

Permissible bearing stress (no wane)
$\sigma_{c _ \text {adm }}=\sigma_{c p 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4} \times \mathrm{K}_{8}=\mathbf{2 . 4 2 0} \mathrm{N} / \mathrm{mm}^{2}$
Applied bearing stress
$\sigma_{c_{_} a}=R_{A_{-} \max } /\left(\mathrm{N} \times \mathrm{b} \times \mathrm{L}_{\mathrm{b}}\right)=0.087 \mathrm{~N} / \mathrm{mm}^{2}$

STRUCTURES	Project 19 Belmont Park, London, S				Job no.1666	
	Calcs for TIMBER CEILING JOIST				Start page no./Revision 12	
	Calcs by SW	$\begin{aligned} & \text { Calcs date } \\ & 03 / 05 / 2022 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

$\sigma_{c _a} / \sigma_{c _ \text {adm }}=0.036$
PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress
Applied bending stress
$\sigma_{\mathrm{m} _a d m}=\sigma \mathrm{m} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=6.419 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{m _a}=M / Z_{x}=3.251 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma \mathrm{m}_{-} \mathrm{a} / \sigma_{\mathrm{m} _ \text {adm }}=0.507$
PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress
Applied shear stress

Deflection

Modulus of elasticity for deflection
Permissible deflection
Bending deflection
Shear deflection
Total deflection
$\tau_{\mathrm{adm}}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.737 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}}=3 \times \mathrm{F} /(2 \times \mathrm{A})=0.104 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}} / \tau_{\mathrm{adm}}=0.141$
PASS - Applied shear stress is less than permissible shear stress
$\mathrm{E}=\mathrm{E}_{\text {mean }}=8800 \mathrm{~N} / \mathrm{mm}^{2}$
$\delta_{\text {adm }}=\min \left(0.551 \mathrm{in}, 0.003 \times L_{s 1}\right)=11.700 \mathrm{~mm}$
$\delta_{\text {b_s }} 1=9.366 \mathrm{~mm}$
$\delta_{\mathrm{v}} \mathrm{s} 1=0.148 \mathrm{~mm}$
$\delta_{\mathrm{a}}=\delta_{\mathrm{b} _ \text {_s } 1}+\delta_{\mathrm{v} _ \text {s } 1}=9.514 \mathrm{~mm}$
$\delta_{a} / \delta_{\text {adm }}=0.813$
PASS - Total deflection is less than permissible deflection

17 Belmont Park, London, SE13 5BJ				1665	
Calcs for \quad STEEL BEAM 2/1				Start page no./Revision16	
Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS \& DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1
TEDDS calculation version 3.0.07

Support conditions

Support A

Support B

Applied loading

Beam loads

Load combinations

Load combination 1

Vertically restrained
Rotationally free
Vertically restrained
Rotationally free

Dead full UDL $1.3 \mathrm{kN} / \mathrm{m}$ Imposed full UDL $3.8 \mathrm{kN} / \mathrm{m}$
Dead self weight of beam $\times 1$

Support A
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$

	Project 17 Belmont Park, London, SE13 5BJ				Job no.1665	
	Calcs for ${ }^{\text {S }}$ STEEL BEAM $2 / 1$				Start page no./Revision 17	
	Calcs by SW	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 25 / 04 / 2022 \\ \hline \end{array}$	Checked by	Checked date	Approved by	Approved date

Analysis results

Maximum moment
Maximum shear
Deflection
Maximum reaction at support A
Unfactored dead load reaction at support A
Unfactored imposed load reaction at support A
Maximum reaction at support B
Unfactored dead load reaction at support B
Unfactored imposed load reaction at support B

Section details

Section type
Steel grade

From table 9: Design strength p_{y}

Thickness of element
Design strength
Modulus of elasticity
$\mathrm{M}_{\text {max }}=\mathbf{3 5 . 4} \mathrm{kNm}$
$\mathrm{M}_{\text {min }}=0 \mathrm{kNm}$
$V_{\text {max }}=24.4 \mathrm{kN}$
$\delta_{\text {max }}=17.8 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{A}_{_} \max }=24.4 \mathrm{kN}$
$R_{A_{_} \text {Dead }}=4.8 \mathrm{kN}$
$R_{A _ \text {Imposed }}=11 \mathrm{kN}$
$R_{B_{-} \max }=24.4 \mathrm{kN}$
$R_{B_{_} \text {Dead }}=4.8 \mathrm{kN}$
RB_Imposed $=\mathbf{1 1} \mathrm{kN}$
$\mathrm{V}_{\text {min }}=-24.4 \mathrm{kN}$
$\delta_{\text {min }}=0 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{A}_{_} \text {min }}=\mathbf{2 4 . 4} \mathrm{kN}$
$R_{B _ \text {min }}=\mathbf{2 4 . 4} \mathbf{k N}$

UC 152x152x37 (BS4-1)
S275
$\max (\mathrm{T}, \mathrm{t})=11.5 \mathrm{~mm}$
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$E=205000 \mathrm{~N} / \mathrm{mm}^{2}$

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis
$K_{x}=\mathbf{1 . 0 0}$
Effective length factor in minor axis
$K_{y}=1.00$
Effective length factor for lateral-torsional buckling
$K_{\text {LT. } A}=1.20+2 \times D$
$K_{\text {Lt. }}=1.20+2 \times D$
Classification of cross sections - Section 3.5

$$
\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\mathrm{y}}\right]=\mathbf{1 . 0 0}
$$

Internal compression parts - Table 11
Depth of section
$\mathrm{d}=123.6 \mathrm{~mm}$
$\mathrm{d} / \mathrm{t}=15.5 \times \varepsilon<=80 \times \varepsilon \quad$ Class 1 plastic

	Project 17 Belmont Park, London, SE13 5BJ				Job no. Start page no./Revision 	
	Calcs for \quad STEEL BEAM $2 / 1$					
	Calcs by SW	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 25 / 04 / 2022 \end{array}$	Checked by	Checked date	Approved by	Approved date

Outstand flanges - Table 11

Width of section
$\mathrm{b}=\mathrm{B} / 2=77.2 \mathrm{~mm}$
b $/ T=6.7 \times \varepsilon<=9 \times \varepsilon$

Class 1 plastic
Section is class 1 plastic

Shear capacity - Section 4.2.3

Design shear force
$\mathrm{F}_{\mathrm{v}}=\max \left(\mathrm{abs}\left(\mathrm{V}_{\text {max }}\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=24.4 \mathrm{kN}$ $\mathrm{d} / \mathrm{t}<70 \times \varepsilon$

Web does not need to be checked for shear buckling
Shear area
Design shear resistance
$A_{v}=t \times D=1294 \mathrm{~mm}^{2}$
$P_{v}=0.6 \times p_{y} \times A_{v}=213.6 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment
Moment capacity low shear - cl.4.2.5.2
$\mathrm{M}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\max }\right), \mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\min }\right)\right)=\mathbf{3 5 . 4} \mathrm{kNm}$
$M_{c}=\min \left(p_{y} \times S_{x x}, 1.2 \times p_{y} \times Z_{x x}\right)=84.9 \mathrm{kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling
Slenderness ratio
Equivalent slenderness - Section 4.3.6.7
Buckling parameter
Torsional index
Slenderness factor
Ratio - cl.4.3.6.9
Equivalent slenderness - cl.4.3.6.7
Limiting slenderness - Annex B.2.2

Bending strength - Section 4.3.6.5

Robertson constant
Perry factor
Euler stress

Bending strength - Annex B.2.1
$L_{E}=1.2 \times L_{s 1}+2 \times D=7284 \mathrm{~mm}$
$\lambda=L_{E} / r_{y y}=188.119$
$u=0.848$
$\mathrm{x}=13.334$
$v=1 /\left[1+0.05 \times(\lambda / x)^{2}\right]^{0.25}=0.550$
$\beta w=1.000$
$\lambda_{L T}=u \times v \times \lambda \times \sqrt{ }[\beta w]=87.710$
$\lambda_{\llcorner 0}=0.4 \times\left(\pi^{2} \times \mathrm{E} / \mathrm{p}_{\mathrm{y}}\right)^{0.5}=34.310$
$\lambda_{L T}>\lambda_{L O}$ - Allowance should be made for lateral-torsional buckling
$\alpha_{L T}=7.0$
$\eta_{L T}=\max \left(\alpha_{L T} \times\left(\lambda_{L T}-\lambda_{L 0}\right) / 1000,0\right)=0.374$
$\mathrm{p}_{\mathrm{E}}=\pi^{2} \times \mathrm{E} / \lambda_{\mathrm{LT}}{ }^{2}=263 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi L T=\left(p_{y}+(\eta L T+1) \times p_{E}\right) / 2=318.2 \mathrm{~N} / \mathrm{mm}^{2}$
$p_{b}=p_{E} \times p_{y} /\left(\phi L T+\left(\phi L T^{2}-p_{E} \times p_{y}\right)^{0.5}\right)=148.2 \mathrm{~N} / \mathrm{mm}^{2}$

Equivalent uniform moment factor - Section 4.3.6.6

Moment at quarter point of segment
Moment at centre-line of segment
Moment at three quarter point of segment
Maximum moment in segment
Maximum moment governing buckling resistance
$\mathrm{M}_{2}=\mathbf{2 6 . 5 \mathrm { kNm }}$
$\mathrm{M}_{3}=35.4 \mathrm{kNm}$
$\mathrm{M}_{4}=26.5 \mathrm{kNm}$
$M_{\text {abs }}=35.4 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{LT}}=\mathrm{M}_{\mathrm{abs}}=35.4 \mathrm{kNm}$

Equivalent uniform moment factor for lateral-torsional buckling

$$
m_{L T}=\max \left(0.2+\left(0.15 \times M_{2}+0.5 \times M_{3}+0.15 \times M_{4}\right) / M_{\text {abs }}, 0.44\right)=0.925
$$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment
$\mathrm{M}_{\mathrm{b}}=\mathrm{p}_{\mathrm{b}} \times \mathrm{S}_{\mathrm{xx}}=45.7 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{b}} / \mathrm{m}_{\mathrm{LT}}=49.5 \mathrm{kNm}$
PASS - Buckling resistance moment exceeds design bending moment

	Project 17 Belmont Park, London, SE13 5BJ				Job no.	
	Calcs for \quad STEEL BEAM 2/1					
	Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

Check vertical deflection - Section 2.5.2
Consider deflection due to dead and imposed loads

Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=L_{\text {s } 1} / 250=23.2 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=17.763 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

17 Belmont Park, London, SE13 5BJ				1665	
Calcs for \quad STEEL BEAM 2/2				Start page no./Revision 20	
Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

STEEL BEAM ANALYSIS \& DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1
TEDDS calculation version 3.0.07

Support conditions

Support A

Support B

Applied loading

Beam loads

Load combinations

Load combination 1

Vertically restrained
Rotationally free
Vertically restrained
Rotationally free

Dead full UDL 1.4 kN/m Imposed full UDL $4.1 \mathrm{kN} / \mathrm{m}$
Dead self weight of beam $\times 1$

Support A
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$

	Project 17 Belmont Park, London, SE13 5BJ				Job no. Start page no./Revision 21	
	Calcs for \quad STEEL BEAM $2 / 2$					
	Calcs by SW	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 25 / 04 / 2022 \end{array}$	Checked by	Checked date	Approved by	Approved date

Analysis results

Maximum moment
Maximum shear
Deflection
Maximum reaction at support A
Unfactored dead load reaction at support A
Unfactored imposed load reaction at support A
Maximum reaction at support B
Unfactored dead load reaction at support B
Unfactored imposed load reaction at support B

Section details

Section type
Steel grade

From table 9: Design strength p_{y}

Thickness of element
Design strength
Modulus of elasticity
$M_{\text {max }}=38 \mathrm{kNm}$
$\mathrm{M}_{\text {min }}=0 \mathrm{kNm}$
$\mathrm{V}_{\text {max }}=26.2 \mathrm{kN}$
$\delta_{\text {max }}=19.1 \mathrm{~mm}$
$R_{\mathrm{A}_{-} \max }=26.2 \mathrm{kN}$
$R_{A_{_} \text {Dead }}=5.1 \mathrm{kN}$
$R_{\text {A_Imposed }}=11.9 \mathrm{kN}$
$R_{B_{-} \max }=26.2 \mathrm{kN}$
$R_{B_{_} \text {Dead }}=5.1 \mathrm{kN}$
RB_Imposed $=\mathbf{1 1 . 9} \mathbf{k N}$
$\mathrm{V}_{\text {min }}=-26.2 \mathrm{kN}$
$\delta_{\text {min }}=0 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{A} _ \text {min }=26.2 \mathrm{kN}, ~}$
$R_{B_{_} \text {min }}=\mathbf{2 6 . 2} \mathbf{~ k N}$

UC 152x152x37 (BS4-1)
S275
$\max (\mathrm{T}, \mathrm{t})=11.5 \mathrm{~mm}$
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$E=205000 \mathrm{~N} / \mathrm{mm}^{2}$

Lateral restraint

Span 1 has lateral restraint at supports only

Effective length factors

Effective length factor in major axis
$K_{x}=\mathbf{1 . 0 0}$
Effective length factor in minor axis
$K y=1.00$
Effective length factor for lateral-torsional buckling
$K_{\text {LT. } A}=1.20+2 \times D$
$K_{\text {Lt. }}=1.20+2 \times D$

Classification of cross sections - Section 3.5

$$
\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{py}\right]=1.00
$$

Internal compression parts - Table 11
Depth of section
$\mathrm{d}=123.6 \mathrm{~mm}$
$\mathrm{d} / \mathrm{t}=15.5 \times \varepsilon<=80 \times \varepsilon \quad$ Class 1 plastic

	Project 17 Belmont Park, London, SE13 5BJ				Job no. Start page no./Revision 22	
	Calcs for \quad STEEL BEAM $2 / 2$					
	Calcs by SW	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 25 / 04 / 2022 \end{array}$	Checked by	Checked date	Approved by	Approved date

Outstand flanges - Table 11

Width of section
$\mathrm{b}=\mathrm{B} / 2=77.2 \mathrm{~mm}$
b $/ T=6.7 \times \varepsilon<=9 \times \varepsilon$

Class 1 plastic
Section is class 1 plastic

Shear capacity - Section 4.2.3

Design shear force
$\mathrm{F}_{\mathrm{v}}=\max \left(\mathrm{abs}\left(\mathrm{V}_{\text {max }}\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=26.2 \mathrm{kN}$ $\mathrm{d} / \mathrm{t}<70 \times \varepsilon$

Web does not need to be checked for shear buckling
Shear area
Design shear resistance
$A_{v}=t \times D=1294 \mathrm{~mm}^{2}$
$P_{v}=0.6 \times p_{y} \times A_{v}=213.6 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment
Moment capacity low shear - cl.4.2.5.2
$\mathrm{M}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1} \max \right), \mathrm{abs}\left(\mathrm{M}_{\mathrm{s} 1} \min \right)\right)=\mathbf{3 8} \mathrm{kNm}$
$M_{c}=\min \left(p_{y} \times S_{x x}, 1.2 \times p_{y} \times Z_{x x}\right)=84.9 \mathrm{kNm}$

Effective length for lateral-torsional buckling - Section 4.3.5

Effective length for lateral torsional buckling
Slenderness ratio
Equivalent slenderness - Section 4.3.6.7
Buckling parameter
Torsional index
Slenderness factor
Ratio - cl.4.3.6.9
Equivalent slenderness - cl.4.3.6.7
Limiting slenderness - Annex B.2.2

Bending strength - Section 4.3.6.5

Robertson constant
Perry factor
Euler stress

Bending strength - Annex B.2.1
$L_{E}=1.2 \times L_{s 1}+2 \times D=7284 \mathrm{~mm}$
$\lambda=L_{E} / r_{y y}=188.119$
$u=0.848$
$\mathrm{x}=13.334$
$v=1 /\left[1+0.05 \times(\lambda / x)^{2}\right]^{0.25}=0.550$
$\beta w=1.000$
$\lambda_{L T}=u \times v \times \lambda \times \sqrt{ }[\beta w]=87.710$
$\lambda_{\llcorner 0}=0.4 \times\left(\pi^{2} \times \mathrm{E} / \mathrm{p}_{\mathrm{y}}\right)^{0.5}=34.310$
$\lambda_{L T}>\lambda_{L O}$ - Allowance should be made for lateral-torsional buckling
$\alpha_{L T}=7.0$
$\eta_{L T}=\max \left(\alpha_{L T} \times\left(\lambda_{L T}-\lambda_{L 0}\right) / 1000,0\right)=0.374$
$\mathrm{p}_{\mathrm{E}}=\pi^{2} \times \mathrm{E} / \lambda_{\mathrm{LT}}{ }^{2}=263 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi L T=\left(p_{y}+(\eta L T+1) \times p_{E}\right) / 2=318.2 \mathrm{~N} / \mathrm{mm}^{2}$
$p_{b}=p_{E} \times p_{y} /\left(\phi L T+\left(\phi L T^{2}-p_{E} \times p_{y}\right)^{0.5}\right)=148.2 \mathrm{~N} / \mathrm{mm}^{2}$

Equivalent uniform moment factor - Section 4.3.6.6

Moment at quarter point of segment
Moment at centre-line of segment
Moment at three quarter point of segment
Maximum moment in segment
Maximum moment governing buckling resistance
$\mathrm{M}_{2}=28.5 \mathrm{kNm}$
$\mathrm{M}_{3}=38 \mathrm{kNm}$
$\mathrm{M}_{4}=\mathbf{2 8 . 5 \mathrm { kNm }}$
$\mathrm{M}_{\text {abs }}=38 \mathrm{kNm}$
$M_{\mathrm{LT}}=\mathrm{M}_{\text {abs }}=38 \mathrm{kNm}$
Equivalent uniform moment factor for lateral-torsional buckling

$$
m_{L T}=\max \left(0.2+\left(0.15 \times M_{2}+0.5 \times M_{3}+0.15 \times M_{4}\right) / M_{\text {abs }}, 0.44\right)=0.925
$$

Buckling resistance moment - Section 4.3.6.4

Buckling resistance moment
$\mathrm{M}_{\mathrm{b}}=\mathrm{p}_{\mathrm{b}} \times \mathrm{S}_{\mathrm{xx}}=45.7 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{b}} / \mathrm{m}_{\mathrm{LT}}=49.5 \mathrm{kNm}$
PASS - Buckling resistance moment exceeds design bending moment

	Project 17 Belmont Park, London, SE13 5BJ				Job no.	
	Calcs for \quad STEEL BEAM 2/2					
	Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

Check vertical deflection - Section 2.5.2
Consider deflection due to dead and imposed loads

Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=L_{\text {s } 1} / 250=23.2 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=19.064 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

| Project | 17 Belmont Park, London, SE13 5BJ | Job no. | |
| :--- | :--- | :--- | :--- | :--- |
| Palcs for | | | |
| PADSTONE P1 | | Start page no./Revision | |
| 24 | | | |

MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.08

Masonry details

Masonry type
Compressive strength
Masonry units
Partial safety factor
Leaf thickness
Wall height

Clay or calcium silicate bricks

$p_{\text {unit }}=5.0 \mathrm{~N} / \mathrm{mm}^{2}$
Category II
$\gamma_{\mathrm{m}}=3.5$
$\mathrm{t}=112 \mathrm{~mm}$
$\mathrm{h}=\mathbf{2 6 0 0} \mathrm{mm}$

Mortar designation
Construction control
Characteristic strength
Effective wall thickness
Effective height of wall

iv

Normal
$\mathrm{f}_{\mathrm{k}}=2.2 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{t}_{\mathrm{ef}}=\mathbf{2 2 5} \mathrm{mm}$
$h_{\text {ef }}=\mathbf{2 6 0 0} \mathbf{~ m m}$

Bearing details

Beam spanning out of plane of wall

Spreader details

Length of spreader
Edge distance

$$
\mathrm{I}_{\mathrm{s}}=450 \mathrm{~mm}
$$

Sedge $=1851 \mathrm{~mm}$

Width of bearing
Edge distance

Loading details

Concentrated dead load
Design concentrated load
Distributed dead load
Design distributed load

Masonry bearing type

Bearing type
$B=152 \mathrm{~mm}$
$X_{\text {edge }}=2000 \mathrm{~mm}$
$\mathrm{G}_{\mathrm{k}}=5 \mathrm{kN}$
$\mathrm{F}=\mathbf{2 6 . 5 \mathrm { kN }}$
$\mathrm{g}_{\mathrm{k}}=0.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{f}=0.0 \mathrm{kN} / \mathrm{m}$

Type 2
Bearing safety factor

Allowable bearing stress
$\mathrm{f}_{\mathrm{cp}}=0.943 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{ca}}=1.742 \mathrm{~N} / \mathrm{mm}^{2}$
FAIL - Design bearing stress exceeds allowable bearing stress, use a spreader
$\mathrm{l}_{\mathrm{b}}=100 \mathrm{~mm}$
$Q_{k}=12 \mathrm{kN}$
$q_{k}=0.0 \mathrm{kN} / \mathrm{m}$
$\gamma_{\text {bear }}=1.50$
Check design bearing without a spreader
Design bearing stress

Depth of spreader
$h_{s}=150 \mathrm{~mm}$

\qquad	Project 17 Belmont Park, London, SE13 5BJ				Job no.1665	
					Start page no./Revision 25	
	Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

Spreader bearing type
Bearing type
Type 1
Bearing safety factor
$\gamma_{\text {bear }}=1.25$
Check design bearing with a spreader
Loading acts at midpoint of spreader

Design bearing stress	$f_{c a}=0.525 \mathrm{~N} / \mathrm{mm}^{2}$	Allowable bearing stress$\quad f_{c p}=0.786 \mathrm{~N} / \mathrm{mm}^{2}$
		PASS - Allowable bearing stress exceeds design bearing stress

Check design bearing at $0.4 \times \mathrm{h}$ below the bearing level
Design bearing stress $\quad f_{c a}=0.106 \mathrm{~N} / \mathrm{mm}^{2} \quad$ Allowable bearing stress $\quad f_{c p}=0.412 \mathrm{~N} / \mathrm{mm}^{2}$

\qquad	Project 17 Belmont Park, London, SE13 5BJ				Job no.1665 Start page no./Revision 26	
	Calcs for \quad TIMBER FLOOR JOISTS					
	Calcs by SW	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 25 / 04 / 2022 \end{array}$	Checked by	Checked date	Approved by	Approved date

TIMBER JOIST DESIGN (BS5268-2:2002)

Joist details
Joist breadth
Joist depth
Joist spacing
Timber strength class
$\mathrm{b}=47 \mathrm{~mm}$

Service class of timber
$\mathrm{h}=150 \mathrm{~mm}$
$\mathrm{s}=400 \mathrm{~mm}$

C16

1

Span details
Number of spans
Length of bearing
Effective length of span
$\mathrm{N}_{\text {span }}=1$
$\mathrm{L}_{\mathrm{b}}=\mathbf{1 0 0} \mathrm{mm}$
$\mathrm{L}_{\mathrm{s} 1}=\mathbf{2 8 0 0} \mathrm{mm}$

Section properties

Second moment of area
Section modulus
$l=b \times h^{3} / 12=13218750 \mathrm{~mm}^{4}$

Loading details
Joist self weight
Dead load
Imposed UDL(Long term)
Imposed point load (Medium term)

Modification factors

Service class for bending parallel to grain
$K_{2 m}=1.00$
Service class for compression
Service class for shear parallel to grain
Service class for modulus of elasticity
Section depth factor
$Z=b \times h^{2} / 6=176250 \mathrm{~mm}^{3}$
$\mathrm{F}_{\text {swt }}=\mathrm{b} \times \mathrm{h} \times \rho_{\text {char }} \times \mathrm{g}_{\text {acc }}=0.02 \mathrm{kN} / \mathrm{m}$
$F_{\text {d_udl }}=0.50 \mathrm{kN} / \mathrm{m}^{2}$
F_{i} _udl $=1.50 \mathrm{kN} / \mathrm{m}^{2}$
$F_{i _p t}=1.40 \mathrm{kN}$
$\mathrm{K}_{2 \mathrm{c}}=\mathbf{1 . 0 0}$
$\mathrm{K}_{2 \mathrm{~s}}=\mathbf{1 . 0 0}$
$K_{2 e}=1.00$
$K_{7}=1.08$

	Project 17 Belmont Park, London, SE13 5BJ				Job no. 1665	
	Calcs for \quad TIMBER FLOOR JOISTS					
	Calcs by SW	$\begin{array}{\|l\|} \hline \text { Calcs date } \\ 25 / 04 / 2022 \end{array}$	Checked by	Checked date	Approved by	Approved date

Load sharing factor

Consider long term loads

Load duration factor
Maximum bending moment
Maximum shear force
Maximum support reaction
Maximum deflection

Check bending stress

Bending stress
Permissible bending stress
Applied bending stress

Check shear stress

Shear stress
Permissible shear stress
Applied shear stress

Check bearing stress

Compression perpendicular to grain (no wane)
Permissible bearing stress
Applied bearing stress

Check deflection

Permissible deflection
Bending deflection (based on Emean)
Shear deflection
Total deflection

Consider medium term loads

Load duration factor
Maximum bending moment
Maximum shear force
Maximum support reaction
Maximum deflection

Check bending stress

Bending stress
Permissible bending stress
Applied bending stress
$K_{8}=1.10$
$\mathrm{K}_{3}=1.00$
$\mathrm{M}=0.805 \mathrm{kNm}$
$\mathrm{V}=1.150 \mathrm{kN}$
$\mathrm{R}=1.150 \mathrm{kN}$
$\delta=5.901 \mathrm{~mm}$
$\sigma_{\mathrm{m}}=5.300 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{2 \mathrm{~m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=6.292 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _\max }=\mathrm{M} / \mathrm{Z}=4.567 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied bending stress within permissible limits

$$
\begin{aligned}
& \tau=0.670 \mathrm{~N} / \mathrm{mm}^{2} \\
& \tau_{\mathrm{adm}}=\tau \times \mathrm{K}_{2 \mathrm{~s}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.737 \mathrm{~N} / \mathrm{mm}^{2} \\
& \tau_{\max }=3 \times \mathrm{V} /(2 \times \mathrm{b} \times \mathrm{h})=0.245 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Applied shear stress within permissible limits
$\sigma_{\text {cp1 }}=\mathbf{2 . 2 0 0} \mathrm{N} / \mathrm{mm}^{2}$
$\sigma_{c _ \text {adm }}=\sigma_{c p 1} \times \mathrm{K}_{2 \mathrm{c}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=\mathbf{2 . 4 2 0} \mathrm{N} / \mathrm{mm}^{2}$
$\sigma_{c_{_} \max }=R /\left(b \times L_{b}\right)=0.245 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied bearing stress within permissible limits
$\delta_{\text {adm }}=\min \left(L_{s 1} \times 0.003,14 \mathrm{~mm}\right)=8.400 \mathrm{~mm}$
$\delta_{\text {bending }}=5.652 \mathrm{~mm}$
$\delta_{\text {shear }}=0.249 \mathrm{~mm}$
$\delta=\delta_{\text {bending }}+\delta_{\text {shear }}=5.901 \mathrm{~mm}$
PASS - Actual deflection within permissible limits
$\mathrm{K}_{3}=1.25$
$\mathrm{M}=1.197 \mathrm{kNm}$
$\mathrm{V}=1.710 \mathrm{kN}$
$\mathrm{R}=1.710 \mathrm{kN}$
$\delta=7.398 \mathrm{~mm}$
$\sigma_{\mathrm{m}}=5.300 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _ \text {_adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{2 \mathrm{~m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=7.865 \mathrm{~N} / \mathrm{mm}^{2}$
σ_{m} max $=\mathrm{M} / \mathrm{Z}=6.792 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied bending stress within permissible limits

Check shear stress

Shear stress
Permissible shear stress
Applied shear stress
$\tau=0.670 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{adm}}=\tau \times \mathrm{K}_{2 \mathrm{~s}} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.921 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\text {max }}=3 \times \mathrm{V} /(2 \times \mathrm{b} \times \mathrm{h})=0.364 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied shear stress within permissible limits

	Project 17 Belmont Park, London, SE13 5BJ				Job no. 1665	
	Calcs for \quad TIMBER FLOOR JOISTS				Start page no./Revision 28	
	Calcs by SW	$\begin{aligned} & \hline \text { Calcs date } \\ & 25 / 04 / 2022 \end{aligned}$	Checked by	Checked date	Approved by	Approved date

Check bearing stress

Compression perpendicular to grain (no wane)
$\sigma_{\mathrm{cp} 1}=\mathbf{2 . 2 0 0} \mathrm{N} / \mathrm{mm}^{2}$
Permissible bearing stress
Applied bearing stress
$\sigma_{c _ \text {adm }}=\sigma_{c p 1} \times \mathrm{K}_{2 c} \times \mathrm{K}_{3} \times \mathrm{K}_{8}=3.025 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c_{_} \max }=R /\left(b \times L_{b}\right)=0.364 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Applied bearing stress within permissible limits

Check deflection

Permissible deflection
Bending deflection (based on Emean)
Shear deflection
Total deflection
$\delta_{\text {adm }}=\min \left(L_{s 1} \times 0.003,14 \mathrm{~mm}\right)=8.400 \mathrm{~mm}$
$\delta_{\text {bending }}=7.028 \mathrm{~mm}$
$\delta_{\text {shear }}=0.370 \mathrm{~mm}$
$\delta=\delta_{\text {bending }}+\delta_{\text {shear }}=7.398 \mathrm{~mm}$
PASS - Actual deflection within permissible limits

	Project 17 Belmont Park, London, SE13 5BJ				Job no. 1665	
	CONCRETE STRIP FOUNDATION				Start page no./Revision 29	
	Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

STRIP FOOTING ANALYSIS AND DESIGN (BS8110-1:1997)

Strip footing details

Width of strip footing
Depth of soil over strip footing $\mathrm{h}_{\text {soil }} \mathbf{= 1 5 0} \mathbf{~ m m}$
Load details
Load width
$\mathrm{b}=\mathbf{3 0 0} \mathrm{mm}$
Load eccentricity
$\mathrm{ef}_{\mathrm{P}}=\mathbf{0} \mathrm{mm}$
Soil details
Depth of soil over pad footing
$h_{\text {soil }}=150 \mathrm{~mm}$
Density of soil
$\rho_{\text {soil }}=20.0 \mathrm{kN} / \mathrm{m}^{3}$
Allowable bearing pressure
Pbearing $=\mathbf{1 0 0} \mathrm{kN} / \mathrm{m}^{2}$
Axial loading on strip footing

Dead axial load
$\mathrm{P}_{\mathrm{G}}=39.1 \mathrm{kN} / \mathrm{m}$
Wind axial load
$\mathrm{P}_{\mathrm{w}}=0.0 \mathrm{kN} / \mathrm{m}$
Imposed axial load
$\mathrm{P}_{\mathrm{Q}}=4.1 \mathrm{kN} / \mathrm{m}$
Total axial load
$\mathrm{P}=43.2 \mathrm{kN} / \mathrm{m}$

Foundation loads

Dead surcharge load
$F_{\text {Gsur }}=0.000 \mathrm{kN} / \mathrm{m}^{2}$
Strip footing self weight
Total foundation load
$F_{\text {swt }}=\mathbf{2 3 . 6 0 0} \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{F}=16.0 \mathrm{kN} / \mathrm{m}$
Calculate base reaction
Total base reaction
$\mathrm{T}=59.2 \mathrm{kN} / \mathrm{m}$
Eccentricity of base reaction
$\mathrm{e}_{\mathrm{T}}=\mathbf{0} \mathbf{~ m m}$
Base reaction acts within middle third of base

Calculate pad base pressures

Base pressures
Minimum base pressure
$q_{1}=98.600 \mathrm{kN} / \mathrm{m}^{2}$
$q_{\text {min }}=98.600 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{q}_{2}=98.600 \mathrm{kN} / \mathrm{m}^{2}$
Maximum base pressure
$q_{\max }=98.600 \mathrm{kN} / \mathrm{m}^{2}$

\qquad	Project 17 Belmont Park, London, S				Job no. 1665	
	Calcs for CONCRETE STRIP FOUNDATION				Start page no./Revision 30	
	Calcs by SW	Calcs date 25/04/2022	Checked by	Checked date	Approved by	Approved date

Ca

Better by design

STEEL LINTELS

L1/S 100

For $95-110 \mathrm{~mm}$ cavity wall construction.
Standard duty loading condition.

* A continuous bottom plate added Note: Maximum block dimensions 125 mm (95 mm cavity)

Manufactured Length 0600 1350 1650 1950 2250 2550 2850 3150 3750 $* 4200$ 150mm increments 1200 1500 1800 2100 2400 2700 3000 3600 4050 4800 Height 'h' 88 88 107 125 150 162 171 200 200 200 Thickness 't' 1.6 2 2 2 2 2.6 2.6 3.2 3.2 3.2 Total UDL(kN) Load ratio (1) 12 16 19 21 23 27 27 27 26 27 Total UDL(kN) Load ratio (2) 10 13 16 17 18 22 20 20 19 22

* A continuous bottom plate added Note: Maximum block dimensions 125 mm (95 mm cavity)

Manufactured Length $\mathbf{1 5 0 m m}$ increments	0600	$* 1350$	$* 1650$	$* 2250$	$* 2700$	$* 3150$	$* 3750$			
Height ' h^{\prime}	1500	2100	2550	3000	3600	4200				
Thickness 't'	135	163	203	203	203	203				
Total UDL(kN) Load ratio (1)	30	30	40	40	40	35	33			
Total UDL(kN) Load ratio (2)	22	22	35	35	35	32	28			

L1/XHD 100

For 95-110mm cavity wall construction.
Extra heavy duty loading condition.

Manufactured Length 150mm increments	$* 0600$	${ }^{*} 1650$	$* 1950$							
1500	1800	2100								
Height 'h'	163	163	203							
Thickness 't'	3.2	3.2	3.2							
Total UDL(kN) Load ratio (1)	50	50	55							
Total UDL(kN) Load ratio (2)	45	45	45							

