

Reference: Revision: Date:

306-006-RP07 -

9 February 2024

National Grid Yaxley 400kV Substation, Leys Lane, Yaxley IP23 8DX Planning ref: DC/23/05363 - Condition 6 (Surface Water Drainage)

This document has been prepared in response to the refusal to discharge condition 6 (Surface Water Drainage) of planning application reference DC/23/05363, outlined in email correspondence dated 21.11.2024 from Suffolk County Council (SCC).

SCC's action required to overcome the current refusal, along with the Haydn Evans (HE) response, are provided below:

SCC comment no.1:

1. Cv value is to be 1.0 as per the LLFA Suffolk SuDs Guide March 2023

HE response: Patterson Reeves & Partners (PRP) have undertaken calculations for the drainage design using InfoDrainage, the Drainage Calculations document D069-SEL-V00-400-CA-C-0005 Rev P06 dated January 2024 is attached showing the Cv values set at 1.0.

SCC comment no.2:

- 2. Applicant will need to submit the following documents/information.
 - a. Cross section of the attenuation basin, depicting side slopes no greater than 1:4, 1.5m wet/dry benches every 0.6m depth of water,
 freeboard min 300mm, 3m maintenance strip and indicate depths for 1:2, 1:30 & 1:100+CC rainfall events. Water depth shall be no greater than 1.0m
 b. Flood flow exceedance plan
 - c. Management and Maintenance Plan/schedule of the surface water drainage system

HE response: The PRP Drainage Calculations document and drawing D069-SEL-C00-400-DD-C-0028 'Details 2 Drainage' (appended) provide clarification that 1:4 side slopes, 1.5m wet/dry benches every 0.6m of water depth (note the permanent water level of 300mm) and 300mm minimum freeboard have been included in the drainage design. A 3 metre maintenance strip is also provided and the water depths for the 1:2, 1:30 and 1:100 +45% climate change rainfall events are provided in the calculations and on the drawing. The water depth does not increase by more than 1 metre in the critical storm event.

Exceedance flow routes are shown on drawing 306-006-D300, attached.

A Surface Water and SuDS Management and Maintenance Plan is attached.

SCC comment no.3:

3. Submit a landscaping plant for the attenuation basin.

HE response: DRaW (UK) Ltd have produced a landscaping plan, see drawing 059-12-01(S73) B attached. The basin is planted with Pond Edge Seed Mix (Emorsgate EP1) which contains 80% grasses, including Bents and Fescues; it is a commercially available mix designed specifically for water bodies/pond margins.

Reference: Revision: 306-006-RP07

Attachments:

PRP Drainage Calculations document D069-SEL-V00-400-CA-C-0005 Rev P06 dated February 2024 PRP drawing D069-SEL-C00-400-DD-C-0028 - Details 2 Drainage PRP drawing D069-DEL-V00-400-LY-C-0016 - Overview & Philosophy Drainage PRP drawing D069-SEL-V00-400- SH-C-0006 - Schedules Drainage HE drawing 306-006-D301 - Exceedance Flow Route Plan HE document 306-006-RP08 - SuDS & Surface Water Management & Maintenance Plan DRaW UK Ltd drawing 059-12-01(S73) C - Landscape Mitigation - Soft Works

01473 236550 mail@haydnevans.co.uk haydnevans.co.uk

Westleigh House, 83-85 Leigh Road, Eastleigh, Hampshire, SO50 9DQ

Tel: 02380 488 488 www.Structural-Engineers.co.uk

DRAINAGE CALCULATIONS

EYE 400kV SUBSTATION

Engineer:Patterson Reeves & Partners LtdClient:Siemens Energy LtdDate:February 2024Internal Ref:J5656 / DC02Client Ref:D069-SEL-V00-400-CA-C-0005Revision:P06 – FOR CONSTRUCTION

Designing For Your Needs

VAT Reg. No. 631 7581 38

Registered Address: Suite 104B, Alum House, Discovery Court Business Centre 551-553 Wallisdown Road, Poole, BH12 5AG Company Registered No. 4450543

'Patterson Reeves and Partners' is a trading name of 'Patterson Reeves and Partners Ltd'

Calculation Issue/Revision Log

Revision / Issue	Date	Comment	Ву	Checked
01	July 2023	First Issue	MDP	NP
02	October 2023	Revised to comments	MDP	NP
03	October 2023	Drainage Philosophy Revised	MDP	NP
04	January 2024	Detention Basin levels added.	MDP	NP
05	February 2024	CV value, results for the 30 year and 2 year storms added.	MDP	NP
06	February 2024	Site Drainage Layout revised to show landscaping.	MDP	NP

P	Project				Job Ref.	
		Eye 400k∖	/ Substation		J56	657
Patterson Reeves & Partners	Section				Sheet no./rev.	
85 Leigh Road		Drainage (Calculations		DC0	2 / iii
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	03/02/2024	PJR	03/02/2024	NP	03/02/2024

Contents	Page Number
1.0 Drainage Design Philosophy	1
Normal Substation Operation	1
Surface Water – Substation Platform	1
Surface Water – Buildings	1
2.0 Drainage Management during the Construction Phase	2
3.0 Foul Water	2
4.0 Site Drainage Layout with Pipe number and areas	3
Infodrainage Inputs	
5.0 Junctions Levels	4
5.1 Detention Basin Levels	5
5.2 Connection Levels	6-7
5.3 Catchment Areas	8
<u>1 in 100 YR + 45% CC - Infodrainage Results</u>	
6.0 Rainfall Analysis Criteria	9
6.1 Inflows Summary	10
6.2 Junctions Summary	11-12
6.3 Detention Basin Summary	13
<u>1 in 30 YR - Infodrainage Results</u>	
7.0 Rainfall Analysis Criteria	14
7.1 Inflows Summary	15
7.2 Junctions Summary	16
7.3 Detention Basin Summary	17
<u> 1 in 2 YR - Infodrainage Results</u>	
8.0 Rainfall Analysis Criteria	18
8.1 Inflows Summary	19
8.2 Junctions Summary	20
8.3 Detention Basin Summary	21
9.0 Detention Basin Levels	22-23
10.0 Summary of Results	24

P	Project				Job Ref.	
- AT		J50	657			
Battaraan Daayaa & Dartaara	Section				Sheet no./rev.	
Patterson Reeves & Partners 85 Leigh Road		Drainage (Calculations		DC02 / 1	1
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	19/10/2023	PJR	19/10/2023	NP	19/10/2023

1.0 Drainage Design Philosophy

Normal Substation Operation

The green field site area lost to new development has been calculated as 9,006m².

As a minimum the surface water drainage system will fully manage surface water flows resulting from the developed site, up to the 100 year return period peak rainfall event, plus a minimum of 45% to allow for the impacts of climate change.

The predeveloped greenfield site falls towards a nearby watercourse. an analysis has identified the flows from the green field site (the area inside the substation security fence line) as 2.6 l/s during a 1 in 1 year return period storm. (mean annual flood flow, Qbar). this rises up to 9.4 l/s during a 100 year event.

The proposal is to undertake a cut and fill of the existing ground in order to form a level platform prior to undertaking the construction of the substation. Following completion of the development, it is proposed to limit the maximum flow to downstream watercourses to 2.3 l/s by means of a hydro-brake. This is less than Qbar and significantly less than the existing greenfield runoff rate during a 1 in 100 year event of 9.4 l/s. Calculations demonstrates that in order to achieve this it will be necessary to provide an attenuation volume of 294.3m³. The proposal is to construct a wetland/detention basin capable of containing this volume with an additional 300mm of freeboard (which will provide an additional 75m³ of storage volume).

Surface Water – Substation Platform

Historically substation platforms for electrical substations were made up of 300mm of compacted type 1 mot stone with a layer of 75mm single sized stone chippings on top. The type 1 layer was largely impervious and thus rainfall would tend not to penetrate below the chipping layer. More recently it has become common practice to replace the type 1 stone layer with a free draining stone such as type 3. This is the most used sub-base where suds is required. It will act as a "drainage blanket" and allow paved areas to drain directly into the platform. The platform will have the capacity to absorb over 500m³ of rainfall. It should be noted that even during the most intense 100 year rainfall event only half of the storage in the drainage blanket will be utilised. Although filter drains are provided around the perimeter of the substation it will take some time for rainfall to pass through the stone layer before reaching these drainage routes, particularly as it is a horizontal surface. As an example, a 100 year rainfall event will take at least 7 days to drain through the system and into the detention basin. This will produce a flow rate from the platform of only 0.3 l/s and will only commence sometime after the rainfall event has finished. In reality some of this volume will soak into the underlying strata and some will evaporate so this flow rate is conservative.

Surface Water – Buildings

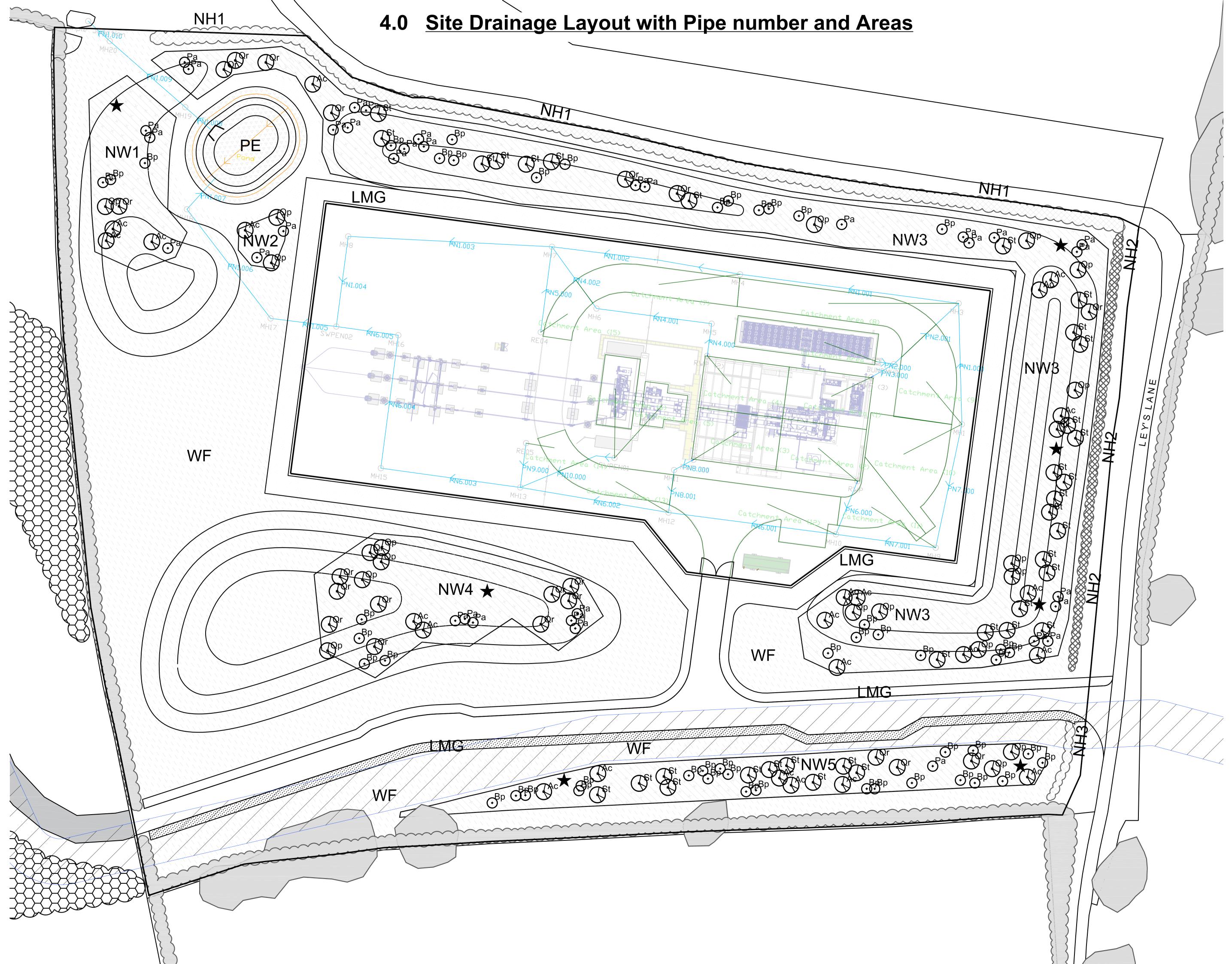
Run off from building roofs will be directed into the filter drains. The calculations have assumed that the roads and paved areas will also drain into the system, although a time of concentration of 30 minutes has been allowed. The calculations have assumed that the flow will pass quickly into the detention basin however in reality this will be considerably slowed as flows will be absorbed into the filter drain stone and to some degree into the stone platform.

In addition, it is a requirement of the environment agency to follow the principals set out in the suds manual in providing levels of treatment to surface water flows, whilst at the same time providing a natural and stable habitat for plants and wildlife. Flows from the site will be initially given some filtration

P	Project				Job Ref.	
		J50	657			
Patterson Reeves & Partners	Section				Sheet no./rev.	
85 Leigh Road		Drainage (Calculations		DC02 / 2	2
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	19/10/2023	PJR	19/10/2023	NP	19/10/2023

whereby flows pass through a geotextile membrane prior to passing into a perforated land drainage system. This will remove silts and other suspended contaminants. Flows from bunds, where oils may be present, are firstly protected by intelligent pumping systems which will detect the presence of oil and if so cease operation. In addition, flows from these locations will pass through an oil separator, before passing downstream.

The outgoing invert level from the pond will be set 300mm above the pond base. This will provide an environment for wildlife and plants, as flows pass through the wetland pond, they will get further treatment with the interaction of selected plants which will assist in removing dissolved contaminants. The area of the pond will be sized so during the most intense storm the water level in the pond will rise by approximately 0.9m. The pond will return back to its normal level in approximately 28 hours. The above proposal is a recognised standard way of achieving the principals outlined in the suds manual.


2.0 Drainage Management during the Construction Phase

It is proposed that the wetland/attenuation pond is constructed at an early stage so that it can be used as a means to control silt flows to the watercourse. It is recommended that cut-off ditches are constructed which will direct flows during construction into the pond. the pond will have a minimum depth of 300mm which will provide sufficient room for silts to settle. The pond will be subject to regular inspection to ensure that any buildup of silts is removed promptly. With this mitigation in place, the water being discharged will remain in compliance with the environmental quality standard for surface water, i.e. 40 mg/l of sediment. In addition to the above, an oil absorption and debris boom will be placed in front of the pond outfall.

A monitoring regime will be developed for the water being discharged in order to track turbidity, ph and overall quality. in the event that quality decreases further, treatment measures can then be put in place.

3.0 Foul Water

All foul water will be gravity drained to a 9,000 litre cess pit which will have a high-level alarm. The cess pit will require manual emptying and discharge off site.

DC02 / 3

5.0 Junction Levels

Project: Eye 400kV Substation			Date: 24/01/2024					
			Designed by:	Checked by: NP	Approved NP	By:	P	
Report Details: Type: Junctions Storm Phase: Phase	F 8	Company Address: Patterson Reeves & Partners 85 Leigh Road, Eastleigh SO50 9DQ						
Name	Junction Type	Easting (m)) Northing (m)	Cover Level (m)	Depth (m)	Invert Level (m)	Sump Depth (m)	Chamber Shape
MH2	Manhole			46.600	1.261	45.339		Circular
MH3	Manhole	1		46.600	1.360	45.240		Circular
MH4	Manhole			46.600	1.595	45.005	0.300	Circular
MH7	Manhole	1		46.600	1.798	44.802	0.300	Circular
MH6	Manhole			46.600	1.364	45.236		Circular
MH5	Manhole	1		46.600	1.237	45.363		Circular
MH1	Manhole			46.600	1.228	45.372		Circular
MH9	Manhole			46.600	1.366	45.234		Circular
MH10	Manhole			46.600	1.472	45.128		Circular
MH12	Manhole	1		46.600	1.651	44.949		Circular
MH11	Manhole			46.600	1.124	45.476		Circular
SWPEN01	Manhole			46.600	1.433	45.167		Circular
MH13	Manhole			46.600	1.810	44.790		Circular
MH15	Manhole			46.600	1.959	44.641		Circular
MH16	Manhole			46.600	2.101	44.499		Circular
SWPEN02	Manhole			46.600	2.360	44.240		Circular
MH8	Manhole			46.600	2.016	44.584		Circular
MH17	Manhole			45.500	1.332	44.168		Circular
MH18	Manhole			45.200	1.438	43.762		Circular
MH19	Manhole	1		45.100	1.700	43.400	0.300	Circular
MH20	Manhole			44.700	1.409	43.291		Circular
BUND	Simple Junction	1						
RWP (3)	Simple Junction							
RWP	Simple Junction							
RWP (1)	Simple Junction							
RWP (2)	Simple Junction							
RE04	Simple Junction							
RE05	Simple Junction							
Simple Junction	Simple Junction							

5.1 Detention Basin Levels

Project: Eye 400kV Substation		Date: 24/01/2024			
Report Details:		Designed by:	Checked by:	Approved By:	
		MDP Company Address:	NP	NP	
Type: Stormwater Controls		Patterson Ree	ves & Partners		
Storm Phase: Phase		85 Leigh Road	, Eastleigh		
		SO50 9DQ			
Pond					Type : Pond
Dimensions					
Exceedance Level (m)		44.800			
Depth (m)		1.200			
Base Level (m)		43.600			
Freeboard (mm)		300			
Initial Depth (m)		0.300			
Porosity (%)		100			
Average Slope (1:X)		4.00			
Total Volume (m ³)		191.405			
Depth (m)	Area (m²)	Volume	e (m³)	
0.0	000	127.15		0.000	
1.2	200	391.40		296.654	
Inlets					
Inlet (1)					
Inlet Type	Point Inflow				
Incoming Item(s)	PN1.007				
Bypass Destination	(None)				
Capacity Type	No Restriction				
Outlets					
Outlet					
Outgoing Connection	PN1.008				
Outlet Type	Free Discharge				
Advanced					
Perimeter		Circular			
Length (m)		15.066			
Friction Scheme		Manning's n			
n		0.03			

5.2 Connection Levels

Project: Eye 400kV Substation		-	Date: 24/01/2024				$\overline{\mathbf{n}}$			
-			Designed by:	Checked by:	Approved	By:				
			MDP	NP	NP					
Report Details: Type: Connections Storm Phase: Phase		F 8	Company Address: Patterson Reeves & Partners 85 Leigh Road, Eastleigh SO50 9DQ							
Name	Length (m)	Connectior Type	¹ Slope (1:X)	Manning's n	Colebrook- White Roughness (mm)	Diameter / Base Width (mm)	Upstream Cover Level (m)	Upstream Invert Level (m)		
PN2.001	19.327	Pipe	200.000		0.6	150	46.600	45.639		
PN2.000	3.716	Pipe	200.000		0.6	150	46.600	46.047		
PN3.000	5.722	Pipe	200.000		0.6	150	46.600	45.991		
PN1.001	48.057		200.000		0.6	375	46.600	45.545		
PN1.003	44.452		200.000		0.6	375	46.600	45.106		
PN6.000	12.465	•	200.000		0.6	150		45.891		
PN7.001	21.933		200.000		0.6	375	46.600	45.538		
PN6.001	36.792		200.000		0.6	150	46.600	45.433		
PN7.000	27.502		200.000		0.6	375	46.600	45.672		
PN1.000	26.353		200.000		0.6	375		45.672		
PN8.000	4.802		200.000		0.6	150	46.600	45.800		
PN8.001	9.344		200.000		0.6	150	46.600	45.778		
PN4.000	7.060		200.000		0.6	150	46.600	45.991		
PN4.001	25.311		200.000		0.6	375	46.600	45.663		
PN4.002	16.594	•	200.000		0.6	150	46.600	45.540		
PN5.000	18.787	•	200.000		0.6	375	46.600	45.672		
PN6.002	32.765	•	200.000		0.6	375	46.600	45.254		
PN9.000	9.735		200.000		0.6	375		45.672		
PN10.000	21.933		200.000		0.6	150		45.467		
PN6.003	30.676		200.000		0.6	375		45.094		
PN6.004	29.220		200.000		0.6	375	46.600	44.945		
PN6.005	13.650		200.000		0.6	375	46.600	44.803		
PN1.005	14.424		200.000		0.6	225	46.600	44.540		
PN1.004	19.815		200.000		0.6	375		44.889		
PN1.006	29.979	•	200.000		0.6	225	45.500	44.468		
PN1.009	21.861	•	200.000		0.6	150	45.100	43.700		
PN1.002	41.430		200.000		0.6	375	46.600	45.309		
PN1.010	6.408		200.000		0.6	150		43.591		
PN1.007	9.394		200.000		0.6	225	45.200	44.062		
PN1.008	7.383		205.079		0.6	150		43.900		

Project: Eye 400kV Substation			ate: 4/01/2024			
•			esigned by:	Checked by:	Approved By:	╡ヽ ▶↗
			IDP	NP	NP	
Report Details: Type: Connections Storm Phase: Phase			ompany Address atterson Ree 5 Leigh Road O50 9DQ	eves & Partners		
Name	Downstrea m Cover	Downstrea m Invert	Lock	Flow Restriction		
PN2.001	Level (m) 46.600	Level (m) 45.542	ΔΙΙ	(L/s)		
PN2.000	46.600	46.028				
PN3.000	46.600	45.962				
PN1.001	46.600	45.305				
PN1.003	46.600	44.884				
PN6.000	46.600	45.829				
PN7.001	46.600	45.428				
PN6.001	46.600	45.249				
PN7.000	46.600	45.534				
PN1.000	46.600	45.540				
PN8.000	46.600	45.776				
PN8.001	46.600	45.731				
PN4.000	46.600	45.956	All			
PN4.001	46.600	45.536	All			
PN4.002	46.600	45.457	All			
PN5.000	46.600	45.578	All			
PN6.002	46.600	45.090	All			
PN9.000	46.600	45.623	All			
PN10.000	46.600	45.357	All			
PN6.003	46.600	44.941	All			
PN6.004	46.600	44.799	All			
PN6.005	46.600	44.735	All			
PN1.005	45.500	44.468	All			
PN1.004	46.600	44.790	All			
PN1.006	45.200	44.318	All			
PN1.009	44.700	43.591	All	2.3		
PN1.002	46.600	45.102	All			
PN1.010	45.200	43.559	All			
PN1.007	44.800	44.015	All			
PN1.008	45.100	43.864	All			

)

5.3 Catchment Areas

Project: Eye 400kV Substation		Date: 24/01	/2024							
_,				ed by: Che	ecked by:	Approved By:	` -			
Dement Detailer			MDP	NF)	NP				
Report Details: Type: Inflow Summary Storm Phase: Phase				Company Address: Patterson Reeves & Partners 85 Leigh Road, Eastleigh SO50 9DQ						
Inflow Label	Connected To	Flow (L/s)	Runoff Method	Area (ha)	Percentag Imperviou (%)		Adjusted Percentage Impervious (%)	Area Analysed (ha)		
Catchment Area	BUND		Time of Concentratior	0.02	1 1	00 0	100	0.021		
Catchment Area (1)	RWP (3)		Time of Concentration	0.02	1 1	00 0	100	0.021		
Catchment Area (2)	RWP		Time of Concentratior	0.02	1 1	00 0	100	0.021		
Catchment Area (3)	RWP (1)		Time of Concentration	0.02	1 1	00 0	100	0.021		
Catchment Area (4)	RWP (2)		Time of Concentration	0.02	1 1	00 0	100	0.021		
Catchment Area (5)	SWPEN01		Time of Concentration	0.00	7 1	00 0	100	0.007		
Catchment Area (6)	SWPEN01		Time of Concentration	0.01	2 1	00 0	100	0.012		
Catchment Area (7)	MH4		Time of Concentration	0.02	2 1	00 0	100	0.022		
Catchment Area (8)	МНЗ		Time of Concentration	0.02	8 1	00 0	100	0.028		
Catchment Area (9)	MH1		Time of Concentration	0.02	2 1	00 0	100	0.022		
Catchment Area (10)	MH1		Time of Concentration	0.02	9 1	00 0	100	0.029		
Catchment Area (11)	MH9		Time of Concentration	0.01	4 1	00 0	100	0.014		
Catchment Area (12)	MH10		Time of Concentration	0.04	3 1	00 0	100	0.043		
Catchment Area (13)	MH12		Time of Concentration	0.01	4 1	00 0	100	0.014		
Catchment Area (14)	RE05		Time of Concentration	0.00	5 1	00 0	100	0.005		
Catchment Area (15)	RE04		Time of Concentration			00 0	100	0.008		
TOTAL		0.0		0.30	8			0.308		

6.0 Rainfall Analysis Criteria

Eye 400kV Substation	Date: 24/01/2024			
	Designed by:	Checked by:	Approved By:	
	MDP	NP	NP	
Report Title:	Company Addres			
		eves & Partners		
Rainfall Analysis Criteria	85 Leigh Road, Eastleigh			
	SO50 9DQ			

Runoff Type	Dynamic
Output Interval (mins)	5
Time Step	Default
Urban Creep	Apply Global Value
Urban Creep Global Value (%)	0
Junction Flood Risk Margin (mm)	300
Prefill Manhole Sumps	
Perform No Discharge Analysis	

Rainfall		
FEH		Туре:
Site Location	EYE	
Rainfall Version	1999	
C (1km)	-0.023	
D1 (1km)	0.279	
D2 (1km)	0.319	
D3 (1km)	0.285	
E (1km)	0.312	
F (1km)	2.469	
Summer	CV 1.000	
Winter	V 1.000	

Return Period		
Return Period (years)	0.0	Increase Rainfall (%) 45.000
Storm Durations	0.0	40.000
Duration (mins)		Run Time (mins)
	15	30
	30	60
	60	120
	120	240
	240	480
	360	720
	480	960
	960	1920
1.	440	2880
2	880	5760

6.1 Inflows Summary

Project: Eye 400kV	Substation			Date: 24/01/2024					ſ
				Designed by: MDP		hecked by:	Approved By: NP	``	K
Report Details: Type: Inflow Storm Phas	vs Summary e: Phase			Company Add	^{dress:} Reeves Road, Ea	& Partners			
Inflow	Storm Event	Inflow Area (ha)	Max. Inflow (L/s)	Total Inflow Volume (m³)					
Catchment Area	15 mins: Winter	0.02	25.5	11.814					
Catchment Area (1)	15 mins: Winter	0.02	25.6	11.847					
Catchment Area (2)	15 mins: Winter	0.02	25.6	11.856					
Catchment Area (3)	15 mins: Winter	0.02	25.6	11.856					
Catchment Area (4)	15 mins: Winter	0.02	25.6	11.856					
Catchment Area (5)	15 mins: Winter	0.01	9.1	4.196					
Catchment Area (6)	15 mins: Winter	0.01	14.5	6.724					
Catchment Area (7)	15 mins: Winter	0.02	26.3	12.189					
Catchment Area (8)	15 mins: Winter	0.03	30.3	14.037					
Catchment Area (9)	FEH: 100 years: +45 %: 15 mins: Winter	0.02	23.9	11.070					
Catchment Area (10)	15 mins: Winter	0.03	32.1	14.888					
Catchment Area (11)	FEH: 100 years: +45 %: 15 mins: Winter	0.01	15.5	7.186					
Catchment Area (12)	FEH: 100 years: +45 %: 15 mins: Winter FEH: 100	0.04	47.7	22.075					
Catchment Area (13)		0.01	15.5	7.165					
Catchment Area (14)		0.01	5.8	2.672					
Catchment Area (15)	years: +45 %: 15 mins: Winter	0.01	9.2	4.271					

6.2 Junctions Summary

Project: Eye 400kV Substation	Date: 24/01/2024			
	Designed by:	Checked by:	Approved By:	
	MDP	NP	NP	
Report Details:	Company Address	S:		
Type: Junctions Summary	Patterson Re	eves & Partners		
Storm Phase: Phase	85 Leigh Roa	d, Eastleigh		
	SO50 9DQ			

Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
MH2	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.33 9	45.818	0.479	50.6	0.305	0.000	49.2	23.199	ок
МНЗ	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.24 0	45.782	0.542	98.4	0.345	0.000	92.2	50.763	ок
MH4	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.00 5	45.704	0.700	118.5	0.445	0.000	113.1	62.403	Surcharged
MH7	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	44.80 2	45.625	0.823	144.5	0.524	0.000	111.6	77.162	Surcharged
MH6	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.23 6	45.649	0.412	24.4	0.262	0.000	22.7	11.035	ок
MH5	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.36 3	45.775	0.412	25.2	0.262	0.000	24.4	11.357	ок
MH1	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.37 2	45.797	0.425	56.0	0.271	0.000	53.4	25.843	ок
МН9	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.23 4	45.764	0.530	49.9	0.337	0.000	40.9	18.494	ок
MH10	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.12 8	45.752	0.624	113.5	0.397	0.000	94.5	51.361	ок
MH12	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	44.94 9	45.713	0.764	134.6	0.486	0.000	111.3	69.470	Surcharged
MH11	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.47 6	45.893	0.417	25.4	0.265	0.000	24.7	11.483	ок
SWPEN01	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	45.16 7	45.647	0.480	23.6	0.542	0.000	20.0	10.382	ок
MH13	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	44.79 0	45.644	0.854	136.9	0.543	0.000	117.8	82.074	Surcharged
MH15	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	44.64 1	45.544	0.904	117.8	0.575	0.000	105.2	81.857	Surcharged
MH16	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	44.49 9	45.445	0.946	105.2	0.602	0.000	106.3	81.999	Surcharged
SWPEN02	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	44.24 0	45.385	1.145	219.1	1.295	0.000	220.2	158.622	Surcharged
MH8	FEH: 100 years: +45 %: 15 mins: Winter	46.60 0	44.58 4	45.470	0.886	111.6	0.564	0.000	112.8	77.419	Surcharged
MH17	FEH: 100 years: +45 %: 15 mins: Winter	45.50 0	44.16 8	45.117	0.949	220.2	0.604	0.000	220.9	157.857	Surcharged
MH18	FEH: 100 years: +45 %: 960 mins: Winter	45.20 0	43.76 2	44.794	1.032	15.1	0.656	0.000	14.9	336.298	Surcharged

Project:				Date:							
Eye 400kV	Substation			24/01/ Designe		Checke	d by:	Approved By:	(
				MDP	a by.	NP	u by.				
Report Details:					y Address:						
	ions Summary					ves & Pa	rtners				
Storm Phas					gh Road	, Eastleig					
MH19	FEH: 100 years: +45 %: 960 mins: Winter	45.10 0	43.40 0	44.793	1.393	2.0	2.801	0.000	2.0	188.353	Surcharged
MH20	FEH: 100 years: +45 %: 960 mins: Winter	44.70 0	43.29 1	43.633	0.343	2.0	0.218	0.000	2.0	187.877	ок
BUND	FEH: 100 years: +45 %: 15 mins: Winter		46.04 7	46.166	0.119	25.5			25.3	11.811	ок
RWP (3)	FEH: 100 years: +45 %: 15 mins: Winter		45.99 1	46.109	0.118	25.6			25.3	11.844	ок
RWP	FEH: 100 years: +45 %: 15 mins: Winter		45.89 1	46.006	0.115	25.6			24.9	11.853	ок
RWP (1)	FEH: 100 years: +45 %: 15 mins: Winter		45.80 0	45.925	0.125	25.6			25.4	11.852	ок
RWP (2)	FEH: 100 years: +45 %: 15 mins: Winter		45.99 1	46.109	0.118	25.6			25.2	11.853	ок
RE04	FEH: 100 years: +45 %: 15 mins: Winter		45.67 2	45.738	0.066	9.2			8.8	4.207	ок
RE05	FEH: 100 years: +45 %: 15 mins: Winter		45.67 2	45.725	0.053	5.8			5.6	2.647	ок
Simple Junction	FEH: 100 years: +45 %: 960 mins: Winter		43.55 9	43.599	0.040	2.0			2.0	187.877	ок

6.3 Detention Basin Summary

Project: Eye 400kV Substation	Date: 24/01/2024			
	Designed by:	Checked by:	Approved By:	
	MDP	NP	NP	
Report Details: Type: Stormwater Controls Summary Storm Phase: Phase	Company Addres Patterson Re 85 Leigh Roa SO50 9DQ	eves & Partners		

Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwat er Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m ³)	Total Lost Volume (m³)	Max. Outflo w (L/s)	Total Dischar ge Volume (m³)	Percentag e Available (%)	Status
Pond	FEH: 100 years: +45 %: 960 mins: Winter	44.794	44.794	1.194	1.194	14.9	294.29 5	0.000	0.000	2.0	190.658	-53.755	Flood Risk

7.0 Rainfall Analysis Criteria

Project: Eye 400kV Substation	Date: 24/01/2024					
	Designed by:	Checked by:	Approved By:	1		
	MDP					
Report Title:	Company Address:					
	Patterson Reeve	es & Partners				
Rainfall Analysis Criteria	85 Leigh Road, E	Eastleigh			DRN	
	SO50 9DQ	5			DRN	

Runoff Type	Dynamic
Output Interval (mins)	5
Time Step	Default
Urban Creep	Apply Global Value
Urban Creep Global Value (%)	0
Junction Flood Risk Margin (mm)	300
Prefill Manhole Sumps	
Perform No Discharge Analysis	

Rainfall		
FEH		Туре: FI
Site Location	EYE	
Rainfall Version	1999	
C (1km)	-0.023	
D1 (1km)	0.279	
D2 (1km)	0.319	
D3 (1km)	0.285	
E (1km)	0.312	
F (1km)	2.469	
Summer	CV 1.000	
Winter	V 1.000	

Return Period	
Return Period (years)	Increase Rainfall (%)
30.0	0.000
Storm Durations	
Duration (mins)	Run Time (mins)
15	30
30	60
60	120
120	240
240	480
360	720
480	960
960	1920
1440	2880
2880	5760

7.1 Inflows Summary

Project: Eye 400kV \$	Substation			Date: 24/01/2024						
				Designed by: MDP		Checked by:	Approved E	By:		
Report Details: Type: Inflows Summary Storm Phase: Phase				Company Address: Patterson Reeves & Partners 85 Leigh Road, Eastleigh SO50 9DQ					RN	
Inflow	Storm Event	Inflow Area (ha)	Max. Inflow (L/s)	Total Inflow Volume (m³)						
Catchment Area	FEH: 30 years: +0 %: 15 mins: Winter	0.02	11.6	5.365						
Catchment Area (1)	FEH: 30 years: +0 %: 15 mins: Winter	0.02	11.6	5.380						
Catchment Area (2)	15 mins: Winter	0.02	11.6	5.380						
Catchment Area (3)	15 mins: Winter	0.02	11.6	5.383						
Catchment Area (4)	15 mins: Winter	0.02	11.6	5.380						
Catchment Area (5)	FEH: 30 years: +0 %: 15 mins: Winter	0.01	4.1	1.904						
Catchment Area (6)	15 mins: Winter	0.01	6.6	3.053						
Catchment Area (7)	15 mins: Winter	0.02	12.0	5.536						
Catchment Area (8)	15 mins: Winter	0.03	13.8	6.372						
Catchment Area (9)	FEH: 30 years: +0 %: 15 mins: Winter	0.02	10.8	5.023						
Catchment Area (10)	FEH: 30 years: +0 %: 15 mins: Winter	0.03	14.6	6.756						
Catchment Area (11)	FEH: 30 years: +0 %: 15 mins: Winter	0.01	7.0	3.260						
Catchment Area (12)	FEH: 30 years: +0 %: 15 mins: Winter	0.04	21.6	10.022						
Catchment Area (13)	FEH: 30 years: +0 %: 15 mins: Winter	0.01	7.0	3.254						
Catchment Area (14)	15 mins: Winter	0.01	2.6	1.215						
Catchment Area (15)	FEH: 30 years: +0 %: 15 mins: Winter	0.01	3.8	1.745						

7.2 Junctions Summary

Project: Eye 400kV Substation	Date: 24/01/2024					
	Designed by:	Checked by:	Approved By:	1		
	MDP					
Report Details:	Company Address	5.				
Type: Junctions Summary	Patterson Ree	eves & Partners				
Storm Phase: Phase	85 Leigh Road	d, Eastleigh			DRN	
	SO50 9DQ				DKN	

Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
MH2	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.33 9	46.009	0.670	22.7	0.426	0.000	20.0	10.264	Surcharged
МНЗ	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.24 0	45.729	0.489	70.1	0.311	0.000	58.3	30.022	ок
MH4	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.00 5	45.576	0.571	70.3	0.363	0.000	56.7	34.957	ок
MH7	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	44.80 2	45.558	0.756	69.5	0.481	0.000	59.4	40.830	Surcharged
MH6	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.23 6	45.644	0.407	11.0	0.259	0.000	9.3	4.600	ок
MH5	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.36 3	45.733	0.370	11.4	0.235	0.000	11.0	4.912	ок
MH1	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.37 2	45.809	0.437	41.3	0.278	0.000	20.5	15.853	ок
MH9	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.23 4	45.818	0.583	21.4	0.371	0.000	7.2	7.453	ок
MH10	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.12 8	45.820	0.691	32.9	0.440	0.000	18.6	17.807	Surcharged
MH12	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	44.94 9	45.537	0.588	36.5	0.374	0.000	35.7	22.927	ок
MH11	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.47 6	45.893	0.417	11.3	0.265	0.000	10.8	5.035	ок
SWPEN01	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	45.16 7	45.574	0.407	10.7	0.460	0.000	9.8	4.506	ок
MH13	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	44.79 0	45.532	0.742	48.1	0.472	0.000	46.1	28.236	Surcharged
MH15	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	44.64 1	45.524	0.884	46.1	0.562	0.000	46.1	27.929	Surcharged
MH16	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	44.49 9	45.519	1.020	46.1	0.648	0.000	33.3	27.823	Surcharged
SWPEN02	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	44.24 0	45.515	1.275	72.6	1.443	0.000	71.7	68.176	Surcharged
MH8	FEH: 30 years: +0 %: 15 mins: Winter	46.60 0	44.58 4	45.531	0.947	59.4	0.602	0.000	48.7	40.829	Surcharged
MH17	FEH: 30 years: +0 %: 15 mins: Winter	45.50 0	44.16 8	45.183	1.015	71.7	0.646	0.000	71.9	67.853	Surcharged
MH18	FEH: 30 years: +0 %: 15 mins: Winter	45.20 0	43.76 2	44.487	0.725	71.9	0.461	0.000	71.9	67.074	Surcharged
MH19	FEH: 30 years: +0 %: 480 mins: Winter	45.10	_ 43.40 0	44.383	0.983	1.7	1.977	0.000	1.6	72.398	Surcharged
MH20	FEH: 30 years: +0 %: 480 mins: Winter	44.70	43.29 1	43.628	0.338	1.6	0.215	0.000	1.6	71.938	ок
BUND	FEH: 30 years: +0 %: 15 mins: Winter		46.04 7	46.165	0.118	11.6			11.4	5.361	ок
RWP (3)	FEH: 30 years: +0 %: 15 mins: Winter		45.99 1	46.110	0.119	11.6			11.4	5.376	ок
RWP	FEH: 30 years: +0 %: 15 mins: Winter		45.89 1	46.010	0.119	11.6	1		11.2	5.376	ок
RWP (1)	FEH: 30 years: +0 %: 15 mins: Winter		45.80 0	45.929	0.129	11.6			11.3	5.379	ок
RWP (2)	FEH: 30 years: +0 %: 15 mins: Winter		45.99 1	46.111	0.120	11.6			11.4	5.376	ок
RE04	FEH: 30 years: +0 %: 15 mins: Winter		45.67 2	45.714	0.042	3.8			3.5	1.743	ок
RE05	FEH: 30 years: +0 %: 15 mins: Winter		2 45.67 2	45.708	0.036	2.6			2.5	1.213	ок
Simple Junction	FEH: 30 years: +0 %: 480 mins: Winter		2 43.55 9	43.595	0.036	1.6			1.6	71.938	ок

Created in InfoDrainage 2024.4

7.3 Detention Basin Summary

Project:	Date:					
Eye 400kV Substation	24/01/2024					
	Designed by:	Checked by:	Approved By:	1		
	MDP					
Report Details:	Company Address:					
Type: Stormwater Controls Summary	Patterson Ree	ves & Partners				
Storm Phase: Phase	85 Leigh Road	, Eastleigh			DRN	
	SO50 9DQ				DKN	

Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwat er Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m³)	Total Lost Volume (m³)	Max. Outflo w (L/s)	Total Dischar ge Volume (m³)	Percentag e Available (%)	Status
Pond	FEH: 30 years: +0 %: 480 mins: Winter	44.384	44.384	0.784	0.784	13.2	156.86 5	0.000	0.000	1.7	74.152	18.045	ок

8.0 Rainfall Analysis Criteria

Project: Eye 400kV Substation						
	Designed by:	Checked by:	Approved By:	1 🗖		
	MDP					
Report Title:	Company Address:			1 🗖		
	Patterson Reeve	s & Partners				
Rainfall Analysis Criteria	85 Leigh Road, E	Eastleigh			DRN	
	SO50 9DQ	-			DKN	

Runoff Type	Dynamic
Output Interval (mins)	5
Time Step	Default
Urban Creep	Apply Global Value
Urban Creep Global Value (%)	0
Junction Flood Risk Margin (mm)	300
Prefill Manhole Sumps	
Perform No Discharge Analysis	

Rainfall		
FEH		Type: FE
Site Location	EYE	
Rainfall Version	1999	
C (1km)	-0.023	
D1 (1km)	0.279	
D2 (1km)	0.319	
D3 (1km)	0.285	
E (1km)	0.312	
F (1km)	2.469	
Summer	CV 1.000	
Winter	V 1.000	

Return Period	
Return Period (years)	Increase Rainfall (%)
2.0	0.000
Storm Durations	
Duration (mins)	Run Time (mins)
15	30
30	60
60	120
120	240
240	480
360	720
480	960
960	1920
1440	2880
2880	5760

8.1 Inflows Summary

Project: Eye 400kV Substation	Date: 24/01/2024				
	Designed by:	Checked by:			
	MDP				
Report Details:	Company Address				
Type: Inflows Summary	Patterson Ree	ves & Partners			
Storm Phase: Phase	85 Leigh Road	l, Eastleigh		DRN	
	SO50 9DQ			DAN	

Critical Storm Per Item: Rank By: Max. Inflow

Inflow	Storm Event	Inflow Area (ha)	Max. Inflow (L/s)	Total Inflow Volume (m³)
Catchment Area	FEH: 2 years: +0 %: 15 mins: Winter	0.02	4.6	2.125
Catchment Area (1)	FEH: 2 years: +0 %: 15 mins: Winter	0.02	4.6	2.128
Catchment Area (2)	FEH: 2 years: +0 %: 15 mins: Winter	0.02	4.6	2.128
Catchment Area (3)	FEH: 2 years: +0 %: 15 mins: Winter	0.02	4.6	2.128
Catchment Area (4)	FEH: 2 years: +0 %: 15 mins: Winter	0.02	4.6	2.128
Catchment Area (5)	FEH: 2 years: +0 %: 15 mins: Winter	0.01	1.6	0.755
Catchment Area (6)	FEH: 2 years: +0 %: 15 mins: Winter	0.01	2.6	1.211
Catchment Area (7)	FEH: 2 years: +0 %: 15 mins: Winter	0.02	4.7	2.191
Catchment Area (8)	FEH: 2 years: +0 %: 15 mins: Winter	0.03	5.4	2.521
Catchment Area (9)	FEH: 2 years: +0 %: 15 mins: Winter	0.02	4.3	1.990
Catchment Area (10)	FEH: 2 years: +0 %: 15 mins: Winter	0.03	5.8	2.676
Catchment Area (11)	FEH: 2 years: +0 %: 15 mins: Winter	0.01	2.8	1.289
Catchment Area (12)	FEH: 2 years: +0 %: 15 mins: Winter	0.04	8.6	3.971
Catchment Area (13)	FEH: 2 years: +0 %: 15 mins: Winter	0.01	2.8	1.289
Catchment Area (14)	FEH: 2 years: +0 %: 15 mins: Winter	0.01	1.0	0.480
Catchment Area (15)	FEH: 2 years: +0 %: 15 mins: Winter	0.01	1.7	0.770

8.2 Junctions Summary

Project: Eye 400kV Substation	Date: 24/01/2024	
	Designed by: Checked by: Approved By:	
	MDP	
Report Details:	Company Address:	
Type: Junctions Summary	Patterson Reeves & Partners	
Storm Phase: Phase	85 Leigh Road, Eastleigh	DRN
	SO50 9DQ	DRN

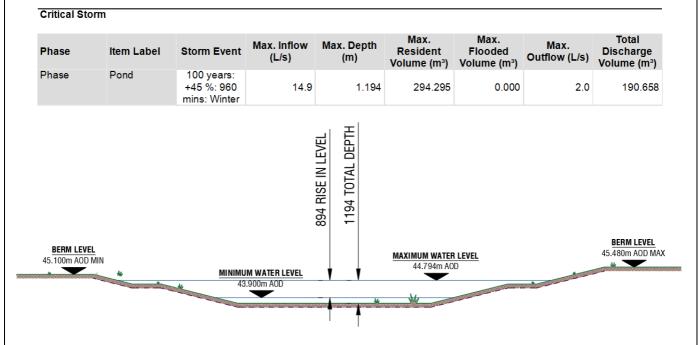
Critical Storm Per Item: Rank By: Max. Depth

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
MH2	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	45.33 9	45.736	0.397	9.0	0.253	0.000	8.6	3.806	ок
МНЗ	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	45.24 0	45.636	0.395	18.9	0.251	0.000	17.0	7.907	ок
MH4	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	45.00 5	45.400	0.396	21.8	0.252	0.000	17.0	9.588	ок
MH7	FEH: 2 years: +0 %: 30 mins: Winter	0	44.80 2	45.199	0.397	18.5	0.253	0.000	18.5	14.482	ок
MH6	FEH: 2 years: +0 %: 30 mins: Winter	0	45.23 6	45.590	0.353	2.8	0.225	0.000	2.8	1.840	ок
MH5	FEH: 2 years: +0 %: 15 mins: Winter	0	45.36 3	45.707	0.344	4.5	0.219	0.000	4.0	1.687	ок
MH1	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	45.37 2	45.719	0.347	10.1	0.220	0.000	9.7	4.219	ок
МН9	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	45.23 4	45.597	0.363	7.5	0.231	0.000	5.9	3.060	ок
MH10	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	45.12 8	45.598	0.470	17.6	0.299	0.000	14.0	8.696	Surcharged
MH12	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	44.94 9	45.354	0.405	21.1	0.257	0.000	20.4	11.182	ок
MH11	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	45.47 6	45.842	0.366	4.5	0.233	0.000	4.2	1.779	ок
SWPEN01	FEH: 2 years: +0 %: 15 mins: Winter		45.16 7	45.526	0.359	4.2	0.406	0.000	3.8	1.609	ок
MH13	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	44.79 0	45.198	0.408	25.2	0.259	0.000	21.2	12.777	ок
MH15	FEH: 2 years: +0 %: 30 mins: Winter		44.64 1	45.043	0.402	20.0	0.256	0.000	19.9	15.732	ок
MH16	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	44.49 9	44.927	0.428	20.6	0.272	0.000	23.0	12.305	ок
SWPEN02	FEH: 2 years: +0 %: 15 mins: Winter		44.24 0	44.913	0.673	42.6	0.761	0.000	45.3	22.934	Surcharged
MH8	FEH: 2 years: +0 %: 15 mins: Winter	46.60 0	44.58 4	44.986	0.402	17.4	0.256	0.000	19.6	11.261	ок
MH17	FEH: 2 years: +0 %: 15 mins: Winter	45.50 0	44.16 8	44.776	0.608	45.3	0.387	0.000	45.6	22.723	Surcharged
MH18	FEH: 2 years: +0 %: 15 mins: Winter	45.20 0	43.76 2	44.313	0.551	45.6	0.350	0.000	45.8	22.309	Surcharged
MH19	FEH: 2 years: +0 %: 480 mins: Winter	45.10 0	43.40 0	44.121	0.721	1.6	1.450	0.000	1.3	53.114	Surcharged
MH20	FEH: 2 years: +0 %: 1440 mins: Winter	44.70 0	43.29 1	43.625	0.335	1.3	0.213	0.000	1.3	93.728	ок
BUND	FEH: 2 years: +0 %: 15 mins: Winter		46.04 7	46.114	0.067	4.6			4.5	2.122	ок
RWP (3)	FEH: 2 years: +0 %: 15 mins: Winter		45.99 1	46.058	0.067	4.6			4.5	2.125	ок
RWP	FEH: 2 years: +0 %: 15 mins: Winter		45.89 1	45.956	0.065	4.6	1		4.4	2.125	ок
RWP (1)	FEH: 2 years: +0 %: 15 mins: Winter		45.80 0	45.869	0.069	4.6			4.5	2.125	ок
RWP (2)	FEH: 2 years: +0 %: 15 mins: Winter		45.99 1	46.058	0.067	4.6	1		4.5	2.125	ок
RE04	FEH: 2 years: +0 %: 15 mins: Winter		45.67 2	45.700	0.028	1.7	1		1.5	0.768	ок
RE05	FEH: 2 years: +0 %: 15 mins: Winter		45.67 2	45.695	0.023	1.0	1		1.0	0.478	ок
Simple Junction	FEH: 2 years: +0 %: 1440 mins: Winter		43.55 9	43.592	0.033	1.3			1.3	93.728	ок

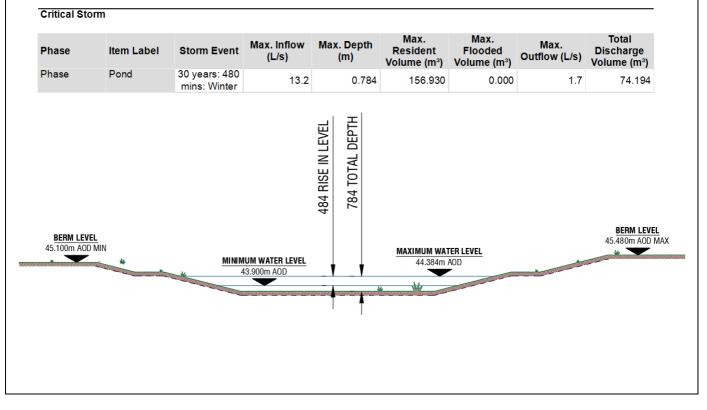
Created in InfoDrainage 2024.4

8.3 Detention Basin Summary

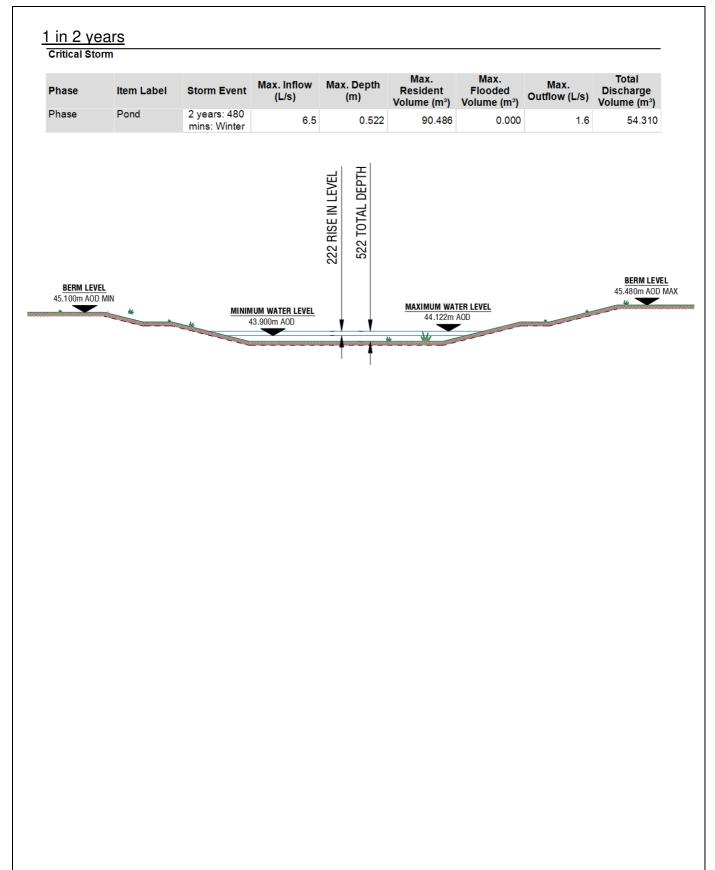
Project:	Date:					
Eye 400kV Substation	24/01/2024					
	Designed by: Checked by: Approved By:			1		
	MDP					
Report Details:	Company Address:					
Type: Stormwater Controls Summary	Patterson Reev	/es & Partners				
Storm Phase: Phase	85 Leigh Road,	Eastleigh			DRN	
	SO50 9DQ	U			DRN	


Critical Storm Per Item: Rank By: Max. Avg. Depth

Stormwat er Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Depth (m)	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m ³)	Total Lost Volume (m³)	Max. Outflo w (L/s)	Total Dischar ge Volume (m³)	Percentag e Available (%)	Status
Pond	FEH: 2 years: +0 %: 480 mins: Winter		44.122	0.522	0.522	6.5	90.504	0.000	0.000	1.6	54.308	52.716	ок


P	Project			Job Ref.		
		Eye 400k\	J5657			
	Section		Sheet no./rev.			
Patterson Reeves & Partners 85 Leigh Road		Drainage (DC02 / 22			
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	16/10/2023	PJR	16/10/2023	NP	16/10/2023

9.0 Detention Basin Levels


1 in 100 years + 45% Climate Change

1 in 30 years

P	Project		Job Ref.			
		Eye 400k\	J5657			
Patterson Reeves & Partners	Section		Sheet no./rev.			
85 Leigh Road		Drainage	DC02 / 23			
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	16/10/2023	PJR	16/10/2023	NP	16/10/2023

P	Project		Job Ref.			
		Eye 400k\	J5657			
Patterson Reeves & Partners	Section		Sheet no./rev.			
85 Leigh Road		Drainage	DC02 / 24			
Eastleigh	Calc. by	Date	Chk'd by	Date	App'd by	Date
SO50 9DQ	MDP	29/01/2024	PJR	29/01/2024	NP	29/01/2024

10.0 Summary of Results

Several storm durations were modelled from 15 minutes to 2 days duration. The total required volume for the SUDS attenuation Basin for a 1 in 100 Year Return Period Storm + 45% Climate Change so that flooding does not occur in any part of the site is 294m³ (this includes the 300mm minimum depth of retained water volume).

It is proposed that flows leaving the developed site would be best attenuated in a wetland pond. This will be constructed to the north west of the substation. Flows from the wetland pond will be limited to 2.3 l/s by means of a hydrobrake and will discharge to a nearby watercourse.

The outgoing invert level from the pond will be set such that there will always be a minimum depth of 300mm of water in the pond. This will ensure a suitable environment for wildlife and plants. As flows pass through the wetland pond, they will get further treatment with the interaction of carefully selected plants which will assist in removing dissolved contaminates etc. The area of the pond will be sized so that during the most intense storm the water level in the pond will rise by 894mm. This level will return back to normal in approximately 31 hours.

All oil containing plant is located within bunded areas. Flows from bunds, where oils may be present, are firstly protected by intelligent pumping systems which will detect the presence of oil and if so, cease operation. In addition, flows from these locations will pass through an oil separator, before passing downstream.

All foul water shall be gravity drained to a 9,000 Litre cess pit which will have a high-level alarm and will require manual emptying.

A				
		3000 MIN MAINTENANCE STRIP	1V : 4H	15 SHALLOV
В		45.100m AOD MIN		
с		TI	EKTOSEAL CLAY GEOSYNTHETIC	
D				
E				
F				
				MAXIMUM WATER LE
				44.794m AOD
G				
				MINIMUM WATER LE
Н				<u>× / / × /</u> /× / /
J				
			<u>ACCES</u> SERIES, A15 RATED WITH ASSISTED LIFT, L AME WITH SAFETY MESH WITH INTERNAL D	
К			ID SAFETY GRID, 3000 HOLE TO AID SAFE DI	RAW OFF.
		HYDROBRAKE CHAMBER AS SUPPLIED PREFORM FITTED WITH HYDROBRAKE ALL AS SUPPLIED BY HYDRO INTERNATIONAL OR SIMILAR APPROVED. CHAMBER TO BE INSTALLED IN ACCORDANCE WITH MANUFACTURERS INSTRUCTIONS.		HVRDOBRAKE CHAMBER
L				
				44.794m AOD
			ENERSTROUTERON	
М			ENERGY	
			TLET PIPE 1 IN 200	
N				43.400n
Ρ	 DO NOT SCALE, WORK TO DIMENSIONS SHOWN. ALL DIMENSIONS ARE IN MI UNLESS SHOWN OTHERWISE. THE CONTRACTOR IS RESPONSIBLE FOR THE LOCATION OF ALL EXISTING SE THE WORKS AREA AND FOR THE STRUCTURAL STABILITY THROUGHOUT THE 	RVICES WITHIN		
	 CONTRACTORS ARE TO BE AWARE OF THEIR RESPONSIBILITIES UNDER THE REGULATIONS & COMPLY WITH THEM AT ALL TIMES. NOTE THAT ANY HAZAF ON THE DRAWINGS ARE ONLY THOSE WHICH MAY NOT BE OBVIOUS TO COM 	CDM RDS IDENTIFIED		
	 PERSONS OR ARE USUAL OR WHICH MIGHT BE DIFFICULT TO MANAGE. 4. WORKING AREAS AND METHODS TO BE AGREED BEFORE WORK COMMENCE 5. THE TERM 'ENGINEER' REFERS TO PATTERSON REEVES & PARTNERS. 	S.		
R	6. THE TERM 'CONTRACTOR' REFERS TO THE CONTRACTOR RESPONSIBLE FOR ELEMENT OF THE WORKS.			
	 ANY CONTRACTOR RESPONSIBLE FOR THE PLANNING AND EXECUTION OF AI WORKS SHOULD BE AWARE OF HSG47 - AVOIDING DANGER FROM UNDERGF FOR ADDITIONAL CONSTRUCTION NOTES REFER TO DRAWING D069-SEL-V00 			
╎┟	WORKS SHOULD BE AWARE OF HSG47 - AVOIDING DANGER FROM UNDERGF)-400-DD-C-0027.		

5

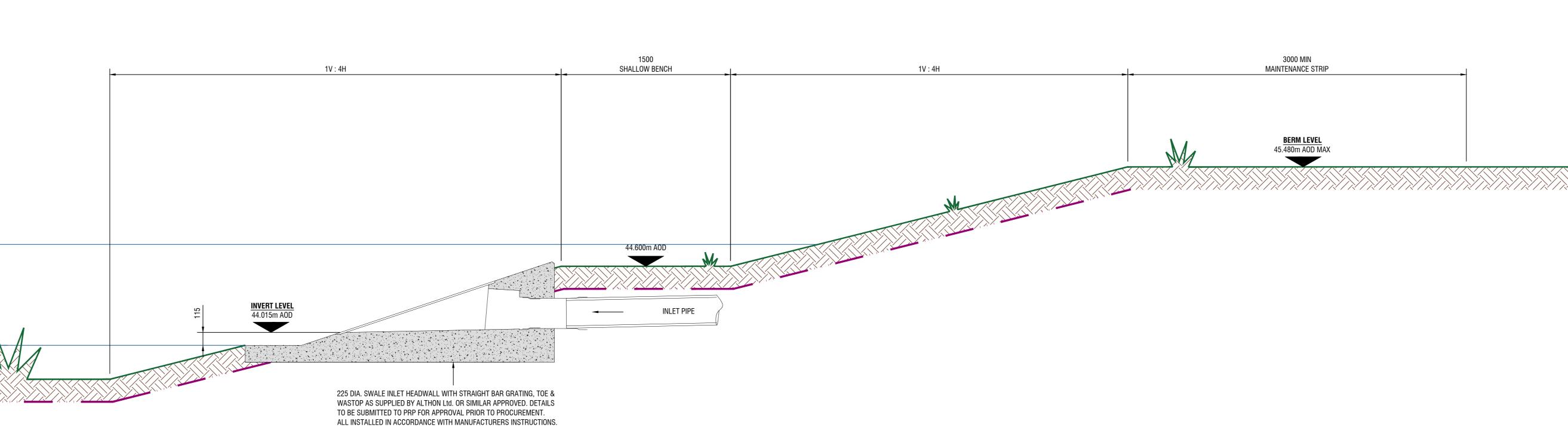
6

4

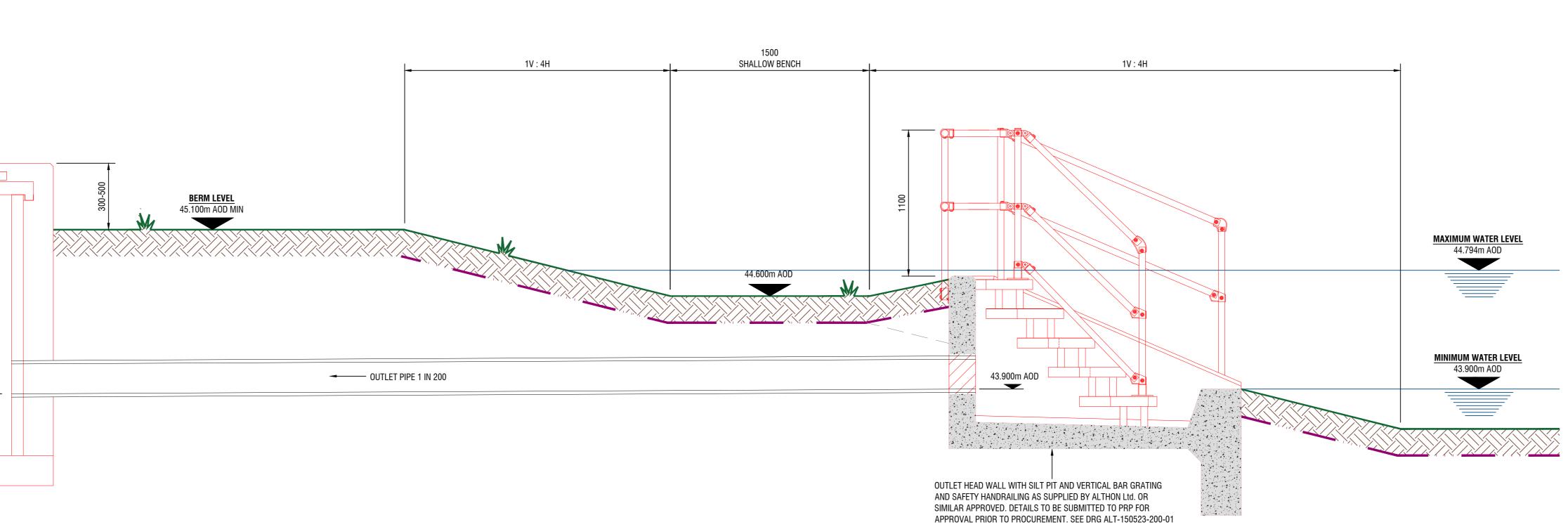
1

3

APPROVED: N.Patterson 13.09.2023 중 N.Patterson 19.10.2023 중 값 N.Patterson 01.02.2024 동 문 중


4

5


9

14 19 7 8 9 11 13 15 16 17 18 10 12 TEKTOSEAL CLAY GEOSYNTHETIC LINER AS SUPPLIED BY HUESKER OR SIMILAR APPROVED TO BASE AND SIDES OF POND. LINER PLACED DIRECTLY ONTO FORMATION ALL PREPARED AND INSTALLED IN ACCORDANCE WITH MANUFACTURERS INSTRUCTIONS.. 1500 SHALLOW BENCH 1V : 4H SEE PLAN 1V:4H POND WATER LEVELS: WATER LEVEL 1 - 1 IN 2yr STORM = 44.122m AOD WATER LEVEL 2 - 1 IN 30yr STORM = 44.384m AOD WATER LEVEL 3 - 1 IN 100yr + 45% CLIMATE = 44.794m AOD WATER LEVEL 3 (MAXIMUM) 44.794m AOD -WATER LEVEL WATER LEVI MINIMUM WATER LEVEL 43.900m AOD <u>ALE ENTRE ENTRE</u>

TYPICAL SECTION ON SUDS POND SCALE 1:33

TYPICAL SECTION ON SUDS POND - INLET SCALE 1:20

<u>TYPICAL SECTION ON SUDS POND - OUTFALL</u> SCALE 1:20

Ľese Jeres Jeres

14

	CDM REGULATIONS:
1 2 m	RESIDUAL HAZARDS IDENTIFIED BELOW
SCALE 1:20	300-500mm RAISED CHAMBER COVERS WERE REQUIREMENT TO REDUCE RISK - PERSONAL IN COVER FAILURE OR DISPLACEMENT IN VEGETA

15

ERE IDENTIFIED BY PATTERSON REEVES & PARTNERS AS A AL INJURY/LIFE. THIS RISK WOULD BE PRESENT IN THE EVENT OF GETATED GROUND OUTSIDE THE SUBSTATION SECURITY FENCE.

18

DRAWING TITL	<u>E</u>	DRAWING No.													
OVERVIEW & PHILOS	OPHY	D069-SEL-V00-400-LY-C-0016													
LAYOUT 1		D069-SEL-V00-400-LY-C-0017													
LAYOUT 2		D069-SEL-V00-400-LY-C-0018													
LAYOUT 3		D069-SEL-V00-400-LY-C-0019			RAWIN		ГС]	
SCHEDULES		D069-SEL-V00-400-SH-C-0006			TATUS:	'L	FU	JR L	ONSI	RUL		UN			
DETAILS 1 - GENERAI	_	D069-SEL-V00-400-DD-C-0027		PREL				,	DMMENT / FOR ACCEP	,	RUCTION	/ AS-BUILT		J	
DETAILS 2 - POND		D069-SEL-V00-400-DD-C-0028					DRAWI	NG TO BE PF	INTED IN COLO	UR ONLY					
DETAILS 3 - OIL SEPA	RATOR	D069-SEL-V00-400-DD-C-0029	C	Customer			Site								
DETAILS 4 - BUND DF	AINAGE	D069-SEL-V00-400-DD-C-0030		CONF	RAD E	NER	IGY	EYE 400kV SYNCHRONOUS SUBSTATION							
DRAWING	REFEF	RENCE SCHEDULE	C	Contractor				Title DETAILS DRAINA							
CDM REGUL	ATIONS	:		GL	JG	ſĊ	ΒY	EYE 400	kV SYNCHI	Ronous s	SUBS	TATION			
SIGNIFICANT OR UNUSU	AL HAZARDS H	IGHLIGHTED BELOW:	S	Subcontractor			P	Contractor Drawing No. D069-SEL-V00-400-DD-C-0028							
THERE ARE NO RISKS UI	THERE ARE NO RISKS UNFAMILIAR TO A COMPETENT CONTRACTOR			Patterson Reeves & Partners											
SAFE METHODS OF WORK ARE THE RESPONSIBILITY OF THE CONTRACTOR AND ARE TO BE IDENTIFIED IN THE HEALTH AND SAFETY PLAN.			AND D	Designed M.Patterson	Drawn S.Pa	rr	Checked G.Hooper	Approved N.Patters	Date on May 20	Scale 23 SHO	WN	Size A0	Sheet of	01 01	Revision 03
19		20		21			22			23			24		

1V : 4H	3000 MIN MAINTENANCE STRIP
	BERM LEVEL 45.480m AOD MAX
Mr. Com	

22

23

24

20

21

WING No.	
/00-400-LY-C-0016	
/00-400-LY-C-0017	
/00-400-LY-C-0018	
/00-400-LY-C-0019	