

JOB NUMBER: C6497

PROJECT TITLE: PROPOSED BAKERY, NEWTON DEE, BIELDSIDE, ABERDEEN

REPORT TITLE: DRAINAGE IMPACT ASSESSMENT

Revision Α

Date 23/02/24 Originator ŇJH

Checker LD

Approver SNC

Issue Description INITIAL ISSUE

www.ramsaychalmers.co.uk

TABLE OF CONTENTS

1.	DEVELOPMENT DESCRIPTION	3
	CURRENT AND HISTORICAL DRAINAGE PATTERNS	
	SURFACE WATER DRAINAGE	
	SOIL CLASSIFICATION	
5	SUBSOIL POROSITY	4
6	DESIGN ATTENUATION	4
7	FOUL WATER DRAINAGE	4
8	EXISTING TRUNK SEWER INFORMATION	4
9	MAINTENANCE RESPONSIBILITY	4
10	FLOODING HISTORY	5

APPENDIX A

ND/23-01/PL/000 - Location Plan C6497 - XXX-RAC-ZZ-XX-DR-C-0100-A - Proposed Drainage Layout

1. DEVELOPMENT DESCRIPTION

It is proposed to build a new bakery on the existing Camphill community campus at Newton Dee, Bieldside. The site is located at (OS Grid Ref: 387998E, 802202N) which is bounded by the Deeside Way to the North, farmland to the East, Old Ferry Road to the South and West.

The whole site has a total approximate area of 3548m². The proposed hardstanding area has been calculated as 870m².

A copy of Camphill Architecture and Development drawing ND/23-01/PL/000 - Location Plan has been included in Appendix A.

This document is to be used for planning purposes only.

2. CURRENT AND HISTORICAL DRAINAGE PATTERNS

The existing site falls north to south, and it is anticipated the existing greenfield overland flows will shed in this direction.

3. SURFACE WATER DRAINAGE

Proposed surface water flows from the developments roof water will be collected in a drainage network and discharged into the sub-base of the porous paving providing treatment. Proposed surface water flows from the development car park will be collected and treated via porous paving and its sub-base. These combined surface water flows will be attenuated via a control manhole to 1.45l/s, storage will be provided via offline attenuation. The discharging flow will combine with the treated foul water before discharging into the nearby watercourse.

Refer to appendix A for Ramsay and Chalmers drawings C6497 – XXX-RAC-ZZ-XX-DR-X-0100-A – Proposed Drainage Layout.

		Pollution Hazard Indices			
Land Use	Hazard Level	Suspended Solids	Metals	Hydrocarbons	
Commercial Roofing Inert Materials	Very Low	0.3	0.2	0.05	
Non-Residential parking with infrequent change	Low	0.5	0.4	0.4	

Table 1: Land Use Pollution Hazard Index

		Pollution Hazard Indices		
Component Description		Suspended Solids	Metals	Hydrocarbons
1	Porous Paving	0.7	0.6	0.7

Table 2: Low Traffic Road Component Design

Sufficiency Of Pollution Mitigation Indices				
Suspended Solids Metals Hydrocarbons				
Sufficient	Sufficient	Sufficient		

Table 3: Sufficiency of Pollution Mitigation Indices for Low Traffic Roads

4. SOIL CLASSIFICATION

The soil classification for the site is Type 2 as taken from the "Wallingford Maps Volume 3."

5. SUBSOIL POROSITY

A site investigation has been carried out to demonstrate infiltration on site, however due to the limited space available on this site a discharge to ground is not feasible. Report available on request.

6. DESIGN ATTENUATION

The proposed site will be attenuated to the M30 Greenfield run off rate of 1.45l/s. The required storage is 25.45m³ allowing for 40% climate change. Refer to calculations in in Appendix B.

7. FOUL WATER DRAINAGE

Proposed foul drainage flows from the development will be collected in a drainage network and treated via a private treatment plant. The discharge from the treatment plan will combine with the attenuated surface water discharge. This combined treated flow will discharge into the nearby watercourse.

Refer to appendix A for Ramsay and Chalmers drawings C6497 – XXX-RAC-ZZ-XX-DR-X-0100-A – Proposed Drainage Layout.

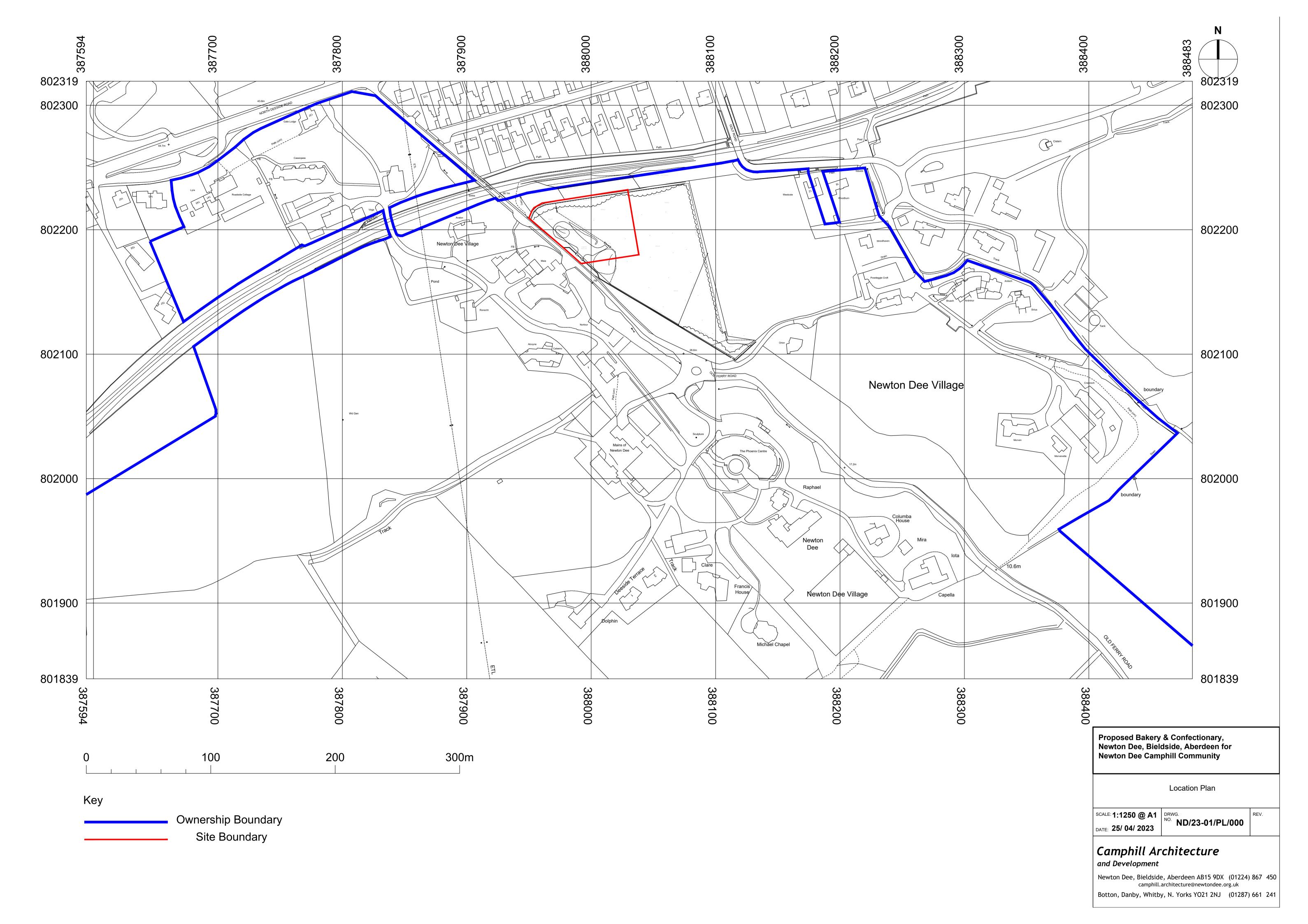
8. EXISTING TRUNK SEWER INFORMATION

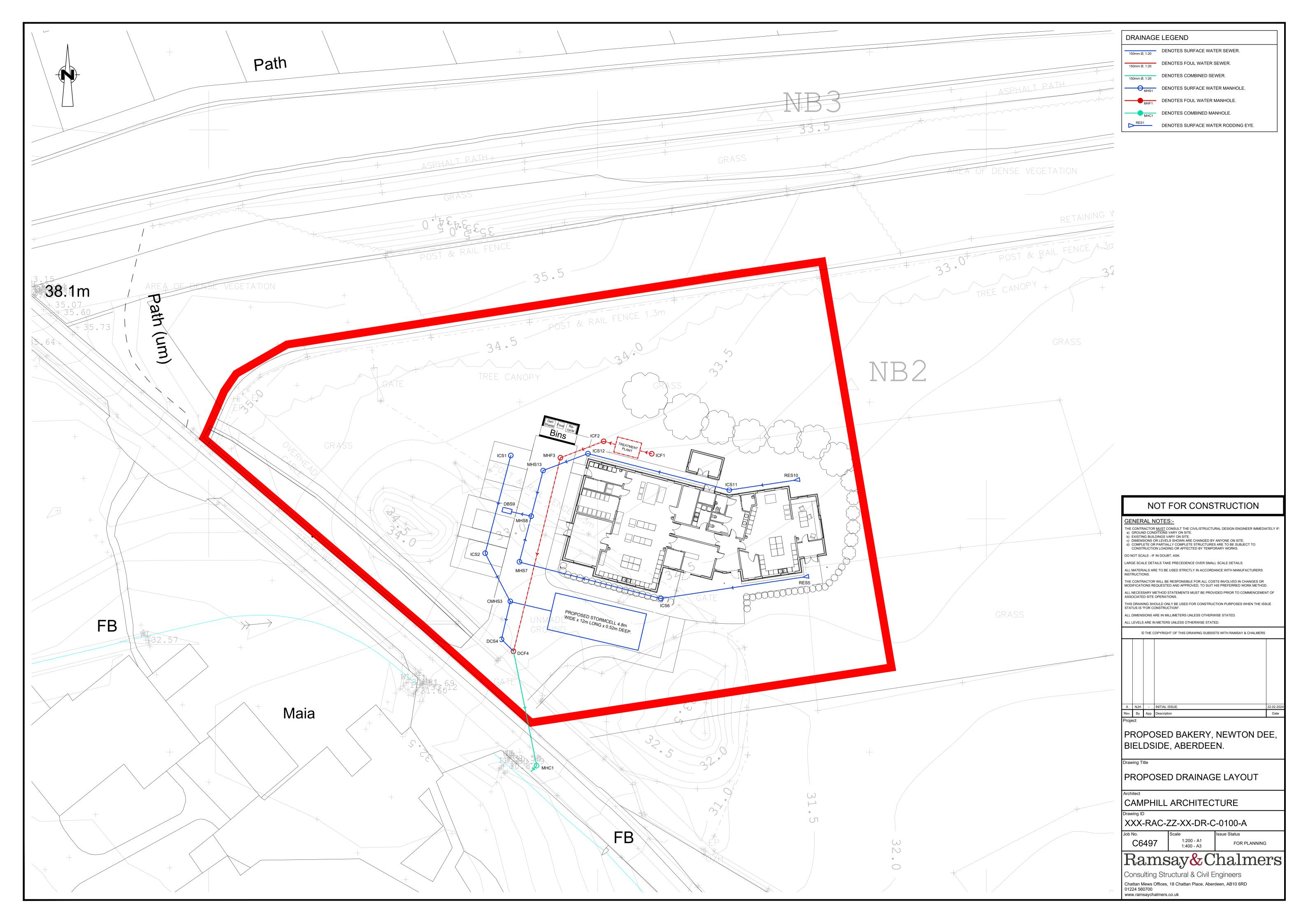
A copy of the drawing highlighting the existing Scottish Water foul and surface water pipe infrastructure is available on request.

9. MAINTENANCE RESPONSIBILITY

Drainage Item	Maintenance Responsibility
Surface Water Sewers	Client
Foul Sewers	Client
Individual Plot Drainage	Client

4




10. FLOODING HISTORY

The flooding history has been researched and the SEPA mapping shows surface water flooding. A detailed flood model has been carried out and the report is included as part of the planning submission. The drainage design complies with the conclusions of the report.

APPENDIX A

APPENDIX B

Project:Job No:C6497PROPOSED BAKERY,Date:22/02/2024NEWTON DEE,By:NJHBIELDSIDE, ABERDEENPage:1

SITE INFORMATION (USED IN FURTHER CALCULATIONS)

SITE AREA (OVERALL) =	3548	m^2
SITE HARDSTANDING AREA =	870	m^2
	0.0	111
SAAR =	808	mm (Taken from Wallingford maps)
WRAP =	2	(Taken from Wallingford maps)
What -	2	(Taken nom wallingford maps)
Therefore SOIL =	0.3	
INCH TRATION RATE	6.61E-05	/
INFILTRATION RATE =	6.61E-05	m/s
(M5-60 min to M5-2 day ratio) r =	0.2	(Taken from Wallingford maps)
	4.4	
(M5-60 min rainfall) d =	14	mm (Taken from Wallinford maps)
Climate Change =	40	%

Project:Job No:C6497PROPOSED BAKERY,Date:22/02/2024NEWTON DEE,By:NJHBIELDSIDE, ABERDEENPage:2

GREENFIELD SITE. PRE & POST-DEVELOPMENT RUN-OFF.

NOTE: The Pre-development flow calcultation is based on the following equation:

 $MAF = 0.00108 \times AREA^{0.89} \times SAAR^{1.17} \times SOIL^{2.17}$

AREA = 0.3548 hectares.

SAAR = 808 mm (Taken from Wallingford maps)
WRAP = 2 (Taken from Wallingford maps)

SOIL = 0.3 Soil values are relative to WRAP figure. (see table below)

WRAP VALUE	SOIL VALUE

1	0.15
2	0.3
3	0.4
4	0.45
5	0.5

Therefore MAF = $0.1078 \text{ m}^3/\text{s}$

NOTE: For areas less than 50Ha, an area of 50Ha is used and the final value is reduced based on a ratio of site area.

Growth values for Scotland				
Return Period Growth Factor				
M10	1.45			
M30	1.9			
M50	2.2			
M200	2.95			

M1 Greenfield run-off is: 0.65 litres/second M10 Greenfield run-off is: 1.11 litres/second M30 Greenfield run-off is: 1.45 litres/second M50 Greenfield run-off is: 1.68 litres/second M200 Greenfield run-off is: 2.26 litres/second

The Post-Development Run-off figure for a greenfield site should be limited to the Pre-Development Run-off figure as shown above.

Project:Job No:C6497PROPOSED BAKERY,Date:22/02/2024NEWTON DEE,By:NJHBIELDSIDE, ABERDEENPage:3

CELLULAR ATTENUATION DESIGN for MT

Allowable discharge = Hardstanding area = Additional flow =

1.45	litres/second
870	m ²
0	litres/second

Rainfall Data			
r =	0.2		
d =	14		
T =	30		

Duration (min)	MT-D (mm)	MT-D with CC (mm)	Inflow (m³)	Outflow (m ³)	Storage (m³)
5	5.22	7.31	6.36	0.44	5.92
10	8.25	11.56	10.05	0.87	9.18
15	10.50	14.71	12.79	1.31	11.49
30	15.27	21.38	18.60	2.61	15.99
60	21.30	29.82	25.94	5.22	20.72
120	28.68	40.15	34.93	10.44	24.49
240	38.03	53.25	46.33	20.88	25.45
360	44.67	62.53	54.40	31.32	23.08
720	58.54	81.96	71.30	62.64	8.66
1440	76.54	107.16	93.23	125.28	-32.05
2880	99.72	139.61	121.46	250.56	-129.10

Allowing for 40 % climate change, storage required = 25.45 m³

CELLULAR SYSTEM CAPACITY CHECK

Based on 95% void storage capacity:

Aquacell units: Capacity = 1 m long x 0.5 m wide x 0.4 m high. 0.19 m^3 Stormcell units: 2.4 m long x Capacity = 1.42 m³ 1.2 m wide x 0.52 m high Capacity = 0.83 m⁴ Stormbrixx units: 1.2 m long x 1.2 m wide x 0.61 m high

Capacity per cell of unit specified = 1.42 m^3 Minimum number of cells required = 18 No. Depth of system specified = 0.52 m Plan width of system specified = 4.8 m Plan length of system specified = 12 m No. Therefore total number of cells = 20 Therefore total storage provided = 28.45 m³