6237a

BARN FOR CONVERSION
WESTFIELD FARM
MILL LANE
GREAT BRICKHILL
MILTON KEYNES
MK19 9BG

VISUAL INSPECTION

6236 - Barn for conversion, Westfield Farm, Mill Lane, Great Brickhill, Milton Keynes

1. Introduction

Rawlings Structural Design Ltd was appointed by Mr and Mrs Cox of Westfield Farm, Mill Lane, Great Brickhill, Milton Keynes, MK19 9BG, to carry out a visual inspection of a redundant agricultural barn on their premises.

The purpose of the inspection was to consider the condition of the structure in support of the conversion of the building into a residential unit as part of a application for prior approval under Schedule 2 Part 3 Class Q of the Town and Country Planning (General Permitted Development) Order 2015.

It should be remembered that any such visual inspection can only be considered a snapshot of the condition of the building at the time of the inspection, although I have no reason to consider that this condition should alter, providing there is no change in the ambient conditions of the property. I should also advise you that the copyright of this report rests with Rawlings Structural Design Ltd and is prepared only for those to whom this letter is addressed. Therefore, it is not to be relied upon by any third party without the express agreement, in writing, of Rawlings Structural Design Ltd.

2. Description of the building

The building consists of 4 No frames spanning 9.5 m at 5.7 m spacing. The building is approximately 3.5 m to the eaves and 4.8 m to the ridge.

The structure consists of steel portal frames consisting of 178×102 UB rafters and 203×133 UB30 columns, with a small haunch at the eaves. The purlins are 200 mm metal Z section, similar to the Metsec Purlins, supporting profiled metal sheeting. The external walls are also profiled metal sheets supported by sheeting rails at approximately 1000 mm vertical centres.

The concrete slab is competent and intact and has been subjected to agricultural loading throughout the life of the building.

3. Impact of proposals

The proposal is to create a single-storey dwelling within the shell of the existing building. The cladding to the roof will be replaced with lightweight insulated sheeting, which will be of a similar weight to the existing material. Similarly, the external walls will be overclad on the inside with insulation. A ceiling is to be provided creating a loft void over.

6236 - Barn for conversion, Westfield Farm, Mill Lane, Great Brickhill, Milton Keynes

Both floors will have the necessary partitions to make up the rooms. The ground floor slab is adequate to support the ground floor partitions and then be used to support the ceiling joists.

New doors and windows are proposed for the external elevations, which can be formed using secondary steel sections similar to the sheeting rails. Additional structure is not required.

4. Conclusion

The building has robust superstructure capable of supporting lightweight roof loads and providing lateral restraint. The monolithic concrete slab is capable of supporting an additional inner leaf as required to bring the buildings up to the insulation levels required by Building Regulations and the internal partitions.

The building does not require structural intervention other than that required to create doors and windows.

KEITH RAWLINGS BSc CEng FIStructE RAWLINGS STRUCTURAL DESIGN LTD 10 JANUARY 2024

Revision A 22 January 2024

6236 - Barn for conversion, Westfield Farm, Mill Lane, Great Brickhill, Milton Keynes

APPENDIX 1

PHOTOGRAPHS

6236 - Barn for conversion, Westfield Farm, Mill Lane, Great Brickhill, Milton Keynes

6236 - Barn for conversion, Westfield Farm, Mill Lane, Great Brickhill, Milton Keynes

APPENDIX 2

CALCULATIONS

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	Sheet 1	Rev	

Dimensions used are for calculation purposes only. The actual overall dimensions of beams should be determined by the Contractor on site.

PROPOSAL

Consider the existing structure in support of the conversion of the building into a residential unit as part of a application for prior approval under Schedule 2 Part 3 Class Q of the Town and Country Planning (General Permitted Development) Order 2015.

LOADS

Roof dead load	$=0.30 \mathrm{kN} / \mathrm{m}^{2}$
Roof live load	$=0.75 \mathrm{kN} / \mathrm{m}^{2}$

WIND LOADS

WIND LOADING (BS6399)

In accordance with BS6399

Building data

Type of roof;
Length of building;
Duopitch
Width of building;
Height to eaves;
Pitch of roof;
Reference height;
$\mathrm{L}=18145 \mathrm{~mm}$
$\mathrm{W}=9500 \mathrm{~mm}$
$\mathrm{H}=3500 \mathrm{~mm}$
$\alpha_{0}=15.0 \mathrm{deg}$
$\mathrm{H}_{\mathrm{r}}=4773 \mathrm{~mm}$

Dynamic classification

Building type factor (Table 1);
Dynamic augmentation factor (1.6.1);
$\mathrm{K}_{\mathrm{b}}=2.0$
$C_{r}=\left[K_{b} \times\left(H_{r} /(0.1 \mathrm{~m})\right)^{0.75}\right] /\left(800 \times \log \left(H_{r} /(0.1 \mathrm{~m})\right)\right)=0.03$

Site wind speed

Location;
Basic wind speed (Figure 6 BS6399:Pt 2)
Site altitude
Upwind distance from sea to site
Direction factor
Seasonal factor
Probability factor
Critical gap between buildings;
Topography not significant
Altitude factor;
Site wind speed
Terrain category;
Displacement height (sheltering effect excluded);

Bedford
$\mathrm{V}_{\mathrm{b}}=21.5 \mathrm{~m} / \mathrm{s}$
$\Delta \mathrm{s}=31 \mathrm{~m}$
$\mathrm{d}_{\text {sea }}=126 \mathrm{~km}$
$\mathrm{S}_{\mathrm{d}}=1.00$
$\mathrm{S}_{\mathrm{s}}=1.00$
$S_{p}=1.00$
$\mathrm{g}=5000 \mathrm{~mm}$
$\mathrm{S}_{\mathrm{a}}=1+0.001 \times \Delta \mathrm{s} / 1 \mathrm{~m}=1.03$
$V_{s}=V_{b} \times S_{a} \times S_{d} \times S_{s} \times S_{p}=22.2 \mathrm{~m} / \mathrm{s}$
Country
$\mathrm{H}_{\mathrm{d}}=0 \mathrm{~mm}$

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	2		

The velocity pressure for the windward face of the building with a 0 degree wind is to be considered as 1 part as the height h is less than b (cl.2.2.3.2)
The velocity pressure for the windward face of the building with a 90 degree wind is to be considered as 1 part as the height h is less than b (cl.2.2.3.2)

Dynamic pressure - windward wall - Wind 0 deg and roof

Reference height (at which q is sought);
Effective height;
Fetch factor (Table 22);
Turbulence factor (Table 22);
Gust peak factor;
Terrain and building factor;
Effective wind speed;
$H_{\text {ref }}=3500 \mathrm{~mm}$
$H_{e}=\max \left(H_{\text {ref }}-H_{d}, 0.4 \times H_{\text {ref }}\right)=3500 \mathrm{~mm}$
$\mathrm{S}_{\mathrm{c}}=0.803$
$S_{t}=0.204$
$\mathrm{g}_{\mathrm{t}}=3.44$
$\mathrm{S}_{\mathrm{b}}=\mathrm{S}_{\mathrm{c}} \times\left(1+\left(\mathrm{g}_{\mathrm{t}} \times \mathrm{S}_{\mathrm{t}}\right)+\mathrm{S}_{\mathrm{h}}\right)=1.36$
$V_{e}=V_{s} \times S_{b}=30.2 \mathrm{~m} / \mathrm{s}$
Dynamic pressure; $\mathrm{q}_{\mathrm{s}}=0.613 \mathrm{~kg} / \mathrm{m}^{3} \times \mathrm{V}_{\mathrm{e}}{ }^{2}=0.561 \mathrm{kN} / \mathrm{m}^{2}$
Dynamic pressure - windward wall - Wind 90 deg and roof
Reference height (at which q is sought);
$\mathrm{H}_{\text {ref }}=4773 \mathrm{~mm}$
Effective height;
Fetch factor (Table 22);
$\mathrm{H}_{\mathrm{e}}=\max \left(\mathrm{H}_{\text {ref }}-\mathrm{H}_{\mathrm{d}}, 0.4 \times \mathrm{H}_{\text {ref }}\right)=4773 \mathrm{~mm}$
$\mathrm{S}_{\mathrm{c}}=0.870$
Turbulence factor (Table 22);
$\mathrm{S}_{\mathrm{t}}=0.194$
Gust peak factor;
Terrain and building factor;
Effective wind speed;
$\mathrm{g}_{\mathrm{t}}=3.44$
$\mathrm{S}_{\mathrm{b}}=\mathrm{S}_{\mathrm{c}} \times\left(1+\left(\mathrm{g}_{\mathrm{t}} \times \mathrm{S}_{\mathrm{t}}\right)+\mathrm{S}_{\mathrm{h}}\right)=1.45$
$\mathrm{V}_{\mathrm{e}}=\mathrm{V}_{\mathrm{s}} \times \mathrm{S}_{\mathrm{b}}=32.1 \mathrm{~m} / \mathrm{s}$
Dynamic pressure; $q_{s}=0.613 \mathrm{~kg} / \mathrm{m}^{3} \times \mathrm{V}_{\mathrm{e}}{ }^{2}=0.633 \mathrm{kN} / \mathrm{m}^{2}$

Size effect factors

Diagonal dimension for gablewall; External size effect factor gablewall;
Diagonal dimension for side wall;
External size effect factor side wall;
Diagonal dimension for roof;
External size effect factor roof;
Room/storey volume for internal size effect factor;
Diagonal dimension for internal size effect factors;
Internal size effect factor;
Pressures and forces
Net pressure; $\quad \mathrm{p}=\mathrm{q}_{\mathrm{s}} \times \mathrm{c}_{\mathrm{pe}} \times \mathrm{C}_{\mathrm{ae}}-\mathrm{q}_{\mathrm{s}} \times \mathrm{c}_{\mathrm{pi}} \times \mathrm{C}_{\mathrm{ai}}$;
Net force; $\quad \mathrm{F}_{\mathrm{w}}=\mathrm{p} \times \mathrm{A}_{\text {ref }}$;
$\mathrm{a}_{\text {eg }}=10.1 \mathrm{~m}$
$C_{\text {aeg }}=0.947$
$\mathrm{a}_{\mathrm{es}}=18.5 \mathrm{~m}$
$\mathrm{C}_{\text {aes }}=0.901$
$\mathrm{a}_{\mathrm{er}}=18.8 \mathrm{~m}$
$\mathrm{C}_{\text {aer }}=0.900$
$\mathrm{V}_{\mathrm{i}}=0.125 \mathrm{~m}^{3}$
$a_{i}=10 \times\left(V_{i}\right)^{1 / 3}=5.000 \mathrm{~m}$
$\mathrm{C}_{\mathrm{ai}}=1.000$

$$
\begin{aligned}
& p=q_{s} \times c_{p e} \times C_{a e}-q_{s} \times c_{p i} \times C_{a i} ; \\
& F_{w}=p \times A_{\text {ref }} ;
\end{aligned}
$$

Roof load case 1 - Wind $0, \mathrm{C}_{\mathrm{pi}} \mathbf{0 . 2 0 ,} \mathrm{C}_{\mathrm{pe}}$

Zone	Ext pressure, coefficient, C_{pe}	Dynamic pressure, q_{s} $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	External size factor, C_{ae}	Net Pressure, $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area, Aref $^{\left(\mathrm{m}^{2}\right)}$	Net force, $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
$\mathrm{A}(-\mathrm{ve})$	-1.10	0.63	0.900	-0.75	9.43	-7.11
$\mathrm{~B}(-\mathrm{ve})$	-0.80	0.63	0.900	-0.58	8.50	-4.95
$\mathrm{C}(-\mathrm{ve})$	-0.40	0.63	0.900	-0.35	71.30	-25.28
$\mathrm{E}(-\mathrm{ve})$	-1.30	0.63	0.900	-0.87	9.43	-8.18
$\mathrm{~F}(-\mathrm{ve})$	-0.90	0.63	0.900	-0.64	8.50	-5.43
$\mathrm{G}(-\mathrm{ve})$	-0.50	0.63	0.900	-0.41	71.30	-29.34

[^0]\[

$$
\begin{aligned}
& F_{w, v}=-77.55 \mathrm{kN} \\
& F_{w, h}=1.45 \mathrm{kN}
\end{aligned}
$$
\]

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	3		

Walls load case 1 - Wind $0, c_{\text {pi }} \mathbf{0 . 2 0 , -}$ C $_{\text {pe }}$

Zone	Ext pressure coefficient, C_{pe}	Dynamic pressure, q_{s} (kN/m²)	External size factor, C_{ae}	Net Pressure, $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area, $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force, F_{w} (kN)
A	-1.59	0.63	0.947	-1.08	7.17	-7.72
B	-0.90	0.63	0.947	-0.66	32.13	-21.30
w	0.71	0.56	0.901	0.25	63.51	15.57
1	-0.50	0.56	0.901	-0.36	63.51	-23.17

Overall loading

Equiv leeward net force for overall section; Net windward force for overall section;
Overall loading overall section;

```
F}=\mp@subsup{F}{w,wl}{m}=-23.2\textrm{kN
F
Fw,w}=0.85\times(1+Cr)\times(\mp@subsup{F}{w}{}-\mp@subsup{F}{l}{}+\mp@subsup{F}{w,h}{})=35.1\textrm{kN
```

Roof load case 2 - Wind $\mathbf{0}, \mathrm{c}_{\mathrm{pi}}-\mathbf{0} .3,+\mathrm{c}_{\mathrm{pe}}$

Zone	Ext pressure coefficient, C_{pe}	Dynamic pressure, q_{s} $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	External size factor, C_{ae}	Net Pressure, $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area, $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force, $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
$\mathrm{A}(+\mathrm{ve})$	0.20	0.63	0.900	0.30	9.43	2.87
$\mathrm{~B}(+\mathrm{ve})$	0.20	0.63	0.900	0.30	8.50	2.58
$\mathrm{C}(+\mathrm{ve})$	0.20	0.63	0.900	0.30	71.30	21.67
$\mathrm{E}(+\mathrm{ve})$	-1.30	0.63	0.900	-0.55	9.43	-5.20
$\mathrm{~F}(+\mathrm{ve})$	-0.90	0.63	0.900	-0.32	8.50	-2.74
$\mathrm{G}(+\mathrm{ve})$	-0.50	0.63	0.900	-0.09	71.30	-6.77

Total vertical net force;
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=11.98 \mathrm{kN}$
Total horizontal net force;
$F_{w, h}=10.83 \mathrm{kN}$
Walls load case 2 - Wind 0 , $\mathbf{C p i} \mathbf{- 0 . 3 ,}+\mathrm{C}_{\text {pe }}$

Zone	Ext pressure coefficient, C_{pe}	Dynamic pressure, q_{s} $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	External size factor, C_{ae}	Net Pressure, $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area, $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force, $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.59	0.63	0.947	-0.76	7.17	-5.45
B	-0.90	0.63	0.947	-0.35	32.13	-11.14
w	0.71	0.56	0.901	0.53	63.51	33.37
I	-0.50	0.56	0.901	-0.08	63.51	-5.36

Overall loading

Equiv leeward net force for overall section;
Net windward force for overall section;
Overall loading overall section;

$$
\begin{aligned}
& F_{I}=F_{w, w l}=-5.4 \mathrm{kN} \\
& F_{w}=F_{w, w w}=33.4 \mathrm{kN} \\
& F_{w, w}=0.85 \times\left(1+C_{r}\right) \times\left(F_{w}-F_{l}+F_{w, h}\right)=43.3 \mathrm{kN}
\end{aligned}
$$

Roof load case 3 - Wind $90, \mathrm{c}_{\mathrm{pi}} \mathbf{0 . 2 0}$, $-\mathrm{C}_{\mathrm{pe}}$

Zone	Ext pressure coefficient, C_{pe}	Desnamic pressure, $\left(\mathrm{kN} / \mathrm{m}_{\mathrm{s}}\right)$	External size factor, C_{ae}	Net Pressure, $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area, $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force, $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
$\mathrm{A}(-\mathrm{ve})$	-1.60	0.63	0.900	-1.04	4.67	-4.85
$\mathrm{~B}(-\mathrm{ve})$	-1.50	0.63	0.900	-0.98	4.67	-4.58
$\mathrm{C}(-\mathrm{ve})$	-0.60	0.63	0.900	-0.47	37.37	-17.51
$\mathrm{D}(-\mathrm{ve})$	-0.40	0.63	0.900	-0.35	131.74	-46.70

Total vertical net force;
Total horizontal net force;
Walls load case 3 - Wind $90, \mathrm{c}_{\mathrm{pi}} \mathbf{0 . 2 0}$, $-\mathrm{C}_{\mathrm{pe}}$

Zone	Ext pressure coefficient, C_{pe}	Dynamic pressure, q_{s} ($\mathrm{kN} / \mathrm{m}^{2}$)	$\begin{aligned} & \text { External size } \\ & \text { factor, } \mathrm{C}_{\mathrm{ae}} \end{aligned}$	Net Pressure, $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area, $A_{\text {ref }}\left(m^{2}\right)$	Net force, $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.47	0.56	0.901	-0.86	4.90	-4.19
B	-0.86	0.56	0.901	-0.55	19.60	-10.69
C	-0.73	0.56	0.901	-0.48	39.01	-18.73
w	0.62	0.63	0.947	0.24	39.30	9.54
I	-0.50	0.63	0.947	-0.43	39.30	-16.75

Overall loading

Equiv leeward net force for overall section;
Net windward force for overall section;
Overall loading overall section;
$F_{l}=F_{w, w l}=-16.8 \mathrm{kN}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{ww}}=9.5 \mathrm{kN}$
$F_{w, w}=0.85 \times\left(1+C_{r}\right) \times\left(F_{w}-F_{1}+F_{w, h}\right)=23.0 \mathrm{kN}$

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	Sheet 4	now	

Roof load case 4 - Wind 90, $\mathrm{c}_{\mathrm{pi}}-\mathbf{- 0 . 3},-\mathrm{C}_{\mathrm{pe}}$

Zone	Ext pressure coefficient, $C_{p e}$	Dynamic pressure, q_{s} $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	External size factor, C_{ae}	Net Pressure, $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area, $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force, $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
$\mathrm{A}(-\mathrm{ve})$	-1.60	0.63	0.900	-0.72	4.67	-3.37
$\mathrm{~B}(-\mathrm{ve})$	-1.50	0.63	0.900	-0.66	4.67	-3.11
$\mathrm{C}(-\mathrm{ve})$	-0.60	0.63	0.900	-0.15	37.37	-5.68
$\mathrm{D}(-\mathrm{ve})$	-0.40	0.63	0.900	-0.04	131.74	-5.00

Total vertical net force;
Total horizontal net force;
$F_{w, v}=-16.58 \mathrm{kN}$
$F_{w, h}=0.00 \mathrm{kN}$

Walls load case 4 - Wind 90, $\mathrm{C}_{\mathrm{pi}}-\mathbf{- 0 . 3},-\mathrm{C}_{\mathrm{pe}}$

Zone	Ext pressure coefficient, Cpe	Dynamic pressure, q_{s} $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	External size factor, $\mathrm{Cae}_{\mathrm{a}}$	Net Pressure, $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area, Aref $^{\left(\mathrm{m}^{2}\right)}$	Net force, $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.47	0.56	0.901	-0.58	4.90	-2.82
B	-0.86	0.56	0.901	-0.26	19.60	-5.19
C	-0.73	0.56	0.901	-0.20	39.01	-7.80
w	0.62	0.63	0.947	0.56	39.30	21.98
I	-0.50	0.63	0.947	-0.11	39.30	-4.31

Overall loading

Equiv leeward net force for overall section;
Net windward force for overall section;
Overall loading overall section;
$\mathrm{F}_{\mathrm{I}}=\mathrm{F}_{\mathrm{w}, \mathrm{wl}}=-4.3 \mathrm{kN}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{ww}}=22.0 \mathrm{kN}$
$F_{w, w}=0.85 \times\left(1+C_{r}\right) \times\left(F_{w}-F_{I}+F_{w, h}\right)=23.0 \mathrm{kN}$

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	Sheet 5	Rev	

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	Sheet 6	Rev	

FRAME LOADS

Roof dead load	$=0.30 \times 5.7 \mathrm{~m}$	$=1.7 \mathrm{kN} / \mathrm{m}$
Roof live load	$=0.75 \times 5.7 \mathrm{~m}$	$=4.3 \mathrm{kN} / \mathrm{m}$

Wind Case 1 - Wind at 0 degrees, negative coefficient

Windward wall	$=0.25 \times 5.7 \mathrm{~m}$	$=\mathbf{1 . 4} \mathrm{kN} / \mathrm{m}$
Windward roof	$=-0.35 \times 5.7 \mathrm{~m}$	$=\mathbf{- 2 . 0 \mathrm { kN } / \mathrm { m }}$
Leeward roof	$=-0.41 \times 5.7 \mathrm{~m}$	
Leeward wall	$=-0.36 \times 5.7 \mathrm{~m}$	$=\mathbf{- 2 . 3} \mathrm{kN} / \mathrm{m} / \mathrm{m}$

Wind case 2 - Wind at 0 degrees, positive coefficient

Windward wall	$=0.53 \times 5.7 \mathrm{~m}$	$=\mathbf{3 . 0} \mathrm{kN} / \mathrm{m}$
Windward roof	$=0.3 \times 5.7 \mathrm{~m}$	$=\mathbf{1 . 7} \mathrm{kN} / \mathrm{m}$
Leeward roof	$=-0.09 \times 5.7 \mathrm{~m}$	$=-0.5 \mathrm{kN} / \mathrm{m}$
Leeward wall	$=-0.08 \times 5.7 \mathrm{~m}$	$=-0.5 \mathrm{kN} / \mathrm{m}$

Wind case 3 - Wind at 90 degrees, negative coefficient

Windward wall	$=0.24 \times 5.7 \mathrm{~m}$	$=\mathbf{1 . 4} \mathrm{kN} / \mathrm{m}$
Windward roof	$=-0.35 \times 5.7 \mathrm{~m}$	
Leeward roof	$=-0.35 \times 5.7 \mathrm{~m}$	$=\mathbf{- 2 . 0} \mathrm{kN} / \mathrm{m}$
Leeward wall		$=-0.43 \times 5.7 \mathrm{~m}$

Wind case 4 - Wind at 90 degrees, positive coefficient

Windward wall	$=0.56 \times 5.7 \mathrm{~m}$	$=3.2 \mathrm{kN} / \mathrm{m}$
Windward roof	$=-0.04 \times 5.7 \mathrm{~m}$	$=0.2 \mathrm{kN} / \mathrm{m}$
Leeward roof		$=-0.04 \times 5.7 \mathrm{~m}$
		$=-0.2 \mathrm{kNN} / \mathrm{m}$

Leeward wall $=-0.11 \times 5.7 \mathrm{~m}=-0.6 \mathrm{kN} / \mathrm{m}$

FRAME ANALYSIS

ANALYSIS

Results

Forces

Strength combinations - Moment envelope (kNm)

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	7		

Strength combinations - Shear envelope (kN)

Element results

Envelope - Strength combinations

Element	Shear force		Moment			
	Pos (\mathbf{m})	Max abs $\mathbf{(k N})$	Pos (\mathbf{m})	Max $(\mathbf{k N m})$	Pos (\mathbf{m})	Min $\mathbf{(k N m})$
1	3.5	-17.6	0	0	3.5	$-59.2(\mathrm{~min})$
2	0	$39.5($ max abs $)$	4.425	$28.2(\max)$	0	$-59.2(\mathrm{~min})$
3	4.925	-39.5	0.5	$28.2(\max)$	4.925	$-59.2(\mathrm{~min})$
4	0	17.6	3.5	0	0	$-59.2(\mathrm{~min})$

Envelope - All combinations

Element	Axial force			
	Pos (\mathbf{m})	Max $\mathbf{(k N)}$	Pos (\mathbf{m})	Min $\mathbf{(k N)}$
1	0	$45.6(\max)$	0	20.5
2	0	28.4	4.925	$6.7(\mathrm{~min})$
3	4.925	28.4	0	8.4
4	0	$45.6(\max)$	0	22.8

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	Sheet 8	Rev	

RAFTER CHECK

Design moment at eaves
Design moment at ridge
Change across length of rafter
Length of rafters
Length of haunch
Drop in moment across haunch

STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

$=59.2 \mathrm{kNm}$	
$=\mathbf{2 8 . 2} \mathrm{kNm}$	
$=59.2+28.2$	$=\mathbf{8 7 . 4} \mathrm{kNm}$
$=4.95 \mathrm{~m}$	
$=0.5 \mathrm{~m}$	
$=87.4 \times 0.5 / 4.95$	$=\mathbf{5 0 . 0} \mathrm{kNm}$

Section details

Section type;
UB 178x102x19 (British Steel Section Range 2022 (BS4-1))
Steel grade;
S275
From table 9: Design strength p_{y}
Thickness of element;
$\max (\mathrm{T}, \mathrm{t})=7.9 \mathrm{~mm}$
Design strength;
Modulus of elasticity;
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$E=205000 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
& L_{x}=\mathbf{1 0 0 0} \mathrm{mm} \\
& \mathrm{~L}_{y}=0 \mathrm{~mm}
\end{aligned}
$$

Effective length factors
Effective length factor in major axis;
$\mathrm{K}_{\mathrm{x}}=\mathbf{0 . 7 0}$
Effective length factor in minor axis;
$K_{y}=0.70$
Effective length factor for lateral-torsional buckling; KLt $=\mathbf{1 . 0 0}$;
Classification of cross sections - Section 3.5
$\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\mathrm{y}}\right]=\mathbf{1 . 0 0}$
Internal compression parts - Table 11
Depth of section;
$\mathrm{d}=146.8 \mathrm{~mm}$
$\mathrm{d} / \mathrm{t}=30.6 \times \varepsilon<=80 \times \varepsilon ; \quad$ Class 1 plastic
Outstand flanges - Table 11
Width of section;
$\mathrm{b}=\mathrm{B} / 2=50.6 \mathrm{~mm}$
b / T $=6.4 \times \varepsilon<=9 \times \varepsilon$;

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	9		

Moment capacity - Section 4.2.5

Design bending moment;
Moment capacity low shear - cl.4.2.5.2;
$M=50 \mathrm{kNm}$
$M_{c}=\min \left(p_{y} \times S_{x x}, 1.2 \times p_{y} \times Z_{x x}\right)=47.1 \mathrm{kNm}$

Existing rafter adequate

HAUNCH CHECK

CALCULATION OF SECTION PROPERTIES

Area

$A=32.13 \mathrm{~cm}^{2}$
$2^{\text {nd }}$ moment of area
$\mathrm{I}_{\mathrm{uu}}=3.50 \times 10^{3} \mathrm{~cm}^{4}$
$\mathrm{I}_{\mathrm{wv}}=137 . \mathrm{cm}^{4} \quad \mathrm{I}_{\mathrm{xx}}=3.50 \times 10^{3} \mathrm{~cm}^{4}$
$\mathrm{l}_{\mathrm{yy}}=137 . \mathrm{cm}^{4}$
Radius of gyration
$r_{\text {uu }}=104.4 \mathrm{~mm}$
$r_{v v}=20.6 \mathrm{~mm}$
$r_{x x}=10.4 \mathrm{~cm}$
$r_{y y}=2.1 \mathrm{~cm}$
Plastic section modulus (only shapes with all rectangles at 90 degs)
$S_{x x}=280 . \mathrm{cm}^{3} \quad S_{y y}=42.4 \mathrm{~cm}^{3}$
Distance to combined centroid
$X_{e}=0.0 \mathrm{~mm} \quad Y_{e}=0.0 \mathrm{~mm}$
Distance to equal axis area (only shapes with all rectangles at 90 degs)
$X_{p}=0.0 \mathrm{~mm}$
Elastic section modulus
$Z_{x x}=159 . \mathrm{cm}^{3}$
$Z_{y y}=27.0 \mathrm{~cm}^{3}$
;
Capacity of haunch

$$
=280 \times 275 / 1000
$$

$$
=77.0 \mathrm{kNm}
$$

Haunch is adequate

COLUMN CHECK

Design moment
Design axial force

$$
\begin{aligned}
& =59.2 \mathrm{kNm} \\
& =45.6 \mathrm{kN}
\end{aligned}
$$

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	10		

STEEL MEMBER DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

Section details

Section type;
Steel grade;

From table 9: Design strength p_{y}

Thickness of element;
Design strength;
Modulus of elasticity;

UB 203x133x30 (British Steel Section Range 2022 (BS4-1)) S275

$\mathrm{L}_{\mathrm{x}}=\mathbf{3 5 0 0} \mathrm{mm}$
$\mathrm{L}_{\mathrm{y}}=\mathbf{0} \mathrm{mm}$
$K_{x}=1.00$
$K_{y}=1.00$
$K_{\text {LT }}=1.00$;
$\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{p}_{\mathrm{y}}\right]=\mathbf{1 . 0 0}$
$\mathrm{d}=172.4 \mathrm{~mm}$
$\mathrm{r} 1=\min \left(\mathrm{F}_{\mathrm{c}} /\left(\mathrm{d} \times \mathrm{t} \times \mathrm{p}_{\mathrm{yw}}\right), 1\right)=0.15$
$r 2=F_{c} /\left(A \times p_{y w}\right)=0.043$
$\mathrm{d} / \mathrm{t}=26.9 \times \varepsilon<=\max (80 \times \varepsilon /(1+\mathrm{r} 1), 40 \times \varepsilon) ; \quad$ Class 1 plastic
Outstand flanges - Table 11
Width of section;
$\mathrm{b}=\mathrm{B} / 2 \mathbf{= 6 7} \mathrm{~mm}$
b $/ \mathrm{T}=7.0 \times \varepsilon<=9 \times \varepsilon ; \quad$ Class 1 plastic
Section is class 1 plastic
Shear capacity - Section 4.2.3
Design shear force;

[^1]$F_{y, v}=100 \mathrm{kN}$
$d / t<70 \times \varepsilon$
Web does not need to be checked for shear buckling
$A_{v}=t \times D=1324 \mathrm{~mm}^{2}$
$P_{y, v}=0.6 \times p_{y} \times A_{v}=218.4 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force

Dryden Rock Lane Leighton Buzzard LU7 2QQ T: 07415461917 E: keith@rawlings.uk.net W: rawlings.uk.net	Westfield Farm Mill Lane Great Brickhill Milton Keynes					
	KRR	January 2024	6236	Sheet 11	Rev	

Shear capacity - Section 4.2.3
Design shear force;
Moment capacity - Section 4.2.5
Design bending moment;
Moment capacity low shear - cl.4.2.5.2;

Compression members - Section 4.7
Design compression force;
$F_{x, v}=0 \mathrm{kN}$
$\mathrm{M}=59.2 \mathrm{kNm}$
$M_{c}=\min \left(p_{y} \times S_{x x}, 1.2 \times p_{y} \times Z_{x x}\right)=86.5 \mathrm{kNm}$
PASS - Moment capacity exceeds design bending moment

Effective length for major ($\mathbf{x - x}$) axis buckling - Section 4.7.3

Effective length for buckling;
Slenderness ratio - cl.4.7.2;
Compressive strength - Section 4.7.5
Limiting slenderness;
Strut curve - Table 23;
Robertson constant;
Perry factor;
Euler stress;
Compressive strength - Annex C.1;
Compression resistance - Section 4.7.4
Compression resistance - cl.4.7.4;
$\mathrm{Lex}_{\mathrm{E}}=\mathrm{L}_{\mathrm{x}} \times \mathrm{K}_{\mathrm{x}}=\mathbf{3 5 0 0} \mathrm{mm}$
$\lambda_{x}=L_{E x} / r_{x x}=40.206$
$\lambda_{0}=0.2 \times\left(\pi^{2} \times \mathrm{E} / \mathrm{p}_{\mathrm{y}}\right)^{0.5}=\mathbf{1 7 . 1 5 5}$
a
$\alpha_{x}=2.0$
$\eta_{x}=\alpha_{x} \times\left(\lambda_{x}-\lambda_{0}\right) / 1000=0.046$
$\mathrm{p}_{\mathrm{Ex}}=\pi^{2} \times \mathrm{E} / \lambda_{x}{ }^{2}=1251.6 \mathrm{~N} / \mathrm{mm}^{2}$
$\phi_{\mathrm{x}}=\left(p_{\mathrm{y}}+\left(\eta_{\mathrm{x}}+1\right) \times \mathrm{pex}\right) / 2=792.1 \mathrm{~N} / \mathrm{mm}^{2}$
$p_{c x}=p_{E x} \times p_{y} /\left(\phi_{x}+\left(\phi_{x}{ }^{2}-p_{E x} \times p_{y}\right)^{0.5}\right)=\mathbf{2 5 9 . 9} \mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{P}_{\mathrm{cx}}=\mathrm{A} \times \mathrm{p}_{\mathrm{cx}}=993 \mathrm{kN}$
PASS - Compression resistance exceeds design compression force

Compression members with moments - Section 4.8.3

Comb.compression \& bending check - cl.4.8.3.2; $\quad \mathrm{F}_{\mathrm{c}} /\left(\mathrm{A} \times \mathrm{p}_{\mathrm{y}}\right)+\mathrm{M} / \mathrm{M}_{\mathrm{c}}=\mathbf{0 . 7 2 8}$
PASS - Combined bending and compression check is satisfied

Member buckling resistance - Section 4.8.3.3
Max major axis moment governing M_{b};
Equiv uniform mnt factor - major axis flex buckling;
Buckling resistance check - cl.4.8.3.3.2;
$\mathrm{M}_{\mathrm{LT}}=\mathrm{M}_{\mathrm{x}}=59.20 \mathrm{kNm}$
$m_{\mathrm{x}}=1.000$
$\mathrm{F}_{\mathrm{c}} / \mathrm{P}_{\mathrm{cx}}+\mathrm{m}_{\mathrm{x}} \times \mathrm{M} / \mathrm{M}_{\mathrm{c}} \times\left(1+0.5 \times \mathrm{F}_{\mathrm{c}} / \mathrm{P}_{\mathrm{cx}}\right)=\mathbf{0 . 7 4 6}$
PASS - Member buckling resistance checks are satisfied

Column is adequate

PURLINS

Roof dead load	$=0.3 \times 1.0 \mathrm{~m}$	$=0.3 \mathrm{kN} / \mathrm{m}$
Roof live load	$=0.75 \times 1.0 \mathrm{~m}$	$=0.8 \mathrm{kN} / \mathrm{m}$
Roof wind load	$=0.3 \times 1.0 \mathrm{~m}$	$=0.3 \mathrm{kN} / \mathrm{m}$
Span	$=5.7 \mathrm{~m}$	
		$=((1.4 \times 0.3)+(1.6 \times 0.8)) \times 5.7 \mathrm{~m}$
Load from dead + live	$=(0.42+1.28) \times 5.7 \mathrm{~m}=9.7 \mathrm{kN}$	
Load from dead + live + wind		$(0.3+0.8+0.3) \times 1.2 \times 5.7 \mathrm{~m}$
		$=9.4 \times 1.2 \times 5.7$
Capacity of 2000 mm Z purlin over 6.0 m		$\mathbf{1 9 . 5 7} \mathrm{kN}$

Purlins are adequate

[^0]: Total vertical net force;
 Total horizontal net force;

[^1]: Shear area;
 Design shear resistance;

