

01527 579933

engineers@shire-uk.com | www.shire-uk.com

The Chapel | Barnsley Hall Road Bromsgrove | Worcestershire | B61 0SZ

STRUCTURAL INSPECTION OF TIMBER FRAMED BARN AT CROWFIELDS FARM FOCKBURY ROAD, DODFORD

ENGINEERING INNOVATION

INSPECT : INVESTIGATE : REPAIR

Consulting Civil & Structural Engineers | Geotechnical Investigations | Structural Inspections Expert Reporting | Structural Repair Specialists | Foundation Systems

Page 1 of 11 Ref No: S-23-186 Document No: RP1-1

Project Summary

Visual Structural Inspection of timber framed barn for Class Q Planning application

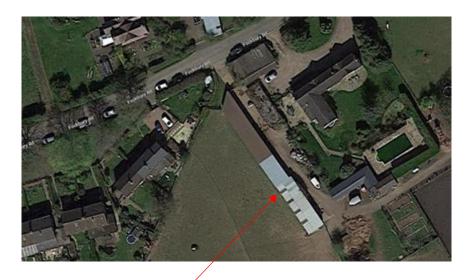
Client Details

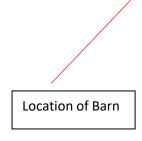
Date	June 2023
Client	Mr D. Knowles
Property Address	Barn at Crowfields Farm, Fockbury Road,
	Dodford, Worcestershire B61 9AW
Shire Ref number (our ref)	S-22-186
Report prepared by	Richard Hartshorne – 07976 691472

Contents

- 1.0 Introduction
- 2.0 External Inspection
- 3.0 Internal Inspection
- 4.0 Conclusions & Recommendations

Page 2 of 11 Ref No: S-23-186 Document No: RP1-1


1. Introduction


- 1.1. Shire was appointed by Mr D. Knowles to carry out a visual structural inspection of a timber framed barn at Crowfields Farm, Fockbury Road, Dodford, Worcestershire for the purpose of submitting a Class Q Planning Application to convert the building to a dwellinghouse.
- 1.2. The barn is located on the Western edge of the site adjacent to open fields. To the East the barn faces towards the farmhouse.
- 1.3. The barn is a single storey timber framed building with a profiled metal single skin cladded roof and walls which are a combination of corrugated iron sheeting and timber boarding.
- 1.4. Any areas of the structure that were obscured or hidden from view at the time of the inspection have not been commented upon and we are therefore unable to confirm if these areas are free of defects or otherwise.
- 1.5. The visual inspection was carried out on Tuesday 6th June 2023 and the weather at the time of the inspection was dry and sunny.

Page 3 of 11 Ref No: S-23-186 Document No: RP1-1

Property Location

Page 4 of 11 Ref No: S-23-186 Document No: RP1-1

2. External Inspection

2.1. The Northeast elevation of the building contains the primary access doors to the barn. There is a single wide opening into the first section of barn and a side entrance into the southern section of barn. This elevation is predominantly timber clad at the North end and corrugated iron clad at the South end. All elements are in reasonable working order.

2.2. The Southeast Gable elevation contains an opening to the adjacent field. The remainder of the gable is in corrugated iron sheeting with high level timber boarding. All structural elements are working satisfactorily.

Page 5 of 11 Ref No: S-23-186 Document No: RP1-1

2.3. The Southwest elevation of the barn comprises corrugated iron cladding with timber boarding over. All structural elements are working satisfactorily.

2.4. The Northwest gable elevation is not visible externally as it adjoins another building.

Page 6 of 11 Ref No: S-23-186 Document No: RP1-1

3. Internal Inspection

3.1. There is a floor slab throughout the full extent of the building. The floor slab is in good condition but does contain some minor shrinkage cracks. It is suitable to be overlain with insulation and screed. The slab has been subjected to significant storage loading and is capable of supporting domestic floor loading.

3.2. The timber sheeting rails and primary rafters are all in good condition and appear to be working satisfactorily.

Page 7 of 11 Ref No: S-23-186 Document No: RP1-1

3.3. The walls to the barn are lined with boarding and this is in good structural condition and provides stability to the barn.

Page 8 of 11 Ref No: S-23-186 Document No: RP1-1

4. Outline schedule of structural works to convert the building.

The following outline schedule of works has been compiled to give a general overview of the work and principles required to convert the existing steel framed barn into a dwelling house as part of a Class Q Planning Application conversion.

- 4.1 Building Works to convert the existing building into residential accommodation will include the following: The existing roof cladding will be retained and insulated as necessary, the purlins, primary timber frame, floor slabs and timber framed walling will all be retained and re-used and will not require modification. Within the existing building footprint, a new insulated timber studwork wall lining will be constructed, and the concrete floor will be overlain with a damp proof membrane, insulation, and screed.
- 4.2 The proposed works will require the following
 - 4.2.1 The floor slab will need to be cleaned suitable to receive a damp proof membrane and insulation.
 - 4.2.2 A new perimeter insulated inner wall will be constructed in timber studwork to comply with Building Regulations Parts A and L.
 - 4.2.3 New windows and doors as required and permitted under Class Q, will require new timber lintols to be inserted into the external walls.
 - 4.2.4 Install new wall and ceiling non-structural partitions to form internal rooms within the space.

Page 9 of 11 Ref No: S-23-186 Document No: RP1-1

5. Conclusions & Recommendations

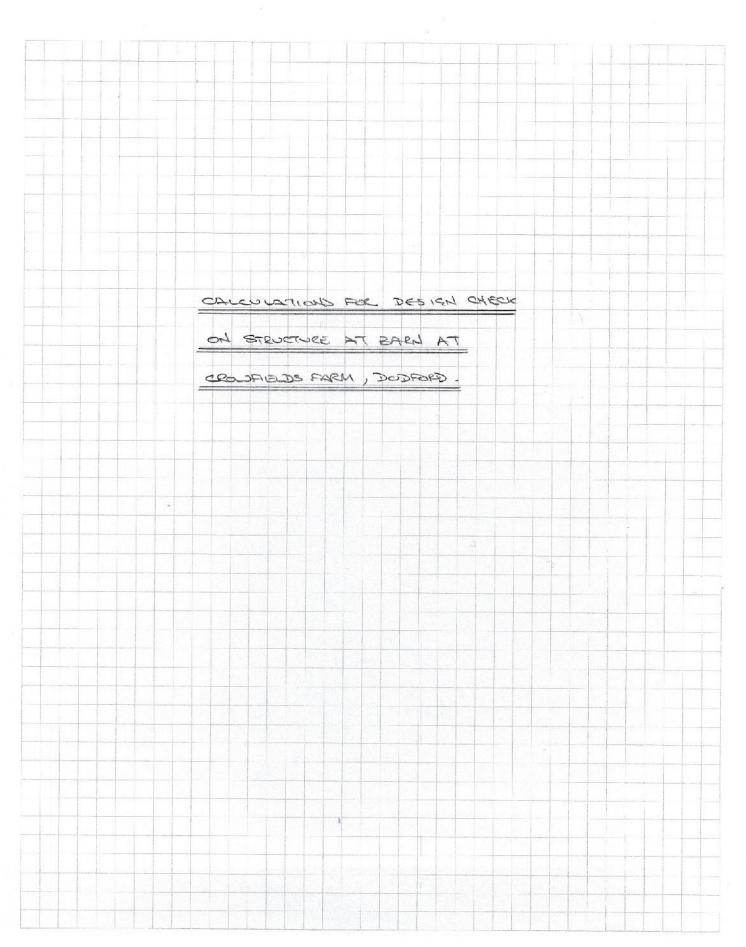
- 5.1. The primary structure of the barn is suitable to be retained in the conversion to domestic living accommodation.
- 5.2. The building requires no structural changes and as noted above, in compliance with Q1(i)(i) and Q1(i)(ii), the extent of the works is only as reasonably necessary for the building to function as a dwellinghouse.
- 5.3. A design check was carried out to confirm that the existing structural elements are suitable for the conversion. A copy of the calculations is appended to this report.

R. Y. Harry

Signed

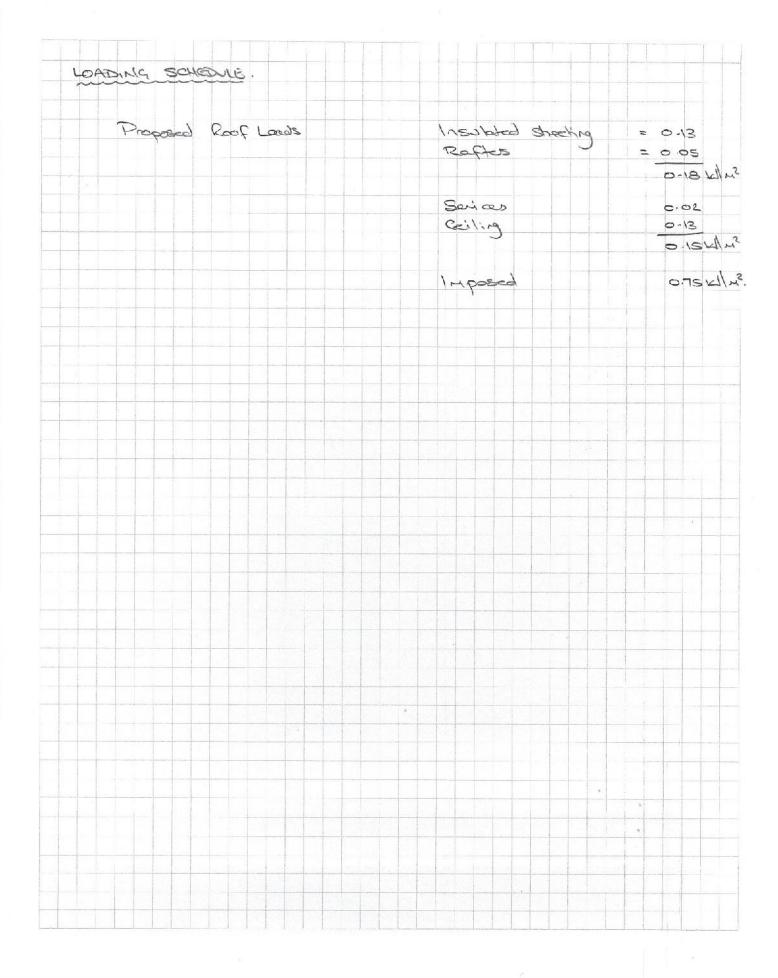
Richard Hartshorne BSc(Hons) CEng MIStructE MICE

Page 10 of 11 Ref No: S-23-186 Document No: RP1-1


APPENDIX A

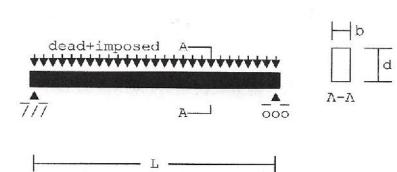
STRUCTURAL CALCULATIONS

Page 11 of 11 Ref No: S-23-186 Document No: RP1-1



Job	5-22-186 CAI				
Date	April 122	Page	01.	Rev	
Prepared by	R.Hads	80-	Checked by		1

Job	S-22-186 GA1				
Date	April 122	Page	02.	Rev	
Prepared by	Ritage	a	Checked by		-5



SHIRE CONSULTING CROWFIELDS FARM TIMBER DESIGN CHECK

Page: 3 Made by: RYH Date: 12.04.22 Ref No: S-22-186

Location: SHEETING SUPPORT TIMBERS

Office: 1154

Domestic floor joist

These calculations follow the domestic floor joists example by V C Johnson in TRADA Design Aid DA1 and BS5268-2:2002.

The following assumptions are made in these calculations: • that the timber has a moisture content of service

- class 1 or 2 (i.e. K2=1)
- · the floor can adequately distribute any concentrated point load to at least two joists.
- the centres of joists do not exceed 610 mm
- that load sharing of the joists can occur & K8 = 1.1.

Effective span of joist L=1.69 m Centres of joists crs=600 mm Dead load including self weight dead=0.33 kN/m² Imposed udl load (on floor) $live=0.75 kN/m^2$ Imposed point load (on one joist) PL=0 kN Depth of section d-75 mm Width of section b=50 mm

Joist laterally restrained with support restraint as Table 19. Bearing length 1b=50 mm Strength class C16 to Table 8.

Grade stresses

Bending parallel to grain bparg=5.3 N/mm² Shear parallel to grain sparg=0.67 N/mm² Compression perpend to grain cperd=2.2 N/mm² Mean modulus of elasticity Emean=8800 N/mm²

Modification factors

Duration of loading Depth factor

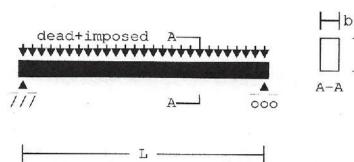
Load sharing (Clause 2.9)

Bearing Modification factor

K3-1.25 K7=(300/d)^0.11=(300/75)^0.11 =1.1647K8=1.1 From BS5268-2 Table 18, bearing is < 75 mm from joist end. K4=1.0

SHIRE CONSULTING Page: 4 CROWFIELDS FARM Made by: RYH TIMBER DESIGN CHECK Date: 12.04.22 Ref No: S-22-186 Office: 1154 Permissible stresses Bending parallel to grain sigmad=K3*K7*K8*bparg =1.25*1.1647*1.1*5.3 =8.488 N/mm² Compress perp to grain (no wane) sigcad=K3*K4*K8*cperd=1.25*1*1.1*2.2 =3.025 N/mm² Shear parallel to grain torad=K3*K8*sparg=1.25*1.1*0.67 =0.92125 N/mm² Strength UDL case: UDL por metre run on joist fl=(dead+live)*crs/1000 =(0.33+0.75)*600/1000=0.648 kN/m Bending moment M1=f1*L^2*10^6/8=0.648*1.69^2*10^6/8 =231344 Nmm Point load case with udl (dead only): UDL per metre run on joist (dead) f2=(dead)*crs/1000=(0.33)*600/1000 =0.198 kN/mBending moment (dead load only) M2=f2*L^2*10^6/8=0.198*1.69^2*10^6/8 =70688 Nmm M3=PL*L*10^6/4=0*1.69*10^6/4 Bending moment point load =0 Nmm Total bending moment M4=M2+M3=70688+0=70688 Nmm Worst case moment (udl case governs) M=M1=231344 Nmm Section modulus Z=b*d^2/6=50*75^2/6=46875 mm³ Bending stress sigma=M/Z=231344/46875=4.9353 N/mm² Since sigma < sigmad (4.9353 N/mm² < 8.488 N/mm²) bending stress is less than permissible stress therefore OK. Deflection Second moment of area I=b*d^3/12=50*75^3/12=1.7578E6 mm⁴ UDL case: Actual deflection including shear del1=5*f1*(L*1000)^4/(384*Emean*I)+12*f1*(L*1000)^2/(5*Emean*b*d) =5*0.648*(1.69*1000)⁴/(384*8800*1.7578E6)+12*0.648*(1.69*1000)² /(5*8800*50*75) =4.584 mm Point load case: Actual deflection including shear del2=5*f2*(L*1000)^4/(384*Emean*I)+12*f2*(L*1000)^2/(5*Emean*b*d) =5*0.198*(1.69*1000)^4/(384*8800*1.7578E6)+12*0.198*(1.69*1000)^2 /(5*8800*50*75) =1.4007 mmdel3=PL*1000*(L*1000)^3/(48*Emean*I) =0*1000*(1.69*1000)^3/(48*8800*1.7578E6) =0 mm del4=del2+del3=1.4007+0=1.4007 mm del-del1-4.584 mm UDL load case governs Limiting deflection Clause 2.10.7 dlim=0.003*L*1000=0.003*1.69*1000 =5.07 mm Deflection does not exceed limit (4.584 mm ≤ 5.07 mm) therefore OK.

SHIRE CONSULTING CROWFIELDS FARM TIMBER DESIGN CHECK	5		5 RYH 12.04.22 S-22-186
	т. (#	Office:	1154
Shear and bearing			
UDL case:		3	
Maximum applied shear for Point load case:	orce V1=f1*I	/2=0.648*1.69/2=0.547	756 kN
Maximum applied shear f		/2+PL=0.198*1.69/2+0 731 kN	
Worst shear (udl case qu		54756 kN	
Shear stress		V*1000/(2*b*d)	
		0.54756*1000/(2*50*75	5)
	=0.	21902 N/mm²	
Since tora \leq torad (0.3			
stress does not exceed 1			
Bearing stress on suppo:		*1000/(1b*b)	
		.54756*1000/(50*50)	
Since sigba ≤ sigcad (.21902 N/mm ²	
stress does not exceed j			
scress does not exceed j	Dermissible cherei	OIE OR.	
	Joists: 75 mm x	50 mm @ 600 mm crs	
	Strength class C		
	Bending stress	4.9353 N/mm ²	
	Permissible bend	ing 8.488 N/mm ²	
DESIGN	Deflection	4.584 mm	
SUMMARY	Limiting deflect		
	Shear stress	0.21902 N/mm ²	
	Permissible shea		
		0.21902 N/mm ²	
	Permissible bear	1ng 3.025 N/mm ²	
			No252


No252

SHIRE CONSULTING CROWFIELDS FARM TIMBER DESIGN CHECK

Page: 6 Made by: RYH Date: 12.04.22 Ref No: S-22-186

Office: 1154

Location: RAFTERS

Domestic floor joist

These calculations follow the domestic floor joists example by V C Johnson in TRADA Design Aid DA1 and BS5268-2:2002.

The following assumptions are made in these calculations: • that the timber has a moisture content of service

- class 1 or 2 (i.e. K2=1)
- the floor can adequately distribute any concentrated point load to at least two joists.
- · the centres of joists do not exceed 610 mm
- that load sharing of the joists can occur & K8 = 1.1.

Effective span of joist L=4.90 m Centres of joists Dead load including self weight dead=0.33 kN/m² Imposed udl load (on floor) Imposed point load (on one joist) PL-0 kN Depth of section Width of section

crs=600 mm live=0.75 kN/m² d=200 mm b=50 mm

d

Joist laterally restrained with support restraint as Table 19. Bearing length 1b=50 mm Strength class C24 to Table 8.

Grade stresses

Bending parallel to grain bparg=7.5 N/mm² Shear parallel to grain sparg=0.71 N/mm² Compression perpend to grain cperd=2.4 N/mm² Mean modulus of elasticity Emean=10800 N/mm²

Modification factors

Duration of loading Depth factor

Load sharing (Clause 2.9)

Bearing Modification factor

K3=1.25 K7=(300/d)^0.11=(300/200)^0.11 =1.0456K8=1.1 From BS5268-2 Table 18, bearing is < 75 mm from joist end. K4=1.0

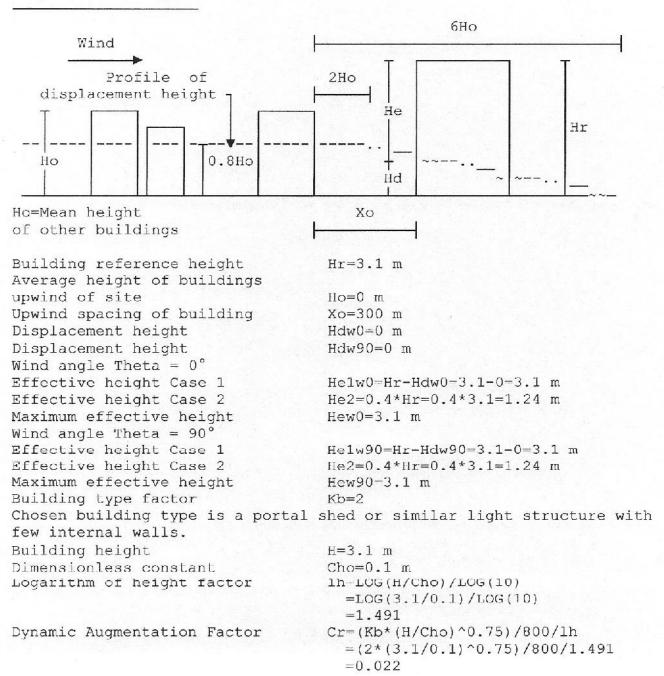
SHIRE CONSULTING CROWFIELDS FARM TIMBER DESIGN CHECK		Page: Made by: Date: Ref No:	12.04.22
Permissible stresses		Office:	1154
Bending parallel to grain	sigmad=K3*K7*K8*bpa =1.25*1.0456* =10.783 N/mm ²	1.1*7.5	
Compress perp to grain (no wane)	=10.785 N/Hun sigcad=K3*K4*K8*cpe =3.3 N/mm ²		*1.1*2.4
Shear parallel to grain	torad=K3*K8*sparg=1 =0.97625 N/mm ²		.71
Strength			
UDL case:			
UDL per metre run on joist	f1=(dead+live)*crs/ =(0.33+0.75)*600/		
Bending moment	=0.648 kN/m M1=f1*L^2*10^6/8=0. -1.9448E6 Nmm	648*4.9^2	*10^6/8
Point load case with udl (dead on			
UDL per metre run on joist (dead)		=(0.33)*60	0/1000
Bending moment (dead load only)	M2=f2*L^2*10^6/8=0. =594248 Nmm	198*4.9^2	*10^6/8
Bending moment point load	M3=PL*L*10^6/4=0*4. =0 Nmm	9*10^6/4	
Total bending moment Worst case moment (udl case gover	M4=M2+M3=594248+0=5 ms) M=M1=1.94		
Section modulus Bending stress	Z-b*d^2/6=50*200^2/ sigma=M/Z=1.9448E6/		mm ³
	=5.8344 N/mm ²		
Since sigma < sigmad (5.8344 N/m is less than permissible stress t		bending s	tress
Deflection			
UDL case:	I=b*d^3/12=50*200^3	/12=33.33	3E6 mm⁴
Actual deflection including shear del1=5*f1*(L*1000)^4/(384*Emean*I =5*0.648*(4.9*1000)^4/(384*10 /(5*10800*50*200) =13.857 mm)+12*f1*(L*1000)^2/(
Point load case:			
Actual deflection including shear de12=5*f2*(I.*1000)^4/(384*Emean*I =5*0.198*(4.9*1000)^4/(384*10)+12*f2*(L*1000)^2/(
/(5*10800*50*200) =4.2341 mm			
del3=PL*1000*(L*1000)^3/(48*Emean =0*1000*(4.9*1000)^3/(48*1080 =0 mm			
del4=del2+del3=4.2341+0=4.2341 mm UDL load case governs	del=del1=13.857 mm		
Limiting deflection Clause 2.10.7 Deflection does not exceed limit	dlim=14 mm) therefo	re OK
series about the exceed filler	, 191007 and - 14 and	,	

SHIRE CONSULTING CROWFIELDS FARM TIMBER DESIGN CHECK	Page: 8 Made by: RYH Date: 12.04.22 Ref No: S-22-186
Shear and bearing	Office: 1154
UDL case:	
Maximum applied shear force Point load case:	V1=f1*L/2=0.648*4.9/2=1.5876 kN
Maximum applied shear force	V2=f2*L/2+PL=0.198*4.9/2+0 =0.4851 kN
Worst shear (udl case govern Shear stress	V=V1=1.5876 kN tora=3*V*1000/(2*b*d) =3*1.5876*1000/(2*50*200) =0.23814 N/mm ²
Since tora ≤ torad (0.23814 stress does not exceed pormi	$/mm^2 \leq 0.97625 \text{ N/mm}^2$) shear
Bearing stress on support	sigba=V*1000/(lb*b) =1.5876*1000/(50*50) =0.63504 N/mm ²
Since sigba ≦ sigcad (0.635 stress does not exceed permi	$N/mm^2 \leq 3.3 N/mm^2$) bearing
Str Ber DESIGN Def SUMMARY Lin She Per Bea	s: 200 mm x 50 mm @ 600 mm crs gth class C24 to Table 8. ng stress 5.8344 N/mm ² ssible bending 10.783 N/mm ² ction 13.857 mm ing deflection 14 mm stress 0.23814 N/mm ² ssible shear 0.97625 N/mm ² ng stress 0.63504 N/mm ² ssible bearing 3.3 N/mm ²

No252

SHIRE CONSULTING Page: 9 CROWFIELDS FARM Made by: RYH WIND LOADS Date: 12.04.22 Ref No: S-22-186 Office: 1154

Location: Wind loads


Wind load assessment based on BS6399-2:1997 (June 2002)

BS6399-2:1997 (June 02) offers two methods of assessing the wind load onto a structure. The method adopted in this program is the "standard method" to section 2.0 of this Code of Practice. To assess if BS6399-2 (Amendment June 02) is applicable, it is necessary to determine the "Dynamic augmentation factor" which determines if the chosen structure is "dynamic".

Dynamic augmentation factor

Chosen site is the country or terrain not defined as sea or town.

Displacement heights

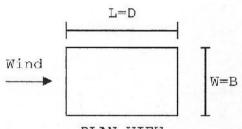
SHIRE CONSULTING Page: 10 CROWFIELDS FARM Made by: RYH WIND LOADS Date: 12.04.22 Ref No: S-22-186 Office: 1154 Since Dynamic Augmentation Factor Cr is less than or equal to 0.25 then this structure is not dynamic. Standard wind loads Basic wind speed Vb=20.5 m/sStructure is not located at the crest of a hill or escarpment and the topography is not significant. Site altitude above mean sea level deltaS=100 m Altitude factor (long face) Saw0=1+0.001*deltaS-1+0.001*100 =1.1 Altitude factor (short face) Saw90=1+0.001*deltaS=1+0.001*100 =1.1 Wind acting on long face of building (i.e. angle Theta = 0°) Direction factor Sdw0=1Wind acting on short face of building (i.e. angle Theta = 90°) Direction factor Sdw90=1 The structure is permanent or exposed to the wind for a continuous period of more than 6 months. Seasonal factor Ss=1.0 The basic wind speed has an annual risk of being exceeded of Q=0.02 Probability factor Sp=1 Country terrain with the closest distance to the sea being 100 km. Wind acting on long face of building (i.e. angle Theta = 0°) From Table 4 terrain & building factor Sbw0-1.33 Site wind speed @ height He Vsw0=Vb*Saw0*Sdw0*Ss*Sp =20.5*1.1*1*1*1 =22.55 m/s Effective wind speed Vew0=Vsw0*Sbw0=22.55*1.33 =29.99 m/s Dynamic pressure at height He qsw0=0.613*Vew0^2/1000 =0.613*29.99^2/1000 =0.5514 kN/m² Wind acting on short face of building (i.e. angle Theta =90°) From Table 4 terrain & building factor Sbw90=1.33 Site wind speed @ height He Vsw90=Vb*Saw90*Sdw90*Ss*Sp =20.5*1.1*1*1*1 =22.55 m/s Effective wind speed Vew90=Vsw90*Sbw90=22.55*1.33 =29.99 m/se Dynamic pressure at height He qsw90=0.613*Vew90^2/1000 =0.613*29.99^2/1000 $=0.5514 \text{ kN/m}^2$ Hew0 Effective height (long face) 3.1 m Effective height (short face) 3.1 m Hew90 Altitude factor (long face) 1.1 SawO DESIGN Altitude factor (short face) 1.1 Saw90 Direction factor (long face) SUMMARY Sdw0 1 Direction factor (short face) Sdw90 1 Seasonal factor Ss 1 Probability factor Sp 1 Dynamic wind pressure (long face) qsw0 0.5514 kN/m² Dynamic wind pressure (short face) gsw90 0.5514 kN/m^2

SHIRE CONSULTING Page: 11 CROWFIELDS FARM Made by: RYH WIND LOADS Date: 12.04.22 Ref No: S-22-186 Office: 1154 Dynamic pressure & pressure coeffs on walls of rectangular buildings Greater horiz.dimens of building L=15 m Lesser horiz.dimens of building ₩=5 m Height of wall including parapet Hr'=3.1 m Wind acting on long face of building: Dynamic pressure based on height above ground 3.1 m. Design wind speed @ eaves Vsew0=22.55 m/s Dynamic pressure @ eaves gew0=0.5514 kN/m² Wind acting on short face of building: Dynamic pressure based on height above ground 3.1 m. Design wind speed @ eaves Vsew90=22.55 m/s Dynamic pressure @ eaves qew90-0.5514 kN/m² Wall size effect factor $(\theta=0^{\circ})$ CaLW1=1 Wall size effect factor ($\theta = 90^{\circ}$) CaLW2=1 Case 1: Wind on long face of building (i.e. angle Theta = 0°) W=DInwind depth D=5 m Wind Cross wind width B-15 m L=B PLAN VIEW Span ratio Spratio=D/Hr'=5/3.1=1.613 Since $B \ge 2*Hr'$ (15 \ge 6.2), then scaling length b=6.2 m. 5 m 1.24 m Wind Key zones for wall pressure data. Zones Scaling width > D A в H=3.1 m 6.2 m > 5 m

ELEVATION ON SIDE FACE

Pressure coefficients on vertical walls are from Table 5.Windward (front) faceCpeLW1=0.7989Leeward (rear) faceCpeLW2=-0.5Isolated Zone A side faceCpeLW3=-1.3Isolated Zone B side faceCpeLW4=-0.8

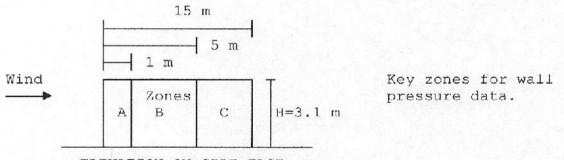
SHIRE CONSULTING CROWFIELDS FARM WIND LOADS


Page: 12 Made by: RYH Date: 12.04.22 Ref No: S-22-186

Office: 1154

External surface pressure on walls

Windward (front) face	PeLW1=qew0*CpeLW1*CaLW1 =0.5514*0.7989*1 =0.4405 kN/m ²
Leeward (rear) face	PeLW2=qew0*CpeLW2*CaLW1=0.5514*-0.5*1 =-0.2757 kN/m ²
Isolated Zone A side face	PeLW3=qew0*CpeLW3*CaLW2=0.5514*-1.3*1 =-0.7168 kN/m²
Isolated Zone B side face	PcLW4-qew0*CpeLW4*CaLW2=0.5514*-0.8*1 =-0.4411 kN/m ²


Case 2: Wind on short face of building (i.e. angle Theta = 90°)

Inwind depth D=15 m Cross wind width B=5 m

PLAN VIEW

Span ratio Spratio=D/Hr'=15/3.1=4.839 Since span ratio is greater than or equal to 4 Spratic=4 Since B < 2*Hr' (5 < 6.2), then scaling length b=5 m.

ELEVATION ON SIDE FACE

Pressure coefficients on vertical walls are from Table 5.Windward (front) faceCpeSW1=0.6Leeward (rear) faceCpeSW2=-0.5Isolated Zone A side faceCpeSW3=-1.3Isolated Zone B side faceCpeSW4=-0.8Isolated Zone C side faceCpeSW5=-0.5

SHIRE CONSULTING CROWFIELDS FARM WIND LOADS

Page: 13 Made by: RYH Date: 12.04.22 Ref No: S-22-186

Office: 1154

External surface pressure on walls

Wi	ndward (front) fac	ce	PeSW1=qew90*CpeSW1*CaLW2=0.5514*0.6*1 =0.3308 kN/m ²
Lee	eward (rear) face		PeSW2=qew90*CpeSW2*CaLW2 =0.5514*-0.5*1 =-0.2757 kN/m ²
Iso	olated Zone A side	e face	PeSW3=qew90*CpeSW3*CaLW1 =0.5514*-1.3*1 =-0.7168 kN/m ²
Isc	olated Zone B side	e face	PeSW4=qew90*CpeSW4*CaLW1 =0.5514*-0.8*1 =-0.4411 kN/m ²
Isc	plated Zone C side	e face	PeSW5=qew90*CpeSW5*CaLW1 =0.5514*-0.5*1 0.2757 kN/m ²

Internal pressure coefficients

Structure is an enclosed building having 2 opposite walls equally permeable and the other faces impermeable.

Internal	pressure	coefficient	1	Cpi(1)=0.2
Internal	pressure	coefficient	2	Cpi(2)=-0.3

Size effect factor for internal wall CaInt=1

Internal surface pressure

Walls: Wind on long face of building, internal surface pressure 1

Wind on short face of building, internal surface pressure 1

Wind on long face of building, internal surface pressure 2

Wind on short face of building, internal surface pressure 2

Roof:

Wind on long face of building, internal surface pressure 1

Wind on short face of building, internal surface pressure 1

Pilww0-qew0*Cpi(1)*CaInt=0.5514*0.2*1 =0.1103 kN/m²

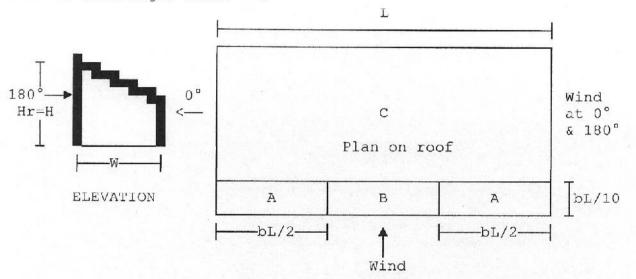
Pi1ww90=qew90*Cpi(1)*CaInt =0.5514*0.2*1 =0.1103 kN/m²

Pi2ww0=qew0*Cpi(2)*CaInt =0.5514*-0.3*1 =-0.1654 kN/m²

Pi2ww90=qew90*Cpi(2)*CaInt =0.5514*-0.3*1 =-0.1654 kN/m²

PiW1w0=qsw0*Cpi(1)*CaInt=0.5514*0.2*1 =0.1103 kN/m²

PiW1w90=qsw90*Cpi(1)*CaInt =0.5514*0.2*1 =0.1103 kN/m²


SHIRE CONSULTING CROWFIELDS FARM WIND LOADS	Page: 14 Made by: RYH Date: 12.04.22 Ref No: S-22-186
	Office: 1154
Wind on long face of building, internal surface pressure 2	PiW2w0=qsw0*Cpi(2)*CaInt =0.5514*-0.3*1 =-0.1654 kN/m ²
Wind on short face of building, internal surface pressure 2	PiW2w90=qsw90*Cpi(2)*CaInt =0.5514*-0.3*1 =-0.1654 kN/m ²
***********	****
<pre>* Wall/roof net pressures acting * positive and wall/roof net pre * are taken as negative.</pre>	S SIGN CONVENTION * g towards the surface are taken as * essures acting away from the surface * * *********************************
Wall net pressure Cpi=0.2	Wind on long face of building
Windward (front) face	N1LW1=PeLW1-Pi1ww0=0.4405-0.1103 =0.3302 kN/m ²
Leeward (rear) face	N1LW2=PeLW2-Pi1ww0=-0.2757-0.1103 =-0.386 kN/m ²
Isolated Zone A side face	N1LW3=PeLW3-Pi1ww0=-0.7168-0.1103 =-0.8271 kN/m ²
Isolated Zone B side face	N1LW4=PeLW4-Pi1ww0=-0.4411-0.1103 =-0.5514 kN/m ²
Wall net pressure Cpi=0.2	Wind on short face of building
Windward (front) face	N1SW1=PeSW1-Pi1ww90=0.3308-0.1103 =0.2206 kN/m ²
Leeward (rear) face	N1SW2=PeSW2-Pi1ww90=-0.2757-0.1103 =-0.386 kN/m ²
Isolated Zone A side face	N1SW3=PeSW3-Pi1ww90=-0.7168-0.1103 =-0.8271 kN/m ²
Isolated Zone B side face	N1SW4=PeSW4-Pi1ww90=-0.4411-0.1103 =-0.5514 kN/m ²
Isolated Zone C side face	N1SW5=PeSW5-Pi1ww90=-0.2757-0.1103 -0.386 kN/m ²
Wall net pressure Cpi=-0.3	Wind on long face of building
Windward (front) face	N2LW1=PeLW1-Pi2ww0=0.44050.1654 =0.6059 kN/m ²
Leeward (rear) face	N2LW2=PeLW2-Pi2ww0=-0.27570.1654 =-0.1103 kN/m ²
Isolated Zone A side face	N2LW3=PeLW3-Pi2ww0=-0.71680.1654 =-0.5514 kN/m ²
Isolated Zone B side face	N2LW4=PeLW4-Pi2ww0=-0.44110.1654 =-0.2757 kN/m ²
wall net pressure Cpi=-0.3	Wind on short face of building
Windward (front) face	N2SW1=PeSW1-Pi2ww90=0.33080.1654 =0.4963 kN/m ²

SHIRE CONSULTING CROWFIELDS FARM WIND LOADS	Page: 15 Made by: RYH Date: 12.04.2 Ref No: S-22-18
	Office: 1154
Leeward (rear) face	N2SW2=PeSW2-Pi2ww90=-0.27570.1654 =-0.1103 kN/m ²
Isolated Zone A side face	N2SW3=PeSW3-Pi2ww90=-0.71680.1654 =-0.5514 kN/m ²
Isolated Zone B side face	N2SW4=PeSW4-Pi2ww90=-0.44110.1654 =-0.2757 kN/m ²
Isolated Zone C side face	N2SW5=PeSW5-Pi2ww90=-0.27570.1654 =-0.1103 kN/m ²

Coefficients Cpe for monopitch roofs of rectangular clad

read in conjunction with BS6399-2:1997 (June 2002)

Case 1: Wind angle Theta = 0°

Pitch of roof (5° to 75°) Malpha=6° Since $L \ge 2Hr$ (15 \ge 6.2), scaling length bL=6.2 m. Zone A depth ZAdep=bL/10=6.2/10=0.62 m Zone A length ZAlen=bL/2=6.2/2=3.1 m Zone B length ZBlen=L-2*ZAlen=15-2*3.1 -8.8 m External pressure Coeff for zone A= Cpem01--1.73 External pressure Coeff for zone B= Cpem02=-1.16 External pressure Coeff for zone C= Cpem03=-0.58 External + ve pressure Coeff.for zone A= Cpem04=0.02 External + ve pressure Coeff.for zone B= Cpem05=0.02 External + ve pressure Coeff.for zone C= Cpem06=0.02 Case 2: Wind angle Theta = 180°

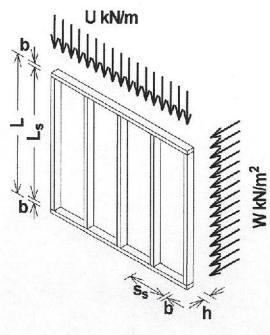
Zone A length ZAlen=bL/10=6.2/10=0.62 m External pressure Coeff.for zone A= Cpem12=-2.42 External pressure Coeff.for zone B= Cpem13=-1.09 External pressure Coeff.for zone C= Cpem14=-0.81

SHIRE CONSULTING Page: 16 CROWFIELDS FARM Made by: RYH WIND LOADS Date: 12.04.22 Ref No: S-22-186 Office: 1154Case 3: Wind angle Theta = 90° - bW/10 - L -T $\overline{W}/4$ A + Wind Hr=H W/4+C D В W/4+W/4Δ SIDE ELEVATION 1 -bW/2-_ Wind at 90° Since W < 2Hr (5 < 6.2), scaling length bW=5 m. Zone A length ZAlen=+bW/10=+5/10=0.5 mZone B length ZBlen=+bW/10-+5/10-0.5 m Zone C length ZClen=bW/2-bW/10=5/2-5/10 =2 m External pressure Coeff for zone Au= Cpem07=-2.24 External pressure Coeff for zone Al= Cpem08=-2.05 External pressure Coeff for zone B= Cpem09=-1.1 External pressure Coeff for zone C= Cpem10=-0.71 External pressure Coeff for zone D= Cpem11=-0.71 External (+ve) pressure Coeff for zone Au= Cpem15=0.02 External (+ve) pressure Coeff for zone Al= Cpem16=0.02 External (+ve) pressure Coeff for zone B= Cpem17=0.02 External (+ve) pressure Coeff for zone C- Cpem18-0.02 External (+ve) pressure Coeff for zone D= Cpem19=0.02 Roof size effect factor $(\theta=0^{\circ})$ CaR0=1 Roof size effect factor ($\theta=90^{\circ}$) CaR90=1 Size effect factor for roof at 180 deg CaR180-1 External surface pressure on roof - Wind at 0° (long face) Roof zone A PeRA0=qsw0*Cpem01*CaR0=0.5514*-1.73*1 $=-0.9539 \text{ kN/m}^2$ Roof zone B PeRB0=gsw0*Cpem02*CaR0-0.5514*-1.16*1 $=-0.6396 \text{ kN/m}^2$ Roof zone C PeRC0=qsw0*Cpem03*CaR0=0.5514*-0.58*1 $=-0.3198 \text{ kN/m}^2$ Roof zone A (+Ve Value) PRAA0=qsw0*Cpem04*CaR0=0.5514*0.02*1 $=0.011 \text{ kN/m}^2$ Roof zone B (+Ve Value) PRAB0=qsw0*Cpem05*CaR0=0.5514*0.02*1 $=0.011 \text{ kN/m}^2$ Roof zone C (+Ve Value) PRAC0=qsw0*Cpem06*CaR0=0.5514*0.02*1 =0.011 kN/m*

SHIRE CONSULTING CROWFIELDS FARM WIND LOADS	Page: 17 Made by: RYH Date: 12.04.22 Ref No: S-22-186
Roof net pressure Cpi=0.2	Office: 1154 Wind at 0° (long face)
Roof zone A	N1RA0=PeRA0-PiW1w0=-0.9539-0.1103
Roof zone B	=-1.064 kN/m ² N1RB0=PeRB0-PiW1w00.6396-0.1103
Roof zone C	=-0.7499 kN/m ² N1RC0=PeRC0-PiW1w0=-0.3198-0.1103
Roof zone A (+Ve Value)	$=-0.4301 \text{ kN/m}^{2}$ N1RAAC=PRAAO-PiW1w0=0.011-0.1103
Roof zone B (+Ve Value)	=-0.0992 kN/m ² N1RAB0=PRAB0-PiW1w0=0.011-0.1103
Rcof zone C (+Ve Value)	=-0.0992 kN/m ² N1RAC0=PRAC0-PiW1w0=0.011-0.1103 =-0.0992 kN/m ²
External surface pressure on roof	- Wind at 90° (short face)
Roof zone Au	PuRA9=qsw90*Cpem07*CaR90 =0.5514*-2.24*1
Roof zone Al	=-1.235 kN/m ² P1RA9=qsw90*Cpem08*CaR90 =0.5514*-2.05*1 =-1.13 kN/m ²
Roof zone B	=-1.13 kN/m ² PeRB9=qsw90*Cpem09*CaR90 =0.5514*-1.1*1 =-0.6065 kN/m ²
Roof zone C	PeRC9=qsw90*Cpem10*CaR90 =0.5514*-0.71*1 =-0.3915 kN/m ²
Roof zone D	PeRD9=qsw90*Cpem11*CaR90 =0.5514*-0.71*1 =-0.3915 kN/m ²
Roof zone Au (+ve value)	PpRu9=qsw90*Cpem15*CaR90 =0.5514*0.02*1 =0.011 kN/m ²
Roof zone Al (+ve value)	PpR19=qsw90*Cpem16*CaR90 =0.5514*0.02*1 =0.011 kN/m ²
Roof zone B (+ve value)	PpRB9=qsw90*Cpem17*CaR90 =0.5514*0.02*1
Roof zone C (+ve value)	=0.011 kN/m ² PpRC9=qsw90*Cpem18*CaR90 =0.5514*0.02*1
Roof zone D (+ve value)	=0.011 kN/m ² PpRD9=qsw90*Cpcm19*CaR90 =0.5514*0.02*1 =0.011 kN/m ²
Roof net pressure Cpi=0.2	Wind at 90° (short face)
Roof zone Au	N1Au9=PuRA9-PiW1w90=-1.235-0.1103 =-1.345 kN/m ²
Roof zone Al	$N1A19=P1RA9-PiW1w90=-1.13-0.1103$ $=-1.241 \text{ kN/m}^2$
Roof zone B	N1RB9=PeRB9-PiW1w90=-0.6065-0.1103 =-0.7168 kN/m ²

CROW	E CONSULT FIELDS F7 LOADS		1 1 2	Page: 18 Made by: RYH Date: 12.04.22 Ref No: S-22-186
Poof	zone C			Office: 1154
ROOT	zone c			N1RC9=PeRC9-PiW1w90=-0.3915-0.1103 =-0.5018 kN/m ²
Roof	zone D			$N1RD9 = PeRD9 - PiW1w90 = -0.3915 - 0.1103$ $= -0.5018 \text{ kN/m}^2$
Roof	zone Au	(+ve	value)	N1Rup9=PpRu9-PiW1w90=0.011-0.1103 =-0.0992 kN/m ²
Roof	zone Al	(+ve	value)	N1Rlp9=PpRl9-PiW1w90=0.011-0.1103
Roof	zone B	(+ve	value)	=-0.0992 kN/m ² N1RBp9=PpRB9-PiW1w90=0.011-0.1103 =-0.0992 kN/m ²
Roof	zone C	(+ve	value)	N1RCp9=PpRC9-PiW1w90=0.011-0.1103 -0.0992 kN/m ²
Roof	zone D	(+ve	value)	N1RDp9=PpRD9-PiW1w90=0.011-0.1103 =-0.0992 kN/m ²
Exte	rnal surf	ace p	pressure on roof	- Wind at 180°
Roof	zone A			PeRA8=qsw0*Cpem12*CaR180 =0.5514*-2.42*1
				$=-1.334 \text{ kN/m}^2$
Roof	zone B			PeRB8=qsw0*Cpem13*CaR180
				$=0.5514 \times -1.09 \times 1$
				=-0.601 kN/m ²
Root	zone C			PeRC8=qsw0*Cpem14*CaR180
				=0.5514*-0.81*1 =-0.4466 kN/m ²
Roof	net pres	sure	Cpi=0.2	Wind at 180°
Roof	zone A			N1RA8=PeRA8-PiW1w0=-1.334-0.1103 =-1.445 kN/m ²
Roof	zone B			N1RB8=PeRB8-PiW1w0=-0.601-0.1103
				$=-0.7113 \text{ kN/m}^2$
Roof	zone C			N1RC8=PeRC8-PiW1w0=-0.4466-0.1103 =-0.5569 kN/m ²
Roof	net pres	sure	Cpi0.3	Wind at 0° (long face)
Roof	żone A			N2RA0=PeRA0-PiW2w0=-0.95390.1654 =-0.7885 kN/m ²
Roof	zone B			N2RB0=PeRB0-PiW2w0=-0.63960.1654 =-0.4742 kN/m ²
Roof	zone C			N2RC0=PeRC0-PiW2w0=-0.31980.1654 0.1544 kN/m ²
Roof	zone A (+Ve V	Value)	$N2RAA0 = PRAA0 - PiW2w0 = 0.011 - 0.1654$ $= 0.1764 \text{ kN/m}^2$
Roof	zone B (+Ve ∖	/alue)	N2RAB0=PRAB0-PiW2w0=0.0110.1654 =0.1764 kN/m ²
Roof	zone C (+Ve V	Value)	N2RAC0=PRAC0-PiW2w0=0.0110.1654 =0.1764 kN/m ²

SHIRE CONSULTING CROWFIELDS FARM WIND LOADS	Page: 19 Made by: RYH Date: 12.04.22 Ref No: S-22-186
Roof net pressure Cpi=-0.3	Office: 1154 Wind at 90° (short face)
Roof zone A upper	N2Au9=PuRA9-PiW2w90=-1.2350.1654 =-1.07 kN/m ²
Roof zone A lower	N2A19=P1RA9-PiW2w90=-1.130.1654 =-0.9649 kN/m ²
Roof zone B	N2RB9=PeRB9-PiW2w90=-0.6065C.1654 =-0.4411 kN/m ²
Roof zone C	N2RC9=PeRC9-PiW2w90=-0.39150.1654 =-0.2261 kN/m ²
Roof zone D	N2RD9=PeRD9-PiW2w90=-0.39150.1654 -0.2261 kN/m ²
Roof zone Au (+ve value)	N2Rup9=PpRu9-PiW2w90=0.0110.1654 =0.1764 kN/m ²
Roof zone Al (+ve value)	N2Rlp9=PpRl9-PiW2w90=0.0110.1654 =0.1764 kN/m ²
Roof zone B (+ve value)	N2RBp9=PpRB9-PiW2w90=0.0110.1654 =0.1764 kN/m ²
Roof zone C (+ve value)	N2RCp9=PpRC9-PiW2w90=0.0110.1654 =0.1764 kN/m ²
Roof zone D (+ve value)	N2RDp9=PpRD9-PiW2w90-0.0110.1654 =0.1764 kN/m ²
Roof net pressure Cpi=-0.3	Wind at 180°
Roof zone A	N2RA8=PeRA8-PiW2w01.3340.1654 =-1.169 kN/m ²
Roof zone B	N2RB8=PeRB8-PiW2w0=-0.6010.1654 =-0.4356 kN/m ²
Roof zone C	N2RC8=PcRC8-PiW2w0=-0.44660.1654 =-0.2812 kN/m ²


No702

Shireconsulting	Project	Job Ref. S-22-186/CA1 Sheet no./rev. 20				
Shire Consulting	Section					
Barnsley Hall Road Bromsgrove	Calc. by RYH	Date 12/04/22	Chk'd by	Date	App'd by	Date

TIMBER STUD DESIGN (BS5268)

TIMBER STUD DESIGN (BS5268-2:2002)

TEDDS calculation version 1.0.05

Stud details						
Stud breadth	b = 50 mm					
Stud depth	h = 150 mm					
Number of studs	N _s = 1					
Strength class C16 timber (Table 8 BS526	8:Pt 2:2002)					
Section properties						
Cross sectional area	$A = N_s \times b \times h = 7500 \text{ mm}^2$					
Section modulus	$Z = N_s \times b \times h^2 / 6 = 187500 \text{ mm}^3$					
Moment of inertia in the major axis	$I_x = N_s \times b \times h^3 / 12 = 14062500 \text{ mm}^4$					
Moment of inertia in the minor axis	$I_y = N_s \times h \times b^3 / 12 = 1562500 \text{ mm}^4$					
Radius of gyration in the major axis	$r_x = \sqrt{(l_x / A)} = 43.3 \text{ mm}$					
Radius of gyration in the minor axis	$r_y = \sqrt{(l_y / A)} = 14.4 \text{ mm}$					
Panel details - Studs restrained by sheath	ing in the plane of the panel					
Panel height	L = 3100 mm					
Stud length	$L_s = L - (2 \times b) = 3000 \text{ mm}$					
Standard stud spacing	s₅ = 600 mm					
Panel opening	O = 0 mm					
Loaded panel length	$s = max(s_{s_1} (O + s_{s_2}) / 2) = 600 mm$					
Effective length in the major axis	$L_{ex} = 0.85 \times L_s = 2550 \text{ mm}$					
Slenderness ratio	$\lambda = L_{ex}$ / r _x = 58.89					
Vertical loading details	Dead loads	Impos				

Roof UDL

Dead loads U_{r_d} = 0.81 kN/m Imposed loads Ur_i = 1.84 kN/m

Shireconsulting	Project Crowfields Farm Barn					Job Ref. S-22-186/CA1			
u u u u u u u u u u u u u u u u u u u	Section				Sheet no./rev				
Shire Consulting The Chapel	Wall Studs					21			
· · · · · · · · · · · · · · · · · · ·	Calc. by	Date	Chk'd by	Date	App'd by	Date			
Bromsgrove	RYH	12/04/22							
Lateral loading details									
Wind loading		W = 0.61	kN/m²						
Wind load duration		Very sho	rt term						
Modification factors									
Section depth factor		K7 = (300	mm / h) ^{0.11} =	1.08					
Load sharing factor		K ₈ = 1.10							
Consider combined axial comp	ression and	bending under	very short to	erm loads					
Load duration factor		K3 = 1.75							
Vertical loading		F = (U _{r_d} +	• U _{r_i}) × s = 1.	59 kN					
Check bending stress									
Bending parallel to grain		om = 5.30	0 N/mm ²						
Permissible bending stress		$\sigma_{m_{adm}} = \sigma_{adm}$	rm × K3 × K7 ×	K8 = 11.011 N	l/mm ²				
Bending moment		M _{max} = W							
Applied bending stress		$\sigma_{m_{max}} = 1$	$\sigma_{m_{max}} = M_{max} / Z = 2.326 \text{ N/mm}^2$						
PA	SS - Applie	d bending stres	s under very	short term lo	ads is within pe	rmissible lim			
Check compressive stress on s	tud								
Compression member factor		K12 = 0.57	K ₁₂ = 0.57						
Compression parallel to grain		σc = 6.800	N/mm ²						
Permissible compressive stress	$\sigma_{c_{adm}} = \sigma$	x K3 x K8 x H	K12 = 7.428 N/r	nm²					
Applied compressive stress		$\sigma_{c_{max}} = F$	$/(N_s \times b \times h)$	= 0.212 N/mm	2				
PASS -	Applied co	mpressive stres	s under very	short term lo	ads is within pe	rmissible lim			
Check compressive stress on ra	ail								
Bearing stress modification factor		K4 = 1.20							
Compression perpendicular to gra	in (no wane) σ _{cp1} = 2.20	00 N/mm ²						
Permissible compressive stress		σcp1_adm =	$\sigma_{cp1} \times K_3 \times K_4$	= 4.620 N/mm	n ²				
Applied compressive stress	σ _{cp1_max} =	F/(Ns×b×h	n) = 0.212 N/m	m²					
PASS -	Applied cor	npressive stres	s under very	short term lo	ads is within pe	rmissible lim			
Check combined axial compres	sion and be	ending							
Euler critical stress		$\sigma_{\rm e} = (\pi^2 \times$	$E_{min}) / \lambda^2 = 16$	5.506 N/mm ²					
Euler coefficient		K _{eu} = 1 – ($K_{eu} = 1 - (1.5 \times \sigma_{c_max} \times K_{12} / \sigma_{\theta}) = 0.989$						
Combined axial compression and	bending val	ue K=σ _{m_max}	$1 (\sigma_{m_{adm}} \times K)$	ou) + σc_max / σc	a_adm = 0.242 < 1				
PASS - Combined compres	sive and be	nding stresses	under very s	hort term loa	ds are within pe	rmissible lim			
Check stud deflection									
Euler critical stress		$\sigma_e = (\pi^2 \times$	$\sigma_{\theta} = (\pi^2 \times E_{min}) / \lambda^2 = 16.506 \text{ N/mm}^2$						
Maximum deflection		δ _{adm} = min	$\delta_{adm} = min(9.0 \text{ mm}, 0.003 \times (L - 2 \times b)) = 9.000 \text{ mm}$						
Bending deflection					l _x) = 3.094 mm				
		PASS - De	flection due	to wind loadin	ng is less than p	ermissible lin			
Consider axial compression wit	hout bendir	ng under mediu	m term loads	1					
Load duration factor	K ₃ = 1.25								
Vertical loading		F = (U _{r_d} +	Ur_i) × s = 1.	59 kN					
Check compressive stress on s	tud								
Compression member factor		K ₁₂ = 0.63							
Compression parallel to grain		σc = 6.800	N/mm ²			12.00			
Permissible compressive stress			x Kax Kex H	(12 = 5.929 N/n	nm ²				

Shire Consulting	Project	Job Ref. S-22-186/CA1				
	Section	Sheet no./rev	Sheet no./rev.			
Barnsley Hall Road Bromsgrove	Calc. by RYH	Date 12/04/22	Chk'd by	Date	App'd by	Date
Applied compressive stress	3	σc_max = F	/ (N _s × b × h)	= 0.212 N/mm	2	
	PASS - Applied	compressive str	ess under m	edium term lo	ads is within pe	rmissible lim
Check compressive stres	s on rail					
Bearing stress modification	factor	K4 = 1.20				

 $\sigma_{cp1} = 2.200 \text{ N/mm}^2$

Compression perpendicular to grain (no wane)

Permissible compressive stress

Applied compressive stress

 $\sigma_{\text{cp1_adm}} = \sigma_{\text{cp1}} \times K_3 \times K_4 = \textbf{3.300} \text{ N/mm}^2$

 $\sigma_{\text{cp1}_max} = F \text{ / } (N_s \times b \times h) = 0.212 \text{ N/mm}^2$

PASS - Applied compressive stress under medium term loads is within permissible limits

Shireconsulting	Project	Job Ref. S-22-186/CA1				
Shire Consulting	Section				Sheet no./rev.	
The Chapel	· .	Panel	Racking			23
Barnsley Hall Road	Calc. by	Date	Chk'd by	Date	App'd by	Date
Bromsgrove	RYH	12/04/22				
IBER FRAME RACK	RESISTANCE -				TEDDS calcu	ulation version 1.
Dwellings not exceeding s Perimeter wall	seven storeys					
Wall panel details						
Length of panel		L = 3.650	m			
Height of panel		L = 3.650 H _{wp} = 2.70				
Total area of wall panel			_{vp} = 9.855 m ²			
Aggregate area of framed p	anel openings	Aa = 0.000	· ·			
Timber members			2 mm or larg	jer		
Uniformly distributed load of	n timber frame wal					
For calculation equivalent u	niformly distributed	lload F = min(Fu	_{idl} , 10.5 kN/m)	= 0.810 kN/m		
Primary sheathing details						
Primary board type		OSB				
Standard board thickness		t _p = 9.00 m	nm			
Proposed board thickness		Tp = 9.00 r	nm			
Ratio of proposed to standa	rd board thickness	B _p = min(n	nax(Tp / tp, 0.7	75), 1.25) = 1.00		
Nail diameter		Dp = 3.00 i				
Standard perimeter nail spa		s _p = 150 m				
Proposed perimeter nail spa	acing	S _p = 150 n	nm			
From Table 2 – Basic rack	ing resistance fo	r a range of mat	erials and co	mbinations of	materials	
Basic racking resistance		R _{bp} = 1.68	0 kN/m			
Modification factors for va	ariation in fixing a	ind thickness of	primary she	athing		
Variation in nail diameter		$K_{101p} = D_p$	/ 3 mm = 1.00	10		
Variation in nail spacing		$K_{102p} = 1 /$	$(0.6 \times (S_p / s_p))$) + 0.4) = 1.000		
Variation in board thickness		K _{103p} = 2.8	\times B _p - B _p ² - 0	.8 = 1.000		
Material modification factors	•	Kmp = K101	$5 imes K_{102p} imes K_{10}$	_{3p} = 1.000		
Modification factors for wa	all height, length,	openings, verti	cal load and	interaction		
Height of wall panels		K ₁₀₄ = 2.4	m / H _{wp} = 0.88	39		
Length of walls		K105 = (L /	2.4 m) ^{0.4} = 1.1	183		
Fully framed openings in wa	ills	K ₁₀₅ = (1 -	$1.3 \times A_a / A_t)^2$	² = 1.000		
Vertical load on timber fram	e wall	K ₁₀₇ = 1 +	[(0.09× (F / 1	kN/m) - 0.0015×	: (F / 1 kN/m) ²)>	: (2.4 m / L) ^{0.4}
		K ₁₀₇ = 1.06	i1			
Interaction		K108 = 1.10				
Wall modification factors		Kw = K104 >	K105 × K106 ×	$K_{107} \times K_{108} = 1.$	227	
Racking resistance of wal	l panel					
Racking resistance of wall p	States and the second second	R _R = L × K	CONTRACTOR OF THE	Charles and a second second		