

STRUCTURAL CALCULATIONS

STRUCTURAL DESIGN OF NEW GABLE WALL

2023 MAY

<u>.</u>	Project					Job Ref.		
	,	2 Hafren Court - Bewdley				23001-HC		
	Section		, ,			Sheet no./rev.		
		Structural desig	n of gable end	wall		1	1	
CHARTERED CONSULTING ENGINEERS	Calc. by	Date	Chk'd by	Date		App'd by	Date	
STRUCTURAL CALCULATIONS	IM	04/05/2023						
	•	·				•		
1.0 LOADING								
1.1 ROOF LOADS								
Roof Dead Loads								
Roof tiles					=	0.60	kN/m²	
Timber batten and felt					=	0.05	kN/m²	
Timber rafter and insulation					=	0.20	kN/m²	
Ceiling and Services					=	0.25		
				Σ	=	1.10		
Roof ImposedLoads				-			·	
Snow Loads					=	0.75	kN/m²	
Snow loads (Dormer)					=	1.50	kN/m²	
1.2 FLOOR LOADS								
Floor Dead Loads								
T&G Chipboard					=	0.20	kN/m²	
Floor Joists					=	0.20	kN/m²	
Ceiling and Insulation					=	0.12	kN/m²	
Timber partition walls					=	1.00	,	
				Σ	=	1.52	kN/m²	
Floor Loading - Imposed Loads							1.01/ 2	
Domestic Imposed					=	1.50	kN/m²	
Balcony/Staircase/Landings					=	3.00	kN/m²	
1.3 EXISTING WALL LOADS								
The exact wall thicknesses are not co	onfirmed. For load	l calculation, the fo	llowing SOLID v	wall thicknesse	s are	considered		
<u>1st Floor Walls</u>								
	.75m				=	13.31	kN/m	
	.75m				=	13.31	kN/m	
<u>1st Floor Walls</u> 220mm thick brick wall with height 2 <u>Ground Floor Walls</u>	.75m				=	13.31	kN/m	

By inspection assumed that the gabel wall can resist shear forces resulting from the wind loads.

111	Project				Job Ref.	
		2 Hafren Court - Bewdley				01-HC
	Section				Sheet no./rev.	
CHARTERED CONSULTING ENGINEERS		Structural desig	5			
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
	IM	04/05/2023				
The velocity pressure for the	windward fac	e of the building	with a 0 de	gree wind is to be o	considered a	is 1 part as

the height h is less than b (cl.7.2.2)	
The velocity pressure for the windward face of	the building with a 90 degree wind is to be considered as 2 parts as
the height h is greater than b but less than 2b (cl.7.2.2)
Peak velocity pressure - windward wall - Wind	0 deg
Reference height (at which q is sought)	z = 8000 mm
Displacement height (sheltering effects excluded)	h _{dis} = 0 mm
Exposure factor (Figure NA.7)	c _e = 2.19
Exposure correction factor (Figure NA.8)	c _{e,T} = 0.89
Peak velocity pressure	$q_p = c_e \times c_{e,T} \times q_b = 0.71 \text{ kN/m}^2$
Structural factor	
Structural damping	$\delta_s = 0.100$
Height of element	h _{part} = 8000 mm
Size factor (Table NA.3)	c _s = 0.813
Dynamic factor (Figure NA.9)	c _d = 1.012
Structural factor	$c_{sCd} = c_s \times c_d = 0.823$
Peak velocity pressure - windward wall (lower	part) - Wind 90 deg
Reference height (at which q is sought)	z = 7000 mm
Displacement height (sheltering effects excluded)	h _{dis} = 0 mm
Exposure factor (Figure NA.7)	c _e = 2.11
Exposure correction factor (Figure NA.8)	c _{e,T} = 0.88
Peak velocity pressure	$q_p = c_e \times c_{e,T} \times q_b = 0.67 \text{ kN/m}^2$
Structural factor	
Structural damping	$\delta_s = 0.100$
Height of element	h _{part} = 7000 mm
Size factor (Table NA.3)	c _s = 0.870
Dynamic factor (Figure NA.9)	c _d = 1.044
Structural factor	$c_{sCd} = c_s \times c_d = 0.908$
Peak velocity pressure - windward wall (upper	part) - Wind 90 deg
Reference height (at which q is sought)	z = 8000 mm
Displacement height (sheltering effects excluded)	h _{dis} = 0 mm
Exposure factor (Figure NA.7)	c _e = 2.19
Exposure correction factor (Figure NA.8)	c _{e,T} = 0.89
Peak velocity pressure	$q_p = c_e \times c_{e,T} \times q_b = 0.71 \text{ kN/m}^2$
Structural factor	
Structural damping	$\delta_s = 0.100$
Height of element	h _{part} = 1000 mm
Size factor (Table NA.3)	c _s = 0.934
Dynamic factor (Figure NA.9)	c _d = 1.044
Structural factor	$c_{sCd} = c_s \times c_d = 0.975$
Structural factor	
Structural damping	$\delta_s = 0.100$
Height of element	h _{part} = 8000 mm
Size factor (Table NA.3)	c _s = 0.873
Dynamic factor (Figure NA.9)	c _d = 1.044
Structural factor	$c_{sCd} = c_s \times c_d = 0.911$

140.	Project				Job Ref.	
		2 Hafren Co	ourt - Bewdle	∋y	23	3001-HC
	Section				Sheet no./rev	'.
CHARTERED CONSULTING ENGINEERS	s	tructural desig	n of gable er	nd wall		6
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				
Peak velocity pressure - roof						
Reference height (at which q is	sought)	z = 12171 r	nm			
Displacement height (sheltering	effects excluded) h _{dis} = 0 mn	า			
Exposure factor (Figure NA.7)		c _e = 2.45				
Exposure correction factor (Figu	ire NA.8)	c _{e,T} = 0.94				
Peak velocity pressure		$q_p = c_e \times c_e$	_{e,T} × q _b = 0.8	4 kN/m ²		
Structural factor - roof 0 deg						
Structural damping		δ _s = 0.100				
Height of element		h _{part} = 121	71 mm			
Size factor (Table NA.3)		c _s = 0.824				
Dynamic factor (Figure NA.9)		c _d = 1.012				
Structural factor		c_{sCd} = $c_s \times$	c _d = 0.834			
Structural factor - roof 90 deg						
Structural damping		δ_s = 0.100				
Height of element		h _{part} = 121	71 mm			
Size factor (Table NA.3)		c _s = 0.876				
Dynamic factor (Figure NA.9)		c _d = 1.044				
Structural factor		c_{sCd} = $c_s \times$	c _d = 0.914			
Peak velocity pressure for inte	ernal pressure					
Peak velocity pressure – interna	ll (as roof press.)	q _{p,i} = 0.84	kN/m²			
Pressures and forces						
Net pressure		$p = c_{sCd} \times c$	$\mathbf{q}_{p} \times \mathbf{c}_{pe}$ - $\mathbf{q}_{p,i}$	imes C _{pi}		
Net force		$F_w = p_w \times A$	A _{ref}			

Roof load case 1 - Wind 0, c_{pi} 0.20, + c_{pe}

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m ²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (+ve)	0.80	0.84	0.39	36.87	14.43
G (+ve)	0.67	0.84	0.30	59.94	17.87
H (+ve)	0.73	0.84	0.34	36.59	12.61
l (+ve)	-0.63	0.84	-0.61	74.04	-45.16
J (+ve)	-0.67	0.84	-0.63	17.29	-10.95
K (+ve)	-0.37	0.84	-0.42	42.07	-17.82
L (+ve)	-0.40	0.84	-0.45	21.90	-9.79
M (+ve)	-0.23	0.84	-0.33	16.22	-5.36
Total vertical n	et force	F _{w,v}	= -28.40 kN	•	

Total horizontal net force

```
F<sub>w,v</sub> = -28.40 kN
F<sub>w,h</sub> = 91.04 kN
```

Walls load case 1 - Wind 0, $c_{\rm pi}$ 0.20, + $c_{\rm pe}$

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m ²)	Net pressure p (kN/m ²)	Area A _{ref} (m²)	Net force F _w (kN)
A	-1.20	0.71	-0.87	38.95	-33.74
В	-0.80	0.71	-0.63	17.05	-10.80
D	0.80	0.71	0.30	224.00	66.79

installa		Project	2 Hafren C	Court - Bewdley	,	2300)1-HC
	NP	Section				Sheet no./rev.	
IARTERED CONSUL	TING ENGINEERS			gn of gable end			7
RUCTURAL CA	ALCULATIONS	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date
E	-0.54	0.71		-0.48	224.00	-107.	56
Overall loadin	g						
Equiv leeward	net force for over	all section	$F_I = F_{w,wE}$	= -107.6 kN			
	orce for overall se			o = 66.8 kN			
	tion (cl.7.2.2(3) –	Note)		3 as h/W is 1.73			
-	overall section		$F_{w,D} = T_{corr}$	$f \times (F_w - F_l + F_w)$	_{,h}) = 232.9 KN		
Roof load cas	e 2 - Wind 90, c _p						
Zone	Ext pressure coefficient c _{pe}	Peak vel pressu q _p , (kN/	ure N	et pressure p (kN/m²)	Area A _{ref} (m²)	Net fo F _w (k	
F (+ve)	0.80	0.84		0.45	3.05	1.3	6
G (+ve)	0.67	0.84	+	0.34	3.81	1.3	1
H (+ve)	0.73	0.84		0.39	12.20	4.8	1
l (+ve)	-0.63	0.84	ł	-0.65	12.20	-7.9	6
J (+ve)	-0.67	0.84	+	-0.68	6.86	-4.6	5
L (+ve)	-0.40	0.84	ł	-0.47	7.62	-3.6	1
M (+ve)	-0.23	0.84		-0.35	12.20	-4.2	2
N (+ve)	-0.20	0.84		-0.32	246.99	-79.2	21
Total vertical n			F _{w,v} = -59 .				
Total horizonta			F _{w,h} = 15. 3	39 kN			
Walls load cas	se 2 - Wind 90, c				1	<u> </u>	
Zone	se 2 - Wind 90, c Ext pressure coefficient _{Cpe}		ire N	et pressure p (kN/m²)	Area A _{ref} (m²)	Net fo F _w (k	
_	Ext pressure coefficient	Peak vel	/m ²)				N)
Zone	Ext pressure coefficient c _{pe}	Peak vel pressu q _p , (kN/	/m ²)	p (kN/m²)	A _{ref} (m ²)	F _w (k	N) 54
Zone	Ext pressure coefficient c _{pe} -1.20	Peak vel pressu q _p , (kN/ 0.71	/m ²)	p (kN/m²) -0.94	A _{ref} (m ²) 11.20	F _w (k	N) 54 61
Zone A B	Ext pressure coefficient c _{pe} -1.20 -0.80	Peak vel pressu q _p , (kN/ 0.71	/m ²)	p (kN/m ²) -0.94 -0.68	A _{ref} (m ²) 11.20 44.80	F _w (k	N) 54 61 29
Zone A B C	Ext pressure coefficient c _{pe} -1.20 -0.80 -0.50	Peak vel pressu q _p , (kN/ 0.71 0.71	/m ²)	p (kN/m ²) -0.94 -0.68 -0.49	A _{ref} (m ²) 11.20 44.80 168.00	F _w (k	N) 54 61 29 66
Zone A B C D _b	Ext pressure coefficient c _{pe} -1.20 -0.80 -0.50 0.72	Peak vel pressu q _p , (kN/ 0.71 0.71 0.71 0.71	/m ²)	p (kN/m ²) -0.94 -0.68 -0.49 0.27	A _{ref} (m ²) 11.20 44.80 168.00 49.00	F _w (k	N) 54 51 29 66 3
Zone A B C D _b D _u	Ext pressure coefficient c _{pe} -1.20 -0.80 -0.50 0.72 0.72 -0.35	Peak vel pressu q _p , (kN/ 0.71 0.71 0.71 0.67 0.67	/m ²)	p (kN/m ²) -0.94 -0.68 -0.49 0.27 0.33	A _{ref} (m ²) 11.20 44.80 168.00 49.00 7.00	F _w (k -10.5 -30.6 -82.2 13.3 2.35	N) 54 51 29 66 3
Zone A B C D _b D _u E Overall loadin	Ext pressure coefficient c _{pe} -1.20 -0.80 -0.50 0.72 0.72 -0.35	Peak vel pressu q _p , (kN/ 0.71 0.71 0.71 0.67 0.71 0.71	ire in in in in iteration in it	p (kN/m ²) -0.94 -0.68 -0.49 0.27 0.33	A _{ref} (m ²) 11.20 44.80 168.00 49.00 7.00 56.00	F _w (k -10.5 -30.6 -82.2 13.3 2.35	N) 54 51 29 66 3
Zone A B C D _b D _u E Overall loadin Equiv leeward Net windward f	Ext pressure coefficient c _{pe} -1.20 -0.80 -0.50 0.72 0.72 0.72 -0.35 g net force for upper	Peak vel pressu q _p , (kN/ 0.71 0.71 0.71 0.67 0.71 0.71 0.71	$F_{I} = F_{w,wE}$ $F_{w} = F_{w,wU}$	p (kN/m ²) -0.94 -0.68 -0.49 0.27 0.33 -0.39 / A _{ref,wE} × A _{ref,wE}	A _{ref} (m ²) 11.20 44.80 168.00 49.00 7.00 56.00	F _w (k -10.5 -30.6 -82.2 13.3 2.35	N) 54 51 29 66 3
Zone A B C D _b D _u E Overall loadin Equiv leeward Net windward f Lack of correla	Ext pressure coefficient c _{pe} -1.20 -0.80 -0.50 0.72 0.72 -0.35 g net force for upper sorce for upper se tion (cl.7.2.2(3) –	Peak vel pressu q _p , (kN/ 0.71 0.71 0.71 0.67 0.71 0.71 0.71	F ₁ = F _{w,wE} F _w = F _{w,wE} F _w = F _{w,wu}	p (kN/m ²) -0.94 -0.68 -0.49 0.27 0.33 -0.39 / A _{ref,wE} × A _{ref,wE} - 2.3 kN 5 as h/L is 0.43	$A_{ref} (m^2)$ 11.20 44.80 168.00 49.00 7.00 56.00 $u_{\mu} = -2.7 \text{ kN}$ 5	F _w (k -10.5 -30.6 -82.2 13.3 2.35	N) 54 51 29 66 3
Zone A B C D _b D _u E Overall loadin Equiv leeward Net windward f Lack of correla Overall loading	Ext pressure coefficient c _{pe} -1.20 -0.80 -0.50 0.72 0.72 -0.35 g net force for upper sorce for upper se tion (cl.7.2.2(3) –	Peak vel pressu q _p , (kN/ 0.71 0.71 0.71 0.67 0.71 0.67 0.71 0.71 0.71	$F_{I} = F_{w,wE}$ $F_{w} = F_{w,wU}$ $f_{corr} = 0.85$ $F_{w,u} = f_{corr}$	p (kN/m ²) -0.94 -0.68 -0.49 0.27 0.33 -0.39 / A _{ref,wE} × A _{ref,wE}	A _{ref} (m ²) 11.20 44.80 168.00 49.00 7.00 56.00 u = -2.7 kN 5 h) = 17.4 kN	F _w (k -10.5 -30.6 -82.2 13.3 2.35	N) 54 51 29 66 3

Roof load case 3 - Wind 0, c_{pi} -0.30, + c_{pe}

Lack of correlation (cl.7.2.2(3) – Note)

Overall loading bottom section

$$\begin{split} F_{I} &= F_{w,wE} \ / \ A_{ref,wE} \times A_{ref,wb} = \textbf{-19.2} \\ F_{w} &= F_{w,wb} = \textbf{13.4 kN} \\ f_{corr} &= \textbf{0.85 as h/L is 0.435} \\ F_{w,b} &= f_{corr} \times (F_{w} - F_{I}) = \textbf{27.7 kN} \end{split}$$

Project						
2 Hafren Court - Bewdley					23001-HC	
Section				Sheet no./r	Sheet no./rev.	
5	Structural desigr	n of gable end	wall		8	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
IM	04/05/2023					

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m ²)	Net pressure p (kN/m ²)	Area A _{ref} (m²)	Net force F _w (kN)
F (+ve)	0.80	0.84	0.81	36.87	29.87
G (+ve)	0.67	0.84	0.72	59.94	42.98
H (+ve)	0.73	0.84	0.76	36.59	27.94
l (+ve)	-0.63	0.84	-0.19	74.04	-14.14
J (+ve)	-0.67	0.84	-0.21	17.29	-3.71
K (+ve)	-0.37	0.84	0.00	42.07	-0.20
L (+ve)	-0.40	0.84	-0.03	21.90	-0.61
M (+ve)	-0.23	0.84	0.09	16.22	1.43
Total vertical n	et force	F _{w,v}	= 53.71 kN	•	·

Total horizontal net force

F_{w,h} = **91.04** kN

Walls load case 3 - Wind 0, c_{pi} -0.30, + c_{pe}

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m ²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.71	-0.45	38.95	-17.42
В	-0.80	0.71	-0.21	17.05	-3.66
D	0.80	0.71	0.72	224.00	160.63
E	-0.54	0.71	-0.06	224.00	-13.72

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Lack of correlation (cl.7.2.2(3) – Note) Overall loading overall section

Roof load case 4 - Wind 90, c_{pi} -0.30, + c_{pe}

$$\begin{split} F_{I} &= F_{w,wE} = \textbf{-13.7 kN} \\ F_{w} &= F_{w,wD} = \textbf{160.6 kN} \\ f_{corr} &= \textbf{0.88} \text{ as h/W is 1.739} \\ F_{w,D} &= f_{corr} \times (F_{w} - F_{I} + F_{w,h}) = \textbf{232.9 kN} \end{split}$$

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m ²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (+ve)	0.80	0.84	0.86	3.05	2.63
G (+ve)	0.67	0.84	0.76	3.81	2.90
H (+ve)	0.73	0.84	0.81	12.20	9.91
l (+ve)	-0.63	0.84	-0.23	12.20	-2.85
J (+ve)	-0.67	0.84	-0.26	6.86	-1.78
L (+ve)	-0.40	0.84	-0.05	7.62	-0.42
M (+ve)	-0.23	0.84	0.07	12.20	0.89
N (+ve)	-0.20	0.84	0.10	246.99	24.25
Total vertical ne	et force	F _{w,v}	= 22.85 kN		

Total horizontal net force

F_{w,v} = 22.85 kN F_{w,h} = 15.37 kN

Walls load case 4 - Wind 90, c_{pi} -0.30, + c_{pe}

111	Project				Job Ref.	
	2 Hafren Court - Bewdley				23001-HC	
	Section S			Sheet no./rev.		
CHARTERED CONSULTING ENGINEERS	5	Structural desigr	n of gable end w	all		9
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m ²)	Net pressure p (kN/m ²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.71	-0.52	11.20	-5.85
В	-0.80	0.71	-0.26	44.80	-11.84
С	-0.50	0.71	-0.07	168.00	-11.91
Db	0.72	0.67	0.69	49.00	33.89
Du	0.72	0.71	0.75	7.00	5.26
E	-0.35	0.71	0.03	56.00	1.47

Overall loading

Equiv leeward net force for upper section Net windward force for upper section Lack of correlation (cl.7.2.2(3) – Note) Overall loading upper section Equiv leeward net force for bottom section Net windward force for bottom section Lack of correlation (cl.7.2.2(3) – Note) Overall loading bottom section

Roof load case 5 - Wind 0, cpi 0.20, - cpe

$$\begin{split} F_{I} &= F_{w,wE} \ / \ A_{ref,wE} \times A_{ref,wu} = \textbf{0.2 kN} \\ F_{w} &= F_{w,wu} = \textbf{5.3 kN} \\ f_{corr} &= \textbf{0.85 as h/L is 0.435} \\ F_{w,u} &= f_{corr} \times (F_{w} - F_{I} + F_{w,h}) = \textbf{17.4 kN} \\ F_{I} &= F_{w,wE} \ / \ A_{ref,wE} \times A_{ref,wb} = \textbf{1.3 kN} \\ F_{w} &= F_{w,wb} = \textbf{33.9 kN} \\ f_{corr} &= \textbf{0.85 as h/L is 0.435} \\ F_{w,b} &= f_{corr} \times (F_{w} - F_{I}) = \textbf{27.7 kN} \end{split}$$

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m ²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
F (-ve)	0.27	0.84	0.02	36.87	0.69
G (-ve)	0.27	0.84	0.02	59.94	1.12
H (-ve)	0.27	0.84	0.02	36.59	0.68
l (-ve)	-0.63	0.84	-0.61	74.04	-45.16
J (-ve)	-0.67	0.84	-0.63	17.29	-10.95
K (-ve)	-0.37	0.84	-0.42	42.07	-17.82
L (-ve)	-1.13	0.84	-0.96	21.90	-21.01
M (-ve)	-0.63	0.84	-0.61	16.22	-9.89

Total vertical net force

Total horizontal net force

```
F<sub>w,v</sub> = -65.78 kN
F<sub>w,h</sub> = 58.54 kN
```

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m ²)	Net pressure p (kN/m ²)	Area A _{ref} (m ²)	Net force F _w (kN)
А	-1.20	0.71	-0.87	38.95	-33.74
В	-0.80	0.71	-0.63	17.05	-10.80
D	0.80	0.71	0.30	224.00	66.79
E	-0.54	0.71	-0.48	224.00	-107.56

Overall loading

Equiv leeward net force for overall section Net windward force for overall section

 $F_{I} = F_{w,wE} = -107.6 \text{ kN}$ $F_{w} = F_{w,wD} = 66.8 \text{ kN}$

inter.		Project				Job Ref.	
			2 Hafren Co	ourt - Bewdley	,	23001-HC	
		Section				Sheet no./rev.	
TERED CONSUL	TING ENGINEERS	:	Structural desig	n of gable end	l wall		10
		Calc. by	Date	Chk'd by	Date	App'd by	Date
	LOULAHONO	IM	04/05/2023				
ack of correla	tion (cl.7.2.2(3) –	Note)	f _{corr} = 0.88	as h/W is 1.73	39		
	overall section	,		× (F _w - F _l + F _w			
· ·		0.00	• w,D •con	··· (i w i i i i w	,, _•		
loof load cas	e 6 - Wind 90, c _{pi}				1		
Zone	Ext pressure coefficient	Peak ve		et pressure	Area	Net f	orce
Zone	Coefficient C _{pe}	press q _p , (kN			A _{ref} (m ²)	F _w (kN)
F (-ve)	0.27	0.84	4	0.04	3.05	0.1	1
G (-ve)	0.27	0.84	4	0.04	3.81	0.1	4
H (-ve)	0.27	0.84	4	0.04	12.20	0.4	15
l (-ve)	-0.63	0.84	4	-0.65	12.20	-7.9	96
J (-ve)	-0.67	0.84	4	-0.68	6.86	-4.0	65
L (-ve)	-1.13	0.84	4	-1.04	7.62	-7.8	89
M (-ve)	-0.63	0.84	4	-0.65	12.20	-7.9	96
N (-ve)	-0.47	0.84	4	-0.52	246.99	-129	.65
otal vertical n	et force	· ·	F _{w,v} = -101	.18 kN		•	
otal horizonta	l net force		F _{w,h} = 10.2	0 kN			

Walls load case 6 - Wind 90, cpi 0.20, - cpe

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m ²)	Net pressure p (kN/m²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.71	-0.94	11.20	-10.54
В	-0.80	0.71	-0.68	44.80	-30.61
С	-0.50	0.71	-0.49	168.00	-82.29
Db	0.72	0.67	0.27	49.00	13.36
Du	0.72	0.71	0.33	7.00	2.33
E	-0.35	0.71	-0.39	56.00	-21.99

Overall loading

Equiv leeward net force for upper section Net windward force for upper section Lack of correlation (cl.7.2.2(3) – Note) Overall loading upper section Equiv leeward net force for bottom section Net windward force for bottom section Lack of correlation (cl.7.2.2(3) – Note) Overall loading bottom section

$F_{I} = F_{w,wE} / A_{ref,wE} \times A_{ref,wu} = -2.7 \text{ kN}$
F _w = F _{w,wu} = 2.3 kN
f _{corr} = 0.85 as h/L is 0.435
$F_{w,u} = f_{corr} \times (F_w - F_l + F_{w,h}) = \textbf{13.0 kN}$
$F_{I} = F_{w,wE} / A_{ref,wE} \times A_{ref,wb} = \textbf{-19.2 kN}$
F _w = F _{w,wb} = 13.4 kN
f _{corr} = 0.85 as h/L is 0.435
$F_{w,b} = f_{corr} \times (F_w - F_I) = 27.7 \text{ kN}$

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m ²)	Net pressure p (kN/m ²)	Area A _{ref} (m²)	Net force F _w (kN)
F (-ve)	0.27	0.84	0.44	36.87	16.14
G (-ve)	0.27	0.84	0.44	59.94	26.23
H (-ve)	0.27	0.84	0.44	36.59	16.01
I (-ve)	-0.63	0.84	-0.19	74.04	-14.14

Roof load case 7 - Wind 0, c_{pi} -0.30, - c_{pe}

111.		Project		Job Ref.			
		2 Hafren Court - Bewdley				230	01-HC
IIII	Section					Sheet no./rev.	
	ULTING ENGINEERS		Structural	design of gable end	l wall		11
		Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL	CALCULATIONS	IM	04/05/2	2023			
J (-ve)	-0.67		84	-0.21	17.29	-3.	71
K (-ve)	-0.37		84	0.00	42.07	-0.2	
L (-ve)	-1.13	0.8	84	-0.54	21.90	-11	83
M (-ve)	-0.63	0.	84	-0.19	16.22	-3.	10
Total vertica	net force		F _{w,v} =	= 16.33 kN			
Total horizor	ital net force		F _{w,h} =	= 58.55 kN			
Walls load o	ase 7 - Wind 0, c _{pi}	-0.30, - c _{pe}					
Zone	Ext pressure coefficient _{Cpe}		velocity sure N/m ²)	Net pressure p (kN/m²)	Area A _{ref} (m ²)	Net f F _w (
A	-1.20	0.	71	-0.45	38.95	-17	.42
В	-0.80	0.	71	-0.21	17.05	-3.0	66
D	0.80	0.	71	0.72	224.00	160	.63
E	-0.54	0.	71	-0.06	224.00	-13	.72

Overall loading

Equiv leeward net force for overall section Net windward force for overall section Lack of correlation (cl.7.2.2(3) – Note) Overall loading overall section
$$\begin{split} F_{I} &= F_{w,wE} = \textbf{-13.7 kN} \\ F_{w} &= F_{w,wD} = \textbf{160.6 kN} \\ f_{corr} &= \textbf{0.88 as h/W is 1.739} \\ F_{w,D} &= f_{corr} \times (F_{w} - F_{I} + F_{w,h}) = \textbf{204.4 kN} \end{split}$$

Roof load case 8 - Wind 90, c_{pi} -0.30, - c_{pe}

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p , (kN/m ²)	Net pressure p (kN/m ²)	Area A _{ref} (m²)	Net force F _w (kN)
F (-ve)	0.27	0.84	0.46	3.05	1.39
G (-ve)	0.27	0.84	0.46	3.81	1.74
H (-ve)	0.27	0.84	0.46	12.20	5.56
l (-ve)	-0.63	0.84	-0.23	12.20	-2.85
J (-ve)	-0.67	0.84	-0.26	6.86	-1.78
L (-ve)	-1.13	0.84	-0.62	7.62	-4.70
M (-ve)	-0.63	0.84	-0.23	12.20	-2.85
N (-ve)	-0.47	0.84	-0.11	246.99	-26.18
Total vertical ne	et force	F _{w,v}	= -19.07 kN	•	

Total horizontal net force

```
F_{w,h} = 10.20 \text{ kN}
```

Walls load case 8 - Wind 90, c_{pi} -0.30, - c_{pe}

Zone	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P , (kN/m ²)	Net pressure p (kN/m ²)	Area A _{ref} (m²)	Net force F _w (kN)
А	-1.20	0.71	-0.52	11.20	-5.85
В	-0.80	0.71	-0.26	44.80	-11.84
С	-0.50	0.71	-0.07	168.00	-11.91
D _b	0.72	0.67	0.69	49.00	33.89
Du	0.72	0.71	0.75	7.00	5.26

SUMMERY OF ALL LOADS CASES

Maximum wind pressure on gable end wall Maximum wind pressure on roof above gable wall = 0.95 kN/m² = 0.86 kN/m²

111	Project				Job Ref.	
		2 Hafren Co	ourt - Bewdley		23001-HC	
	Section				Sheet no./rev.	
CHARTERED CONSULTING ENGINEERS		Structural desig	n of gable end v	vall		14
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				

4.0 TIMBER BEAM

11.	Project				Job Ref.	
		2 Hafren Co	ourt - Bewdle	N.		001-HC
	Section	2 Hairon Ot	Sheet no./rev			
		Structural desig		15		
CHARTERED CONSULTING ENGINEERS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				
		01100/2020				
Overall breadth of member		$b_b = N \times b$	= 180 mm			
Timber strength class		C24				
Member details						
Service class of timber		1				
Load duration		Long term	ı			
Length of span		L _{s1} = 1235				
Length of bearing		L _b = 100 m	ım			
Section properties						
Cross sectional area of member	ar .	$\Lambda = N \times h$	× h = 32400 i	mm ²		
Section modulus	51		\times h ² / 6 = 97			
Section modulus			$(\times 11^{7})^{0} = 97$ $(\times b)^{2} / 6 = 9$			
Second moment of area		, ,		7480000 mm ⁴		
Second moment of area						
		, ,		8 7480000 mm ⁴		
Radius of gyration		,) = 52.0 mm			
		$i_y = \sqrt{(I_y / A)}$.) = 52.0 mm			
Modification factors						
Duration of loading - Table 17		K ₃ = 1.00				
Bearing stress - Table 18		K ₄ = 1.00	0.44			
Total depth of member - cl.2.10	0.6	· ·	mm / h) ^{0.11} =	1.06		
Load sharing - cl.2.9		K ₈ = 1.00				
Lateral support - cl.2.10.8						
Ends held in position and mem	bers held in lin	e, as by purlins o	r tie rods at c	entres not more	e than 30 times th	ne breadth of
the member						
Permissible depth-to-breadth ra	atio - Table 19	4.00				
Actual depth-to-breadth ratio		$h / (N \times b)$	= 1.00			
				PAS	S - Lateral supp	ort is adequate
Compression perpendicular	to grain					
Permissible bearing stress (no	wane)	$\sigma_{c_{adm}} = \sigma_{c}$	$_{\rm p1} imes {\rm K}_3 imes {\rm K}_4$:	× K ₈ = 2.400 N/r	nm ²	
Applied bearing stress		$\sigma_{c_a} = R_{A_n}$	_{nax} / (N \times b \times	L _b) = 0.168 N/m	1m ²	
		$\sigma_{c_a} / \sigma_{c_ad}$	m = 0.070			
PAS	S - Applied co	ompressive stres		an permissible	compressive st	ress at bearing
Bending parallel to grain						
Permissible bending stress		σ_{m} adm = σ_{m}	m × K3 × K7 ×	: K ₈ = 7.933 N/m	1m ²	
Applied bending stress			Z _x = 0.961 N			
		σ_{ma}/σ_{ma}				
				tress is less th	an permissible	bendina stress
Channy			- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			a shaniy on coo
Shear parallel to grain				10 NI/max=2		
Permissible shear stress			$K_3 \times K_8 = 0.7$			
Applied shear stress			$(2 \times A) = 0.7$	140 N/MM ⁻		
		$\tau_a / \tau_{adm} = 0$			4	1 h
		PASS - A	ppiled shea	r stress is less	than permissib	ne snear stress
Deflection			-			
Modulus of elasticity for deflect	ion		7200 N/mm ²			
Permissible deflection		$\delta_{adm} = min$	(0.118 in, 0.0	003 × L _{s1}) = 2.99	97 mm	
Bending deflection		δ _{b_s1} = 0.2	36 mm			

	Project	2 Hafren Co	ourt - Bewdle	ev	Job Ref.	001-HC
	Section	2 Hallon Oc	Juit Dowald	, y	Sheet no./rev	
CHARTERED CONSULTING ENGINEERS		Structural desig				16
TRUCTURAL CALCULATIONS	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date
Shear deflection		δ _{v_s1} = 0.07	7 mm			
Total deflection			δ _{v_s1} = 0.31	3 mm		
		$\delta_a / \delta_{adm} = 0$				
		P	ASS - Total	deflection is l	less than permis	sible deflecti

<u> </u>	Project				Job Ref.	
	,	2 Hafren Co	ourt - Bewdley			3001-HC
	Section				Sheet no./rev	
		Structural desig	n of gable end	wall		18
CHARTERED CONSULTING ENGINEERS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				
★						
Masonry details						
Masonry type		-	-	tion between	n 7% and 12% - 0	Group 1
Compressive strength of masor	nry	f _c = 7.3 N/r				
Height of unit		h _u = 215 m				
Width of unit		w _u = 100 n	nm			
Conditioning factor		k = 1.0	0			
 Conditioning to the air dry cor Shape factor - Table A.1 	Idition in accorda	ance with cl.7.3 d _{sf} = 1.38	.2			
Norm. mean compressive stren	ath of masonry		⊲ d _{sf} = 10.074	N/mm ²		
Density of masonry	g e	γ = 18 kN/i				
Mortar type		•	eral purpose r	nortar		
Compressive strength of masor	nrv mortar	f _m = 6 N/m		lioitai		
Compressive strength factor - T	-	K = 0.50				
Characteristic compressive stre		- eq 3.1				
		$f_k = K \times f_b^0$	$^{.7} \times f_{m}^{0.3} = 4.31$	1 2 N/mm ²		
Characteristic flexural strength	of masonry havir	ng a plane of fai f _{xk1} = 0.4 N		o the bed joint	s - Table NA.6	
Characteristic flexural strength	of masonry havir	ng a plane of fai f _{xk2} = 1.1 N		cular to the be	d joints - Table N	IA.6
Lateral loading details			2			
Characteristic wind load on pan	el	W _k = 1.000) kN/m²			
Vertical loading details						
Permanent load on top of wall		G _k = 2.09				
Variable load on top of wall		Q _k = 2.81	kN/m			
Partial factors for material str	ength					
Category of manufacturing cont	rol	Category	11			
Class of execution control		Class 2				
Partial factor for masonry in cor	-					
Partial factor for masonry in ten		γ _{Mt} = 2.70				
Partial factor for masonry in she	ear	γ _{Mv} = 2.50				
Slenderness ratio of masonry	walls - Section					
Allowable slenderness ratio		SR _{all} = 27				
Slenderness ratio		SR = h _{ef} / 1			- 1000 46	
Unroinforced mecony wells	subjected to me				s less than max	innum allowab
Unreinforced masonry walls	-	inny vertical lo	auing - Sectio	0.1		
Partial safety factors for design	-	4 6 -				
Partial safety factor for permane		γ _{fG} = 1.35				
Partial safety factor for variable	imposed load	γ _{fQ} = 1.5				

	Project				Job Ref.	
	Castian	2 Hafren Co	ourt - Bewdle	еу		3001-HC
	Section	Structural dooig	n of goblo o	ndwall	Sheet no./rev	^{/.} 19
HARTERED CONSULTING ENGINEERS	Calc. by	Structural desig	Chk'd by	Date	App'd by	Date
RUCTURAL CALCULATIONS	IM	04/05/2023	onice by	Duit	, the gray	Duit
Partial safety factor for variable v	vind load	γ _{fW} = 0.75				
Check vertical loads						
Reduction factor for slenderne	ess and eccent	tricity - Sectior	n 6.1.2.2			
Vertical load at top of wall		$N_{id} = \gamma_{fG} \times$	$G_k + \gamma_{fQ} \times Q_f$	_k = 7.037 kN/m		
Moment at top of wall due to ver	tical load	M_{id} = γ_{fG} ×	$G_k \times e_G + \gamma_{fG}$	$\mathbf{Q} \times \mathbf{Q}_{k} \times \mathbf{e}_{\mathbf{Q}} = 0$	kNm/m	
Initial eccentricity - cl.5.5.1.1		$e_{init} = h_{ef} / d_{ef}$	450 = 1.2 m	m		
Moment at top of wall due to hor		M _{Eid} = 0 kM	Nm/m			
Eccentricity at top of wall due to	horizontal load	e _h = 0 mm				
Eccentricity at top of wall - eq.6.8	5	e _i = max(N	1 _{id} / N _{id} + e _h	+ e _{init} , 0.05 × t) =	= 5 mm	
Reduction factor at top of wall - e	eq.6.4		$-2 \times e_i / t$, (
Vertical load at middle of wall		$N_{md} = \gamma_{fG} \times$	$(\mathbf{G}_{\mathbf{k}} + \gamma \times \mathbf{t})$	\times h / 2) + $\gamma_{fQ} \times G$	_k = 8.646 kN/m	
Moment at middle of wall due to	vertical load	$M_{md} = \gamma_{fG}$ >	$\langle \mathbf{G}_{\mathbf{k}} \times \mathbf{e}_{\mathbf{G}} + \gamma \rangle$	$f_{Q} \times Q_{k} \times e_{Q} = 0$	kNm/m	
Moment at middle of wall due to		M _{Emd} = 0.0	19 kNm/m			
Eccentricity at middle of wall due			J / N _{md} = 2.2			
Eccentricity at middle of wall due	-			e _{init} = 3.4 mm		
Eccentricity at middle of wall due	-	e _k = 0 mm				
Eccentricity at middle of wall - ec	1.6.6			5 × t) = 5 mm		
From eq.G.2			× e _{mk} / t = 0 .9	9		
Short term secant modulus of ela	asticity factor	K _E = 1000		0		
Modulus of elasticity - cl.3.7.2			= 4312 N/m			
Slenderness - eq.G.4		$\lambda = (h_{ef} / t_{e})$	$_{\rm f}) \times \sqrt{({\rm f}_{\rm k} / {\rm E})}$	= 0.167		
From eq.G.3		•	, ,	- 1.17 × e _{mk} / t) =	= 0.154	
Reduction factor at middle of wa	ll - eq.G.1	$\Phi_{\sf m}$ = max($A_1 \times e_e^{-(u \times u)}$	^{/2} , 0) = 0.889		
Reduction factor for slenderness	and eccentricit	ty $\Phi = \min(\Phi)$	i, Φ _m) = 0.88	9		
Verification of unreinforced ma	asonry walls s	-	-	-	tion 6.1.2	
Design value of the vertical load			$(N_{id}, N_{md}) = 8$			
Design compressive strength of	-	•	= 1.437 N/n			
Vertical resistance of wall - eq.6.			t × f _d = 127.8		eds applied desi	an vortical lo
Unreinforced masonry walls s		-			us applieu uesi	gii verticai io
Partial safety factors for desig	-					
Partial safety factor for permane		γ _{fG} = 1				
Partial safety factor for variable i		$\gamma_{fQ} = 0$				
Partial safety factor for variable v	-	γ _{fW} = 1.5				
Limiting height and length to t	hickness ratio	s for walls und	ler the serv	iceability limit	state - Annex F	
Length to thickness ratio		L / t = 10.5	4			
Limiting height to thickness ratio	- Figure F.1	80				
Height to thickness ratio		h / t = 13.2				
			PASS - Limi	iting height to	thickness ratio i	is not exceed
Design moments of resistance	in panels					
Self weight at middle of wall			$h \times t \times \gamma = 1$			
Design compressive strength of	-	-	= 1.437 N/n			2
Design vertical compressive stre	SS		$G_G \times (G_k + S_w)$	$_{t}$) / t, 0.15 × Φ ×	: f _d) = 0.033 N/mr	n [∠]
Design flexural strength of maso						

1111	Project				Job Ref.	
		2 Hafren Co	ourt - Bewdle	У	23	3001-HC
	Section				Sheet no./rev	·.
CHARTERED CONSULTING ENGINEERS		Structural desig	in of gable en	nd wall		20
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				
Apparent design flexural streng	th of maconn	parallal to bod ioi	nte			
	ui oi masoni y		_{d1} + σ _d = 0.18	1 N/mm^2		
Design flexural strength of mase	onny nernend			1 1 N /11111		
Design nexural strength of mast	oni y perpend	•	γ _{Mt} = 0.407 N	l/mm ²		
Flastic section modulus of wall			יזאני = 0.407 N ■ 1666667 mr			
				11 /111		
Moment of resistance parallel to	b bed joints -	•				
			_{,app} × Z = 0.3	02 kNm/m		
Moment of resistance perpendic	cular to bed jo	oints - eq.6.15				
		$M_{Rd2} = f_{xd2}$	× Z = 0.679	kNm/m		
Design moment in panels						
Orthogonal strength ratio		$\mu = f_{xd1,app}$	/ f _{xd2} = 0.44			
Using yield line analysis to ca	alculate bend	ling moment coe	fficient			
Bending moment coefficient		α = 0.068				
Design moment in wall		$M_{Ed} = \gamma_{fW}$	$\times \alpha \times W_k \times L^2$	= 0.114 kNm/m	า	
			PASS -	Resistance mo	oment exceeds	design mome

		2 Hafren C	ourt - Bewdle	әу		3001-HC
Sec	ction	<u>.</u>	ć		Sheet no./rev	
ARTERED CONSULTING ENGINEERS		Structural desig				21
RUCTURAL CALCULATIONS	lc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date
MASONRY WALL PANE	EL DES	IGN (EN199	<u>6)</u>			
MASONRY WALL PANEL DESIGN	N					
In accordance with EN1996-1-1:20 national annex	005 + A1:	2012 incorporat	ing Corrigen	nda February 20	006 and July 20	09 and the
Masonry panel details						
Wall between two doors - Unreinfor	ced maso	nry wall with ope	nings			
Panel length		L = 5685	mm			
Panel height		h = 2270	mm			
Panel support conditions		All edges	supported.	right and left o	ontinuous	
Effective height of masonry walls	s - Sectio			g aa ioit o		
Reduction factor		ρ ₂ = 1.000)			
		$\rho_4 = \rho_2 / (1)$	1 + [ρ ₂ × h / L	²) = 0.862		
Effective height of wall - eq 5.2			h = 1958 mm			
		568			N	
•					•	
2270					1650	
4 464 +4 -771-		3	479		-771 > 201	
₹ 404 ⊅₹		s	470	•	-771	
Panel opening details						
Spacing length		L ₁ = 464 r				
Opening width		w ₁ = 771				
Height to underside of lintel		h₁ = 1650				
Height of opening		o ₁ = 1650				
Spacing length		L ₂ = 3478				
Opening width		w ₂ = 771				
Height to underside of lintel		h ₂ = 1650				
Height of opening		o ₂ = 1650	mm			
Single-leaf wall construction deta	ails	t = 225 m	m			
Wall thickness						
Wall thickness Effective thickness of masonry w	alle - Soc	tion 5 5 1 3				

111	Project				Job Ref.	
		2 Hafren Co	ourt - Bewdley		2300	1-HC
	Section				Sheet no./rev.	
CHARTERED CONSULTING ENGINEERS	:	Structural desigi	n of gable end w	vall	:	22
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				

Partial factor for masonry in tensile flexure	γ _{Mt} = 2.70
Partial factor for masonry in shear	$\gamma_{Mv} = 2.50$
Slenderness ratio of masonry walls - Sectio	n 5.5.1.4
Allowable slenderness ratio	SR _{all} = 27
Slenderness ratio	SR = h _{ef} / t _{ef} = 8.7

	Project	2 Hafren Co	ourt - Bewdle	y	23	3001-HC
	Section			-	Sheet no./rev	·.
CHARTERED CONSULTING ENGINEERS		Structural desig	n of gable er	nd wall		23
TRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
	IM	04/05/2023				
		P	ASS - Slena	lerness ratio is	s less than maxi	imum allowa
Unreinforced masonry walls s	ubjected to la	teral loading - S	Section 6.3			
Partial safety factors for desig		Ū				
Partial safety factor for permane		γ _{fG} = 1				
Partial safety factor for variable		$\gamma_{fQ} = 0$				
Partial safety factor for variable	-	γ _{fw} = 1.5				
Limiting height and length to			ler the servi	ceability limit	state - Annex F	
Length to thickness ratio		L / t = 25.2				
Limiting height to thickness ratio	- Figure F.1	80				
Height to thickness ratio	5	h / t = 10.0	89			
-				ting height to a	thickness ratio i	s not excee
Design moments of resistanc	e in panels			-		
Self weight at top of wall	•	S _{wt} = 0 kN	/m			
Design compressive strength of	masonry		= 1.263 N/m	m ²		
Design vertical compressive stre	-	-) / t, 0.15 × f _d) =	= 0.033 N/mm ²	
Design flexural strength of mase				,,		
		-	γ _{Mt} = 0.148 Ν	l/mm ²		
Apparent design flexural strengt	h of masonry p					
		$f_{xd1,app} = f_{xd}$	_{I1} + σ _d = 0.18	1 N/mm ²		
Design flexural strength of mase	onry perpendicu	ular to bed joints				
			γ _{Mt} = 0.407 N			
Elastic section modulus of wall		$Z = t^2 / 6 =$	8437500 mr	m ³ /m		
Moment of resistance parallel to	bed joints - eq	.6.15				
			_{app} × Z = 1.5	31 kNm/m		
Moment of resistance perpendic	cular to bed join	-				
		$M_{Rd2} = f_{xd2}$	× Z = 3.438	kNm/m		
Design moment in panels						
Orthogonal strength ratio		$\mu = f_{xd1,app}$	/ f _{xd2} = 0.45			
Sub panel no. 1 - Top, bottom	and left supp	orted				
Ratio panel height to length		h _{s1A} / L _{s1A} :	= 4.89			
Perpendicular design moment c			38 kNm/m			

	Project	2 Hafren Co	urt - Roud	e)/	Job Ref.	001-HC
	Section	2 Hallen Co	Juit - Dewai	еу	Sheet no./rev.	
CHARTERED CONSULTING ENGINEERS	;	Structural desig	-	nd wall		24
STRUCTURAL CALCULATIONS	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date
Using elastic analysis to dete	rmine bending	moment coeff	cients for a	a horizontally s	panning sub par	nel
Bending moment coefficient	U		× (1 + 2 × β	-		
Design moment in sub-panel		$M_{Ed1A} = \gamma_{fM}$	$\times \alpha_{s1A} imes W$	$_{\rm k} \times {\rm L_{s1A}}^2 = 0.430$) kNm/m	
					oment exceeds a	-
WARNING! - The checking of check can be performed by cr and horizontal loading.	-		-		-	
Sub panel no. 2 - Right, left ar	nd top supporte	ed				
Ratio panel height to length		h _{s2A} / L _{s2A}	= 0.80			
Perpendicular design moment o	of resistance	M _{Rd2} = 3.4	38 kNm/m			
Using yield line analysis to ca	Iculate bending	g moment coe	ficient			
Bending moment coefficient		α _{s2A} = 0.21				
Design moment in sub-panel		$M_{Ed2A} = \gamma_{fM}$	$\times \alpha_{s2A} \times W$	$_{\rm k} \times {\rm L_{s2A}}^2 = 0.190$) kNm/m	
			PASS -	Resistance m	oment exceeds a	lesign mome
WARNING! - The checking of check can be performed by cr and horizontal loading.	-		-		-	
Sub panel no. 3 - Top and bot	tom supported					
Ratio panel height to length		h _{s3A} / L _{s3A}	= 0.65			
Parallel design moment of resis	tance	M _{Rd1} = 1.5	31 kNm/m			
Using elastic analysis to dete	rmine bending	moment coeff	cients for a	a vertically spa	nning sub panel	
		$\alpha_{22} = 0.12$	25 × (1 + 2 ×	α β _{s3A}) = 0.180		
Bending moment coefficient		0.534 0.12				
Bending moment coefficient Design moment in sub-panel			$\times \alpha_{s3A} \times W$	_k × h _{s3A} ² = 1.395 • Resistance m	5 kNm/m oment exceeds a	lesign mome
-	•	M _{Ed3A} = γ _{fM} vertical loadin	× α _{s3A} × W PASS - g is curren	Resistance m tly beyond the	oment exceeds o scope of the cal	culation. This
Design moment in sub-panel WARNING! - The checking of check can be performed by cr	reating a new c	M _{Ed3A} = γ _M vertical loadin alculation for t	× α _{s3A} × W PASS - g is curren	Resistance m tly beyond the	oment exceeds o scope of the cal	culation. This
Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading.	reating a new c	M _{Ed3A} = γ _M vertical loadin alculation for t	× α _{s3A} × W PASS - g is curren his sub-pa	Resistance m tly beyond the	oment exceeds o scope of the cal	culation. This
Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading. Sub panel no. 4 - Right, left ar	reating a new c nd top supporte	M _{Ed3A} = γ _M vertical loadin alculation for t ed	× α _{s3A} × W PASS - g is curren his sub-pa	Resistance m tly beyond the	oment exceeds o scope of the cal	culation. This
Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading. Sub panel no. 4 - Right, left an Ratio panel height to length	reating a new c nd top supporte	$M_{Ed3A} = \gamma_{M}$ vertical loadin alculation for the set of the	× α _{s3A} × W PASS - g is curren his sub-pa = 0.80 38 kNm/m	Resistance m tly beyond the	oment exceeds o scope of the cal	culation. This
Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading. Sub panel no. 4 - Right, left an Ratio panel height to length Perpendicular design moment of	reating a new c nd top supporte	$M_{Ed3A} = \gamma_{M}$ vertical loadin alculation for the set of the	× α _{s3A} × W PASS - g is curren his sub-pa = 0.80 38 kNm/m ficient	Resistance m tly beyond the	oment exceeds o scope of the cal	culation. This
Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading. Sub panel no. 4 - Right, left ar Ratio panel height to length Perpendicular design moment of Using yield line analysis to ca	reating a new c nd top supporte	$M_{Ed3A} = \gamma_{fM}$ vertical loadin alculation for the set of the	× α _{s3A} × W PASS - g is curren his sub-pa = 0.80 38 kNm/m ficient 3 × α _{s4A} × W	Resistance m tly beyond the nel, modelled w $_{\rm k} \times {\rm L_{s4A}}^2 = 0.190$	oment exceeds o scope of the calo with the appropria	culation. This
Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading. Sub panel no. 4 - Right, left an Ratio panel height to length Perpendicular design moment of Using yield line analysis to can Bending moment coefficient	reating a new c nd top supporte of resistance alculate bending sub-panels for	$M_{Ed3A} = \gamma_{fM}$ vertical loadin alculation for the set of the	$x \propto \alpha_{s3A} \times W$ PASS - g is current his sub-pant = 0.80 38 kNm/m ficient 3 $x \propto \alpha_{s4A} \times W$ PASS - g is current	Resistance m tly beyond the nel, modelled w k × L _{s4A²} = 0.190 Resistance m tly beyond the	oment exceeds o scope of the cal with the appropri with the appropri with the appropri with the appropri with the appropri with the appropriate scope of the cal	culation. This ate vertical lesign mome culation. This
Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading. Sub panel no. 4 - Right, left ar Ratio panel height to length Perpendicular design moment of Using yield line analysis to ca Bending moment coefficient Design moment in sub-panel WARNING! - The checking of check can be performed by cr	reating a new c nd top supporte of resistance alculate bending sub-panels for reating a new c	$M_{Ed3A} = \gamma_{M}$ vertical loadin alculation for a backstart backstart ba	$x \propto \alpha_{s3A} \times W$ PASS - g is current his sub-pant = 0.80 38 kNm/m ficient 3 $x \propto \alpha_{s4A} \times W$ PASS - g is current	Resistance m tly beyond the nel, modelled w k × L _{s4A²} = 0.190 Resistance m tly beyond the	oment exceeds o scope of the cal with the appropri with the appropri with the appropri with the appropri with the appropri with the appropriate scope of the cal	culation. This ate vertical lesign mome culation. This
 Design moment in sub-panel WARNING! - The checking of check can be performed by crand horizontal loading. Sub panel no. 4 - Right, left and Ratio panel height to length Perpendicular design moment of Using yield line analysis to cat Bending moment coefficient Design moment in sub-panel WARNING! - The checking of check can be performed by crand horizontal loading. Sub panel no. 5 - Top, bottom Ratio panel height to length 	reating a new c nd top supporte of resistance alculate bending sub-panels for reating a new c	$M_{Ed3A} = \gamma_{M}$ vertical loadin alculation for a h _{s4A} / L _{s4A} M _{Rd2} = 3.4 g moment coer $\alpha_{s4A} = 0.2^{4}$ M _{Ed4A} = γ_{M} vertical loadin alculation for a h _{s5A} / L _{s5A}	× α _{s3A} × W PASS - g is curren his sub-pa = 0.80 38 kNm/m ficient 3 × α _{s4A} × W PASS - g is curren his sub-pa = 11.29	Resistance m tly beyond the nel, modelled w k × L _{s4A²} = 0.190 Resistance m tly beyond the	oment exceeds o scope of the cal with the appropri with the appropri with the appropri with the appropri with the appropri with the appropriate scope of the cal	culation. This ate vertical lesign mome culation. This
 Design moment in sub-panel WARNING! - The checking of check can be performed by crand horizontal loading. Sub panel no. 4 - Right, left and Ratio panel height to length Perpendicular design moment of Using yield line analysis to cat Bending moment coefficient Design moment in sub-panel WARNING! - The checking of check can be performed by crand horizontal loading. Sub panel no. 5 - Top, bottom 	reating a new c nd top supported of resistance alculate bending sub-panels for reating a new c and right supp of resistance	$M_{Ed3A} = \gamma_{fM}$ vertical loadin alculation for the set of the	$x \alpha_{s3A} \times W$ PASS - $g is current his sub-pactors = 0.80 38 kNm/m ficient 3 x \alpha_{s4A} \times WPASS -g is current his sub-pactors= 11.2938 kNm/m$	Resistance m tly beyond the nel, modelled v Resistance m tly beyond the nel, modelled v	oment exceeds o scope of the cal with the appropri oment exceeds o scope of the cal with the appropri	culation. This ate vertical lesign mome culation. This ate vertical
Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading. Sub panel no. 4 - Right, left an Ratio panel height to length Perpendicular design moment of Using yield line analysis to can Bending moment coefficient Design moment in sub-panel WARNING! - The checking of check can be performed by cr and horizontal loading. Sub panel no. 5 - Top, bottom Ratio panel height to length Perpendicular design moment of	reating a new c nd top supported of resistance alculate bending sub-panels for reating a new c and right supp of resistance	$M_{Ed3A} = \gamma_{M}$ vertical loadin alculation for a bad h_{s4A} / L_{s4A} $M_{Rd2} = 3.4$ g moment coef $\alpha_{s4A} = 0.2^{4}$ $M_{Ed4A} = \gamma_{M}$ vertical loadin alculation for a borted h_{s5A} / L_{s5A} $M_{Rd2} = 3.4$ moment coeff	× α _{s3A} × W PASS - g is curren his sub-pa = 0.80 38 kNm/m ficient 3 × α _{s4A} × W PASS - g is curren his sub-pa = 11.29 38 kNm/m cients for a	Resistance m tly beyond the nel, modelled v Resistance m tly beyond the nel, modelled v	oment exceeds o scope of the cal with the appropri oment exceeds o scope of the cal with the appropri	culation. This ate vertical lesign mome culation. This ate vertical

ille.	Project				Job Ref.	
		2 Hafren Co	ourt - Bewdley		2300	1-HC
	Section				Sheet no./rev.	
CHARTERED CONSULTING ENGINEERS	:	Structural desigi	n of gable end v	vall		25
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				

7.0 LOADS ON SINGLE SKIN WALL EXAMPLE

MASONRY BEARING DESIGN

In accordance with EN1996-1-1:2005 + A1:2012, incorporating Corrigenda February 2006 and July 2009 and the UK National Annex.

Masonry panel details	
Panel length	L = 3480 mm
Panel height	h = 2270 mm
Thickness of load bearing leaf	t = 225 mm
Effective height	h _{ef} = 2270 mm
Effective thickness	t _{ef} = 225 mm
Masonry material details	
Unit type	Clay - Group 2
Compressive strength of masonry unit	f _c = 7.3 N/mm ²
Height of unit	h _u = 215 mm
Width of unit	w _u = 215 mm
Conditioning factor	k = 1.0
- Conditioning to the air dry condition in accordan	ce with cl.7.3.2
Shape factor - Table A.1	d _{sf} = 1.16
Mean compressive strength of masonry unit	$f_b = f_c \times k \times d_{sf} = 8.47 \text{ N/mm}^2$
Specific weight of units	γ = 18 kN/m ³
Mortar type	M4 - General Purpose
Compressive strength of mortar	f _m = 4.0 N/mm ²
Compressive strength factor - Tbl. NA 4	K = 0.40
Characteristic compressive strength of the mason	ry - eq. 3.1
	$f_{k} = K \times f_{b}^{0.7} \times f_{m}^{0.3} = 2.71 \text{ N/mm}^{2}$
Short term secant modulus of elasticity factor	K _E = 1000
Modulus of elasticity - cl.3.7.2	$E_{w} = K_{E} \times f_{k} = 2706 \text{ N/mm}^{2}$
Design compressive strength of masonry	
Category of manufacturing control	Category II
Class of execution control	Class 2
Partial factor for material strength in direct or flexu	ral compression
	$\gamma_{M} = 3.00$
Cross-sectional area of wall	A = L × t = 0.78 m ²
Design compressive strength of masonry	$f_{d} = f_{k} / \gamma_{M} = 0.90 \text{ N/mm}^{2}$
Partial safety factors for design loads	
Partial safety factor for permanent load	γ _{fG} = 1.35
Partial safety factor for variable load	γ _{fQ} = 1.50
Superimposed vertical loading details	
Permanent UDL at top of wall	g _k = 0.00 kN/m
Variable UDL at top of wall	q _k = 0.00 kN/m
Eccentricity of permanent UDL load	$e_{gu} = 0 \text{ mm}$
Eccentricity of variable UDL load	$e_{qu} = 0 \text{ mm}$
,	7

	Project	2 Hafren Co	ourt - Bewdle	y	Job Ref.	8001-HC
	Section				Sheet no./rev	
HARTERED CONSULTING ENGINEERS		Structural desig	n of gable en	nd wall		26
IRUCTURAL CALCULATIONS	Calc. by	Date 04/05/2023	Chk'd by	Date	App'd by	Date
	IM	04/05/2023				
Slenderness ratio of masonry	wall - Section					
Slenderness ratio limit		λ _{lim} = 27				
Slenderness ratio		$\lambda = h_{ef} / t_{ef}$		enderness ratio i	e loss than cl	ondornoss I
Concentrated Load 1 details -	Timber main	supporting bea			5 1655 (11011 516	enuerness i
		oupporting bou		5.40 kN		
				∢ 750▶		
					—	
Î			/		Ī	
			/`	Ì,		
			į	Í.	1135	
			/ 29	0.95 kN/m		
			Í	↓ N		
- 2270				-1491	<u> </u>	
				- 1491		
<u>↓</u>		3480-				
Permanent concentrated load		3480– G _{kc1} = 14. (
 •						
Permanent concentrated load		G _{kc1} = 14.0	00 kN	>		
◄ Permanent concentrated load Variable concentrated load		G _{kc1} = 14.0 Q _{kc1} = 11.0	00 kN m	>		
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load		$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$	00 kN m mm mm	Ì		
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load		$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10$ m $L_{c1} = 180$ m $w_{c1} = 180$ $h_{c1} = 2270$	D0 kN m mm mm	>		
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical	edge	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$	D0 kN m mm mm mm			
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest vertical	edge cal edge	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$	D0 kN m mm mm mm			
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest verti Walls subjected to concentrate	edge cal edge	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$ ction 6.1.3	DO kN m mm mm mm nm	>		
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest vertical	edge cal edge	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$	DO kN m mm mm mm nm	PASS - Eccer	ntricity of load	' is less than
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest verti Walls subjected to concentrate	edge cal edge	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$ $ction 6.1.3$ $e_{c1} <= t / 4$	DO kN m mm mm mm nm		ntricity of load	' is less than
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest verti Walls subjected to concentrate Eccentricity check	edge cal edge ed loads - Se	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$ $ction 6.1.3$ $e_{c1} <= t / 4$ $A_{b1} = L_{c1} \times 10^{-1}$	00 kN m mm mm mm mm wc1 = 32400		ntricity of load	' is less than
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest verti Walls subjected to concentrate Eccentricity check	edge cal edge ed loads - Se	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$ $ction 6.1.3$ $e_{c1} <= t / 4$ $A_{b1} = L_{c1} \times I_{cfm1} = L_{c1} + 1$	00 kN m mm mm mm mm wc1 = 32400	mm ²)) = 1491 mm	ntricity of load	is less than
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest vertic Walls subjected to concentrate Eccentricity check Area of bearing Effective length of bearing at mid Effective bearing area Bearing area ratio check	edge cal edge ed Ioads - Se d-height	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$ $ction 6.1.3$ $e_{c1} <= t / 4$ $A_{b1} = L_{c1} \times$ $l_{efm1} = L_{c1} + 4$	20 kN m mm mm mm mm w _{c1} = 32400 + h _{c1} × tan(30	mm ²)) = 1491 mm . 65 mm ²	ntricity of load	' is less than
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest verti Walls subjected to concentrate Eccentricity check Area of bearing Effective length of bearing at min Effective bearing area	edge cal edge ed Ioads - Se d-height	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$ $ction 6.1.3$ $e_{c1} <= t / 4$ $A_{b1} = L_{c1} \times$ $l_{efm1} = L_{c1} + 4$	00 kN m mm mm mm mm w _{c1} = 32400 + h _{c1} × tan(30 × t = 335381	mm ²)) = 1491 mm . 65 mm ²	ntricity of load	' is less than
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest vertic Walls subjected to concentrate Eccentricity check Area of bearing Effective length of bearing at mid Effective bearing area Bearing area ratio check	edge cal edge r ed Ioads - Se d-height	$G_{kc1} = 14.0$ $Q_{kc1} = 11.0$ $e_{c1} = 10 \text{ m}$ $L_{c1} = 180 \text{ m}$ $w_{c1} = 180$ $h_{c1} = 2270$ $r_{11} = 660 \text{ m}$ $a_{11} = 660 \text{ m}$ $ction 6.1.3$ $e_{c1} <= t / 4$ $A_{b1} = L_{c1} \times$ $l_{efm1} = L_{c1} -$ $A_{ef1} = l_{efm1}$ $A_{ratio1} = Mi$ $\beta_{1} = 1.00$	00 kN m mm mm nm mm w _{c1} = 32400 + h _{c1} × tan(30 × t = 335381 n(A _{b1} / A _{ef1} , 0	mm ²)) = 1491 mm . 65 mm ²	ntricity of load	' is less than
Permanent concentrated load Variable concentrated load Eccentricity of concentrated load Length of concentrated load Width of concentrated load Height of concentrated load Distance of load to right vertical Distance of load to nearest verti Walls subjected to concentrate Eccentricity check Area of bearing Effective length of bearing at mid Effective bearing area Bearing area ratio check Enhancement factor - cl.6.1.3(3)	edge cal edge ed loads - Se d-height) d load	$\begin{array}{l} G_{kc1} = 14.0 \\ Q_{kc1} = 11.0 \\ e_{c1} = 10 \ m \\ L_{c1} = 180 \ m \\ w_{c1} = 180 \\ h_{c1} = 2270 \\ r_{11} = 660 \ m \\ a_{11} = 660 \ m \\ ction \ 6.1.3 \\ e_{c1} <= t / 4 \\ A_{b1} = L_{c1} \times \\ l_{efm1} = L_{c1} \times \\ l_{efm1} = l_{efm1} \\ A_{ratio1} = Mi \\ \beta_1 = 1.00 \\ N_{Edc1} = G_{k0} \end{array}$	00 kN m mm mm nm mm w _{c1} = 32400 + h _{c1} × tan(30 × t = 335381 n(A _{b1} / A _{ef1} , 0	mm ² 0) = 1491 mm .65 mm ² 0.45) = 0.10 0 × γ _{fQ} = 35.40 kN	ntricity of load	' is less than

	Project	2 Hafren Co	Job Ref. 23001-HC			
	Section			,	Sheet no./rev	
CHARTERED CONSULTING ENGINEERS		Structural desig	27			
STRUCTURAL CALCULATIONS	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date
Design of spreader beam		01/00/2020				
Design of spreader beam		25 40 KN				
		35.40 kN				
			ZZA			
			-215-			
		↓	±			
		May atreas 0.00	N1/mage2			
		Max. stress, 0.66	o in/mm∸			
		0.53 kNn	1			
		Bending Mor	nent			
		7.08 kN				
		Shear For	-7.08 kN			
Type of spreader		Concrete	nadstone			
Type of bearing onto spreader			distributed			
Point load as a UDL		-	_{c1} / L _{c1} = 196 .	.67 kN/m		
Start of load from RHS of sprea	ıder	P _{start1} = 24	0.00 mm			
End of load from RHS of spread	der	P _{end1} = 60 .				
Length of spreader		L _{sp1} = 300 .				
Height of spreader		h _{sp1} = 215				
Width of spreader Eccentricity of load on spreader	r	w _{sp1} = 225 e _{sp1} = 10 n				
Modulus of elasticity		E _{sp1} = 10 E _{sp1} = 314				
Second moment of area		•		³ = 186344531	mm ⁴	
Modulus of the wall			= 1.19 N/mm	-		
Winkler's constant			w _{sp1} = 268.17			
Characteristic of the system			•	(₀₁)) ^{1/4} = 0.0018	4 mm⁻¹	
Classification of spreader			L _{sp1} = 0.55 N			
Krilov's functions for the spread	ler length	$B_{\alpha l1} = 1/2$	\times (cosh(α L ₁) >		$_1$ / π) + sinh(α L ₁)	$\times \cos(180 \times \alpha)$
· · · · · · · · · · · · · · · · · · ·		/ π)) = 0.5 ξ)			
		0 4/0	in a label ()	ain/100 !		
				$sin(180 \times \alpha L_1)$	/ π) = 0.15 ₁ / π) - sinh(αL ₁) >	

111.	Project				Job Ref.	
		2 Hafren Co	ourt - Bewdley	23	8001-HC	
	Section				Sheet no./rev	
CHARTERED CONSULTING ENGINEERS		Structural desig	n of gable en		28	
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
	IM	04/05/2023				
Krilov's functions at the start of	the load	$B_{\alpha Pstart1} = 1$	$/2 \times (\cosh(\alpha_1))$	× P _{start1}) × sil	$n(180 \times \alpha_1 \times P_{start1})$	(π) + sinh(α_1 ×
			$\alpha = 180 \times \alpha_1 \times $,		
			•		$(180 \times \alpha_1 \times P_{start1})$	<i>π</i>) = 0.10
Krilov's functions at the end of t	he load			,	$(180 \times \alpha_1 \times P_{end1})$	
			$s(180 \times \alpha_1 \times I)$, ,
		$C_{\alpha Pend1} = 1$	$/2 \times sinh(\alpha_1 \times$	(P _{end1}) × sin($180 imes lpha_1 imes P_{end1} / \tau$	τ) = 0.01
Using method of initial conditior	IS					
Initial moment of LH edge		M ₀₁ = 0 kN	m			
Initial shear of LH edge		V ₀₁ = 0 kN				
Which gives		$(4 \times \alpha_1^2 \times 0)$	$C_{\alpha l1} \times \delta_{01} + 4$	$\times \alpha_1 \times D_{\alpha l1} \times Q_{\alpha l1}$	Φ_{01}) × E_{sp1} × I_{sp1} - I	$N_{udl1} / {\alpha_1}^2 \times$
		• •	$C_{\alpha Pend1}$) = 0.0			
and		$(4 \times \alpha_1^3 \times E)$	$B_{\alpha 1} \times \delta_{01} + 4$	$\times \alpha_1^2 \times C_{\alpha l 1} \times$	Φ_{01}) × E _{sp1} × I _{sp1} -	N_{udl1} / $lpha_1$ $ imes$
		(B _{αPstart1} - Ε	$B_{\alpha Pend1}) = 0.00$	0 kN		
Therefore,						
Initial deflection of LH edge		δ ₀₁ = 0.439				
Initial rotationof LH edge		$\Phi_{01} = 0.00$	0007			
Location of maximum deflection	1	x _{def1} = 150	mm			
Krilov's functions at the spreade		$A_{\alpha x def1} = cc$	$\cosh(\alpha_1 \times \mathbf{x}_{def1})$	× cos(180 ×	$\alpha_1 \times \mathbf{x}_{def1} / \pi$) = 1.0	0
	-				$180 \times \alpha_1 \times \mathbf{x}_{def1} / \pi$	
			$(180 \times \alpha_1 \times \mathbf{x})$, ,		
Distance from start load right of	location	p _{startdef1} = 9	0 mm			
Krilov's functions at the spreade	er length	A _{αpstartdef1} =	$= \cosh(\alpha_1 \times p_s)$	$tartdef1) \times cos($	$180 imes \alpha_1 imes p_{\text{startdef1}}$	/ π) = 1.00
Distance from end load right of	location	$p_{enddef1} = 0$	mm			
Krilov's functions at the spreade	er length	$A_{\alpha penddef1} =$	$\text{cosh}(\alpha_1 \times p_e$	$_{nddef1}) imes cos(1)$	$80 imes \alpha_1 imes p_{enddef1}$ /	π) = 1.00
Particular integral due to load		δ' ₁ = (-N _{udl1}	$/(4 \times \alpha_1^4) \times$	(A _{αpstartdef1} - A	$\alpha_{apenddef1})) / (I_{sp1} \times E$	E _{sp1}) = 0.00009
mm Maximum deflection		δ= Δ		$\mu \chi = \frac{1}{2} \frac{1}{2$	α ₁ + δ' ₁ = 0.44030	mm
		$\sigma_{max1} = r_{\alpha x}$		αxderi ^ Ψ017 (aq • 0 q = 0.44000	
Location of maximum moment		x _{M1} = 150 i				
Krilov's functions at the spreade	er length				$0 \times \alpha_1 \times \mathbf{x}_{M1} / \pi) = 0$	
					$80 \times \alpha_1 \times \mathbf{x}_{M1} / \pi$) -	$\sinh(\alpha_1 \times x_{M1}) \times$
			$\alpha_1 \times \mathbf{x}_{M1} / \pi))$	= 0.00		
Distance from start load right of		p _{startM1} = 9				
Krilov's functions at the spreade	-			$\times p_{startM1}) \times s$	in(180 × α_1 × p_{startl}	_{M1} / π) = 0.01
Distance from end load right of		p _{endM1} = 0			(100	
Krilov's functions at the spreade	eriength				$n(180 \times \alpha_1 \times p_{endM})$	1 / π) = 0.00
Particular integral due to load					1) = -0.80 kNm	
Maximum moment		Mi _{Edsp1} = (4 M' ₁ = 0.53		1 × 0 ₀₁ + 4 × 0	$a_1 \times D_{\alpha x M 1} \times \Phi_{01}$) ×	(I _{sp1} × ⊏ _{sp1}) +
Location of maximum shear		x _{v1} = 60 m	m			
Krilov's functions at the spreade	er length			x_{V1} × sin(18	$0 \times \alpha_1 \times \mathbf{x}_{V1} / \pi$) + s	$\sinh(\alpha_1 \times \mathbf{x}_{V1}) \times$
	Ŭ		$\alpha_1 \times \mathbf{X}_{V1} / \pi)$,	· · · · · · · · · · · · · · · · · · ·
					$\times \alpha_1 \times \mathbf{x}_{V1} / \pi$) = 0.	.01
Distance from start load right of	location	p _{startV1} = 0		•		

	oject		unt Daniella		Job Ref.			
	ection	2 Hatren Co	ourt - Bewdle	ey (Sheet no./re	23001-HC		
		Structural desig	ad well	29				
CHARTERED CONSULTING ENGINEERS	alc. by	Date	App'd by	App'd by Date				
TRUCTURAL CALCULATIONS	IM	04/05/2023	Chk'd by	Date	http://www.	Dute		
Krilov's functions at the spreader le	ength	B _{αpstartV1} =	1/2 × (cosh(α ₁ × p _{startV1}) × sir	$n(180 \times \alpha_1 \times p_{st})$	_{artV1} / π) + sinh		
		$\times p_{startV1}) \times$	$\cos(180 \times \alpha)$	₁ × p _{startV1} / π)) =	= 0.00			
Distance from end load right of loca	ation	p _{endV1} = 0 r	nm					
Krilov's functions at the spreader le	ength	$B_{\alpha pendV1} = -$	1/2 × (cosh(c	$\alpha_1 \times p_{endV1}) \times sin$	$(180 \times \alpha_1 \times p_{end})$	_{dv1} / π) + sinh (
		$\times p_{endV1}) \times$	$\cos(180 \times \alpha)$	$_1 \times p_{endV1} / \pi)) =$	0.00			
Particular integral due to load		$V'_1 = -N_{udl1}$	/ $\alpha_1 \times (B_{\alpha psta})$	$artV1 - B_{\alpha pendV1}) =$	0.00 kN			
Maximum shear		V _{Edsp1} = (4 V' ₁ = 7.08		$\gamma_1 \times \delta_{01} + 4 \times {\alpha_1}^2$	$^{2} \times C_{\alpha xV1} \times \Phi_{01}$)	$\times (I_{sp1} \times E_{sp1})$		
				2				
Maximum allowable stress under s		× f _d = 0.90 N						
Maximum reaction		•	$N_{Edsp1} = K_{c1} \times \delta_{max1} = $ 118.08 kN/m					
Design stress			$\sigma_{Edsp1} = N_{Edsp1} / w_{sp1} \times (1 + 6 \times e_{sp1} / w_{sp1}) = \textbf{0.66} \text{ N/mm}^2$					
	PASS -	Design stress	under sprea	ader is less tha	in the allowabl	le bearing str		
Walls subjected to mainly vertica			under sprea	ader is less tha	in the allowabl	le bearing str		
Walls subjected to mainly verticated to mainly verticated to mainly verticated to mainly verticated by the second	al loading - S	Section6.1.2		ader is less tha	n the allowabl	le bearing str		
Eccentricity of permanent UDL at n	al loading - S nid-height be	Section6.1.2 low concentrate e _{gmu1} = e _{gu}	d load × h _{c1} / (2 × ł		in the allowabl	le bearing str		
	al loading - S nid-height be	Section6.1.2 low concentrate e _{gmu1} = e _{gu}	d load × h _{c1} / (2 × ł		in the allowabi	e bearing str		
Eccentricity of permanent UDL at n	al loading - S nid-height be I-height below	Section6.1.2 low concentrate $e_{gmu1} = e_{gu}$ concentrated lo $e_{qmu1} = e_{qu}$	td load × h_{c1} / (2 × h oad × h_{c1} / (2 × h	n) = 0.0 mm n) = 0.0 mm	in the allowabi	le bearing str		
Eccentricity of permanent UDL at m Eccentricity of variable UDL at mid Eccentricity of concentrated load a	al loading - S nid-height be I-height below	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ concentrated lo $e_{qmu1} = e_{qu}$ $e_{mc1} = e_{c1}$	d load $\times h_{c1} / (2 \times h_{c2})$ oad $\times h_{c1} / (2 \times h_{c2})$ 2 = 5.0 mm	n) = 0.0 mm n) = 0.0 mm	in the allowabi	e bearing str		
Eccentricity of permanent UDL at m Eccentricity of variable UDL at mid Eccentricity of concentrated load a Initial eccentricity - cl.5.5.1.1(4)	al loading - S nid-height be l-height below t mid-height	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated le}$ $e_{qmu1} = e_{qu}$ $e_{mc1} = e_{c1}$ $e_{init} = h / 48$	d load × $h_{c1} / (2 \times h_{c2})$ oad × $h_{c1} / (2 \times h_{c2})$ 2 = 5.0 mm 50 = 5.0 mm	n) = 0.0 mm n) = 0.0 mm	in the allowabi	e bearing str		
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as	al loading - S nid-height be l-height below t mid-height	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated low e_{qmu1} = e_{qu}e_{mc1} = e_{c1} / e_{init} = h / 4\xiN_{mc1} = N_{Ed}$	$\frac{1}{2} = \frac{1}{2} + \frac{1}$	n) = 0.0 mm n) = 0.0 mm . 75 kN/m				
Eccentricity of permanent UDL at m Eccentricity of variable UDL at mid Eccentricity of concentrated load a Initial eccentricity - cl.5.5.1.1(4)	al loading - S nid-height be l-height below t mid-height	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated low e_{qmu1} = e_{qu}e_{mc1} = e_{c1} / e_{init} = h / 4\xiN_{mc1} = N_{Ed}$	$\frac{1}{2} = \frac{1}{2} + \frac{1}$	n) = 0.0 mm n) = 0.0 mm				
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height Design moment at mid-height	al loading - S nid-height be -height below t mid-height s UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated low e_{qmu1} = e_{qu}e_{mc1} = e_{c1} / e_{init} = h / 4\xiN_{mc1} = N_{Ed}N_{Ed1} = (g_k)$	$\begin{array}{l} \text{d load} \\ \times \ h_{c1} \ / \ (2 \times h_{c2}) \\ \text{oad} \\ \times \ h_{c1} \ / \ (2 \times h_{c2}) \\ \text{d load} \\ \text{d load} \\ \times \ h_{c1} \ / \ (2 \times h_{c2}) \\ \text{d load} \\ $	n) = 0.0 mm n) = 0.0 mm . 75 kN/m	q _k × γ _{fQ} + N _{mc1} =	29.95 kN/m		
Eccentricity of permanent UDL at mid- Eccentricity of variable UDL at mid- Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height	al loading - S nid-height be -height below t mid-height s UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated low e_{qmu1} = e_{qu}e_{mc1} = e_{c1} / e_{init} = h / 4\xiN_{mc1} = N_{Ed}N_{Ed1} = (g_k + M_{Ed1} = g_k)$	d load $\times h_{c1} / (2 \times h_{c2})$ $\to h_{c1} / (2 \times h_{c1})$ Z = 5.0 mm Z = 5.0 mm Z = 5.0 mm Z = 5.0 mm Z = 7.0 mm Z	n) = 0.0 mm n) = 0.0 mm . 75 kN/m h _{c1} / 2)) × γ _{fG} + c	q _k × γ _{fQ} + N _{mc1} =	29.95 kN/m		
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height Design moment at mid-height	al loading - S mid-height be l-height below t mid-height s UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated low e_{qmu1} = e_{qu}e_{mc1} = e_{c1} / e_{init} = h / 4\xiN_{mc1} = N_{Ed}N_{Ed1} = (g_k + M_{Ed1} = g_k)$	d load $\times h_{c1} / (2 \times h_{c2})$ $\to h_{c1} / (2 \times h_{c1})$ Z = 5.0 mm Z = 5.0 mm Z = 5.0 mm Z = 5.0 mm Z = 7.0 mm Z	n) = 0.0 mm n) = 0.0 mm .75 kN/m h _{c1} / 2)) × γ _{fG} + c + q _k × γ _{fQ} × e _{qmu1}	q _k × γ _{fQ} + N _{mc1} =	29.95 kN/m		
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. 6.7	al loading - S mid-height be l-height below t mid-height s UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated low e_{qmu1} = e_{qu}e_{mc1} = e_{c1} / e_{init} = h / 4!N_{mc1} = N_{Ed}N_{Ed1} = (g_k \times e_{m1} = Abs(k))$	ad load $\times h_{c1} / (2 \times h_{c2})$ $add + b_{c2} = 5.0 \text{ mm}$ 50 = 5.0 mm $c_1 / l_{efm1} = 23$ $+ \gamma \times t \times (h - 23)$ $\propto \gamma_{FG} \times e_{gmu1} + M_{Ed1}$	n) = 0.0 mm n) = 0.0 mm .75 kN/m h _{c1} / 2)) × γ _{fG} + c + q _k × γ _{fQ} × e _{qmu1}	q _k × γ _{fQ} + N _{mc1} =	29.95 kN/m		
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. 6.7 Slenderness ratio limit for creep ec	al loading - S mid-height be l-height below t mid-height s UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated low e_{qmu1} = e_{qu}e_{mc1} = e_{c1}e_{init} = h / 4\xiN_{mc1} = N_{Ed}N_{Ed1} = (g_k > e_{m1} = Abs(\lambda_c = 27e_{k1} = 0.0 m$	ad load $\times h_{c1} / (2 \times h_{c2})$ $\to h_{c1} / (2 \times h_{c2})$ Z = 5.0 mm S = 5.0 mm C = 5.0 mm C = 7 mm $+ \gamma \times t \times (h - 1)^{-1} + \gamma \text{ mm}$	n) = 0.0 mm n) = 0.0 mm .75 kN/m h _{c1} / 2)) × γ _{fG} + c + q _k × γ _{fQ} × e _{qmu1}	q _k × γ _{fQ} + N _{mc1} = + N _{mc1} × e _{mc1} =	29.95 kN/m		
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. 6.7 Slenderness ratio limit for creep ecc Eccentricity due to creep	al loading - S mid-height be l-height below t mid-height s UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{qmu1} = e_{qu}$ $e_{mc1} = e_{c1} /$ $e_{init} = h / 4\xi$ $N_{mc1} = N_{Ed}$ $N_{Ed1} = (g_k +$ $M_{Ed1} = g_k \times$ $e_{m1} = Abs($ $\lambda_c = 27$ $e_{k1} = 0.0 \text{ m}$ $e_{mk1} = Max$ $A_{11} = 1 - 2$	$\begin{array}{l} \text{d load} \\ \times h_{c1} / (2 \times h_{c2}) \\ \text{oad} \\ \times h_{c1} / (2 \times h_{c2}) \\ 2 = 5.0 \text{ mm} \\ 50 = 5.0 \text{ mm} \\ 50 = 5.0 \text{ mm} \\ c_1 / l_{efm1} = 23 \\ + \gamma \times t \times (h_{-1} + 2) \\ \times \gamma_{FG} \times e_{gmu} + 4 \\ M_{Ed1} / N_{Ed1} \\ + M_{Ed1} / N_{Ed1} \\ + M_{Ed1} + e_{k1}, 0 \\ \times e_{mk1} / t = 0 \end{array}$	h) = 0.0 mm h) = 0.0 mm .75 kN/m $h_{c1} / 2)) \times \gamma_{fG} + c$ $+ q_k \times \gamma_{fQ} \times e_{qmu1}$ $+ e_{init} = 9.0 \text{ mm}$ $.05 \times t) = 11.3 \text{ m}$ 0.990	q _k × γ _{fQ} + N _{mc1} = + N _{mc1} × e _{mc1} = nm	• 29.95 kN/m = 0.12 kNm/m		
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. 6.7 Slenderness ratio limit for creep ec Eccentricity due to creep Eccentricity at mid-height - eq. 6.6	al loading - S mid-height be l-height below t mid-height s UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{qmu1} = e_{qu}$ $e_{mc1} = e_{c1} /$ $e_{init} = h / 4\xi$ $N_{mc1} = N_{Ed}$ $N_{Ed1} = (g_k +$ $M_{Ed1} = g_k \times$ $e_{m1} = Abs($ $\lambda_c = 27$ $e_{k1} = 0.0 \text{ m}$ $e_{mk1} = Max$ $A_{11} = 1 - 2$	$\begin{array}{l} \text{d load} \\ \times h_{c1} / (2 \times h_{c2}) \\ \text{oad} \\ \times h_{c1} / (2 \times h_{c2}) \\ 2 = 5.0 \text{ mm} \\ 50 = 5.0 \text{ mm} \\ 50 = 5.0 \text{ mm} \\ c_1 / l_{efm1} = 23 \\ + \gamma \times t \times (h_{-1} + 2) \\ \times \gamma_{FG} \times e_{gmu} + 4 \\ M_{Ed1} / N_{Ed1} \\ + M_{Ed1} / N_{Ed1} \\ + M_{Ed1} + e_{k1}, 0 \\ \times e_{mk1} / t = 0 \end{array}$	h) = 0.0 mm h) = 0.0 mm .75 kN/m h _{c1} / 2)) $\times \gamma_{fG}$ + c + q _k $\times \gamma_{fQ} \times e_{qmu1}$ + e _{init} = 9.0 mm .05 \times t) = 11.3 n	q _k × γ _{fQ} + N _{mc1} = + N _{mc1} × e _{mc1} = nm	• 29.95 kN/m = 0.12 kNm/m		
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. 6.7 Slenderness ratio limit for creep ec Eccentricity due to creep Eccentricity at mid-height - eq. 6.6 From eq. G2	al loading - S mid-height be l-height below t mid-height s UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{concentrated le} e_{qmu1} = e_{qu}e_{mc1} = e_{c1}e_{init} = h / 48N_{mc1} = N_{Ed}N_{Ed1} = (g_k \times M_{Ed1} = g_k \times e_{m1} = Abs(\lambda_c = 27e_{k1} = 0.0 \text{ m}e_{mk1} = MaxA_{11} = 1 - 2u_1 = (h_{ef} / t)$	$\begin{array}{l} \text{d load} \\ \times h_{c1} / (2 \times h_{c2}) \\ \text{oad} \\ \times h_{c1} / (2 \times h_{c2}) \\ 2 = 5.0 \text{ mm} \\ 50 = 5.0 \text{ mm} \\ 50 = 5.0 \text{ mm} \\ c_1 / l_{efm1} = 23 \\ + \gamma \times t \times (h_{-1} + 2) \\ \times \gamma_{FG} \times e_{gmu} + 4 \\ M_{Ed1} / N_{Ed1} \\ + M_{Ed1} / N_{Ed1} \\ + M_{Ed1} + e_{k1}, 0 \\ \times e_{mk1} / t = 0 \end{array}$	h) = 0.0 mm h) = 0.0 mm .75 kN/m h _{c1} / 2)) × γ_{fG} + c + q _k × γ_{fQ} × e _{qmu1} + e _{init} = 9.0 mm .05 × t) = 11.3 m 0.90 ² - 0.063) / (0.73)	q _k × γ _{fQ} + N _{mc1} = + N _{mc1} × e _{mc1} = nm	• 29.95 kN/m = 0.12 kNm/m		
Eccentricity of permanent UDL at mid Eccentricity of variable UDL at mid Eccentricity of concentrated load at Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height as Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. 6.7 Slenderness ratio limit for creep ec Eccentricity due to creep Eccentricity at mid-height - eq. 6.6 From eq. G2 From eq. G3	al loading - S mid-height below I-height below It mid-height IS UDL	Section 6.1.2 low concentrate $e_{gmu1} = e_{gu}$ $e_{qmu1} = e_{qu}$ $e_{qmu1} = e_{qu}$ $e_{mc1} = e_{c1} /$ $e_{init} = h / 4\xi$ $N_{mc1} = N_{Ed}$ $N_{Ed1} = (g_k +$ $M_{Ed1} = g_k \times$ $e_{m1} = Abs($ $\lambda_c = 27$ $e_{k1} = 0.0 \text{ m}$ $e_{mk1} = Max$ $A_{11} = 1 - 2$ $u_1 = (h_{ef} / t)$ $\Phi_{m1} = A_{11} + 2$	$\begin{array}{l} \text{d load} \\ \times h_{c1} / (2 \times h_{c2}) \\ \text{oad} \\ \times h_{c1} / (2 \times h_{c2}) \\ 2 = 5.0 \text{ mm} \\ 50 = 5.0 \text{ mm} \\ 50 = 5.0 \text{ mm} \\ 1 / l_{efm1} = 23 \\ + \gamma \times t \times (h - k_{c2}) \\ \gamma_{fG} \times e_{gmu1} + k_{c2} \\ \gamma_{fG} \times e_{mk1} / t = 0 \\ \epsilon_{ef} \times (1 / K_{E})^{1/2} \end{array}$	h) = 0.0 mm h) = 0.0 mm (.75 kN/m) $h_{c1} / 2) \times \gamma_{fG} + c$ $h_{qk} \times \gamma_{fQ} \times e_{qmu1}$ $h_{einit} = 9.0 \text{ mm}$ $(.05 \times t) = 11.3 \text{ m}$ $(.05 \times t) = 11.3 \text{ m}$ $(.05 \times t) = 0.063) / (0.73)$ $(0.73 \times 10^{-1}) = 0.84$	q _k × γ _{fQ} + N _{mc1} = + N _{mc1} × e _{mc1} = nm	• 29.95 kN/m = 0.12 kNm/m		

111	Project				Job Ref.	
	2 Hafren Court - Bewdley				23001-HC	
	Section				Sheet no./rev.	
CHARTERED CONSULTING ENGINEERS	:	Structural desigr	n of gable end w	all	:	30
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				

h_{sp2} = 215.00 mm

w_{sp2} = 225.00 mm

Height of spreader

Width of spreader

	Project				Job Ref.	
		2 Hafren Co	23001-HC			
	Section				Sheet no./rev.	
CHARTERED CONSULTING ENGINEERS		Structural desig	-	wall		31
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
	IM	04/05/2023				
Eccentricity of load on spreader		e _{sp2} = 15 m	าm			
Modulus of elasticity		E _{sp2} = 299	62 N/mm ²			
Second moment of area		$I_{sp2} = 1/12$	$\times w_{sp2} \times h_{sp2}^{3} =$	186344531 mm ⁴		
Modulus of the wall		$k_0 = E_w / h$	= 1.19 N/mm ² /	mm		
Winkler's constant		$K_{c2} = k_0 \times N_{c2}$	w _{sp2} = 268.17 N	/mm/mm		
Characteristic of the system		$\alpha_2 = (K_{c2} /$	$(4 \times E_{sp2} \times I_{sp2})$	0 ^{1/4} = 0.00186 mm	-1 I	
Classification of spreader		$\alpha L_2 = \alpha_2 \times$	L _{sp2} = 0.56 Me	dium		
Krilov's functions for the spread	er length	B _{αl2} = 1/2 >	$<$ (cosh(α L ₂) \times s	in(180 × α L ₂ / π) ·	+ sinh(α L ₂) × c	$\cos(180 \times \alpha L_2)$
		/ π)) = 0.56	5			
		$C_{\alpha l2} = 1/2$	× sinh($lpha L_2$) × sii	$n(180 \times \alpha L_2 / \pi) =$	0.16	
				$\sin(180 \times \alpha L_2 / \pi)$	- sinh(αL_2) × c	os(180 × αL_2
		/ π)) = 0.03				
Krilov's functions at the start of t	the load			$P_{start2}) \times sin(180$	$\times \alpha_2 \times P_{\text{start2}} / \alpha_2$	τ) + sinh($\alpha_2 \times$
			•	$(120, \pi) = 0.49$	- ()	
				P _{start2}) × sin(180 ×		
Krilov's functions at the end of the	he load			P_{end2} × sin(180 ×	$(\alpha_2 \times P_{end2} / \pi)$) + sinh($\alpha_2 \times$
			$s(180 \times \alpha_2 \times P_e)$			
Line method of initial condition		$C_{\alpha \text{Pend2}} = 1$	$/2 \times \text{sinn}(\alpha_2 \times \text{F})$	$P_{end2}) \times sin(180 \times 0)$	$\alpha_2 \times \mathbf{P}_{end2} / \pi)$	= 0.00
Using method of initial condition Initial moment of LH edge	S	M ₀₂ = 0 kN	m			
Initial shear of LH edge		$V_{02} = 0 \text{ kN}$				
Which gives		· · · · · · · · · · · · · · · · · · ·	$\frac{1}{2}$ in $\times \delta_{00} + 4 \times 10^{-10}$	$\alpha_2 \times D_{\alpha l 2} \times \Phi_{02}) \times$		$u_0 / \alpha_0^2 \times$
			$C_{\alpha Pend2} = 0.00$		-spz / ispz i iu	
and		(,	$\alpha_2^2 \times C_{\alpha l 2} \times \Phi_{02}) \times$	Fan2 × Jan2 - N	un / an X
			$B_{\alpha Pend2}$ = 0.00		opz opz (
Therefore,		(u: _ /			
Initial deflection of LH edge		δ ₀₂ = 0.439)69 mm			
Initial rotationof LH edge		Φ ₀₂ = 0.00	0005			
Location of maximum deflection		~ - 460				
Krilov's functions at the spreade		x _{def2} = 150		coc(180 x at x x		
Knov's functions at the spreade	a lengui			$\cos(180 imes lpha_2 imes x_{c}$ $\kappa_{def2}) imes \sin(180 imes a)$		ainh(as y
			$z \times (\cos(\alpha_2 \times x_{det}))$		$\lambda_2 \times \Lambda_{det2} / \pi $	Sirin(02 ×
Distance from start load right of	location	$p_{\text{startdef2}} = 1$		27 (1)) = 0.20		
Krilov's functions at the spreade		-		$_{\rm tdef2}) \times \cos(180 \times 6)$	$\alpha_2 \times \mathbf{p}_{\text{startdef}} / \tau$	τ) = 1.00
Distance from end load right of	-	$p_{enddef2} = 0$,
Krilov's functions at the spreade		-		_{def2}) × cos(180 × α	$u_2 \times p_{enddef2} / \pi$)	= 1.00
Particular integral due to load	-			 αpstartdef2 - Α _{αpendde}		
mm						
Maximum deflection		$\delta_{max2} = A_{\alpha x}$	$def2 \times \delta_{02} + B_{\alpha x \alpha}$	$_{lef2} \times \Phi_{02} / \alpha_2 + \delta'_2$	₂ = 0.44021 m	m
Location of maximum moment		x _{M2} = 150 i	mm			
Krilov's functions at the spreade	r lenath			₂) × sin(180 × α_2 >	$(X_{M2} / \pi) = 0.0$	4
				$_{M2}$) × sin(100 × α_2 / $_{M2}$) × sin(180 × α_2		
			$\alpha_2 \times \mathbf{x}_{M2} / \pi) =$		Siviz , wy on	
Distance from start load right of	location	$p_{\text{startM2}} = 1^{\circ}$				
		,				

	Project	2 Hafren Co	ourt - Bewdley		Job Ref.	001-HC	
	Section	2 Hallell Co	buit - Bewaley		Sheet no./rev.	501-110	
		Structural desig	n of gable end v	vall	Sheet no./rev.	32	
HARTERED CONSULTING ENGINEERS	Calc. by	Date	Chk'd by	Date	App'd by	Date	
IRUCTURAL CALCULATIONS	IM	04/05/2023					
Krilov's functions at the spreade	-	•		p _{startM2}) × sin(180	$0 \times \alpha_2 \times p_{startM}$	₁₂ / π) = 0.02	
Distance from end load right of I	ocation	p _{endM2} = 0	mm				
Krilov's functions at the spreade	r length	$C_{\alpha pendM2} =$	$1/2 \times sinh(\alpha_2 \times $	p _{endM2}) × sin(180	$\times \alpha_2 \times p_{\text{endM2}}$	/ π) = 0.00	
Particular integral due to load		$M'_2 = -N_{udl2}$	$_2$ / α_2^2 × (C _{apstarth}	$M_2 - C_{\alpha \text{pendM2}}) = -1$	1.00 kNm		
Maximum moment		M _{Edsp2} = (4 M' ₂ = 0.33		$\delta_{02} + 4 \times \alpha_2 \times D$	$_{lpha imes M2} imes \Phi_{02}) imes ($	$(I_{sp2} \times E_{sp2}) +$	
Location of maximum shear		x _{V2} = 37.5					
Krilov's functions at the spreade		$\mathbf{x} \times (\cosh(\alpha_2 \times \mathbf{x}_V))$ $(\alpha_2 \times \mathbf{x}_{V2} / \pi)) = 0$	₂ 2) × sin(180 × α ₂).07	$_{2} \times \mathbf{x}_{V2} / \pi$) + s	$inh(\alpha_2 \times \mathbf{x}_{\vee 2}) \times$		
		$C_{\alpha xV2} = 1/2$	$2 \times \sinh(\alpha_2 \times \mathbf{x}_{V2})$) × sin(180 × α_2 :	$\times x_{V2} / \pi) = 0.0$	00	
Distance from start load right of		p _{startV2} = 0					
Krilov's functions at the spreade			< p _{startV2}) × sin(18 p _{startV2} / π)) = 0.0		v2 / π) + sinh(a		
Distance from end load right of I		p _{endV2} = 0 i					
Krilov's functions at the spreade	$\begin{split} & B_{\alpha pendV2} = 1/2 \times (\cosh(\alpha_2 \times p_{endV2}) \times \sin(180 \times \alpha_2 \times p_{endV2} / \pi) + \sinh(\alpha_2 \times p_{endV2}) \times \cos(180 \times \alpha_2 \times p_{endV2} / \pi)) = 0.00 \end{split}$						
Particular integral due to load		$V'_2 = -N_{udl2}$	/ $\alpha_2 \times (B_{\alpha p start V2})$	- B _{αpendV2}) = 0.0	0 kN		
Maximum shear		$ \begin{array}{l} V_{Edsp2} \ = (4 \times {\alpha_2}^3 \times B_{\alpha x V2} \times {\delta_{02}} + 4 \times {\alpha_2}^2 \times C_{\alpha x V2} \times \Phi_{02}) \times (I_{sp2} \times E_{sp2}) + \\ V'_2 = \textbf{4.42} \ kN \end{array} $					
Maximum allowable stress unde	r spreader	$\sigma_{\text{Rdsp2}} = \beta_2$	× f _d = 0.90 N/m	m ²			
Maximum reaction		$N_{Edsp2} = K_{c}$	$_{2} \times \delta_{max2}$ = 118.	05 kN/m			
Design stress	5400			• 6 × e _{sp2} / w _{sp2}) = er is less than tl			
Design stress	PASS -	, Desian stress				searing on ee	
-		•					
Walls subjected to mainly ver	tical loading -	Section6.1.2	·				
-	tical loading -	Section6.1.2	·	0.0 mm			
Walls subjected to mainly ver	tical loading - at mid-height be	Section6.1.2 elow concentrate e _{gmu2} = e _{gu}	ed load × h _{c2} / (2 × h) =	0.0 mm			
Walls subjected to mainly ver Eccentricity of permanent UDL a	tical loading - at mid-height be	Section6.1.2 elow concentrate e _{gmu2} = e _{gu} v concentrated I	ed load × h _{c2} / (2 × h) =				
Walls subjected to mainly ver Eccentricity of permanent UDL a	tical loading - at mid-height be nid-height belov	Section6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$	∙ d load × h _{c2} / (2 × h) = oad				
Walls subjected to mainly ver Eccentricity of permanent UDL a Eccentricity of variable UDL at n	tical loading - at mid-height be nid-height belov	Section6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ v concentrated l $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$	ed load × h _{c2} / (2 × h) = oad × h _{c2} / (2 × h) =				
Walls subjected to mainly ver Eccentricity of permanent UDL a Eccentricity of variable UDL at n Eccentricity of concentrated load	tical loading - at mid-height be nid-height belov d at mid-height	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 43$	ed load $\times h_{c2} / (2 \times h) =$ oad $\times h_{c2} / (2 \times h) =$ 2 = 7.5 mm	0.0 mm			
Walls subjected to mainly ver Eccentricity of permanent UDL at Eccentricity of variable UDL at n Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4)	tical loading - at mid-height be nid-height belov d at mid-height	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 4$ $N_{mc2} = N_{Ed}$	$\frac{1}{2} + \frac{1}{2} + \frac{1}$	0.0 mm	γ _{fQ} + N _{mc2} = 2	9.26 kN/m	
Walls subjected to mainly ver Eccentricity of permanent UDL a Eccentricity of variable UDL at n Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height	tical loading - at mid-height be nid-height belov d at mid-height	Section 6.1.2 elow concentrated $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 43$ $N_{mc2} = N_{Ed}$ $N_{Ed2} = (g_k)$	$\begin{array}{l} \text{d load} \\ \times \ h_{c2} \ / \ (2 \times h) = \\ \text{oad} \\ \times \ h_{c2} \ / \ (2 \times h) = \\ 2 = \textbf{7.5 mm} \\ 50 = \textbf{5.0 mm} \\ c_2 \ / \ l_{efm2} = \textbf{23.05} \\ + \ \gamma \times t \times (h - h_{c2}) \end{array}$	0.0 mm kN/m			
Walls subjected to mainly ver Eccentricity of permanent UDL at Eccentricity of variable UDL at m Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height Vertical load at mid-height	tical loading - at mid-height be nid-height below d at mid-height t as UDL	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 43$ $N_{mc2} = N_{Ed}$ $N_{Ed2} = (g_k$ $M_{Ed2} = g_k$	$\begin{array}{l} \text{d load} \\ \times \ h_{c2} \ / \ (2 \times h) = \\ \text{oad} \\ \times \ h_{c2} \ / \ (2 \times h) = \\ 2 = \textbf{7.5 mm} \\ 50 = \textbf{5.0 mm} \\ c_2 \ / \ l_{efm2} = \textbf{23.05} \\ + \ \gamma \times t \times (h - h_{c2}) \end{array}$	0.0 mm kN/m / 2)) × γ _{fG} + q _k × × γ _{fQ} × e _{qmu2} + Ν			
Walls subjected to mainly ver Eccentricity of permanent UDL at Eccentricity of variable UDL at m Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height Vertical load at mid-height Design moment at mid-height	tical loading - a at mid-height be nid-height below d at mid-height t as UDL 6.7	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 43$ $N_{mc2} = N_{Ed}$ $N_{Ed2} = (g_k$ $M_{Ed2} = g_k$	ed load $\times h_{c2} / (2 \times h) =$ oad $\times h_{c2} / (2 \times h) =$ 2 = 7.5 mm 50 = 5.0 mm $c_2 / l_{efm2} = 23.05$ $+ \gamma \times t \times (h - h_{c2} \times \gamma_{FG} \times e_{gmu2} + q_{k})$	0.0 mm kN/m / 2)) × γ _{fG} + q _k × × γ _{fQ} × e _{qmu2} + Ν			
Walls subjected to mainly ver Eccentricity of permanent UDL at Eccentricity of variable UDL at m Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq.	tical loading - a at mid-height be nid-height below d at mid-height t as UDL 6.7	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 4$ $N_{mc2} = N_{Ed}$ $N_{Ed2} = (g_k$ $M_{Ed2} = g_k >$ $e_{m2} = Abs($	ed load $\times h_{c2} / (2 \times h) =$ oad $\times h_{c2} / (2 \times h) =$ 2 = 7.5 mm 50 = 5.0 mm $c_2 / l_{efm2} = 23.05$ $+ \gamma \times t \times (h - h_{c2} + k_{c2})$ $\times \gamma_{FG} \times e_{gmu2} + q_{k}$ $M_{Ed2}) / N_{Ed2} + e_{i}$	0.0 mm kN/m / 2)) × γ _{fG} + q _k × × γ _{fQ} × e _{qmu2} + Ν			
Walls subjected to mainly ver Eccentricity of permanent UDL at m Eccentricity of variable UDL at m Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. Slenderness ratio limit for creep	tical loading - at mid-height be nid-height below d at mid-height t as UDL 6.7 eccentricity	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 4!$ $N_{mc2} = N_{Ed}$ $N_{Ed2} = (g_k$ $M_{Ed2} = g_k >$ $e_{m2} = Abs($ $\lambda_c = 27$ $e_{k2} = 0.0$ m	ed load $\times h_{c2} / (2 \times h) =$ oad $\times h_{c2} / (2 \times h) =$ 2 = 7.5 mm 50 = 5.0 mm $c_2 / l_{efm2} = 23.05$ $+ \gamma \times t \times (h - h_{c2} + k_{c2})$ $\times \gamma_{FG} \times e_{gmu2} + q_{k}$ $M_{Ed2}) / N_{Ed2} + e_{i}$	0.0 mm kN/m $(2)) \times \gamma_{fG} + q_k \times x_{\gamma fQ} \times e_{qmu2} + N_{nit} = 11.0 mm$			
Walls subjected to mainly ver Eccentricity of permanent UDL at Eccentricity of variable UDL at m Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. Slenderness ratio limit for creep Eccentricity due to creep	tical loading - at mid-height be nid-height below d at mid-height t as UDL 6.7 eccentricity	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 4$ $N_{mc2} = N_{Ed}$ $N_{Ed2} = (g_k$ $M_{Ed2} = g_k$ $e_{m2} = Abs($ $\lambda_c = 27$ $e_{k2} = 0.0$ m $e_{mk2} = Max$	ed load $\times h_{c2} / (2 \times h) =$ oad $\times h_{c2} / (2 \times h) =$ 1 = 7.5 mm 50 = 5.0 mm $c_2 / l_{efm2} = 23.05$ $+ \gamma \times t \times (h - h_{c2} + q_k)$ $M_{Ed2} / N_{Ed2} + e_k$	0.0 mm kN/m / 2)) × γ _{fG} + q _k × × γ _{fQ} × e _{qmu2} + N nit = 11.0 mm × t) = 11.3 mm			
Walls subjected to mainly ver Eccentricity of permanent UDL at m Eccentricity of variable UDL at m Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. Slenderness ratio limit for creep Eccentricity due to creep Eccentricity at mid-height - eq. 6	tical loading - at mid-height be nid-height below d at mid-height t as UDL 6.7 eccentricity	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 4!$ $N_{mc2} = N_{Ed}$ $N_{Ed2} = (g_k)$ $M_{Ed2} = g_k >$ $e_{m2} = Abs($ $\lambda_c = 27$ $e_{k2} = 0.0$ m $e_{mk2} = Max$ $A_{12} = 1 - 2$ $u_2 = (h_{ef} / t)$	ed load $\times h_{c2} / (2 \times h) =$ oad $\times h_{c2} / (2 \times h) =$ I = 7.5 mm 50 = 5.0 mm $c_2 / l_{efm2} = 23.05$ $+ \gamma \times t \times (h - h_{c2} + q_k)$ $M_{Ed2} / N_{Ed2} + q_k$ $M_{Ed2} / N_{Ed2} + q_k$ $M_{Ed2} / N_{Ed2} + q_k$ $M_{emk2} / t = 0.90$ $e_f \times (1 / K_E)^{1/2} - 0$	0.0 mm kN/m $/ 2)) × \gamma_{fG} + q_k ×$ $x × \gamma_{fQ} × e_{qmu2} + N$ nit = 11.0 mm x t) = 11.3 mm 0.063) / (0.73 - 1)	J _{mc2} × e _{mc2} = ().17 kNm/m	
Walls subjected to mainly ver Eccentricity of permanent UDL at Eccentricity of variable UDL at m Eccentricity of concentrated load Initial eccentricity - cl.5.5.1.1(4) Concentrated load at mid-height Vertical load at mid-height Design moment at mid-height Eccentricities due to loads - eq. Slenderness ratio limit for creep Eccentricity due to creep Eccentricity at mid-height - eq. 6 From eq. G2	tical loading - at mid-height be nid-height below d at mid-height t as UDL 6.7 eccentricity 5.6	Section 6.1.2 elow concentrate $e_{gmu2} = e_{gu}$ w concentrated I $e_{qmu2} = e_{qu}$ $e_{mc2} = e_{c2}$ $e_{init} = h / 4!$ $N_{mc2} = N_{Ed}$ $N_{Ed2} = (g_k)$ $M_{Ed2} = g_k >$ $e_{m2} = Abs($ $\lambda_c = 27$ $e_{k2} = 0.0$ m $e_{mk2} = Max$ $A_{12} = 1 - 2$ $u_2 = (h_{ef} / t)$	ed load $\times h_{c2} / (2 \times h) =$ oad $\times h_{c2} / (2 \times h) =$ ' 2 = 7.5 mm 50 = 5.0 mm $c_2 / l_{efm2} = 23.05$ $+ \gamma \times t \times (h - h_{c2} \times q_{FG} \times e_{gmu2} + q_{k} + q_{k} + q_{k} + q_{k})$ $M_{Ed2} / N_{Ed2} + e_{f}$ $M_{Ed2} / N_{Ed2} + e_{f}$ m_{c} $c(e_{m2} + e_{k2}, 0.05 \times e_{mk2} / t = 0.90$	0.0 mm kN/m $/ 2)) × \gamma_{fG} + q_k ×$ $x × \gamma_{fQ} × e_{qmu2} + N$ nit = 11.0 mm x t) = 11.3 mm 0.063) / (0.73 - 1)	J _{mc2} × e _{mc2} = ().17 kNm/m	

Project	2 Hafron C	ourt - Bewdle	N/	Job Ref.	8001-HC
Section	2 Halleli C	Sheet no./rev			
	Structural desig	in of gable en	id wall		33
CHARTERED CONSULTING ENGINEERS	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	04/05/2023				
8.0 STRIP FOOTING ANALYSIS & DI	ESIGN (BS	8110)	·	·	
STRIP FOOTING ANALYSIS AND DESIGN (BS	<u>58110-1:1997)</u>			Tedds calci	ulation version 2.0.07
	→ 4-260-	▶			
Ť					
650					
		2			
		2			
<u> </u>					
T					
 600)				
l l l l l l l l l l l l l l l l l l l					
↓					
	450- 450-	2			
135	5.7 kN/m ² 135.7	KN/m			
Strip footing details					
Width of strip footing	B = 450 m	m			
Depth of strip footing	h = 600 m				
Depth of soil over strip footing	h _{soil} = 650				
Density of concrete	$\rho_{\rm conc} = 23.$				
Load details	1.0010				
Load width	b = 250 m	m			
Load eccentricity	e _P = 0 mm	ı			
Soil details		2			
Density of soil	ρ _{soil} = 20.0				
Design shear strength	φ' = 25.0 c	-			
Design base friction	δ = 19.3 d	-			
Allowable bearing pressure (preloaded assumed	I) P _{bearing} = 1	50 kN/m²			
Axial loading on strip footing					
Dead axial load	P _G = 36.4				
Imposed axial load	P _Q = 6.5 k				
Wind axial load	P _W = 1.5 k				
Total axial load	P = 44.4 k	.in/111			
Foundation loads	E 40	. 000 kN/m ²			
Dead surcharge load	$\Gamma_{Gsur} = 10$	JUUU KIN/M			
Imposed surcharge load		00 kN/m^2			
Imposed surcharge load Strip footing self weight	F _{Qsur} = 0.0	0 0 kN/m ² ρ _{conc} = 14.160	kN/m ²		

Here .	Project				Job Ref.			
		2 Hafren Co	ourt - Bewdle	ey	23	001-HC		
	Section				Sheet no./rev			
CHARTERED CONSULTING ENGINEERS		Structural desig	n of gable e	nd wall		34		
	Calc. by	Date	App'd by	Date				
CHROCIONAL CALCOLATIONO	IM	04/05/2023						
T-t-l formulations loop d					N 77 I-N1/			
Total foundation load		$F = B \times (F_{C})$	_{Gsur} + ⊢ _{Qsur} +	$F_{swt} + F_{soil}) = 16$	5.7 KIN/M			
Calculate base reaction								
Total base reaction			= 61.1 kN/m					
Eccentricity of base reaction in x		e⊤ = (P × e	_P + M + H ×	h) / T = 0 mm				
			I	Base reaction a	acts within midd	le third of base		
Calculate base pressures								
		q ₁ = (T / B)	× (1 - 6 × e	т / B) = 135.716	kN/m ²			
		q ₂ = (T / B)	× (1 + 6 × e	e⊤ / B) = 135.716	3 kN/m ²			
Minimum base pressure		q _{min} = min(q ₁ , q ₂) = 13	5.716 kN/m ²				
Maximum base pressure		q _{max} = max	(q ₁ , q ₂) = 1 3	35.716 kN/m ²				
	ŀ	PASS - Maximu	m base pre	ssure is less th	nan allowable be	aring pressure		
Material details								
Characteristic strength of concret	e	f _{cu} = 30 N/r	mm ²					
Calculate base lengths								
Left hand length		B _L = B / 2 ·	⊦e _P = 225 m	าm				
Right hand length			- e _P = 225 m					
Calculate rate of change of bas	se pressure							
Length of base reaction	o procedio	B _x = B = 4	50 mm					
Rate of change of base pressure		$C_x = (q_1 - c_1)$	₂) / B _x = 0.0	00 kN/m²/m				
Calculate minimum depth of ur		trin footing	. ,					
Average pressure to left of strip f			. × (B ₁ - b / 2	2) / 2 = 135.716	kN/m ²			
Minimum depth to left of strip foo	-			,	²) ² /(f _{cu} /1 N/mm ²)] [^]	$^{/4}$ 1) = 100 mm		
Average pressure to right of strip	-		, ,	2) / 2 = 135.716		,.,		
Minimum depth to right of strip fo	•			,	$(f_{cu}/1N/mm^2)^2$	4 1) = 100 mm		
	Juliu		-wizj^iiian(U	····ວ^[(ЧК/ IKIN/III		, , - 100		
Minimum depth of unreinforced s	•			300 mm) = 300	mm			

	Project				Job Ref.	
	2 Hafren Court - Bewdley				23001-HC	
	Section				Sheet no./rev.	
CHARTERED CONSULTING ENGINEERS	:	Structural desigr	n of gable end w	vall	:	35
STRUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
STRUCTURAL CALCULATIONS	IM	04/05/2023				

9.0 TWO STOREY WITH OPENINGS EXAMPLE

TWO STOREY WITH OPENINGS

Lintel analysis in accordance with BS5977-1:1981 incorporating Amendment No. 1

and the second sec	Project				Job Ref.	
		2 Hafren Court - Bewdley				001-HC
WIN W P	Section				Sheet no./rev.	
HARTERED CONSULTING ENGINEERS		Structural desig	n of gable end w	all		36
RUCTURAL CALCULATIONS	Calc. by	Date	Chk'd by	Date	App'd by	Date
	IM	04/05/2023				
Masonry load zone						
Height of load zone		h _{LZ} = L / 2	= 440 mm			
Total masonry area		$A_{LZ} = h_{LZ} \times$	L / 2 = 0.194 m ²			
Total masonry load		$W_{LZ} = A_{LZ}$	× t _{wi} × γ _{mi} = 0.871	kN		
Equivalent UDL		$W_{Equiv_{LZ}} = V$	W _{LZ} × 1.33 / L =	1.317 kN/m		
Load application summary						
Load Description	UDL total length (mm)	Start of UDL on lintel (mm)	End of UDL on lintel (mm)	Equiv. dead load on lintel (kN/m)	d impos on	quiv. sed load lintel N/m)
Masonry from load triangle	880	0	880	1.317	0	.000
Analysis results at ULS			·			
Maximum moment		M _{max} = 0.1	99 kNm			
Maximum shear		V _{max} = 0.70)2 kN			
Maximum reaction at support A	L. L	R _{A_max} = 0 .	702 kN			
Maximum reaction at support B		R _{B_max} = 0 .	7 02 kN			
Support reactions at SLS						
Dead loads						
Reaction at support A		R _{A_DL} = 0.502 kN				
Reaction at support B		R _{B_DL} = 0.5	02 kN			
Imposed loads						
Reaction at support A		R _{A_IL} = 0.0				
Reaction at support B		R _{B_IL} = 0.0	00 kN			
Equivalent UDL at SLS						
Total equivalent UDL (inc. selfv	veight)	w _e = 1.467	kN/m			

FOUNDATION WORK

1. TWP DRAWINGS ARE TO BE READ IN CONJUNCTION WITH THE EARTHWORK SPECIFICATION AND THE GENERAL CONCRETE SPECIFICATION.

2. UNLESS NOTED OTHERWISE, FOUNDATIONS ARE TO BE CENTERED UNDER THE WALLS.

3. THE FOUNDATIONS HAVE BEEN DESIGNED TO BEAR ON FIRM CLAY ON THE BASIS OF AN ALLOWABLE BEARING PRESSURE OF 150 kN/m² AND CONSIDERED EXISTING WALL FOUNDATION TO BE REMOVED.

- 4. ALL FORMED CONCRETE STRIP FOOTINGS HAVE BEEN DESIGNED ASSUMING MASS CONCRETE UPFILL FROM COMPACTED CLAY SUB STRATA, UNLESS OTHERWISE NOTED.
- 5. CONCRETE GRADES IN FOUNDATIONS TO BE: STRUCTURAL STRIP FOOTINGS - DESIGNED MIX C35/45 - UNREINFORCED. 6. MASS CONCRETE UPFILL - DESIGNATED GEN3 MIX C16/20 -UNREINFORCED CRUST RAFT SLAB - DESIGNED MIX C35/45 -REINFORCED.
- 7. FORMATION LEVEL TO TOP OF ALL PAD FOUNDATIONS TO BE IN ACCORDANCE WITH THE DRGS.
- 8. FOUNDATION LEVELS ARE TO BE APPROVED BY TWP STRUCTURAL ENGINEER AND BUILDING CONTROL AUTHORITY. UNSUITABLE MATERIAL IS TO BE REMOVED AS DIRECTED AND REPLACED WITH MASS CONCRETE.
- 9. ANY STEEL REINFORCEMENT BELOW GROUND TO BE ENCASED IN C35/45 GRADE CONCRETE WITH MINIMUM 75mm COVER OR AS DETAILED ON THE RELEVANT DRGS.
- 10. SERVICES PASSING THROUGH FOUNDATION TO BE
- ISOLATED AND PROTECTED IN ACCORDANCE WITH THE
- SERVICE ENGINEER'S SPECIFICATION.
- 11. ALL FOUNDATION WORK TO BE IN ACCORDANCE WITH BS EN 1997-1:2004, NA TO BS EN 1997-1:2004 AND BS EN 1997-2:2007. ALL CONCRETE WORK TO BE IN ACCORDANCE WITH BS EN 1992-1-1.
- 12. ALL EXCAVATIONS TO BE ADEQUATELY PROTECTED FROM THE INGRESS OF WATER. FOUNDATION EXCAVATIONS SHALL BE DRY AND SEALED AT THE EARLIEST AFTER EXCAVATION AND INSPECTION.
- 13. CARE IS TO BE TAKEN WHEN INSTALLING UNDERGROUND SERVICES TO ENSURE THAT EXCAVATED TRACKS LIE OUTSIDE A 45° SPREAD FROM THE BASE OF THE FOUNDATION.
- 14. FOUNDATION AND FLOOR SLAB FORMATION LEVELS SHALL BE WELL COMPACTED AND ALL SOFT SPOTS AND BACKFILLED, REMOVED AS AGREED TO IN ACCORDANCE
 - WITH AGREEMENTS REACHED WITH ENGINEER.
- 15. BLINDING CONCRETE IS REQUIRED UNDER STRIP
- FOUNDATIONS SINCE THESE ARE TYPICALLY CAST AGAINST NATURAL SOIL FOUNDATIONS.

MASONRY WORK

- ALL BLOCK WORK TO HAVE MINIMUM COMPRESSIVE STRENGTH OF 7.0 N/ mm² U.N.O. 2. ALL BLOCK WORK TO HAVE A MINIMUM DENSITY OF 1500
- kg/m² U.N.O. 3. MORTAR BELOW D.P.C. LEVEL TO BE TYPE I (1:3) & MORTAR ABOVE D.P.C. LEVEL TO BE TYPE III (1:5) 4. WALL TIES AND DOWELS TO BE STAINLESS STEEL TO BS
- 1243, BS EN 845-1:2003 & BS EN ISO 1461:1999 & SPACED AS SHOWN.

TIMBER WORK

. ALL EXISTING TIMBER BEAMS, FRAME MEMBER TO BE INSPECTED AND APPROVED BY THE ARCHITECT OR/AND STRUCTURAL ENGINEER BEFORE REUSED. 2. NEW TIMBER AS PER ARCHITECTURAL SPECIFICATIONS.

THIS DRAWING AND THE INFORMATION CONTAINED WITHIN IS THE PROPERTY OF TWP AND IS NOT TO BE PUBLISHED WITHOUT THEIR WRITTEN CONSENT

GENERAL NOTES:

- ALL DIMENSIONS ARE IN MILLIMETERS (mm) & ALL LEVELS ARE IN METERS (m) UNLESS NOTED OTHERWISE.
- DO NOT SCALE THIS DRAWING. FOR DISCREPANCIES OR OMISSIONS CONTACT THE STRUCTURAL ENGINEER PRIOR
- TO WORK COMMENCING. MATERIALS AND WORKMANSHIP ARE TO COMPLY IN ALL RESPECTS WITH CURRENT BRITISH STANDARD SPECIFICATIONS, BRITISH STANDARD CODE OF PRACTICE, AND BUILDING REGULATIONS.
- THE COPYRIGHT OF THIS DRAWING IS VESTED IN THE ENGINEER AND MUST NOT BE COPIED OR REPRODUCED WITHOUT WRITTEN CONSENT. THE CONTRACTOR IS TO CHECK AND VERIFY ALL BUILDING
- AND SITE DIMENSIONS, LEVELS AND SEWER INVERT LEVELS AT CONNECTION POINTS BEFORE WORK COMMENCES.
- THIS DRAWING IS TO READ IN CONJUNCTION WITH ALL RELEVANT SPECIFICATIONS AND DRAWINGS ISSUED BY THE ENGINEER, ARCHITECT AND OTHER SPECIALISTS.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE DESIGN, FABRICATION, ERECTION AND REMOVAL OF ANY TEMPORARY WORKS AND SHALL PROVIDE ALL TEMPORARY BRACING AND PROPPING NECESSARY TO MAINTAIN STABILITY DURING CONSTRUCTION. THE DESIGN ENVISAGED CONSTRUCTION SEQUENCE IS DETAILED ON TWP'S DRGS ETC.
- CONTRACTOR TO CHECK SERVICE ENGINEER'S DRAWINGS FOR DETAILS OF ANY CAST-IN FIXINGS REQUIRED THAT MAY NOT BE SHOWN ON THE ENGINEER'S STRUCTURAL DRAWINGS. CONTRACTOR TO CO-ORDINATE REQUIREMENTS.
- IF ANY CAST-IN FIXINGS FOR BRICKWORK AND BLOCK WORK ARE REQUIRED, THE CONTRACTOR SHOULD TAKE COGNIZANCE OF THE ARCHITECTS MASONRY COURSING REQUIREMENTS.
- DESIGN LOADING: (GRAVITY) IMPOSED LOADS:

1st FLOOR

1ST. FLOOR 1.5 kN/m² STAIR CASE/LANDING 3.0 kN/m² ROOF (WITHOUT ACCESS) 0.6 kN/m² SNOW LOADS 0.75kN/m² SNOW LOADS (DORMER) 1.5 kN/m² DEAD LOADING:

1.52kN/m²

- ROOF 1.10kN/m² WIND LOADING IN ACCORDANCE WITH BS EN 1991-1-3:2005 BASIC WIND SPEED 21.70m/sec
- LOADS TO BE CALCULATED IN ACCORDANCE WITH:
- BS EN 1991-1-1:2002: ACTION ON STRUCTURES. GENERAL ACTIONS-DENSITIES, SELF-WEIGHT, IMPOSED LOADS FOR BUILDINGS. BS EN 1991-1-4:2005 ACTIONS ON STRUCTURES - WIND
- ACTIONS. THE CONTRACTOR SHOULD BE VIGILANT AGAINST THE POTENTIAL FOR PERCHED GROUNDWATER OR/AND DRAIN
- WATER WHICH MAY BE ENCOUNTERED DURING GROUND WORKS. ANY SOFT UNSTABLE AND MARSHY GROUND CONDITIONS AT FORMATION LEVEL ARE TO BE REMOVED.

REV.	AMENDMENTS	DRW.	CHK.	DATE
CLIEN	Т			

TOGETHER PROPERTY MANAGEMENT MAINTENANCE OFFICE PO BOX 1319 ENFIELD EN1 9ZJ

> TEL.: 020 8366 7070 maintenance@togetherproperty.co.uk

PROJECT

1-6 HAFREN COURT BEWDLEY DY12 2AR

TITLE

GABLE WALL DESIGN

DRAWN:	IM	DESIGN: IM	
CHECKED:	_	APPROVED: –	
	MAY 2023	SCALE: AS SHOWN	

FOR TENDER

REV.

T01

DRAWING STATUS

DRAWING NO.

23001-HC-001