

CHARTERED CONSULTING ENGINEERS

STRUCTURAL CALCULATIONS

STRUCTURAL DESIGN OF NEW GABLE WALL

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.23001-HC	
	Structural design of gable end wall				Sheet no.	1
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

1.0 LOADING

1.1 ROOF LOADS

Roof Dead Loads

Roof tiles		$=$	0.60	$\mathrm{kN} / \mathrm{m}^{2}$
Timber batten and felt		=	0.05	$\mathrm{kN} / \mathrm{m}^{2}$
Timber rafter and insulation		=	0.20	$\mathrm{kN} / \mathrm{m}^{2}$
Ceiling and Services		=	0.25	$\mathrm{kN} / \mathrm{m}^{2}$
	Σ	$=$	1.10	$\mathrm{kN} / \mathrm{m}^{2}$
Roof ImposedLoads				
Snow Loads		=	0.75	$\mathrm{kN} / \mathrm{m}^{2}$
Snow loads (Dormer)		$=$	1.50	$\mathrm{kN} / \mathrm{m}^{2}$

1.2 FLOOR LOADS

Floor Dead Loads			
T\&G Chipboard	$=$	0.20	$\mathrm{kN} / \mathrm{m}^{2}$
Floor Joists	$=$	$0.20 \mathrm{kN} / \mathrm{m}^{2}$	
Ceiling and Insulation	$=$	$0.12 \mathrm{kN} / \mathrm{m}^{2}$	
Timber partition walls	$\mathrm{\Sigma}$	$=$	$1.00 \mathrm{kN} / \mathrm{m}^{2}$
	$=$	$1.52 \mathrm{kN} / \mathrm{m}^{2}$	
Floor Loading - Imposed Loads	$=$	$1.50 \mathrm{kN} / \mathrm{m}^{2}$	
Domestic Imposed	$=$	$3.00 \mathrm{kN} / \mathrm{m}^{2}$	

1.3 EXISTING WALL LOADS

The exact wall thicknesses are not confirmed. For load calculation, the following SOLID wall thicknesses are considered.

1st Floor Walls

220 mm thick brick wall with height 2.75 m
$=13.31 \mathrm{kN} / \mathrm{m}$

Ground Floor Walls
220mm thick brick wall with height 3.50 m
$=16.94 \mathrm{kN} / \mathrm{m}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.23001-HC	
	Section Structural design of gable end wall				Sheet no.	2
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

2.0 LOADS ON GABLE WALL

By inspection assumed that the gabel wall can resist shear forces resulting from the wind loads.

DEAD LOADS ON GROUND FLOOR WALLS AND BEAMS PLAN

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdle				Job Ref.23001-HC	
	Structural design of gable end wall				Sheet no.	3
	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	2 Hafren Court - Bewdley				23001-HC	
	Structural design of gable end wall				4	
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

3.0 WIND LOADING (EN1991)

WIND LOADING (EN1991-1-4)

In accordance with EN1991-1-3:2005+A1:2010 and the UK national annex

Building data

Type of roof
Length of building
Width of building
Height to eaves
Pitch of main slope
Pitch of gable slope
Total height

Basic values

Location
Wind speed velocity (FigureNA.1)
Distance to shore
Altitude above sea level
Altitude factor
Fundamental basic wind velocity
Direction factor
Season factor
Shape parameter K
Exponent n
Air density
Probability factor
Basic wind velocity (Exp. 4.1)
Reference mean velocity pressure

Orography

Orography factor not significant
Terrain category
Displacement height (sheltering effect excluded)

Hipped
$\mathrm{L}=28000 \mathrm{~mm}$
$\mathrm{W}=7000 \mathrm{~mm}$
$\mathrm{H}=8000 \mathrm{~mm}$
$\alpha_{0}=50.0 \mathrm{deg}$
$\alpha_{90}=50.0 \mathrm{deg}$
$\mathrm{h}=12171 \mathrm{~mm}$

Birmingham
$\mathrm{v}_{\mathrm{b}, \text { map }}=\mathbf{2 1 . 7} \mathrm{m} / \mathrm{s}$
$L_{\text {shore }}=152.00 \mathrm{~km}$
$\mathrm{A}_{\text {alt }}=120.0 \mathrm{~m}$
$\mathrm{C}_{\text {alt }}=\mathrm{A}_{\text {alt }} \times 0.001 \mathrm{~m}^{-1}+1=\mathbf{1 . 1 2 0}$
$\mathrm{v}_{\mathrm{b}, \mathrm{o}}=\mathrm{v}_{\mathrm{b}, \text { map }} \times \mathrm{C}_{\text {alt }}=\mathbf{2 4 . 3} \mathrm{m} / \mathrm{s}$
$C_{\text {dir }}=1.00$
$\mathrm{C}_{\text {season }}=1.00$
$\mathrm{K}=0.2$
$\mathrm{n}=0.5$
$\rho=1.226 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{C}_{\text {prob }}=[(1-\mathrm{K} \times \ln (-\ln (1-\mathrm{p}))) /(1-\mathrm{K} \times \ln (-\ln (0.98)))]^{\mathrm{n}}=\mathbf{1 . 0 0}$
$\mathrm{v}_{\mathrm{b}}=\mathrm{c}_{\text {dir }} \times \mathrm{c}_{\text {season }} \times \mathrm{v}_{\mathrm{b}, 0} \times \mathrm{c}_{\text {prob }}=\mathbf{2 4 . 3} \mathrm{m} / \mathrm{s}$
$q_{b}=0.5 \times \rho \times \mathrm{v}_{\mathrm{b}}{ }^{2}=\mathbf{0} .362 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{C}_{0}=1.0$
Town
$\mathrm{h}_{\text {dis }}=0 \mathrm{~mm}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	2 Hafren Court - Bewdley				Job Ref23001-HC	
	Section Structural design of gable end wall				Sheet no.	5
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

The velocity pressure for the windward face of the building with a 0 degree wind is to be considered as 1 part as the height h is less than b (cl.7.2.2)
The velocity pressure for the windward face of the building with a 90 degree wind is to be considered as $\mathbf{2}$ parts as the height h is greater than b but less than $2 b$ (cl.7.2.2)
Peak velocity pressure - windward wall - Wind 0 deg
Reference height (at which q is sought)
Displacement height (sheltering effects excluded)
Exposure factor (Figure NA.7)
$z=8000 \mathrm{~mm}$

Exposure correction factor (Figure NA.8)
c

Peak velocity pressure
$\mathrm{C}_{\mathrm{e}, \mathrm{T}}=0.89$
$\mathrm{q}_{\mathrm{p}}=\mathrm{c}_{\mathrm{e}} \times \mathrm{c}_{\mathrm{e}, \mathrm{T}} \times \mathrm{q}_{\mathrm{b}}=0.71 \mathrm{kN} / \mathrm{m}^{2}$

Structural factor

Structural damping
$\delta_{\mathrm{s}}=\mathbf{0 . 1 0 0}$
Height of element
$\mathrm{h}_{\text {part }}=8000 \mathrm{~mm}$
Size factor (Table NA.3)
$\mathrm{C}_{\mathrm{s}}=0.813$
Dynamic factor (Figure NA.9)
$\mathrm{C}_{\mathrm{d}}=1.012$
Structural factor
$\mathrm{c}_{\mathrm{s} C \mathrm{~d}}=\mathrm{c}_{\mathrm{s}} \times \mathrm{c}_{\mathrm{d}}=0.823$
Peak velocity pressure - windward wall (lower part) - Wind 90 deg
Reference height (at which q is sought)
$z=7000 \mathrm{~mm}$
Displacement height (sheltering effects excluded)
$\mathrm{h}_{\text {dis }}=0 \mathrm{~mm}$
Exposure factor (Figure NA.7)
Exposure correction factor (Figure NA.8)
$C_{e}=2.11$
Peak velocity pressure
$\mathrm{C}_{\mathrm{e}, \mathrm{T}}=\mathbf{0 . 8 8}$
$\mathrm{q}_{\mathrm{p}}=\mathrm{c}_{\mathrm{e}} \times \mathrm{C}_{\mathrm{e}, \mathrm{T}} \times \mathrm{q}_{\mathrm{b}}=0.67 \mathrm{kN} / \mathrm{m}^{2}$

Structural factor

Structural damping
$\delta_{\mathrm{s}}=\mathbf{0 . 1 0 0}$
Height of element
$\mathrm{h}_{\text {part }}=7000 \mathrm{~mm}$
Size factor (Table NA.3)
$\mathrm{C}_{\mathrm{s}}=0.870$
Dynamic factor (Figure NA.9)
$\mathrm{C}_{\mathrm{d}}=1.044$
Structural factor
$\mathrm{c}_{\mathrm{s} C \mathrm{~d}}=\mathrm{c}_{\mathrm{s}} \times \mathrm{c}_{\mathrm{d}}=0.908$
Peak velocity pressure - windward wall (upper part) - Wind 90 deg
Reference height (at which q is sought)
$z=8000 \mathrm{~mm}$
Displacement height (sheltering effects excluded)
$\mathrm{h}_{\text {dis }}=0 \mathrm{~mm}$
Exposure factor (Figure NA.7)
Exposure correction factor (Figure NA.8)
Peak velocity pressure
$\mathrm{C}_{\mathrm{e}}=2.19$
$\mathrm{C}_{\mathrm{e}, \mathrm{T}}=0.89$

Structural factor

Structural damping
Height of element
$\mathrm{q}_{\mathrm{p}}=\mathrm{c}_{\mathrm{e}} \times \mathrm{c}_{\mathrm{e}, \mathrm{T}} \times \mathrm{q}_{\mathrm{b}}=0.71 \mathrm{kN} / \mathrm{m}^{2}$

Size factor (Table NA.3)
$\delta_{\mathrm{s}}=\mathbf{0 . 1 0 0}$
$\mathrm{h}_{\text {part }}=1000 \mathrm{~mm}$

Dynamic factor (Figure NA.9)
$\mathrm{C}_{\mathrm{s}}=0.934$
$C_{d}=1.044$
$\mathrm{C}_{\mathrm{s} C \mathrm{~d}}=\mathrm{C}_{\mathrm{s}} \times \mathrm{C}_{\mathrm{d}}=0.975$

Structural factor

Structural damping
$\delta_{\mathrm{s}}=\mathbf{0 . 1 0 0}$
Height of element
$h_{\text {part }}=8000 \mathrm{~mm}$
Size factor (Table NA.3)
$\mathrm{C}_{\mathrm{s}}=0.873$
Dynamic factor (Figure NA.9)
$\mathrm{C}_{\mathrm{d}}=1.044$
Structural factor
$\mathrm{C}_{\mathrm{s} C \mathrm{~d}}=\mathrm{c}_{\mathrm{s}} \times \mathrm{C}_{\mathrm{d}}=0.911$

CHARTERED CONSULTING ENGINEERS
STRUCTURAL CALCULATIONS

Project				Job Ref.	
2 Hafren Court - Bewdley				23001-HC	
Section				Sheet no.	
Structural design of gable end wall					6
Calc. by	Date	Chk'd by	Date	App'd by	Date
IM	04/05/2023				

Peak velocity pressure - roof
Reference height (at which q is sought) $\quad z=12171 \mathrm{~mm}$
Displacement height (sheltering effects excluded)
$\mathrm{h}_{\text {dis }}=0 \mathrm{~mm}$
Exposure factor (Figure NA.7)
Exposure correction factor (Figure NA.8)
Peak velocity pressure
$\mathrm{C}_{\mathrm{e}}=2.45$
$\mathrm{C}_{\mathrm{e}, \mathrm{T}}=0.94$
$\mathrm{q}_{\mathrm{p}}=\mathrm{c}_{\mathrm{e}} \times \mathrm{c}_{\mathrm{e}, \mathrm{T}} \times \mathrm{q}_{\mathrm{b}}=0.84 \mathrm{kN} / \mathrm{m}^{2}$
Structural factor - roof 0 deg
Structural damping
Height of element
Size factor (Table NA.3)
Dynamic factor (Figure NA.9)
Structural factor
$\delta_{\mathrm{s}}=\mathbf{0 . 1 0 0}$
$h_{\text {part }}=12171 \mathrm{~mm}$
$\mathrm{C}_{\mathrm{s}}=0.824$
$C_{d}=1.012$
$\mathrm{C}_{\mathrm{s} C \mathrm{~d}}=\mathrm{c}_{\mathrm{s}} \times \mathrm{C}_{\mathrm{d}}=0.834$
Structural factor - roof 90 deg
Structural damping
Height of element
$\delta_{s}=0.100$
$h_{\text {part }}=12171 \mathrm{~mm}$
$\mathrm{C}_{\mathrm{s}}=0.876$
$\mathrm{C}_{\mathrm{d}}=1.044$
$\mathrm{C}_{\mathrm{s} C \mathrm{~d}}=\mathrm{c}_{\mathrm{s}} \times \mathrm{C}_{\mathrm{d}}=0.914$
Peak velocity pressure for internal pressure
Peak velocity pressure - internal (as roof press.)
$\mathrm{q}_{\mathrm{p}, \mathrm{i}}=0.84 \mathrm{kN} / \mathrm{m}^{2}$
Pressures and forces
Net pressure $\quad \mathrm{p}=\mathrm{c}_{\mathrm{s} C d} \times \mathrm{q}_{\mathrm{p}} \times \mathrm{c}_{\mathrm{pe}}-\mathrm{q}_{\mathrm{p}, \mathrm{i}} \times \mathrm{c}_{\mathrm{pi}}$
Net force
$F_{w}=p_{w} \times A_{\text {ref }}$
Roof load case 1 - Wind $\mathbf{0}, \mathbf{c}_{\text {pi }} \mathbf{0 . 2 0}, \mathbf{c}_{\text {pe }}$

Zone	Ext pressure coefficient c_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
F (+ve)	0.80	0.84	0.39	36.87	14.43
G (+ve)	0.67	0.84	0.30	59.94	17.87
H (+ve)	0.73	0.84	0.34	36.59	12.61
I (+ve)	-0.63	0.84	-0.61	74.04	-45.16
J (+ve)	-0.67	0.84	-0.63	17.29	-10.95
K (+ve)	-0.37	0.84	-0.42	42.07	-17.82
L (+ve)	-0.40	0.84	-0.45	21.90	-9.79
M (+ve)	-0.23	0.84	-0.33	16.22	-5.36

Total vertical net force
$F_{w, v}=\mathbf{- 2 8 . 4 0} \mathrm{kN}$
Total horizontal net force
$F_{w, h}=91.04 \mathrm{kN}$
Walls load case 1 - Wind $0, \mathrm{c}_{\mathrm{pi}} \mathbf{0 . 2 0}$, + c_{pe}

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.20	0.71	-0.87	38.95	-33.74
B	-0.80	0.71	-0.63	17.05	-10.80
D	0.80	0.71	0.30	224.00	66.79

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court Bew				Job Ref.23001-HC	
	Structural design of gable end wall				Sheet no.	7
	Calc. by IM	$\begin{aligned} & \text { Date } \\ & \text { 04/05/2023 } \end{aligned}$	Chk'd by	Date	App'd by	Date

E	-0.54	0.71	-0.48	224.00	-107.56

Overall loading

Equiv leeward net force for overall section
Net windward force for overall section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading overall section

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{I}}=\mathrm{F}_{\mathrm{w}, \mathrm{wE}}=-\mathbf{1 0 7 . 6} \mathrm{kN} \\
& \mathrm{~F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wD}}=\mathbf{6 6 . 8} \mathrm{kN} \\
& \mathrm{f}_{\text {corr }}=\mathbf{0 . 8 8} \text { as } \mathrm{h} / \mathrm{W} \text { is } 1.739 \\
& \mathrm{~F}_{\mathrm{w}, \mathrm{D}}=\mathrm{f}_{\text {corr }} \times\left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{\mathrm{l}}+\mathrm{F}_{\mathrm{w}, \mathrm{~h}}\right)=\mathbf{2 3 2 . 9} \mathrm{kN}
\end{aligned}
$$

Roof load case $\mathbf{2}$ - Wind 90, $\mathrm{c}_{\mathrm{pi}} \mathbf{0 . 2 0 , + \mathrm { c } _ { \mathrm { pe } }}$

Zone	Ext pressure coefficient c_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
F (+ve)	0.80	0.84	0.45	3.05	1.36
G (+ve)	0.67	0.84	0.34	3.81	1.31
H (+ve)	0.73	0.84	0.39	12.20	4.81
I (+ve)	-0.63	0.84	-0.65	12.20	-7.96
J (+ve)	-0.67	0.84	-0.68	6.86	-4.65
L (+ve)	-0.40	0.84	-0.47	7.62	-3.61
M (+ve)	-0.23	0.84	-0.35	12.20	-4.22
N (+ve)	-0.20	0.84	-0.32	246.99	-79.21

Walls load case 2 - Wind 90, $\mathrm{c}_{\mathrm{pi}} \mathbf{0 . 2 0 , ~ + \mathrm { c } _ { \mathrm { pe } }}$

Zone	Ext pressure coefficient c_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.20	0.71	-0.94	11.20	-10.54
B	-0.80	0.71	-0.68	44.80	-30.61
C	-0.50	0.71	-0.49	168.00	-82.29
D_{b}	0.72	0.67	0.27	49.00	13.36
D_{u}	0.72	0.71	0.33	7.00	2.33
E	-0.35	0.71	-0.39	56.00	-21.99

Overall loading

Equiv leeward net force for upper section
Net windward force for upper section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading upper section
Equiv leeward net force for bottom section
Net windward force for bottom section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading bottom section
Roof load case 3 - Wind $0, c_{p i}-0.30,+c_{p e}$
$F_{1}=F_{w, w E} / A_{\text {ref, } w E} \times A_{\text {ref, wu }}=-2.7 \mathrm{kN}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wu}}=2.3 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=\mathbf{0 . 8 5}$ as h / L is 0.435
$F_{w, u}=f_{c o r r} \times\left(F_{w}-F_{1}+F_{w, h}\right)=17.4 \mathrm{kN}$
$F_{I}=F_{w, w E} / A_{\text {ref }, \mathrm{wE}} \times A_{\text {ref,wb }}=-19.2 \mathrm{kN}$
$F_{w}=F_{w, w b}=13.4 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=0.85$ as h / L is 0.435
$F_{w, b}=f_{\text {corr }} \times\left(F_{w}-F_{l}\right)=27.7 \mathrm{kN}$

Project	2 Hafren Court - Bewdley			Job Ref.	
					1-HC
Section				Sheet no./rev.	
Structural design of gable end wall					8
Calc. by	Date	Chk'd by	Date	App'd by	Date
IM	04/05/2023				

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
F (+ve)	0.80	0.84	0.81	36.87	29.87
G (+ve)	0.67	0.84	0.72	59.94	42.98
H (+ve)	0.73	0.84	0.76	36.59	27.94
I (+ve)	-0.63	0.84	-0.19	74.04	-14.14
J (+ve)	-0.67	0.84	-0.21	17.29	-3.71
K (+ve)	-0.37	0.84	0.00	42.07	-0.20
L (+ve)	-0.40	0.84	-0.03	21.90	-0.61
M (+ve)	-0.23	0.84	0.09	16.22	1.43

Total vertical net force
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=53.71 \mathrm{kN}$
Total horizontal net force
$F_{w, h}=91.04 \mathrm{kN}$
Walls load case $\mathbf{3}$ - Wind $\mathbf{0}, \mathbf{c}_{\mathbf{p i}} \mathbf{- 0 . 3 0}$, $\boldsymbol{+} \mathbf{c}_{\mathrm{pe}}$

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.20	0.71	-0.45	38.95	-17.42
B	-0.80	0.71	-0.21	17.05	-3.66
D	0.80	0.71	0.72	224.00	160.63
E	-0.54	0.71	-0.06	224.00	-13.72

Overall loading

Equiv leeward net force for overall section
Net windward force for overall section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading overall section
$F_{I}=F_{w, w E}=-13.7 \mathrm{kN}$
$F_{w}=F_{w, w D}=160.6 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=\mathbf{0 . 8 8}$ as h / W is 1.739
$F_{w, D}=f_{\text {corr }} \times\left(F_{w}-F_{l}+F_{w, h}\right)=232.9 \mathrm{kN}$

Roof load case 4 - Wind 90, $\mathrm{c}_{\mathrm{pi}} \mathbf{- 0 . 3 0 ,}+\mathrm{c}_{\mathrm{pe}}$

Zone	Ext pressure coefficient c_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
$\mathrm{F}(+\mathrm{ve})$	0.80	0.84	0.86	3.05	2.63
$\mathrm{G}(+\mathrm{ve})$	0.67	0.84	0.76	3.81	2.90
$\mathrm{H}(+\mathrm{ve})$	0.73	0.84	0.81	12.20	9.91
$\mathrm{I}(+\mathrm{ve})$	-0.63	0.84	-0.23	12.20	-2.85
J (+ve)	-0.67	0.84	-0.26	6.86	-1.78
L (+ve)	-0.40	0.84	-0.05	7.62	-0.42
M (+ve)	-0.23	0.84	0.07	12.20	0.89
N (+ve)	-0.20	0.84	0.10	246.99	24.25

Total vertical net force
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=22.85 \mathrm{kN}$
Total horizontal net force
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=15.37 \mathrm{kN}$
Walls load case 4 - Wind 90, $\mathrm{c}_{\mathrm{pi}}-\mathbf{0 . 3 0}$, $+\mathrm{c}_{\mathrm{pe}}$

CHARTERED CONSULTING ENGINEERS
STRUCTURAL CALCULATIONS

Project				Job Ref.	
2 Hafren Court - Bewdley				23001-HC	
Section				Sheet no.	
Structural design of gable end wall				9	
Calc. by	Date	Chk'd by	Date	App'd by	Date
IM	04/05/2023				

Zone	Ext pressure coefficient $C_{p e}$	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.20	0.71	-0.52	11.20	-5.85
B	-0.80	0.71	-0.26	44.80	-11.84
C	-0.50	0.71	-0.07	168.00	-11.91
D_{b}	0.72	0.67	0.69	49.00	33.89
D_{u}	0.72	0.71	0.75	7.00	5.26
E	-0.35	0.71	0.03	56.00	1.47

Overall loading

Equiv leeward net force for upper section
Net windward force for upper section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading upper section
Equiv leeward net force for bottom section
Net windward force for bottom section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading bottom section
$F_{I}=F_{w, w E} / A_{\text {ref, }, \mathrm{wE}} \times A_{\text {ref,wu }}=0.2 \mathrm{kN}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wu}}=5.3 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=\mathbf{0 . 8 5}$ as h / L is 0.435
$F_{w, u}=f_{\text {corr }} \times\left(F_{w}-F_{I}+F_{w, h}\right)=17.4 \mathrm{kN}$
$F_{I}=F_{w, w E} / A_{\text {ref }, w E} \times A_{\text {ref,wb }}=1.3 \mathrm{kN}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wb}}=33.9 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=\mathbf{0 . 8 5}$ as h / L is 0.435
$\mathrm{~F}_{\mathrm{w}, \mathrm{b}}=\mathrm{f}_{\text {corr }} \times\left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{\mathrm{l}}\right)=\mathbf{2 7 . 7} \mathrm{kN}$

Roof load case 5 - Wind $\mathbf{0}$, $\mathbf{c}_{\mathrm{pi}} \mathbf{0 . 2 0 ,} \mathbf{- ~}_{\mathrm{pe}}$

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
F (-ve)	0.27	0.84	0.02	36.87	0.69
G (-ve)	0.27	0.84	0.02	59.94	1.12
H (-ve)	0.27	0.84	0.02	36.59	0.68
I (-ve)	-0.63	0.84	-0.61	74.04	-45.16
J (-ve)	-0.67	0.84	-0.63	17.29	-10.95
K (-ve)	-0.37	0.84	-0.42	42.07	-17.82
L (-ve)	-1.13	0.84	-0.96	21.90	-21.01
M (-ve)	-0.63	0.84	-0.61	16.22	-9.89

Total vertical net force
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=-65.78 \mathrm{kN}$
Total horizontal net force
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=58.54 \mathrm{kN}$
Walls load case 5 - Wind $0, \mathrm{c}_{\mathrm{pi}} \mathbf{0 . 2 0}$, C_{pe}

Zone	Ext pressure coefficient c_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.20	0.71	-0.87	38.95	-33.74
B	-0.80	0.71	-0.63	17.05	-10.80
D	0.80	0.71	0.30	224.00	66.79
E	-0.54	0.71	-0.48	224.00	-107.56

Overall loading

Equiv leeward net force for overall section
Net windward force for overall section

$$
F_{l}=F_{w, w E}=-107.6 \mathrm{kN}
$$

$F_{w}=F_{w, w D}=66.8 \mathrm{kN}$

Project	2 Hafren Court - Bewdley		23001-HC	
Section	Structural design of gable end wall	Sheet no./rev.		
Calc. by IM	Date $04 / 05 / 2023$	Chk'd by	Date	App'd by

Lack of correlation (cl.7.2.2(3) - Note)
$\mathrm{f}_{\text {corr }}=\mathbf{0 . 8 8}$ as h / W is 1.739
Overall loading overall section
Roof load case 6 - Wind 90, $\mathbf{c}_{\text {pi }} 0.20$, $\mathbf{c}_{\text {pe }}$

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
F (-ve)	0.27	0.84	0.04	3.05	0.11
G (-ve)	0.27	0.84	0.04	3.81	0.14
H (-ve)	0.27	0.84	0.04	12.20	0.45
1 (-ve)	-0.63	0.84	-0.65	12.20	-7.96
J (-ve)	-0.67	0.84	-0.68	6.86	-4.65
L (-ve)	-1.13	0.84	-1.04	7.62	-7.89
M (-ve)	-0.63	0.84	-0.65	12.20	-7.96
N (-ve)	-0.47	0.84	-0.52	246.99	-129.65

Total vertical net force
Total horizontal net force
$F_{w, v}=-101.18 \mathrm{kN}$
$F_{w, h}=10.20 \mathrm{kN}$

Walls load case 6 - Wind $90, \mathrm{c}_{\mathrm{pi}} \mathbf{0 . 2 0}$, $-\mathrm{c}_{\mathrm{pe}}$

Zone	Ext pressure coefficient c_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.20	0.71	-0.94	11.20	-10.54
B	-0.80	0.71	-0.68	44.80	-30.61
C	-0.50	0.71	-0.49	168.00	-82.29
D_{b}	0.72	0.67	0.27	49.00	13.36
D_{u}	0.72	0.71	0.33	7.00	2.33
E	-0.35	0.71	-0.39	56.00	-21.99

Overall loading

Equiv leeward net force for upper section
Net windward force for upper section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading upper section
Equiv leeward net force for bottom section
Net windward force for bottom section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading bottom section
$F_{1}=F_{w, w E} / A_{\text {ref, } w E} \times A_{\text {ref,wu }}=\mathbf{- 2 . 7} \mathrm{kN}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wu}}=2.3 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=\mathbf{0 . 8 5}$ as h / L is 0.435
$F_{w, u}=f_{\text {corr }} \times\left(F_{w}-F_{I}+F_{w, h}\right)=13.0 \mathrm{kN}$
$F_{I}=F_{w, w E} / A_{\text {ref }, w E} \times A_{\text {ref, } w b}=-19.2 \mathrm{kN}$
$F_{w}=F_{w, w b}=13.4 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=\mathbf{0 . 8 5}$ as h / L is 0.435
$\mathrm{F}_{\mathrm{w}, \mathrm{b}}=\mathrm{f}_{\text {corr }} \times\left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{\mathrm{I}}\right)=\mathbf{2 7 . 7} \mathrm{kN}$

Roof load case 7 - Wind $0, \mathbf{c}_{\text {pi }}-\mathbf{0 . 3 0}$, $-\mathrm{c}_{\mathrm{pe}}$

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
$\mathrm{F}(-\mathrm{ve})$	0.27	0.84	0.44	36.87	16.14
$\mathrm{G}(-\mathrm{ve})$	0.27	0.84	0.44	59.94	26.23
$\mathrm{H}(-\mathrm{ve})$	0.27	0.84	0.44	36.59	16.01
I (-ve)	-0.63	0.84	-0.19	74.04	-14.14

CHARTERED CONSULTING ENGINEERS
STRUCTURAL CALCULATIONS

Project				Job Ref.	
2 Hafren Court - Bewdley				23001-HC	
Section				Sheet no.	
Structural design of gable end wall					11
Calc. by	Date	Chk'd by	Date	App'd by	Date
IM	04/05/2023				

$\mathrm{J}(-\mathrm{ve})$	-0.67	0.84	-0.21	17.29	-3.71
$\mathrm{~K}(-\mathrm{ve})$	-0.37	0.84	0.00	42.07	-0.20
$\mathrm{~L}(-\mathrm{ve})$	-1.13	0.84	-0.54	21.90	-11.83
$\mathrm{M}(-\mathrm{ve})$	-0.63	0.84	-0.19	16.22	-3.10

Total vertical net force
Total horizontal net force
$\mathrm{F}_{\mathrm{w}, \mathrm{v}}=16.33 \mathrm{kN}$
$\mathrm{F}_{\mathrm{w}, \mathrm{h}}=58.55 \mathrm{kN}$

Walls load case 7 - Wind $0, \mathrm{c}_{\mathrm{pi}} \mathbf{- 0 . 3 0 , - \mathrm { c } _ { \mathrm { pe } }}$

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.20	0.71	-0.45	38.95	-17.42
B	-0.80	0.71	-0.21	17.05	-3.66
D	0.80	0.71	0.72	224.00	160.63
E	-0.54	0.71	-0.06	224.00	-13.72

Overall loading

Equiv leeward net force for overall section
Net windward force for overall section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading overall section
$F_{I}=F_{w, w E}=\mathbf{- 1 3 . 7} \mathrm{kN}$
$F_{w}=F_{w, w D}=\mathbf{1 6 0 . 6} \mathrm{kN}$
$f_{\text {corr }}=\mathbf{0 . 8 8}$ as h$/ \mathrm{W}$ is 1.739
$\mathrm{~F}_{\mathrm{w}, \mathrm{D}}=\mathrm{f}_{\text {corr }} \times\left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{\mathrm{l}}+\mathrm{F}_{\mathrm{w}, \mathrm{h}}\right)=\mathbf{2 0 4 . 4} \mathrm{kN}$

Roof load case 8 - Wind 90, $\mathrm{c}_{\text {pi }}-\mathbf{0 . 3 0}$, - c_{pe}

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
$\mathrm{F}(-\mathrm{ve})$	0.27	0.84	0.46	3.05	1.39
$\mathrm{G}(-\mathrm{ve})$	0.27	0.84	0.46	3.81	1.74
H (-ve)	0.27	0.84	0.46	12.20	5.56
I (-ve)	-0.63	0.84	-0.23	12.20	-2.85
J (-ve)	-0.67	0.84	-0.26	6.86	-1.78
L (-ve)	-1.13	0.84	-0.62	7.62	-4.70
M (-ve)	-0.63	0.84	-0.23	12.20	-2.85
N (-ve)	-0.47	0.84	-0.11	246.99	-26.18

Total vertical net force
$F_{w, v}=-19.07 \mathrm{kN}$
Total horizontal net force
$F_{w, h}=10.20 \mathrm{kN}$
Walls load case 8 - Wind 90, $c_{\text {pi }}-0.30$, $-\mathrm{c}_{\mathrm{pe}}$

Zone	Ext pressure coefficient C_{pe}	Peak velocity pressure $\mathrm{q}_{\mathrm{p}},\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Net pressure $\mathrm{p}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	Area $\mathrm{A}_{\text {ref }}\left(\mathrm{m}^{2}\right)$	Net force $\mathrm{F}_{\mathrm{w}}(\mathrm{kN})$
A	-1.20	0.71	-0.52	11.20	-5.85
B	-0.80	0.71	-0.26	44.80	-11.84
C	-0.50	0.71	-0.07	168.00	-11.91
D_{b}	0.72	0.67	0.69	49.00	33.89
D_{u}	0.72	0.71	0.75	7.00	5.26

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Section Structural design of gable end wall				Sheet no.	2
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

E	-0.35	0.71	0.03	56.00	1.47

Overall loading

Equiv leeward net force for upper section
Net windward force for upper section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading upper section
Equiv leeward net force for bottom section
Net windward force for bottom section
Lack of correlation (cl.7.2.2(3) - Note)
Overall loading bottom section
$\mathrm{F}_{\mathrm{I}}=\mathrm{F}_{\mathrm{w}, \mathrm{wE}} / \mathrm{A}_{\mathrm{ref}, \mathrm{wE}} \times \mathrm{A}_{\mathrm{ref}, \mathrm{wu}}=0.2 \mathrm{kN}$
$\mathrm{F}_{\mathrm{w}}=\mathrm{F}_{\mathrm{w}, \mathrm{wu}}=5.3 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=0.85 \mathrm{as} \mathrm{h} / \mathrm{L}$ is 0.435
$F_{w, u}=f_{\text {corr }} \times\left(F_{w}-F_{1}+F_{w, h}\right)=13.0 \mathrm{kN}$
$F_{I}=F_{w, w E} / A_{\text {ref, }, \mathrm{wE}} \times A_{\text {ref, }, \mathrm{wb}}=1.3 \mathrm{kN}$
$F_{w}=F_{w, w b}=33.9 \mathrm{kN}$
$\mathrm{f}_{\text {corr }}=\mathbf{0 . 8 5}$ as h / L is 0.435
$\mathrm{F}_{\mathrm{w}, \mathrm{b}}=\mathrm{f}_{\text {corr }} \times\left(\mathrm{F}_{\mathrm{w}}-\mathrm{F}_{\mathrm{I}}\right)=\mathbf{2 7 . 7} \mathrm{kN}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.23001-HC	
	Structural design of gable end wall				Sheet no.	13
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

SUMMERY OF ALL LOADS CASES

Maximum wind pressure on gable end wall $\quad=0.95 \mathrm{kN} / \mathrm{m}^{2}$
Maximum wind pressure on roof above gable wall
$=0.86 \mathrm{kN} / \mathrm{m}^{2}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	2 Hafren Court - Bewdley				23001-HC	
	Structural design of gable end wall				14	
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

4.0 TIMBER BEAM

TIMBER BEAM ANALYSIS \& DESIGN TO BS5268-2:2002

Applied loading

Beam loads

Load combinations

Load combination 1

Support A	Dead $\times 1.40$
	Imposed $\times 1.60$
Span 1	Dead $\times 1.00$
	Imposed $\times 1.00$
Support B	Dead $\times 1.40$
	Imposed $\times 1.60$

Analysis results

Maximum moment
$\mathrm{M}_{\text {max }}=0.934 \mathrm{kNm} \quad \mathrm{M}_{\text {min }}=\mathbf{0 . 0 0 0} \mathrm{kNm}$
Design moment
$\mathrm{M}=\max \left(\mathrm{abs}\left(\mathrm{M}_{\max }\right), \operatorname{abs}\left(\mathrm{M}_{\text {min }}\right)\right)=0.934 \mathrm{kNm}$
Maximum shear
$F_{\text {max }}=3.026 \mathrm{kN} \quad F_{\text {min }}=-3.026 \mathrm{kN}$
Design shear
$\mathrm{F}=\max \left(\mathrm{abs}\left(\mathrm{F}_{\max }\right), \mathrm{abs}\left(\mathrm{F}_{\text {min }}\right)\right)=3.026 \mathrm{kN}$
Total load on beam
$\mathrm{W}_{\text {tot }}=6.052 \mathrm{kN}$
Reactions at support A
$\mathrm{R}_{\mathrm{A}_{2} \max }=3.026 \mathrm{kN} \quad \mathrm{R}_{\mathrm{A}_{\mathrm{min}}}=3.026 \mathrm{kN}$
Unfactored dead load reaction at support A
$R_{A_{\text {_Dead }}}=1.291 \mathrm{kN}$
Unfactored imposed load reaction at support A
$\mathrm{R}_{\mathrm{A} _ \text {Imposed }}=1.735 \mathrm{kN}$
Reactions at support B
$\mathrm{R}_{\mathrm{B}_{\mathrm{B}} \max }=3.026 \mathrm{kN}$
$R_{B \text { min }}=3.026 \mathrm{kN}$
Unfactored dead load reaction at support B
$R_{B_{B} \text { Dead }}=1.291 \mathrm{kN}$
Unfactored imposed load reaction at support B
$\mathrm{R}_{\mathrm{B} _ \text {Imposed }}=1.735 \mathrm{kN}$

Timber section details

Breadth of sections	$b=\mathbf{1 8 0} \mathrm{mm}$
Depth of sections	$\mathrm{h}=\mathbf{1 8 0} \mathrm{mm}$
Number of sections in member	$\mathrm{N}=\mathbf{1}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Section Structural design of gable end wall				Sheet no.	15
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

Overall breadth of member
Timber strength class
$\mathrm{b}_{\mathrm{b}}=\mathrm{N} \times \mathrm{b}=180 \mathrm{~mm}$
C24
Member details
Service class of timber
Load duration
Length of span
Length of bearing

Section properties

Cross sectional area of member
Section modulus

Second moment of area

Radius of gyration

Modification factors

Duration of loading - Table 17
Bearing stress - Table 18
Total depth of member - cl.2.10.6
Load sharing - cl.2.9

1
Long term
$L_{s 1}=1235 \mathrm{~mm}$
$L_{b}=100 \mathrm{~mm}$
$\mathrm{A}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}=\mathbf{3 2 4 0 0} \mathrm{mm}^{2}$
$Z_{x}=N \times b \times h^{2} / 6=972000 \mathrm{~mm}^{3}$
$\mathrm{Z}_{\mathrm{y}}=\mathrm{h} \times(\mathrm{N} \times \mathrm{b})^{2} / 6=972000 \mathrm{~mm}^{3}$
$\mathrm{l}_{\mathrm{x}}=\mathrm{N} \times \mathrm{b} \times \mathrm{h}^{3} / 12=\mathbf{8 7 4 8 0 0 0 0} \mathrm{mm}^{4}$
$l_{y}=h \times(N \times b)^{3} / 12=87480000 \mathrm{~mm}^{4}$
$i_{x}=\sqrt{ }\left(I_{x} / A\right)=52.0 \mathrm{~mm}$
$\mathrm{i}_{\mathrm{y}}=\sqrt{ }\left(\mathrm{I}_{\mathrm{y}} / \mathrm{A}\right)=\mathbf{5 2 . 0} \mathrm{mm}$

Lateral support - cl.2.10.8
Ends held in position and members held in line, as by purlins or tie rods at centres not more than 30 times the breadth of the member

Permissible depth-to-breadth ratio - Table 19
Actual depth-to-breadth ratio
4.00
$h /(N \times b)=1.00$
PASS - Lateral support is adequate
Compression perpendicular to grain
Permissible bearing stress (no wane)
Applied bearing stress
$\sigma_{c _ \text {_adm }}=\sigma_{c p 1} \times \mathrm{K}_{3} \times \mathrm{K}_{4} \times \mathrm{K}_{8}=2.400 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c_{_} a}=R_{\mathrm{A}_{-} \max } /\left(\mathrm{N} \times \mathrm{b} \times \mathrm{L}_{\mathrm{b}}\right)=0.168 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{c _a} / \sigma_{c _a d m}=0.070$

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permissible bending stress
Applied bending stress
$\sigma_{\mathrm{m} _ \text {adm }}=\sigma_{\mathrm{m}} \times \mathrm{K}_{3} \times \mathrm{K}_{7} \times \mathrm{K}_{8}=7.933 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m}}^{\mathrm{a}} \mathrm{a}=\mathrm{M} / \mathrm{Z}_{\mathrm{x}}=0.961 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{\mathrm{m} _a} / \sigma_{\mathrm{m} _a d m}=0.121$
PASS - Applied bending stress is less than permissible bending stress

Shear parallel to grain

Permissible shear stress
Applied shear stress
$\tau_{\mathrm{adm}}=\tau \times \mathrm{K}_{3} \times \mathrm{K}_{8}=0.710 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}}=3 \times \mathrm{F} /(2 \times \mathrm{A})=0.140 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{a}} / \tau_{\text {adm }}=0.197$
PASS - Applied shear stress is less than permissible shear stress

Deflection

Modulus of elasticity for deflection
Permissible deflection
Bending deflection
$\mathrm{E}=\mathrm{E}_{\text {min }}=\mathbf{7 2 0 0} \mathrm{N} / \mathrm{mm}^{2}$
$\delta_{\text {adm }}=\min \left(0.118 \mathrm{in}, 0.003 \times \mathrm{L}_{\mathrm{s} 1}\right)=2.997 \mathrm{~mm}$
$\delta_{\text {b_s } 1}=\mathbf{0 . 2 3 6} \mathrm{mm}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdle				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				16	
	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date

Shear deflection
Total deflection
$\delta_{\mathrm{v} \text { _s } 1}=\mathbf{0 . 0 7 7} \mathrm{mm}$
$\delta_{\mathrm{a}}=\delta_{\mathrm{b} _ \text {s } 1}+\delta_{\mathrm{v}_{-} \mathrm{s} 1}=\mathbf{0 . 3 1 3} \mathrm{mm}$
$\delta_{\mathrm{a}} / \delta_{\text {adm }}=\mathbf{0 . 1 0 4}$
PASS - Total deflection is less than permissible deflection

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				17	17
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

5.0 MASONRY WALL PANEL DESIGN (EN1996)

MASONRY WALL PANEL DESIGN

In accordance with EN1996-1-1:2005 + A1:2012 incorporating Corrigenda February 2006 and July 2009 and the UK national annex

Masonry panel details

Wall between Timber frame - Unreinforced masonry wall without openings
Panel length
$\mathrm{L}=1054 \mathrm{~mm}$
Panel height
$\mathrm{h}=1325 \mathrm{~mm}$

Panel support conditions
All edges supported
Effective height of masonry walls - Section 5.5.1.2
Reduction factor

Effective height of wall - eq 5.2
$\rho_{2}=1.000$
$\rho_{4}=0.5 \times \mathrm{L} / \mathrm{h}=0.398$
$\mathrm{h}_{\text {ef }}=\rho_{4} \times \mathrm{h}=527 \mathrm{~mm}$

Single-leaf wall construction details
Wall thickness

$$
\mathrm{t}=100 \mathrm{~mm}
$$

Effective thickness of masonry walls - Section 5.5.1.3
Effective thickness

$$
\mathrm{t}_{\mathrm{ef}}=\mathrm{t}=\mathbf{1 0 0} \mathrm{mm}
$$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project				Job Ref.23001-HC	
	Structural design of gable end wall				18	
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

Masonry details

Masonry type
Compressive strength of masonry
Clay with water absorption between 7\% and 12\% - Group 1

Height of unit
$\mathrm{f}_{\mathrm{c}}=7.3 \mathrm{~N} / \mathrm{mm}^{2}$

Width of unit
$h_{u}=215 \mathrm{~mm}$
$\mathrm{w}_{\mathrm{u}}=100 \mathrm{~mm}$
Conditioning factor
$\mathrm{k}=1.0$

- Conditioning to the air dry condition in accordance with cl.7.3.2

Shape factor - Table A. 1
$\mathrm{d}_{\mathrm{sf}}=1.38$
Norm. mean compressive strength of masonry
$\mathrm{f}_{\mathrm{b}}=\mathrm{f}_{\mathrm{c}} \times \mathrm{k} \times \mathrm{d}_{\mathrm{sf}}=10.074 \mathrm{~N} / \mathrm{mm}^{2}$
Density of masonry
$\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$
Mortar type
M6-General purpose mortar
Compressive strength of masonry mortar
$\mathrm{f}_{\mathrm{m}}=\mathbf{6 N} / \mathrm{mm}^{2}$
Compressive strength factor - Table NA. 4
$\mathrm{K}=0.50$
Characteristic compressive strength of masonry - eq 3.1
$\mathrm{f}_{\mathrm{k}}=\mathrm{K} \times \mathrm{f}_{\mathrm{b}}{ }^{0.7} \times \mathrm{f}_{\mathrm{m}}{ }^{0.3}=4.312 \mathrm{~N} / \mathrm{mm}^{2}$
Characteristic flexural strength of masonry having a plane of failure parallel to the bed joints - Table NA. 6

$$
\mathrm{f}_{\mathrm{xk} 1}=0.4 \mathrm{~N} / \mathrm{mm}^{2}
$$

Characteristic flexural strength of masonry having a plane of failure perpendicular to the bed joints - Table NA. 6
$\mathrm{f}_{\mathrm{xk} 2}=1.1 \mathrm{~N} / \mathrm{mm}^{2}$

Lateral loading details

Characteristic wind load on panel
$W_{k}=1.000 \mathrm{kN} / \mathrm{m}^{2}$
Vertical loading details
Permanent load on top of wall $\quad \mathrm{G}_{\mathrm{k}}=2.09 \mathrm{kN} / \mathrm{m}$
Variable load on top of wall
$Q_{k}=2.81 \mathrm{kN} / \mathrm{m}$
Partial factors for material strength
Category of manufacturing control
Category II
Class of execution control
Class 2
Partial factor for masonry in compressive flexure
$\gamma_{\mathrm{Mc}}=\mathbf{3 . 0 0}$
Partial factor for masonry in tensile flexure
$\gamma_{\mathrm{Mt}}=2.70$
Partial factor for masonry in shear
$\gamma_{M v}=2.50$

Slenderness ratio of masonry walls - Section 5.5.1.4

Allowable slenderness ratio
Slenderness ratio
$\mathrm{SR}_{\text {all }}=27$
$\mathrm{SR}=\mathrm{h}_{\mathrm{ef}} / \mathrm{t}_{\mathrm{ef}}=5.3$
PASS - Slenderness ratio is less than maximum allowable
Unreinforced masonry walls subjected to mainly vertical loading - Section 6.1
Partial safety factors for design loads
Partial safety factor for permanent load
$\gamma_{\mathrm{fG}}=1.35$
Partial safety factor for variable imposed load
$\gamma_{\mathrm{fQ}}=1.5$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				Sheet no.	19
	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date

Partial safety factor for variable wind load
$\gamma_{\mathrm{FW}}=0.75$
Check vertical loads
Reduction factor for slenderness and eccentricity - Section 6.1.2.2

Vertical load at top of wall
Moment at top of wall due to vertical load Initial eccentricity - cl.5.5.1.1
Moment at top of wall due to horizontal load
Eccentricity at top of wall due to horizontal load
Eccentricity at top of wall - eq.6.5
Reduction factor at top of wall - eq.6.4
Vertical load at middle of wall
Moment at middle of wall due to vertical load
Moment at middle of wall due to horizontal load
Eccentricity at middle of wall due to horizontal load
Eccentricity at middle of wall due to loads - eq.6.7
Eccentricity at middle of wall due to creep
Eccentricity at middle of wall - eq.6.6
From eq.G. 2
Short term secant modulus of elasticity factor
Modulus of elasticity - cl.3.7.2
Slenderness - eq.G. 4
From eq.G. 3
Reduction factor at middle of wall - eq.G. 1
Reduction factor for slenderness and eccentricity
$N_{\text {id }}=\gamma_{\mathrm{fG}} \times \mathrm{G}_{\mathrm{k}}+\gamma_{\mathrm{fQ}} \times \mathrm{Q}_{\mathrm{k}}=7.037 \mathrm{kN} / \mathrm{m}$
$M_{i d}=\gamma_{\mathrm{fG}} \times \mathrm{G}_{\mathrm{k}} \times \mathrm{e}_{\mathrm{G}}+\gamma_{\mathrm{fQ}} \times \mathrm{Q}_{\mathrm{k}} \times \mathrm{e}_{\mathrm{Q}}=0 \mathrm{kNm} / \mathrm{m}$
$\mathrm{e}_{\text {init }}=\mathrm{h}_{\text {ef }} / 450=1.2 \mathrm{~mm}$
$\mathrm{M}_{\mathrm{Eid}}=0 \mathrm{kNm} / \mathrm{m}$
$\mathrm{e}_{\mathrm{h}}=\mathbf{0} \mathrm{mm}$
$e_{i}=\max \left(M_{i d} / N_{i d}+e_{h}+e_{\text {init, }}, 0.05 \times t\right)=5 \mathrm{~mm}$
$\Phi_{\mathrm{i}}=\max \left(1-2 \times \mathrm{e}_{\mathrm{i}} / \mathrm{t}, 0\right)=0.9$
$\mathrm{N}_{\mathrm{md}}=\gamma_{\mathrm{fG}} \times\left(\mathrm{G}_{\mathrm{k}}+\gamma \times \mathrm{t} \times \mathrm{h} / 2\right)+\gamma_{\mathrm{fQ}} \times \mathrm{Q}_{\mathrm{k}}=8.646 \mathrm{kN} / \mathrm{m}$
$M_{m d}=\gamma_{f G} \times G_{k} \times e_{G}+\gamma_{f Q} \times Q_{k} \times e_{Q}=0 \mathrm{kNm} / \mathrm{m}$
$\mathrm{M}_{\mathrm{Emd}}=0.019 \mathrm{kNm} / \mathrm{m}$
$\mathrm{e}_{\mathrm{hm}}=\mathrm{M}_{\mathrm{Emd}} / \mathrm{N}_{\mathrm{md}}=2.2 \mathrm{~mm}$
$e_{m}=M_{m d} / N_{m d}+e_{h m}+e_{\text {init }}=3.4 \mathrm{~mm}$
$e_{k}=0 \mathrm{~mm}$
$e_{m k}=\max \left(e_{m}+e_{k}, 0.05 \times t\right)=5 \mathrm{~mm}$
$\mathrm{A}_{1}=1-2 \times \mathrm{e}_{\mathrm{mk}} / \mathrm{t}=0.9$
$\mathrm{K}_{\mathrm{E}}=1000$
$\mathrm{E}=\mathrm{K}_{\mathrm{E}} \times \mathrm{f}_{\mathrm{k}}=4312 \mathrm{~N} / \mathrm{mm}^{2}$
$\lambda=\left(h_{\text {ef }} / t_{\text {ef }}\right) \times \sqrt{ }\left(\mathrm{f}_{\mathrm{k}} / \mathrm{E}\right)=\mathbf{0 . 1 6 7}$
$u=(\lambda-0.063) /\left(0.73-1.17 \times e_{m k} / t\right)=0.154$
$\Phi_{\mathrm{m}}=\max \left(\mathrm{A}_{1} \times \mathrm{e}_{\mathrm{e}}{ }^{-(\mathrm{u} \times \mathrm{u}) / 2}, 0\right)=0.889$
$\Phi=\min \left(\Phi_{\mathrm{i}}, \Phi_{\mathrm{m}}\right)=0.889$

Verification of unreinforced masonry walls subjected to mainly vertical loading - Section 6.1.2

Design value of the vertical load
Design compressive strength of masonry
Vertical resistance of wall - eq.6.2
$N_{E d}=\max \left(N_{\text {id }}, N_{m d}\right)=8.646 \mathrm{kN} / \mathrm{m}$
$\mathrm{f}_{\mathrm{d}}=\mathrm{f}_{\mathrm{k}} / \gamma_{\mathrm{Mc}}=1.437 \mathrm{~N} / \mathrm{mm}^{2}$
$N_{R d}=\Phi \times t \times f_{d}=127.822 \mathrm{kN} / \mathrm{m}$
PASS - Design vertical resistance exceeds applied design vertical load

Unreinforced masonry walls subjected to lateral loading - Section 6.3

Partial safety factors for design loads

Partial safety factor for permanent load

$$
\begin{aligned}
& \gamma_{\mathrm{fG}}=1 \\
& \gamma_{\mathrm{fQ}}=0 \\
& \gamma_{\mathrm{fW}}=1.5
\end{aligned}
$$

Limiting height and length to thickness ratios for walls under the serviceability limit state - Annex F

Length to thickness ratio
Limiting height to thickness ratio - Figure F. 1
Height to thickness ratio
$L / t=10.54$
80
$h / t=13.25$
PASS - Limiting height to thickness ratio is not exceeded

Design moments of resistance in panels

Self weight at middle of wall
Design compressive strength of masonry
Design vertical compressive stress
$\mathrm{S}_{\mathrm{wt}}=0.5 \times \mathrm{h} \times \mathrm{t} \times \gamma=1.193 \mathrm{kN} / \mathrm{m}$
$\mathrm{f}_{\mathrm{d}}=\mathrm{f}_{\mathrm{k}} / \gamma_{\mathrm{Mc}}=1.437 \mathrm{~N} / \mathrm{mm}^{2}$
$\sigma_{d}=\min \left(\gamma_{\mathrm{fG}} \times\left(\mathrm{G}_{\mathrm{k}}+\mathrm{S}_{\mathrm{wt}}\right) / \mathrm{t}, 0.15 \times \Phi \times \mathrm{f}_{\mathrm{d}}\right)=0.033 \mathrm{~N} / \mathrm{mm}^{2}$

Design flexural strength of masonry parallel to bed joints

$$
f_{\mathrm{xd} 1}=\mathrm{f}_{\mathrm{xk} 1} / \gamma_{\mathrm{Mt}}=0.148 \mathrm{~N} / \mathrm{mm}^{2}
$$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				Sheet no	20
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

Apparent design flexural strength of masonry parallel to bed joints

$$
f_{\mathrm{xd} 1, \mathrm{app}}=\mathrm{f}_{\mathrm{xd} 1}+\sigma_{\mathrm{d}}=0.181 \mathrm{~N} / \mathrm{mm}^{2}
$$

Design flexural strength of masonry perpendicular to bed joints

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{xd} 2}=\mathrm{f}_{\mathrm{x} 2} / \gamma_{\mathrm{Mt}}=0.407 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{Z}=\mathrm{t}^{2} / 6=1666667 \mathrm{~mm}^{3} / \mathrm{m}
\end{aligned}
$$

Elastic section modulus of wall
Moment of resistance parallel to bed joints - eq.6.15

$$
M_{\mathrm{Rd} 1}=f_{\mathrm{xd1} 1, \mathrm{app}} \times \mathrm{Z}=\mathbf{0 . 3 0 2} \mathrm{kNm} / \mathrm{m}
$$

Moment of resistance perpendicular to bed joints - eq.6.15

$$
M_{\mathrm{Rd} 2}=f_{\mathrm{xd} 2} \times Z=0.679 \mathrm{kNm} / \mathrm{m}
$$

Design moment in panels
Orthogonal strength ratio

$$
\mu=f_{\mathrm{xd} 1, \mathrm{app}} / \mathrm{f}_{\mathrm{xd} 2}=\mathbf{0 . 4 4}
$$

Using yield line analysis to calculate bending moment coefficient
Bending moment coefficient
$\alpha=0.068$
Design moment in wall
$\mathrm{M}_{\mathrm{Ed}}=\gamma_{\mathrm{fW}} \times \alpha \times \mathrm{W}_{\mathrm{k}} \times \mathrm{L}^{2}=0.114 \mathrm{kNm} / \mathrm{m}$
PASS - Resistance moment exceeds design moment

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				21	
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

6.0 MASONRY WALL PANEL DESIGN (EN1996)

MASONRY WALL PANEL DESIGN

In accordance with EN1996-1-1:2005 + A1:2012 incorporating Corrigenda February 2006 and July 2009 and the UK national annex

Masonry panel details

Wall between two doors - Unreinforced masonry wall with openings

Panel length	$\mathrm{L}=\mathbf{5 6 8 5} \mathrm{mm}$
Panel height	$\mathrm{h}=\mathbf{2 2 7 0} \mathrm{mm}$

Panel support conditions

All edges supported, right and left continuous

Effective height of masonry walls - Section 5.5.1.2
Reduction factor
$\rho_{2}=1.000$
$\rho_{4}=\rho_{2} /\left(1+\left[\rho_{2} \times h / L\right]^{2}\right)=\mathbf{0 . 8 6 2}$
Effective height of wall - eq 5.2
$h_{\text {ef }}=\rho_{4} \times h=1958 \mathrm{~mm}$

Panel opening details

Spacing length	$\mathrm{L}_{1}=\mathbf{4 6 4} \mathrm{mm}$
Opening width	$\mathrm{w}_{1}=\mathbf{7 7 1} \mathrm{mm}$
Height to underside of lintel	$\mathrm{h}_{1}=1650 \mathrm{~mm}$
Height of opening	$\mathrm{O}_{1}=\mathbf{1 6 5 0 \mathrm { mm }}$
Spacing length	$\mathrm{L}_{2}=\mathbf{3 4 7 8} \mathrm{mm}$
Opening width	$\mathrm{w}_{2}=\mathbf{7 7 1} \mathrm{mm}$
Height to underside of lintel	$\mathrm{h}_{2}=1650 \mathrm{~mm}$
Height of opening	$\mathrm{O}_{2}=1650 \mathrm{~mm}$

Single-leaf wall construction details
Wall thickness
$\mathrm{t}=\mathbf{2 2 5} \mathrm{mm}$
Effective thickness of masonry walls - Section 5.5.1.3
Effective thickness

$$
t_{\text {ef }}=t=225 \mathrm{~mm}
$$

CHARTERED CONSULTING ENGINEERS	2 Hafren Court - Bewdley				23001-HC	
	Structural design of gable end wall				22	
STRUCTURAL CALCULATIONS	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

Masonry details

Masonry type
Compressive strength of masonry
Clay with water absorption between 7\% and 12\% - Group 1

Height of unit
$\mathrm{f}_{\mathrm{c}}=7.3 \mathrm{~N} / \mathrm{mm}^{2}$

Width of unit
$h_{u}=215 \mathrm{~mm}$
$\mathrm{w}_{\mathrm{u}}=225 \mathrm{~mm}$
Conditioning factor
$\mathrm{k}=1.0$

- Conditioning to the air dry condition in accordance with cl.7.3.2

Shape factor - Table A. 1
Norm. mean compressive strength of masonry
Density of masonry
Mortar type
Compressive strength of masonry mortar
Compressive strength factor - Table NA. 4
$\mathrm{d}_{\mathrm{sf}}=1.148$
$\mathrm{f}_{\mathrm{b}}=\mathrm{f}_{\mathrm{c}} \times \mathrm{k} \times \mathrm{d}_{\mathrm{sf}}=8.377 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$
M6-General purpose mortar
$\mathrm{f}_{\mathrm{m}}=\mathbf{6 N} / \mathrm{mm}^{2}$
$\mathrm{K}=0.50$

Characteristic compressive strength of masonry - eq 3.1
$\mathrm{f}_{\mathrm{k}}=\mathrm{K} \times \mathrm{f}_{\mathrm{b}}{ }^{0.7} \times \mathrm{f}_{\mathrm{m}}{ }^{0.3}=\mathbf{3 . 7 8 9} \mathrm{N} / \mathrm{mm}^{2}$
Characteristic flexural strength of masonry having a plane of failure parallel to the bed joints - Table NA. 6

$$
\mathrm{f}_{\mathrm{xk} 1}=0.4 \mathrm{~N} / \mathrm{mm}^{2}
$$

Characteristic flexural strength of masonry having a plane of failure perpendicular to the bed joints - Table NA. 6
$\mathrm{f}_{\mathrm{xk} 2}=1.1 \mathrm{~N} / \mathrm{mm}^{2}$

Lateral loading details

Characteristic wind load on panel
$\mathrm{W}_{\mathrm{k}}=1.000 \mathrm{kN} / \mathrm{m}^{2}$
Vertical loading details
Permanent load on top of wall $\quad \mathrm{G}_{\mathrm{k}}=7.5 \mathrm{kN} / \mathrm{m}$
Variable load on top of wall
$Q_{k}=3 \mathrm{kN} / \mathrm{m}$

Partial factors for material strength

Category of manufacturing control
Class of execution control

Category II

Partial factor for masonry in compressive flexure
Partial factor for masonry in tensile flexure
Partial factor for masonry in shear
Class 2
$\gamma_{\mathrm{Mc}}=3.00$
$\gamma_{\mathrm{Mt}}=2.70$
$\gamma_{M v}=2.50$

Slenderness ratio of masonry walls - Section 5.5.1.4

Allowable slenderness ratio
Slenderness ratio
$\mathrm{SR}_{\text {all }}=27$
$\mathrm{SR}=\mathrm{h}_{\text {ef }} / \mathrm{t}_{\text {ef }}=8.7$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project				Job Ref.23001-HC	
	Structural design of gable end wall				23	
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

PASS - Slenderness ratio is less than maximum allowable
Unreinforced masonry walls subjected to lateral loading - Section 6.3
Partial safety factors for design loads
Partial safety factor for permanent load

$$
\begin{aligned}
& \gamma_{\mathrm{fG}}=1 \\
& \gamma_{\mathrm{fQ}}=0 \\
& \gamma_{\mathrm{f}}=1.5
\end{aligned}
$$

Partial safety factor for variable wind load
Limiting height and length to thickness ratios for walls under the serviceability limit state - Annex F

Length to thickness ratio
Limiting height to thickness ratio - Figure F. 1
Height to thickness ratio

Design moments of resistance in panels

Self weight at top of wall
Design compressive strength of masonry
Design vertical compressive stress
$L / t=25.267$
80
$h / t=10.089$
PASS - Limiting height to thickness ratio is not exceeded

Design flexural strength of masonry parallel to bed joints

$$
\mathrm{f}_{\mathrm{xd} 1}=\mathrm{f}_{\mathrm{xk} 1} / \gamma_{\mathrm{Mt}}=0.148 \mathrm{~N} / \mathrm{mm}^{2}
$$

Apparent design flexural strength of masonry parallel to bed joints

$$
f_{\mathrm{xd} 1, \mathrm{app}}=\mathrm{f}_{\mathrm{xd} 1}+\sigma_{\mathrm{d}}=0.181 \mathrm{~N} / \mathrm{mm}^{2}
$$

Design flexural strength of masonry perpendicular to bed joints
$\mathrm{f}_{\mathrm{xd} 2}=\mathrm{f}_{\mathrm{xk} 2} / \gamma_{\mathrm{Mt}}=0.407 \mathrm{~N} / \mathrm{mm}^{2}$
$Z=t^{2} / 6=8437500 \mathrm{~mm}^{3} / \mathrm{m}$
Elastic section modulus of wall

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{wt}}=0 \mathrm{kN} / \mathrm{m} \\
& \mathrm{f}_{\mathrm{d}}=\mathrm{f}_{\mathrm{k}} / \gamma_{\mathrm{Mc}}=1.263 \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\mathrm{d}}=\min \left(\gamma_{\mathrm{fG}} \times\left(\mathrm{G}_{\mathrm{k}}+\mathrm{S}_{\mathrm{wt}}\right) / \mathrm{t}, 0.15 \times \mathrm{f}_{\mathrm{d}}\right)=0.033 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Moment of resistance parallel to bed joints - eq.6.15

$$
M_{R d 1}=f_{\mathrm{xd1} 1, \mathrm{app}} \times Z=1.531 \mathrm{kNm} / \mathrm{m}
$$

Moment of resistance perpendicular to bed joints - eq.6.15

$$
M_{R d 2}=f_{\mathrm{xd} 2} \times Z=3.438 \mathrm{kNm} / \mathrm{m}
$$

Design moment in panels

Orthogonal strength ratio
$\mu=\mathrm{f}_{\mathrm{xd} 1, \mathrm{app}} / \mathrm{f}_{\mathrm{xd} 2}=\mathbf{0 . 4 5}$

Sub panel no. 1 - Top, bottom and left supported

Ratio panel height to length $\quad h_{s 1 A} / L_{s 1 A}=4.89$
Perpendicular design moment of resistance $\quad M_{\text {Rd2 }}=3.438 \mathrm{kNm} / \mathrm{m}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				24	
	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date

Using elastic analysis to determine bending moment coefficients for a horizontally spanning sub panel
Bending moment coefficient
$\alpha_{\mathrm{s} 1 \mathrm{~A}}=0.5 \times\left(1+2 \times \beta_{\mathrm{s} 1 \mathrm{~A}}\right)=1.331$
Design moment in sub-panel
$\mathrm{M}_{\mathrm{Ed} 1 \mathrm{~A}}=\gamma_{\mathrm{f}} \times \alpha_{\mathrm{s} 1 \mathrm{~A}} \times \mathrm{W}_{\mathrm{k}} \times \mathrm{L}_{\mathrm{s} 1 \mathrm{~A}}{ }^{2}=0.430 \mathrm{kNm} / \mathrm{m}$
PASS - Resistance moment exceeds design moment
WARNING! - The checking of sub-panels for vertical loading is currently beyond the scope of the calculation. This check can be performed by creating a new calculation for this sub-panel, modelled with the appropriate vertical and horizontal loading.

Sub panel no. 2 -Right, left and top supported
Ratio panel height to length
$\mathrm{h}_{\text {s2A }} / \mathrm{L}_{\text {s2A }}=\mathbf{0 . 8 0}$
Perpendicular design moment of resistance
$M_{\text {Rd2 }}=3.438 \mathrm{kNm} / \mathrm{m}$
Using yield line analysis to calculate bending moment coefficient

Bending moment coefficient
Design moment in sub-panel

$$
\alpha_{\mathrm{s} 2 \mathrm{~A}}=0.213
$$

$$
\mathrm{M}_{\mathrm{Ed} 2 \mathrm{~A}}=\gamma \mathrm{f} \mathrm{w} \times \alpha_{\mathrm{s} 2 \mathrm{~A}} \times \mathrm{W}_{\mathrm{k}} \times \mathrm{L}_{\mathrm{s} 2 \mathrm{~A}}^{2}=\mathbf{0 . 1 9 0} \mathrm{kNm} / \mathrm{m}
$$

PASS - Resistance moment exceeds design moment WARNING! - The checking of sub-panels for vertical loading is currently beyond the scope of the calculation. This check can be performed by creating a new calculation for this sub-panel, modelled with the appropriate vertical and horizontal loading.

Sub panel no. 3 - Top and bottom supported

Ratio panel height to length	$h_{s 3 A} / L_{s 3 A}=0.65$
Parallel design moment of resistance	$M_{\text {Rd1 }}=1.531 \mathrm{kNm} / \mathrm{m}$

Using elastic analysis to determine bending moment coefficients for a vertically spanning sub panel

Bending moment coefficient
Design moment in sub-panel
$\alpha_{s 3 A}=0.125 \times\left(1+2 \times \beta_{s 3 A}\right)=\mathbf{0 . 1 8 0}$
$\mathrm{M}_{\mathrm{Ed} 3 \mathrm{~A}}=\gamma_{\mathrm{f}} \times \alpha_{\mathrm{s} 3 \mathrm{~A}} \times \mathrm{W}_{\mathrm{k}} \times \mathrm{h}_{\mathrm{s} 3 \mathrm{~A}}{ }^{2}=1.395 \mathrm{kNm} / \mathrm{m}$
PASS - Resistance moment exceeds design moment
WARNING! - The checking of sub-panels for vertical loading is currently beyond the scope of the calculation. This check can be performed by creating a new calculation for this sub-panel, modelled with the appropriate vertical and horizontal loading.

Sub panel no. 4 - Right, left and top supported
Ratio panel height to length $\quad h_{s 4 A} / L_{s 4 A}=0.80$
Perpendicular design moment of resistance $\quad \mathrm{M}_{\mathrm{Rd} 2}=\mathbf{3 . 4 3 8} \mathrm{kNm} / \mathrm{m}$
Using yield line analysis to calculate bending moment coefficient
Bending moment coefficient

$$
\alpha_{s 4 \mathrm{~A}}=0.213
$$

Design moment in sub-panel
$\mathrm{M}_{\mathrm{Ed} 4 \mathrm{~A}}=\gamma_{\mathrm{fW}} \times \alpha_{\mathrm{s} 4 \mathrm{~A}} \times \mathrm{W}_{\mathrm{k}} \times \mathrm{L}_{\mathrm{s} 4 \mathrm{~A}}^{2}=0.190 \mathrm{kNm} / \mathrm{m}$
PASS - Resistance moment exceeds design moment
WARNING! - The checking of sub-panels for vertical loading is currently beyond the scope of the calculation. This check can be performed by creating a new calculation for this sub-panel, modelled with the appropriate vertical and horizontal loading.

Sub panel no. 5-Top, bottom and right supported

Ratio panel height to length	$h_{s 5 A} / L_{s 5 A}=11.29$
Perpendicular design moment of resistance	$M_{R d 2}=3.438 \mathrm{kNm} / \mathrm{m}$

Using elastic analysis to determine bending moment coefficients for a horizontally spanning sub panel
Bending moment coefficient
$\alpha_{55 A}=0.5 \times\left(1+2 \times \beta_{\mathrm{s} 5 \mathrm{~A}}\right)=2.418$
Design moment in sub-panel
$\mathrm{M}_{\mathrm{Ed5}}=\gamma_{\mathrm{f}} \times \alpha_{\mathrm{s} 5 \mathrm{~A}} \times \mathrm{W}_{\mathrm{k}} \times \mathrm{L}_{\mathrm{s} 5 \mathrm{~A}}{ }^{2}=0.147 \mathrm{kNm} / \mathrm{m}$
PASS - Resistance moment exceeds design moment

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				25	
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

7.0 LOADS ON SINGLE SKIN WALL EXAMPLE

MASONRY BEARING DESIGN

In accordance with EN1996-1-1:2005 + A1:2012, incorporating Corrigenda February 2006 and July 2009 and the UK National Annex.

Masonry panel details

Panel length	$L=\mathbf{3 4 8 0} \mathrm{mm}$
Panel height	$h=\mathbf{2 2 7 0} \mathrm{mm}$
Thickness of load bearing leaf	$t=\mathbf{2 2 5} \mathrm{mm}$
Effective height	$h_{\text {ef }}=\mathbf{2 2 7 0} \mathbf{m m}$
Effective thickness	$t_{e f}=\mathbf{2 2 5} \mathbf{m m}$

Masonry material details

Unit type
Compressive strength of masonry unit
Height of unit
$f_{c}=$

Width of unit
$h_{u}=215 \mathrm{~mm}$

Conditioning factor
$\mathrm{w}_{\mathrm{u}}=215 \mathrm{~mm}$
$\mathrm{k}=1.0$

- Conditioning to the air dry condition in accordance with cl.7.3.2

Shape factor - Table A. 1
Mean compressive strength of masonry unit
Specific weight of units
Mortar type
Compressive strength of mortar
Compressive strength factor - Tbl. NA 4
Characteristic compressive strength of the masonry - eq. 3.1
$\mathrm{f}_{\mathrm{k}}=\mathrm{K} \times \mathrm{f}_{\mathrm{b}}{ }^{0.7} \times \mathrm{f}_{\mathrm{m}}{ }^{0.3}=2.71 \mathrm{~N} / \mathrm{mm}^{2}$
Short term secant modulus of elasticity factor
Modulus of elasticity - cl.3.7.2
$K_{E}=1000$
$E_{w}=K_{E} \times f_{k}=2706 \mathrm{~N} / \mathrm{mm}^{2}$

Design compressive strength of masonry

Category of manufacturing control

Category II

Class 2
Class of execution control
$\mathrm{d}_{\mathrm{sf}}=1.16$
$\mathrm{f}_{\mathrm{b}}=\mathrm{f}_{\mathrm{c}} \times \mathrm{k} \times \mathrm{d}_{\mathrm{sf}}=8.47 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$
M4-General Purpose
$\mathrm{f}_{\mathrm{m}}=4.0 \mathrm{~N} / \mathrm{mm}^{2}$
$K=0.40$

Partial factor for material strength in direct or flexural compression
$\gamma_{M}=3.00$
Cross-sectional area of wall
$\mathrm{A}=\mathrm{L} \times \mathrm{t}=\mathbf{0 . 7 8 \mathrm { m } ^ { 2 }}$
Design compressive strength of masonry
$\mathrm{f}_{\mathrm{d}}=\mathrm{f}_{\mathrm{k}} / \gamma_{\mathrm{M}}=0.90 \mathrm{~N} / \mathrm{mm}^{2}$

Partial safety factors for design loads

Partial safety factor for permanent load
$\gamma_{\mathrm{fG}}=1.35$
Partial safety factor for variable load
$\gamma_{\mathrm{fQ}}=1.50$

Superimposed vertical loading details

Permanent UDL at top of wall
$\mathrm{g}_{\mathrm{k}}=0.00 \mathrm{kN} / \mathrm{m}$
Variable UDL at top of wall
Eccentricity of permanent UDL load
$\mathrm{q}_{\mathrm{k}}=0.00 \mathrm{kN} / \mathrm{m}$
$\mathrm{e}_{\mathrm{gu}}=0 \mathrm{~mm}$
Eccentricity of variable UDL load
$\mathrm{e}_{\mathrm{qu}}=0 \mathrm{~mm}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				Sheet no.	26
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

Slenderness ratio of masonry wall - Section 5.5.1.4
Slenderness ratio limit

$$
\begin{aligned}
& \lambda_{\text {lim }}=27 \\
& \lambda=h_{\text {ef }} / t_{\text {ef }}=10.1
\end{aligned}
$$

Slenderness ratio
PASS - Slenderness ratio is less than slenderness limit

Concentrated Load 1 details - Timber main supporting beam reaction force

Permanent concentrated load
$\mathrm{G}_{\mathrm{kc} 1}=14.00 \mathrm{kN}$
Variable concentrated load
$Q_{k c 1}=11.00 \mathrm{kN}$
Eccentricity of concentrated load
Length of concentrated load
$\mathrm{e}_{\mathrm{c} 1}=10 \mathrm{~mm}$

Width of concentrated load
Height of concentrated load
Distance of load to right vertical edge
Distance of load to nearest vertical edge
Walls subjected to concentrated loads - Section 6.1.3
Eccentricity check
PASS - Eccentricity of load is less than t/4
Area of bearing
Effective length of bearing at mid-height
Effective bearing area
Bearing area ratio check
Enhancement factor - cl.6.1.3(3)
Design value of the concentrated load
Design value concentrated load resistance
$\mathrm{L}_{\mathrm{c} 1}=\mathbf{1 8 0} \mathrm{mm}$
$\mathrm{w}_{\mathrm{c} 1}=180 \mathrm{~mm}$
$\mathrm{h}_{\mathrm{c} 1}=2270 \mathrm{~mm}$
$\mathrm{r}_{11}=\mathbf{6 6 0} \mathrm{mm}$
$a_{11}=660 \mathrm{~mm}$
$e_{c 1}<=t / 4$
$A_{b 1}=L_{c 1} \times W_{c 1}=32400 \mathrm{~mm}^{2}$
$l_{\text {efm1 }}=L_{c 1}+h_{c 1} \times \tan (30)=1491 \mathrm{~mm}$
$A_{\text {ef1 }}=l_{\text {efm } 1} \times t=335381.65 \mathrm{~mm}^{2}$
$A_{\text {ratio1 }}=\operatorname{Min}\left(A_{b 1} / A_{\text {ef1 }}, 0.45\right)=\mathbf{0 . 1 0}$
$\beta_{1}=1.00$
$N_{\text {Edc } 1}=G_{\mathrm{kc} 1} \times \gamma_{\mathrm{fG}}+Q_{\mathrm{kc} 1} \times \gamma_{\mathrm{fQ}}=35.40 \mathrm{kN}$
$N_{\text {Rdc } 1}=\beta_{1} \times A_{b 1} \times f_{d}=29.22 \mathrm{kN}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	2 Hafren Court - Bewdley				Job Ref.	1-HC
	Structural design of gable end wall				27	
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

Design of spreader beam

Type of spreader
Type of bearing onto spreader
Point load as a UDL
Start of load from RHS of spreader
End of load from RHS of spreader
Length of spreader
Height of spreader
Width of spreader
Eccentricity of load on spreader
Modulus of elasticity
Second moment of area
Modulus of the wall
Winkler's constant
Characteristic of the system
Classification of spreader
Krilov's functions for the spreader length

Concrete padstone

Uniformly distributed
$N_{\text {udl } 1}=N_{\text {Edc1 }} / L_{c 1}=196.67 \mathrm{kN} / \mathrm{m}$
$P_{\text {start } 1}=240.00 \mathrm{~mm}$
$P_{\text {end } 1}=\mathbf{6 0 . 0 0} \mathrm{mm}$
$\mathrm{L}_{\mathrm{sp} 1}=\mathbf{3 0 0 . 0 0} \mathrm{mm}$
$\mathrm{h}_{\mathrm{sp} 1}=215.00 \mathrm{~mm}$
$\mathrm{w}_{\mathrm{sp} 1}=225.00 \mathrm{~mm}$
$\mathrm{e}_{\text {sp } 1}=10 \mathrm{~mm}$
$\mathrm{E}_{\mathrm{sp} 1}=31476 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{I}_{\text {sp } 1}=1 / 12 \times \mathrm{w}_{\text {sp } 1} \times \mathrm{h}_{\mathrm{sp} 1}{ }^{3}=186344531 \mathrm{~mm}^{4}$
$\mathrm{k}_{0}=\mathrm{E}_{\mathrm{w}} / \mathrm{h}=1.19 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{mm}$
$\mathrm{K}_{\mathrm{c} 1}=\mathrm{k}_{0} \times \mathrm{w}_{\text {sp } 1}=268.17 \mathrm{~N} / \mathrm{mm} / \mathrm{mm}$
$\alpha_{1}=\left(K_{c 1} /\left(4 \times E_{\text {sp } 1} \times I_{\text {sp1 } 1}\right)\right)^{1 / 4}=\mathbf{0 . 0 0 1 8 4} \mathrm{mm}^{-1}$
$\alpha L_{1}=\alpha_{1} \times L_{\text {sp1 }}=0.55$ Medium
$B_{\alpha 11}=1 / 2 \times\left(\cosh \left(\alpha L_{1}\right) \times \sin \left(180 \times \alpha L_{1} / \pi\right)+\sinh \left(\alpha L_{1}\right) \times \cos \left(180 \times \alpha L_{1}\right.\right.$
$/ \pi))=0.55$
$C_{\alpha 11}=1 / 2 \times \sinh \left(\alpha L_{1}\right) \times \sin \left(180 \times \alpha L_{1} / \pi\right)=0.15$
$D_{\text {ol1 }}=1 / 4 \times\left(\cosh \left(\alpha L_{1}\right) \times \sin \left(180 \times \alpha L_{1} / \pi\right)-\sinh \left(\alpha L_{1}\right) \times \cos \left(180 \times \alpha L_{1}\right.\right.$
$/ \pi))=0.03$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.23001-HC	
	Structural design of gable end wall				Sheet no.	28
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

Krilov's functions at the start of the load
Krilov's functions at the end of the load

Using method of initial conditions Initial moment of LH edge Initial shear of LH edge Which gives
and

Therefore,
Initial deflection of LH edge
Initial rotationof LH edge

Location of maximum deflection
Krilov's functions at the spreader length

Distance from start load right of location Krilov's functions at the spreader length Distance from end load right of location Krilov's functions at the spreader length Particular integral due to load mm

Maximum deflection

Location of maximum moment
Krilov's functions at the spreader length

Distance from start load right of location Krilov's functions at the spreader length Distance from end load right of location Krilov's functions at the spreader length Particular integral due to load
Maximum moment

Location of maximum shear
Krilov's functions at the spreader length

Distance from start load right of location
$B_{\alpha \text { Pstart1 }}=1 / 2 \times\left(\cosh \left(\alpha_{1} \times P_{\text {start1 }}\right) \times \sin \left(180 \times \alpha_{1} \times P_{\text {start1 }} / \pi\right)+\sinh \left(\alpha_{1} \times\right.\right.$
$\left.\left.\mathrm{P}_{\text {start1 }}\right) \times \cos \left(180 \times \alpha_{1} \times \mathrm{P}_{\text {start }} / \pi\right)\right)=0.44$
$C_{\alpha \text { Pstart1 }}=1 / 2 \times \sinh \left(\alpha_{1} \times P_{\text {start1 }}\right) \times \sin \left(180 \times \alpha_{1} \times P_{\text {start1 }} / \pi\right)=\mathbf{0 . 1 0}$
$B_{\alpha \text { Pend } 1}=1 / 2 \times\left(\cosh \left(\alpha_{1} \times P_{\text {end }}\right) \times \sin \left(180 \times \alpha_{1} \times P_{\text {end } 1} / \pi\right)+\sinh \left(\alpha_{1} \times\right.\right.$
$\left.\left.P_{\text {end } 1}\right) \times \cos \left(180 \times \alpha_{1} \times P_{\text {end } 1} / \pi\right)\right)=\mathbf{0 . 1 1}$
$C_{\alpha \text { Pend1 }}=1 / 2 \times \sinh \left(\alpha_{1} \times P_{\text {end1 }}\right) \times \sin \left(180 \times \alpha_{1} \times P_{\text {end1 }} / \pi\right)=0.01$
$\mathrm{M}_{01}=\mathbf{0} \mathrm{kNm}$
$V_{01}=0 \mathrm{kN}$
$\left(4 \times \alpha_{1}^{2} \times \mathrm{C}_{\alpha 11} \times \delta_{01}+4 \times \alpha_{1} \times \mathrm{D}_{\alpha 11} \times \Phi_{01}\right) \times \mathrm{E}_{\mathrm{sp} 1} \times \mathrm{I}_{\mathrm{sp} 1}-\mathrm{N}_{\mathrm{udl} 1} / \alpha_{1}^{2} \times$ $\left(\mathrm{C}_{\alpha \text { Pstart1 }}-\mathrm{C}_{\alpha \text { Pend1 }}\right)=0.00 \mathrm{kNm}$
$\left(4 \times \alpha_{1}^{3} \times B_{\alpha l 1} \times \delta_{01}+4 \times \alpha_{1}^{2} \times C_{\alpha \mid 1} \times \Phi_{01}\right) \times \mathrm{E}_{\text {sp } 1} \times I_{\text {sp } 1}-N_{\text {udl1 }} / \alpha_{1} \times$ $\left(\mathrm{B}_{\alpha \text { Pstart1 }}-\mathrm{B}_{\alpha \text { Pend1 }}\right)=\mathbf{0 . 0 0} \mathrm{kN}$
$\delta_{01}=0.43955 \mathrm{~mm}$
$\Phi_{01}=0.000007$
$\mathrm{X}_{\text {def1 }}=150 \mathrm{~mm}$
$\mathrm{A}_{\alpha \times \mathrm{xdef} 1}=\cosh \left(\alpha_{1} \times \mathrm{X}_{\text {def1 }}\right) \times \cos \left(180 \times \alpha_{1} \times \mathrm{X}_{\text {def1 }} / \pi\right)=1.00$
$B_{\alpha \times d e f 1}=1 / 2 \times\left(\cosh \left(\alpha_{1} \times x_{\text {def1 }}\right) \times \sin \left(180 \times \alpha_{1} \times X_{\text {def }} / \pi\right)+\sinh \left(\alpha_{1} \times\right.\right.$
$\left.\left.\mathrm{X}_{\text {def1 }}\right) \times \cos \left(180 \times \alpha_{1} \times \mathrm{X}_{\text {def }} / \pi\right)\right)=\mathbf{0 . 2 8}$
$p_{\text {startdef1 }}=90 \mathrm{~mm}$
$\mathrm{A}_{\alpha \text { pstartdef1 }}=\cosh \left(\alpha_{1} \times \mathrm{p}_{\text {startdef1 }}\right) \times \cos \left(180 \times \alpha_{1} \times \mathrm{p}_{\text {startdef1 }} / \pi\right)=\mathbf{1 . 0 0}$
$p_{\text {enddef1 }}=\mathbf{0} \mathbf{m m}$
$\mathrm{A}_{\alpha \text { penddef1 }}=\cosh \left(\alpha_{1} \times \mathrm{p}_{\text {enddef1 }}\right) \times \cos \left(180 \times \alpha_{1} \times \mathrm{p}_{\text {enddef1 }} / \pi\right)=\mathbf{1 . 0 0}$
$\delta^{\prime}{ }_{1}=\left(-\mathrm{N}_{\text {udl1 }} /\left(4 \times \alpha_{1}{ }^{4}\right) \times\left(\mathrm{A}_{\alpha \text { pstartdef1 }}-\mathrm{A}_{\alpha \text { penddef1 }}\right)\right) /\left(\mathrm{l}_{\text {sp1 } 1} \times \mathrm{E}_{\text {sp1 } 1}\right)=\mathbf{0 . 0 0 0 0 9}$
$\delta_{\max 1}=\mathrm{A}_{\alpha \times \text { def1 } 1} \times \delta_{01}+\mathrm{B}_{\alpha \times \text { def1 }} \times \Phi_{01} / \alpha_{1}+\delta_{1}^{\prime}=\mathbf{0 . 4 4 0 3 0} \mathrm{mm}$
$\mathrm{x}_{\mathrm{M} 1}=150 \mathrm{~mm}$
$C_{\alpha \times M 1}=1 / 2 \times \sinh \left(\alpha_{1} \times \mathrm{x}_{\mathrm{M} 1}\right) \times \sin \left(180 \times \alpha_{1} \times \mathrm{x}_{\mathrm{M} 1} / \pi\right)=\mathbf{0 . 0 4}$
$D_{\alpha \times \mathrm{M} 1}=1 / 4 \times\left(\cosh \left(\alpha_{1} \times \mathrm{X}_{\mathrm{M} 1}\right) \times \sin \left(180 \times \alpha_{1} \times \mathrm{X}_{\mathrm{M} 1} / \pi\right)-\sinh \left(\alpha_{1} \times \mathrm{X}_{\mathrm{M} 1}\right) \times\right.$
$\left.\cos \left(180 \times \alpha_{1} \times \mathrm{X}_{\mathrm{M} 1} / \pi\right)\right)=\mathbf{0 . 0 0}$
$p_{\text {startM } 1}=90 \mathrm{~mm}$
$\mathrm{C}_{\text {apstartM1 }}=1 / 2 \times \sinh \left(\alpha_{1} \times p_{\text {startM1 }}\right) \times \sin \left(180 \times \alpha_{1} \times p_{\text {startM } 1} / \pi\right)=0.01$
$\mathrm{p}_{\text {endM1 }}=\mathbf{0} \mathrm{mm}$
$\mathrm{C}_{\alpha \text { pendM1 }}=1 / 2 \times \sinh \left(\alpha_{1} \times p_{\text {endm1 }}\right) \times \sin \left(180 \times \alpha_{1} \times p_{\text {endM1 }} / \pi\right)=0.00$
$\mathrm{M}_{1}{ }_{1}=-\mathrm{N}_{\text {udl1 }} / \alpha_{1}^{2} \times\left(\mathrm{C}_{\alpha \text { pstartM1 } 1}-\mathrm{C}_{\alpha \text { pendM1 }}\right)=-\mathbf{0 . 8 0} \mathrm{kNm}$
$\mathrm{M}_{\text {Edsp1 } 1}=\left(4 \times \alpha_{1}^{2} \times \mathrm{C}_{\alpha \times \mathrm{M} 1} \times \delta_{01}+4 \times \alpha_{1} \times \mathrm{D}_{\alpha \times \mathrm{M} 1} \times \Phi_{01}\right) \times\left(\mathrm{I}_{\mathrm{sp} 1} \times \mathrm{E}_{\mathrm{sp1} 1}\right)+$
$\mathrm{M}^{\prime}{ }_{1}=0.53 \mathrm{kNm}$
$\mathrm{X}_{\mathrm{V} 1}=\mathbf{6 0} \mathrm{mm}$
$B_{\alpha \times \mathrm{V} 1}=1 / 2 \times\left(\cosh \left(\alpha_{1} \times \mathrm{XV}_{1}\right) \times \sin \left(180 \times \alpha_{1} \times \mathrm{X}_{\mathrm{V} 1} / \pi\right)+\sinh \left(\alpha_{1} \times \mathrm{X}_{\mathrm{V} 1}\right) \times\right.$
$\left.\cos \left(180 \times \alpha_{1} \times \mathrm{x}_{\mathrm{V}_{1}} / \pi\right)\right)=0.11$
$C_{\alpha \times V_{1}}=1 / 2 \times \sinh \left(\alpha_{1} \times X_{V 1}\right) \times \sin \left(180 \times \alpha_{1} \times X_{V 1} / \pi\right)=0.01$
$p_{\text {startV1 }}=0 \mathrm{~mm}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project				Job Ref.23001-HC	
	Structural design of gable end wall				29	
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

Krilov's functions at the spreader length

Distance from end load right of location
Krilov's functions at the spreader length

Particular integral due to load
Maximum shear

Maximum allowable stress under spreader
Maximum reaction
Design stress
$B_{\alpha \text { pstartV1 }}=1 / 2 \times\left(\cosh \left(\alpha_{1} \times p_{\text {startV1 }}\right) \times \sin \left(180 \times \alpha_{1} \times p_{\text {startV1 }} / \pi\right)+\sinh \left(\alpha_{1}\right.\right.$
$\left.\left.\times \mathrm{p}_{\text {startV1 } 1}\right) \times \cos \left(180 \times \alpha_{1} \times \mathrm{p}_{\text {startV } 1} / \pi\right)\right)=\mathbf{0 . 0 0}$
$p_{\text {endV1 }}=0 \mathrm{~mm}$
$B_{\alpha \text { pendV1 }}=1 / 2 \times\left(\cosh \left(\alpha_{1} \times p_{\text {endV1 }}\right) \times \sin \left(180 \times \alpha_{1} \times p_{\text {endV1 }} / \pi\right)+\sinh \left(\alpha_{1}\right.\right.$
$\left.\left.\times \mathrm{p}_{\mathrm{end} 1} 1\right) \times \cos \left(180 \times \alpha_{1} \times \mathrm{p}_{\mathrm{end} 1} / \pi\right)\right)=\mathbf{0 . 0 0}$
$\mathrm{V}^{\prime}{ }_{1}=-\mathrm{N}_{\text {ual1 } 1} / \alpha_{1} \times\left(\mathrm{B}_{\alpha \text { pstartV1 }}-\mathrm{B}_{\alpha \text { pendV1 }}\right)=0.00 \mathrm{kN}$
$\mathrm{V}_{\text {Edsp1 }}=\left(4 \times \alpha_{1}{ }^{3} \times \mathrm{B}_{\alpha \times \mathrm{V} 1} \times \delta_{01}+4 \times \alpha_{1}{ }^{2} \times \mathrm{C}_{\alpha \times \mathrm{V} 1} \times \Phi_{01}\right) \times\left(\mathrm{I}_{\text {sp } 1} \times \mathrm{E}_{\text {sp1 } 1}\right)+$ $V^{\prime}{ }_{1}=7.08 \mathrm{kN}$

$$
\begin{aligned}
& \sigma_{R d s p 1}=\beta_{1} \times \mathrm{f}_{\mathrm{d}}=\mathbf{0 . 9 0} \mathrm{N} / \mathrm{mm}^{2} \\
& \mathrm{~N}_{\text {Edsp1 }}=\mathrm{K}_{\mathrm{c} 1} \times \delta_{\max 1}=\mathbf{1 1 8 . 0 8} \mathrm{kN} / \mathrm{m} \\
& \sigma_{\text {Edsp1 }}=\mathrm{N}_{\text {Edsp1 }} / \mathrm{w}_{\text {sp1 } 1} \times\left(1+6 \times \mathrm{e}_{\text {sp1 } 1} / \mathrm{W}_{\mathrm{sp1} 1}\right)=\mathbf{0 . 6 6} \mathrm{N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Design stress under spreader is less than the allowable bearing stress
Walls subjected to mainly vertical loading - Section6.1.2
Eccentricity of permanent UDL at mid-height below concentrated load

$$
e_{g m u 1}=e_{g u} \times h_{c 1} /(2 \times h)=0.0 \mathrm{~mm}
$$

Eccentricity of variable UDL at mid-height below concentrated load

$$
\mathrm{e}_{\mathrm{qmu} 1}=\mathrm{e}_{\mathrm{qu}} \times \mathrm{h}_{\mathrm{c} 1} /(2 \times \mathrm{h})=0.0 \mathrm{~mm}
$$

Eccentricity of concentrated load at mid-height Initial eccentricity - cl.5.5.1.1(4)
Concentrated load at mid-height as UDL
Vertical load at mid-height
Design moment at mid-height
Eccentricities due to loads - eq. 6.7
Slenderness ratio limit for creep eccentricity
Eccentricity due to creep
Eccentricity at mid-height - eq. 6.6
From eq. G2
From eq. G3
Capacity reduction factor - eq. G1
Design vertical resistance of panel - eq.6.2

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				Sheet no.	30
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

Concentrated Load 2 details - Timber main beam supporting beam reaction force

Permanent concentrated load
Variable concentrated load
Eccentricity of concentrated load
Length of concentrated load
Width of concentrated load
Height of concentrated load
Distance of load to right vertical edge
Distance of load to nearest vertical edge
$\mathrm{G}_{\mathrm{kc} 2}=14.00 \mathrm{kN}$
$Q_{\mathrm{kc} 2}=11.00 \mathrm{kN}$
$\mathrm{e}_{\mathrm{c} 2}=15 \mathrm{~mm}$
$\mathrm{L}_{\mathrm{c} 2}=\mathbf{2 2 5} \mathrm{mm}$
$\mathrm{w}_{\mathrm{c} 2}=225 \mathrm{~mm}$
$\mathrm{h}_{\mathrm{c} 2}=\mathbf{2 2 7 0} \mathrm{mm}$
$r_{12}=2566 \mathrm{~mm}$
$a_{12}=689 \mathrm{~mm}$

Walls subjected to concentrated loads - Section 6.1.3

Eccentricity check

Area of bearing
Effective length of bearing at mid-height
Effective bearing area
Bearing area ratio check
Enhancement factor - cl.6.1.3(3)
Design value of the concentrated load
Design value concentrated load resistance

Design of spreader beam

Type of spreader
Type of bearing onto spreader
Point load as a UDL
Start of load from RHS of spreader
End of load from RHS of spreader
Length of spreader
Height of spreader
Width of spreader
$e_{c 2}<=t / 4$
PASS - Eccentricity of load is less than t/4
$\mathrm{A}_{\mathrm{b} 2}=\mathrm{L}_{\mathrm{c} 2} \times \mathrm{W}_{\mathrm{c} 2}=\mathbf{5 0 6 2 5} \mathrm{mm}^{2}$
$l_{\text {efm2 }}=L_{\mathrm{c} 2}+h_{\mathrm{c} 2} \times \tan (30)=1536 \mathrm{~mm}$
$A_{\text {ef2 }}=l_{\text {efm2 }} \times t=345506.65 \mathrm{~mm}^{2}$
$A_{\text {ratio2 }}=\operatorname{Min}\left(A_{b 2} / A_{\text {ef2 }}, 0.45\right)=0.15$
$\beta_{2}=1.00$
$N_{\mathrm{Edc} 2}=\mathrm{G}_{\mathrm{kc} 2} \times \gamma_{\mathrm{fG}}+\mathrm{Q}_{\mathrm{kc} 2} \times \gamma_{\mathrm{fQ}}=35.40 \mathrm{kN}$
$N_{\text {Rdc2 }}=\beta_{2} \times A_{b 2} \times f_{d}=45.66 \mathrm{kN}$
PASS - Design resistance exceeds applied concentrated load

Concrete padstone

Uniformly distributed
$N_{\text {udl2 }}=N_{\text {Edc2 }} / L_{c 2}=157.33 \mathrm{kN} / \mathrm{m}$
$P_{\text {start2 }}=\mathbf{2 6 2 . 5 0 ~ m m}$
$P_{\text {end2 }}=37.50 \mathrm{~mm}$
$\mathrm{L}_{\mathrm{sp} 2}=\mathbf{3 0 0 . 0 0} \mathrm{mm}$
$\mathrm{h}_{\text {sp2 } 2}=\mathbf{2 1 5 . 0 0} \mathrm{mm}$
$\mathrm{w}_{\mathrm{sp} 2}=\mathbf{2 2 5 . 0 0} \mathrm{mm}$

CHARTERED CONSULTING ENGINEERS

2 Hafren Court - Bewdley				Job Ref.	
				23001-HC	
Section				Sheet no.	
Structural design of gable end wall				31	
Calc. by	Date	Chk'd by	Date	App'd by	Date
IM	04/05/2023				

Eccentricity of load on spreader
Modulus of elasticity
Second moment of area
Modulus of the wall
Winkler's constant
Characteristic of the system
Classification of spreader
Krilov's functions for the spreader length

Krilov's functions at the start of the load

Krilov's functions at the end of the load

Using method of initial conditions
Initial moment of LH edge
Initial shear of LH edge
Which gives
and

Therefore,
Initial deflection of LH edge
Initial rotationof LH edge

Location of maximum deflection
Krilov's functions at the spreader length

Distance from start load right of location Krilov's functions at the spreader length Distance from end load right of location Krilov's functions at the spreader length
Particular integral due to load
mm
Maximum deflection

Location of maximum moment
Krilov's functions at the spreader length

Distance from start load right of location
$\mathrm{e}_{\mathrm{sp} 2}=15 \mathrm{~mm}$
$\mathrm{E}_{\mathrm{sp} 2}=29962 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{I}_{\text {sp2 } 2}=1 / 12 \times \mathrm{w}_{\text {sp } 2} \times \mathrm{h}_{\text {sp2 }}{ }^{3}=186344531 \mathrm{~mm}^{4}$
$\mathrm{k}_{0}=\mathrm{E}_{\mathrm{w}} / \mathrm{h}=1.19 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{mm}$
$\mathrm{K}_{\mathrm{c} 2}=\mathrm{k}_{0} \times \mathrm{w}_{\text {sp } 2}=268.17 \mathrm{~N} / \mathrm{mm} / \mathrm{mm}$
$\alpha_{2}=\left(\mathrm{K}_{\mathrm{c} 2} /\left(4 \times \mathrm{E}_{\mathrm{sp} 2} \times \mathrm{I}_{\mathrm{sp} 2}\right)\right)^{1 / 4}=\mathbf{0 . 0 0 1 8 6} \mathrm{mm}^{-1}$
$\alpha \mathrm{L}_{2}=\alpha_{2} \times \mathrm{L}_{\text {sp2 } 2}=0.56$ Medium
$B_{\alpha 12}=1 / 2 \times\left(\cosh \left(\alpha L_{2}\right) \times \sin \left(180 \times \alpha \mathrm{L}_{2} / \pi\right)+\sinh \left(\alpha \mathrm{L}_{2}\right) \times \cos \left(180 \times \alpha \mathrm{L}_{2}\right.\right.$
$/ \pi))=0.56$
$\mathrm{C}_{\alpha 12}=1 / 2 \times \sinh \left(\alpha \mathrm{L}_{2}\right) \times \sin \left(180 \times \alpha \mathrm{L}_{2} / \pi\right)=\mathbf{0 . 1 6}$
$\mathrm{D}_{\alpha 12}=1 / 4 \times\left(\cosh \left(\alpha \mathrm{L}_{2}\right) \times \sin \left(180 \times \alpha \mathrm{L}_{2} / \pi\right)-\sinh \left(\alpha \mathrm{L}_{2}\right) \times \cos \left(180 \times \alpha \mathrm{L}_{2}\right.\right.$
$/ \pi))=0.03$
$B_{\alpha \text { Pstart2 }}=1 / 2 \times\left(\cosh \left(\alpha_{2} \times P_{\text {start2 }}\right) \times \sin \left(180 \times \alpha_{2} \times P_{\text {start2 }} / \pi\right)+\sinh \left(\alpha_{2} \times\right.\right.$
$\left.\left.P_{\text {start2 }}\right) \times \cos \left(180 \times \alpha_{2} \times P_{\text {start2 }} / \pi\right)\right)=0.49$
$\mathrm{C}_{\alpha \text { Pstart2 }}=1 / 2 \times \sinh \left(\alpha_{2} \times \mathrm{P}_{\text {start2 }}\right) \times \sin \left(180 \times \alpha_{2} \times \mathrm{P}_{\text {start2 }} / \pi\right)=\mathbf{0 . 1 2}$
$B_{\alpha \text { Pend2 }}=1 / 2 \times\left(\cosh \left(\alpha_{2} \times P_{\text {end2 }}\right) \times \sin \left(180 \times \alpha_{2} \times P_{\text {end2 }} / \pi\right)+\sinh \left(\alpha_{2} \times\right.\right.$
$\left.\left.\mathrm{P}_{\text {end2 }}\right) \times \cos \left(180 \times \alpha_{2} \times \mathrm{P}_{\text {end2 }} / \pi\right)\right)=0.07$
$C_{\alpha} P_{\text {end2 }}=1 / 2 \times \sinh \left(\alpha_{2} \times P_{\text {end2 }}\right) \times \sin \left(180 \times \alpha_{2} \times P_{\text {end2 }} / \pi\right)=0.00$
$\mathrm{M}_{02}=0 \mathrm{kNm}$
$V_{02}=0 \mathrm{kN}$
$\left(4 \times \alpha_{2}^{2} \times \mathrm{C}_{\alpha 12} \times \delta_{02}+4 \times \alpha_{2} \times \mathrm{D}_{\alpha 12} \times \Phi_{02}\right) \times \mathrm{E}_{\text {sp } 2} \times \mathrm{I}_{\text {sp2 }}-\mathrm{N}_{\mathrm{ual} 2} / \alpha_{2}^{2} \times$
$\left(\mathrm{C}_{\alpha \text { Pstart2 }}-\mathrm{C}_{\alpha \text { Pend2 } 2}\right)=0.00 \mathrm{kNm}$
$\left(4 \times \alpha_{2}{ }^{3} \times \mathrm{B}_{\mathrm{\alpha} 12} \times \delta_{02}+4 \times \alpha_{2}^{2} \times \mathrm{C}_{\mathrm{\alpha} 12} \times \Phi_{02}\right) \times \mathrm{E}_{\mathrm{sp} 2} \times \mathrm{I}_{\mathrm{sp2} 2}-\mathrm{N}_{\mathrm{udl2}} / \alpha_{2} \times$
$\left(\mathrm{B}_{\alpha \text { Pstart2 }}-\mathrm{B}_{\alpha \text { Pend2 }}\right)=0.00 \mathrm{kN}$
$\delta_{02}=0.43969 \mathrm{~mm}$
$\Phi_{02}=\mathbf{0 . 0 0 0 0 0 5}$
$\mathrm{X}_{\text {def2 }}=150 \mathrm{~mm}$
$\mathrm{A}_{\alpha \times \mathrm{def} 2}=\cosh \left(\alpha_{2} \times \mathrm{X}_{\text {def2 }}\right) \times \cos \left(180 \times \alpha_{2} \times \mathrm{X}_{\text {def2 }} / \pi\right)=1.00$
$B_{\alpha \times \text { def2 }}=1 / 2 \times\left(\cosh \left(\alpha_{2} \times x_{\text {def2 }}\right) \times \sin \left(180 \times \alpha_{2} \times X_{\text {def2 }} / \pi\right)+\sinh \left(\alpha_{2} \times\right.\right.$
$\left.\left.\mathrm{X}_{\text {def } 2}\right) \times \cos \left(180 \times \alpha_{2} \times \mathrm{X}_{\text {def } 2} / \pi\right)\right)=\mathbf{0 . 2 8}$
$p_{\text {startdef2 }}=112.5 \mathrm{~mm}$
$\mathrm{A}_{\alpha \text { pstartdef2 }}=\cosh \left(\alpha_{2} \times \mathrm{p}_{\text {startdef2 } 2}\right) \times \cos \left(180 \times \alpha_{2} \times \mathrm{p}_{\text {startdef2 }} / \pi\right)=\mathbf{1 . 0 0}$
$\mathrm{p}_{\text {enddef2 }}=\mathbf{0} \mathbf{~ m m}$
$\mathrm{A}_{\alpha \text { penddef2 }}=\cosh \left(\alpha_{2} \times p_{\text {enddef2 }}\right) \times \cos \left(180 \times \alpha_{2} \times p_{\text {enddef2 }} / \pi\right)=1.00$
$\delta^{\prime} 2=\left(-\mathrm{N}_{\text {ual2 }} /\left(4 \times \alpha_{2}^{4}\right) \times\left(\mathrm{A}_{\alpha \text { pstartdef2 }}-\mathrm{A}_{\alpha \text { penddef2 }}\right)\right) /\left(\mathrm{I}_{\mathrm{sp} 2} \times \mathrm{E}_{\text {sp2 } 2}\right)=\mathbf{0 . 0 0 0 1 9}$
$\delta_{\max 2}=\mathrm{A}_{\alpha \times d e f 2} \times \delta_{02}+\mathrm{B}_{\alpha \times d e f 2} \times \Phi_{02} / \alpha_{2}+\delta^{\prime}{ }_{2}=\mathbf{0 . 4 4 0 2 1} \mathrm{mm}$
$\mathrm{x}_{\mathrm{M} 2}=150 \mathrm{~mm}$
$\mathrm{C}_{\alpha \times \mathrm{M} 2}=1 / 2 \times \sinh \left(\alpha_{2} \times \mathrm{x}_{\mathrm{M} 2}\right) \times \sin \left(180 \times \alpha_{2} \times \mathrm{x}_{\mathrm{M} 2} / \pi\right)=0.04$
$D_{\alpha \times \mathrm{M} 2}=1 / 4 \times\left(\cosh \left(\alpha_{2} \times \mathrm{x}_{\mathrm{M} 2}\right) \times \sin \left(180 \times \alpha_{2} \times \mathrm{x}_{\mathrm{M} 2} / \pi\right)-\sinh \left(\alpha_{2} \times \mathrm{x}_{\mathrm{M} 2}\right) \times\right.$ $\left.\cos \left(180 \times \alpha_{2} \times \mathrm{X}_{\mathrm{M} 2} / \pi\right)\right)=0.00$
$p_{\text {startM2 }}=112.5 \mathrm{~mm}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project 2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				Sheet no	32
	Calc. by IM	Date 04/05/2023	Chk'd by	Date	App'd by	Date

Krilov's functions at the spreader length
Distance from end load right of location
Krilov's functions at the spreader length
Particular integral due to load
Maximum moment

Location of maximum shear
Krilov's functions at the spreader length

Distance from start load right of location
Krilov's functions at the spreader length

Distance from end load right of location
Krilov's functions at the spreader length

Particular integral due to load
Maximum shear

Maximum allowable stress under spreader
Maximum reaction
Design stress
$\mathrm{C}_{\text {apstartM2 }}=1 / 2 \times \sinh \left(\alpha_{2} \times p_{\text {startM2 }}\right) \times \sin \left(180 \times \alpha_{2} \times p_{\text {startM2 }} / \pi\right)=0.02$
$p_{\text {endM2 }}=\mathbf{0 ~ m m}$
$\mathrm{C}_{\text {apendM2 }}=1 / 2 \times \sinh \left(\alpha_{2} \times p_{\text {endM2 }}\right) \times \sin \left(180 \times \alpha_{2} \times p_{\text {endM2 }} / \pi\right)=0.00$
$M_{2}^{\prime}=-N_{\text {udl2 }} / \alpha_{2}^{2} \times\left(\mathrm{C}_{\alpha \text { pstartM2 }}-\mathrm{C}_{\alpha \text { pendM2 }}\right)=-1.00 \mathrm{kNm}$
$M_{\text {Edsp2 } 2}=\left(4 \times \alpha_{2}^{2} \times \mathrm{C}_{\alpha \times \mathrm{M} 2} \times \delta_{02}+4 \times \alpha_{2} \times \mathrm{D}_{\alpha \times \mathrm{M} 2} \times \Phi_{02}\right) \times\left(\mathrm{I}_{\mathrm{sp} 2} \times \mathrm{E}_{\mathrm{sp} 2}\right)+$
$\mathrm{M}_{2}=0.33 \mathrm{kNm}$
$\mathrm{X}_{\mathrm{V} 2}=\mathbf{3 7 . 5} \mathrm{mm}$
$B_{\alpha \times V 2}=1 / 2 \times\left(\cosh \left(\alpha_{2} \times x_{V 2}\right) \times \sin \left(180 \times \alpha_{2} \times x_{V 2} / \pi\right)+\sinh \left(\alpha_{2} \times x_{\mathrm{V} 2}\right) \times\right.$ $\left.\cos \left(180 \times \alpha_{2} \times \mathrm{x}_{\mathrm{V} 2} / \pi\right)\right)=0.07$
$C_{\alpha \times \mathrm{V} 2}=1 / 2 \times \sinh \left(\alpha_{2} \times \mathrm{x}_{\mathrm{V} 2}\right) \times \sin \left(180 \times \alpha_{2} \times \mathrm{x}_{\mathrm{V} 2} / \pi\right)=\mathbf{0 . 0 0}$
$p_{\text {startV2 }}=0 \mathrm{~mm}$
$B_{\alpha \text { pstartV2 }}=1 / 2 \times\left(\cosh \left(\alpha_{2} \times p_{\text {startV2 }}\right) \times \sin \left(180 \times \alpha_{2} \times p_{\text {startV2 }} / \pi\right)+\sinh \left(\alpha_{2}\right.\right.$
$\left.\left.\times \mathrm{p}_{\text {startV2 } 2}\right) \times \cos \left(180 \times \alpha_{2} \times \mathrm{p}_{\text {startV2 }} / \pi\right)\right)=\mathbf{0 . 0 0}$
$p_{\text {endV2 }}=0 \mathrm{~mm}$
$B_{\alpha \text { pendV2 }}=1 / 2 \times\left(\cosh \left(\alpha_{2} \times p_{\text {endV2 }}\right) \times \sin \left(180 \times \alpha_{2} \times p_{\text {endV2 }} / \pi\right)+\sinh \left(\alpha_{2}\right.\right.$
$\left.\left.\times p_{\text {endv2 }}\right) \times \cos \left(180 \times \alpha_{2} \times p_{\text {endv2 }} / \pi\right)\right)=\mathbf{0 . 0 0}$
$\mathrm{V}_{2}^{\prime}=-\mathrm{N}_{\mathrm{udl2} 2} / \alpha_{2} \times\left(\mathrm{B}_{\text {apstartV2 }}-\mathrm{B}_{\text {apendV2 }}\right)=0.00 \mathrm{kN}$
$V_{\text {Edsp2 }}=\left(4 \times \alpha_{2}{ }^{3} \times B_{\alpha \times V 2} \times \delta_{02}+4 \times \alpha_{2}{ }^{2} \times C_{\alpha \times V 2} \times \Phi_{02}\right) \times\left(I_{\text {sp2 }} \times \mathrm{E}_{\text {sp2 }}\right)+$ $\mathrm{V}^{\prime}=4.42 \mathrm{kN}$
$\sigma_{\text {Rdsp2 }}=\beta_{2} \times \mathrm{f}_{\mathrm{d}}=0.90 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{N}_{\text {Edsp2 }}=\mathrm{K}_{\mathrm{c} 2} \times \delta_{\text {max2 }}=118.05 \mathrm{kN} / \mathrm{m}$
$\sigma_{\text {Edsp2 }}=N_{\text {Edsp2 }} / \mathrm{w}_{\mathrm{sp} 2} \times\left(1+6 \times \mathrm{e}_{\mathrm{sp} 2} / \mathrm{w}_{\mathrm{sp} 2}\right)=0.73 \mathrm{~N} / \mathrm{mm}^{2}$

PASS - Design stress under spreader is less than the allowable bearing stress
Walls subjected to mainly vertical loading - Section6.1.2
Eccentricity of permanent UDL at mid-height below concentrated load

$$
e_{g m u 2}=e_{g u} \times h_{c 2} /(2 \times h)=0.0 \mathrm{~mm}
$$

Eccentricity of variable UDL at mid-height below concentrated load

$$
\mathrm{e}_{\mathrm{qmu} 2}=\mathrm{e}_{\mathrm{qu}} \times \mathrm{h}_{\mathrm{c} 2} /(2 \times \mathrm{h})=0.0 \mathrm{~mm}
$$

Eccentricity of concentrated load at mid-height
Initial eccentricity - cl.5.5.1.1(4)
Concentrated load at mid-height as UDL
Vertical load at mid-height
Design moment at mid-height
Eccentricities due to loads - eq. 6.7
Slenderness ratio limit for creep eccentricity
Eccentricity due to creep
Eccentricity at mid-height - eq. 6.6
From eq. G2
From eq. G3
Capacity reduction factor - eq. G1
Design vertical resistance of panel - eq.6.2
PASS - Design value of vertical resistance exceeds applied vertical load

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	2 Hafren Court - Bewdley				Job Ref.23001-HC	
	Section Structural design of gable end wall				Sheet no.	33
	Calc. by IM	$\begin{array}{\|l\|} \hline \text { Date } \\ 04 / 05 / 2023 \end{array}$	Chk'd by	Date	App'd by	Date

8.0 STRIP FOOTING ANALYSIS \& DESIGN (BS8110)

STRIP FOOTING ANALYSIS AND DESIGN (BS8110-1:1997)

Strip footing details

Width of strip footing

$$
\begin{aligned}
& B=450 \mathrm{~mm} \\
& \mathrm{~h}=600 \mathrm{~mm}
\end{aligned}
$$

Depth of strip footing
Depth of soil over strip footing
Density of concrete
Load details
Load width b=250 mm
Load eccentricity
$\mathrm{e}_{\mathrm{P}}=\mathbf{0} \mathrm{mm}$

Soil details

Density of soil
$\rho_{\text {soil }}=20.0 \mathrm{kN} / \mathrm{m}^{3}$
Design shear strength
$\phi^{\prime}=25.0 \mathrm{deg}$
Design base friction
$\delta=19.3 \mathrm{deg}$
Allowable bearing pressure (preloaded assumed)
$P_{\text {bearing }}=150 \mathrm{kN} / \mathrm{m}^{2}$
Axial loading on strip footing
Dead axial load
$\mathrm{P}_{\mathrm{G}}=36.4 \mathrm{kN} / \mathrm{m}$
Imposed axial load
Wind axial load
Total axial load
$\mathrm{P}_{\mathrm{Q}}=6.5 \mathrm{kN} / \mathrm{m}$
$\mathrm{P}_{\mathrm{w}}=1.5 \mathrm{kN} / \mathrm{m}$
$P=44.4 \mathrm{kN} / \mathrm{m}$

Foundation loads

Dead surcharge load
$F_{\text {Gsur }}=10.000 \mathrm{kN} / \mathrm{m}^{2}$
Imposed surcharge load
$F_{\text {Qsur }}=0.000 \mathrm{kN} / \mathrm{m}^{2}$
Strip footing self weight
$\mathrm{F}_{\text {swt }}=\mathrm{h} \times \rho_{\text {conc }}=14.160 \mathrm{kN} / \mathrm{m}^{2}$
Soil self weight
$F_{\text {soil }}=h_{\text {soil }} \times \rho_{\text {soil }}=13.000 \mathrm{kN} / \mathrm{m}^{2}$

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	2 Hafren Court - Bewdley				Job Ref.$23001-\mathrm{HC}$	
	Structural design of gable end wall				Sheet no.	34
	Calc. by IM	Date $04 / 05 / 2023$	Chk'd by	Date	App'd by	Date

Total foundation load

Calculate base reaction

Total base reaction
Eccentricity of base reaction in x
$F=B \times\left(F_{G s u r}+F_{\text {Qsur }}+F_{\text {swt }}+F_{\text {soii }}\right)=16.7 \mathrm{kN} / \mathrm{m}$
$\mathrm{T}=\mathrm{F}+\mathrm{P}=61.1 \mathrm{kN} / \mathrm{m}$
$e_{T}=\left(P \times e_{P}+M+H \times h\right) / T=0 \mathrm{~mm}$
Base reaction acts within middle third of base
Calculate base pressures

Minimum base pressure
Maximum base pressure

Material details

Characteristic strength of concrete

Calculate base lengths

Left hand length
Right hand length
Calculate rate of change of base pressure
Length of base reaction
$\mathrm{q}_{1}=(\mathrm{T} / \mathrm{B}) \times\left(1-6 \times \mathrm{e}_{\mathrm{T}} / \mathrm{B}\right)=\mathbf{1 3 5 . 7 1 6 \mathrm { kN } / \mathrm { m } ^ { 2 }}$
$\mathrm{q}_{2}=(\mathrm{T} / \mathrm{B}) \times\left(1+6 \times \mathrm{e}_{\mathrm{T}} / \mathrm{B}\right)=135.716 \mathrm{kN} / \mathrm{m}^{2}$
$q_{\text {min }}=\min \left(q_{1}, q_{2}\right)=135.716 \mathrm{kN} / \mathrm{m}^{2}$
$q_{\max }=\max \left(q_{1}, q_{2}\right)=135.716 \mathrm{kN} / \mathrm{m}^{2}$
PASS - Maximum base pressure is less than allowable bearing pressure

Rate of change of base pressure

Calculate minimum depth of unreinforced strip footing

Average pressure to left of strip footing
Minimum depth to left of strip footing
Average pressure to right of strip footing
Minimum depth to right of strip footing
Minimum depth of unreinforced strip footing
$q_{L}=q_{1}-C_{x} \times\left(B_{L}-b / 2\right) / 2=135.716 \mathrm{kN} / \mathrm{m}^{2}$
$h_{L \min }=\left(B_{L}-\mathrm{b} / 2\right) \times \max \left(0.15 \times\left[\left(q_{L} / 1 \mathrm{kN} / \mathrm{m}^{2}\right)^{2} /\left(\mathrm{f}_{\mathrm{cu}} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right)\right]^{1 / 4}, 1\right)=100 \mathrm{~mm}$
$q_{R}=q_{2}+C_{x} \times\left(B_{R}-b / 2\right) / 2=135.716 \mathrm{kN} / \mathrm{m}^{2}$
$h_{R \min }=\left(B_{R}-b / 2\right) \times \max \left(0.15 \times\left[\left(\mathrm{q}_{\mathrm{R}} / 1 \mathrm{kN} / \mathrm{m}^{2}\right)^{2} /\left(\mathrm{f}_{\mathrm{cu}} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right)\right]^{1 / 4}, 1\right)=100 \mathrm{~mm}$
$\mathrm{h}_{\text {min }}=\max \left(\mathrm{h}_{\mathrm{Lmin}}, \mathrm{h}_{\mathrm{R}_{\text {min }}}, 300 \mathrm{~mm}\right)=300 \mathrm{~mm}$
PASS - Unreinforced strip footing depth is greater than minimum

CHARTERED CONSULTING ENGINEERS STRUCTURAL CALCULATIONS	Project				Job Ref.23001-HC	
	Structural design of gable end wall				35	
	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

9.0 TWO STOREY WITH OPENINGS EXAMPLE

TWO STOREY WITH OPENINGS

Lintel analysis in accordance with BS5977-1:1981 incorporating Amendment No. 1

Basic lintel dimensions

Lintel clear span
Lintel load application length
Load zone height
Interaction zone height
$\mathrm{L}_{\mathrm{c} 1}=800 \mathrm{~mm}$
$\mathrm{L}=\mathrm{L}_{\mathrm{c} 1} \times 1.1=880 \mathrm{~mm}$
$h_{L Z}=\tan (45) \times \mathrm{L} / 2=440 \mathrm{~mm}$
$h_{l Z}=\tan (60) \times \mathrm{L} / 2=762 \mathrm{~mm}$

Load factors

Dead load factor
Imposed load factor
$L F_{d}=1.40$
$L F_{I}=1.60$

Masonry

Masonry height
$\mathrm{h}_{\mathrm{m}}=\mathbf{2 2 0 0} \mathrm{mm}$
Leaf 1
Masonry density
Masonry thickness
Load at midspan
$\gamma_{\mathrm{mi}}=20.00 \mathrm{kN} / \mathrm{m}^{3}$
$\mathrm{t}_{\mathrm{wi}}=\mathbf{2 2 5} \mathrm{mm}$
$\mathrm{w}_{\mathrm{mi}}=\mathrm{h}_{\mathrm{Lz}} \times \mathrm{t}_{\mathrm{wi}} \times \gamma_{\mathrm{mi}}=1.98 \mathrm{kN} / \mathrm{m}$

Roof loading side 1

Height of roof above lintel
$\mathrm{h}_{\mathrm{r} 1}=2200 \mathrm{~mm}$
Dead load
$\mathrm{G}_{\mathrm{kr} 1}=2.100 \mathrm{kN} / \mathrm{m}$
Imposed load
$Q_{k r 1}=2.840 \mathrm{kN} / \mathrm{m}$

Lintel self weight

Self weight of lintel
$\mathrm{w}_{\mathrm{lsw}}=0.150 \mathrm{kN} / \mathrm{m}$

CHARTERED CONSULTING ENGINEERS	2 Hafren Court - Bewdley				23001-HC	
	Structural design of gable end wall				36	
STRUCTURAL CALCULATIONS	Calc. by IM	$\begin{aligned} & \hline \text { Date } \\ & 04 / 05 / 2023 \end{aligned}$	Chk'd by	Date	App'd by	Date

Masonry load zone

Height of load zone
$h_{L Z}=\mathrm{L} / 2=440 \mathrm{~mm}$
Total masonry area
$A_{L Z}=h_{L Z} \times L / 2=0.194 \mathrm{~m}^{2}$
Total masonry load
$W_{L z}=A_{L z} \times \mathrm{t}_{\text {wi }} \times \gamma_{\mathrm{mi}}=0.871 \mathrm{kN}$
Equivalent UDL
$W_{\text {Equiv_Lz }}=W_{\text {Lz }} \times 1.33 / \mathrm{L}=1.317 \mathrm{kN} / \mathrm{m}$
Load application summary

Load Description	UDL total length (mm)	Start of UDL on lintel (mm)	End of UDL on lintel (mm)	Equiv. dead load on lintel $(\mathrm{kN} / \mathrm{m})$	Equiv. imposed load on lintel $(\mathrm{kN} / \mathrm{m})$
Masonry from load triangle	880	0	880	1.317	0.000

Analysis results at ULS

Maximum moment
Maximum shear
Maximum reaction at support A
Maximum reaction at support B

Support reactions at SLS

Dead loads
Reaction at support A
Reaction at support B
Imposed loads
Reaction at support A
Reaction at support B
Equivalent UDL at SLS
Total equivalent UDL (inc. selfweight)
$M_{\text {max }}=0.199 \mathrm{kNm}$
$V_{\text {max }}=0.702 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{-} \max }=0.702 \mathrm{kN}$
$R_{B_{-} \max }=0.702 \mathrm{kN}$
$R_{A_{-} D L}=0.502 \mathrm{kN}$
$R_{B_{-} D L}=0.502 \mathrm{kN}$
$\mathrm{R}_{\mathrm{A}_{\mathrm{L}} \mathrm{L}}=0.000 \mathrm{kN}$
$\mathrm{R}_{\text {B_L }}=0.000 \mathrm{kN}$
$\mathrm{w}_{\mathrm{e}}=1.467 \mathrm{kN} / \mathrm{m}$
Moment

