AN ADDEDNUM REMEDIATION VERIFICATION REPORT TO SUPPORT THE DEVELOPMENT OF:

OLD STATION YARD, BLYTH ROAD, SOUTHWOLD

CLIENT:	Southwold Town Council
AGENT:	Richard Utting Associates LLP
CONTRACTOR:	Mixbrow Construction Limited
REFERENCE:	RCER/21.259/VR/ADD
DATE:	29 February 2024

A F Howland Associates Limited The Old Exchange Newmarket Road Cringleford Norwich NR4 6UF

Tel: Email: Website: 01603 250754 admin@howland.co.uk www.howland.co.uk

Copyright © A F Howland Associates Limited 2024

CONTENTS

1.	IN	ITRODUCTION	1
2.	R	EMEDIATION STRATEGY	2
3.	С	ONSTRUCTION PHASE VAPOUR MONITORING	4
	3.1	VAPOUR MONITORING METHODOLOGY	4
	3.2	VAPOUR MONITORING RESULTS	4
4.	V	ALIDATION OF WATER SUPPLY PIPES	6
5.	V	ALIDATION OF PLANTERS	7
6.	IN	APORTED SOIL	8
	6.1	SUPPLIER DETAILS	8
	6.2	LABORATORY ANALYSIS RESULTS	8
7.	U	NEXPECTED CONTAMINATION	9
8.	SI	JMMARY AND CONCLUSION	10

APPENDICES

APPENDIX A: REFERENCES	
APPENDIX B: DRAWINGS	
APPENDIX C: IMPORTED SOIL DELIVERY NOTES	
APPENDIX D: WATER SUPPLY PIPE DOCUMENTS	
APPENDIX E: LABORATORY ANALYSIS RESULTS	
APPENDIX F: VALIDATION TRIAL PIT RECORDS	
APPENDIX G: VAPOUR MONITORING RECORDS	

1. INTRODUCTION

A programme of environmental monitoring and remediation has been carried out at Old Station Yard, Blyth Road, Southwold (Drawing 21.259/01). This was required to mitigate the potential contamination risks identified during a series of previous ground investigation carried out to support the development of the site (EPS, 2018; JPC, 2020a; JPC, 2020b; AFHA, 2021a).

At the instruction of Southwold Town Council (the "Client") an addendum verification report was prepared to document the final aspects of the approved remediation strategy developed for the site (AFHA, 2021b), and the results of the environmental monitoring undertaken during the construction phase of the development. This report follows on from a separate verification report (AFHA, 2022b) which was prepared to record the remediation that occurred during demolition and site clearance (e.g. the removal of underground fuel tanks).

The report has been prepared in general accordance with accepted best practice and methodologies (BSI, 2017; EA, 2023). It was prepared for use by the Client and its advisors, any other parties using the contained information do so at their own risk and any duty of care to those parties is specifically excluded subject to copyright as detailed below.

The copyright of any proposal or any data presented in the report, including without exclusion all text and all procedures and methods developed by A F Howland Associates Limited (AFHA) is held by A F Howland Associates Limited and all rights to such are reserved.

No part of the content of, procedures described, or other facets of the report will be copied or used by others outside of the immediate context for which the work was commissioned without the express and specific request and approval to do so in writing.

2. REMEDIATION STRATEGY

Based on the findings of previous phases of ground investigation (EPS, 2018; JPC, 2020a; JPC, 2020b; AFHA, 2021a), a programme of remediation was required to mitigate against chronic human health risks arising from the presence of ten underground fuel tanks and an area of hydrocarbon impacted made ground in the base of a former vehicle inspection pit. Additionally, in order to further reduce any residual risk to end-users, the proposed planters also required upgrading to include a geotextile membrane and the use of 'suitable for use' imported topsoil.

Detailed information regarding the remediation strategy for the site can be found in the approved Remediation Method Statement (AFHA, 2021b). However, the strategy can be summarised into a series of distinct elements which are included below for reference.

- 1. The implementation of a discovery strategy to identify the cause of GPR anomalies, and record any unexpected contamination during the removal of the concrete hardstanding and former vehicle inspection pits (validation carried out previously).
- 2. The removal of underground fuel tanks referenced Tanks 1, 3, 4, 6, 7 and 8 (validation carried out previously).
- 3. The removal of all underground pipework (e.g. vent pipes and fuel lines) (validation carried out previously).
- 4. Removal of the hydrocarbon impacted made ground below the former vehicle inspection pit in Unit 5 (validation carried out previously).
- 5. Reinstatement of all voids with recycled site won concrete and masonry (validation carried out previously).
- 6. A programme of remediation phase investigation around all tanks which were to remain in situ (reported in the residual contamination and vapour risk assessments).
- 7. The construction of raised planters with suitable for use topsoil and a geotextile membrane (outstanding).
- 8. The upgrade of all water supply pipes to barrier pipe (outstanding).

Points 1 to 6 were completed during the demolition phase of the development. The validation of this work has been recorded in a previous verification report (AFHA, 2022b), and residual contamination assessment (AFHA, 2022a) was prepared to assess the potential for any residual risks to end-users or other identified receptors.

During demolition and the initial phase of remediation, it became clear that it was not feasible to remove a number of the underground fuel tanks that were located in close proximity to foundations for party walls. Therefore, it was agreed by the Project Team that these needed to remain in situ. This position was also agreed with the Environmental Protection Officer at East Suffolk District Council (ESDC).

In addition, in order to fulfil the requirements of point 6 referenced above, a specific vapour risk assessment was carried out, focussing on the south east of the site where the tanks were to remain (AFHA, 2022c). This assessment included a programme of vapour monitoring and gas sampling to identify the potential for a risk to end-users of the development and the users of the adjacent buildings. Overall, the vapour risk assessment did not identify an unacceptable risk, and on this basis the removal of the tanks and any surrounding contaminated soil was not specifically required. However, out of an abundance of caution, it was required by and agreed with the Environmental Protection officer at ESDC that a programme of vapour monitoring would be undertaken during the construction phase of the development to ensure that the construction activity did not result in the liberation or accumulation of vapours within the soil or adjacent premises. This was particularly the case where the tanks were to be 'capped' with impermeable hardstanding, which was considered to have the theoretical potential to act as a confining layer - preventing the emission of vapours to the atmosphere and consequently leading to the lateral migration of vapours to affect adjacent off-site receptors.

This verification report specifically addresses the outstanding verification elements, points 7 and 8 described above. In addition, the details of the construction phase vapour monitoring, and an assessment of the results, are both included in Section 3 below.

3. CONSTRUCTION PHASE VAPOUR MONITORING

3.1 VAPOUR MONITORING METHODOLOGY

In general, the monitoring visits were timed to provide both a regular supply of data through the construction period and an increased resolution during periods of groundworks - especially after the 'capping' of the tanks with hardstanding. The approximate programme for the monitoring visits, as agreed with ESDC, was as follows:

Monthly visits during piling and groundworks,

Bi-monthly visits during above ground construction,

Monthly visits during external works,

Four weekly visits following the capping with hardstanding.

Vapour monitoring was carried out between January and December 2023, on a total of twelve occasions. Seven external and six internal positions were monitored for vapours – the same locations that were used for the pre-construction vapour monitoring and assessment, as shown on Drawing 21.259/VR/ADD/02. However, it should be noted that positions WS208 and WS209, utilised within the previous assessment, were "lost" during construction. As these monitoring locations were on the periphery of the area of concern, it was agreed with ESDC that they did not have to be re-installed.

The monitoring was carried out using a MiniRae 3000 portable photo-ionisation detector (PID), in general accordance with the guidelines presented in CIRIA C682 (Baker et al, 2009) and BS 8576:2013 and involved recording the vapour concentration at 30 second intervals over a 10 minute period.

3.2 VAPOUR MONITORING RESULTS

The results of the vapour monitoring are summarised in Tables 1a and 1b below. A full set of monitoring results is provided in Appendix G.

Monitoring Point ID	WS201	WS202	WS203	WS204	WS205	WS206	WS207
Maximum VOC Concentration (ppm)	0.0	0.0	0.1	0.0	0.2	0.1	0.1

Table 1a. Summary of vapour monitoring results from external monitoring standpipes

A F Howland Associates Geotechnical Engineers

Monitoring Point ID	VMP201	VMP202	VMP203	VMP204	VMP205	VMP206
Maximum VOC Concentration (ppm)	0.1	0.1	0.0	0.1	0.0	0.2

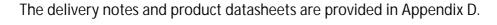
Table 1b. Summary of vapour monitoring results from internal sub-floor monitoring points

The data summarised above indicates that very low concentrations of VOCs were recorded across the site. In all external and internal vapour monitoring points, concentrations of VOC were 0.2 ppm or lower. This would be regarded as a "trace concentration" which would be unlikely to pose a risk to human health via the inhalation of hydrocarbon vapours. There are no trends in the data, such as a transient increase in concentration during groundworks, or after the 'capping' of the area with hardstanding.

During the previous phase of vapour monitoring a maximum VOC concentration of 57.5 ppm was recorded within a standpipe located within the main source area (WS205). In addition, a maximum VOC concentration of 0.9 ppm was recorded in VMP201, one of the sub-floor monitoring points. The risk assessment indicated that the main compounds of concern were volatile aliphatic hydrocarbons, mostly in the C_5 - C_{12} range. Workplace Exposure Limits (WEL) have been prescribed for n-pentane (600 ppm), n-hexane (20 ppm) and n-heptane (500 ppm) and these were used in the assessment. Therefore, to provide a basic screening level for the assessment of the construction phase monitoring, and in order to be sufficiently conservative, the lower bound value of 20 ppm for n-hexane is to be used as a screening value for potential vapour risk.

During the programme of construction phase monitoring, WS205 recorded a maximum VOC concentration of 0.2 ppm. Indeed, on most of the monitoring occasions readings were 0.0 ppm. This demonstrates that the residual concentrations of VOCs around the tanks are lower than those recorded during the vapour risk assessment carried out during pre-construction. This is likely to be a as a consequence of the degradation and volatilisation of the VOC compounds following the permanent decommissioning of all of the tanks and the surrounding soil being open to the atmosphere for a period of approximately 20 months (February 2022 to October 2023).

On the basis that trace concentrations of VOC have been recorded during construction phase monitoring, and all were below the 20 ppm WEL for n-hexane, it is considered that



a basic screening assessment is acceptable and there is no requirement to perform any further or detailed risk assessments. The risk to both end-users of the development and adjacent premises is considered to be low.

4. VALIDATION OF WATER SUPPLY PIPES

Photographs were provided by the Contractor during installation of the water pipes to demonstrate that this work has been completed as required by the remediation strategy. Photograph 1 is an example of the pipes laid within a trench in the ground, and Photograph 2 shows the entry point inside one of the buildings.

The pipework was blue, signifying polyethylene construction, but with a brown stripe. This is the standard water industry visual indicator for barrier pipework. In addition, the brown compression fittings also indicate that these are compatible with the barrier pipe system.

Photograph 1 – Water pipes laid within a trench in the ground. The brown stripe on the pipework is visible, indicating barrier pipework.

Photograph 2 – Entry point of water supply pipes into one of the buildings. The brown stripe on the pipework is visible, indicating barrier pipework.

RCER/21.259/VR/ADD 29 February 2024

On the basis of the information provided by the Contractor, it is apparent that barrier pipework has been installed as required by the remediation strategy and the residual risk to the potable water supply to the development is considered to be low. Consequently, no further risk assessment or remediation is considered to be necessary to protect end-users of the development.

5. VALIDATION OF PLANTERS

In order to reduce any residual risk from the made ground to end-users of the development, it was recommended that all planters include a geotextile membrane to prevent soil mixing, and are constructed using 'suitable for use' soil.

AFHA attended site on 9 February 2024 to verify the presence of a geotextile membrane and record the thickness of the soil within the planters. This was carried out through the excavation of three hand excavated trial pits, referenced VP01 to VP03. During excavation, the imported soil was logged in accordance with BS5930:2015+A1:2020. The trial pit records are provided in Appendix F and their locations are shown on Drawing 21.259/VR/ADD/03 in Appendix B.

The thickness of cover soil was found to be between 250 mm and 420 mm in the trial pits, and in all cases the cover soil was separated from the made ground by a geotextile membrane. The validation trial pits are shown in Photographs 3 to 6 below.

Photograph 3 - VP01, soil depth of 0.28 m. Geotextile visible at the base.

Photograph 4 - VP02, soil depth of 0.25 m. Geotextile visible at the base.

RCER/21.259/VR/ADD 29 February 2024

Photograph 5 - VP03, soil depth of 0.42 m. Geotextile visible at the base.

Photograph 6 – View across all three positions showing surplus geotextile membrane at the surface after being lapped through the base of the planters.

6. IMPORTED SOIL

6.1 SUPPLIER DETAILS

As described in Table 2 below, the delivery of the cover soil to the Contractor was facilitated by CPA Horticulture Limited, who arranged for the supply of this material directly from the British Sugar Co-Products Limited facility in Wissington. Due to the small quantity required this was supplied in 6 bulk bags (~1 m³ each) on pallets. It was delivered to site by Bacton Transport Limited, a member of The Pallet Network (TPN). The despatch and delivery documentation is included in Appendix C for reference.

Material Imported	Date Imported	Supplier	Source Site	Haulier	Number of Loads
Topsoil	8 January 2024	CPA Horticulture Limited	British Sugar Co- products Limited - Wissington Factory	The Pallet Network (TPN)/ Bacton Transport Services Limited	6 no. bulk bags

Table 2. Details of the imported materials used in the remediation

6.2 LABORATORY ANALYSIS RESULTS

Chemical laboratory analysis of the imported topsoil was carried out and provided by the supplier. This is presented in Appendix E. This information is considered to be pertinent to the batch supplied to site, but it only provides details of the analysis of the total soil

component and there is no testing of soil leachate generated from this material. The latter is required in order to be compliant with the requirements of the RMS.

Therefore, in order to provide further confidence that the material was suitable for use and provide analysis of the leachable component of the soil, additional samples of the material were obtained by AFHA on the 9 January 2024. Three composite samples, referenced VS101 to VS103, were collected after it had been delivered to the site. The samples of soil were placed in suitable laboratory grade containers, stored in cool boxes, and delivered to a UKAS accredited facility for analysis of the suite of generic contaminants. The results of the laboratory testing are provided in the analytical report referenced 24-00207 presented in Appendix E.

The laboratory analysis results have been compared to the assessment criteria for the protection of human health and controlled waters provided in Appendix B of the RMS.

An appraisal of the laboratory analysis results indicates that all metals/metalloids and polyaromatic hydrocarbons were recorded at low concentrations and below pertinent generic assessment criteria for the protection of both human health and controlled waters. Indeed, petroleum hydrocarbons and BTEX compounds were all recorded at concentrations below method detection limits, along with cyanides and monohydric phenols. Also, asbestos fibres were not recorded in any of the sample analysed.

As a result, it is considered that both the laboratory analysis results and the chain of custody information for the imported material support the topsoil being suitable for use in a public open space scenario.

7. UNEXPECTED CONTAMINATION

No previously unidentified or unexpected contamination has been identified on site during this phase of remediation, and as such no further investigation and/or risk assessment was required.

8. SUMMARY AND CONCLUSION

A programme of environmental monitoring and remediation has been carried out during the construction phase of the development of Old Station Yard, Blyth Road, Southwold, IP18 6AX.

The remediation was required following the findings of multiple phases of ground investigation. In order to break potential exposure pathways, the remediation required the use of a geotextile membrane and 'suitable for use' imported soil within the planters, and the use of barrier pipework for the potable water supply.

In addition, AFHA attended site during the construction phase to monitor for hydrocarbon vapours at both internal and external monitoring positions.

The vapour monitoring was carried out between January and December 2023 and recorded very low concentrations of VOC - a maximum concentration of 0.2 ppm. This is considerably lower than the concentrations recorded during the programme of pre-construction monitoring that informed the vapour risk assessment. Therefore, a qualitative assessment suggests that this is unlikely to pose a residual risk to either end-users of the development or adjacent premises.

In addition, AFHA attended site following the construction of the planters in order to confirm the presence of a geotextile membrane and record the thickness of imported topsoil.

In general, the validation trial pits excavated by AFHA demonstrate that the construction of the planters meet the specifications set out in the Remediation Method Statement, and there is no residual risk to end-users from soil contamination.

The Contractor has provided a set of site photographs which show that barrier pipe has been installed to service the development. As a result, it is considered that there is no residual risk to water supply pipes.

Additional lines of evidence have been collected throughout the work to validate the completion of the remediation scheme. This includes site photographs, laboratory analysis for the imported topsoil, soil despatch and delivery tickets. These are appended for reference.

No unexpected contamination was identified during the course of the work that could result in a residual risk to future occupiers of the site.

• On the basis of the information collected during the remediation, it is considered that the remediation has been completed in accordance with the approved Remediation Method Statement, and there are no residual risks to end-users of the development that require further assessment or mitigation.

A F HOWLAND ASSOCIATES LIMITED 29 February 2024

APPENDIX A: REFERENCES

A F HOWLAND ASSOCIATES LIMITED. 2021a. Technical Briefing Note for Interpretation of Potential Contamination Risks at: Old Station Yard, Blyth Road, Southwold, IP18 6AX. Referenced: TJS/21.259; Dated: October 2021

A F HOWLAND ASSOCIATES LIMITED. 2021b. A Remediation Strategy and Validation Plan to Support the Redevelopment of: Old Station Yard, Blyth Road, Southwold, IP18 6AX. Referenced: TJS/21.259/RMS/Rev01; Dated: December 2021

A F HOWLAND ASSOCIATES LIMITED. 2022a. A Residual Contamination Assessment to Support the Redevelopment of: Old Station Yard, Blyth Road, Southwold, IP18 6AX. Referenced: TJS/21.259/CA; Dated: March 2022

A F HOWLAND ASSOCIATES LIMITED. 2022b. A Remediation Verification Report To Support the Redevelopment of: Old Station Yard, Blyth Road, Southwold, IP18 6AX. Referenced: TJS/21.259/VR; Dated: June 2022

A F HOWLAND ASSOCIATES LIMITED. 2022c. A Vapour Risk Assessment to Support the Redevelopment of: Old Station Yard, Blyth Road, Southwold, IP18 6AX. Referenced: TJS/21.259/VRA; Dated: June 2022

BRITISH STANDARDS INSTITUTION (BSI). 2013. BS 8576:2013. Guidance on investigations for ground gas – Permanent gases and Volatile Organic Compounds (VOCs). British Standards Institution. London

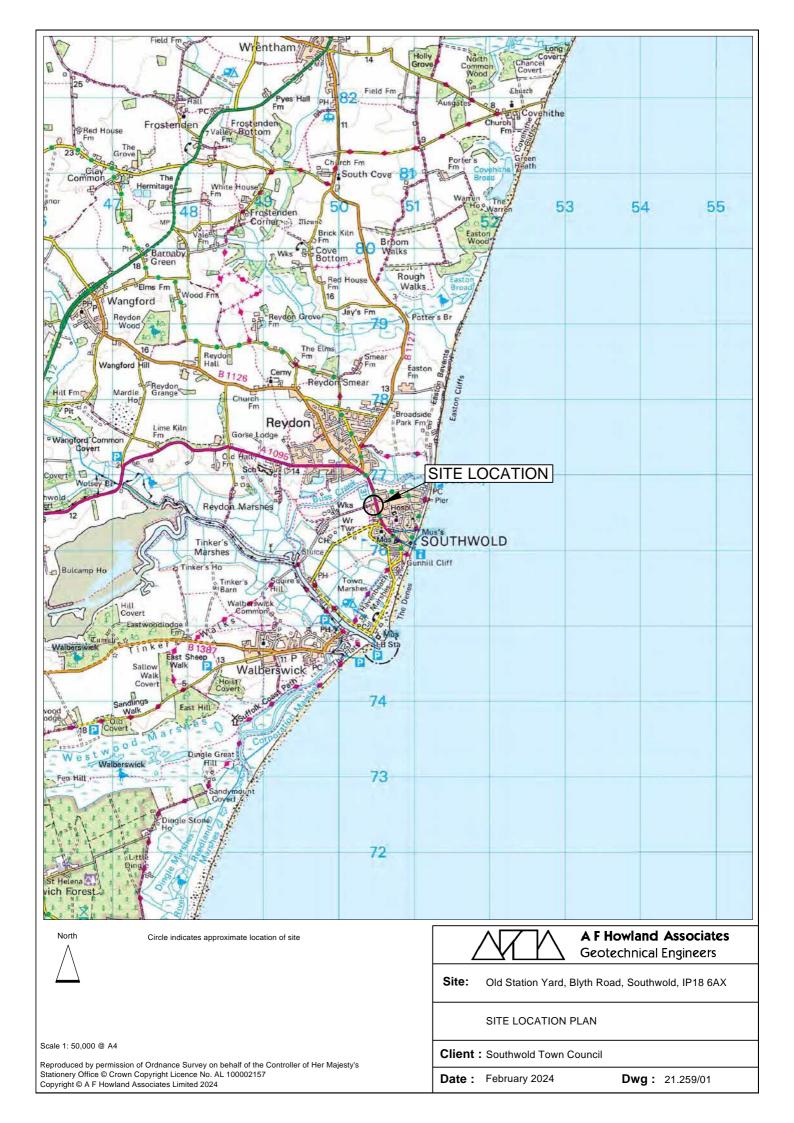
BRITISH STANDARDS INSTITUTION (BSI). 2017. BS 10175:2011+A2:2017. Code of practice for investigation of potentially contaminated sites. British Standards Institution. London

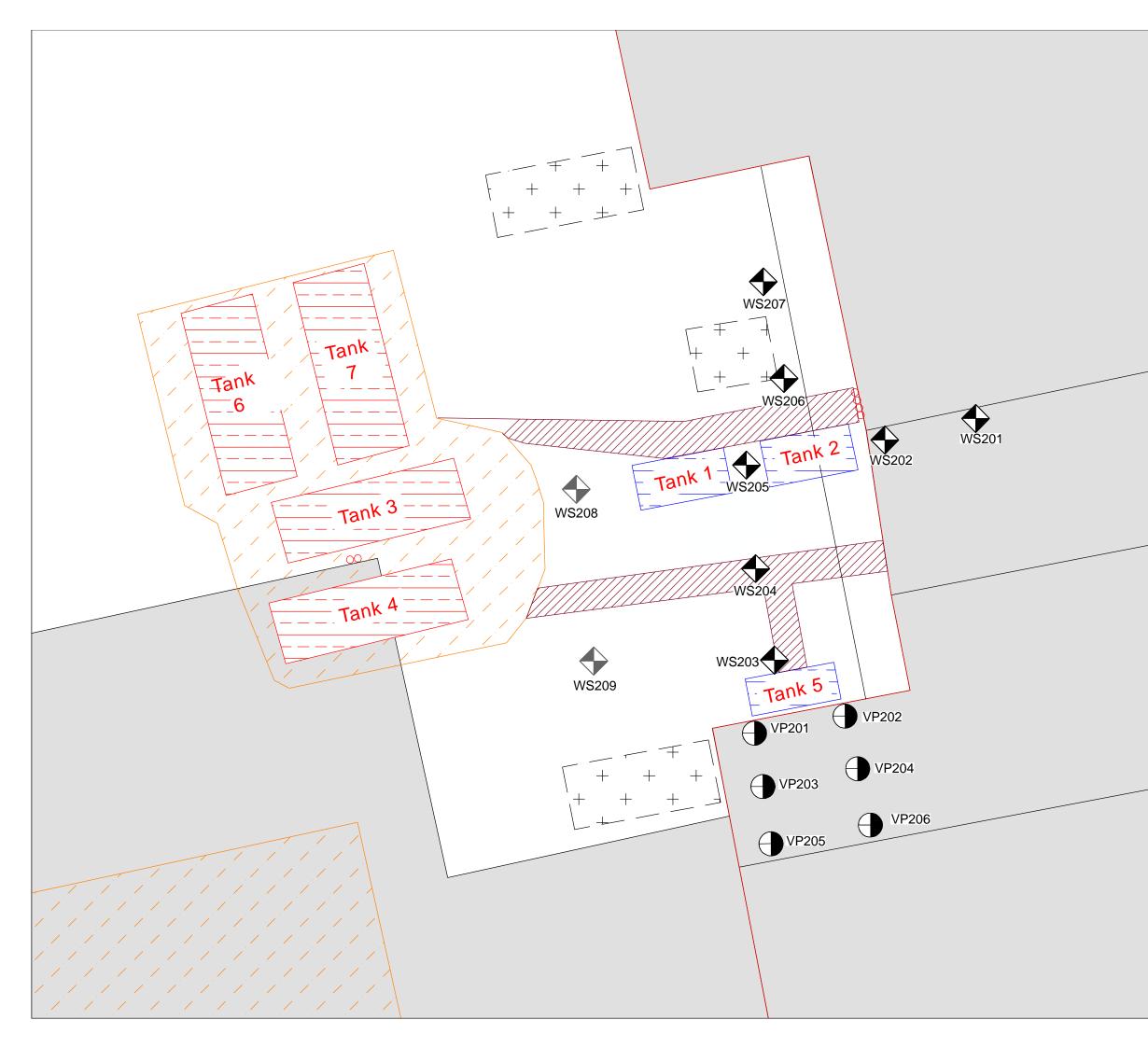
CIRIA. 2009. C682 - The VOCs Handbook – Investigating, assessing, managing risks from inhalation of VOCs at land affected by contamination.

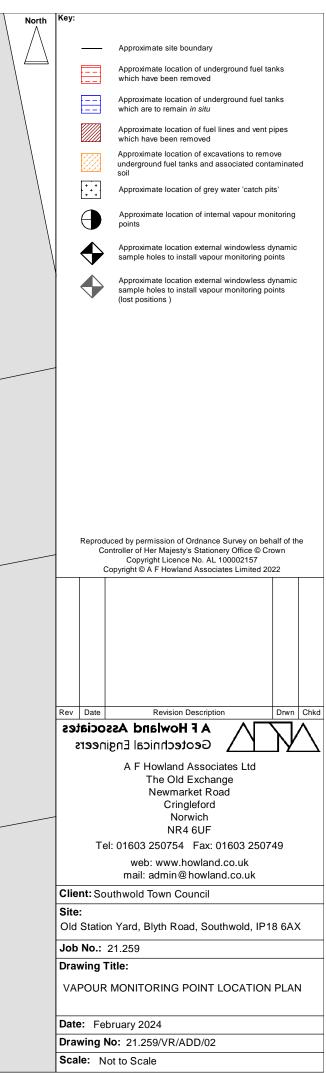
ENVIRONMENT AGENCY. 2023. Land Contamination Risk Management (LCRM). Accessed at: https://www.gov.uk/government/publications/land-contamination-risk-management-lcrm. Environment Agency, Bristol.

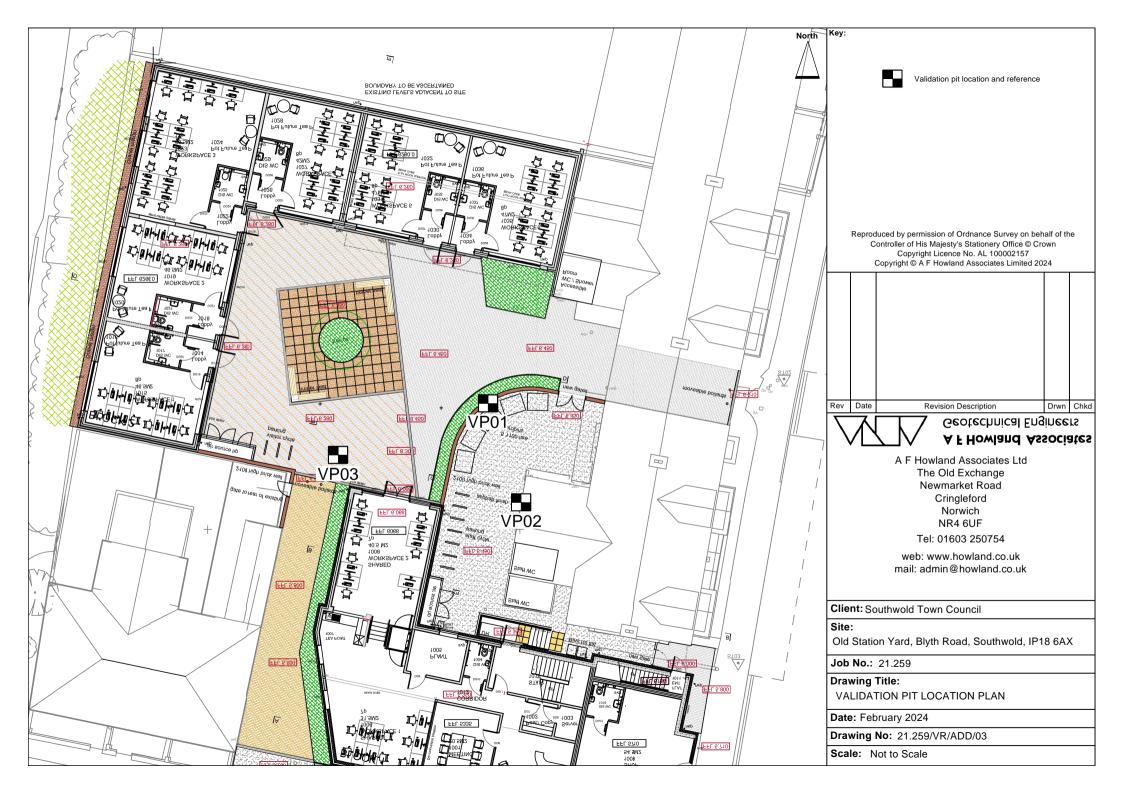
ENVIRONMENTAL PROTECTION STRATEGIES Limited (EPS). 2018. Phase I and II Geo-Environmental Assessment; Station Road/Blyth Road, Southwold, IP18 6AX. Report reference; UK18.3076, dated 10 May 2018.

J P CHICK & PARTNERS LIMITED. 2020a. Inspection of Below Ground Tanks. Report reference IE20/016/CSJ/rmc, dated 27 March 2020.


J P CHICK & PARTNERS LIMITED. 2020b. Phase 2 Contaminated Land Intrusive Investigation. Report reference IE20/016/CP2, dated 23 October 2020.




APPENDIX B: DRAWINGS


Drawing 21.259/01 Drawing 21.259/VR/ADD/02 Drawing 21.259/VR/ADD/03 Site Location Plan Vapour Monitoring Location Plan Validation Trial Pit Location Plan

APPENDIX C: IMPORTED SOIL DELIVERY NOTES

British Sugar Co-Products Limited Despatch Note The Pallet Network/Bacon Transport Limited Delivery Notice

A F Howland Associates Geotechnical Engineers TOPSOIL

BRITISH SUGAR TOPSOIL - BAGGED PRODUCT DISPATCH FORM

Customer Order No:	139569	
Customer Name:	CPA Horticulture	
Contact Name:	James Aldridge	
Contact Tel:	01994 231121	
Address:	Unit 5 Dragon 24, N	forth Dock, Lianelli, SA15 2LF
Br. Sugar Order No:	6099330	
Date Order Rec'd:	18/12/2023	Date Order Col/Del: 03/01/2024

LINE	PRODUCT PICK LIST DESCRIPTION	NO OF BAGS ORDERED	NO OF BAGS LOADED	SCH. OF
1	HORT LOAM			
2	LAWN DRESSING		1	35
3	LANDSCAPE20	6 on pallet	6	22
-	LIMESTONE			-
5	WASHED STONE			
6	BARK 1			
7	BARK 2			-
8	SPORTS 10 +C +B Bulk 28218			1
	SPORTS 10 +C +B Bags 28228			-
0 1	PEAT Bulk 28219			1
1 1	ROOF GARDEN SUBSTRATE Bulk 28216			
2 8	ROOF GARDEN SUBSTRATE Bags (if just brick) 28227			

WE CERTIFY THAT THE ABOVE LOAD HAS BEEN LOADED SAFELY AND SECURELY AND THAT THE TOTAL NUMBER OF BAGS HAS BEEN CHECKED AGAINST THE APPROPRIATE BRITISH SUBAR ORDER NUMBER.

TO ENSURE MY VEHICLE IS ROAD LEGAL I WILL TAKE THE LOADED VEHICLE OVER THE FACTORY WEIGHBRIDGE

	***************************************	*************************	
	COLLECTION DETAILS		
Collection/Loading Date:	3-1-2024		
1			
the second se	DELIVERT DETAILS		
Customer Name:	Signed:		
Date:	Time: IN	OUT	

triting & c H Trancil New Baseled Product Form Jan 2019, word doc

HE Pallet Network

Delivery Note

	Docket Number:	8341	4088		Total Pallets:
Bacton Transport	Order Number:	139569	Request Depot:	065	5
BACTON TRANSPORT SERVICES LTD	Despatched:	03/01/2024	Collect Depot:	065	Total Weight:
	Service:	DD	TL		5000
Collected From:		Delivery To:		D	elivery Depot:
	Michael mann Mixrow Const				
	1 Station Roa				
	Southwold	-		1	
	07701337250)64
	IP18 6	٩X			
Remarks:	_			الالتكا	
Please deliver on a Rigid vehicle T L offload Ple	ase call an hou	r ahead of delivery		_ <u>138</u>	
					(2).
1					
THE WORDS UNEXAMINED OR UNCHECKE	D WILL NOT BE ACCEPTED .	AS A CONDITIONAL SIGNATURE RECIEVED	IN GOOD ORDER AN		
SIGNATURE		ARRIVAL TIME	IN GOOD ORDER AN		
SIGNATURE The signature for this delivery was captured digitally and NOT s	igned on the original	ARRIVAL TIME	N GOOD ORDER AN	D CONDITION 12:	:06
SIGNATURE	igned on the original	ARRIVAL TIME	N GOOD ORDER AN		:06
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signa	igned on the original	ARRIVAL TIME paperwork. The g to this delivery. DATE		12:	
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signa	igned on the original	ARRIVAL TIME paperwork. The g to this delivery. DATE	IN GOOD ORDER AN	12:	 :06 12:12
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signa	igned on the original	ARRIVAL TIME g to this delivery. DATE 08/0		12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signa	igned on the original	ARRIVAL TIME paperwork. The g to this delivery. DATE		12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signa	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0		12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signa Customer Signature	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0	1/2024	12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT so receiver did not sign this document, however this was the signature Customer Signature Received in Good Condition - k	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0	1/2024	12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT so receiver did not sign this document, however this was the signature Customer Signature Received in Good Condition - k	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0	1/2024	12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT so receiver did not sign this document, however this was the signature Customer Signature Received in Good Condition - k	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0	1/2024	12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signat Customer Signature Received in Good Condition - k PRINT NAME	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0	1/2024	12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT so receiver did not sign this document, however this was the signature Customer Signature Received in Good Condition - k	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0	1/2024	12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signat Customer Signature Received in Good Condition - k PRINT NAME	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0	1/2024	12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signat Customer Signature Received in Good Condition - k PRINT NAME	igned on the original ture captured relatin	ARRIVAL TIME g to this delivery. DATE 08/0	1/2024	12:	12:12
SIGNATURE The signature for this delivery was captured digitally and NOT s receiver did not sign this document, however this was the signat Customer Signature Received in Good Condition - k PRINT NAME	igned on the original ture captured relatin arl	paperwork. The g to this delivery. DATE 08/0 COP	1/2024 N	12: TIME COP SIG	12:12 Ned N

APPENDIX D: WATER SUPPLY PIPE DOCUMENTS

OnSite Group Delivery Note Plasson UK Ltd Delivery Note Pipe Specification Sheets

A F Howland Associates Geotechnical Engineers

Unit 9, Cooke Road South Lowestoft Ind Est Lowestoft, NR33 7NA Tel: 01502 533999 Email: sales@onesitegroup.com

Note No: M474840

SALES ADVICE NOTE

Customer: Mixbrow Ltd

Address: Unit 1, Plot 8, Maitland Road Lion Barn Industrial Estate Needham Market Ipswich Suffolk IP6 8NZ

Order No: 35972/40140

Delivery Date: 22/11/2023 12:56

Delivery: Deliver to Carl Woodard, 07593 443051.

Order Date: 21-Nov-23 Delivery: Blyth Road Address: 1 Station Road Southwold Suffolk IP18 6AX

Acct No: MIXB001

Description	Stock No	<u>Oty</u> <u>Ordered</u>	per	<u>Actual</u> <u>Oty</u>
Barrier Pipe Water 32mmx50m	14BP32050	1	each	[]
Barrier Pipe Water 25mmx50m	14BP25050	1	each	1 1
Barrier Pipe Water 32mm Coupler	14BP32C	1	each	[]
Tape Measure 8m OneSite	16TM8OS	1	each	[]
Premium Screw Pozi Csk ZYP 5.0x100 (10x4) Pk100	17PS50100	5	each	[]
Premium Screw Pozi Csk ZYP 5.0x50 (10x2) Pk200	17PS50050	2	each	[]
110mm Drainage Bend Single Socket 45°	14D110BS45	10	each	[]
110mm Drainage Bend Double Socket 15°	14D110BD11	10	each	[]
110mm Drainage Bend Double Socket 30°	14D110BD22	10	each	i i
110mm Drainage Bend Double Socket 90°	14D110BD90	12	each	[]
110mm Drainage T Branch Triple Socket	14D110TT	5	each	[]
THANK YOU FOR YOUR ORDER WITH ONESITE GROUP!		1	each	[]

Any item marked with * is a non-stock product and therefore non-refundable.

Signature:

Date: 21-Nov-23

Print Name:

Staff: Jack Francis

**** ORDER BY 4:30pm FOR NEXT DAY DELIVERY OF ALL STOCK PRODUCTS **** OneSite customer service team must be notified of any queries on this delivery within 48 hours.

Plasson UK Ltd

Plasson UK 27, Albert Drive, Burgess Hill, West Sussex, RH15 9TN United Kingdom https://www.plasson.co.uk/ VAT ID : 135563806

Bill To: egeplast UK (General) 806438136

Ship To:

1. 11

MIXBROW LTD 1 STATION ROAD SOUTHWOLD Suffolk IP18 6AS United Kingdom Contact: CARL Phone: 07593 443051

More Information:

Date: 24-Nov-2023 Sales Order: SO-UK80445 Customer PO#: 41430

Delivery Note

IF82378

E PLASSON°

#	ltem	Description	Customer Part Number	Qty This Delivery	Qty On Order	Qty Prev Ship	Qty To Follow
1	PB270500032	90° Elbow 32 x 32mm Barrier		1	1	0	0
2	PB273400032025	Reducing Tee 32 x 25 x 32mm Barrier		5	5	0	0
3	PB271100032025	Reducing Coupler 32 x 25mm Barrier		1	1	0	0

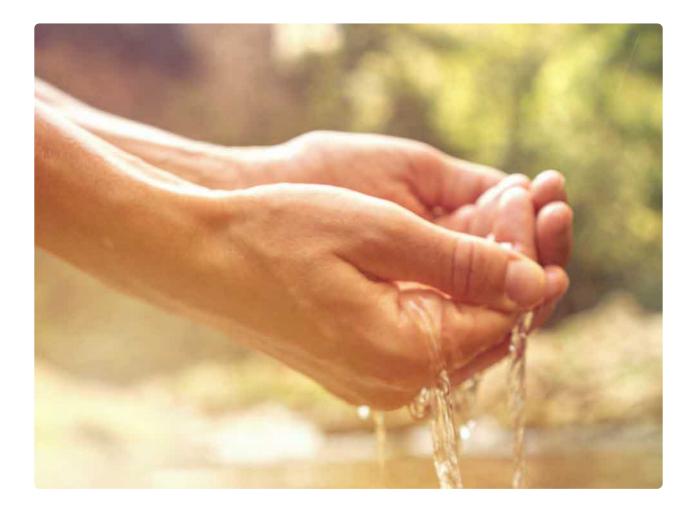
Created By Burgess

All discrepancies must be notified WITHIN 3 working days. Contact <u>sales@plasson.co.uk</u> and <u>accounts@plasson.co.uk</u> Plasson's Terms and conditions apply to the exclusion of any other terms

egeplast UK SLA® Barrier Pipe

Pipeline system solutions to protect drinking water

Future-proofed Pipe Systems


Introduction

Innovative pipe solutions for today & tomorrow

egeplast UK manufactures and supplies PE pipe systems, fittings and related fabrications for the UK water, construction and utility sectors. Operating from modern, dedicated manufacturing facilities in Yorkshire, we have a 20-year track record in the manufacture of innovative pipe solutions and a reputation for providing exceptional standards of customer service.

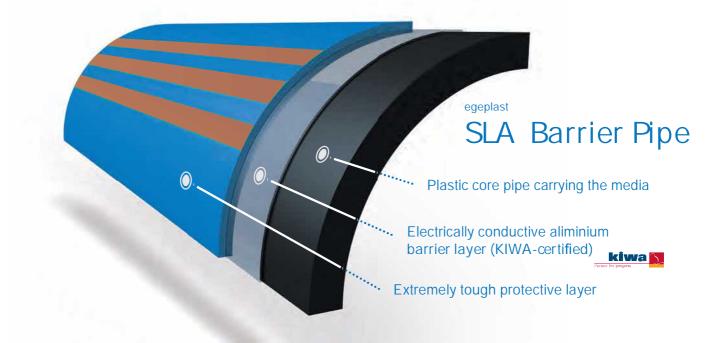
Part of egeplast International GmbH, the company benefits from the financial and technical backing which comes from being part of a leading European manufacturing business. egeplast International was founded in 1908, has a turnover of €200-million per year and operates state of the art manufacturing facilities in the UK, Sweden and Germany. Its operations are accredited to ISO EN 9001 (Quality), ISO EN 14001 (Environment) and ISO EN 50001 (Energy) standards and its products are specified in 30 countries across the world.

Innovation is at the core of our business. With a long-standing commitment to investment in R&D and the development of industry firsts such as egeplast SLA barrier pipe, we are committed to providing future-proofed pipe systems which improve environmental performance, help deliver net zero and ultimately help meet the challenges being faced by society to support a better life for future generations.

The Product

egeplast SLA® Barrier Pipes combine the advantages of materials and open up new possibilities

A significant increase in the use of brown field sites is required to ensure sufficient land is available to meet the needs of housebuilders in the UK. The risk associated with ensuring clean water in these instances cannot be understated and proper specification of appropriate barrier pipe systems is required. Construction sites located on contaminated or brown field sites present a unique set of challenges for water companies and contractors. Both organisations need to ensure the pipe network is effectively sealed and the clean water it carries is protected from potential contamination.


Developed more than 30 years ago the egeplast SLA Barrier Pipe system has been the premier choice of product amongst specifiers across the UK and Europe. Meeting the requirements of DWI and WRAS the pipe and fittings system enables completely secure connections and will reliably eliminate the migration of pollutants into the drinking water supply and is guaranteed for long term performance.

The intelligent combination of flexible thermoplastic materials with the permeation resistance of metal materials enables permanent protection. From the transportation of ultrapure water through to chemically contaminated wastewater and process water, the best possible solution can be found for your application.

The SLA® Barrier Pipe System developed by egeplast reliably rules out any migration of pollutants.

The permeation resistance is achieved using a barrier layer, whereby the core pipe conveying the medium is surrounded by an aluminium barrier layer certified by KIWA and an extremely tough protective layer.

Due to its electrical properties, the embedded metal layer also offers the possibilities both of localising the path of the composite pipes in the ground and of verifying the integrity of the new pipeline using a resistance test after completion of the constructional measure. This increases safety, especially in the case of sensitive media.

Pipe Range

A wide range of available diameters to suit housebuilders and large utility projects.

The egeplast SLA[®] Barrier Pipe consists of a core pipe in accordance with BSEN 12201, upon which a protective coating is additionally extruded in order to increase its scratch and abrasion resistance. A multiple layer aluminium foil is applied as a barrier layer between the core pipe and the coating layer. The three brown stripes serve to identify it as a multiple layer pipe.

SDR11 Coils

Diameter	25m	50m	100m	150m
25mm	•	٠	٠	•
32mm		•	•	
63mm		•	٠	
90mm		•	•	
110mm		•	•	
125mm		•	•	
160mm		•	•	
180mm		•	•	

SDR11 Lengths

Diameter	6m	12m	
63mm	•	•	
90mm	•	•	
110mm	•	•	
125mm	•	•	
160mm	•	•	
180mm	•	•	
225mm	•	•	
250mm	•	•	
315mm	•	•	
355mm	•	•	
400mm	•	•	
450mm	•	•	
500mm	•	•	
630mm	•	•	

SDR17 Coils

Diameter	25m	50m	100m	150m
90mm	•	٠	٠	•
110mm		•	٠	
125mm		•	٠	
160mm		•	•	
180mm		•	٠	

SDR17 Lengths

Diameter	6m	12m	
90mm	٠	•	
110mm	•	•	
125mm	•	•	
160mm	•	•	
180mm	•	•	
225mm	•	•	
250mm	•	•	
315mm	•	•	
355mm	•	•	
400mm	•	•	
450mm	•	•	
500mm	•	•	
630mm	•	•	

Pipe Sizes, Ratings & Approvals

Required information to ensure product compliance and enable engineering specification to meet UK approval

Actual outside dimensions of egeplast SLA® Barrier Pipe

Pipe Reference Size	Actual Outside Diameter
25mm	26.2 - 27.4mm
32mm	33.3 - 34.5mm
40mm	41.3 - 42.5mm
50mm	51.3 - 52.6mm
63mm	65.6 - 65.9mm
75mm	78.8 - 79.0mm
90mm	93.8 - 94.1mm
110mm	113.7 - 114.0mm
125mm	129.6 - 129.9mm
140mm	145.4 - 145.7mm
160mm	165.7 - 166.1mm
180mm	186.6 - 187.3mm

Material requirements for reinstating protective layer over electrofusion couplers with Aluminium Foil & Denso E10 Tape

OD	Metres / Weld Seam Aluminium Foil	Metres / Weld Seam Tape E10
25mm	3.0	1.0
32mm	3.0	1.0
40mm	4.5	1.5
50mm	4.5	1.5
63mm	6.0	2.0
75mm	6.0	2.0
90mm	8.5	2.5
110mm	9.0	3.0
125mm	12.0	4.0
140mm	12.0	4.0
160mm	13.5	4.5
180mm	15.0	5.0
200mm	18.0	6.0
225mm	18.0	6.0
250mm	22.5	7.5
280mm	22.5	7.5
315mm	30.0	10.0
355mm	30.0	10.0
400mm	45.0	15.0
450mm	45.0	15.0
500mm	45.0	15.0
560mm	45.0	15.0
630mm	90.0	30.0

System Approvals

• BS 8588:2017	Polyethylene pressure pipe with an aluminium barrier layer and associated fittings for potable water supply in contaminated land Size 20 mm to 630 mm		
• WRAS	Water Regulations Advisory Scheme		
• BSEN12201	Inner Core Pipe constructed in accordance with this standard		
DWI Regulation 31	Materials in contact with potable water		
• KIWA	Chemical and mechanical testing		

Pipe Construction

•	Inner Core Pipe	Black PE100 to BSEN12201
•	Metal Layer	Double Bonded Aluminium

External Layer Blue PE100 c/w Brown Stripes

Jointing Systems

• 25, 32 & 63mm	E/F Fittings and Compression Fittings
• 63 - 180mm	Self Tapping Ferrule Straps
• 63 - 180mm	E/F Fittings, Butt Fusion Welding
• 90 - 630mm	Butt Fusion Welding

All E/F Fittings and Butt Fusion Joints must be externally protected from ground contamination to ensure the integrity of the complete system. Use of Aluminium tape and protective E10 tape is required and can be supplied by egeplast UK.

"Water is critical for sustainable development, including environmental integrity and the alleviation of poverty and hunger, and is indispensable for human health and well-being."

 \bigcirc

00

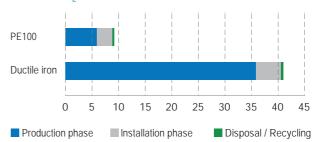
30)

- United Nations

0

23

Environmentally Friendly Installation


The development of skinned pipe technology has enabled a reduced carbon impact of installation

The influences on the environment can be reduced by low weight and the possibility of trenchless installation using the most modern methods due to the high flexibility of the plastic. The ploughing and milling procedure for example reduce interventions in the environment and increase installation performance. Despite greater burden during installation, the pipe with protective layer guarantees the reliable installation and operation of the pipeline.

As a planner you face the challenge of selecting a safe pipe system for a specific use. The decisive installation criteria for safety pipe systems are usually as follows:

- Protection of humans (the responsibility lies with the system operator)
- High environmental awareness on the part of the operator/ client
- Protection from liability risks (liability for negligence from risk of environmental contamination)
- The prevention of operating disruptions (protection of sensitive and expensive production plants)
- The avoidance of bad publicity (prevention of damage)

Impact on the greenhouse effect (in kg CO₂ Equivalent)

- Compliance with statutory requirements specific regional and application-related guidelines and regulations for water-polluting substances)
- The safe transportation of water and environmentally hazardous media in buildings, the soil and on pipe bridges
- Moral reservations regarding the occurrence of leaks during the transportation of hazardous chemicals
- Reduction of insurance risks (lower risks lead to reduced premiums)

Jointing Techniques

Butt fusion

Jointing methodology for butt fusion welding ensuring the reinstatement and protection of the aluminium barrier layer

Butt Fusion Welding

Step 1

Prepare your pipe ends for Butt Fusion Welding by removing the outside PE skin and aluminium foil utilising the M10 Peeling Tool.

Step 2

Once the outside PE skin and aluminium is removed over a length of 30mm from the pipe end you must scrape the internal pipe, removing any adhesive residue and leaving you a clean swarf free surface for welding.

Step 3

After the above pre welding preparation has taken place you can now Butt Weld. Welding should be carried out in compliance with WIS 4-32-16. Standard welding machines will need to use adapted inserts adjusted to the specific external diameter. (Please check compatibility of inserts and if in doubt seek advice.)

Step 4

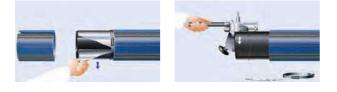
For the installation of the egeplast SLA[®] Barrier Pipe, it is mandatory to provide separate protection for both the area of the weld and the aluminium layer. The weld bead is to be removed with an external bead remover, and the aluminium layer must be restored so that it is continuous again. To do this, aluminium foil from egeplast UK, is to be applied in three layers in a left to right motion starting up to 100mm beyond the peeled outer skin, making sure that you cover the weld with a 50% overlap.

Step 5

It is mandatory to provide separate protection to the area by applying 25% overlap of protective E10 Tape over your already applied aluminium foil, (protective E10 Tape available from egeplast UK).

Jointing Techniques

Jointing technique for using electrofusion couplings to ensure complete integrity of joint to maintain barrier against ground contaminants


Steps 1 & 2

Prepare your pipe ends ready for electrofusion by measuring the insertion depth for your fitting and then allowing an additional 30mm. Using this measurement from the pipe end and mark the pipe. Using the M10 Peeling Tool remove both the outside PE skin and aluminium layer to your mark as required.

Steps 3 & 4

Once the outside skin and aluminium is removed you must scrape the internal pipe removing any adhesive residue giving you a clean swarf free surface.

Step 5

Once you have prepared both pipes you can now introduce your electrofusion fitting. You must clamp your fitting in place using restraining clamps then set your electrofusion box to the correct setting and then commence welding

Once the electrofusion fitting has successfully welded and cooled down it is mandatory that you reintroduce the egeplast SLA[®] Barrier Pipe aluminium foil and apply three layers in a left to right motion starting up to 100mm away from the fitting, making sure that you cover the fitting with a 50% overlap.

Step 7

It is mandatory to provide separate protection to the area by applying 25% overlap of protective E10 Tape over your already applied aluminium foil, (protective E10 Tape available from egeplast UK).

 $^{\ast}\mbox{Also}$ note Electrofusion Tapping Saddles can be applied following the previous steps

Installation Support Products

Heat Shrink Sleeves

Efficient installation solution to maintain the integrity of the barrier pipe system butt fusion joints

egeplast heat shrink sleeves are available for pipes from OD 180 up to 630 mm, in standard lengths of 600mm. Please contact us for bigger diameters or other lengths.

Towing Heads

Provides easy handling particularly for directional drilling, slip lining and direct burial

egeplast towing heads are available for pipes up to 630mm and have been developed to provide a strong fully sealed reusable Towing Head for the larger sizes of PE pipe.

This fully field tested product consists of a PE nose section, manufactured from a solid billet of PE, into which is fitted an eyebolt manufactured from high tensile steel. This eyebolt is in turn housed within a sealed sleeve which is free to rotate within the PE nose. A 500mm length of PE pipe is factory fused onto the PE nose cone thereby allowing the Towing Head to be easily butt fused onto a pipe section or string.

After use it can simply be cut from this pipe string and butt fused onto the next one.

Fabricated Fittings

Meeting the complex installation needs of customers and ensuring the SLA[®] Barrier pipe system provides a durable high performance barrier against ground contaminants.

egeplast UK manufacture a wide range of fabricated fittings. This includes standard fabrication such as mitred bends, tees and reduced stubs. In addition egeplast are capable of providing engineered solutions for specific projects manufactured to meet the most complex of installations.

Installation ready SLA Barrier pipe fabricated fittings. Come complete with factory prepared joints that ensure barrier integrity remains intact. Our fabricated SLA fittings ensure that installation is quick, easy and provides a high performance barrier against ground contaminants.

Post Welding Pipe Joint Preparation

It is important that after butt welding that the pipe joints are prepared to ensure that the barrier is repaired to maintain its integrity against ground contaminants using the following simple steps:

Remove welding bead and clean area to allow joint integrity repair.

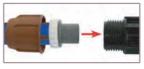
Wrap whole joint with aluminium tape to provide barrier integrity. Foil should be in overlapping strips and care should be taken to cover an area 100mm beyond the edge of the welded joint.

Cover with protective E10 tape ensuring all foil is covered.

SLA® Barrier Pipe Compression Fittings

A complete range of small bore pipe fittings designed to ensure complete system integrity. Guaranteed for long term performance.

Coupler Barrier		Coupler Barrier x Copper	(2)	Reducing Coupler Barrier	
Code	Size (mm)	Code	Size (mm)	Code	Size (mm)
75020105PL	25 x 25	782522C05FL	25 x 22	78322505PL	32 x 25
75030105PL	32 x 32	783228C05FL	32 x 28	78632505PL	63 x 25
75060105PL	63 x 63	786354C05PL	63 x 54	78633205PL	63 x 32
Male Adaptor Barrier		End Plug Barrier		90° Elbow Barrier	٢
PUK Code	Size (mm)	Code	Size (mm)	Code	Size (mm)
72023105FL	25 x 3/ 4"	07020105PL	25	77029105PL	25 x 25
72033105PL	32 x 3/ 4"	07030105PL	32	77039105PL	32 x 32
72031105PL	32 x 1"	07060105PL	63	77069105PL	63 x 63
72061105PL	63 x 1½"				
72062105PL	63 x 2"	90° Tee Barrier	A	45° Elbow Barrier	P
Female Adaptor	5	Code	Size (mm)	Code	Size (mm)
Barrier		76029105PL	25 x 25 x 25	77064105PL	63 x 63
Code	Size (mm)	76039105PL	32 x 32 x 32		
73023105PL	25 x 3/ 4"	76069105PL	63 x 63 x 63		
73021105PL	25 x 1"				kiwa
73033105PL	32 x 3/ 4"	Reducing Tee			approved
73031105PL	32 x 1"	Barrier	5-30		
73061105PL	63 x 1½"				
73062105PL	63 x 2"	Code	Size (mm)		\sim
		76032359105PL	32 x 25 x 32		UK WATER
		76063329105PL	63 x 32 x 63		REGULATION 4


Fitting Instructions

Step 1: Remove nut and grip ring from fitting and mount brown nut onto the pipe and assemble grip ring flush with the pipe end.

Step 2: Push the barbed end of the adaptor into the pipe until it meets the stop (a mallet may be required).

Step 3: Push the plain end of the adaptor into the fitting until it meets the stop.

Step 4: Screw nut tightly towards the body of the fitting using a PLASSON wrench.

Self Tapping Saddles & Ferrules

Secure connections to main pipe enabling fast and effective installations.

The range of Self Tapping Ferrule Straps, Swivel Ferrules and can be used to connect PE, copper and threaded pipes to almost any type and size of mains pipe material from 32mm in diameter. Straps are available up to 315mm in diameter as standard with larger sizes available on request. Ferrules can be inserted directly into suitable mains pipe of any size as long as both wall section and wall strength allow.

General application

Straps are simply clamped onto the pipe needing no specialised equipment to fit so can be installed easily in wet and congested trench conditions, offering many benefits over welded systems.

Range

- Gunmetal Self Tapping Ferrule Straps
- Bronze Self Tapping Ferrule Straps
- Swivel Ferrules
- Flat Boss Straps

Product	Code	Size
	91062505	63mm BPA x 25mm
	91092505	90mm BPA x 25mm
	91112505	110mm BPA x 25mm
	91122505	125mm BPA x 25mm
	91162505	160mm BPA x 25mm
	91182505	180mm BPA x 25mm
	91063205	63mm BPA x 32mm
	91093205	90mm BPA x 32mm
	91113205	110mm BPA x 32mm
	91123205	125mm BPA x 32mm
	91163205	160mm BPA x 32mm
	91183205	180mm BPA x 32mm

Accessories

Code	Description
90030005	25mm / 3/4" Cutting Key
90010005	32mm / 1" Cutting Key

13

Self Tapping Saddles & Ferrules

Installation

Step 1

Firstly make sure that the area to be tapped into is clean.

Step 2

Place the top of the Ferrule Strap on to the egeplast

SLA[®] Barrier Pipe making sure the O-ring is seated in place and press the top section down firmly (do not hammer).

Step 3

Attach the lower steel strap by placing the strap under the pipe and bolt the top section and lower section together using the bolts provided. Tighten the bolt assembly equally and keep tightening until you can no longer see the O-ring.

Step 4

Use an egeplast SLA[®] Barrier Pipe adaptor either 25mm x ³/₄" or 32mm x 1" to connect your service pipe onto the ferrule and you can do this by applying PTFE tape to the thread of the adaptor before screwing into position. (Unless using a Tapping saddle banjo that is complete with a BPA socket).

Step 5

Remove the blue or red top cap to expose the top of the cutter (not the full gunmetal cap) and use the T key to turn the cutter until you can no longer turn the valve, then turn the cutter in the opposite direction to withdraw the cutter thus allowing water to escape through the valve into your already connected service pipe.

Step 6

Keep turning the cutter until you are back to where you started. Replace the blue or red cap and your connection is now complete.

Technical data

Pressures: Working: 16 bar Test: 24 bar The pressures stated above apply with water temperatures up to 20°C

Contact us 01427 875770 or sales@egeplast.uk www.egeplast.uk

Product Guide

SLA Barrier Pipe System & Compression Fittings

About egeplast UK

egeplast UK manufactures and supplies PE pipe systems, fittings and related fabrications for the UK utility and construction sectors. Innovation is at the core of our business, and we're committed to providing future-proofed pipe systems which improve environmental performance, help deliver net zero and ultimately support a better life for future generations.

Operating from state-of-the-art manufacturing facilities in Yorkshire, we have a 20-year track record in the manufacture of specialist product solutions and benefit from the financial and technical backing which comes from being part of egeplast International GmbH, a leading European manufacturing business that has been setting benchmarks for decades.

egeplast International was founded in 1908, and operates in the UK, Germany and Sweden. Its operations are accredited to ISO EN 9001 (Quality), ISO EN 1400 (Environment) and ISO EN 45001 (Health & Safety) and its products are specified in 30 countries across the world.

THE EGEPLAST SLA® BARRIER PIPE

Developed by egeplast, the egeplast SLA® Barrier Pipe reliably eliminates the migration of pollutants into the drinking water. Through the use of a clever combination of the thermoplastic material properties of polyethylene, paired with the proof against diffusion of metallic materials, a pipe has been created which has made accessible a totally new area of application compared to conventional polyethylene pipes.

INTRODUCING THE NEW SLA BARRIER PIPE COMPRESSION FITTINGS

Working with one of the leading manufacturers of compression fittings, PLASSON. The new SLA compression fittings have been developed to offer a product range, that increases the flexibility of the SLA Barrier Pipe System in sizes –25mm, 32mm & 63mm, in a lightweight and easy to use plastic product range. Approved to BS8588, the new SLA compression fittings offer a competitive and completely secure method to connect the SLA Barrier Pipe System, supported by PLASSON's years of expert knowledge & experience.

Size Range:	25mm, 32mm & 63mm
Fitting type:	Compression
Product range:	Adaptors, Elbows, Tees, Couplers and many more.
Approvals:	UK Water Reg4, BS6920, BS8588
Clear Identification:	The SLA Barrier pipe is identified by three brown stripes
Installation:	Lightweight, quick and easy and no post wrapping required

egeplast SLA® Barrier Pipe

Product Code	Product Description
150215005	25mm (50m coils)
150315005	25mm (100m coils)
150615005	25mm (150m coils)
150215005	32mm (50m coils)
150315005	32mm (100m coils)
150615005	32mm (150m coils)
150215005	63mm (25m coils)
150315005	63mm (50m coils)
150615005	63mm (100m coils)

SLA® Compression Fittings

Coupler	
Barrier	

Code	size (mm)
75020105PL	25 x 25
75030105PL	32 x 32
75060105PL	63 x 63

Male Adaptor Barrier

	201
A	-)
	- All

PUK Code	size (mm)
72023105PL	25 x 3/4"
72033105PL	32 x 3/4"
72031105PL	32 x 1"
72061105PL	63 x 11/2"
72062105PL	63 x 2"

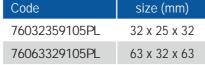
Female Adaptor Barrier

Code	size (mm)
73023105PL	25 x 3/4"
73021105PL	25 x 1"
73033105PL	32 x 3/4"
73031105PL	32 x 1"
73061105PL	63 x 11/2"
73062105PL	63 x 2"

Coupler Barrier x Copper	1
Code	siz
782522C05PL	2!

size (mm)

Code	size (mm)
782522C05PL	25 x 22
783228C05PL	32 x 28
786354C05PL	63 x 54


End Plug Barrier
Code

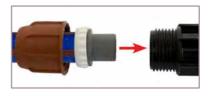
Code	size (mm)
07020105PL	25
07030105PL	32
07060105PL	63
90° Tee Barrier	-

Code	size (mm)
76029105PL	25 x 25 x 25
76039105PL	32 x 32 x 32
76069105PL	63 x 63 x 63

Reducing Tee Barrier

Reducing Couple Barrier	r
Code	size (mm)
78322505PL	32 x 25
78632505PL	63 x 25
78633205PL	63 x 32
90° Ebow Barrier	
Code	size (mm)
Code 77029105PL	size (mm) 25 x 25
77029105PL	25 x 25
77029105PL 77039105PL	25 x 25 32 x 32
77029105PL 77039105PL 77069105PL 45 目bow	25 x 25 32 x 32
77029105PL 77039105PL 77069105PL 45 Elbow Barrier	25 x 25 32 x 32 63 x 63

Fitting Instructions



Step 1

Remove nut and grip ring from fitting and mount brown nut onto the pipe and assemble grip ring flush with the pipe end.

Push the barbed end of the adaptor into the pipe until it meets the stop (a mallet may be required).

Step 4 Screw nut tightly towards the body of the fitting using a PLASSON wrench.

egeplast UK Westwood Business Park Sandtoft, Belton Road Doncaster DN8 5BF

sales@westpipes.com +44 (0)1427 875770

Future-proofed Pipe Systems

APPENDIX E: LABORATORY ANALYSIS RESULTS

Tim O'Hare Associates Report TOHA/23/1166/1/SS

Derwentside Environmental Testing Services Ltd – Laboratory Analysis – 24-00207

A F Howland Associates Geotechnical Engineers

Declaration of Compliance BS3882:2015

Soil source: British Sugar TOPSOIL

This declaration confirms that the topsoil represented by the attached Topsoil Analysis Report conforms to the requirements of the British Standard for Topsoil (BS3882:2015).

The sample was sampled and tested in accordance with the requirements of BS3882:2015

- Samples are taken for analysis every 8000 tonnes (5000 m3) of product
- Samples are taken from all TOPSOIL products ready for despatch
- All products are sampled after screening
- Analysis certificates are retained for a period of 5 years
- Laboratory analysis is undertaken at a UKAS and MCERTS accredited laboratory
- All laboratory methods are in accordance with BS3882:2015
- All British Sugar TOPSOIL products are produced to a **Quality Management System** approved by Lloyd's Register Quality Assurance to **ISO 9001:2008** standard

Signed

Natalie Gudgin

British Sugar TOPSOIL, National TOPSOIL Manager 1 Samson Place, London Road, Peterborough, PE7 8QJ Telephone 0870 2402314

Natalie Gudgin British Sugar plc Co-Products Oundle Road Peterborough PE2 9QU

> 5th December 2023 Our Ref: TOHA/23/1166/1/SS Your Ref: PO 60242584

Dear Sirs

Topsoil Analysis Report: Landscape 20 Wissington

We have completed the analysis of the LANDSCAPE 20 TOPSOIL sample recently submitted, referenced *Wi-L20-Nov* 23 and have pleasure reporting our findings.

The purpose of the analysis was to determine the suitability of the LANDSCAPE 20 TOPSOIL sample for general landscape purposes. In addition, this sample has been assessed to determine its compliance with the requirements of the British Standard for Topsoil (*BS3882:2015 - Specification for topsoil* – Table 1, *Multipurpose Topsoil*).

This report presents the results of analysis for the sample submitted to our office, and it should be considered 'indicative' of the topsoil source. The report and results should therefore not be used by third parties as a means of verification or validation testing or waste designation purposes, especially after the topsoil has left the British Sugar factory.

SAMPLE EXAMINATION

The sample was described as a very dark greyish brown (Munsell Colour 10YR 3/2), slightly moist, friable, slightly calcareous SANDY LOAM with a weakly developed, very fine to fine granular structure*. The sample was stone-free and contained a moderate proportion of organic fines. No unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

*This appraisal of soil structure was made from examination of a disturbed sample. Structure is a key soil characteristic that may only be accurately assessed by examination in an in-situ state.

Tim O'Hare Associates LLP Howbery Park Wallingford Oxfordshire OX10 8BA T:01491 822653 E:info@toha.co.uk www.toha.co.uk

ANALYTICAL SCHEDULE

The sample was submitted to a UKAS and MCERTS accredited laboratory for a range of physical and chemical tests to confirm the composition and fertility of the soil, and the concentration of selected potential contaminants. The following parameters were determined:

particle size analysis (sand, silt, clay); stone content (2-20mm, 20-50mm, >50mm); pH and electrical conductivity values; exchangeable sodium percentage; major plant nutrients (N, P, K, Mg); organic matter content; C:N ratio; heavy metals (As, B, Ba, Be, Cd, Cr, Cu, Pb, Hg, Ni, Se, V, Zn); total cyanide and total (mono) phenols; speciated PAHs (US EPA16 suite); aromatic and aliphatic TPH (C5-C35 banding); benzene, toluene, ethylbenzene, xylene (BTEX); asbestos screen.

The results are presented on the attached Certificate of Analysis and an interpretation of the results is given below. The interpretation considers the use of the LANDSCAPE 20 TOPSOIL for general landscape purposes and its compliance/non-compliance with our general landscape specification.

RESULTS OF ANALYSIS

Particle Size Analysis and Stone Content

The sample fell into the *sandy loam* texture class, which is usually considered suitable for general landscape applications provided the soil's physical condition is satisfactory.

The sample was stone-free and, as such, stones should not restrict the use of the soil for general landscape purposes.

pH and Electrical Conductivity Values

The sample was slightly alkaline in reaction (pH 7.3), with a pH value that would be suitable for general landscape purposes provided species with a wide pH tolerance or those known to prefer alkaline soils are selected.

The electrical conductivity (salinity) value (water extract) was moderate, which indicates that soluble salts should not be present at levels that would be harmful to plants.

The electrical conductivity value by CaSO₄ extract (*BS3882* requirement) fell below the maximum specified value (3300 µS/cm) given in *BS3882:2015 – Table 1*.

Organic Matter and Fertility Status

The sample was adequately supplied with organic matter and all major plant nutrients.

The C:N ratio of the sample was acceptable for general landscape purposes.

Potential Contaminants

With reference to *BS3882:2015* – Table 1: Notes 3 and 4, there is a requirement to confirm levels of potential contaminants in relation to the topsoil's proposed end use. This includes human health, environmental protection and metals considered toxic to plants. In the absence of site-specific criteria, the concentrations that affect human health have been compared with the *residential with homegrown produce* land use in the Suitable For Use Levels (S4UIs) presented in the *LQM/CIEH S4UIs for Human Health Risk Assessment* (2015) and the DEFRA SP1010: *Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document* (2014). The concentration of barium has been compared with the *residential* land use given in the document *EIC/AGS/CL:AIRE Soil Generic Assessment Criteria for Human Health Risk Assessment* (2010).

Of the potential contaminants determined, none was found at levels that exceeded their guideline values.

Phytotoxic Contaminants

Of the phytotoxic (toxic to plants) contaminants determined (copper, nickel, zinc), none was found at levels that exceeded the maximum permissible levels specified in *BS3882:2015 – Table 1*.

CONCLUSION

The purpose of the analysis was to determine the suitability of the LANDSCAPE 20 TOPSOIL sample for general landscape purposes. In addition, this sample has been assessed to determine its compliance with the requirements of the British Standard for Topsoil (*BS3882:2015 – Specification for topsoil –* Table 1, *Multipurpose Topsoil*).

From the soil examination and laboratory analysis, the sample was described as a slightly alkaline, moderately saline, slightly calcareous *sandy loam* with a weakly developed structure. The sample was stone-free and contained sufficient reserves of organic matter and all major plant nutrients. Of the potential contaminants determined, none exceeded their respective guideline values.

To conclude, based on our findings, the topsoil represented by this sample would be considered suitable for general landscape purposes (trees, shrubs and amenity grass), provided species with a wide pH tolerance or those known to prefer alkaline soils are selected and the physical condition of the soil is satisfactory.

The sample was also fully compliant with the requirements of the British Standard for Topsoil (BS3882:2015 – Specification for Topsoil – Table 1, Multipurpose Topsoil).

Soil Handling Recommendations

It is important to maintain the physical condition of the soil and avoid structural damage during all phases of soil handling (e.g. stockpiling, respreading, cultivating, planting, seeding or turfing). As a consequence, soil handling operations should be carried out when soil is reasonably dry and non-plastic (friable) in consistency.

It is important to ensure that the soil is not unnecessarily compacted by trampling or trafficking by site machinery, and soil handling should be stopped during and after heavy rainfall and not continued until the soil is friable in consistency. If the soil is structurally damaged and compacted at any stage during the course of soiling or landscaping works, it should be cultivated appropriately to relieve the compaction and to restore the soil's structure prior to any planting, turfing or seeding.

Further details on soil handling are provided in Annex A of BS3882:2015.

We hope this report meets with your approval and provides the necessary information. Please do not hesitate to contact the undersigned if we can be of further assistance.

Yours sincerely

Zoe Duffin MBiol Graduate Soil Scientist Matthew Heins BSc (Hons) MISoilSci Senior Soil Scientist

For & on behalf of Tim O'Hare Associates LLP

Client: Client Ref:	British Sugar plc Co-Product Wissington Landscape 20	-	
Job:	Topsoil Analysis		
Date:	05/12/2023		
Job Ref No:	TOHA/23/1166/1/SS		
Sample Refe	rence		
Sample Kel	erence		
Clay (<0.002	mm)	%	U
Silt (0.002-0.		%	U
Sand (0.063-		%	U
	s (UK Classification)	 % DW	U G
Stones (2-20 Stones (20-5		% DW	G
Stones (>50r		% DW	G
	*	1	
	2.5 water extract)	units	U
Electrical Co	nductivity (1:2.5 water extract)	uS/cm	<u>U</u>
	nductivity (1:2 CaSO ₄ extract) le Sodium Percentage	uS/cm %	U
Moisture Cor		%	<u></u>
Organic Matt		%	U
Total Nitroge		%	U
C : N Ratio	(Bunus)	ratio	Ū
Extractable F	Phosphorus	mg/l	U
Extractable F	Potassium	mg/l	U
Extractable N		mg/l	Ū
Total Arsenic		mg/kg	M
Total Barium		mg/kg	M
Total Berylliu Total Cadmiu		mg/kg mg/kg	M
Total Chromi		mg/kg	M
	Chromium (Cr VI)	mg/kg	M
Total Copper		mg/kg	M
Total Lead (F		mg/kg	M
Total Mercur		mg/kg	M
Total Nickel (mg/kg	M
Total Seleniu	m (Se)	mg/kg	М
Total Vanadi	um (V)	mg/kg	M
Total Zinc (Z		mg/kg	М
Water Solubl		mg/kg	M
Total Cyanid		mg/kg	M
Fotal (mono)	Phenois	mg/kg	М
Naphthalene		mg/kg	М
Acenaphthyle		mg/kg	M
Acenaphther	ne	mg/kg	M
Fluorene		mg/kg	M
Phenanthren	e	mg/kg	M
Anthracene		mg/kg	M
Fluoranthene		mg/kg	M
Pyrene		mg/kg	M
Benzo(a)anth	nracene	mg/kg	M
Chrysene		mg/kg	M
Benzo(b)fluo		mg/kg	M
Benzo(k)fluo		mg/kg	M
Benzo(a)pyre ndeno(1,2,3		mg/kg mg/kg	M
Dibenzo(a,h)		mg/kg	M
Benzo(g,h,i)p		mg/kg	M
	sum USEPA16)	mg/kg	M
Aliphatic TPH		mg/kg	M
Aliphatic TPH		mg/kg	M
Aliphatic TPH		mg/kg	M
Aliphatic TPH		mg/kg mg/kg	M
Aliphatic TPH Aliphatic TPH		mg/kg	M
Aliphatic TPF		mg/kg	M
Aliphatic TPF		mg/kg	M
Aromatic TPI		mg/kg	M
Aromatic TPI		mg/kg	M
Aromatic TPI		mg/kg	M
Aromatic TPI	H (C10-C12)	mg/kg	M
	H (C12-C16)	mg/kg	M
	H (C16-C21)	mg/kg	Μ
	H (C21-C35)	mg/kg	М
Aromatic TPI		mg/kg	М
2			
Benzene		mg/kg	M
Toluene		mg/kg	M
Ethylbenzene		mg/kg	M
o & m-xylene o-xylene		mg/kg	M
		mg/kg	IVI
-xylerie			

Wi-L20-Nov 2	23
WI-L2U-NOV 2	23
13	~
19	✓
68	✓
SL	
0	v √
0	v
0	~
-	
7.3	1
1104	1
2958	1
9.3	
15	
4.0	1
0.15	
16	✓ ✓
60	✓
	•
768	✓ ✓
97	~
11	1
33	✓ ✓
0.4	*
< 0.2	✓ ✓ ✓
13	V
< 1.8	1
11	✓
15	· · · ·
< 0.3	✓
11	~
< 1.0	1
23	1
38	1
2.5	1
< 1.0	~
< 1.0	1
1.0	
0.15	~
< 0.05	
< 0.05	 ✓
< 0.05 < 0.05	✓ ✓
< 0.05 < 0.05 0.05	✓ ✓ ✓
< 0.05 < 0.05 0.05 < 0.05	× × ×
< 0.05 < 0.05 0.05 < 0.05 0.11	✓ ✓ ✓ ✓ ✓
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10	✓ ✓ ✓ ✓ ✓ ✓
< 0.05 < 0.05 0.05 0.11 0.10 0.06	✓ ✓ ✓ ✓ ✓ ✓
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07	✓ ✓ ✓ ✓ ✓ ✓
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09	✓ ✓ ✓ ✓ ✓ ✓
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05	✓ ✓ ✓ ✓ ✓ ✓
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09	
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05	✓ ✓ ✓ ✓ ✓ ✓
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07	
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 < 0.05 < 0.05 < 0.05	
< 0.05 < 0.05 0.05 < 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07 < 0.05	
< 0.05 < 0.05 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07 < 0.05 < 0.05 0.07	
< 0.05 < 0.05 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
< 0.05 < 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07 < 0.05 < 0.05 0.07	
< 0.05 < 0.05 0.05 0.11 0.11 0.10 0.06 0.07 0.09 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.020 < 0.020 < 0.050	
< 0.05 < 0.05 0.05 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.020 < 0.020 < 0.050 < 1.0	
<pre>< 0.05 < 0.05 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.020 < 0.020 < 0.020 < 1.0 < 2.0</pre>	
$< 0.05 \\< 0.05 \\0.05 \\0.05 \\< 0.05 \\0.11 \\0.10 \\0.06 \\0.07 \\0.09 \\< 0.05 \\0.07 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.005 \\< 0.005 \\< 0.005 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.050 \\< 1.0 \\< 2.0 \\< 8.0 $	
< 0.05 < 0.05 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.	
<pre>< 0.05 < 0.05 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 < 0.020 < 0.020 < 0.020 < 0.020 < 0.05 < 0.020 < 0.05 < 0.020 < 0.05 < 0.0</pre>	
$< 0.05 \\< 0.05 \\0.05 \\0.05 \\< 0.05 \\0.11 \\0.10 \\0.06 \\0.07 \\0.09 \\< 0.05 \\0.07 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.005 \\< 0.005 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.010 \\< 0.010 \\$	
<pre>< 0.05 < 0.05 0.05 < 0.05 < 0.05 < 0.05 0.01 0.06 0.07 0.09 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.050 < 1.0 < 8.0 < 8.0 < 8.0 < 10 < 0.010</pre>	
<pre>< 0.05 < 0.05 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 < 0.05</pre>	
$< 0.05 \\< 0.05 \\0.05 \\0.05 \\< 0.05 \\0.11 \\0.10 \\0.06 \\0.07 \\0.09 \\< 0.05 \\0.07 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.005 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.010 \\< 0.010 \\< 0.010 \\< 0.050 \\< 1.0 \\$	
<pre>< 0.05 < 0.05 0.05 < 0.05 < 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.050 < 1.0 < 8.0 < 8.0 < 8.0 < 8.0 < 1.0 < 0.010 < 0.010 < 0.050 < 1.0 < 0.050 < 1.0 < 0.010 < 0.050 < 1.0 < 0.010 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 0.010 < 0.010 < 0.010 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.020 < 0.010 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.020 < 0.050 < 0.010 < 0.010 < 0.050 < 0.020 < 0.050 < 0.010 < 0.050 < 0.0500 < 0.0500 < 0.050 < 0.0500 < 0.0500 < 0.0</pre>	
$< 0.05 \\< 0.05 \\0.05 \\0.05 \\< 0.05 \\0.11 \\0.10 \\0.06 \\0.07 \\0.09 \\< 0.05 \\0.07 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.005 \\< 0.005 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.010 \\< 0.010 \\< 0.010 \\< 0.050 \\< 1.0 \\$	
<pre>< 0.05 < 0.05 0.05 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 < 0.010 < 0.010 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.010 < 0.050 < 0.050 < 0.010 < 0.050 < 0.050 < 0.050 < 0.010 < 0.050 < 0.010 < 0.050 < 0.0500 < 0.050 < 0.0500 < 0.0500 < 0.0500 < 0.0</pre>	
<pre>< 0.05 < 0.05 0.05 < 0.05 < 0.05 < 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.020 < 0.050 < 1.0 < 8.0 < 8.0 < 8.0 < 8.0 < 1.0 < 0.010 < 0.010 < 0.050 < 1.0 < 0.050 < 1.0 < 0.010 < 0.050 < 1.0 < 0.010 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 0.010 < 0.010 < 0.010 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.020 < 0.010 < 0.010 < 0.050 < 0.010 < 0.010 < 0.050 < 0.020 < 0.050 < 0.010 < 0.010 < 0.050 < 0.020 < 0.050 < 0.010 < 0.050 < 0.0500 < 0.0500 < 0.050 < 0.0500 < 0.0500 < 0.0</pre>	
$< 0.05 \\< 0.05 \\0.05 \\0.05 \\0.01 \\0.06 \\0.07 \\0.09 \\< 0.06 \\0.07 \\0.09 \\< 0.05 \\0.07 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.005 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.010 \\< 0.050 \\< 1.0 \\< 0.010 \\< 0.010 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.$	
$< 0.05 \\< 0.05 \\0.05 \\0.05 \\< 0.05 \\0.11 \\0.10 \\0.06 \\0.07 \\0.09 \\< 0.05 \\0.07 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.005 \\< 0.005 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.005 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.010 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.050 \\< 0.05$	
$< 0.05 \\< 0.05 \\0.05 \\0.05 \\0.05 \\0.011 \\0.10 \\0.06 \\0.07 \\0.09 \\< 0.05 \\0.07 \\0.09 \\< 0.05 \\0.07 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.05 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.020 \\< 0.050 \\< 1.0 \\< 0.010 \\< 0.010 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.050 \\< 1.0 \\< 0.010 \\< 0.010 \\< 0.050 \\< 1.0 \\< 10 \\< 10 \\< 10 \\< 10 \\$	
< 0.05 < 0.05 <	
<pre>< 0.05 < 0.05 0.05 0.05 0.11 0.10 0.06 0.07 0.09 < 0.05 0.07 < 0.05 < 1.0 < 2.0 < 8.0 < 8.0 < 8.0 < 8.0 < 10 < 0.010 < 0.050 < 1.0 < 0.050 < 1.0 < 0.010 < 0.050 < 1.0 < 0.050 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 1.0 < 0.050 < 0.055 < 0.0055 < 0.0055 </pre>	
< 0.05 < 0.05 <	

TIM O'HARE ASSOCIATES SOIL & LANDSCAPE CONSULTANCY

1

Visual Examination
The sample was described as a very dark greyish brown (Munsell Colour 10YR 3/2), slightly moist, friable, slightly
calcareous SANDY LOAM with a weakly developed, very fine to fine granular structure. The sample was stone-free
and contained a moderate proportion of organic fines. No unusual odours, deleterious materials, roots or rhizomes of pernicious weeds were observed.

eneral Landscape Specification Y LOAM Texture Class
Y LOAM Texture Class
TS accredited method (& UKAS accredited method)
025 accredited method
accredited method
ccredited method

This report presents the results of analysis for the sample submitted to our office, and it should be considered 'indicative' of the topsoil source. The report and results should therefore not be used by third parties as a means of verification or validation testing or waste designation purposes, especially after the topsoil has left the British Sugar factory.

Zoe Duffin MBiol Graduate Soil Scientist

Results of analysis should be read in conjunction with the report they were issued with

The contents of this certificate shall not be reproduced without the express written permission of Tim O'Hare Associates LLP.

Toby Skinner AF Howland Associates Ltd The Old Exchange Newmarket Road Cringleford Norwich Norfolk NR4 6UF

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 24-00207

Site Reference:	Old Station Yard, Blyth Road, Southwold, IP18 6AX
Project / Job Ref:	21.259
Order No:	TJS/21.259/03/01
Sample Receipt Date:	10/01/2024
Sample Scheduled Date:	10/01/2024
Report Issue Number:	1
Reporting Date:	17/01/2024

Authorised by:

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate								
DETS Report No: 24-00207			Date Sampled	09/01/24	09/01/24	09/01/24	09/01/24	09/01/24
AF Howland Associates Ltd	F Howland Associates Ltd Time Sampled		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Old Station Yard, E	Blyth Road,		TP / BH No	VS101	VS101	VS102	VS102	VS103
Southwold, IP18 6AX								
Project / Job Ref: 21.259		A	Additional Refs	ES1	ES1	ES1	ES1	ES1
Order No: TJS/21.259/03/01			Depth (m)	None Supplied				
Reporting Date: 17/01/2024		DE	ETS Sample No	693296	693297	693298	693299	693300
Determinand	Unit		Accreditation					
Asbestos Screen ^(S)	N/a	N/a	ISO17025	Not Detected		Not Detected		Not Detected
pH	pH Units	N/a	MCERTS	7.9		8.1		8.0
Total Cyanide	mg/kg	< 1	NONE	< 1		< 1		< 1
Complex Cyanide	mg/kg	< 1	NONE	< 1		< 1		< 1
Free Cyanide	mg/kg	< 1	NONE	< 1		< 1		< 1
Thiocyanate as SCN	mg/kg	< 3	NONE	< 3		< 3		< 3
Organic Matter (SOM)	%	< 0.1	MCERTS	3.2		3.4		3.4
Antimony (Sb)	mg/kg	< 1	NONE	< 1		< 1		< '
Arsenic (As)	mg/kg	< 2	MCERTS	17		19		20
Beryllium (Be)	mg/kg	< 0.5	MCERTS	< 0.5		< 0.5		< 0.5
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2		0.2		0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	8		12		1(
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2		< 2		< 2
Copper (Cu)	mg/kg	< 4	MCERTS	8		10		1(
Lead (Pb)	mg/kg	< 3	MCERTS	11		14		13
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1		< 1		< '
Nickel (Ni)	mg/kg	< 3	MCERTS	7		8		(
Selenium (Se)	mg/kg	< 2	MCERTS	< 2		< 2		< 2
Vanadium (V)	mg/kg	< 1	MCERTS	18		22		23
Zinc (Zn)	mg/kg	< 3	MCERTS	29		34		30
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2		< 2		< 2
TPH - Aliphatic >C35 - C40 : EH_CU_1D_AL	mg/kg	< 10	NONE	< 10		< 10		< 10
TPH - Aromatic >C35 - C40 : EH_CU_1D_AR	mg/kg	< 10	NONE	< 10		< 10		< 10
TPH - Aliphatic / Aromatic (C6 - C40) - Total : HS_1D_MS+EH_CU_1D_Total	mg/kg	< 42	NONE	< 42		< 42		< 42

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate							
DETS Report No: 24-00207	Date Sampled			09/01/24			
AF Howland Associates Ltd			None Supplied				
Site Reference: Old Station Yard, E	Blyth Road.		TP / BH No	VS103			
Southwold, IP18 6AX	J · · · · ·						
Project / Job Ref: 21.259		A	dditional Refs	ES1			
Order No: TJS/21.259/03/01			Depth (m)	None Supplied			
Reporting Date: 17/01/2024		DE	TS Sample No	693301			
Determinand	Unit		Accreditation			T	
Asbestos Screen ^(S)	N/a	N/a	ISO17025				
рН	pH Units	N/a	MCERTS				
Total Cyanide	mg/kg	< 1	NONE				
Complex Cyanide	mg/kg	< 1	NONE				
Free Cyanide	mg/kg	< 1	NONE				
Thiocyanate as SCN		< 3	NONE				
Organic Matter (SOM)	%	< 0.1	MCERTS				
Antimony (Sb)	mg/kg	< 1	NONE				
Arsenic (As)	mg/kg	< 2	MCERTS				
Beryllium (Be)	mg/kg	< 0.5	MCERTS				
Cadmium (Cd)	mg/kg	< 0.2	MCERTS				
Chromium (Cr)	mg/kg	< 2	MCERTS				
Chromium (hexavalent)	mg/kg	< 2	NONE				
Copper (Cu)	mg/kg	< 4	MCERTS				
Lead (Pb)	mg/kg	< 3	MCERTS				
Mercury (Hg)	mg/kg	< 1	MCERTS				
Nickel (Ni)	mg/kg	< 3	MCERTS				
Selenium (Se)	mg/kg	< 2	MCERTS				
Vanadium (V)	mg/kg	< 1	MCERTS				
Zinc (Zn)	mg/kg	< 3	MCERTS				
Total Phenols (monohydric)	mg/kg	< 2	NONE				
TPH - Aliphatic >C35 - C40 : EH_CU_1D_AL	mg/kg	< 10	NONE				
TPH - Aromatic >C35 - C40 : EH_CU_1D_AR	mg/kg	< 10	NONE				
TPH - Aliphatic / Aromatic (C6 - C40) - Total : HS_1D_MS+EH_CU_1D_Total	mg/kg	< 42	NONE				

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate -							
DETS Report No: 24-00207	1		Date Sampled	09/01/24	09/01/24	09/01/24	
AF Howland Associates Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Old Station	n Yard, Blyth Road,	d, TP / BH No		VS101	VS102	VS103	
Southwold, IP18 6AX	-						
Project / Job Ref: 21.259		A	Additional Refs	ES1	ES1	ES1	
Order No: TJS/21.259/03/	-		Depth (m)	None Supplied	None Supplied	None Supplied	
Reporting Date: 17/01/202	24	D	ETS Sample No	693296	693298	693300	
Determiner d	1114		A				
Determinand	Unit		Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.17	< 0.1	
Pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.16	< 0.1	
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Chrysene	mg/kg	< 0.1	MCERTS	< 0.1	0.13	< 0.1	
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.12	< 0.1	
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.13	< 0.1	
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	
Coronene	mg/kg	< 0.1	NONE	< 0.1	< 0.1	< 0.1	
Total Oily Waste PAHs	mg/kg	< 1	MCERTS	< 1	< 1	< 1	
Total Dutch 10 PAHs	mg/kg	< 1	MCERTS	< 1	< 1	< 1	
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	< 1.6	
Total WAC-17 PAHs	mg/kg	< 1.7	NONE	< 1.7	< 1.7	< 1.7	

Soil Analysis Certificate	- TPH LQM Banded	1					
DETS Report No: 24-0020)7		Date Sampled	09/01/24	09/01/24	09/01/24	
AF Howland Associates Lto	k		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Old Statio Southwold, IP18 6AX	n Yard, Blyth Road,		TP / BH No	VS101	VS102	VS103	
Project / Job Ref: 21.259		ŀ	Additional Refs	ES1	ES1	ES1	
Order No: TJS/21.259/03			Depth (m)	None Supplied	None Supplied	None Supplied	
Reporting Date: 17/01/20	024	D	ETS Sample No	693296	693298	693300	
Determinand	Unit	RL	Accreditation				
Aliphatic >C5 - C6 : HS_1D_MS_AL	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aliphatic >C6 - C8 : HS_1D_MS_AL	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aliphatic >C8 - C10 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C10 - C12 : EH_CU_1D_AL	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aliphatic >C12 - C16 : EH_CU_1D_AL	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aliphatic >C16 - C35 : EH_CU_1D_AL	mg/kg	< 10	MCERTS	< 10	< 10	< 10	
Aliphatic >C35 - C44 : EH CU 1D AL	mg/kg	< 10	NONE	< 10	< 10	< 10	
Aliphatic (C5 - C44) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 30	NONE	< 30	< 30	< 30	
Aromatic >C5 - C7 : HS_1D_MS_AR	mg/kg	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Aromatic >C7 - C8 : HS 1D MS AR	mg/kg	< 0.05	NONE	< 0.05	< 0.05	< 0.05	
Aromatic >C8 - C10 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C12 - C16 : EH_CU_1D_AR	mg/kg	< 2	MCERTS	< 2	< 2	< 2	
Aromatic >C16 - C21 : EH_CU_1D_AR	mg/kg	< 3	MCERTS	< 3	< 3	< 3	
Aromatic >C21 - C35 : EH_CU_1D_AR	mg/kg	< 10	MCERTS	< 10	< 10	< 10	
Aromatic >C35 - C44 : EH_CU_1D_AR	mg/kg	< 10	NONE	< 10	< 10	< 10	
Aromatic (>C5 - C44) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 30	NONE	< 30	< 30	< 30	
Total >C5 - C44 : HS_1D_MS+EH_CU_1D_Tot al	mg/kg	< 60	NONE	< 60	< 60	< 60	

Soil Analysis Certificate - B	TEX / MTBE						
DETS Report No: 24-00207			Date Sampled	09/01/24	09/01/24	09/01/24	
AF Howland Associates Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Old Station Y Southwold, IP18 6AX	ard, Blyth Road,	TP / BH No		VS101	VS102	VS103	
Project / Job Ref: 21.259		A	dditional Refs	ES1	ES1	ES1	
Order No: TJS/21.259/03/01			Depth (m)	None Supplied	None Supplied	None Supplied	
Reporting Date: 17/01/2024		DE	TS Sample No	693296	693298	693300	
Determinand	Unit	RL	Accreditation				
Benzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
Toluene : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	
Ethylbenzene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
p & m-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
o-xylene : HS_1D_MS	ug/kg	< 2	MCERTS	< 2	< 2	< 2	
MTBE : HS_1D_MS	ug/kg	< 5	MCERTS	< 5	< 5	< 5	

Leachate Analysis Certificate	e							
DETS Report No: 24-00207			Date Sampled	09/01/24	09/01/24	09/01/24	09/01/24	09/01/24
AF Howland Associates Ltd			Time Sampled	None Supplied				
Site Reference: Old Station Ya	rd, Blyth Road,		TP / BH No	VS101	VS101	VS102	VS102	VS103
Southwold, IP18 6AX	-							
Project / Job Ref: 21.259		ŀ	Additional Refs	ES1	ES1	ES1	ES1	ES1
Order No: TJS/21.259/03/01			Depth (m)	None Supplied				
Reporting Date: 17/01/2024		D	ETS Sample No	693296	693297	693298	693299	693300
Determinand	Unit	RL	Accreditation					
Hq	pH Units	N/a	ISO17025		8.7		8.2	
Total Cyanide	ug/l	< 5	ISO17025		< 5		< 5	
Complex Cyanide	ug/l	< 5	ISO17025		< 5		< 5	
Free Cyanide	ug/l	< 5	NONE		< 5		< 5	
Thiocyanate as SCN	ug/l	< 10	NONE		< 10		< 10	
Antimony	ug/l	< 0.2	ISO17025		0.4		0.5	
Arsenic	ug/l	< 0.2	ISO17025		6.6		13.9	
Beryllium	ug/l	< 0.2	ISO17025		< 0.2		< 0.2	
Cadmium	ug/l	< 0.2	ISO17025		< 0.2		< 0.2	
Chromium	ug/l	< 0.2	ISO17025		0.9		1.8	
Chromium (hexavalent)	ug/l	< 20	NONE		< 20		< 20	
Copper	ug/l	< 0.2	ISO17025		4.1		7.0	
Lead	ug/l	< 0.2	ISO17025		0.7		2.1	
Mercury	ug/l	< 0.04	ISO17025		< 0.04		< 0.04	
Nickel	ug/l	< 0.2	ISO17025		10.8		8.1	
Selenium	ug/l	< 0.2	ISO17025		0.4		0.5	
Vanadium	ug/l	< 0.2	ISO17025		5.4		9.4	
Zinc	ug/l	< 1	ISO17025		8		12	
Total Phenols (monohydric)	ug/l	< 10	ISO17025		< 10		< 10	-

Subcontracted analysis (S)

Leachate Analysis Certificate							
DETS Report No: 24-00207			Date Sampled	09/01/24			
AF Howland Associates Ltd			Time Sampled	None Supplied			
Site Reference: Old Station Ya	rd, Blyth Road,		TP / BH No	VS103			
Southwold, IP18 6AX	, ,						
Project / Job Ref: 21.259		A	Additional Refs	ES1			
Order No: TJS/21.259/03/01			Depth (m)	None Supplied			
Reporting Date: 17/01/2024		DE	TS Sample No	693301			
Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	ISO17025	8.4			
Total Cyanide	ug/l	< 5	ISO17025	< 5			
Complex Cyanide	ug/l	< 5	ISO17025	< 5			
Free Cyanide	ug/l	< 5	NONE	< 5			
Thiocyanate as SCN	ug/l	< 10	NONE	< 10			
Antimony	ug/l	< 0.2	ISO17025	0.5			
Arsenic	ug/l	< 0.2	ISO17025	7.6			
Beryllium	ug/l	< 0.2	ISO17025	< 0.2			
Cadmium	ug/l	< 0.2	ISO17025	< 0.2			
Chromium	ug/l	< 0.2	ISO17025	1.5			
Chromium (hexavalent)	ug/l	< 20	NONE	< 20			
Copper	ug/l	< 0.2	ISO17025	4.7			
Lead	ug/l	< 0.2	ISO17025	1.0			
Mercury	ug/l	< 0.04	ISO17025	< 0.04			
Nickel	ug/l	< 0.2	ISO17025	11.6			
Selenium	ug/l	< 0.2	ISO17025	0.4			
Vanadium ug/l		< 0.2	ISO17025	6.4			
Zinc	ug/l	< 1	ISO17025	18			
Total Phenols (monohydric)	ug/l	< 10	ISO17025	< 10			

Subcontracted analysis (S)

Loochato Apolycic Corti	ficato Spaciatod F						
Leachate Analysis Certi DETS Report No: 24-0020		АП	Data Campulad	00/01/24	00/01/04	00/01/04	
			Date Sampled	09/01/24	09/01/24	09/01/24	
AF Howland Associates Lt			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Old Statio	on Yard, Blyth Road,		TP / BH No	VS101	VS102	VS103	
Southwold, IP18 6AX							
Project / Job Ref: 21.259		A	Additional Refs	ES1	ES1	ES1	
Order No: TJS/21.259/03			Depth (m)	None Supplied	None Supplied	None Supplied	
Reporting Date: 17/01/2	024	DI	TS Sample No	693297	693299	693301	
Determinand	Unit	RL	Accreditation				
Naphthalene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Acenaphthylene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Acenaphthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Fluorene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Phenanthrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Chrysene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	ug/l	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	^o	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	^o	< 0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene		0.008	NONE	< 0.008	< 0.008	< 0.008	
Total EPA-16 PAHs	ug/l	< 0.16	NONE	< 0.16	< 0.16	< 0.16	

Leachate Analysis Certificate - TPH CW	Bande	d				
DETS Report No: 24-00207		Date Sampled	09/01/24	09/01/24	09/01/24	
AF Howland Associates Ltd		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Old Station Yard, Blyth Ro. Southwold, IP18 6AX	ıd,	TP / BH No	VS101	VS102	VS103	
Project / Job Ref: 21.259		Additional Refs	ES1	ES1	ES1	
Order No: TJS/21.259/03/01		Depth (m)	None Supplied	None Supplied	None Supplied	
Reporting Date: 17/01/2024	[DETS Sample No	693297	693299	693301	
Determinand	nit RI	Accreditation				
Aliphatic >C5 - C6 : HS 1D MS AL	g/l < 10		< 10	< 10	< 10	
Aliphatic $> C6 - C8$	g/l < 10	0 NONE	< 10	< 10	< 10	
Aliphatic >C8 - C10 : EH_CU_1D_AL	g/l < 10	0 NONE	< 10	< 10	< 10	
EH_CU_TD_AL	g/l < 10	D NONE	< 10	< 10	< 10	
EH_CU_1D_AL	g/l < 10	D NONE	< 10	< 10	< 10	
EH_CU_1D_AL	g/l < 10	D NONE	< 10	< 10	< 10	
Aliphatic >C21 - C34 : EH_CU_1D_AL	g/l < 10	0 NONE	< 10	< 10	< 10	
Aliphatic (C5 - C34) : HS_1D_MS+EH_CU_1D_AL	g/l < 70	D NONE	< 70	< 70	< 70	
HS_TD_MS_AR	g/l < 10	D NONE	< 10	< 10	< 10	
HS_TD_MS_AR	g/l < 10	D NONE	< 10	< 10	< 10	
EH_CU_1D_AR	g/l < 10	D NONE	< 10	< 10	< 10	
EH_CU_1D_AR	g/l < 10	0 NONE	< 10	< 10	< 10	
EH CU 1D AR	g/l < 10	D NONE	< 10	< 10	< 10	
EH_CU_TD_AR	g/l < 10	D NONE	< 10	< 10	< 10	
Aromatic >C21 - C35 : EH CU 1D AR	g/l < 10	0 NONE	< 10	< 10	< 10	
HS_TD_MS+EH_CU_TD_AR	g/l < 70	D NONE	< 70	< 70	< 70	
Total >C5 - C35 : HS_1D_MS+EH_CU_1D_Tot al	g/l < 140	D NONE	< 140	< 140	< 140	

Leachate Analysis Certificate - BTEX / M	BE					
DETS Report No: 24-00207		Date Sampled	09/01/24	09/01/24	09/01/24	
AF Howland Associates Ltd		Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Old Station Yard, Blyth Road	,	TP / BH No	VS101	VS102	VS103	
Southwold, IP18 6AX						
Project / Job Ref: 21.259		Additional Refs	ES1	ES1	ES1	
Order No: TJS/21.259/03/01		Depth (m)	None Supplied	None Supplied	None Supplied	
Reporting Date: 17/01/2024	D	ETS Sample No	693297	693299	693301	
Determinand Un	t RL	Accreditation				
Benzene : HS_1D_MS ug	/l < 1	ISO17025	< 1	< 1	< 1	
Toluene : HS_1D_MS ug	′l < 5	ISO17025	< 5	< 5	< 5	
Ethylbenzene : HS_1D_MS ug	′l < 5	ISO17025	< 5	< 5	< 5	
p & m-xylene : HS_1D_MS ug	′l < 10	ISO17025	< 10	< 10	< 10	
o-xylene : HS_1D_MS ug	′l < 5	ISO17025	< 5	< 5	< 5	
MTBE : HS_1D_MS ug	′l < 10	ISO17025	< 10	< 10	< 10	

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 24-00207	
AF Howland Associates Ltd	
Site Reference: Old Station Yard, Blyth Road, Southwold, IP18 6AX	
Project / Job Ref: 21.259	
Order No: TJS/21.259/03/01	
Reporting Date: 17/01/2024	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
693296	VS101	ES1	None Supplied	9.7	Brown sandy clay
693298	VS102	ES1	None Supplied	10.7	Brown sandy clay
693300	VS103	ES1	None Supplied	10.8	Brown sandy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample^{VS}

Unsuitable Sample U/S

Soil Analysis Certificate - Methodology & Miscellaneous Information DETS Report No: 24-00207 AF Howland Associates Ltd Site Reference: Old Station Yard, Blyth Road, Southwold, IP18 6AX Project / Job Ref: 21.259 Order No: TJS/21.259/03/01 Reporting Date: 17/01/2024

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	1
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	D		Determination of TOC by combustion analyser.	E027
Soil	AR		Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D		Determination of metals by aqua-regia digestion followed by ICP-OES	E023
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	E002
Soil	AR	Maistura Contant	cartridge Moisture content; determined gravimetrically	E003
Soil	D		Determination of nitrate by extraction with water & analysed by ion chromatography	E003
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (11) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the	E005
C - 11	4.0		use of surrogate and internal standards	5000
Soil	AR D		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil			Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR		Determination of sulphide by distillation followed by colorimetry	E018
Soil Soil	D AR	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	E024 E006
Soil	AR	Thiocyanate (as SCN)	GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017
			addition of ferric nitrate followed by colorimetry	
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil				

D Dried AR As Received

Water Analysis Certificate - Methodology & Miscellaneous Information	
DETS Report No: 24-00207	
AF Howland Associates Ltd	
Site Reference: Old Station Yard, Blyth Road, Southwold, IP18 6AX	
Project / Job Ref: 21.259	
Order No: TJS/21.259/03/01	
Reporting Date: 17/01/2024	

On Determination of alkalinity by titration against hydrochoirc acid using bromocresol green as the end No. Water F Annonical Nitrogen Determination of annonical nitrogen by discrete analyser. E126 Water UF Cattors Determination of BTEX by headspace CC-MS E100 Water F Cattors Determination of Cattors by distribution (browed by LC-MS E100 Water F Chemical Oxygen Demand (CDD) Determination of nonixon by distribution (browed by colorimetry E110 Water F Chondup Determination of nonixon by acidification of 0.1.6 (dphenyCarbazide followed by Clinton Addition Addition Addition Additi	Matrix	Analysed	Determinand	Brief Method Description	Method
Water UF Atkainity bit intervention against hydrochloric acid using bromocresol green as the end structure of the struc	marint		Dotorrindrid		
Water F Ammoniacal Nitrogen Determination of ammoniacal nitrogen by discrete analyser. E12 Water F Cattors Determination of Tax by Hearback Co-MS E101 Water F Chemical Oxygen Demand (CDD) Determination or all actors by fittration followed by clorimetry E112 Water F Chemical Oxygen Demand (CDD) Determination of choose by clorimetry E112 Water F Chemical Oxygen Demand (CDD) Determination of academical by acadification. addition of 1.5 diphendicarbacke followed by Colorimetry E115 Water UF Chyanide - Complex Determination of taxademic through inguidilogic distribution followed by colorimetry E115 Water UF Cyclohoxane Extractable Mater (EMG Gravalle by distillation followed by colorimetry E111 Water UF Cyclohoxane Extractable Mater (EMG Gravalle Cyclinitation followed by colorimetry E111 Water F Dissolitation (Cloridowed Gravalle Cattor) Determination of liguiditiguid extractable by colorimetry E111 Water F Dissolitation (Cloridowed Gravalle Cattor) Determination of liguiditiguid extractable by colorimetry E112 Water F Ditextral Mater (EMG Gravalle) Ditext	Water		Alkalinity	, , , , , , , , , , , , , , , , , , ,	E103
Water F Othermination of BTEA by hedgages CC-MS E100 Water F Cations Determination of astros by Iltration followed by ICP-MS F102 Water F Chondia Determination of cations by Iltration followed by ICP-MS F102 Water F Chondia Determination of chondia by Iltration as analysed by ion chromatography F103 Water F Chondia Determination of new synthesis by addition followed by colorimetry F115 Water UF Cyanide - Free Determination of one synake by distillation followed by colorimetry F115 Water UF Cyanide - Free Determination of free synake by distillation followed by colorimetry F115 Water UF Cyanide - Free Determination of free synake by distillation followed by CG-F10 F104 Water F Dissels Range Graphics CG10 - C24) Determination of liquid liquid extraction with hexane followed by CG-F10 F104 Water F Dissels and the CG10-CG10 Determination of liquid liquid extraction with hexane followed by CG-F10 F104 Water F Dissels and the CG10-CG10 Determination of liquid liquid extraction with hexane followed by CG-F10 F104 Water F Di	Water	F	Ammoniacal Nitrogen		F126
Water F Cations Determination of cations by Ittration (flowed by colorimetry) E112 Water F Chemical Oxygen Demand (CDD) Determination of a CD reactor (flowed by colorimetry) E112 Water F Chemical Determination of chorde by filtration & analysed by colorimetry E119 Water F Chemical Determination of chorde by distillation followed by colorimetry E115 Water UF Cyanide - Complex Determination of the cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Total Determination of total cyanide by distillation followed by Colorimetry E111 Water UF Cyclobeane Extractabile Matter (CBM) Gravinic Cample distillation followed by colorimetry E111 Water F Dissole Organic Control (COD) Determination of laudicliquid extraction with hexane followed by CG-FID E141 Water F Dissole Organic Control (COC) Determination of laudicliquid extraction with hexane followed by CG-FID for CB to C40. C6 to CB by E104 E104 Water F EVENTXAS (CA-6.8, C8-C10, C10-C12, Determination of laudicliquid extraction with hexane followed by CG-FID for CB to C40. C6 to CB by E104 E104 Water F Leachate Preparation. NRA Based on NB N1					-
Water EF Chemical Oxygen Demand (COD) Determination of choiced by fittration. A analysed by ion chromatography E102 Water F Chroniello Determination of choiced by fittration. A analysed by ion chromatography E109 Water UF Cyanide - Complex Opende by distillation followed by colorimetry E115 Water UF Cyanide - Tree Determination of chrone cyanide by distillation followed by colorimetry E115 Water UF Cycanide - Tree Determination of chrone cyanide by distillation followed by colorimetry E115 Water UF Cycanide - Tree Determination of chrone cyanide by distillation followed by colorimetry E111 Water F Dissolved Organic Content (DOC) Determination of includi liquid distance distration with hexane followed by CoFID E104 Water F Dissolved Organic Content (DOC) Determination of includi liquid estraction with hexane followed by CoFID E104 Water F EPH (E10 - C40) Determination of includi by filtration followed by work of FID for C8 to C40. C6 to C8 by FI 104 E104 Water F C12-C16, C16-C21, C21-C40, Diceard B, Determination of Ca, and Mg by ICP-MS followed by CaFID E102 Water		-			
Water F Chorde Determination of chorde by filtration & analysed by ion chromatography E109 Water F Chronitum - Nexavient Determination of charavalent Chromitum by additization of 13 dehyndrabrazide followed by E115 Water UF Cyanide - Complex Determination of charavalent Chromitum by additization followed by colorimetry E115 Water UF Cyanide - Total Determination of the cyanide by distillation followed by colorimetry E111 Water UF Cyclohexane Extractable Matter (CEM) Grainmenic Bruccal Maul Stillation Followed by Co-FilD E141 Water F Dissel Range Organics (C10 - C24) Determination of locid Liquid extraction with hexane followed by CC-FilD E142 Water F Dissel Range Organics (C10 - C24) Determination of locid Liquid Extraction with hexane followed by CC-FilD E143 Water F DESNetWord Organic Control (OC) Determination of liquid Liquid extraction with hexane followed by CC-FilD E143 Water F E147 EXAS (C6-C8, C8-C10, C10-C12, Determination of Liquid Liquid extraction with hexane followed by CC-FilD E144 Water F Hardness Determination of Fluoride by Hiration & analysed by ion chronatography E102 Water F Leachate Preparation -					
Water F Chromium - Hexavalent Determination of hexavalent chromium by addition of 1.5 diphenylcarbazide followed by E116 Water UF Cycanide - Complox Determination of complex cyanide by distillation followed by colorimetry E115 Water UF Cycanide - Tree Determination of calic cyanide by distillation followed by colorimetry E115 Water UF Cycanide - Tree Determination of calic cyanide by distillation followed by colorimetry E111 Water UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined floudd siguid extraction with hexane followed by CG-FID E111 Water F Dissolved Organic Content (DOC) Determination of louid-liquid extraction with hexane followed by CG-FID E124 Water F EPH (E10 - C40) Determination of louid-liquid extraction with hexane followed by CG-FID E124 Water F EPH (E10 - C40) Determination of louid-liquid extraction with hexane followed by CG-FID E104 Water F EPH (E10 - C40) Determination of Calical Inductivity by electrometic masurement. E123 Water F EPH TEXAS (C6-C8, C6-C1, C10-C12, C12 Determination of Cal and Map U/CP-MS followed by CG-FID for C8 to C40. C6 to C8 by F104 E130 Water F Leachtale Pre		-			
Water UF Cyanide - Complex Determination of complex cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Free Determination of total cyanide by distillation followed by colorimetry E115 Water UF Cyanide - Total Determination of total cyanide by distillation followed by colorimetry E115 Water UF Cyclobexane Extractable Matter (CED, Or Canomatrically determined in found liquid extraction with hexane followed by GC-FID E141 Water F Dissidied Organic Content (DOC) Determination of liquid liquid extraction with hexane followed by GC-FID E141 Water F Dissidied Organic Content (DOC) Determination of liquid liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E144 E141 Water F EPH TEXAS (C6-C8, C6-C1, C10-C12. L2 Determination of Flooride by filtration followed by GC-FID for C8 to C40. C6 to C8 by E140 E104 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate Frequeration - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate F					E116
Water UF Cyanide - Free Determination of free cyanide by distillation followed by colorimetry. E115 Water UF Cyclohexane Extractable Matter (CEM) Gravimetrically determined in total cyanide by distillation followed by GC-FID E110 Water F Diessel Range Organics Content (DOC) Determination of liquid-liquid extraction with hexane followed by GC-FID E110 Water F Diessel Content (DOC) Determination of liquid-liquid extraction with hexane followed by GC-FID E123 Water F EPH TEXAS (Co-CB (CC 1), C12. Determination of liquid-liquid extraction with hexane followed by GC-FID for CB to C40. C6 to C8 by C12-C16, C1-C3, C21. C21-C40 Indexdapes (CC-MS E104 Water F EPH TEXAS (Co-CB (CC 2), C21-C40 Indexdapes (CC-MS E104 Water F C12-C16, C1-C3, C21-C21-C40 Indexdapes (CC-MS E104 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E102 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E302 Water F Meteral UC10 - C40 Determination of PLast P11, 2, 3 E322 Water F Meteral UC10 - C40 Determination of netats by IIIIIIIIIIIII N & analysed by IIIIIIII					
Water UF Cyanide - Total Determination of total cyanide by distillation followed by colonkane. E111 Water UF Crytokrane Extractable Matter (CEM) determination of liquid liquid extraction with cyclonkane. E111 Water F Dissole Range Organics (C10 - C24) Determination of DOC by filtration followed by GC-FID E104 Water F Dissole Content (DOC) Determination of liquid liquid extraction with cyclonkane and the same followed by GC-FID E104 Water F EPH TEXAS (C6-C8, C8-C10, C10-C12) Determination of liquid liquid extraction with nexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F C12-C16, C16-C21, C21-C40) hearsmant on C1 and Mg by ICP-MS (Diowed by C4Ualation E102 Water F C12-C16, C16-C21, C21-C40) hearsmant on C2 and Mg by ICP-MS (Diowed by C4Ualation E102 Water F Leachate Preparation - NAC Based on Rational Rivers Authonity leaching the same followed by GC-FID E104 Water F Leachate Preparation - NAC Based on Rational Rivers Authonity leaching the same followed by GI-FID E102 Water F Merala OII (C10 - C40) Determination of liquid liquid extraction with nexane followed by GI-FID <td></td> <td>UF</td> <td></td> <td></td> <td>E115</td>		UF			E115
Water UF Cyclobexane Extractable Matter (EEM) Gravimetrically determined through liquid/iliquid extraction with cyclobexane E1101 Water F Dissolved Organic Content (DOC) Determination of DOC by filtration followed by GC-FID E104 Water F Dissolved Organic Content (DOC) Determination of Educid Elocation of Educida Elocation (Elocation (Eloca		UF			E115
Water F Diseal Range Organics (C10 - C24) Determination of liquid/liquid extraction with hexane followed by GC-FID E110 Water F Dissolved Organic Content (DOC) Determination of DOC by filtration followed by Ide Hast with persubhate addition Ide Hast with persubhate addition Ide Hast with persubhate addition Ide Hast with persubhate hast with persubhate addition Ide Hast with persubhate hast with persubhate addition Ide Hast with persubhate hast with what with persubhate hast with what with persubhate hast with what with persubhate hast with what with persubhate hast with persubhate hast with persubhate hast with what with persubhate hast with what with persubhate hast with what with hast with persubhate hast with what with hast with what with what with what with what with what with persubhate hast with what with what		UF			
Water UF Electrical Conductivity Determination of electrical conductivity by electrometric measurement E123 Water F EPH (C10 – C40) Determination of liquid liquid extraction with hexane followed by GC-FID E104 Water F EPH TEXAS (C6-C8, C8-C10, C10, C12, Determination of liquid-liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F C12-C16, C16-C21, C21-C30, bedapsace GC-MS E109 Water F Hardness Determination of Float/subtority leaching test status E102 Leachate F Leachate Preparation - WAC Based on BS EN 12457 Pt1, 2, 3 E302 Water F Metal Determination of Intate by Viltration followed by ICP-MS E102 Water F Mineral OII (C10 - C40) Determination of Intate by Viltration followed by ICP-MS E102 Water F Mineral OII (C10 - C40) Determination of Paths by distillation followed by ICP-MS E102 Water F Mineral OII (C10 - C40) Determination of Paths by distillation followed by ICP-MS E104 Water F PAH - Speciated (EPA 16) Determination of Paths Asto Vincomentary SPE cartridge, collectin in fichior		F			E104
Water UF Electrical Conductivity Determination of electrical conductivity by electrometric measurement E123 Water F EPH (C10 – C40) Determination of liquid/liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 E104 Water F EPH TEXAS (C6-C8, C8-C10, C10, C12. Determination of liquid/liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 E109 Water F C12-C16, C16-C21, C21-C40) headspace GC-MS E109 Water F Hardness Determination of Float/dipuld extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E102 E102 Leachate F Leachate Preparation or FMR Based on Mational Rivers Authority leaching test 1994 E301 Water F Metala Determination of Intate by Riltration followed by ICP-MS E102 Water F Mineral OII (C10 - C40) Determination of phenols by distillation followed by ICP-MS E104 Water F Mineral OII (C10 - C40) Determination of Phenols by distillation followed by ICP-MS E102 Water F PAH - Speciated (PA 10) Determination of Phenols by distillation followed by ICP-MS E104 Water F PAH - Speciated (PA 10) Determina		F			E110
Water F EPH (C10 - C40) Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F C12-C16, C12. Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F Function Fluoride Determination of Fluoride by filtration & analysed by ion chromatography E100 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate Preparation - NRA Based on SE IN 12457 P11, 2, 3 Mater F Leachate Preparation - NRA Based on SE IN 12457 P11, 2, 3 E302 Water F Leachate Preparation - NRA Based on SE IN 12457 P11, 2, 3 E100 Water F Mineral OII (C10 - C40) Determination of Inducid liquid extraction with hexane followed by GL-FID E104 Water F Mineral OII (C10 - C40) Determination of phenols by distillation Ranalysed by ion chromatography E109 Water F PAH - Speciated (EPA 10) Determination of phenols by distillation Ranalysed by ion chromatography E107 Water F PAH - Speciated (EPA 10) Determination of phenols by distillation Ranalysed by ion chromatography E103	Water	UF			E123
Water F EPH TEXAS (C6-C8, C8-C10, C10-C12, Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by E104 Water F C12-C16, C16-C21, C21-C40) headspace GC-MS E109 Water F Hardness Determination of Ca and Mg by ICP-MS followed by calculation E109 Water F Leachate Preparation - NRA Based on National Rivers authority leaching test 1994 E301 Leachate Freparation - NRA Based on DS EN 12457 P11, 2, 3 E109 Water F Leachate Preparation - NRA Based on DS EN 12457 P11, 2, 3 E104 Water F Mineral OII (C10 - C40) Determination of intrate by filtration followed by ICP-MS E102 Water F Mineral OII (C10 - C40) Determination of nitrate by filtration followed by concentration through SPE cartridge, collection in dichloromethy E121 Water F PAH - Speciated (EPA 10) Determination of PAH compounds by distillation followed by concentration through SPE cartridge, collection in dichloromethane followed by CC-MS E102 Water F PAH - Speciated (EPA 10) Determination of PAH compounds by distillation followed by concentration through SPE cartridge, collection in dichloromethane followed by CC-MS Water		F			E104
Water F C12-C16, C16-C21, C21-C40) headspace GC-MS E100 Water F Hardness Determination of Lourde by filtration & analysed by ion chromatography E109 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E301 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E302 Water F Leachate Preparation - NRA Based on National Rivers Authority leaching test 1994 E302 Water F Medias Determination of metals by filtration followed by clorMate preparation - NRA Based by Ion Chromatography E100 Water F Mineral Oli (C10 - C40) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane Followed by clorMate Paratement E102 Water F PAH - Speciated (FPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane Followed by clorMate Paratement E110 Water UF PCB - 7 Congeners Determination of phosphate pub electrometric measurement E111 <t< td=""><td></td><td>-</td><td>EPH TEXAS (C6-C8, C8-C10, C10-C12,</td><td>Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by</td><td>5101</td></t<>		-	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	5101
Water F Hardness Determination of Ca and Mg by ICP-MS followed by calculation E102 Leachate F Leachate Preparation - NKA Based on National Rivers Authority leaching test 1994 E301 Leachate F Leachate Preparation - NKA Based on SE N1 2457 Pt1, 2, 3 E302 Water F Leachate Preparation - NKA Based on SE N1 2457 Pt1, 2, 3 E302 Water F Minard Oil (C10 - C40) Determination of inguid/liguid extraction with hexane followed by CIP-MS E102 Water F Minard Oil (C10 - C40) Determination of phenols by distillation followed by colorimetry E121 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by cOlorimetry E121 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by cCMS E107 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by cCMS E111 Water F Petoreleum Ether Extract (PEE) Gravimetrically determined through liguid-liguid extraction with petroleum ether	water	F			E104
Leachate F Leachate Preparation - NAR Based on National Rivers Authority leaching test 1994 [5301] Leachate F Leachate Preparation - WAC Based on BS EN 12457 Pt1, 2, 3 E302 Water F Mineral Oil (C10 - C40) Determination of metals by filtration followed by ICP-MS E102 Water F Mineral Oil (C10 - C40) Determination of metals by filtrate by filtration sanalysed by ion chromatography E104 Water F Monohydric Phenol Determination of phenols by distillation followed by colorimetry E121 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane E105 Water F PCB - 7 Congeners Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane E107 Water UF Petroleum Ether Extract (PED) Gravimetrically determined through Filudi-filudi extraction with petroleum ether E117 Water F Phosphate Determination of phosphate by filtration & analysed by ion chromatography E109 Water F Sulphate (as S04) Determination of sulphate by filtration & analysed by ion chromatography E108	Water	F			E109
Leachate F Leachate Preparation - NAR Based on National Rivers Authority leaching test 1994 [5301] Leachate F Leachate Preparation - WAC Based on BS EN 12457 Pt1, 2, 3 E302 Water F Mineral Oil (C10 - C40) Determination of metals by filtration followed by ICP-MS E102 Water F Mineral Oil (C10 - C40) Determination of metals by filtrate by filtration sanalysed by ion chromatography E104 Water F Monohydric Phenol Determination of phenols by distillation followed by colorimetry E121 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane E105 Water F PCB - 7 Congeners Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane E107 Water UF Petroleum Ether Extract (PED) Gravimetrically determined through Filudi-filudi extraction with petroleum ether E117 Water F Phosphate Determination of phosphate by filtration & analysed by ion chromatography E109 Water F Sulphate (as S04) Determination of sulphate by filtration & analysed by ion chromatography E108	Water	F	Hardness	Determination of Ca and Mg by ICP-MS followed by calculation	E102
Leachate F Leachate Preparation - WAC Based on BS EN 12457 Pt1. 2, 3 E302 Water F Metals Determination of metals by filtration followed by ICP-MS E102 Water F Mineral OII (C10 - C40) Determination of liquid:liquid extraction with hexane followed by GI-FID E104 Water F Mineral OII (C10 - C40) Determination of nitrate by filtration & analysed by ion chromatography E104 Water F Monohydric Phenol Determination of phenols by distillation followed by colorimetry E121 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethan followed by GC-MS E108 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid (aud extraction with petroleum ether E110 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined timo of plosphate by filtration & analysed by ion chromatography E109 Water F Sulphate Determination of sulphate by filtration & analysed by ion chromatography E109 Water F Sulphate GR SOAD Determination of sulphate by filtration & analysed by ion chromatography E110 Water F Sulphate GR SOAD Determination o	Leachate	F			E301
Water F Metals Determination of metals by filtration followed by ICP-MS E102 Water F Mineral Oil (C10 - C40) Determination of liquid:liquid extraction with hexane followed by GI-FID E104 Water F Monohydric Phenol Determination of phenols by distillation followed by concentration through SPE cartridge, collection in E107 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in E105 Water F PCB - 7 Congeners Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethan E105 Water UF Petroleum Ether Extract (PEE) Travimetrically determined through liquid:liquid extraction with petroleum ether E111 Water UF Phosphate Determination of redox potential by electrometric measurement E107 Water UF Sulphate (as S04) Determination of sulphate by filtration & analysed by ion chromatography E109 Water UF Sulphate (as S04) Determination of sulphate by filtration & analysed by ion chromatography E108 Water F Sulphate (as S04) Determination	Leachate	F			E302
WaterFMineral Oil (C10 - C40)Determination of liquid:liquid extraction with hexane followed by GI-FIDE104WaterFMonohydric Phenol Determination of phenols by distillation followed by colormetryE121WaterFPAH - Speciated (EPA 16)Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by CoC-MSE107WaterFPCB - 7 CongenersDetermination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by CG-MSE108WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFPhosphate Determination of PAB compounds by concentration through SPE cartridge, collection in dichloromethaneE107WaterFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFPhosphate Determination of phosphate by filtration & analysed by ion chromatographyE109WaterFSulphide Determination of redox potential by electrometric measurementE113WaterFSulphide Determination of sulphide by distillation followed by concentration through SPE cartridge, collectionE106WaterFSulphide Determination of sulphide by Giltration & analysed by ion chromatographyE119WaterFSulphide Determination of sulphide by Giltration & analysed by ion chromatographyE111WaterFSulphide Determination of sulphide by Giltration & analysed by ion chromatography </td <td>Water</td> <td>F</td> <td></td> <td></td> <td>E102</td>	Water	F			E102
Water F Nitrate Determination of nitrate by filtration & analysed by ion chromatography E109 Water UF Monohydric Phenol Determination of PAH compounds by colorimetry E121 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E105 Water F PCB - 7 Congeners Determination of PAE compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E108 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E111 Water F Phosphate Determination of redox potential by electrometric measurement E107 Water F Phosphate Determination of redox potential by electrometric measurement E113 Water F Sulphate (as SO4) Determination of sulphate by filtration & analysed by ion chromatography E109 Water F Sulphate bactermination of sulphate by filtration & analysed by ion chromatography E118 Water F Sulphate bactermination of sulphate bacililation followed by concentration throungh SPE c	Water	F			E104
Water UF Monohydric Phenol Determination of phenols by distillation followed by colorimetry E121 Water F PAH - Speciated (EPA 16) Determination of PAH compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E105 Water F PCB - 7 Congeners Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E107 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E111 Water UF Petroleum Ether Extract (PEE) Gravimetrically determined through liquid:liquid extraction with petroleum ether E111 Water UF Phosphate Determination of phosphate by filtration & analysed by ion chromatography E109 Water F Sulphate (as SO4) Determination of sulphate by distillation followed by colorimetry E118 Water F Sulphate (as SO4) Determination of sulphate by GC-MS E111 Water F Sulphate (as SO4) Determination of sulphate by distillation followed by colorimetry E118 Water F Sulphate (as SO4) <t< td=""><td>Water</td><td>F</td><td></td><td></td><td>E109</td></t<>	Water	F			E109
WaterFPAH - Speciated (EPA 16)Determination of PAH compounds by concentration through SPE cartridge, collection inE105WaterFPCB - 7 CongenersDetermination of PCB compounds by concentration through SPE cartridge, collection in dichloromethalE108WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFPhosphateDetermination of PLS compounds by concentration through SPE cartridge, collection in dichloromethalE109WaterFPhosphateDetermination of phosphate by filtration & analysed by ion chromatographyE109WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterFColume Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterFTotuene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE110WaterUFTotuene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for c10-C12, C12-C16, C16-C21, C21-C34, C12-C16,	Water	UF			E121
WaterFPCB - 7 CongenersDetermination of PCB compounds by concentration through SPE cartridge, collection in dichloromethalE108WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFPhosphateDetermination of pH by electrometric measurementE109WaterFPhosphateDetermination of pL by electrometric measurementE109WaterUFRedox PotentialDetermination of subphate by filtration & analysed by ion chromatographyE109WaterFSulphate (as SO4)Determination of subphate by filtration & analysed by ion chromatographyE113WaterUFSulphate (as SO4)Determination of subphate by filtration & analysed by ion chromatographyE119WaterUFSulphate (as SO4)Determination of subphate by filtration & analysed by ion chromatographyE118WaterUFSulphate (as SO4)Determination of subphate by filtration & analysed by ion chromatographyE119WaterUFSulphate (as SO4)Determination of subphate by filtration & analysed by ion chromatographyE119WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with housenE111WaterUFTotal Organic Carbon (TOC)Low heat with persubhate addition followed by IR detectionE110WaterFC10-C12, C12-C16, C16-C21, C21-C34, C10-C12, C21-C34, C10-C12, C21-C15, C10-C12, C21-C15, C10-C12, C21-C35, C35-C44, C35, C55 C C 8 by headspace GC-MSE104 <td></td> <td>F</td> <td></td> <td>Determination of PAH compounds by concentration through SPE cartridge, collection in</td> <td>E105</td>		F		Determination of PAH compounds by concentration through SPE cartridge, collection in	E105
WaterUFPetroleum Ether Extract (PEE)Gravimetrically determined through liquid:liquid extraction with petroleum etherE111WaterUFpHDetermination of pH by electrometric measurementE100WaterFPhosphateDetermination of redox potential by electrometric measurementE113WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterVFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE119WaterVFSulphate (as SO4)Determination of sulphate by distillation followed by colorimetryE118WaterVFSulphate (as SO4)Determination of sulphate by distillation followed by colorimetryE111WaterVFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterVFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C1-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with he	Water	F	PCB - 7 Congeners		E108
WaterFPhosphateDetermination of phosphate by filtration & analysed by ion chromatographyE109WaterUFRedox PotentialDetermination of redox potential by electrometric measurementE113WaterFSulphate (as S04)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as S04)Determination of sulphate by filtration & analysed by ion chromatographyE118WaterUFSulphate (as S04)Determination of sulphate by filtration & analysed by ion chromatographyE118WaterFSulphate (as S04)Determination of sulphate by filtration & analysed by ion chromatographyE118WaterFSulphate (as S04)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction	Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111
WaterUFRedox PotentialDetermination of redox potential by electrometric measurementE113WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphate (as SO4)Determination of sulphate by filtration compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE118WaterUFToluene Extractable Matter (TEM)Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFToluene Extractable Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterUFToluene Carbon (TOC)Low heat with persulphate addition followed by IR detectionE110WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C3E104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44, C12-C16, C16-C21, C21-C35, C35-C44,Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MSE104WaterUFVOcsDetermination of volatile organic compounds by headspace GC-MSE104	Water	UF	pH	Determination of pH by electrometric measurement	E107
WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphideDetermination of sulphide by distillation followed by colorimetryE118WaterFSVOCDetermination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichoromethane followed by GC-MSE106WaterUFToluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC) Low heat with persulphate addition followed by IR detectionE1100WaterUFTOtal Organic Carbon (TOC) C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C35,Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35,E104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35,Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35,E104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C12-C16, C16-C21, C21-C35,Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44,E104WaterUFVDCDetermination of volatile organic compounds by headspace GC-MSE104WaterUFVOCsDetermination of volatil	Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109
WaterFSulphate (as SO4)Determination of sulphate by filtration & analysed by ion chromatographyE109WaterUFSulphideDetermination of sulphide by distillation followed by colorimetryE118WaterFSVOCDetermination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MSE106WaterUFToluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with tolueneE111WaterUFTotal Organic Carbon (TOC) Low heat with persulphate addition followed by IR detectionE1100WaterUFTotal Organic Carbon (TOC) C10-C12, C12-C16, C16-C21, C21-C34, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35,E104WaterFTPH LQM (ali: C5-C6, C6-C8, C8-C10, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for c12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for c12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for c12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for c12-C16, C16-C21, C21-C35, C35-C44, C35-C44, C5 to C8 by headspace GC-MSE104WaterUFVOcsDetermination of volatile organic compounds by headspace GC-MSE104	Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113
Water F SVOC Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS E106 Water UF Toluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with toluene E111 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 Water F TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35 C8 to C35. C5 to C8 by headspace GC-MS E104 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MS E104 Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E101	Water	F			E109
WaterIfStoceIn dichloromethane followed by GC-MSE1100WaterUFToluene Extractable Matter (TEM) Gravimetrically determined through liquid:liquid extraction with tolueneE1111WaterUFTotal Organic Carbon (TOC) Low heat with persulphate addition followed by IR detectionE1110WaterUFTotal Organic Carbon (TOC) Low heat with persulphate addition followed by IR detectionE1100WaterFTPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35, C35-C5 to C8 by headspace GC-MSE104WaterFTPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C23, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MSE104WaterUFVOCs Determination of volatile organic compounds by headspace GC-MSE101	Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118
Water UF Total Organic Carbon (TOC) Low heat with persulphate addition followed by IR detection E110 Water F TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35 E104 Water F TPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C8 to C35. C5 to C8 by headspace GC-MS E104 Water F TPH LOM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C12, C12-C16, C16-C21, C21-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MS E104 Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E101	Water	F	SVOC	in dichloromethane followed by GC-MS	E106
Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35, C35-C5 to C8 by headspace GC-MS E104 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C8 to C35. C5 to C8 by headspace GC-MS E104 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C8 to C35. C5 to C8 by headspace GC-MS E104 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C8 to C35. C5 to C8 by headspace GC-MS E104 Water UF VOcs Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35, C35-C44 E101	Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid:liquid extraction with toluene	E111
Water F C10-C12, C12-C16, C16-C21, C21-C34, Determination of liquid: liquid extraction with hexane, fractionating with SPE followed by GC-FID for C12-C16, C16-C21, C21-C35, C35-C5 to C8 by headspace GC-MS E104 Water F TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, arc: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44, c5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C4,	Water	UF	Total Organic Carbon (TOC)	Low heat with persulphate addition followed by IR detection	E110
Water F C10-C12, C12-C16, C16-C35, C35-C44, Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for aro: C5-C7, C7-C8, C8-C10, C10-C12, C8 to C44. C5 to C8 by headspace GC-MS E104 Water UF VOCs Determination of volatile organic compounds by headspace GC-MS E101	Water	F	C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12,		E104
			C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	C8 to C44. C5 to C8 by headspace GC-MS	E104
Water UF VPH (C6-C8 & C8-C10) Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID E101					
	Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101

Key

F Filtered UF Unfiltered

Dat Ar

List of HWOL Acronyms and Operators
DETS Report No: 24-00207
AF Howland Associates Ltd
Site Reference: Old Station Yard, Blyth Road, Southwold, IP18 6AX
Project / Job Ref: 21.259
Order No: TJS/21.259/03/01
Reporting Date: 17/01/2024

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym
Benzene - HS_1D_MS
Ethylbenzene - HS_1D_MS
MTBE - HS_1D_MS
TPH CWG - Aliphatic >C10 - C12 - EH_CU_1D_AL
TPH CWG - Aliphatic >C12 - C16 - EH_CU_1D_AL
TPH CWG - Aliphatic >C16 - C21 - EH_CU_1D_AL
TPH CWG - Aliphatic >C21 - C34 - EH_CU_1D_AL
TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH CWG - Aliphatic >C8 - C10 - EH_CU_1D_AL
TPH CWG - Aliphatic C5 - C34 - HS_1D_MS+EH_CU_1D_AL
TPH CWG - Aromatic >C10 - C12 - EH_CU_1D_AR
TPH CWG - Aromatic >C12 - C16 - EH_CU_1D_AR
TPH CWG - Aromatic >C16 - C21 - EH_CU_1D_AR
TPH CWG - Aromatic >C21 - C35 - EH_CU_1D_AR
TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR
TPH CWG - Aromatic >C8 - C10 - EH_CU_1D_AR
TPH CWG - Aromatic C5 - C35 - HS_1D_MS+EH_CU_1D_AR
TPH CWG - Total >C5 - C35 - HS_1D_MS+EH_CU_1D_Total
TPH LQM - Aliphatic >C10 - C12 - EH_CU_1D_AL
TPH LQM - Aliphatic >C12 - C16 - EH_CU_1D_AL
TPH LQM - Aliphatic >C16 - C35 - EH_CU_1D_AL
TPH LQM - Aliphatic >C35 - C40 - EH_CU_1D_AL
TPH LQM - Aliphatic >C35 - C44 - EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AL
TPH LQM - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH LQM - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH LQM - Aliphatic >C8 - C10 - EH_CU_1D_AL
TPH LQM - Aromatic >C10 - C12 - EH_CU_1D_AR
TPH LQM - Aromatic >C12 - C16 - EH_CU_1D_AR
TPH LQM - Aromatic >C21 - C35 - EH_CU_1D_AR
TPH LQM - Aromatic >C35 - C40 - EH_CU_1D_AR
TPH LQM - Aromatic >C35 - C44 - EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C44 - HS_1D_MS+EH_CU_1D_AR
TPH LQM - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH LQM - Aromatic >C7 - C8 - HS_1D_MS_AR
TPH LQM - Aromatic >C8 - C10 - EH_CU_1D_AR
TPH LQM - Total >C5 - C44 - HS_1D_MS+EH_CU_1D_Total
TPH LQM - Total >C6 - C40 - HS_1D_MS+EH_CU_1D_Total
Toluene - HS_1D_MS
m & p-xylene - HS_1D_MS
o-Xylene - HS_1D_MS

APPENDIX F: VALIDATION TRIAL PIT RECORDS

Sample Description Records VS101 to VS103 Validation Trial Pit Records VP01 to VP03

A F Howland Associates Geotechnical Engineers

		1	A F Howland As Geotechnical Eng			Site Old Station Yard, Blyth Ro	ad, Southwold, IP18 6AX	Trial Pi Numbe VP0	er
Excavation Trial Pit	Method	Dimens 0.3 m :	ions x 0.3 m x 0.28 m	Ground	Level (mOD)	Client Southwold Town Council		Job Numbe 21.259	
		Locatio	n	Dates 09)/02/2024	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness	D	escription	Legend	
			09/02/2024:DRY		- (0.28) - 0.28 - 0.28 - 0.28 		y slightly gravelly fine to coa edium subangular flint)		
		1 1							
				anar stat		Scale (approx) 1:10	Logged By RCER	Figure No. 21.259.VP01	

Copyright © A F Howland Associates Limited 2024

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

		1	A F Howland A Geotechnical Er			Site Old Station Yard, Blyth Ro	ad, Southwold, IP18 6AX	Trial Pit Number VP02
Excavation Trial Pit	Method	Dimens 0.3 m o	ions x 0.3 m x 0.25 m	Ground	Level (mOD)	Client Southwold Town Council		Job Number 21.259
		Locatio	n	Dates	9/02/2024	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
			09/02/2024:DRY		(0.25) - 0.25 - 0.25 		y slightly gravelly fine to coa	
					-			
						Remarks 1. Location CAT scanned pr 2. No groundwater encounte 3. Trial pit remained open a 4. Trial pit backfilled with ari	ior to excavation ered nd sidewalls stable during e sings upon completion.	excavation.
			Call Carlo		•	Scale (approx) 1:10	Logged By RCER	Figure No. 21.259.VP02

Copyright © A F Howland Associates Limited 2024

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

		A F Howland As Geotechnical En			Site Old Station Yard, Blyth Ro	ad, Southwold, IP18 6AX	Trial Pit Number VP03
Excavation Method Trial Pit	Dimens 0.3 m	s ions x 0.3 m x 0.42 m	Ground	Level (mOD)	Client Southwold Town Council		Job Number 21.259
	Locatio	n	Dates	0/02/2024	Engineer		Sheet 1/1
Depth (m) Sample /	Tests Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
		09/02/2024:DRY			TOPSOIL (Dark brown silt SAND. Gravel is fine to me Geotextile Membrane Complete at 0.42m	y slightly gravelly fine to coa adium subangular flint)	arse
					 Location CAT scanned pr No groundwater encounte Trial pit remained open ai Trial pit backfilled with arial 	ior to excavation ered nd sidewalls stable during e sings upon completion.	excavation.
	Sec. Sec.				Scale (approx) 1:10	Logged By RCER	Figure No. 21.259.VP03

Copyright © A F Howland Associates Limited 2024

Produced by the GEOtechnical DAtabase SYstem (GEODASY) © all rights reserved

\wedge	$\overline{\Lambda}$	\mathbb{N}
<u> </u>	x 📖	

A F Howland Associates Geotechnical Engineers

Sample Description Sheet

Site : Old Station Yard, Blyth Road, Southwold, IP18 6AX

Client : Southwold Town Council

Engineer:

Contract No.

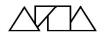
21.259

Sheet 1 / 1

Lingineer.					.,.
				SAMPLE DESCRIPTION	
Borehole/ Trial Pit	Depth (m)	Sample	Ref	Laboratory Description	
VS101	0.00	ES	1	IMPORTED TOPSOIL (Dark brown silty fine to medium sand, with occasional weakly cemented sand)	
VS102	0.00	ES	1	IMPORTED TOPSOIL (Dark brown silty fine to medium sand, with rare subrounded medium flint grvael))	1
VS103	0.00	ES	1	IMPORTED TOPSOIL (Dark brown silty fine to medium sand, with occasional weakly cemented sand)	

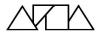
APPENDIX G: VAPOUR MONITORING RECORDS

Vapour Monitoring Datasheet January to December 2023



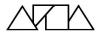
VOC Monitoring Records

Job No.: Site: 21.259 Old Station Yard, Blyth Road, Southwold, IP18 6AX


									Tim	e fror	n star	t of n	nonito	oring	(secor	nds)							Max.
Postion	Operative	Date																					Concentration
			30	60	90	120	150	180	210	240	270	300	330	360	390	420	450	480	510	540	570	600	
	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
WS201	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	13/10/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
WS202	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	13/10/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-

* All concentrations are reported as parts per million (ppm)

A F Howland Associates Geotechnical Engineers


	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
WS203	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VV3203	TJB	13/10/2023	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
WS204	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VV3204	TJB	13/10/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
WS205	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
W3203	TJB	13/10/2023	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
[TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
* All concentrat	ions are repor	ted as parts per	⁻ millio	on (pp	om)																		

	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
-	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
-	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
W6204	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
WS206	TJB	13/10/2023	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
WS207	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
110207	TJB	13/10/2023	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
_	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
_	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
_	TJB	29/11/2023									Con	sistentl	y flow fa	ailed									-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/01/2023																					-
_	RCER	07/02/2023																					-
WS208	RCER	16/03/2023										Lo	ost										-
	RCER	17/05/2023																					-
	RCER	12/07/2023																					-
	RCER	12/09/2023	<u> </u>																				-
	RCER	11/01/2023																					-
	RCER	07/02/2023																					-
WS209	RCER	16/03/2023		Lost													-						
	RCER	17/05/2023																					-
	RCER	12/07/2023																					-
	RCER	12/09/2023	L																				-
* All concentrat	ions are repor	ted as parts per	⁻ millio	on (pp	om)																		

	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VMP201	TJB	13/10/2023	0.1	0.1	0.1	0.1	0.1	0.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.1
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
1 [TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
1 [TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
[RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
[RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VMP202	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	13/10/2023	0	0	0	0	0	0.1	0.1	0	0.1	0.1	0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
I L	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VMP203	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	13/10/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
* АШ	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
All concentrat	lions are repor	ted as parts per	milli	on (pp	om)																		

	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VMP204	TJB	13/10/2023	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VMP205	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VIVIF 205	TJB	13/10/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/01/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	07/02/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/03/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	17/05/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	12/07/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
VMP206	RCER	12/09/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
1111 200	TJB	13/10/2023	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2
[RCER	01/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	16/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
[TJB	23/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	TJB	29/11/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
	RCER	11/12/2023	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-

Tel: 01603 250754 Email: <u>admin@howland.co.uk</u> www: http://www.howland.co.uk