

MJ ONES ARBORIST CONSULTANCY IW 42 WESTST. - INFWUPORT - I. ИV-IPOBO 1PR 01983520075 ADMIN@TREECAREMW.PLUSS.COMM
 Tree Survey
 and
 Arboricultural Implications Assessment
 for a
 replacement garden annex
 at
 'Peveril', Sea View Road,
 Yarmouth, Isle of Wight, PO41 0XU.

By
Mick Jones RFS CERT ARB

Table of Contents

INFORMATION

1. INTRODUCTION
2. SITE VISIT AND OBSERVATIONS
3. TREE SCHEDULE
Explanatory notes
4. ARBORICULTURAL IMPLICATIONS ASSESSMENT
5. CONCLUSIONS
Appendices

DAMAGE TO TREES.

A. General:

1. Trees that have good health and stability are well adapted to their surroundings. Any development activity which affects the adaptation of trees to a site could be detrimental to their health, further growth and safety. Tree species differ in their ability to tolerate change but all tend to become less tolerant after they have reached maturity or suffered previous damage or stress.
2. The part of a tree most susceptible to damage is the root system, which, because it is not immediately visible, is frequently ignored. Damage to, or death of the root system affects the health, growth, life expectancy and safety of the entire tree. The effects of such damage may only become evident several years later. Damage may be the result of a number of insignificant but compounding factors that can accumulate over time.

B. Extent and Form of the Root System.

1. The root system is typically concentrated within the uppermost 600 mm of the soil although it may be deeper within the dense mass of roots and soil close to the base of the tree. Within a short distance of the stem the roots are highly branched, so as to form a network of small diameter woody roots, which typically extend radially for a distance much greater than the height of the tree, except when impeded by unfavorable conditions. All parts of this system bear a mass of fine, non-woody absorptive roots.
2. The root system does not generally show the symmetry seen in the branch system. The development of all roots is influenced by the availability of water, nutrients, oxygen, and soil penetrability. As far as these conditions allow, the root system tends to develop sufficient volume and area to provide physical stability.
3. The uptake of water and nutrients by the root system takes place via the fine roots, typically less than 0.5 mm in diameter. Their survival and functioning - which are essential for the health of the tree as a whole - depend on the maintenance of favorable soil conditions. The fine roots are short - lived, with the majority dying each winter and with fresh ones developing in response to the needs of the tree.
4. All parts of the root system, but especially the fine roots, are vulnerable to damage. Once roots are damaged, water and nutrient uptake is restricted until new ones have grown. Depending on the time this may take, if at all, and the volume of roots able to grow back due to changed soil conditions, such damage may result in decline or ultimately the death of the tree. Mature and over-mature trees respond slowly, if at all, to damage to their woody roots.
5. Damage to the stem and branches of a tree is not usually sufficient to kill the tree directly but may make it unsafe by affecting the weight distribution of the crown or by facilitating decay in the long term. Such damage may also be disfiguring.

1 INTRODUCTION

1.1. Brief: I am instructed by Alchemy Architects Ltd on behalf of their client to inspect and assess trees surrounding an existing annex building within the garden of 'Peveril', Solent View Road, Cranmore / Yarmouth, Isle of Wight, PO41 0XU.
It is proposed to demolish and remove the existing structure and replace it with a new garden annex building on the same footprint.
This will provide an assessment report in accordance with the specification in BS 5837:2012 Trees in relation to design, demolition and construction - Recommendations indicating the possible constraints which may be associated with the adjacent trees.
1.2. Purpose of this report: The primary purpose of this report is for the architect and council to review the tree information pertaining to the site so as to inform and support both the development design and the planning application process. The report can be used as the basis for issuing a planning consent or engaging in further discussions towards that end. Within this planning process, it will be available for inspection by people other than tree experts so the information is presented in a way to be understood and helpful to those without a detailed knowledge of the subject.
1.3. Qualifications and experience: I have based this report on my site observations and the provided information, and I have come to conclusions in the light of my 40 +years arboricultural experience. I hold the Royal Forestry Society's certificate in Arboriculture and the LANTRA Professional Certificate for Tree Inspection.
1.4. Documents and information provided: I was provided with site plans: Site Survey, site plan (existing \& proposed), elevations. IOW Planning Pre-application advice. These were supplied as a DWG and PDF electronic format by Alchemy Architects Ltd.
1.5 Scope of this report: This report is only concerned with the trees which may have an effect on or be affected by the proposed development. This will also include any trees in surrounding areas or properties which may be relevant to a proposed development.
1.6. Ecological constraints: The Wildlife and Countryside Act 1981, as amended by the Countryside and Rights of Way Act 2000, provides statutory protection to birds, bats and other species that inhabit or nest in trees. Although the presence or relevance of such wildlife may be noted within this report these issues are beyond my area of expertise, so advice from an ecologist must be sought to check if any relevant constraints may apply to this site.

1.7. Limitations of use and copyright: All rights in this report are reserved. No part

 of it may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in any retrieval system of any nature without our written permission. Its contents and format are for the exclusive use of the addressee in dealing with this site. It may not be sold, lent, hired out or divulged to any third party not directly involved in this site without the written consent of M Jones Arborist Consultancy IW Ltd.This report is valid for one year from the date of inspection.

2 SITE VISIT and OBSERVATIONS

Site visit: A site visit to view the site area was carried out in February 2024. All observations were from ground level and did not involve any climbing or detailed investigations beyond what was visible from accessible points at ground level. All dimensions were estimated unless otherwise indicated. The weather at the time of inspecting was overcast and raining.
2.2. Brief site description: The site is within the rear garden of a detached residential property within a rural coastal area to the north of the Island.
The site is internal to the grounds and is not viewed by other adjacent properties and is surrounded by garden woodland trees, large shrubs and boundary fencing. The site is level.
2.3. Identification and location of the trees: The trees in question are plotted as individuals on the site plans.
Dead trees, trees of below 75 mm trunk diameter at 1.5 m height or trees and large shrubs that have little or no landscape or amenity value either now or in the future have not been included within this survey.
2.4. Restrictions: A search of the I.O.W. Council GIS Mapping web site in February 2024 indicated that the trees within the garden site and adjacent gardens are not subject to any Tree Preservation Order (TPO) and the property is not within a Conservation Area

Explanatory Notes

- Species: I base the species identification on visual observations and list the common English name of what the tree appeared to be first, with the botanical name after in italics. In some instances, it may be difficult to quickly and accurately identify a particular tree without further detailed investigations. If I am unsure of the precise species of tree, I indicate the botanical name followed by the abbreviation sp indicating only the genus is known, in order to avoid delay in the production of the report. The species listed for groups and hedges represent the main component and there may be other minor species not listed.
- Measurements/estimates: All height and branch spread measurements are estimates unless otherwise indicated. A diameter tape is used to calculate the stem diameter. In cases where the tree is inaccessible when the diameter is estimated. This will be indicated by a* before the measurement. Any other measurements specific to a site or a particular tree will be indicated by ** and referred to as additional observations.
- Height: I estimate height to the nearest meter.
- Stem diameter: These figures relate to 1.5 m above ground level and I record them in millimeters rounded up to the nearest five millimeters. Where a tree branches into two or more stems below 1.5 m the measurement is taken immediately above the root flare. ' M ' indicates trees or shrubs with multiple stems.
- Branch spread: I pace out to the measurement from the centre of the trunk to the tips of the live lateral branches to the four compass points.
- Crown height: This is the height of crown clearance from ground level to the lowest branches.
- Age Class: I estimate age from visual indicators and I assess the grades of maturity as follows. Young $=$ less than one third life expectancy. Middle aged $=$ one third to two thirds life expectancy. Mature $=$ trees within their last third of normal life expectancy. Over-mature $=$ trees towards the end of their last third of normal life expectancy that are in an obvious state of decline. Veteran = notably old or ancient tree of a particular species that, by recognized criteria, shows features of biological, cultural or aesthetic value that are characteristic of, but not exclusive to, individuals surviving the typical age range for the species concerned.
- Health: This refers to the physiological condition of the tree and is categorized as follows. Poor = obviously in poor health. Fair = some visible evidence of decline or lack of vigor. Good $=$ Appears to be healthy and vigorous.
- Structural condition: Poor = obviously in a dangerous, or potentially dangerous condition. Fair = some visible defects, but no significant hazards. Good = sound, healthy condition.
- Remaining contribution: Estimated remaining contribution in years (e.g. less than 10, 10-20, 20-40, more than 40).
- Grading: Category $\mathrm{U}=$ trees of very limited arboricultural value due to condition. Category $\mathrm{A}=$ trees of high quality and value. Category $\mathrm{B}=$ Trees of moderate quality and value. Category $\mathrm{C}=$ trees of low quality and value. Trees are further graded into subcategories 1-3 in compliance with the cascade chart for quality assessment in BS 5837:2012

3 TREE SCHEDULE.

Tree Survey: The results of the survey are recorded in the table below. N.B. This table should be read in conjunction with the explanatory notes

Tree No.	Species	Height	Stem Dia.	Branch Spread	Crown Height	Age Class	Health	Structural Condition	Preliminary Recommendations	Remaining Contribution	Grade
G1	English Oak Quercus robur	15M average	$550 \mathrm{~mm}+$ average group stem	Joined woodland tree crowns	5M Group average	Middle	Good/ Fair	Good/ Fair	Requires an average estimated Root Protection Area (RPA) radius from the trees centre of 6.6 m but it is likely that the whole of the site area is encompassed with the adjacent trees RPA.	>20yrs	B2 As a group
H1	Leyland Cypress xCupressocyparis leylandii	4M average	100 mm Average	Joined as a hedgerow with 2.5 m branch spread	Base as a hedgerow	Young	Good	Good	Requires an estimated group Root Protection Area (RPA) radius from the trees centre of 1.2 m .	>10yrs	C1/2

4. ARBORICULTURAL IMPLICATIONS ASSESSMENT (AIA)

A study was carried out to consider, identify, evaluate and possibly mitigate the extent of direct and indirect impact on or from the trees that may occur as a result of any proposed new development being constructed on the site.

4.1 Tree Constraints.

Tree Categorizing: The trees have been categorized using the BS 5837:2012 Cascade Chart for tree quality and assessment and these have been given in the Tree Schedule and are shown on the plans included in the appendix and represented as a shape and a color.

- Light Green $=$ Category A trees: trees of high quality and value.
- Mid Blue = Category B trees: trees of moderate quality and value.
- Grey = Category C trees: trees of low quality and value.

U Red $=$ Category U trees: trees unsuitable for retention.
Subcategory Criteria: 1. Mainly arboricultural values.
2. Mainly landscape values.
3. Mainly cultural values including conservation.

Root protection areas: The root protection areas (RPA) for all the significant trees in the vicinity of the development have been plotted in accordance with the formula given in BS 5837:2012 and are shown along with the circle radius for the area on the plan included in the appendix. The BS 5837 recognizes that an RPA is influenced by other on site factors and states in 5.2.4 that it `may change shape but not reduce its area whilst still providing adequate protection for the root system.. This can be due to, `b) The morphology and disposition of the roots, when known to be influenced by past or existing site conditions (e.g. the presence of roads, structures and underground services).

Tree shadow/ shade:

1. The development is for a replacement garden annex, not as a permanent dwelling. Shade and shadow from any adjacent trees has been and will continue to be an acceptable part of the annex's use therefore shade and shadow has not been considered as a constraint towards this development and has not been represented further within this report.

Crown Spreads:

1. The indicative crown spreads of the tree surveyed are shown on the Tree Constraints Plans included in the appendix. Any proposed development design must consider the proximity, dominance and possible nuisance to the building and its use from the crowns and branching system. The future crown spreads of the tree surveyed has also been considered in relation to the proposed development.

4.2 Tree Constraint Considerations: General;

On measuring and plotting the constraints of these trees, any development design and construction will need to consider any tree constraints. Any implications of this, from or to the trees must be considered and addressed. Possible solutions for this within BS 5873 may be:
A) Removal of the tree. This may be acceptable for category `C` trees as BS 5837 states that "C category trees will not usually be retained where they would impose a significant constraint on development," however this may not be reasonable for higher category trees or `C` grade trees or groups which may be retained for other reasons e.g. screening.
B) The re- positioning of the proposed development to outside the constraint.
C) To use construction methods which minimize the impact to the rooting system, this may be in the form of footings more radial to the tree roots, or sheathed micropile or screw piles with footings- beams, slabs, suspended floors laid at or above ground level and cantilevered as necessary to avoid major tree roots.
These conditions should also applied to kerb edges, driveways and hard landscaping, by using a three dimensional cellular confinement system, e.g. 'Celweb' to minimize compaction and maintain porosity to both water and gasses. Any impervious surface or covering (construction) to be installed over a RPA must cover no more than 20% of any tree total RPA area and in a tangential strip no wider than 3 meters. If this is exceeded then a system of irrigation to the covered area is to be provided, to compensate for the loss of `open` root feeding area.
Any trenching for underground services will need to comply with National Joint Utilities Group (NJUG). Guidelines for the planning, installation and maintenance of utility services in proximity to trees.
Soil level changes, both lowering, or raising within a RPA should be kept to a minimum with any infill generally kept light and un-compacted.
D) To include within the development design elements which will minimize the affects of a current or future tree constraint, which may put future pressure on the tree to either be removed or pruned beyond what would be considered reasonable to maintain its amenity value and health, for example, to position windows or areas of high occupancy away from heavy shade or long periods of shadow.

NOTE i). With all the given current information and considering the longer term prospects of a tree in conjunction with the development the Planning Authorities may agree it suitable to remove a tree and replant with a species more suited or in a position more acceptable to the development.

4.3 Tree Considerations: Items;

The Town \& Country Planning Act 1990 requires trees on or near development sites to be part
of the material considerations within the planning process. The Local Planning Authority (LPA) is also obliged, to take steps, through the use of TPO`s and Planning Conditions, and where it is considered appropriate, to retain and protect trees on development sites and to ensure the planting of new trees if considered necessary.

Tree Removals:

1. The development will not require the removal of and of the trees surveyed.
2. Tree removal is not a constraint towards this development.

Crown Spreads:

1. It will be beneficial to cut back as a hedge the row of leyland cypress trees, H1, adjacent to the proposed annex then they can be more formally managed in this position.
2. As the new annex will be of a similar height as the exiting building there will be no conflict to or from the surrounding oak tree branches as there is a suitable crown height above and surrounding the building.
3. Any future growth from the adjacent trees that may require future pruning should be considered as normal and reasonable garden maintenance, commonplace for trees adjacent to buildings and will not be detrimental to either the trees or the local amenity landscape.
4. The tree crowns will not be considered as a constraint towards this development.

Root Protection Areas:

1. The annex is proposed to be constructed on a foundation base of no dig screw pile system where it is shown to cover the RPA of adjacent retained trees, the piles located to avoid any major roots that may be located within the general pile position. These piles will then have the structure base suspended on the existing ground level.
2. This construction system is a recognized and accepted construction method within a RPA and will give a minimal impact to the root system of the trees and will not be detrimental to either the future health or stability of these trees. There will also be suitable remaining garden areas surrounding the trees to allow for the future feeding and wellbeing of the trees.
3. The new development proposes to remove an old existing concrete shed base that forms part of the base of the existing annex. The removal of this base and returning the surrounding ground to a more porous and flexible form in conjunction with the use of screw piles as a foundation will benefit the surrounding tree roots and provide a more viable rooting environment in the future.
4. It is proposed to allow rainwater run off from the structures and to continue to percolate into the soils below and continue to feed the adjacent trees, rather than be taken away by new drainage services. This will be done using a perforated rainwater pipe and a 'French Drain' system with gravel surround..
5. The underground services to and from the annex will utilize the existing building's services.
6. As the new annex is a similar replacement structure, but with the advantage of a more root friendly construction, the RPA of the adjacent trees will not be considered as a material constraint towards this development.

5. CONCLUSIONS:

1. After considering the constraints of these trees and the area available for the development design, I consider it is feasible to construct the development within this area whilst suitably providing for the wellbeing of the retained trees
2. If adequate precautions to protect and manage the tree are further detailed and specified within an Arboricultural Method Statement and implemented in conjunction with the construction of the development, the development will have no adverse impact to the local landscape amenity in the future.

Mick Jones. Cert Arb. RFS.

