ANNEX A

Drainage and Surface Water Strategy

Moors Barn, Standerwick

D. Simmonds

28/01/2022

Document Ref: 382150-SWDS

Document Control

Produced by:	D. Simmonds			
	Tel : 01242 539892			
	Email: <u>technical@enviren.co.uk</u>			
Job Name:	Moors Barn, Standerwick			
Report Title:	Surface Water Drainage Strategy			
Status:	First Issue			
	th			
Date:	28 th January 2022			

DOCUMENT PRODUCTION RECORD

AUTHOR:	Zak Simmonds			
ISSUED TO:	Tony Phillips & Ryn Luxmoore			
REPORT REFENCE:	382150-SWDS			
DOCUMENT STATUS:	Revised			

DOCUMENT REVISION RECORD

Issue	Date	Revision Details
1.1	03.01.2022	First Issue
1.2	28.01.2022	Strategy updated following site visit.

Confidentiality and Reproduction Restrictions

This report has been prepared by Enviren Ltd solely for use as part of the planning application associated with reference: 2021/1190/FUL. This report is not issued to and cannot be relied upon by any other business, person or entity for any other grounds without the prior permission of Enviren Ltd. Enviren Ltd will not accept liability or responsibility for the use of this report or its findings (permitted or not) except for the aforementioned project, being the reason it was initially drafted and compiled. In the production of this report, Enviren Ltd relied upon information obtained and provided by others. The accuracy and completeness of this information cannot be guaranteed by Enviren Ltd; however all reasonable measures have been implemented to ensure that the data/information is accurate and that the observations made regarding the information are precise. This being said, Enviren Ltd cannot be made liable for any omissions or errors or for any losses/consequential losses following decisions made based on this report's findings.

Executive Summary

This report has been compiled for the support of the development of 5 No. caravan pitches at land off Marsh Road in Standerwick [Grid Reference: ST8231650457] [Planning application number: 2021/1190/FUL]. The proposals are for 5 caravan pitches along with dayrooms, associated drives, gardens and infrastructure. This report is compliant with the requirements of the National Planning Policy Framework (NPPF) and associated Technical Guidance (March 2012), as well as CIRIA C753 The SuDS Manual, BRE Digest 365, Somerset Council and Regional Guidance¹².

This report demonstrates that the development will responsibly manage surface water runoff as a result of the change of use from agricultural land/greenfield to hardstanding associated with the proposed caravan pitches, this will be achieved by suitable flow control devices and attenuation, limiting post development discharge rates to greenfield runoff rates (QBAR³). The surface water shall discharge to the culverted watercourse passing underneath the site; which connects to the open watercourse to the north, this open watercourse being a tributary of the River Biss. The applicant is the riparian owner of both the culverted watercourse and the open section to the north. The on-site surface water drainage strategy is discussed further in Section 3.

Extant surface water control measures provide necessary protection and interception of overland flows associated with pluvial runoff. The management of existing surface water flow paths is addressed in **Section 4**.

The foul sewerage from the development will discharge to cesspools located to the northwest of each pitch. The cesspools have been designed in accordance with Approved Document H⁴ and have been selected in compliance with the discharge hierarchy outlined in Section H1 of that document. The onsite foul water drainage strategy is discussed further in **Section 5**.

¹ West of England – Sustainable Drainage Developer Guide March 2015

² JBA Consulting – Mendip District Council Level 1 Strategic Flood Risk Assessment

³ Susdrain – Glossary of Terms – QBAR.

⁴ HM Government – The Building Regulation 2010 – Drainage and Waste Disposal – Approved Document H.

Contents

Doc	Document Control2							
Con	Confidentiality and Reproduction Restrictions							
Exe	Executive Summary							
1.	Introduction		6					
	Table 1.1 – Site Specific	Information	6					
2.	Background Information	٦	6					
S	Site Location		6					
	Figure 2.1 – Site Locatio	n	6					
	Figure 2.2 – OSTerrain5	0 Contour Data	7					
S	Sources of Information		7					
S	Site Description		7					
	Figure 2.3 – Aerial Reco	nnaissance Photography	8					
G	Geotechnical/Geological		8					
	Figure 2.4 – BGS Geolog	ical Mapping	8					
	Table 2.1 – Geological S	tratum	9					
3.	Surface Water Drainage	Strategy	9					
S	Soakaways		10					
	Table 3.1 – Surrounding	Borehole Records	10					
v	Natercourse		11					
	Figure 3.1 – Northern W	/atercourse location	11					
	Figure 3.2 – Northern W	/atercourse (Left). Southern Interception Ditch (Right)	11					
	Table 3.2 – Greenfield F	unoff Rates	12					
	Table 3.3 – Proposed at	tenuation methods	13					
	Table 3.4 – Climate cha	nge adjustment	14					
	Table 3.5 – Proposed Su	Irface Water Calculations	14					
4.	Management of Existing	g Surface Water Flows	14					
	Figure 4.1 – Extent of Sumapping.	urface water flooding, depth and velocity according to EA	LIDAR 15					
5.	Foul Water Drainage St	rategy						
P	Public or Private Sewer							
S	Septic Tank or Package Tre	eatment Plant						
С	Cesspools		16					
-	Table 5.1 – Proposed Ce	esspool Capacities						
6.	Conclusion	· · · · · · · · · · · · · · · · · · ·						
Арр	oendix A Drain	age Strategy Plan						
•••								

Appendix B	Planning Layout	.20
Appendix C	Greenfield Runoff Calculations	.21
Appendix D	Impermeable Areas	.22
Appendix E	Proposed Surface Water Drainage Calculations	.23
Appendix F	Flood Routing Plan	.24
Appendix G	Wessex Water Mapping	. 25
Appendix H	Non-Main Foul Drainage Assessment	.26
Appendix I	Preliminary Drainage Details	. 27

1. Introduction

- 1.1. This report has been prepared to support a planning application for the construction of 5 No. caravan pitches off Marsh Road in Standerwick and demonstrates that through the use of appropriate surface and foul water discharge methods the development can be constructed without detrimentally effecting future occupiers or increasing flood risk downstream (see **Appendix A** for the proposed Drainage Layout).
- 1.2. The existing site currently houses agricultural buildings and green space related to the activities of the adjacent Moors Barn; no positively drained system is currently extant. Access is present from the southern Marsh Road.

Category	Site Specific Information
Site Area	0.55 Hectares
Flood Zone	Flood Zone 1
Vulnerability Classification	Highly Vulnerable
Critical Drainage Status	Not within a Critical Drainage Areas
Design Return Period	1:100-year event
Climate Change Allowance	40% allowance

Table 1.1	– Site Specific	Information
-----------	-----------------	-------------

2. Background Information

Site Location

2.1. The site is located on the south-eastern edge of Standerwick on the eastern side of the A36 enroute to Warminster. The site is located approximately two kilometres north-east of Frome and three kilometres west of Westbury, two kilometres north of Chapmanslade and approximately two kilometres south-east of Beckington. The site can be accessed from Marsh Road (B3099) to the south. The exact location can be found in Figure 2.1:

Figure 2.1 – Site Location

2.2. Interrogation of local topographical information identifies an unnamed watercourse immediately North of the site. Levels information confirms that the ditch flows in an easterly direction. Inspection of OSTerrain50⁵ Data shows a definite Hydraulic Gradient of the ditch network towards the River Biss⁶ which discharges to the River Avon approximately one kilometre north-west of Trowbridge.

Sources of Information

- 2.3. This study is based on the following information:
 - Local Authority Flood Risk Maps (where available)
 - EA Mapping
 - British Geological Survey Bedrock and Superficial Geology Mapping
 - British Geological Survey GeoIndex Onshore Borehole and Waterwell Mapping
 - The Mendip District Council Stage 1 SFRA
 - Wessex Water Sewer Records

Site Description

- 2.4. The site is roughly rectangular in shape being approximately 38m wide (north to south) and 141m Long (east to west), the overall site area is approximately 0.55 Hectares in size when considering the areas outlined in the Thurdleigh Planning Consultancy Ltd Proposed layout plan [RL3] [see Appendix B].
- 2.5. The site currently constitutes greenfield/agricultural land associated with Moors Barn. The site is bordered to the north by agricultural land owned by the applicant and beyond this a National Rail rail-line, to the south lies Marsh Road and beyond this agricultural land, to the West the site is bordered by the A36 and beyond this a livestock auctioneers, to the east lies further agricultural land.

⁵ Ordnance Survey OSTerrain50 – Lidar Contoured Mapping.

⁶ Wiltshire Wildlife Trust – The River Biss in Trowbridge (<u>https://www.wiltshirewildlife.org/blog/the-river-biss-in-trowbridge-opening-green-space-for-wildlife-and-people</u>)

2.6. As displayed in **Figure 2.3**, the site consists of predominately hardstanding with intermittent grassed areas. The site is bounded to the south by hedges, fencing is present to the north and western boundaries separating the site from adjacent agricultural land. To the east lies the access way to the site as well as additional caravans.

Geotechnical/Geological

2.7. BGS Mapping⁷ indicates that the development is underlain by Superficial Deposits described as Clay, Silt, Sand and Gravel of unspecified depth, this is shown to be underlain by Sandy Mudstone of the Kellaways Formation as shown in **Figure 2.4**. Local BGS Borehole Records confirm the maps findings.

⁷ BGS Surface Geology – Geology of Britain Viewer

2.8. Soilscape mapping⁸ ratifies the BGS classification describing the overlying strata as:

"Slowly permeable seasonally wet slightly acid but base-rich loamy and clayey soils... risks are associated with overland flow from compacted or poached fields."

This compaction of the overlying soils causes a surface water flood risk, as identified in Government Long Term Flood Risk Mapping⁹, this phenomenon of compacted ground through agricultural practices is described in more detail in DEFRA guidance¹⁰.

2.9. Beyond a desktop study of the sites underlying geology an intrusive investigation was undertaken by Western Building Consultants on 19th May 2021¹¹. The observations of this report corroborated BGS and Soilscape records as the excavated soil was described as predominantly clay. The implications of the underlying geology are considered in more detail in Section 3.

Underlying Geology	Description
Topsoil/Made Ground	Clayey Topsoil or Superficial Made Ground
	to an anticipated depth of circa 0.3-0.4m.
Superficial Deposits	Silty, Sandy, Predominantly Clayey Head
	Deposits with coarse sand sized white
	crystals to a maximum depth of circa 3.8m.
Kellaways Mudstone	Silici-silty or Silici-sandy Grey, Stiff/Very
	Stiff Mudstone being the Underlying
	Bedrock.

Table 2.1 – Geological Stratum

3. Surface Water Drainage Strategy

- 3.1. The site currently comprises agricultural land/buildings for use in association with Moors Barn. No positive drainage system or connection to a surface water drainage network is currently in place. Excess runoff currently runs down the site from the south to the north, this runoff eventually enters the existing watercourse passing over the northern parcel of land.
- 3.2. This Surface Water Drainage Strategy has been prepared with due regard to the Surface Water Disposal Hierarchy as outlined in Approved Document H, the NPPF and associated Technical Guidance and Non-Statutory Technical Standards¹². As well as this attention has been paid to the West of England Sustainable Drainage Developer Guide as well as EA and industry guidance on Surface Water Drainage Design. The Surface Water Drainage Hierarchy states that development should seek to dispose of surface water in the following order:

⁸ Cranfield Soil and Agrifood Institute – Soilscapes Map.

⁹ HM Government Long Term Flood Risk

¹⁰ DEFRA – Remove Soil Compaction

¹¹ Western Building Consultants – 18/011 Soakaway Design

¹² DEFRA - Non-statutory technical standards for sustainable drainage systems

- a) An adequate soakaway or some other adequate infiltration system; or, where that is not reasonably practicable,
- b) A watercourse; or, where that is not reasonably practicable,
- c) A sewer

Soakaways

3.3. Testing conducted as part of the Western Building Consultants Soakaway Design Report revealed that favourable infiltration rates may be available at the development site. However following a review of surrounding BGS Borehole and Waterwell records, being an industry recognised method of analysing groundwater levels, the base of the proposed soakaways may be within 1m of the worst-case groundwater level. The results of the surrounding Borehole records have been tabulated in Table 3.1:

BGS Borehole and Water Well Results								
Borehole Reference	ST84NW22	ST84NW15	ST84NW25	ST85SW28	ST85SW25	ST84NW14	ST85SE46	ST85SE49
Apparatus Type (Borehole [BH] Water Well [WW] Trial Pit [TP])	WW	ВН	ВН	TP	TP	ВН	ВН	ВН
Distance from Development Site (km)	1.02	1.03	1.48	0.74	0.96	1.49	2.68	2.98
Approximate Height above Development Site	N/A	+7m	N/A	+15m	+20m	+18m	+10m	+10m
Depth to Groundwater (m)	3.4	2.0	36.0*	N/A	3.8	3.4	3.1	4.5
Month of Measurement	April	May	July	July	July	May	October	October

*Assumed outlier or different methodology of testing.

Table 3.1 – Surrounding Borehole Records

3.4. The results of the Borehole records have good seasonal variation and are positioned in similar strata to the development site; therefore this data can be assumed to be reflective of the on-site conditions.

3.5. Any vertical contraction of the soakaways and subsequent expansion in plan area will conflict with spatial constraints as soakaways cannot be built within 5m of a building, road or area of unstable ground. Due to this an offsite disposal method has been selected.

Watercourse

3.6. The next desirable receptor for surface water discharge is a watercourse. As mentioned previously in this report a tributary of the River Biss flows through the field to the north of the site, of which the applicant is a riparian owner. Additionally a 300mm diameter drain passes under the development parcel connecting the surface water interception ditch system to the south of the site to the open watercourse. As such discharge to this culverted watercourse would be possible and no other method of discharge need be investigated.

Figure 3.1 – Northern Watercourse location

Figure 3.2 – Northern Watercourse (Left). Southern Interception Ditch System (Right).

Greenfield Runoff Rates

3.7. To ensure no flooding downstream, proposed discharge rates must not exceed predevelopment discharge rates as outlined in the DEFRA non-statutory technical standards Clause S2:

"For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event."

3.8. The existing site has been considered greenfield for the purposes of this assessment. To comply with government guidance proposed discharges shall be limited to QBar. Source Control¹³ has been used to calculate the greenfield runoff rate using the ICP SUDS Module, which is appropriate for areas below 50Ha, where results are linearly interpolated using the ratio of the development size to 50ha. Greenfield runoff rates are presented in **Table 3.2**. For this analysis no allowance has been made for a partly urbanised catchment and the soil index has been left at 0.400, despite surface water flood mapping in the area indicating that soil coefficients are much higher. Greenfield runoff rate calculations can be found in **Appendix C**.

Return Period	QBAR	Q1	Q30	Q100
	(Mean annual)	(1 Year)	(30 Year)	(100 Year)
Greenfield Runoff Rate (l/s)	2.3	1.8	4.4	5.6

Table 3.2 – Greenfield Runoff Rates

3.9. As outlined in CIRIA Susdrain guidance¹⁴, where long term storage is not to be provided to attenuate discharge volumes so that they mimic 1-100 year 360 minute greenfield runoff events, the peak runoff rate should be limited to QBAR (the mean annual precipitation event).

Proposed Surface Water Strategy

3.10. To reduce proposed discharge rates; a suitable form of attenuation and flow control device must be provided. An analysis of potential attenuation options has been provided in Table 3.3, including Sustainable Drainage System options (SuDS). As outlined in the NPPF, SuDS features are not required on non-major development sites, often owning to the size of the site. The proposed site is small in area with a limited amount of Public Open Space; therefore an attenuation option has been selected that can be incorporated giving consideration to topography, geological setting and site size, as well as maintenance practicality.

¹⁴ CIRIA/Susdrain Assessing attenuation storage volumes for SuDS

¹³ Innovyze Source Control Hydraulic modelling package

⁽https://www.susdrain.org/files/resources/fact sheets/03 14 fact sheet attenuation.pdf)

Constraint	Торо	ography	Ge	eologia	cal	Develo	Development			
Characteristic	Slope	Outfall Design	Contaminated	Permeability	Groundwater	Area (Hectares)	Density	ainability	r Desirability	tability
Site Specific Result	Assumed 1:40	Fair/Shallow	No	Yes	2.0 m	0.55	Н	Maint	Purchase	ins
	Recharging						-			
Infiltration Trench		\checkmark			×	×	×			×
Permeable Pavement		\checkmark	V		V		M	V	M	
Soakaway	\checkmark		V	\checkmark	×		V		\checkmark	×
Infiltration Basin	\checkmark		V	\checkmark	×	X	×		\checkmark	×
Swale	\checkmark	\checkmark		\checkmark	V	X	×	V	\checkmark	×
			Recy	cling						
Rainwater Harvesting	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	×	×	×
Green Roof	\checkmark		V	\checkmark	V	\checkmark		×	×	×
		[Disch	arging						
Filtration					\checkmark	X	×	×	×	×
Pond/Wetland	\checkmark		$\mathbf{\overline{\mathbf{N}}}$	\checkmark	$\mathbf{\overline{\mathbf{N}}}$	×	×		\checkmark	×
Detention Basin	\checkmark			\checkmark		×	×		\checkmark	×
Subsurface Storage	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark		\checkmark	

Table 3.3 – Proposed attenuation methods

- 3.11. A Surface Water Drainage Strategy should be sought that utilises both shallow permeable surfacing that would allow slow discharge to ground and subsurface storage. Subsurface storage is typically oversized pipes, precast concrete structures or lined cellular storage features. Given the site density and constructability, a cellular storage option has been selected to provide the majority of the site's attenuation. The drives shall be constructed of permeable South Cerney Cotswold Gravel; as the depth of construction is relatively superficial groundwater will not present an issue here.
- 3.12. Hydro International Hydro-Brake Optimums have been selected to limit discharge rates. The Total Impermeable Area of the development is 665m² (see Appendix D), runoff from impermeable areas shall be conveyed using a traditional piped system.
- 3.13. An appropriate allowance for Climate Change should be allowed for in line with EA guidance¹⁵. The Climate Change Allowance guidance states that new development should consider both the Upper end and Central allowances and therefore a 40% allowance for climate change has been made for the 1:100 year event.

¹⁵ Gov.uk – Climate change allowances

Allowance	Total Potential change anticipated for the '2080s' (2070 to 2115)
Upper end	40%
Central	20%

Table 3.	4 – Climate	change a	adjustment
----------	-------------	----------	------------

3.14. The Surface Water Drainage System has been modelled with the Network module of the MicroDrainage software suite¹⁶, the detailed calculations can be found in **Appendix E**. A summary of the proposed drainage system is provided in **Table 3.5**. The results show that the sites surface water can be safely attenuated without causing flooding on-site, including for the 1:100 year event + Climate Change, or by increasing flood risk further downstream through sensible management of proposed discharge rates.

•	. .			
Return Period	Critical Storm	Maximum	Combined	Status
	Duration	Surcharged	Maximum	
	(mins)	Depth (m)	Discharge Rate	
			(I/s)	
1 Year	240	0.106	1.2	SURCHARGED
30 Year	180	0.264	2.2	SURCHARGED
100 Year +	120	0.684	2.2	SURCHARGED
40% CC				

 Table 3.5 – Proposed Surface Water Calculations

4. Management of Existing Surface Water Flows

4.1. EA Long Term Mapping¹⁷ demonstrates that the development site sits in an area at Low risk of Surface water flooding meaning that the development site has a chance of flooding between 0.1% and 1% annually. This mapping is based on national LiDAR (Light Detection and Ranging) datasets and utilises DDF (Depth Duration Frequency) curves available through the FEH (Flood Estimation Handbook)¹⁸. The model, however, does not allow for localised surface water drainage features and channels beyond the limit of detection. As can be seen in Figure 3.2 a substantial drainage ditch, wetland area and headwall lie directly to the south of the site. This ditch system is specifically in place to mitigate the identified overland flows. A 300mm sewer is connected to this ditch and conveys the captured water under the development into the northern watercourse.

¹⁶ Innovyze MicroDrainage Network Module

¹⁷ Gov.uk – Check your long term flood risk

¹⁸ Environment Agency - What is the Risk of Flooding from Surface Water map? August 2019

Figure 4.1 – Extent of Surface water flooding, depth and velocity according to EA LIDAR mapping.

4.2. Within the hydraulic analysis of the sites surface water system, the system has been modelled with a surcharged outfall to ensure that collected runoff passing through the 300mm diameter culverted watercourse is properly accounted for. Detailed flood routing plans for pre-ditch and post-ditch flows can be found in **Appendix F**.

5. Foul Water Drainage Strategy

- 5.1. This Foul Water Drainage Strategy has been prepared with due regard to the Foul Water Disposal Hierarchy as outlined in Approved Document H. The Foul Water Drainage Hierarchy states that development should seek to dispose of foul water in the following order:
 - a) A public sewer; or, where that is not reasonably practicable,
 - b) A private sewer communicating with a public sewer; or, where that is not reasonably practicable,
 - c) Either a septic tank which has an appropriate form of secondary treatment or another wastewater treatment system; or, where that is not reasonably practicable,
 - d) A Cesspool.

Public or Private Sewer

5.2. A review of Wessex Water mapping (See **Appendix G**) demonstrates that there are no public or private foul sewers within 150m of the development site. This distance has been selected based on the EA's General Binding Rules¹⁹, where the reasonable distance to an adjacent sewer is equal to the number of properties on a development multiplied by 30m.

¹⁹ EA - General binding rules for small sewage discharges (SSDs) with effect from January 2015 (https://www.gov.uk/government/publications/small-sewage-discharges-in-england-general-bindingrules/general-binding-rules-for-small-sewage-discharges-in-england)

Septic Tank or Package Treatment Plant

- 5.3. Consideration has been given to Septic Tanks (STs) and Package Treatment Plants (PTPs) connected to a Secondary Treatment Measure such as a Drainage Field/Mound or Constructed Wetland as outlined in Approved Document H, however there are a number of constraints that would make this system unviable on this development.
- 5.4. Approved Document H places spatial requirements on the use of STs and PTPs. STs are to be 7m away from any habitable parts of dwellings, they should have a capacity of 2700 litres (2.7m3) for up to 4 users. The Secondary Treatment Measures also have their own spatial restrictions (15m for Drainage Fields or Mounds). PTPs are required to discharge at least 10m away from any building. The development is small in area, and there simply isn't enough space to accommodate these drainage solutions.

Cesspools

- 5.5. Cesspools are watertight storage facilities for the housing of sewage. In the case of this development, given the spatial restrictions associated with secondary treatment measures, cesspools have been elected as only a 7m offset is required and this can be accommodated to the north of the dwellings, slightly downhill of the proposed dwellings and within 30m of the proposed vehicle access.
- 5.6. The proposed cesspools have been sized to take account of future occupation and emptying frequency, as presented in Table 5.1, complying with Provision 1.61 of approved document H. The cesspools will be fitted with a High Level Alarm (HLA) to ensure the capacity is not exceeded and that overflows do not occur. Emptying regimes will be dependent on the number of occupiers however emptying has been specified on a monthly basis in accordance with Appendix H2 A20-A22 of Approved Document H. The minimum emptying frequencies are based on current occupancy rates and assume a filling rate of 150 litres per person per day, this information is also shown in Table 5.1.

Pitch	Pitch 1	Pitch 2	Pitch 3	Pitch 4	Pitch 5
Number					
Occupancy	2	6	6	4	4
Rate					
(persons) as					
per D&A ²⁰ .					
Cesspool	18,000	45,200	45,200	31,600	31,600
capacity					
required					
(litres)					
Cesspool	46,000*	46,000 ²¹	46,000	46,000*	46,000*
capacity					
provided					
(litres)					
Minimum	21	7	7	10	10
emptying					
regime					
required					
based on					
proposed					
occupancy					
(weeks)					

*Additional capacity provided in case of increased occupancy.

Table 5.1 – Proposed Cesspool Capacities

5.7. A Foul Drainage layout can be found in **Appendix A**. A non-main foul drainage assessment has been completed and can be found in **Appendix H**.

²⁰ Thurdleigh Planning Consultancy Ltd - DESIGN AND ACCESS STATEMENT

²¹ Clearwater Cesspool 46000 - <u>https://www.ukseptictanks.co.uk/cesspools/domestic-cesspools/cesspool-</u> 46000

6. Conclusion

- 6.1. As can be seen in this report, the drainage proposals of the development site have been extensively considered and a drainage strategy has been compiled which:
 - a) Responsibly discharges surface water arisings through suitably attenuated flows to the existing culverted watercourse.
 - b) Suitably handles foul water arisings through the incorporation of suitably sized Cesspools in consideration of proposed and potential future occupation levels.
- 6.2. On the basis of the findings and recommendations of this report and its appendices; showing updated information as recommended by the Mendip District Council Land Drainage Team, it is requested that the Council review its objection to the proposals as the development can now proceed without either elevating flood risk to downstream receptors or presenting a flood risk to on-site dwellings.

Appendix A Drainage Strategy Plan

Appendix B Planning Layout

Appendix C Greenfield Runoff Calculations

EnvirEn Ltd		Page 1
Flat 8, Park Gates	Moors Barn	
25 Bath Road	Standerwick	
Cheltentham, GL53 7HG	Somerset	Micco
Date 28/12/2021 20:54	Designed by D Simmonds	Desinado
File	Checked by Mendip District Council	Diamaye
Innovyze	Source Control 2020.1.3	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 1 SAAR (mm) 831 Urban 0.000 Area (ha) 0.555 Soil 0.400 Region Number Region 8

Results 1/s

QBAR Rural 2.3 QBAR Urban 2.3

Q1 year 1.8

Q1 year 1.8 Q30 years 4.4 Q100 years 5.6

Appendix D Impermeable Areas

	All dimensions are to be chec or query to be reported and accordance with relevant Trad product manufacturers' specifi date associated specifications,	ked on site prior to manufacture of prefabrica d clarified before associated work proceeds. e and Professional Standards and Guidelines, cations. This drawing must be read in conjunc drawings issued and details.	ted items. Any discrepancy All construction to be in Statutory requirements and tion with the relevant up to 2022 Enviren Ltd ©
	General Notes 1. This drawing is frase construction required for construction 2. All levels are to information	or planning purposes only and car information. Detailed levels in truction drawings. an assumed adjacent datum based ual levels on-site will vary and	not be relied upon formation will be I on local mapping will need further
	3. All installed pipe inline with the re the satisfactions inspector.	b and Spot levels shown on this la mum level in relation to adjacent s ework and drainage infrastructure elevant Approved Document and of the Building Control Officer and	must be installed British Standard to any other relevant
		IMPERMEABLE AREAS	
	Manhole Reference	Pipe Code	(m ²)
	S1 S2	2.000	133 133
~	S21	3.000	133
	S22	3.001	133
	S23		133
	Drawing Referen	nce Table	
	RL3	Thurdleigh Proposed Layout Plar	
	1101	Drainage Strategy Plan	
	1103 1104	Flood Routing Plan Drainage Details	
~			
Constant of the second s			
E Contraction			
AT A A A A A A A A A A A A A A A A A A			
22 Contractor			
59			
T			
4			
·			
Ν	1.2 Strategy update	ed following site visit.	28.01.2022 ZS
	1.1 First Issue.	J	30.12.2021 ZS
	REV. REVISION DETAIL	LS	DATE INITIAL
E			
		= 💹 nvir	'Fn
Ľ			F.
8			
	Moors Ba	arn,	
	Standerw	/ick	
	Impermeable	e Areas	
	PLANNIN	16	DS Drawn by
	1:250 Drawing Scale		30.12.2021 First issued
	382150-7	1102	1.2
	awing NU.		Revision Letter

Appendix EProposed Surface Water Drainage Calculations

EnvirEn Ltd				Page 1					
Flat 8, Park Gates	M	loors Barn							
25 Bath Road	S	tanderwick							
Cheltentham, GL53 7HG	S	omerset		Micco					
Date 28/01/2022 19:34	D	esigned by D Simmonds							
File 382150-MASTER.MDX	C	hecked by Mendip Distrie	ct Council	Diamaye					
Innovyze Network 2020.1.3									
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 1 Foul Sewage (1/s/ha) 0.000 Maximum Backdrop Height (m) 1.500 M5-60 (mm) 19.900 Volumetric Runoff Coeff. 0.750 Min Design Depth for Optimisation (m) 1.200 Ratio R 0.353 PIMP (%) 100 Min Vel for Auto Design only (m/s) 1.00 Maximum Rainfall (mm/hr) 50 Add Flow / Climate Change (%) 0 Min Slope for Optimisation (1:X) 500									
Maximum Time of Concentration (mir	ns) 30 Minimu	um Backdrop Height (m) 0.200							
	Desi	igned with Level Soffits							
	Network	Design Table for Storm	1						
	« - Ind	icates pipe capacity < flow							
PN Length F (m)	all Slope I.Area m) (1:X) (ha) (T.E. Base k HYD (mins) Flow (1/s) (mm) SECT	DIA Section Type Auto [(mm) Design						
1.000 50.510 0.	190 265.8 0.000	5.00 67.8 0.600 o	o 300 Pipe/Conduit 🔒						
2.000 25.226 0.	170 148.4 0.013 060 138 9 0.014		b 150 Pipe/Conduit 👸						
2.002 4.181 0.	100 41.8 0.000	0.00 0.0 0.600 0	5 150 Fipe/Conduit 💣						
	Ne	twork Results Table							
PN Rain (mm/hr	T.C. US/IL Σ :) (mins) (m)	I.Area ΣBase Foul Add (ha) Flow (l/s) (l/s) (l	Flow Vel Cap Flow /s) (m/s) (l/s) (l/s)						
1.000 47.6	7 5.88 60.490	0.000 67.8 0.0	0.0 0.96 67.8 67.8						
	5.51 60.730	0.013 0.0 0.0	0.0 0.82 14.5 1.7 0.0 0.85 15.0 3.5						
2.001 40.4	5 5.72 60.500	0.027 0.0 0.0	0.0 1.56 27.6 3.5						

EnvirEn Ltd		Page 2
Flat 8, Park Gates	Moors Barn	
25 Bath Road	Standerwick	
Cheltentham, GL53 7HG	Somerset	Micco
Date 28/01/2022 19:34	Designed by D Simmonds	Desinado
File 382150-MASTER.MDX	Checked by Mendip District Council	Diamaye
Innovyze	Network 2020.1.3	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
3.000	25.681	0.175	146.7	0.013	5.00		0.0	0.600	0	150	Pipe/Conduit	â
3.001	27.078	0.185	146.4	0.013	0.00		0.0	0.600	0	150	Pipe/Conduit	ř
3.002	20.626	0.140	147.3	0.014	0.00		0.0	0.600	0	150	Pipe/Conduit	- The second sec
3.003	2.328	0.020	116.4	0.000	0.00		0.0	0.600	0	150	Pipe/Conduit	Ť
1.001	160.363	0.600	267.3	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	•
1.002	10.982	0.050	219.6	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	8

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(1/s)	(m/s)	(l/s)	(1/s)
3.000	49.02	5.52	60.970	0.013	0.0	0.0	0.0	0.83	14.6	1.7
3.001	47.01	6.06	60.795	0.026	0.0	0.0	0.0	0.83	14.6	3.3
3.002	45.60	6.48	60.610	0.040	0.0	0.0	0.0	0.83	14.6	4.9
3.003	45.47	6.52	60.470	0.040	0.0	0.0	0.0	0.93	16.4	4.9
1.001	38.10	9.31	60.300	0.067	67.8	0.0	0.0	0.96	67.6«	74.7
1.002	37.73	9.49	59.700	0.067	67.8	0.0	0.0	1.06	74.7«	74.7

EnvirEn Ltd		Page 3
Flat 8, Park Gates	Moors Barn	
25 Bath Road	Standerwick	
Cheltentham, GL53 7HG	Somerset	Micco
Date 28/01/2022 19:34	Designed by D Simmonds	Dcainago
File 382150-MASTER.MDX	Checked by Mendip District Council	Diamage
Innovyze	Network 2020.1.3	·

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	Conr	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
C1	62.150	1.660	Open	Manhole	1200	1.000	60.490	300				
S1	61.800	1.070	Open	Manhole	450	2.000	60.730	150				
S2	61.800	1.240	Open	Manhole	450	2.001	60.560	150	2.000	60.560	150	
S3	61.900	1.400	Open	Manhole	1200	2.002	60.500	150	2.001	60.500	150	
S21	61.800	0.830	Open	Manhole	450	3.000	60.970	150				
S22	61.800	1.005	Open	Manhole	450	3.001	60.795	150	3.000	60.795	150	
S23	61.800	1.190	Open	Manhole	450	3.002	60.610	150	3.001	60.610	150	
S24	61.700	1.230	Open	Manhole	1200	3.003	60.470	150	3.002	60.470	150	
C2	61.700	1.400	Open	Manhole	1200	1.001	60.300	300	1.000	60.300	300	
									2.002	60.400	150	
									3.003	60.450	150	
С3	60.750	1.050	Open	Manhole	1200	1.002	59.700	300	1.001	59.700	300	
OUTFALL	60.150	0.500	Open	Manhole	0		OUTFALL		1.002	59.650	300	

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
C1	452.624	294.918	452.624	294.918	Required	6
S1	463.484	355.687	463.484	355.687	Required	_
S2	441.239	343.791	441.239	343.791	Required	-0-
S3	433.890	339.860	433.890	339.860	Required	

EnvirEn Ltd				
Flat 8, Park Gates	Moors Barn			
25 Bath Road	Standerwick			
Cheltentham, GL53 7HG	Somerset	Micco		
Date 28/01/2022 19:34	Designed by D Simmonds	Dcainago		
File 382150-MASTER.MDX	Checked by Mendip District Council	Dialitage		
Innovyze	Network 2020.1.3			

Manhole Schedules for Storm

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
S21	364.958	302.996	364.958	302.996	Required	•
S22	387.604	315.107	387.604	315.107	Required	-
S23	411.492	327.882	411.492	327.882	Required	-0-
S24	429.670	337.603	429.670	337.603	Required	-
C2	429.709	339.931	429.709	339.931	Required	
С3	269.346	342.653	269.346	342.653	Required	
OUTFALL	259.115	346.646			No Entry	

EnvirEn Ltd		Page 5
Flat 8, Park Gates	Moors Barn	
25 Bath Road	Standerwick	
Cheltentham, GL53 7HG	Somerset	Micco
Date 28/01/2022 19:34	Designed by D Simmonds	Dcainago
File 382150-MASTER.MDX	Checked by Mendip District Council	Dialitage
Innovyze	Network 2020.1.3	!

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
1.000	0	300	C1	62.150	60.490	1.360	Open Manhole	1200
2.000	0	150	S1	61.800	60.730	0.920	Open Manhole	450
2.001	0	150	s2	61.800	60.560	1.090	Open Manhole	450
2.002	0	150	S3	61.900	60.500	1.250	Open Manhole	1200
3.000	0	150	S21	61.800	60.970	0.680	Open Manhole	450
3.001	0	150	S22	61.800	60.795	0.855	Open Manhole	450
3.002	0	150	S23	61.800	60.610	1.040	Open Manhole	450
3.003	0	150	S24	61.700	60.470	1.080	Open Manhole	1200
1.001	0	300	C2	61.700	60.300	1.100	Open Manhole	1200
1.002	0	300	C3	60.750	59.700	0.750	Open Manhole	1200

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	50.510	265.8	C2	61.700	60.300	1.100	Open Manhole	1200
2.000	25.226	148.4	S2	61.800	60.560	1.090	Open Manhole	450
2.001	8.334	138.9	S3	61.900	60.500	1.250	Open Manhole	1200
2.002	4.181	41.8	C2	61.700	60.400	1.150	Open Manhole	1200
3.000	25.681	146.7	S22	61.800	60.795	0.855	Open Manhole	450
3.001	27.078	146.4	S23	61.800	60.610	1.040	Open Manhole	450
3.002	20.626	147.3	S24	61.700	60.470	1.080	Open Manhole	1200
3.003	2.328	116.4	C2	61.700	60.450	1.100	Open Manhole	1200
1.001	160.363	267.3	С3	60.750	59.700	0.750	Open Manhole	1200
1.002	10.982	219.6	OUTFALL	60.150	59.650	0.200	Open Manhole	0

EnvirEn Ltd			
Flat 8, Park Gates Moors Barn 25 Bath Road Standerwick Cheltentham, GL53 7HG Designed by D Simmonds Date 28/01/2022 19:34 Designed by D Simmonds File 382150-MASTER.MDX Checked by Mendip District Council Innovyze Network 2020.1.3 Innovyze Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (n) Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (n) I. Level (mm) (mm) 1.002 OUTFALL 60.150 59.650 0.000 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Flow Start (mins) 1 Number of Input Hydrographs 0 Number of Input Hydrographs 0 Number of Storage 2.000 Output Interval (mins) 1 Number of Online Controls 2 Number of Storage 2.000 Output Interval (mins) 1 Number of Input Hydrographs 0	Ltd		Page 6
25 Bath Road Standerwick Cheltentham, GL53 7HG Somerset Date 28/01/2022 19:34 Designed by D Simmonds File 382150-MASTER.MDX Checked by Mendip District Council Innovyze Network 2020.1.3 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (n) (n) (n) (n) I.002 OUTFALL 60.150 59.650 0.000 0 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Additional Flow - % of Total Flow 0.000 Run Time (mins) 60 Hot Start Level (min) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) 1 Number of Input Hydrographs 0 Number of Storage 2.000 Output Interval (mins) 1 Number of Time/Area Diagrams 0 Number of Time/Area Diagrams 0 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Coeff (Global) 0.500 Cv (Summer) 0.750 Rainfall Model Network 2020.000 Output Interval (mins) 1 Noter of Online Controls 2 Number of Storage Structures 2 Number of Time/Area Diagrams 0 Number of Storage Stru	Park Gates Mc	loors Barn	
Cheltentham, GL53 7HG Somerset Date 28/01/2022 19:34 Designed by D Simmonds File 382150-MASTER.MDX Checked by Mendip District Council Innovyze Network 2020.1.3 Gutfall Outfall Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) (m) (m) (m) 1.002 OUTFALL 60.150 59.650 0.000 0 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Additional Flow - % of Total Flow 0.000 Flow per Person per Day (l/per/day) 0.000 Number of Input Hydrographs 0 Number of Storage 2.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Number of Storage 2.000 Ov (Summer) 0.750 Rainfall Model Synthetic Rainfall Details Synthetic Rainfall Details Synthetic Rainfall Details Synthetic Rainfall Model Synthetic Rainfall Details Synthe	Road St	tanderwick	
Date 28/01/2022 19:34 File 382150-MASTER.MDX Innovyze Designed by D Simmonds Checked by Mendip District Council Innovyze Network 2020.1.3 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.002 OUTFALL 60.150 59.650 0.000 0 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.000 Hot Start (mins) 0 Additional Flow -% of Total Flow 0.000 Run Time (mins) 60 Hot Start Level (mm) 0 MADD Factor * 10m ² /ha Storage 2.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 19.900 Cv (Summer) 0.750 Return Period (years) 1 Ratio R 0.353 Cv (Winter) 0.640 Region England and Wales Profile Type Summer Storm Duration (mins) 30	ham, GL53 7HG Sc	omerset	Micro
Checked by Mendip District Council Innovyze Network 2020.1.3 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (m) J. Level (mm) (mm) (mm) 1.000 OUTFALL 60.150 59.650 0.000 0 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Artein Reduction Factor 1.000 Four Storm Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Artein Reduction Factor 1.000 Four Storm Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Artein Fall Potor 1 flow 0.000 Run Time (mins) 60 Hotart (mins) 0 Additional Flow -% of Total Flow 0.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 19.900 Cv (Summer) 0.750	01/2022 19:34 De	esigned by D Simmonds	Dcainago
Network 2020.1.3 Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D.L W Pipe Number Name (m) (m) I. Level (mm) (mm) (m) 1.002 OUTFALL 60.150 59.650 0.000 0 Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficcient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.000 Hot Start (mins) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) 0.000 Hot Start Level (mm) 0 MADD Factor * 10m³/ha Storage 2.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 19.900 Cv (Summer) 0.750 Return Period (years) 1 Rain 0 .33 Region England and Wales Profile Type Summer Storm Duration (mins) 30 30	150-MASTER.MDX Ch	hecked by Mendip District Council	Diamage
Free Flowing Outfall Details for Storm Outfall Outfall C. Level I. Level Min D,L W Pipe Number Name (m) (n) I. Level (mm) (mm) 1.002 OUTFALL 60.150 59.650 0.000 0 0 Simulation Criteria for Storm Inlet Coefficient 0.800 Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Run Time (mins) 60 Hot Start (mins) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) 60 Hot Start Level (mm) 0 MADD Factor * 10m²/ha Storage 2.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 19.900 Cv (Summer) 0.750 Cv (Winter) 0.840 Return Period (years) 1 Ratio R 0.353 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30	Ne	etwork 2020.1.3	1
Simulation Criteria for Storm Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.000 Hot Start (mins) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) 60 Hot Start Level (mm) 0 MADD Factor * 10m³/ha Storage 2.000 Output Interval (mins) 1 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR M5-60 (mm) 19.900 Cv (Summer) 0.750 Return Period (years) 1 Ratio R 0.353 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30	<u>Free Flowing</u> Outfall Outfall Pipe Number Name 1.002 OUTFALL	ng Outfall Details for Storm I C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m) L 60.150 59.650 0.000 0 0	
Volumetric Runoff Coeff 0.750 Manhole Headloss Coeff (Global) 0.500 Inlet Coefficient 0.800 Areal Reduction Factor 1.000 Foul Sewage per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.000 Hot Start (mins) 0 Additional Flow - % of Total Flow 0.000 Run Time (mins) Hot Start Level (mm) 0 MADD Factor * 10m³/ha Storage 2.000 Output Interval (mins) Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0 Rainfall Model FSR M5-60 (mm) 19.900 Cv (Summer) 0.750 Return Period (years) 1 Ratio R 0.353 Cv (Winter) 0.840 Region England and Wales Profile Type Summer Storm Duration (mins) 30	Simulat	tion Criteria for Storm	
Synthetic Rainfall DetailsRainfall ModelFSR M5-60 (mm) 19.900Cv (Summer) 0.750Return Period (years)1Ratio R 0.353Cv (Winter) 0.840Region England and Wales Profile Type Summer Storm Duration (mins)30	Volumetric Runoff Coeff 0.750 Manhole Headlos Areal Reduction Factor 1.000 Foul Sewage p Hot Start (mins) 0 Additional Flow Hot Start Level (mm) 0 MADD Factor Number of Input Hydrographs 0 Number Number of Online Controls 2 Number	Dess Coeff (Global) 0.500Inlet Coefficcient 0.8per hectare (1/s) 0.000 Flow per Person per Day (1/per/day) 0.0- % of Total Flow 0.000* 10m³/ha Storage 2.000Output Interval (mins)ber of Offline Controls 0 Number of Time/Area Diagrams 0c of Storage Structures 2 Number of Real Time Controls 0	00 00 60 1
Rainfall ModelFSRM5-60 (mm)19.900Cv (Summer)0.750Return Period (years)1Ratio R0.353Cv (Winter)0.840Region England and Wales Profile Type Summer Storm Duration (mins)30	Synthe	netic Rainfall Details	
	Rainfall Model Return Period (years) Region England and W	FSR M5-60 (mm) 19.900 Cv (Summer) 0.750 1 Ratio R 0.353 Cv (Winter) 0.840 Wales Profile Type Summer Storm Duration (mins) 30	

EnvirEn Ltd										Page 7
Flat 8, Park Gates				M	loors Barn					
25 Bath Road				S	tanderwic]	k				
Cheltentham, GL53 7HG	ł			S	omerset					Micco
Date 28/01/2022 19:34				D	esigned by	y D Simmo	onds			Desinarco
File 382150-MASTER.MDX				C	hecked by	Mendip I	istrict Co	uncil		Diamage
Innovyze				N	letwork 202	20.1.3				
	Desig	Hydro-Bi Unit Refere Design Head esign Flow (1 Flush-I Object Applicat Control Poi r	cake® Op ence MD-S (m) L/s) Flo ^m tive Min tion hts	Onli Otimum Mar HE-0055-110 Mimise upstr Head (m) E	ne Control nhole: S3, 00-0600-1100 0.600 1.1 Calculated ream storage Surface Flow (1/s)	DS/PN: 2 DS/PN: 2 Minimum C Suggest	orm 2.002, Volu Su Inve butlet Pipe I ed Manhole I ol Points Kick-Fl	<pre>mme (m³): 1 mp Available viameter (mm) ort Level (m) viameter (mm) Head (m) Mead (m) 0.389</pre>	.7 Yes 55 60.500 75 1200 Flow (1/s) 0.9	
The hydrological calcula control device other tha Depth (m) Flc	tions have n a Hydro- ww (l/s) D	e been based Brake Optimu epth (m) Flc	on the Hum® be ut	ead/Dischar ilised ther Depth (m) B	rge relation these stor	ship for t age routin Pepth (m) 1	he Hydro-Bra g calculatio ?low (l/s) De	ke® Optimum a ns will be ir epth (m) Flov	as specified. nvalidated	Should another type of m) Flow (l/s)
0.100	1.0	0.600	1.1	1.600	1.7	2.600	2.1	5.000	2.9 7.5	00 3.5
0.200	1.1	0.800	1.3	1.800	1.8	3.000	2.3	5.500	3.0 8.0	00 3.6
0.300	1.1	1.000	1.4	2.000	1.9	3.500	2.4	6.000	3.1 8.5	00 3.7
0.400	0.9	1.200	1.5	2.200	2.0	4.000	2.6	6.500	3.3 9.0	00 3.8
0.500	1.0	1.400	1.6	2.400	2.1	4.500	2.1	7.000	3.4 9.5	00 3.9
		Hydro-Br	ake® Opt	timum Man	hole: S24,	DS/PN:	3.003, Vol	ume (m³): 2	1.7	
	De	Unit Refere Design Head esign Flow (1 Flush-H Object Applicat	ence MD-S (m) L/s) Flo™ tive Min	HE-0055-110	00-0600-1100 0.600 1.1 Calculated ream storage Surface	Minimum C Suggest	Su E Inve Putlet Pipe E ed Manhole E	mp Available Diameter (mm) Int Level (m) Diameter (mm) Diameter (mm)	Yes 55 60.470 75 1200	
		Control Poin	nts	Head (m) H	Flow (l/s)	Contr	ol Points	Head (m)	Flow (l/s)	
	Desig	n Point (Cal Fl	culated) ush-Flo™	0.600 0.184	1.1 1.1 M	lean Flow c	Kick-Fl ver Head Ran	o® 0.389 .ge -	0.9 1.0	
The hydrological calcula control device other tha	tions have n a Hydro-	e been based -Brake Optimu	on the H um® be ut	ead/Dischar ilised ther	rge relation h these stor	ship for t age routin	he Hydro-Bra g calculatio	ke® Optimum a ns will be ir	as specified. nvalidated	Should another type of

©1982-2020 Innovyze

EnvirEn Ltd		Page 8
Flat 8, Park Gates	Moors Barn	
25 Bath Road	Standerwick	
Cheltentham, GL53 7HG	Somerset	Micro
Date 28/01/2022 19:34	Designed by D Simmonds	Dcainago
File 382150-MASTER.MDX	Checked by Mendip District Council	Diamaye
Innovyze	Network 2020.1.3	·

Hydro-Brake® Optimum Manhole: S24, DS/PN: 3.003, Volume (m³): 1.7

Depth (m) Flo	w (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m) Flo	ow (l/s)	Depth (m)	Flow (l/s)
0.100	1.0	0.600	1.1	1.600	1.7	2.600	2.1	5.000	2.9	7.500	3.5
0.200	1.1	0.800	1.3	1.800	1.8	3.000	2.3	5.500	3.0	8.000	3.6
0.300	1.1	1.000	1.4	2.000	1.9	3.500	2.4	6.000	3.1	8.500	3.7
0.400	0.9	1.200	1.5	2.200	2.0	4.000	2.6	6.500	3.3	9.000	3.8
0.500	1.0	1.400	1.6	2.400	2.1	4.500	2.7	7.000	3.4	9.500	3.9

EnvirEn Ltd	Page 9
Flat 8, Park Gates	Moors Barn
25 Bath Road	Standerwick
Cheltentham, GL53 7HG	Somerset Micco
Date 28/01/2022 19:34	Designed by D Simmonds
File 382150-MASTER.MDX	Checked by Mendip District Council
Innovyze	Network 2020.1.3
Store	age Structures for Storm
Cellular Sto	prage Manhole: S3, DS/PN: 2.002
Invert Level (m) 60 Infiltration Coefficient Base (m/hr) 0.0	.500 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 0000 Safety Factor 1.0
Depth (m) Area (m ²) Inf. Area (m ²) Depth	(m) Area (m^2) Inf. Area (m^2) Depth (m) Area (m^2) Inf. Area (m^2)
0.000 12.0 0.0 0.	800 12.0 0.0 0.801 0.0 0.0
<u>Cellular Sto</u>	rage Manhole: S24, DS/PN: 3.003
Invert Level (m) 60 Infiltration Coefficient Base (m/hr) 0.0	.470 Infiltration Coefficient Side (m/hr) 0.00000 Porosity 0.95 0000 Safety Factor 1.0
Depth (m) Area (m²) Inf. Area (m²) Depth	(m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²)
0.000 24.0 0.0 0.	800 24.0 0.0 0.801 0.0 0.0

EnvirEn Ltd										Page 10
Flat 8, Park Gates			Moors Ba:	rn						8
25 Bath Road			Standerw	ick						and the second s
Cheltentham, GL53 7HG			Somerset							Micco
Date 28/01/2022 19:34	ate 28/01/2022 19:34 Designed by D Simmonde									
File 382150-MASTER MDX			Checked 1	ov Menc	lin Dist	rict Cou	ncil			Drainage
			Network	2020 1	2 2 2					
IIIIOVyze			Network .	2020.1.						
<u>1</u> year	Retur	n Peri	od Summary of Critical F	Results	by Max	imum Inf	low (R	ank 1) for Storm	
			Simulatio	on Crite	ria					
Areal Reduct	ion Fac	ctor 1.0	00 Manhole Headloss Coeff	(Global)	0.500	MADD	Factor	* 10m [:]	3/ha Storage 2.0	000
Hot St	art (mi	lns)	0 Foul Sewage per hecta	re (1/s)	0.000		1	Inlet (Coeffiecient 0.8	300
Hot Start	Level ((mm)	0 Additional Flow - % of To	tal Flow	w 0.000 E	low per Pe	erson pe	er Day	(1/per/day) 0.0	000
Niir	her of	Input	vdrographs () Number of Off	fline Co	ntrols 0	Number of	Time/A	rea Di	agrams 0	
liter	Jumber /	of Onli	e Controls 2 Number of Store	age Stru	ctures 2	Number of	Real T	ime Co	ntrols 0	
				2						
			Synthetic Ra	infall 1	Details					
		Rainf	all Model FSR	M5-60 (r	nm) 19.90	0 Cv (Sumr	ner) 0.7	750		
			Region England and Wales	Ratio	DR 0.35	63 Cv (Wint	ter) 0.8	340		
	ז	Margin	for Flood Risk Warning (mm)	יית ۵ ۵۵	S Status	OFF Inert	ia Stat	IIS ON		
	1	Maryin	Analysis Timestep	Fine DV	D Status	ON ON	ia Stat	us on		
		Dunct	Profile(s)	100	240 260	S	ummer a	nd Win	ter	
	Retu	urn Peri	d(s) (means) 15, 50, 60, 120 $d(s)$ (veans)	J, 180,	240, 300	, 480, 600	, /20, 1	960, I . 30.	440 100	
	neeu	Clima	ce Change (%)				±.	0, 0,	40	
			5							
					Water S	Burcharged	1 1	Pipe		
DN	Name	US Tabel	Front	(m)	(m)	(m)	Cap	(1/e)	Statue	
EM	Name	парет	Evenc	(111)	(111)	(111)	cap.	(1/3)	Status	
1.000	C1		15 minute 1 year Summer I+0%	62.150	60.843	0.053	1.06	67.8	SURCHARGED	
2.000	S1		15 minute 1 year Winter I+0%	61.800	60.765	-0.115	0.12	1.7	OK	
2.001	S2		15 minute 1 year Winter I+0%	61.800	60.629	-0.081	0.25	3.3	OK	
2.002	53		15 minute 1 year Winter I+0%	61.900	6U.629	-0.021	0.01	0.1	OK	
3.000	521 600		15 minute 1 year Winter 1+0%	01.000 61 900	01.002	-0.115	0.12	⊥./ २1	OK	
3.001	522		15 minute i year Winter I+08	C1 000	60 670	-0.102	0.22	3.I 1 C	OK	
3.002	523		15 minute 1 year Winter 1+0%	01.000 61 700	00.0/0	-0.090	0.33	4.0	OK	
3.003	524	-	10 minute 1 year Winter 1+0%	61 700	00.013	-0.007	1 04	60.0	CIDCUARCER	
1.001	C2	2	40 minute 1 year Winter 1408	60 750	60 011	0.059	1 16	09.0 69 0	SURCHARGED	
1.002	00	2	is minute i year winter itos	00.700	00.011	0.011	1.10	02.0	Seriemmold	

EnvirEn Ltd		Page 11
Flat 8, Park Gates	Moors Barn	
25 Bath Road	Standerwick	
Cheltentham, GL53 7HG	Somerset	Micco
Date 28/01/2022 19:34	Designed by D Simmonds	Dcainago
File 382150-MASTER.MDX	Checked by Mendip District Council	Diamaye
Innovyze	Network 2020.1.3	

30 year Return Period Summary of Critical Results by Maximum Inflow (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000Manhole Headloss Coeff (Global) 0.500MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Foul Sewage per hectare (1/s) 0.000Inlet Coefficient 0.800Hot Start Level (mm)0Additional Flow - % of Total Flow 0.000 Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 19.900 Cv (Summer) 0.750 Region England and Wales Ratio R 0.353 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DTS Status OFF Inertia Status ON Analysis Timestep Fine DVD Status ON

 Profile(s)
 Summer and Winter

 Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

 Return Period(s) (years)
 1, 30, 100

 Climate Change (%)
 0, 0, 40

										Water	Surcharged		Pipe	
	US/MH	US							US/CL	Level	Depth	Flow /	Flow	
PN	Name	Label			E	vent			(m)	(m)	(m)	Cap.	(l/s)	Status
1.000	C1		15	minute	30	vear	Summer	T+0%	62,150	60.865	0.075	1.06	67.8	SURCHARGED
2.000	S1		15	minute	30	year	Winter	I+0%	61.800	60.787	-0.093	0.30	4.1	OK
2.001	S2		15	minute	30	year	Winter	I+0%	61.800	60.753	0.043	0.62	8.1	SURCHARGED
2.002	S3		15	minute	30	year	Summer	I+0%	61.900	60.726	0.076	0.05	0.9	SURCHARGED
3.000	S21		15	minute	30	year	Winter	I+0%	61.800	61.027	-0.093	0.30	4.1	OK
3.001	S22		15	minute	30	year	Winter	I+0%	61.800	60.881	-0.064	0.60	8.4	OK
3.002	S23		15	minute	30	year	Winter	I+0%	61.800	60.727	-0.033	0.94	12.9	OK
3.003	S24		15	minute	30	year	Winter	I+0%	61.700	60.704	0.084	0.05	0.5	SURCHARGED
1.001	C2		180	minute	30	year	Winter	I+0%	61.700	60.680	0.080	1.05	70.0	SURCHARGED
1.002	С3		180	minute	30	year	Winter	I+0읭	60.750	60.013	0.013	1.18	70.0	SURCHARGED

EnvirEn Ltd		Page 12
Flat 8, Park Gates	Moors Barn	
25 Bath Road	Standerwick	
Cheltentham, GL53 7HG	Somerset	Micro
Date 28/01/2022 19:34	Designed by D Simmonds	Desinado
File 382150-MASTER.MDX	Checked by Mendip District Council	Diamage
Innovyze	Network 2020.1.3	·

100 year Return Period Summary of Critical Results by Maximum Inflow (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000Manhole Headloss Coeff (Global) 0.500MADD Factor * 10m³/ha Storage 2.000Hot Start (mins)0Foul Sewage per hectare (1/s) 0.000Inlet Coefficient 0.800Hot Start Level (mm)0Additional Flow - % of Total Flow 0.000Flow per Person per Day (1/per/day) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 2 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR M5-60 (mm) 19.900 Cv (Summer) 0.750 Region England and Wales Ratio R 0.353 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DTS Status OFF Inertia Status ON Analysis Timestep Fine DVD Status ON

 Profile(s)
 Summer and Winter

 Duration(s) (mins)
 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

 Return Period(s) (years)
 1, 30, 100

 Climate Change (%)
 0, 0, 40

										Water	Surcharged		Pipe	
	US/MH	US							US/CL	Level	Depth	Flow /	Flow	
PN	Name	Label			E	vent			(m)	(m)	(m)	Cap.	(l/s)	Status
1.000	C1		15	minute	100	year	Summer	I+40%	62.150	60.891	0.101	1.06	67.8	SURCHARGED
2.000	S1		15	minute	100	year	Winter	I+40%	61.800	60.980	0.100	0.52	7.1	SURCHARGED
2.001	S2		15	minute	100	year	Winter	I+40%	61.800	60.975	0.265	1.05	13.8	SURCHARGED
2.002	S3		15	minute	100	year	Winter	I+40%	61.900	60.971	0.321	0.06	1.1	SURCHARGED
3.000	S21		15	minute	100	year	Winter	I+40%	61.800	61.195	0.075	0.51	7.1	SURCHARGED
3.001	S22		15	minute	100	year	Winter	I+40%	61.800	61.153	0.208	0.92	12.8	SURCHARGED
3.002	S23		15	minute	100	year	Winter	I+40%	61.800	60.989	0.229	1.41	19.4	SURCHARGED
3.003	S24		15	minute	100	year	Winter	I+40%	61.700	60.871	0.251	0.10	1.1	SURCHARGED
1.001	C2	1	120	minute	100	year	Winter	I+40%	61.700	60.681	0.081	1.06	70.0	SURCHARGED
1.002	C3	1	120	minute	100	year	Winter	I+40%	60.750	60.013	0.013	1.18	70.0	SURCHARGED

Appendix F Flood Routing Plan

Appendix G Wessex Water Mapping

Wessex Water Network Map

Reproduced from the Ordnance Survey map by permission on behalf of the Controller of Her Majesty's Stationery Office © Crown Copyright . Licence 100019539.

WATER MAINS	SEWERS STRATEGIC	PUBLIC PRIVATE SECTION 104	OTHER WESSEX PIPES	NON-WESSEX / UNKNOWN				
Distribution	Foul 🗾		Rising Mains	Private Rising Mains				
) Mash out	Surface 🗾 🔁		EDM Effluent Disposal	====:CW.===: Culverted Watercourse				
washout	Combined 💳 🗩	⊳_	── ▷── Overflow	——H—— Highway Drain				
Raw Water	Abandoned	——————————————————————————————————————		? Use Unknown				
Abandanad	Colours generally indicate the use	e of the sewer/drain (i.e Red - Foul, Dark Blue - Surface	ce,					
Abandoned	Magenta - Combined/Dual Use, L	ight Green - Highway Drain, Mid Green - Overflow).						
Private	Some styles of line and symbol ar	e shown on the key in sample/typical colours.	OTHER STR	RUCTURES 🔲 Chamber				
FITTINGS	STRUCTURES	A Pumping Station - Surface	📃 Attenu	iation Tank 📃 🛛 Tunnel				
	Manhole - Foul	Pumping Stn - Foul/Combined	Storag	e Tank 📃 Interceptor				
🔵 Hydrant	 Manhole - Surface 	📩 Gully		· · · ·				
Other	Manhole - Combined	Vent Column						
- Other) Inlet(Outfall	Rodding Eye						
	Lamphole	Catchpit	Moss	ox Wator				
	Bifurcation - Foul	Flushing Chamber	wess					
	Bifurcation - Surface	👌 Soakaway						
	📮 Bifurcation - Combined	Non Return Valve						
Information in this man is provided for it	Combined Sewage Ove	erflow Air Valve He Hatch Box	X Washout					
Wessex Water does not accept liability for	or inaccuracies. Sewers and lateral drains adopte	d by Wessex Water under the Water Industry (Schemes for Adoption of P	rivate Sewers) Date: 2	29/12/2021				
Regulations 2011 are to be plotted over	time and may not yet be shown. In carrying out a	my works, you accept liability for the cost of any repairs to Wessex Water	apparatus damaged Centre: 3	82221 150387				
as a result of your works. You are advise If you are considering any form of building	to commence excavations using hand tools only no works and pipe work is shown within the bour	Y. Mechanical digging equipment should not be used until pipe work has indery of your property or a property to be purchased (or very close by) a	been precisely located.					
plot its exact position prior to commence tel: 01225 526333 or e-mail: developer.et	site care to position or normal works and pice works a norm while the bolicity of a piper of a piper to be preliable of the ty date of a site of a normal site of a site of a normal site of a site							

Reproduced from the Ordnance Survey map by permission on behalf of the Controller of Her Majesty's Stationery Office © Crown Copyright . Licence 100019539.

WATER MAINS	SEWERS STRATEGIC PUB	LIC PRIVATE SECTION 104	OTHER WESSEX PIPES	<u>NON-WESSEX / UNKNOWN</u>
Distribution	Foul 🛑 —	▶	————————————————————————————————————	Private Rising Mains
Distribution	Surface	▶		=:=:=: CW:=:: Culverted Watercourse
Washout	Combined	▶ ▷	──⊳── Overflow	——————————————————————————————————————
Raw Water	Abandoned —	x 		——?— Use Unknown
	Colours generally indicate the use of the	e sewer/drain (i.e Red - Foul, Dark Blue - Surfa	ce,	————————————————————————————————————
Abandoned	Magenta - Combined/Dual Use, Light G	een - Highway Drain, Mid Green - Overflow).		
Private	Some styles of line and symbol are show	vn on the key in sample/typical colours.	OTHER STF	RUCTURES Chamber
FITTINGS	STRUCTURES	A Pumping Station - Surface	Attenu	Jation Tank Tunnel
	Manhole - Foul	Pumping Stn - Foul/Combined	Storag	e Tank Interceptor
Hydrant	 Manhole - Surface 	n Gully		
Othor	Manhole - Combined	Vent Column		
- Other	– –) Inlet – – Outfall	Rodding Eve		
	旹 Lamphole	Catchpit	Moor	ov Motor
	Bifurcation - Foul	Flushing Chamber	wess	sex water Ly $_{\perp}$ $_{\perp}$
	Bifurcation - Surface	👌 Soakaway		
	Bifurcation - Combined	Non Return Valve		
	Combined Sewage Overflov	✓ ♦ Air Valve Hatch Box	X Washout	
Information in this map is provided for in Wessey Water does not accent liability f	dentification purposes only. No warranty as to accuracy is or inaccuracies. Sewers and lateral drains adopted by Wei	given or implied. The precise route of pipe work may not exactl	y match that shown. Drivate Sewerc) Date: 2	29/12/2021
Regulations 2011 are to be plotted over	time and may not yet be shown. In carrying out any work	s, you accept liability for the cost of any repairs to Wessex Wate	r apparatus damaged	000500 150000
as a result of your works. You are advise	d to commence excavations using hand tools only. Mecha	nical digging equipment should not be used until pipe work has	been precisely located.	562520, 150396
It you are considering any form of buildi plot its exact position prior to commence	ng works and pipe work is snown within the boundary of ing works or purchase. If you are proposing to build over	our property or a property to be purchased (or very close by) a or near Wessex Water's apparatus you should contact the Devel	Scale: 1	1:625
tel: 01225 526333 or e-mail: developer.e	nquiries@wessexwater.co.uk to discuss your proposals. [etails of assets within Wessex Water's land ownership are unav	ailable through this service. (when printed at A4 size)

Wessex Water Network Map

Reproduced from the Ordnance Survey map by permission on behalf of the Controller of Her Majesty's Stationery Office © Crown Copyright . Licence 100019539.

WATER MAINS	SEWERS STRATEGIC PU	BLIC PRIVATE SECTION 104	OTHER WESSEX PIPES	NON-WESSEX / UNKNOWN
Distribution	Foul 🛑 —		Rising Mains	Private Rising Mains
	Surface — 🔁 —	→→		====:CW===: Culverted Watercourse
washout	Combined — 🗩 —	→	── >── Overflow	——H—— Highway Drain
Raw Water	Abandoned —	 X X		——?— Use Unknown
Abandanad	Colours generally indicate the use of t	he sewer/drain (i.e Red - Foul, Dark Blue - Surface	e,	
Abandoned	Magenta - Combined/Dual Use, Light	Green - Highway Drain, Mid Green - Overflow).		
Private	Some styles of line and symbol are sho	own on the key in sample/typical colours.	OTHER STR	RUCTURES Chamber
FITTINGS	STRUCTURES	A Pumping Station - Surface	Attenu	uation Tank 📃 Tunnel
	Manhole - Foul	Pumping Stn - Foul/Combined	Storag	e Tank 📃 Interceptor
Hydrant	 Manhole - Surface 	📩 Gully		
Other	Manhole - Combined	Vent Column		
- Other) Inlet Outfall	Rodding Eye		
	💾 Lamphole	Catchpit	Moss	ox Wator
	Bifurcation - Foul	Flushing Chamber	wess	
	Bifurcation - Surface	🖔 Soakaway		
	Bifurcation - Combined	Non Return Valve		
Information in this man is provided for i	Combined Sewage Overflo	w ♦ Air Valve Hatch Box X	Washout	
Wessex Water does not accept liability f	princecuracies. Sewers and lateral drains adopted by W	Vessex Water under the Water Industry (Schemes for Adoption of Pr	ivate Sewers) Date: 2	29/12/2021
Regulations 2011 are to be plotted over	time and may not yet be shown. In carrying out any wo	orks, you accept liability for the cost of any repairs to Wessex Water	apparatus damaged Centre: 3	382357 150459
as a result of your works. You are advise If you are considering any form of buildi	t to commence excavations using hand tools only. Mee ne works and pipe work is shown within the boundary of	hanical digging equipment should not be used until pipe work has b of your property or a property to be purchased (or very close by) a s	een precisely located.	
plot its exact position prior to commence	ng works or purchase. If you are proposing to build over	er or near Wessex Water's apparatus you should contact the Develop	Scale: 1	1:025
tel: 01225 526333 or e-mail: developer.e	nquiries@wessexwater.co.uk to discuss your proposals	b. Details of assets within Wessex Water's land ownership are unavail	lable through this service.	when philled at A4 size) s

Appendix HNon-Main Foul Drainage Assessment

Foul Drainage Assessment Form (FDA)

Please note: You should only use this form for planning related queries. You cannot use it to apply for an Environmental Permit but you may submit a copy of the information you have provided for planning purposes in support of your Environmental Permit application. Further information on how to apply for an environmental permit and general binding rules applicable to small discharges of domestic sewage effluent is available on the gov.uk website.

APPLICANT DETAILS

Name Zak Simmonds (Completed on behalf of Ryn Luxmoore)

Address 25 Bath Road, Cheltenham, Gloucestershire, GL53 7HG

Telephone No 07771330061

e-mail technical@enviren.co.uk

We will use the information you provide on this form to establish whether non-mains drainage, either a new system or connection to an existing system, would be acceptable. It is important that you provide full and accurate information. Failure to do this will delay the processing of your application.

You must provide evidence that a connection to the public sewer is not feasible.

Other than in very exceptional circumstances, we will not allow the use of non-mains drainage as part of your Planning or Building Regulation application unless you can prove that a connection to the public sewer is not feasible. We do not consider non-mains drainage systems to be environmentally acceptable in locations where it is feasible to connect to a public sewer. Please note that a lack of capacity in, or other operating problems with, the public sewer are not valid reasons to use a non-mains drainage system where it is otherwise feasible to connect to a public sewer.

Where connection to the public sewer is feasible, you may need to get the agreement of either the owners of any land through which the drainage will run or, if you intend to connect via an existing private drain, the owner of that private drain.

The National Planning Practice Guidance and <u>Building Regulations Approved Document H</u> give a hierarchy of drainage options that must be considered and discounted in the following order:

- 1 Connection to the public sewer
- 2 Package sewage treatment plant (which can be offered to the Sewerage Undertaker for adoption)
- 3 Septic Tank
- 4 If none of the above are feasible a cesspool

You must respond to all the following questions. If you wish to submit additional information please do so, marked clearly "Additional Information". In some cases you will be required to provide further information in order to demonstrate that any non-mains foul drainage system proposed is acceptable.

Feasibility of mains foul sewer connection	YES	NO
Have you provided a written explanation of why it is not feasible to connect to the public foul sewer with this form?	X	
This must include a scaled map showing the nearest public foul sewer connection point - check with your local sewerage undertaker.		
Is the distance from your site to the closest connection point to the public foul sewer less than the number of properties to be built on the site multiplied by 30m? (see Guidance Note 2)	X	
Does your proposal form part of a phased development or planned development of a wider area?		X
If YES, please provide further details including references of any planning permissions already granted.		

Non-mains connection

Please provide a plan with dimensions that clearly shows the location of the whole system in relation to the proposed development and the position of the key elements e.g. septic tank, drainage fields and points of discharge.

1. Existing system	YES	NO
Do you intend to use an existing non-mains foul drainage system?		X
If YES, does the system already have an Environmental Permit issued by the Environment Agency? (<i>In the case of a cesspool write N/A</i>)	-	
If YES, please provide Environmental Permit reference number		

2. Discharge	YES	NO
Do you propose to use a package treatment plant?		X
Do you propose to use a septic tank?		X
Do you propose to use a cesspool? If YES go to Q4	X	
Have you considered having your system adopted by the sewerage undertaker? (see <i>Guidance Note 7</i>).	-	
Will all, or any part of, the discharge go to a drainage field or soakaway? (see Guidance Note 3) - this includes systems that combine a drainage field with a high level overflow to watercourse If YES go to Q3.	-	
Do you intend to use a system that discharges solely to watercourse? (see Guidance Note 3) If YES go to Q9.	-	

3. Water abstraction	YES	NO
Do you receive your water from the public mains supply?	X	
If not, where do you get your water supply from?	-	

4. Cesspools (For methods other than cesspools write N/A)	YES	NO
Have you provided written justification for the use of a cesspool in preference to more sustainable methods of foul drainage disposal? (see Guidance Note 4)	X	

5. Drainage field design (For cesspools write N/A)	YES	NO
Will the system discharge to a drainage field designed and constructed in accordance with	N/A	
British Standard BS6297:2007?		
If not, why not?		
Will the discharge from the system be located in a Source Protection Zone 1 (SPZ1)?	N/A	

6. Ground Conditions (For cesspools write N/A)	YES	NO
6a. Have you submitted a copy of the percolation test results with this form (see Guidance	N/A	
Note 6)?		
6b. If NO please explain the justification for not undertaking or submitting these tests.		
6c. Is any part of the system in land which is marshy, water logged or subject to flooding?	N/A	
6d. Will the soakaway be located on artificially raised, made-up ground or ground likely to be contaminated? If YES please provide details as additional information.	N/A	
6e. Have you submitted the results of a trial hole at the site to establish that the proposed drainage field will be above any standing groundwater (see Guidance Note 6)?	N/A	

7. Available Land	YES	NO
Is the application site plus any available area for a soakaway less than 0.025 hectares		X

8. Siting of drainage field/soakaway discharge from a septic tank or package treatment plant or other secondary treatment. You may need to make local enquiries to get a full answer to these questions.	YES	NO
Will it be at least 10m from a watercourse, permeable drain or land drain?	N/A	
Will it be at least 50m from any point of abstraction from the ground for a drinking water supply (e.g. well, borehole or spring)? <i>This includes your own or a neighbour's supply.</i>	N/A	
Will the discharge be within a groundwater <u>Source Protection Zone 1</u> ? If yes, you will need to apply for an environmental permit	N/A	
Are there any drainage fields/soakaways within 50m ? This includes any foul drainage discharge system (other than the subject of this application) or surface water soakaway on either your own or a neighbour's property.	N/A	
Will it be at least 15m from any building?	N/A	
Will there be any water supply pipes or underground services within the disposal system, other than those required by the system? (<i>For cesspools write N/A</i>)	N/A	
Will there be any access roads, driveways or paved areas within the disposal area? (For cesspools write N/A)	N/A	

9. Siting of treatment plant, septic tank or cesspool	YES	NO
Is it at least 7m from the habitable part of a building?	X	
Will there be vehicular access for emptying within 30m?	X	
Can the plant, tank or cesspool be maintained or emptied without the contents being taken through a dwelling or place of work?	X	

10.Expected flow

Please estimate the total flow in litres per day (see Guidance Note 5).	6 Persons = 900 litres 4 Persons = 600 litres
---	--

11. General Binding Rules for Small Sewage Discharges	YES	NO
Does the system meet the requirements of the <u>General Binding Rules for small sewage</u> <u>discharges</u> ?	N/A	

12. Maintenance

How do you propose to maintain the system? Maintenance will be carried out by an external, private contractor. Emptying shall be undertaken on a monthly basis as recommended in approved document H, with minimum emptying frequencies specified in document 382150-SWDS – Drainage and Surface Water Strategy. 13. Declaration

I declare that the above information is factually correct.

Name	Signature	Date
Zak Simmonds	6	31.12.2021

GUIDANCE NOTES:

- 1) This form is for use with the <u>National Planning Practice Guidance</u>, British Standard BS6297:2007 and <u>Building Regulations Approved Document H</u>. It is intended to help Local Planning Authorities establish basic information about your non-mains drainage system and decide whether you need to submit a more detailed site assessment. If a detailed site assessment is requested but not submitted, your planning application might be refused.
- 2) Where the distance from a site to the closest point of connection to the foul sewer is less than the number of properties that are proposed to be built on that site multiplied by 30m an Environmental Permit will be required and an applicant will need to demonstrate as part of any application for such a permit why connection to the public foul sewer is not feasible.

Number of domestic properties servedby the sewage treatment system5x 30 metres = Answer150metres

- 3) In addition to Planning Permission and Building Regulation approval you may also require an Environmental Permit from the Environment Agency (EA). Please note that the granting of Planning Permission or Building Regulation approval does not guarantee the granting of an Environmental Permit. Upon receipt of a correctly filled in application form the EA will carry out an assessment. It can take up to 4 months before the Agency is in a position to decide whether to grant a permit or not.
- 4) The use of cesspools is an option of last resort as set out in the non-mains drainage hierarchy of preference in <u>Building Regulations Approved Document H</u>. In principle, a properly constructed and maintained cesspool, being essentially a holding tank with no discharges, should not lead to environmental, amenity or public health problems. However, in practice, it is known that such problems occur as a result of frequent overflows due to poor maintenance, irregular emptying, lack of suitable vehicular access for emptying and even through inadequate capacity. In addition to this the requirement for frequent emptying is usually carried out by a contractor involving road transport with associated environmental costs. For these reasons, the use of cesspools will not normally be considered to be a long-term foul sewage disposal solution. In view of the environmental risks associated with their use, any proposal to use cesspools must be fully justified to the Local Planning Authority

- 5) Package treatment plants and septic tanks should be designed and sized according to the advice given in the current edition of <u>Flows and Loads</u>, published by British Water. Volumes for larger systems should be calculated based on expected flows arising from the development.
- 6) You should refer to <u>Building Regulations Approved Document H2</u> with regard to the general requirements for construction of non mains sewerage systems. **Sections 1.33 to 1.38** deal with the test requirements for trial holes and percolation tests and for convenience the text of these sections is repeated below:
 - 1.33 A trial hole should be dug to determine the position of the standing groundwater table. The trial hole should be a minimum of 1m² in area and 2m deep, or a minimum of 1.5m below the invert of the proposed drainage field pipework. The ground water table should not rise to within 1m of the invert level of the proposed effluent distribution pipes. If the test is carried out in summer, the likely winter groundwater levels should be considered. A percolation test should then be carried out to assess the further suitability of the proposed area.
 - 1.34 Percolation test method A hole 300mm square should be excavated to a depth 300mm below the proposed invert level of the effluent distribution pipe. Where deep drains are necessary the hole should conform to this shape at the bottom, but may be enlarged above the 300mm level to enable safe excavation to be carried out. Where deep excavations are necessary a modified test procedure may be adopted using a 300mm earth auger. Bore the test hole vertically to the appropriate depth taking care to remove all loose debris.
 - 1.35 Fill the 300mm square section of the hole to a depth of at least 300mm with water and allow it to seep away overnight.
 - 1.36 Next day, refill the test section with water to a depth of at least 300mm and observe the time, in seconds, for the water to seep away from 75% full to 25% full level (i.e. a depth of 150mm). Divide this time by 150mm. The answer gives the average time in seconds (Vp) required for the water to drop 1mm.
 - 1.37 The test should be carried out at least three times with at least two trial holes. The average figure from the tests should be taken. The test should not be carried out during abnormal weather conditions such as heavy rain, severe frost or drought.
 - 1.38 Drainage field disposal should only be used when percolation tests indicate average values of V_p of between 12 and 100 and the preliminary site assessment report and trial hole tests have been favourable. This minimum value ensures that untreated effluent cannot percolate too rapidly into groundwater. Where V_p is outside these limits effective treatment is unlikely to take place in a drainage field. However, provided that an alternative form of secondary treatment is provided to treat the effluent from the septic tanks, it may still be possible to discharge the treated effluent to a soakaway.

N.B. When determining whether a discharge may be made under statutory General Binding Rules one of the requirements is that any drainage field must be designed and constructed in accordance with BS6297:2007. This specifies that the minimum percolation rate under that standard is 15s/mm and any discharge made to ground where the percolation rate is less than 15s/mm is subject to the granting of an Environmental Permit.

7) Developers may requisition a sewer from the Sewerage Undertaker to connect their development to the public sewer. Should this not be feasible on the grounds of cost and practicability, on site treatment in the form of package plants and their associated sewers (if constructed to an acceptable standard) can be offered to the sewerage undertaker for adoption. This approach is in support of advice from the Government contained in the <u>National Planning</u> <u>Practice Guidance</u> Developers are urged to discuss their requirements with the Sewerage Undertaker at the earliest possible opportunity.

8) Glossary

Package treatment plant

A package treatment plant is a system which offers varying degrees of biological sewage treatment and involves the production of an effluent which can be disposed of to ground via a drainage field or direct to a watercourse. There are many varieties of package treatment plant but all involve settling the solids before and/or after a biological treatment stage and almost all use electricity. Package treatment plants usually treat sewage to a higher standard than septic tanks but are vulnerable in the event of power failures and require more regular servicing and maintenance to ensure that they work effectively. The type of system chosen should be appropriate to the type of development proposed and take account of variations in flow and periods of inactivity, for example where the system will serve holiday accommodation where occupation and maintenance may be more irregular.

Septic tank

A septic tank is a two or three chamber system, which retains sewage from a property for sufficient time to allow the solids to form into sludge at the base of the tank, where it is partially broken down. The remaining liquid in the tank then drains from the tank by means of an outlet pipe.

Effluent from a septic tank is normally disposed of to ground via a drainage field and receives further treatment in the soils surrounding that drainage field, so that it does not generate a pollution risk to surface waters or groundwater resources (underground water). The most commonly used form of drainage field is a subsurface irrigation area, comprising a herringbone pattern of interconnecting dispersal pipes laid in shallow, shingle filled trenches. The dispersal pipes within the drainage field should be located at as shallow a depth as possible, usually within 1 metre of the ground surface. A septic tank typically needs to be desludged at least once a year in order to ensure that it continues to work effectively.

Cesspool

A cesspool is a covered watertight tank used for receiving and storing sewage and has no outlet. It relies on road transport for the removal of raw sewage and is therefore the least sustainable option for sewage disposal. It is essential that a cesspool is, and remains, impervious to the ingress of groundwater or surface water.

Appendix IPreliminary Drainage Details

CELLULAR STORAGE VENT

SECTION (Not to Scale)

100mm OF COARSE SAND or NON ANGULAR

l dimensions are to be checked on site prior to manufacture of prefabricated items. Any discrep or query to be reported and clarified before associated work proceeds. All construction to be ir accordance with relevant Trade and Professional Standards and Guidelines, Statutory requirements and roduct manufacturers' specifications. This drawing must be read in conjunction with the relevant up to date associated specifications, drawings issued and details. 2022 Enviren Ltd ©

General Notes

- This drawing is for planning purposes only and cannot be relied upon as construction information. Detailed levels information will be required for construction drawings.
- All levels are to an assumed adjacent datum based on local mapping information. Actual levels on-site will vary and will need further investigation. Slab and Spot levels shown on this layout are indicative and act as a minimum level in relation to adjacent spot levels.
- All installed pipework and drainage infrastructure must be installed inline with the relevant Approved Document and British Standard to the satisfactions of the Building Control Officer and any other relevant inspector.

Drawing Reference Table		
RL3	Thurdleigh Proposed Layout Plan	
1101	Drainage Strategy Plan	
1102	Impermeable Areas	
1103	Flood Routing Plan	

⊢			
⊢			
1.2	Strategy updated following site visit.	28.01.2022	ZS
1.1	First Issue.	30.12.2021	ZS
REV.	REVISION DETAILS	DATE	INITIAL
	E nvir	En	
Μ	oors Barn,		
St	anderwick		
Pre	eliminary Drainage Details		
Ρl	ANNING		DS Drawn by
1:2 Draw	50 ing Scale	30.12	.2021 rst issued
38	82150-1104	Duri	1.2