

FLOOD RISK ASSESSMENT

GRID REF: 531027E,198137N

12 SPRING COURT ROAD, ENFIELD, EN2 8JP

prepared for AMARA PROPERTY INVESTMENTS

FEBRUARY 2024

REFERENCE: ST3517/2402-FRA REVISION 0 This report has been prepared by Stomor Ltd. based upon information obtained from others. Stomor Ltd cannot be held responsible for inaccuracies in this information.

This report has been prepared for the Client for their sole and specific use. No professional liability or warranty shall be extended to other parties in connection with this report without the explicit written agreement of Stomor Ltd and payment of the appropriate fee.

Drawings contained in this report are based upon information available at the time of production and serve to assess the likely flooding and flood risk implications arising from delivery of the proposed development. The information produced by Stomor Ltd for this report should not be used as detailed design for construction purposes.

Should the Client wish to pass copies of this report to others for information, the entire report should be copied.

Revision	Author	Checked by	Issue Date
0	SJB	KD	06.02.24

CONTENTS

1	Intr	oduction 1	
	1.2	Policy Context1	
	1.3	Vulnerability and the NPPF Sequential Test1	
2	Site	e Location4	•
3	Site	e Background 5	,
4	Exi	sting Drainage6	j
	4.1	Surface Water Drainage 6	j
	4.2	Foul Drainage	,
5	Pro	posed Development	5
6	Pro	posed Site Drainage9	1
	6.1	Surface Water Drainage	1
	6.2	Foul Drainage	1
7	Pot	ential Sources of Flooding11	
	7.1	Flooding from Rivers or Sea11	
	7.2	Flooding from Land (Surface Water) 11	
	7.3	Flooding from Groundwater12	,
	7.4	Flooding from Sewers	,
	7.5	Flooding from Reservoirs, Canals and Other Artificial Sources	,
8	Sur	nmary and Recommendations15)

APPENDICES

- A Site Location Plan
- B Greenfield Runoff Rate Calculation
- C Indicative Drainage Strategy
- D Drainage Modelling

1 Introduction

- 1.1.1 Stomor Ltd have been commissioned by Amara Property Investments to prepare a Flood Risk Assessment (FRA) associated with proposed development at 12 Spring Court Road, Enfield. A Site Location Plan is provided in **Appendix A**.
- 1.1.2 The overall area of the site is of 0.13 hectares (ha). The site is brownfield with an existing residential dwelling with associated garden and driveway.
- 1.1.3 Current development proposals for the site comprise the demolition of the existing dwelling with the construction of 4No. dwellings.

1.2 <u>Policy Context</u>

- 1.2.1 The FRA has been prepared in accordance with the relevant national, regional and local planning policy as follows:
 - The National Planning Policy Framework (NPPF) published by Department for Communities and Local Government (DCLG), and the accompanying National Planning Practice Guidance (NPPG).
 - Department for Environment, Food and Rural Affairs (DEFRA) and The Environment Agency (EA) published Guidance for Planning Applications: Assessing Flood Risk (March 2014, updated February 2017).
 - The EA Flood Risk Standing Advice (FRSA) version 3.1 (April 2012, updated February 2022).
 - The EA's Approach to Groundwater Protection (March 2017, updated October 2023).
 - Enfield Local Plan and the New Enfield Local Plan.
- 1.2.2 Furthermore, the FRA follows the methodology prescribed in Construction Industry Research and Information Association (CIRIA) document C624: Development and Flood Risk (2004), Guidance for the Construction Industry.

1.3 <u>Vulnerability and the NPPF Sequential Test</u>

- 1.3.1 The NPPF follows a sequential risk-based approach in determining the suitability of land for development in flood risk areas, with the intention of steering all new development to the lowest flood risk areas.
- 1.3.2 The Indicative Floodplain Map obtained from the UK government website is provided in Figure 1.1. This shows that the application site is located within Flood Zone 1, land assessed to have a low probability of flooding.

Figure 1.1 – UK Government Flood Map for Planning

1.3.3 The difference between Flood Zones 1, 2 and 3 are described in Table 1: Flood Zones from the Department for Levelling Up, Housing and Communities and Ministry of Housing, Communities & Local Government Flood Risk and Coastal Change guidance (updated August 2022), reproduced below:

Zone 1	Land assessed as having a less than 0.1% annual probability of river
Low Probability	or sea flooding.
Zone 2	Land assessed as having between a 1% and 0.1% annual
Medium	probability of river flooding, or land having between a 0.5% and 0.1%
Probability	annual probability of sea flooding.
Zone 3a High Probability	Land assessed as having a 1% or greater annual probability of river flooding, land having a 0.5% or greater annual probability of flooding from the sea.
Zone 3b The Functional Floodplain	Land where water from rivers or the sea has to flow or be stored in times of flood. Normally comprises land having a 3.3% or greater annual probability of flooding, or land designed to flood (such as a flood attenuation scheme).

1.3.4 The Flood Risk and Coastal Change Category (ID 7) of the NPPG and associated documents set out that for sites in Flood Zone 1, development proposals on sites comprising one hectare or above the vulnerability to flooding from other sources as well as from river and sea flooding, and the potential to increase flood risk elsewhere through the addition of hard surfaces and the effect of the new development on surface water run-

off, should be incorporated into a flood risk assessment. This would only need to be brief unless the factors above or other local considerations require particular attention.

- 1.3.5 The Flood Risk and Coastal Change Category of the PPG and associated documents identifies that site-specific flood risk assessments should identify and assess the risks of all forms of flooding to and from the development and demonstrate how these flood risks will be managed so that the development remains safe throughout its lifetime, taking climate change into account.
- 1.3.6 The proposed development area of the site will be situated wholly within Flood Zone 1. PPG identifies that all uses of land are appropriate within this Flood Zone.

2 Site Location

- 2.1.1 The application site comprises approximately 0.13ha of brownfield land, currently comprising an existing residential dwelling with associated garden and driveway.
- 2.1.2 The site is located on the north-western side of Enfield, on the north-western side of Spring Court Road. Residential properties abut the site to the north, south and west, with an agricultural field located to the north-west.
- 2.1.3 Inspection of the topographical survey indicates that the site falls towards the north-west with levels ranging from approximately 71.00m AOD to approximately 70.35m AOD.
- 2.1.4 The nearest designated watercourse to the site is Turkey Brook, located approximately 500m to the north-east. A tributary of this watercourse runs north eastwards from a pond located approximately 200m to the north-east of the site, as shown in **Figure 2.1** below.

Figure 2.1: Extract from Enfield Borough Watercourse Map

2.1.5 Inspection of EA Catchment Data identifies that the site lies within the operational catchment area of Turkey Brook and Cuffley Brook Water Body, which contributes to the Thames River Basin catchment area.

3 Site Background

- 3.1.1 Historical maps identify that the site was formerly an agricultural field from at least 1892. The current site comprises a single residential dwelling with associated garden and hardstanding.
- 3.1.2 A Level 1 Strategic Flood Risk Assessment (SFRA) for the area was prepared by the London Borough of Enfield (LBE). The SFRA is used as a desk-based study to map all forms of flood risk to provide an evidence basis to locate new development primarily within low-risk areas. The information allows the planning authority to identify the level of detail required for the site-specific FRA.
- 3.1.3 The SFRA identifies that the Borough is susceptible to fluvial flooding due to the impermeable geology of the land and extensive man-made surfaces.
- 3.1.4 Inspection of the British Geological Survey (BGS) website identifies that the underlying ground conditions of the site comprise Dollis Hill Gravel Member at the superficial deposits strata, underlain by the London Clay Formation.
- 3.1.5 Infiltration testing has previously undertaken at the site as part of an earlier application (Richard Jackson Engineering Consultants: Flood Risk Assessment (Ref: 62279)). The tests could not confirm a usable infiltration rate due to an insignificant drop in water depth and that infiltration methods are not suitable for this site.
- 3.1.6 Inspection of the EA Groundwater Source Protection Zone maps identify that the overall site does not lie within or near a source catchment protection zone.

4 Existing Drainage

4.1 Surface Water Drainage

- 4.1.1 The previously prepared FRA for the site stated that surface water runoff currently is presumed to connect to the public surface water sewer located approximately 35m to the south, within Spring Court Road.
- 4.1.2 As stated above, Thames Water Utilities (TWU) sewer records show that there is a 225mm diameter public surface water sewer located approximately 35m to the south of the site. This sewer originates from an undefined end and runs southwards along Spring Court Road.

Figure 4.1: TWU Sewer Record Extract

4.1.3 Greenfield runoff rates have been calculated based upon the IH124 Method and a contributing impermeable area of 0.065ha. Geotechnical information from the WRAP map of the Wallingford Procedure indicate that the underlying soil conditions would

Greenfield Runoff (I/s) (0.13ha)			
1 in 1 year	Q1	0.49 l/s	
1 in 30 years	Q30	1.33 l/s	
1 in 100 years	Q100	1.84 l/s	

reflect Winter Rain Acceptance Potential (WRAP) Soil Class 3, which results in the following flow rates:

4.1.4 The greenfield runoff calculation sheets are provided in **Appendix B**.

4.2 Foul Drainage

4.2.1 The previously prepared FRA for the site stated that foul water is presumed to currently connect to the public foul water sewer located adjacent to the site in Spring Court Road, as shown in **Figure 4.1**.

5 Proposed Development

5.1.1 The proposed development of the site includes the demolition of the existing single dwelling and the construction of 4No. residential dwellings.

6 Proposed Site Drainage

6.1 Surface Water Drainage

- 6.1.1 The previously prepared FRA stated that surface water runoff from the site currently discharges to the public surface water sewer in Spring Court Road.
- 6.1.2 In accordance with EA Guidance, the order of consideration for the disposal of surface water runoff from a development should be as follows; infiltration methods, watercourses then public sewer network.
- 6.1.3 Soakaway testing was undertaken as part of the previous application proposals, which identified that infiltration methods would not be suitable for the site.
- 6.1.4 There are no identified watercourses within the immediate vicinity of the site which would be practicable for a potential surface water outfall from the proposed development.
- 6.1.5 Therefore, a connection to the public surface water sewer is proposed, utilising the existing connection if possible.
- 6.1.6 An Indicative Drainage Strategy was prepared by Richard Jackson Engineering Consultants as part of the previous application (Drawing Ref:62279-RJL-XX-XX-DR-C-1000-P1) and is provided in **Appendix C**. The strategy demonstrates how the proposed development can be effectively drained and the amount of storage required to avoid flooding within the site during all storms up to and including the 1 in 100-year storm event plus a 40% allowance for climate change. Copies of the associated modelling output files are provided in **Appendix D**.
- 6.1.7 The indicative drainage strategy incorporates SuDS features which will need to have clear, enforceable maintenance regimes in place so that they provide effective flood protection and water treatment for the long term.
- 6.1.8 The CIRIA SuDS Manual C753 promotes the use of the Simple Index Approach as a method of determining water quality risk management and is generally regarded as the accepted method within the industry.
- 6.1.9 Table 26.2 of the SuDS Manual gives pollution hazard indices for different land use classifications. A summarised version of this table is reproduced below:

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very Low	0.2	0.2	0.05
Residential driveways, low traffic roads and non-residential car parking with infrequent change (i.e. <300 traffic movements/day)	Low	0.5	0.4	0.4

6.1.10 Table 26.3 of the SuDS Manual provides typical treatments levels from various SuDS components discharging to surface waters. The following SuDS components will be included as part of the surface water drainage proposals for the development:

	N	litigation Indice	es
Type Of SuDS Component	TSS	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7

6.1.11 To deliver adequate treatment, the selected SuDS components should have a total mitigation index that equals or is greater than the pollution hazard index. Where a single SuDS component is insufficient, additional components in a series would be required, where:

Total SuDS mitigation index = mitigation index₁ + 0.5 (mitigation index₂)

- 6.1.12 A factor of 0.5 is used to account for the reduced performance of secondary or tertiary components associated with already reduced inflow concentrations. In a series of multiple subsequent components, each is halved.
- 6.1.13 From the above tables the SuDS proposed on the development would provide an adequate level of water treatment for the potential pollution hazards generated by the land uses, as the total mitigation index is greater than the hazard index for all predicted contaminants.
- 6.2 Foul Drainage
- 6.2.1 Foul flows generated by the proposed development will discharge to the public foul water sewer located adjacent to the site in Spring Court Road, utilising the existing site connection if suitable.

7 Potential Sources of Flooding

7.1 Flooding from Rivers or Sea

- 7.1.1 The EA Indicative Floodplain Map, shown in **Figure 1.1**, identifies that the site lies within Flood Zone 1.
- 7.1.2 The primary source of fluvial flooding from the site would be from Turkey Brook located approximately 500m to the north.
- 7.1.3 It is considered that the site would not be at risk of flooding from rivers or sea.

7.2 Flooding from Land (Surface Water)

- 7.2.1 Flooding from land occurs when intense rainfall is unable to soak into the ground or enter drainage systems. Local topography and built form can have a strong influence on the direction and depth of flow.
- 7.2.2 The EA Indicative Surface Water Flood Map (Figure 7.1) indicates that the site is at a very low risk of surface water flooding. Very low risk means that this area has less than 0.1% annual chance of flooding.

Extent of flooding from surface water

● High ● Medium ● Low ○ Very Low ◆ Location you selected

Figure 7.1 – Environment Agency Indicative Surface Water Flood Map

7.2.3 On-site drainage systems will be designed to accommodate runoff volume from a 1 in 100 year plus 40% climate change rainfall event, so as to minimise overland flow routes during such storm events.

7.3 Flooding from Groundwater

- 7.3.1 Groundwater flooding occurs when water levels in the ground rise above surface elevations. Groundwater flooding events are most likely to occur in low lying areas underlain by permeable rocks (aquifers).
- 7.3.2 The SFRA has not identified any specific groundwater flooding incidents within or in the vicinity of the site. The extract below (**Figure 7.2**) shows the site location in relation to recorded groundwater flooding incidents (black), with the Borough's geology overlaid.

Figure 7.2 – SFRA Extract of Groundwater Flooding Incidents

7.3.3 The SFRA acknowledges that some recorded groundwater incidents may not be exclusively in relation to groundwater and may be a combination of other factors. The SFRA has also produced a grid-based map to identify the susceptibility of groundwater flooding across the Borough. As shown on the map below, the site lies within an are considered to have less than a 25% susceptibility of groundwater flooding.

Figure 7.3 – SFRA Extract of Areas Susceptible to Groundwater Flooding

- 7.3.4 It is anticipated that groundwater flooding should not be an issue to the proposed development. However, overland flow routes will be taken into account in the design of levels for the proposed development and, should groundwater flooding occur on the site, flows will tend to run overland towards ponds situated at the low areas of the site.
- 7.4 Flooding from Sewers
- 7.4.1 The SFRA identified that there have been no historical recorded flooding events which can be related to sewers within the EN2 8 post code area.
- 7.4.2 The development layout will be designed with consideration of flood routing, to ensure that new buildings and occupants of the site will not be subject to detrimental impacts in the event of flooding from infrastructure failure within or upstream of the site.
- 7.5 Flooding from Reservoirs, Canals and Other Artificial Sources
- 7.5.1 Inspection of the EA flood maps confirms that there are no records of flooding due to reservoirs, canals or other artificial sources in the vicinity.

🔵 when river levels are normal *when there is also flooding from rivers* 🔶 Location you selected

Figure 7.4 – EA Flooding from Reservoirs, Canals and Other Artificial Sources Map

7.5.2 No other non-natural or artificial sources of flooding where water is retained above natural ground level, operational and redundant industrial processes including mining, quarrying and sand and gravel extraction, would appear to be located in the vicinity of the site which may cause increase floodwater depths or velocities.

8 Summary and Recommendations

- 8.1.1 Stomor Ltd have been commissioned by Amara Property Investments to prepare a Flood Risk Assessment (FRA) associated with the proposed development at 12 Spring Court Road, Enfield.
- 8.1.2 The application site comprises approximately 0.13ha of brownfield land, currently comprising an existing residential dwelling with associated garden and driveway.
- 8.1.3 Development proposals comprise the demolition of an existing dwelling and construction of 4No. residential units, with a total area of approximately 0.13 hectares (ha).
- 8.1.4 An indicative drainage strategy has been prepared which demonstrates how the development can be effectively drained while providing sufficient storage to accommodate surface water runoff for all storm events up to and including the 1 in 100-year event, plus an allowance for climate change.
- 8.1.5 The proposed development would have a NPPF flood risk vulnerability classification of 'More Vulnerable'. NPPG identifies that 'More Vulnerable' uses of land are appropriate within Flood Zone 1 without the need for an Exception Test.
- 8.1.6 Soakage tests indicate that the site has poor infiltration potential.
- 8.1.7 The nearest designated watercourse to the site is Turkey Brook, located approximately 500m to the north-east. A tributary of this watercourse runs north eastwards from a pond located approximately 200m to the north-east of the site.
- 8.1.8 The site is located in Flood Zone 1, land assessed as having a low probability of river or sea flooding.
- 8.1.9 It is considered that the site is at a low risk of flooding from fluvial, surface water, groundwater, sewers and artificial sources.
- 8.1.10 Overland flow paths, exceedance routes and volume storage will be taken into account in design of levels for the proposed development to direct overland flows away from buildings and not impact the existing surface water flow path.

APPENDIX A

No dimensions are to be scaled from this drawing

Rev. Date Description

REAR ELEVATION (WEST) existing | 1:100@A1

FIRST FLOOR PLAN existing 1:100@A1

GROUND FLOOR PLAN

existing 1:100@A1

12 Spring Court Road Enfield EN2 8JP

Plans and Elevations As existing

|--|

Existing outbuildings

Outbuilding

Greenhouse

TOTAL SITE

Shed

Kirby . Cove . Architects Studio 10 Dimsdale House Hertford SG14 1BY 01992 538088

24 sqm/ 258 sqft 11 sqm/ 118 sqft

4 sqm/ 43 sqft

344 sqm/ 3,702 sqft

2389		100)		REV
drawn AR	date 19/01/2023	chk A -	chk B -	scale	1:100 @A1

APPENDIX B

Calculated by:	Sam Briscoe
Site name:	3517
Site location:	Enfield

This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	approach	IH124	
Site characteristi	cs		Notes
Total site area (ha): ^{.13}			(1) Is Q _{BAR} < 2.0 l/s/ha?
Methodology			
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	when Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate from S	SOIL type	
Soil characteristic	CS Default	Edited	(2) Are flow rates < 5.0 l/s?
SOIL type:	4	4	Where flow rates are less than 5.0.1/s consent
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage
SPR/SPRHOST:	0.47	0.47	from vegetation and other materials is possible.
Hydrological characteristics	Default	Fdited	blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):	652	652	
Hydrological region:	6	6	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 year	0.85	0.85	Where groundwater levels are low enough the
Growth curve factor 30 years:	2.3	2.3	use of soakaways to avoid discharge offsite
Growth curve factor 100 years:	3.19	3.19	surface water runoff.
Growth curve factor 200 years:	3.74	3.74	Ĩ

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	0.58	0.58
1 in 1 year (l/s):	0.49	0.49
1 in 30 years (l/s):	1.33	1.33
1 in 100 year (l/s):	1.84	1.84
1 in 200 years (l/s):	2.16	2.16

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Deta	ils
Latitude:	51.66670° N
Longitude:	0.10673° W
Reference:	4132355635
Date:	Feb 06 2024 14:40

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

APPENDIX C

- 1.00 GENERAL:
- 1.01 THE COPYRIGHT OF THIS DRAWING IS VESTED IN RICHARD JACKSON LTD (RJL) AND IT MAY NOT BE REPRODUCED IN WHOLE OR PART OR USED FOR THE MANUFACTURE OF ANY ARTICLE WITHOUT THE EXPRESS PERMISSION OF THE COPYRIGHT HOLDERS.
- 1.02 DO NOT SCALE FROM THIS DRAWING. WORK TO FIGURED DIMENSIONS ONLY.
- 1.03 THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT ARCHITECT'S, SERVICE ENGINEER'S AND RJL's DRAWINGS AND SPECIFICATIONS.
- 2.00 DRAINAGE:
- 2.01 LEVELS RELATED TO ORDNANCE DATUM NEWLYN UNLESS NOTED OTHERWISE.
- 2.02 ALL DIMENSIONS IN MILLIMETRES UNLESS NOTED OTHERWISE. 2.03 REPORT ANY DISCREPANCIES TO RJL IMMEDIATELY AND SEEK
- ADVICE. 2.04 THE CONTRACTOR SHALL CHECK LEVELS & CONDITION OF ALL EXISTING DRAINAGE PRIOR TO CONSTRUCTION OF ANY NEW DRAINAGE, UNLESS OTHERWISE AGREED, TO ENSURE THE PROPOSED DESIGN MAY BE ACHIEVED.
- 2.05 THE CONTRACTOR SHALL CARRY OUT FURTHER SURVEYS TO CORRECTLY LOCATE ALL BURIED SERVICES
- 2.06 CONTRACTOR TO ALLOW FOR JET WASHING ALL LENGTHS OF SEWERS TO BE RETAINED.
- 2.07 ALL ADOPTABLE DRAINAGE WORKS TO BE CONSTRUCTED AS DETAILED IN THE DESIGN AND CONSTRUCTION GUIDANCE OR AS STIPULATED IN STATUTORY SEWER UNDERTAKER'S ADDENDUM.
- 2.08 SECTION 106 APPLICATION TO BE COMPLETED AND APPROVED BY THE STATUTORY WATER AUTHORITY PRIOR TO ANY CONNECTION MADE TO THE PUBLIC SEWER. CONTRACTOR TO ENSURE THAT A WATER AUTHORITY INSPECTOR IS PRESENT DURING CONNECTION TO THE PUBLIC SEWER.
- 2.09 ALL PRIVATE DRAINAGE WORKS TO BE IN ACCORDANCE WITH PART H OF THE CURRENT BUILDING REGULATIONS, BS EN 752 AND BS EN 12056.
- 2.10 THE WORKS DESCRIBED AND SPECIFIED ON THIS DRAWING AND ASSOCIATED DRAWINGS SHALL BE UNDERTAKEN IN ACCORDANCE WITH ALL CURRENT HEALTH AND SAFETY LEGISLATION. REFERENCE SHALL ALSO BE MADE TO THE PROJECT HEALTH & SAFETY PLAN PREPARED BY THE CDM COORDINATOR FOR THE PROJECT.
- 2.11 CONSTRUCTION OF SOME SEWERS MAY INVOLVE DEEP EXCAVATIONS AND WORKING IN HAZARDOUS CONFINED SPACE ATMOSPHERES.

This drawing is to be read in conjunction with all other Engineer's drawings and all other project information. Any discrepancy between the Engineer's drawings and other project information is to be reported to the Engineer immediately.

Project

12 SPRING COURT ENFIELD

Title

PRELIMINARY DRAINAGE SCHEME FOR PLANNING

Client

DIANE SMITH

RichardJackson Engineering Consultants 847 The Crescent, Colchester, Essex CO4 9YQ Unit 06C130, 6th Floor, 1 St. Katherine's Way, London, E1W 1UN 5 Quern House, Mill Court, Great Shelford, Cambs CB22 5LD 4 The Old Church, St. Matthews Road, Norwich, Norfolk NR1 1SP The Wheelhouse, Bonds Mill, Stonehouse, Gloucestershire GL10 3RF Email Address: mail@rj.uk.com										
Scale 1:500 @	A1			Drawn SJA			Date 07/06/22			
Project M MJG	lana	ager		Checke KT	d		Approved KT			
Status S2	Status Suitability Description RJL Project No : S2 FOR INFORMATION 62279									
project		originator	zone	level	type	role	number	revision		
6227	62279 RJL XX XX DR C 1000 P1									

- PROPOSED IMPERMEABLE AREAS
- PROPOSED ATTENUATION CRATES
- PROPOSED RAINWATER BUTTS
- PROPOSED EXCEEDANCE FLOWS
- • PRIVATE SURFACE WATER DRAINAGE
- PRIVATE DRAIN WITHIN PERM. PAVING

 - (SUBJECT TO DETAILED DESIGN)

APPENDIX D

ر	RichardJa Engineerin	ckson ng Consult	ants Rich 5 Qu Mill Grea	ard Jacks Iern Hous Court It Shelfor	on Ltd se d, CB22 :	5LD Des	File Net Ste 19/	: 62279 - Pr work: Stori droy Allen 06/2023 ngs	relim SW m Netwo	Schem rk	Page 12 Sp Prelir	1 ring Cour ninary SV	rt Road V Calcs
	Re	eturn Period (years) 1 Additional Flow (%) 0 FSR Region England and Wales M5-60 (mm) 20.000 Ratio-R 0.400 CV 0.750 Time of Entry (mins) 5.00					Maximum Rainfall (mm/hr)50.0Minimum Velocity (m/s)1.00Connection TypeLevel SoffitsMinimum Backdrop Height (m)0.200Preferred Cover Depth (m)0.600Include Intermediate Ground√Enforce best practice design rulesx						ïts
		Name	Area	T of F	Cover	Маг	<u>Nodes</u>	Diameter	Fasti	ng l	Northir	ng Dei	ath
		Name	(ha)	(mins)	Level	τy	/pe	(mm)	(m)	16	(m)	is Dei (n	n)
	\checkmark	SW-01	0.012	5.00	(m) 71.200	Ador	otable	1200	531007	.590 19	98123.7	740 1.0)80
	\checkmark	SW-02	0.012	5.00	70.750	Adop	otable	1200	531012	.440 19	98134.2	220 1.0	080
	\checkmark	SW-03	0.012	5.00	70.450	Adop	otable	1200	531017	.020 19	98144.1	L10 0.8	380
	\checkmark	SW-04	0.012	5.00	70.350	Ador	otable	1200	531023	.240 19 600 10	98157.5 28152 3	030 0.5 250 0.5	920 970
	\checkmark	SW-04A	0.011	5.00	70.750	Ador	otable	1200	531024	.050 13	98192.3	560 1.4	150
	\checkmark	SW-06	0.011	0.00	70.600	Ador	otable	1500	531048	.470 19	98142.7	790 1.3	350
	\checkmark	SW-07			71.350	Ado	otable	1200	531033	.970 19	98111.4	170 1 .1	120
	\checkmark	SW-08	0.016	5.00	70.900	Adop	otable	1200	531046	.270 19	98143.3	350 0.9	900
	\checkmark	SW-09 TW-0002	2		71.500 71.310	Ador Ador	otable otable	1200 1200	531026 531018	.700 19 .750 19	98074.8 98056.5	360 1.4 590 1.3	120 320
							<u>Links</u>						
	Name	US Nodo	DS Node	Length	ks (mi	m) /	US IL	DS IL	Fall (m)	Slope	Dia (mm)	T of C	Rain
	1.000	SW-01	SW-02	11.548	0.	600	70.120	69.690	0.430	26.9	150	5.10	50.0
	1.001	SW-02	SW-03	10.899	0.	600	69.670	69.590	0.080	136.2	150	5.31	50.0
	1.002	SW-03	SW-04	14.791	0.	600	69.570	69.450	0.120	123.3	300	5.48	50.0
	2.000_1	SW-04A	SW-04	5.379	0.	600	69.480	69.430	0.050	107.6	150	5.09	50.0
	1.003	SW-04	SW-05	23.890	0.	600	69.430	69.320	0.110	217.2	300	5.86	50.0
	1.004	SW-05	SW-06	5.928	0.	600	69.300	69.250 70.220	0.050	118.6	300	5.93	50.0
	1.005	SW-00	SW-07	34.314	0.	600	70 230	70.230	0.980	-33.2 248.8	150	7 49	46.4
	2.000	SW-08	SW-06	2.237	0.	600	70.000	69.980	0.020	111.9	150	5.04	50.0
	1.007	SW-09	TW-0002	19.925	0.	600	70.080	69.990	0.090	221.4	225	7.87	46.5
		Nam	ie Vel (m/s)	Cap (I/s)	Flow (I/s)	US Dept (m)	DS h Dept (m)	Σ Area h (ha)	Σ Add Inflow (l/s)	Pro Depth (mm)	P Velo (m	ro ocity i/s)	
		1.000	1.950	34.5	1.6	0.93	0 0.91	0 0.012	0.0	22	2 0	.995	
		1.001	0.859	15.2	3.3	0.93	0 0.71	0 0.024	0.0	47	' 0	.685	
		1.002	1.415	100.0	4.9	0.58	0.60	0 0.036	0.0	45	5 0	.741	
		2.000	_1 0.968	17.1	0.0	0.72	0 0.77	0 0.000	0.0	0) 0	.000	
	1.003 1.063 75.1 6.5 0.620				U 1.13		0.0	59	, 0 , 0	.059 860			
		1 004	1 000	17 7	0.U 9 R	1.15	0 1.05 0 0.97	0 0.059	0.0	57 150) (000	
		1.005	0.632	11.2	9.5	0.97	0 1.27	0 0.075	0.0	106	5 0	.708	

Flow+ v10.6.232 Copyright © 1988-2023 Causeway Technologies Ltd

0.470

1.095

0.016

0.075

0.0

0.0

37

80

0.657

0.748

2.2 0.750

9.5 1.195

2.000

1.007

0.949

0.874

16.8

34.8

RichardJackson 5 Quern House Engineering Consultants Mill Court Great Shelford, CB22 5LD						Network: Sto Stedroy Aller 19/06/2023	orm Network า		12 Spring Preliminar	Court Road y SW Calce	d 5
				<u>Pip</u>	eline So	<u>hedule</u>					
			1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0	ink L 000 1 001 1 002 1 000_1 003 2 004 005 3 006 3 006 3 000 1 007 1	ength (m) 11.548 10.899 14.791 5.379 23.890 5.928 34.514 37.325 2.237 19.925	Slope D (1:X) (m 26.9 1 136.2 1 123.3 3 107.6 1 217.2 3 118.6 3 -35.2 1 248.8 1 111.9 1 221.4 2	via sim) 150 150 150 300 300 150 150 150 150 225				
					Link	C					
					1.000						
					1.001						
					2.000	_1					
					1.003						
					1.004						
					1.006						
					2.000						
					1.007						
				Mai	1.007 hhole Se	<u>chedule</u>					
Node	Easting (m)	Northing (m)	CL (m)	<u>Maı</u> Depth (m)	1.007 nhole So Dia (mm)	<u>chedule</u> MH Type	Connecti	ons	Link	IL (m)	Dia (mm
Node SW-01	Easting (m) 531007.590	Northing (m) 198123.740	CL (m) 71.200	<u>Mar</u> Depth (m) 1.080	1.007 nhole Se Dia (mm) 1200	chedule MH Type Adoptable	Connecti	ons	Link	IL (m)	Dia (mm
Node SW-01	Easting (m) 531007.590	Northing (m) 198123.740	CL (m) 71.200	<u>Mar</u> Depth (m) 1.080	1.007 nhole Se Dia (mm) 1200	chedule MH Type Adoptable	Connecti	ons	Link	IL (m)	Dia (mm
Node SW-01	Easting (m) 531007.590	Northing (m) 198123.740	CL (m) 71.200	<u>Mar</u> Depth (m) 1.080	1.007 nhole S Dia (mm) 1200	<u>chedule</u> MH Type Adoptable	Connecti	ons 0	Link	IL (m) 70.120	Dia (mm
Node SW-01 SW-02	Easting (m) 531007.590 531012.440	Northing (m) 198123.740 198134.220	CL (m) 71.200	<u>Mar</u> Depth (m) 1.080	1.007 nhole S Dia (mm) 1200	chedule MH Type Adoptable	Connecti Connecti	0 1	Link 1.000 1.000	IL (m) 70.120 69.690	Dia (mm 15 15
Node SW-01 SW-02	Easting (m) 531007.590 531012.440	Northing (m) 198123.740 198134.220	CL (m) 71.200 70.750	<u>Mar</u> Depth (m) 1.080	1.007 nhole Sr Dia (mm) 1200	chedule MH Type Adoptable	Connecti Connecti	ons 0 1	Link 1.000 1.000	IL (m) 70.120 69.690	Dia (mm 15 15
Node SW-01 SW-02	Easting (m) 531007.590 531012.440	Northing (m) 198123.740 198134.220	CL (m) 71.200 70.750	<u>Mar</u> Depth (m) 1.080	1.007 nhole S Dia (mm) 1200	chedule MH Type Adoptable	Connecti	0 0 1 0	Link 1.000 1.000	IL (m) 70.120 69.690 69.670	Dia (mm 15 15
Node SW-01 SW-02 SW-03	Easting (m) 531007.590 531012.440 531017.020	Northing (m) 198123.740 198134.220 198144.110	CL (m) 71.200 70.750	<u>Mar</u> Depth (m) 1.080 1.080	1.007 hhole Sr Dia (mm) 1200 1200 1200	chedule MH Type Adoptable Adoptable	Connecti Connecti	0 0 1 0 1	Link 1.000 1.000 1.001 1.001	IL (m) 70.120 69.690 69.670 69.590	Dia (mm 15 15 15 15
Node SW-01 SW-02 SW-03	Easting (m) 531007.590 531012.440 531017.020	Northing (m) 198123.740 198134.220 198144.110	CL (m) 71.200 70.750 70.450	<u>Mar</u> Depth (m) 1.080 1.080	1.007 hhole Sr Dia (mm) 1200 1200 1200	chedule MH Type Adoptable Adoptable	Connecti Connecti Connecti	0 0 1 0 1	Link 1.000 1.000 1.001 1.001	IL (m) 70.120 69.690 69.670 69.590	Dia (mm 15 15 15
Node SW-01 SW-02 SW-03	Easting (m) 531007.590 531012.440 531017.020	Northing (m) 198123.740 198134.220 198144.110	CL (m) 71.200 70.750 70.450	<u>Mar</u> Depth (m) 1.080 1.080	1.007 hhole Sr Dia (mm) 1200 1200	chedule MH Type Adoptable Adoptable	Connecti a^{0} a^{0} $a^$	00000000000000000000000000000000000000	Link 1.000 1.000 1.001 1.001 1.001 1.002	IL (m) 70.120 69.690 69.570 69.570	Dia (mm 15 15 15 15
Node SW-01 SW-02 SW-03 SW-04	Easting (m) 531007.590 531012.440 531017.020	Northing (m) 198123.740 198134.220 198144.110	CL (m) 71.200 70.750 70.450	<u>Mar</u> Depth (m) 1.080 1.080 0.880	1.007 hhole Sr Dia (mm) 1200 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable	Connecti Connecti Connecti	0 0 1 0 1 0 1	Link 1.000 1.000 1.001 1.001 1.002 2.000_1	IL (m) 70.120 69.690 69.670 69.590 69.570 69.430	Dia (mm 15 15 15 15 30 15
Node SW-01 SW-02 SW-03 SW-04	Easting (m) 531007.590 531012.440 531017.020	Northing (m) 198123.740 198134.220 198144.110 198157.530	CL (m) 71.200 70.750 70.450	<u>Mar</u> Depth (m) 1.080 1.080 0.880	1.007 hhole Sr Dia (mm) 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable	Connecti $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0000 00 11 00 11 20	Link 1.000 1.000 1.001 1.001 1.002 2.000_1 1.002	IL (m) 70.120 69.690 69.670 69.590 69.570 69.430 69.430	Dia (mm 15 15 15 15 30 15 30
Node SW-01 SW-02 SW-03 SW-04	Easting (m) 531007.590 531012.440 531017.020	Northing (m) 198123.740 198134.220 198144.110	CL (m) 71.200 70.750 70.450	<u>Mar</u> Depth (m) 1.080 1.080 0.880	1.007 hhole Sr Dia (mm) 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable	Connection Conne	0000 0 1 0 1 0 1 2 0	Link 1.000 1.000 1.001 1.001 1.002 2.000_1 1.002 1.003	IL (m) 70.120 69.690 69.670 69.590 69.570 69.430 69.430	Dia (mm 15 15 15 15 30 30 30
Node SW-01 SW-02 SW-03 SW-04 SW-04A	Easting (m) 531007.590 531012.440 531017.020 531023.240	Northing (m) 198123.740 198134.220 198144.110 198157.530	CL (m) 71.200 70.750 70.450 70.350	<u>Mar</u> Depth (m) 1.080 1.080 0.880 0.920	1.007 hhole Sr (mm) 1200 1200 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable Adoptable	Connecti $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	00000000000000000000000000000000000000	Link 1.000 1.000 1.001 1.001 1.002 2.000_1 1.002 1.002 1.003	IL (m) 70.120 69.690 69.670 69.590 69.570 69.430 69.430	Dia (mm 15 15 15 30 30 30
Node SW-01 SW-02 SW-03 SW-04 SW-04A	Easting (m) 531007.590 531012.440 531017.020 531023.240	Northing (m) 198123.740 198134.220 198144.110 198157.530	CL (m) 71.200 70.750 70.450 70.350	<u>Mar</u> Depth (m) 1.080 1.080 0.880 0.880	1.007 hhole Sr (mm) 1200 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable Adoptable	Connecti Connecti a a a a a a a a	0000 0 1 0 1 2 0 0	Link 1.000 1.000 1.001 1.001 1.002 2.000_1 1.002 1.003	IL (m) 70.120 69.690 69.690 69.590 69.590 69.430 69.430 69.430	Dia (mm 15 15 15 15 30 30 30
Node SW-01 SW-02 SW-03 SW-04 SW-04A	Easting (m) 531007.590 531012.440 531017.020 531023.240 531024.690	Northing (m) 198123.740 198134.220 198144.110 198157.530	CL (m) 71.200 70.750 70.450 70.350	<u>Mar</u> Depth (m) 1.080 1.080 0.880 0.920	1.007 hhole Sr (mm) 1200 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable Adoptable	Connecti $\begin{array}{c} & & \\ &$	0 0 1 0 1 2 0 0	Link 1.000 1.000 1.001 1.001 1.002 2.000_1 1.003 2.000 1	IL (m) 70.120 69.690 69.690 69.590 69.430 69.430 69.430	Dia (mm 15 15 15 30 30 30 30
Node SW-01 SW-02 SW-03 SW-04 SW-04A SW-04A	Easting (m) 531007.590 531012.440 531017.020 531023.240 531024.690	Northing (m) 198123.740 198134.220 198144.110 198157.530 198152.350	CL (m) 71.200 70.750 70.450 70.350	<u>Mar</u> Depth (m) 1.080 1.080 0.880 0.880 0.920	1.007 hhole Sr (mm) 1200 1200 1200 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable Adoptable	Connecti Connecti a a a a a a a a	0000 0 1 0 1 2 0 1 2 0 0 1 2 0 1	Link 1.000 1.000 1.001 1.001 1.002 2.000_1 1.003 2.000_1 1.003	IL (m) 70.120 69.690 69.590 69.590 69.430 69.430 69.430 69.430	Dia (mm 15 15 15 30 30 30 30 30
Node SW-01 SW-02 SW-03 SW-04 SW-04A SW-04A	Easting (m) 531007.590 531012.440 531017.020 531023.240 531024.690 531024.690	Northing (m) 198123.740 198134.220 198144.110 198157.530 198152.350	CL (m) 71.200 70.750 70.450 70.350	<u>Mar</u> Depth (m) 1.080 1.080 0.880 0.920 0.870	1.007 hhole Sr Dia (mm) 1200 1200 1200 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable Adoptable	Connecti Connecti $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}$	0000 0000 10000 10000 10000 00000 100000 1000000	Link 1.000 1.000 1.001 1.001 1.002 2.000_1 1.003 2.000_1 1.003	IL (m) 70.120 69.690 69.590 69.590 69.430 69.430 69.430 69.430	Dia (mm 15 15 15 15 30 30 30 30 30
Node SW-01 SW-02 SW-03 SW-04 SW-04A SW-04A	Easting (m) 531007.590 531012.440 531017.020 531023.240 531024.690 531024.690	Northing (m) 198123.740 198134.220 198134.220 198157.530 198157.530	CL (m) 71.200 70.750 70.450 70.350	<u>Mar</u> Depth (m) 1.080 1.080 0.880 0.880 0.920	1.007 hhole Sr (mm) 1200 1200 1200 1200 1200 1200	chedule MH Type Adoptable Adoptable Adoptable Adoptable	Connection Conne	ons 0 1 0 1 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Link 1.000 1.000 1.001 1.001 1.002 2.000_1 1.003 2.000_1 1.003 1.003 1.004	IL (m) 70.120 69.690 69.590 69.570 69.430 69.430 69.430 69.430 69.430	Dia (mm 15 15 15 30 30 30 30 30 30 30

, ruginee	ichardJackson ngineering Consultants Great Shelford, CB22 5LD			Ne Ste 19/	Network: Storm Network Stedroy Allen 19/06/2023				12 Spring Court Road Preliminary SW Calcs			
				Manh	ole Sche	edule						
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	MH Type	Connection	s	Link	IL (m)	Dia (mm	
SW-06	531048.470	198142.790	70.600	1.350	1500	Adoptable	1	1 2	2.000 1.004	69.980 69.250	150 300	
	F21022 070	100111 470	71 250	1 1 2 0	1200	Adontabla	04	0	1.005	69.250	15	
500-07	531033.970	198111.470	/1.350	1.120	1200	Adoptable	ϕ	1 .	1.005	70.230	15	
S/N/-08	531046 270	198143 350	70 900	0.900	1200	Adontable	0	0	1.006	70.230	15	
500-00	551040.270	190149.390	70.500	0.500	1200	Ασριασίε						
SW-09	531026.700	198074.860	71.500	1.420	1200	Adoptable	1	0	2.000 1.006	70.000	15 15	
				-							-	
TW-0002	531018 750	198056 590	71 310	1 320	1200	Adoptable	0	0	1.007 1.007	70.080	22	
							Ø					
				<u>Simula</u>	ntion Se	<u>ttings</u>						
	Rair	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe	Dgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 ced Deta	Simula and and V 00 0 0 0 iled	i tion Se Wales	ttings Drain D Additiona Check I Check D 100 year	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (m ³	e x s) 24 a) 0. s) √ ne √ 3) 14	40 0 4			
	Rair 15 30	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120	Dgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta	Simula and and V 00 0 0 iled Storn 240	n Durat	ttings Drain D Additiona Check D 100 year	5kip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (m ³ 600 720	re x s) 24 a) 0. s) √ re √ 3) 14	40 0 4	1440		
	Rair 15 30	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years)	Dgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat	Simula and and V 00 0 0 iiled Storn 240 ce Change cc %)	n Durat 360 a Add	ttings Drain D Additiona Check D 100 year ons 480 itional Area (A %)	5kip Steady Stat own Time (min I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (m 600 720 Additional Flo (Q %)	te x s) 24 a) 0. s) √ ie √ ³) 14 96	40 0 4	1440		
	Rair 15 30	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years)	Dgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat (0 1	Simula and and V 00 0 0 iiled Storn 240 ce Change cc %)	n Durat Wales 360 e Add	ttings Drain D Additiona Check D Check D 100 year itional Area (A %) 0 0	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (mi 600 720 Additional Flo (Q %)	$\begin{array}{cccc} & x \\ & x \\ & y \\$	40 0 4	1440		
	Rair 15 30	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years) 3 10	Dgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat (0 1 0	Simula and and 9 00 0 0 iiled Storn 240 ce Change cc %) (0 40	n Durat Wales 360 e Add 0 0	ttings Drain D Additiona Check D 100 year itional Area (A %) 0 0 0	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (m ³ 600 720 Additional Flo (Q %)	e x s) 24 a) 0. s) √ ie √ 3) 14 96 0 0 0	40 0 4	1440		
	Rair 15 30	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years) 3 10	Dgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat (0 1 0 0 Pre-d	Simula and and V 00 0 0 iiled Storn 240 ce Change cc %) (40 developn	n Durat Wales Urain Se Wales 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ttings Drain D Additiona Check D Check D 100 year itional Area (A %) 0 0 0 0	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (m ³ 600 720 Additional Flo (Q %)	$\begin{array}{cccc} & x \\ & s \\ & 2^{4} \\ & 0 \\ & s \\ & \sqrt{3} \\ & \sqrt{3} \\ & 96 \\ & 0 \\ &$	40 0 4	1440		
	Rair 15 30	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years) 3 10	Dgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat (0 1 0 0 <u>Pre-c</u>	Simula and and V 00 0 0 iiled Storn 240 ce Change cc %) (4 developn p Gree	n Durat Wales Wales 360 e Add 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ttings Drain D Additiona Check D 100 year 480 itional Area (A %) 0 0 0 ccharge Rate Growth 1	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (minstead) 600 720 Additional Flo (Q %)	$\begin{array}{cccc} & x \\ s) & 2^{4} \\ a) & 0. \\ s) & \checkmark \\ be & \checkmark \\ s^{3}) & 1^{4} \\ & 96 \\ & 0 \\ & 0 \\ & 0 \\ & 1.95 \\ \end{array}$	40 0 4	1440		
	Rair	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years) 3 10 S Greenfi	pgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat (0 1 0 0 <u>Pre-c</u> ite Makeu eld Metho	Simula and and V 00 0 0 iiled Storn 240 ce Change cc %) ((developn p Gree d IH122	n Durat Wales Wales 360 e Add 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ttings Drain D Additiona Check D 100 year itional Area (A %) 0 0 ccharge Rate Growth Fa	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (m 600 720 Additional Flo (Q %)	$\begin{array}{cccc} \text{re} & x \\ \text{s} & 2^{4} \\ \text{a} & 0. \\ \text{s} & \sqrt{3} \\ \text{re} & \sqrt{3} \\ & 96 \\ \end{array}$ $\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.95 \\ 2.48 \\ 2 \\ \end{array}$	40 0	1440		
	Rair 15 30	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years) 3 10 S Greenfio ositively Draine	Dgy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat (0 1 0 0 <u>Pre-0</u> ite Makeu eld Metho	Simula and and V 00 0 0 iiled Storn 240 ce Change cc %) (40 developn p Gree d IH12- a) 0.130	n Durat Wales Wales 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ttings Drain D Additiona Check D 100 year itional Area (A %) 0 0 0 ccharge Rate Growth Fa B	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (minstead) 600 720 Additional Flo (Q %) Factor 30 year actor 100 year etterment (%)	$\begin{array}{cccc} & x \\ & s \\ & 2^{4} \\ & 0 \\ & s \\ & \sqrt{3} \\ & \sqrt{3} \\ & 96 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1.95 \\ & 2.48 \\ & 0 \\ & $	40 0 4 50	1440		
	Rair 15 30 Po	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years) 3 10 S Greenfio ositively Draine	ogy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat (0 1 0 0 <u>Pre-c</u> ite Makeu eld Metho ed Area (ha SAAR (mm Soil Inde	Simula and and V 00 0 0 0 0 0 0 0 0 0 1 240 240 240 240 240 240 240 240 240 240	n Durat Wales Wales 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ttings Drain D Additiona Check D 100 year itional Area (A %) 0 0 ccharge Rate Growth I Growth Fa B	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (m³ 600 720 Additional Flo (Q %) Factor 30 year actor 100 year etterment (%) QBar Q 1 year (I/s)	$\begin{array}{cccc} & x \\ & s) & 2^{2} \\ & a) & 0. \\ & s) & \\ & e & \\ &$	40 0 4	1440		
	Rair 15 30 Po	nfall Methodolo FSR Reg M5-60 (m Ratio Summer Winter Analysis Spe 60 120 Return Perio (years) 3 10 S Greenfio ositively Draine	ogy FSR ion Engl im) 20.0 o-R 0.40 CV 0.75 CV 0.84 eed Deta 180 d Climat (1 0 0 <u>Pre-c</u> ite Makeu eld Metho ed Area (ha SAAR (mm Soil Inde SP	Simula and and V 00 0 0 iiled Storn 240 ce Change cc %) (40 developn 0 d IH12 a) 0.130 b) 652 x 4 R 0.47	n Durat Wales Wales 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ttings Drain D Additiona Check D 100 year itional Area (A %) 0 0 ccharge Rate Growth Fa B	Skip Steady Stat own Time (mins I Storage (m³/ha Discharge Rate(s ischarge Volum 360 minute (minst 600 720 Additional Flo (Q %) Factor 30 year actor 100 year etterment (%) QBar Q 1 year (l/s) Q 30 year (l/s)	$\begin{array}{cccc} x = x \\ x = 2^{2} \\ x = 0 \\ x = \sqrt{2} \\ x = $	40 0 4 50	1440		

		Richard Jackson Lto	ł	File: 62279	- Prelim SW Sche	m Page 4	ļ.	
$\left(\right)$	RichardJackson	5 Quern House		Network: S	torm Network	12 Spr	12 Spring Court Road	
~	Engineering Consultants	Mill Court		Stedroy All	en	Prelim	inary SW Calcs	
		Great Shelford, CB.	22 SLD	19/06/2023	3			
		Pre-d	evelopment	Discharge Vo	<u>olume</u>			
		Site Make	up Greenfie	eld Ret	urn Period (years)	100		
	Posit	ively Drained Area (h	ou rskyren na) 0.130	Stor	m Duration (mins)	360		
		Soil Ind	ex 4		Betterment (%)	0		
		S	PR 0.47		PR	0.442		
		C	NI 98.074	Ru	unoff Volume (m³)	36		
		Nod	<u>e SW-06 Onli</u>	<u>ne Pump Co</u>	<u>ntrol</u>			
	FI	an Valve - v	Design (Denth (m)	0 980 Switch	off denth ((m) 0.850	
	Replaces Downstre	am Link x	Design	Flow (I/s)	2.0	on depth ((11) 0.050	
	Invert L	evel (m) 69.250	Switch on	depth (m)	0.900			
	Depth Flow	Depth Flow	Depth	Flow	Depth Flow	Depth	Flow	
	(m) (l/s)	(m) (I/s)	(m)	(I/s)	(m) (l/s)	(m)	(I/s)	
	0.150 0.250	0.300 0.350	0.450	0.500	0.750 1.500	0.950	1.925	
	0.250 0.30	0.350 0.400	0.650	1.000	0.850 1.725	0.980	2.000	
		<u>Node SV</u>	/-01 Depth/A	rea Storage	<u>Structure</u>			
	Base Inf Coefficien	t (m/br) 0 00000	Safety Fa	ctor 20	Inv	ert Level (m	a) 70 120	
	Side Inf Coefficien	t (m/hr) 0.00000	Poro	sity 0.95	Time to half e	mpty (mins	5) 8	
				_				
	Depth	Area Inf Area	Depth Are	a Inf Area	Depth Are	a Inf Are	а	
	(m) 0.000	(m ⁻) (m ⁻)	(m) (m [.] 0.350 20	-) (m-) 0 00	(m) (m ⁻ 0.351 0	(m-)	0	
	0.000	20.0 0.0	0.000 20.	0 0.0	0.001		0	
		<u>Node SM</u>	<u>/-01 Depth/A</u>	rea Storage	<u>Structure</u>			
	Base Inf Coefficien	t (m/hr) 0.00000	Safety Fa	ctor 2.0	Inve	ert Level (m	n) 70.120	
	Side Inf Coefficien	t (m/hr) 0.00000	Poro	sity 0.30	Time to half e	mpty (mins	5) 8	
	Denth	Area Inf Area	Denth Are	a Inf Δrea	Denth Are	a Inf Δre	a	
	(m)	(m ²) (m ²)	(m) (m ²	²) (m²)	(m) (m	²) (m²)	u	
	0.000	49.0 0.0	0.350 49.	0 0.0	0.351 0	.0 0.	0	
		Node SW	/-02 Depth/A	rea Storage	Structure			
			-	-				
	Base Inf Coefficien	t (m/hr) 0.00000	Safety Fa	ctor 2.0		ert Level (m	n) 69.670	
	Side Inf Coemcien	t (m/nr) 0.00000	Poro	osity 0.95	lime to half e	mpty (mins	5)	
	Depth	Area Inf Area	Depth Are	a Inf Area	Depth Are	a Inf Are	а	
	(m)	(m ²) (m ²)	(m) (m ²	²) (m²)	(m) (m	²) (m²)	-	
	0.000	20.0 0.0	0.350 20.	υ 0.0	0.351 0	.u 0.	U	
		<u>Node SM</u>	/-02 Depth/A	rea Storage	<u>Structure</u>			
	Base Inf Coefficien	t (m/hr) 0.00000	Safety Fa	ctor 2.0	Inv	ert Level (m	n) 69.670	
	Side Inf Coefficien	t (m/hr) 0.00000	Porc	sity 0.30	Time to half e	mpty (mins	5)	
	Depth	Area Inf Area	Depth Are	a Inf Area	Depth Are	a Inf Are	а	
	(m)	(m²) (m²)	(m) (m²	²) (m²)	(m) (m	²) (m²)		
	0.000	35.0 0.0	0.350 35.	0 0.0	0.351 0	.0 0.	0	

RichardJackson	Richard Jackson L 5 Quern House	File: 62279 - Prelim SW SchemPage 5Network: Storm Network12 Spring Court Road				
Engineering Consultants	Mill Court		Stedroy Allen	ı	Prelimina	ry SW Calcs
	Great Shelford, C	B22 5LD	19/06/2023			
	<u>Node S</u>	W-03 Depth/A	<u>rea Storage St</u>	<u>ructure</u>		
Base Inf Coefficier	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Inver Time to half en	t Level (m)	69.570
Side III Coefficier		FUIC	JSILY 0.95		ipty (mins)	
Depth	Area Inf Area	Depth Are	a Inf Area	Depth Area	Inf Area	
(m) 0.000	(m ⁻) (m ⁻) 20.0 0.0	0.350 20.	-) (m-) .0 0.0	(m) (m ⁻) 0.351 0.0	(m ⁻) 0.0	
	Node S	W-04 Depth/A	rea Storage St	ructure		
			-			co 120
Base Inf Coefficier Side Inf Coefficier	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fa Porc	ctor 2.0 osity 0.95	Inver Time to half en	t Level (m) 1pty (mins)	69.430
Depth	Area Inf Area	Depth Are	a Inf Area	Depth Area	Inf Area	
(m)	(m²) (m²)	(m) (m ²	²) (m²)	(m) (m²)	(m²)	
0.000	34.0 0.0	0.350 34.	.0 0.0	0.351 0.0	0.0	
	<u>Node SV</u>	V-04A Depth//	<u>Area Storage S</u>	<u>tructure</u>		
Base Inf Coefficier	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Inver	t Level (m)	69.480
Side Inf Coefficier	nt (m/hr) 0.00000	Porc	osity 0.30	Time to half en	ıpty (mins)	
Depth	Area Inf Area	Depth Are	a Inf Area	Depth Area	Inf Area	
0.000	35.0 0.0	0.350 35.	0.0 0.0	0.351 0.0	0.0	
	Node S	W-05 Depth/A	rea Storage St	ructure		
			-			co 200
Side Inf Coefficier	nt (m/hr) 0.00000 nt (m/hr) 0.00000	Safety Fa Porc	osity 0.30	Time to half en	t Level (m) 1pty (mins)	69.300
Depth	Area Inf Area	Depth Are	a Inf Area	Depth Area	Inf Area	
(m)	(m²) (m²)	(m) (m ²	²) (m²)	(m) (m²)	(m²)	
0.000	11.0 0.0	0.350 11.	.0 0.0	0.351 0.0	0.0	
	<u>Node</u>	SW-08 Carpar	<u>k Storage Stru</u>	<u>icture</u>		
Base Inf Coefficien	t (m/hr) 0.00000		Invert Level (n	n) 70.000	Slope (1:X)) 500.0
Side Inf Coefficien	t (m/hr) 0.00000	Time to ha	alf empty (min Width (n	s) 12.000 I	Depth (m) Inf Depth (m)) 0.500
Jaret	Porosity 0.30		Length (n	n) 14.500	in Deptil (in))
		<u>Rair</u>	<u>nfall</u>			
Event	Peak	Average	E	vent	Peak	Average
	Intensity	Intensity			Intensity	Intensity
1 vear 15 minute si	(mm/hr) ummer 109 521	(mm/hr) 30 991	1 vear 180 r	minute winter	(mm/hr) 15 102	(mm/hr) 5 979
1 year 15 minute w	vinter 76.857	30.991	1 year 240 r	ninute summer	18.475	4.882
1 year 30 minute su	ummer 71.439	20.215	1 year 240 r	ninute winter	12.274	4.882
1 year 30 minute w	inter 50.133	20.215	1 year 360 r	minute summer	14.169	3.646
1 year 60 minute su	ummer 48.435	12.800	1 year 360 r	minute winter	9.210	3.646
1 year 60 minute w	unter 32.179	12.800	1 year 480 r	minute summer	11.185 7 404	2.956
1 year 120 minutes	winter 10 066	7.942	1 year 600 r	minute winter	/.43⊥ Q 1Q7	2.900 2.511
1 year 180 minute s	summer 23.233	5.979	1 year 600 r	minute winter	6.274	2.511
·			· · ·			

		Richard Jackson Ltd	File: 62279 - Prelim SW Schem	Page 6
	Richard Jackson	5 Quern House	Network: Storm Network	12 Spring Court Road
レノ	Engineering Consultants	Mill Court	Stedroy Allen	Preliminary SW Calcs
		Great Shelford, CB22 5LD	19/06/2023	

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
1 year 720 minute summer	8.203	2.199	30 year 960 minute winter	9.416	3.743
1 year 720 minute winter	5.513	2.199	30 year 1440 minute summer	10.161	2.723
1 year 960 minute summer	6.768	1.782	30 year 1440 minute winter	6.829	2.723
1 year 960 minute winter	4.483	1.782	100 year +40% CC 15 minute summer	488.233	138.153
1 year 1440 minute summer	4.949	1.326	100 year +40% CC 15 minute winter	342.620	138.153
1 year 1440 minute winter	3.326	1.326	100 year +40% CC 30 minute summer	320.551	90.705
30 year 15 minute summer	268.706	76.035	100 year +40% CC 30 minute winter	224.948	90.705
30 year 15 minute winter	188.566	76.035	100 year +40% CC 60 minute summer	214.603	56.713
30 year 30 minute summer	174.929	49.499	100 year +40% CC 60 minute winter	142.577	56.713
30 year 30 minute winter	122.757	49.499	100 year +40% CC 120 minute summer	129.587	34.246
30 year 60 minute summer	116.589	30.811	100 year +40% CC 120 minute winter	86.094	34.246
30 year 60 minute winter	77.459	30.811	100 year +40% CC 180 minute summer	97.729	25.149
30 year 120 minute summer	70.438	18.615	100 year +40% CC 180 minute winter	63.526	25.149
30 year 120 minute winter	46.797	18.615	100 year +40% CC 240 minute summer	75.977	20.078
30 year 180 minute summer	53.298	13.715	100 year +40% CC 240 minute winter	50.477	20.078
30 year 180 minute winter	34.645	13.715	100 year +40% CC 360 minute summer	56.677	14.585
30 year 240 minute summer	41.604	10.995	100 year +40% CC 360 minute winter	36.841	14.585
30 year 240 minute winter	27.641	10.995	100 year +40% CC 480 minute summer	43.979	11.622
30 year 360 minute summer	31.221	8.034	100 year +40% CC 480 minute winter	29.219	11.622
30 year 360 minute winter	20.295	8.034	100 year +40% CC 600 minute summer	35.604	9.738
30 year 480 minute summer	24.324	6.428	100 year +40% CC 600 minute winter	24.327	9.738
30 year 480 minute winter	16.160	6.428	100 year +40% CC 720 minute summer	31.433	8.424
30 year 600 minute summer	19.756	5.404	100 year +40% CC 720 minute winter	21.125	8.424
30 year 600 minute winter	13.498	5.404	100 year +40% CC 960 minute summer	25.432	6.697
30 year 720 minute summer	17.490	4.687	100 year +40% CC 960 minute winter	16.847	6.697
30 year 720 minute winter	11.754	4.687	100 year +40% CC 1440 minute summer	18.055	4.839
30 year 960 minute summer	14.215	3.743	100 year +40% CC 1440 minute winter	12.134	4.839

	Richard J	lackson Ltd		File: 62	279 - Pre	elim SW Scl	hem	Page 7		
KichardJackson	5 Quern	House		Netwo	rk: Storm	Network		12 Spring	Court Road	
 Engineering Consultants 	Mill Cou	rt		Stedro	y Allen			Prelimina	ry SW Calcs	
	Great Sh	elford, CB2	2 5LD	19/06/	2023					
_										
Res	ults for 1	year Critica	l Storm Du	ration. Lo	owest ma	iss balance	e: 95.6	<u>7%</u>		
Node Event	US	Peak	Level	Depth	Inflow	Node	Floo	d St	tatus	
	Node	e (mins)) (m)	(m)	(I/s)	Vol (m³)	(m³)		
30 minute winter	SW-01	22	70.136	0.016	1.3	0.5429	0.000	00 OK		
60 minute winter	SW-02	42	69.698	0.028	1.5	0.8635	0.000	00 OK		
1440 minute winte	r SW-03	1680	69.650	0.080	0.4	1.6125	0.00	00 OK		
1440 minute winte	r SW-04	1620	69.650	0.220	0.5	7.3560	0.000	00 OK		
1440 minute winte	r SW-04	A 1680	69.650	0.170	0.1	1.9779	0.000	DO <mark>SURC</mark>	HARGED	
1440 minute winte	r SW-05	1680	69.650	0.350	0.2	1.5514	0.000	00 <mark>SURC</mark>	HARGED	
1440 minute winte	r SW-06	1680	69.650	0.400	0.1	0.7071	0.00	00 <mark>SURC</mark>	HARGED	
15 minute summer	SW-07	1	. 70.230	0.000	0.0	0.0000	0.00	00 OK		
30 minute winter	SW-08	22	70.026	0.026	1.7	0.6344	0.00	00 OK		
15 minute summer	SW-09	1	70.080	0.000	0.0	0.0000	0.00	00 OK		
15 minute summer	TW-00	02 1	69.990	0.000	0.0	0.0000	0.000	00 ОК		
Link Event	US	Link	DS	Outflow	v Veloci	ity Flow/	/Cap	Link	Discharge	
(Upstream Depth)	Node		Node	(I/s)	(m/s	 .)	•	Vol (m³)	Vol (m ³)	
30 minute winter	SW-01	1.000	SW-02	0.8	0.7	88 0	.022	0.0110		
60 minute winter	SW-02	1.001	SW-03	1.1	0.4	99 0	.074	0.0246		
1440 minute winter	SW-03	1.002	SW-04	0.3	0.3	11 0	.003	0.4804		
1440 minute winter	SW-04	1.003	SW-05	-0.2	0.0	23 - <mark>0</mark>	.002	1.5027		
1440 minute winter	SW-04A	2.000_1	SW-04	-0.1	0.04	47 -0	.008	0.0947		
1440 minute winter	SW-05	1.004	SW-06	-0.1	-0.0	13 -0	.001	0.4174		
1440 minute winter	SW-06	1.005	SW-07	0.0	0.0	00 0	.000	0.0000		
15 minute summer	SW-07	1.006	SW-09	0.0	0.0	00 0	.000	0.0000		
30 minute winter	SW-08	2.000	SW-06	0.9	0.4	91 0	.056	0.0043		
15 minute summer	SW-09	1.007	TW-0002	0.0	0.0	00 0	.000	0.0000	0.0	

	Richard Ja	ackson Ltd		File: 62	279 - Pre	Page 8				
RichardJackson	5 Quern H	House		Netwo	rk: Storm	Network		12 Spring Court Road		
Engineering Consultants	Mill Cour	t		Stedro	y Allen			Prelimina	ary SW Calcs	
	Great She	elford, CB22	2 5LD	19/06/	2023					
Resi	ults for 30 y	year Critica	l Storm D	uration. L	owest ma	ass balanc	<u>e: 95.6</u>	<u>7%</u>		
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	l S [.]	tatus	
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)			
15 minute winter	SW-01	13	70.148	0.028	4.2	0.9904	0.000	0 OK		
720 minute winter	SW-02	960	69.916	0.246	0.7	7.5478	0.000	0 <mark>SURC</mark>	HARGED	
720 minute winter	SW-03	930	69.916	0.346	0.9	6.9743	0.000	0 <mark>SURC</mark>	HARGED	
720 minute winter	SW-04	945	69.916	0.486	1.4	11.8713	0.000	0 <mark>SURC</mark>	HARGED	
720 minute winter	SW-04A	945	69.917	0.437	0.4	4.1740	0.000	0 <mark>SURC</mark>	HARGED	
720 minute winter	SW-05	945	69.917	0.617	0.7	1.8540	0.000	0 <mark>SURC</mark>	HARGED	
720 minute winter	SW-06	945	69.917	0.667	0.4	1.1780	0.000	0 <mark>SURC</mark>	HARGED	
15 minute summer	SW-07	1	70.230	0.000	0.0	0.0000	0.000	0 OK		
30 minute winter	SW-08	22	70.043	0.043	4.3	1.5299	0.000	0 OK		
15 minute summer	SW-09	1	70.080	0.000	0.0	0.0000	0.000	0 OK		
15 minute summer	TW-000	2 1	69.990	0.000	0.0	0.0000	0.000	0 OK		
Link Event	US	Link	DS	Outflow	Velocit	ty Flow/	Сар	Link	Discharge	
(Upstream Depth)	Node		Node	(I/s)	(m/s)		. ,	Vol (m³)	Vol (m ³)	
15 minute winter	SW-01	1.000	SW-02	2.6	1.11	.9 0.	.077	0.0286		
720 minute winter	SW-02	1.001	SW-03	0.6	0.38	5 0.	.039	0.1919		
720 minute winter	SW-03	1.002	SW-04	0.6	0.31	.7 0.	.006	1.0416		
720 minute winter	SW-04	1.003	SW-05	-0.7	0.07	′6 - <mark>0</mark> .	.009	1.6823		
720 minute winter	SW-04A	2.000_1	SW-04	-0.4	-0.05	i4 -0.	.021	0.0947		
720 minute winter	SW-05	1.004	SW-06	-0.4	-0.00)5 -0.	.004	0.4174		
720 minute winter	SW-06	1.005	SW-07	0.0	0.00	0 0.	.000	0.0000		
15 minute summer	SW-07	1.006	SW-09	0.0	0.00	0 0.	.000	0.0000		
30 minute winter	SW-08	2.000	SW-06	2.5	0.63	6 0.	.147	0.0087		
15 minute summer	SW-09	1.007	TW-0002	0.0	0.00	0 0.	.000	0.0000	0.0	

RichardJackson Engineering Consultants	Richard Jac 5 Quern Ho Mill Court Great Shelf	5LD	File: 6 Netwo Stedro 19/06	2279 - Pr ork: Storr oy Allen 5/2023	elim SW Sc n Network	hem Pi 1 P	age 9 2 Spring Court Road reliminary SW Calcs		
<u>Results fo</u>	or 100 year +	40% CC C	ritical Stor	rm Durat	tion. Low	vest mass b	alance: 9	95.67%	
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
15 minute winter	SW/-01	12	70 162	0 042	75	1 4506	0 0000	ОК	

10 minute winter	511 61		,0.102	0.012	7.5	1.1900	0.0000	U.N.
960 minute winter	SW-02	615	70.151	0.481	2.9	10.8841	0.0000	SURCHARGED
960 minute winter	SW-03	615	70.151	0.581	2.0	7.3167	0.0000	FLOOD RISK
960 minute winter	SW-04	615	70.151	0.721	1.7	12.1368	0.0000	FLOOD RISK
960 minute winter	SW-04A	615	70.151	0.671	0.7	4.4394	0.0000	FLOOD RISK
960 minute winter	SW-05	615	70.151	0.851	1.9	2.1192	0.0000	SURCHARGED
720 minute winter	SW-06	690	70.151	0.901	1.8	1.5921	0.0000	SURCHARGED
960 minute winter	SW-07	630	70.272	0.042	1.8	0.0476	0.0000	ОК
960 minute winter	SW-08	615	70.151	0.151	2.5	7.2989	0.0000	SURCHARGED
960 minute winter	SW-09	630	70.116	0.036	1.8	0.0402	0.0000	ОК
960 minute winter	TW-0002	630	70.024	0.034	1.8	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	SW-01	1.000	SW-02	5.8	1.250	0.168	0.0641	
960 minute winter	SW-02	1.001	SW-03	-1.9	0.367	-0.123	0.1919	
960 minute winter	SW-03	1.002	SW-04	-1.5	0.317	-0.015	1.0416	
960 minute winter	SW-04	1.003	SW-05	1.5	0.075	0.021	1.6823	
960 minute winter	SW-04A	2.000_1	SW-04	-0.7	-0.054	-0.041	0.0947	
960 minute winter	SW-05	1.004	SW-06	1.9	0.106	0.019	0.4174	
720 minute winter	SW-06	1.005	SW-07	1.8	0.140	0.103	0.3733	
960 minute winter	SW-07	1.006	SW-09	1.8	0.538	0.163	0.1348	
960 minute winter	SW-08	2.000	SW-06	-1.9	0.433	-0.112	0.0394	
960 minute winter	SW-09	1.007	TW-0002	1.8	0.472	0.053	0.0772	18.1

Suite 2 First Floor Portmill House Portmill Lane Hitchin Hertfordshire SG5 1DJ

01462 615433

info@stomor.com www.stomor.com