

Drainage Simulations for Surface WaterRevision 0

Job No. 29478

Proposed Mixed Use Development
Willisham Hall
Barking Road
Willisham
Suffolk
IP8 4SL

Client: Herin Property Investments LLP

February 2024

REPORT CONTROL SHEET

Client: Herin Property Investments LLP Job No.: 29478

Project Name: Proposed Mixed Use Development

Willisham Hall Barking Road Willisham Suffolk IP8 4SI

Issue		
		Report Prepared by:
Revision 0	February 2024	Chloe Spencer M.Sc, AMIEnvSc Senior Environmental Consultant Report Reviewed & Authorised by: Matt Hare B.Sc, CEng, MCIWEM, C.WEM, MICE, MIMechE Director - Infrastructure

CONDITIONS OF INVESTIGATION & REPORTING

This report and its findings should be considered in relation to the terms of the brief and objectives agreed between PDC Engineering and the Client.

PDC Engineering are only able to work with information available at the time when the report is carried out which have been applied to the report in accordance with current best practice. PDC Engineering cannot be held responsible for any subsequent flooding to the development or surrounding area.

The details contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by PDC Engineering has not been independently verified by PDC Engineering, unless otherwise stated in the report.

This report was prepared and provided for the sole and specific use of the client. PDC Engineering shall not be responsible for any use of the report or its contents for any other purpose. Copies of the report to other parties for information should be copied in full but PDC Engineering shall extend no professional liability or warranty to other parties in this connection without written consent. The copyright of this report and other plans and documents prepared by PDC Engineering are owned by them.

TABLE OF CONTENTS

REPORT CONTROL SHEET	i
CONDITIONS OF INVESTIGATION & REPORTING	i
TABLE OF CONTENTS	1
DESIGN COMMENTS	2
SURFACE WATER DRAINAGE DESIGN	2

DRAWINGS APPENDIX

Drawing No. 29478/005 - Surface Water Drainage Plan

Drawing No. 29478/010 - Drainage Details

Drawing No. 29478/015 - Detention Basin Plan and Details

APPENDIX A

Info Drainage Design Simulations for the Attenuation System

APPENDIX B

Surface Water Maintenance Plan

APPENDIX C

Preliminary Trial Pit Logs

DESIGN COMMENTS

This Drainage Simulations for Surface Water (DSSW) was prepared by PDC Engineering. The report was commissioned by Hollins Architects and Surveyors on behalf of Herin Property Investments LLP.

This has been prepared to address Mid Suffolk District Council's Planning Condition 13 of Planning Application, Reference DC/20/02426, for the erection of eleven dwellings, five commercial B1 (office) space units, a A1/A3 farm shop/cafe, play area, footpath, and associated parking at Willisham Hall, Barking Road, Willisham, Suffolk, IP8 4SL, referred to here within as the site.

SURFACE WATER DRAINAGE DESIGN

Excavations were undertaken on-site by A F Howland Associates in February 2024. These confirmed the ground conditions of made ground and clay, are similar to that of the ground works undertaken by Create Consulting in May 2020 as part of the original planning application. Percolation testing was also undertaken by A F Howland Associates as part of the ground investigation, with the first test in all three excavations failing to drain within 24 hours, for further details refer to **Appendix C**.

The testing undertaken by Create Consulting encountered potential perched groundwater seepage 0.84m to 2.69m below ground level (bgl). The testing by A F Howland Associates also encountered groundwater seepage in SA01C at 1.5m bgl and in TP01 at 1.9m bgl, bur did not encountered groundwater within the other excavations which ranged in depth from 0.65m to 3.00m bgl, for further details refer to **Appendix C**.

The above Ground Investigations concluded that the use of infiltration drainage as a primary drainage solution is not suitable for this site due to the poor porosity rate and groundwater levels observed.

Clay soils, due to their low porosity, have a high capacity to hold water. This becomes advantageous during periods of low rainfall or drought as it provides a source of water to the root systems of plants and crops, supporting their growth and survival.

The drainage system has been designed to contain up to and including the 1 in 100 year rainfall event including the effects of climate change (45%), refer to **Appendix A** for the Info Drainage design simulations and Drawing No. 29478/805 in the **Drawings Appendix** for the location, dimensions, and design of the drainage features.

The surface water runoff from the proposed hardstanding will discharge into a detention/attenuation basin located in the south-west of the site. The basin will attenuate the flow prior to the water outfalling into the ditch to the south-west of the site at a controlled rate via a flow control, refer to Drawing No. 29478/805 in the **Drawings Appendix**.

The detention/attenuation basin will be 1.3m deep with bank slopes of 1 in 4 and a 1.5m wet bench located 0.6m from the base. It will also include a gabion permeable berm, that will create a sediment forebay, and enable flows to pass through, as well as a low flow channel.

The flow from site will be restricted by a Hydrobrake flow control. The flow control will discharge at a maximum rate of 1.51/s to the ditch, this is the rate specified by Create Consulting, that was approved by the LLFA as part of the original planning application.

The private access and drives will be constructed using pervious techniques to benefit from any limited infiltration and improve water quality. Pervious techniques can be utilised despite the presence of clay within the soils, due to the shallow depth and large infiltration area that this type of drainage provides. The pervious areas will have a minimum of 0.25m of free draining open graded sub-base for water storage refer to drawing 29478/010. The pervious areas have been linked to the drainage network to ensure flows in excess of the sub-base capacity can flow into the piped surface water drainage system.

In the event where the surface water system fails or during an exceedance event, consideration should be given to route surface water away from vulnerable areas towards drainage features. Where possible, the external landscape and paving levels will fall away from the buildings, and the access road levels near buildings will be set lower than the finished floor levels of the buildings. Refer to Drawing No. 29478/805 for overland flow routes.

Further details on the manufacturers information and design of the drainage features can be found on Drawing No.'s 29478/010, 011 & 808 in the **Drawings Appendix**.

Prior to construction, consent should be obtained for the crossing of the ditch by the maintenance access route.

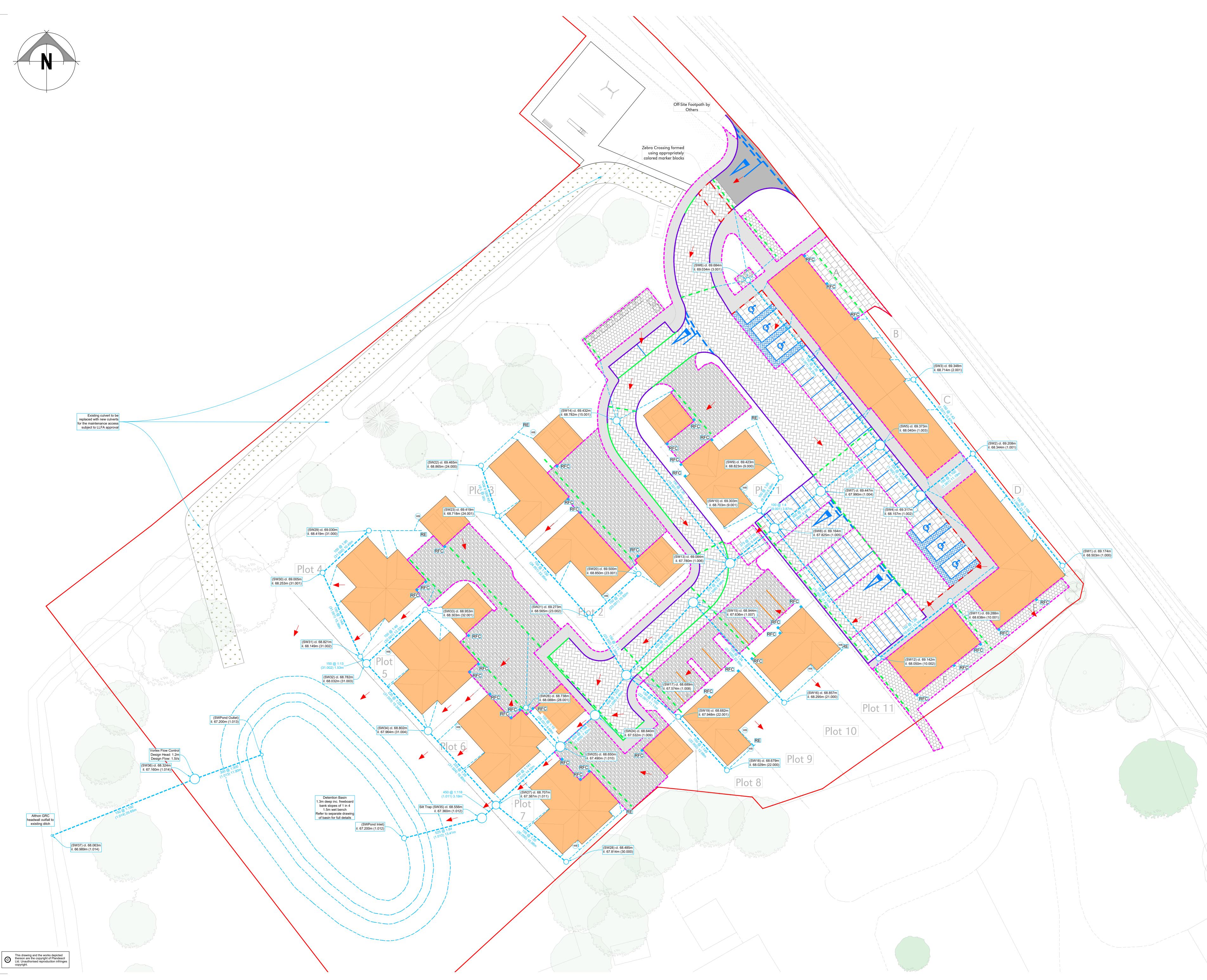
To reduce the risk of flooding due to the failure of the surface water drainage system over its lifespan, regular maintenance should be undertaken.

Where the surface water drainage is within an owner's plot it will be included in the deeds of the plot, that the long term maintenance and repair of the drainage system will be the responsibility of the individual plot owner.

Where the surface water drainage is outside of the responsibility of the owner, a Management Company will be put into place. An annual maintenance charge will apply to plot owners to ensure the maintenance and repair is carried out together with other aspects of the site, such as private roads etc.

Refer to **Appendix B** for the Surface Water Maintenance Plan detailing the maintenance program, and ongoing maintenance responsibilities for the site.

The increase in hardstanding areas will create an increase in the surface water runoff generated within the site prior to mitigation. However, through the incorporation of a sustainable surface water drainage system the increased surface water runoff will be entirely contained in an attenuation drainage system, and discharge from site at a controlled rate to the ditch, therefore the proposal complies with NPPF.


DRAWINGS APPENDIX

CONTENTS

Drawing No. 29478/005 - Surface Water Drainage Plan

Drawing No. 29478/010 - Drainage Details

Drawing No. 29478/015 - Detention Basin Plan and Details

Note General:

1. This document has been created in accordance with PDC Engineering terms & conditions along with the scope of works provided by the client to PDC Engineering. Any use of this document other than for its original purpose is prohibited, PDC Engineering accepts no liability for any third party use of this

2. PDC Engineering is to be informed immediately of any alterations/deviations identified on-site from the information shown

on the engineering drawings. 3. PDC Engineering to be immediately notified of any suspected omissions or discrepancies.

4. All proprietary materials to be fixed strictly in accordance with manufacturer's recommendations using materials approved by the manufacturer.

5. Inspections by the Local Authority, shall be arranged by the contractor to suit their program. 6. Until technical approval has been obtained from the relevant

authorities it should be understood that all drawings issued are preliminary and not for construction. Should the contractor start site work prior to approval being given, it is entirely at their own

Note Drainage:

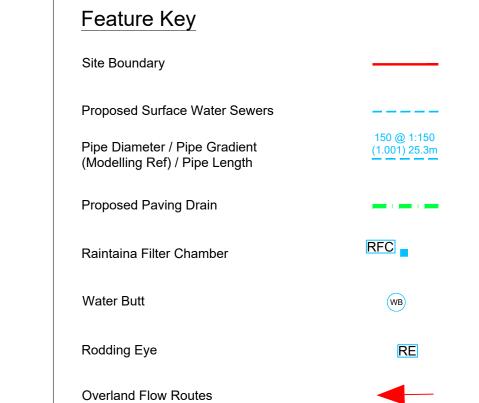
1. Unless noted otherwise all pipework shall be constructed from PVC-U to BS EN 1401-1 bedded and backfilled as per the manufacturer's recommendations and the above listed

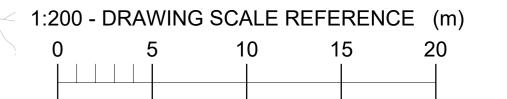
2. All private drainage shall be in accordance with BS EN 752 and relevant sections of Approved Document H of the Building Regulations. The Contractor's attention is drawn to Diagrams 7 and 8 of 'The Building Regulations Approved Document H'

showing details of drains laid below and near to buildings. 3. Generally, pipes to have granular bed & surround in accordance with manufacturers recommendations, ensuring adequate protection with respect to depth and location. 4. All surface water pipes to be 150mm ø, and laid no flatter than

1:100 unless stated otherwise. 5. RWP's are shown indicatively only. Refer to architect's drawings for accurate locations.

6. Where surface water drains to ground, the existing ground should be broken up prior to laying the subgrade to aid infiltration. 7. All covers, gratings and frames to chambers, gullies, channels etc.


shall be of the correct load class to suit their location: Load Class A15 Domestic gardens (not accessible by vehicles.) • Load Class B125 Pedestrian areas where occasional vehicular access is likely


 Load class C250 Driveways, public open space, paved areas and landscaping. Gratings in pedestrian areas to be designed for pedestrian use (i.e. heel safe).

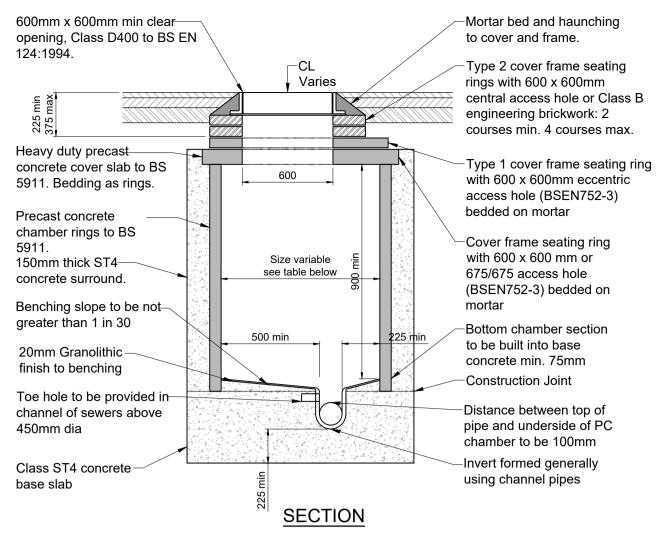
8. All pre-cast and in-situ concrete and mortars used in the construction of drains and sewers shall be made from sulphate resisting cement. 9. All levels and dimensions should be checked on-site by contractors and relevant sub-contractors.

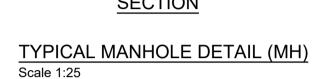
10. Existing services & sewers indicated on this and any other related drawings are shown indicatively. All existing public utility services and private apparatus are not necessarily shown on the drawings. The contractor shall liaise with the utility provider to determine precise location of existing services. Existing services should be marked out on-site prior to any excavation works. All utility company guidelines, and health & safety procedures must be strictly followed.

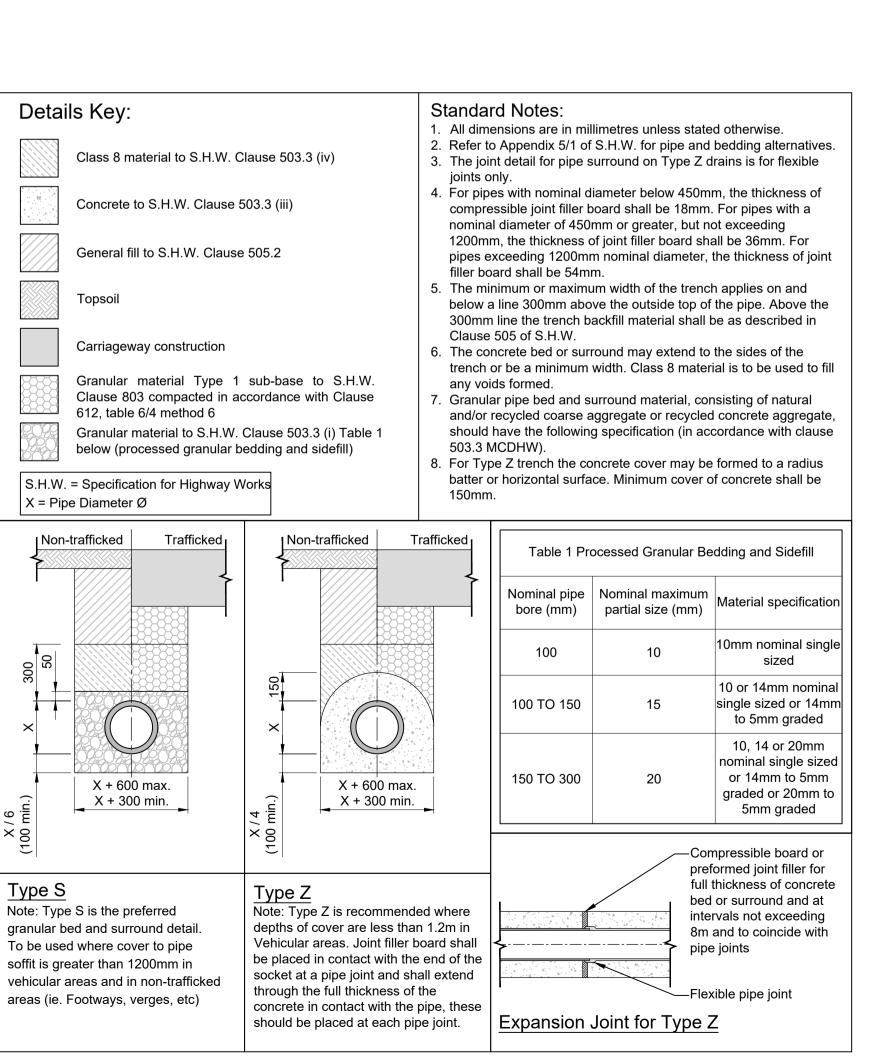
11. Prior to commencement of the works all drainage outfall points, whether existing sewer, drain, or watercourse, shall be verified on-site by the Contractor. If the outfall point is found to be higher or significantly lower than shown on the drawings then PDC Engineering shall be notified immediately. Prior to commencement of construction on-site the Contractor shall install all off-site drainage connections, or satisfy themselves that there are no obstructions or other reasons why the drainage connections cannot be made.

Harling Road Snetterton Norfolk NR16 2JU Telephone: (01953) 452001 E-mail: pdc@pdcengineering.co.uk www.pdcengineering.co.uk PDC Engineering a Plandescil Ltd Company

civil • structural • environmental • surveying

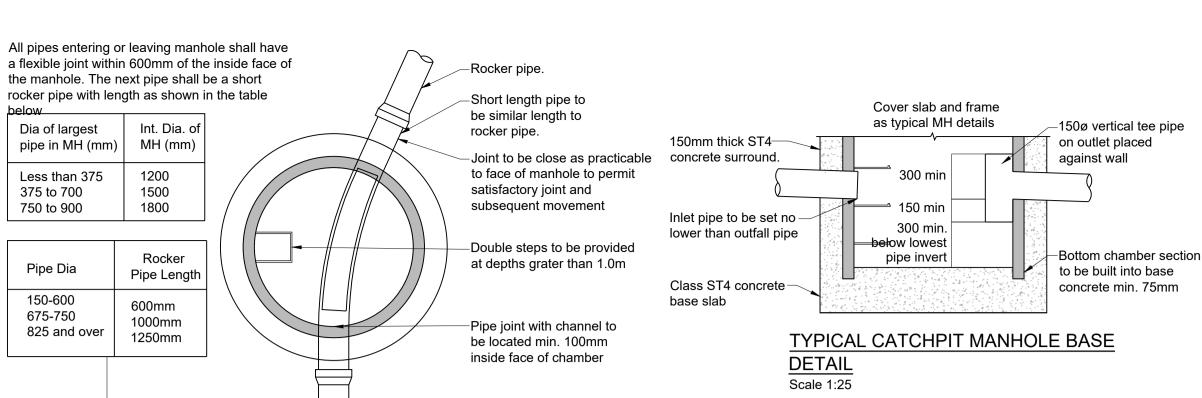

Herin Property Investments


Willisham Hall Willisham Hall Road Willisham, IP8 4SL

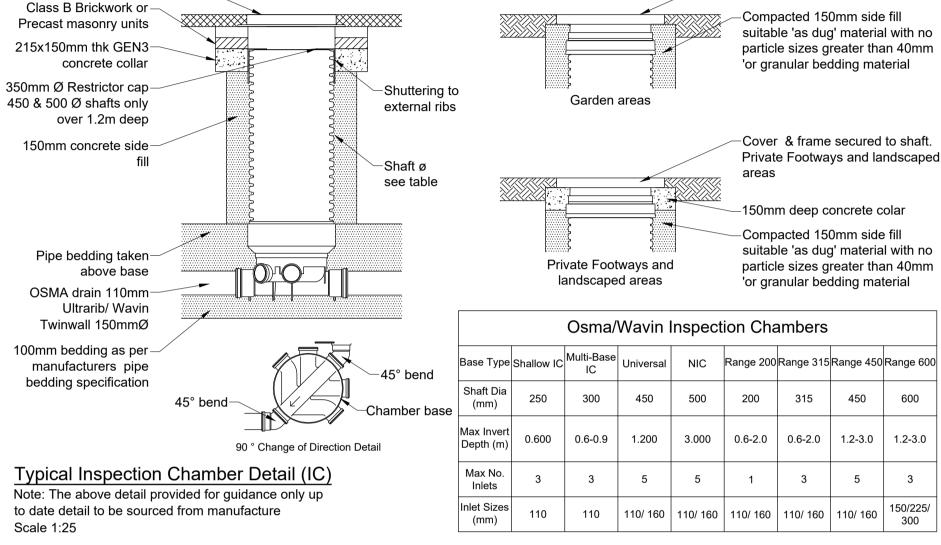

Drawing Title

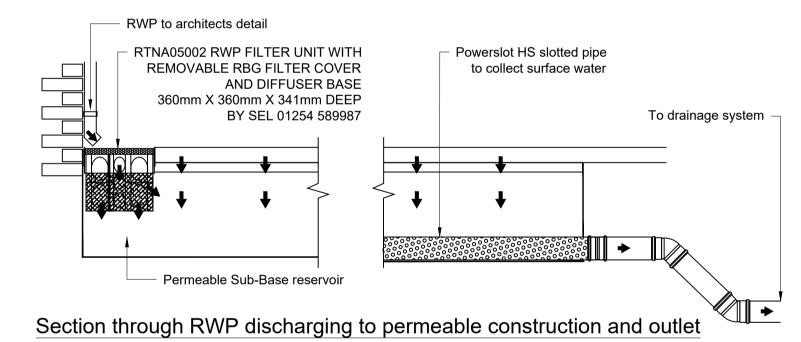
Surface Water Drainage Plan

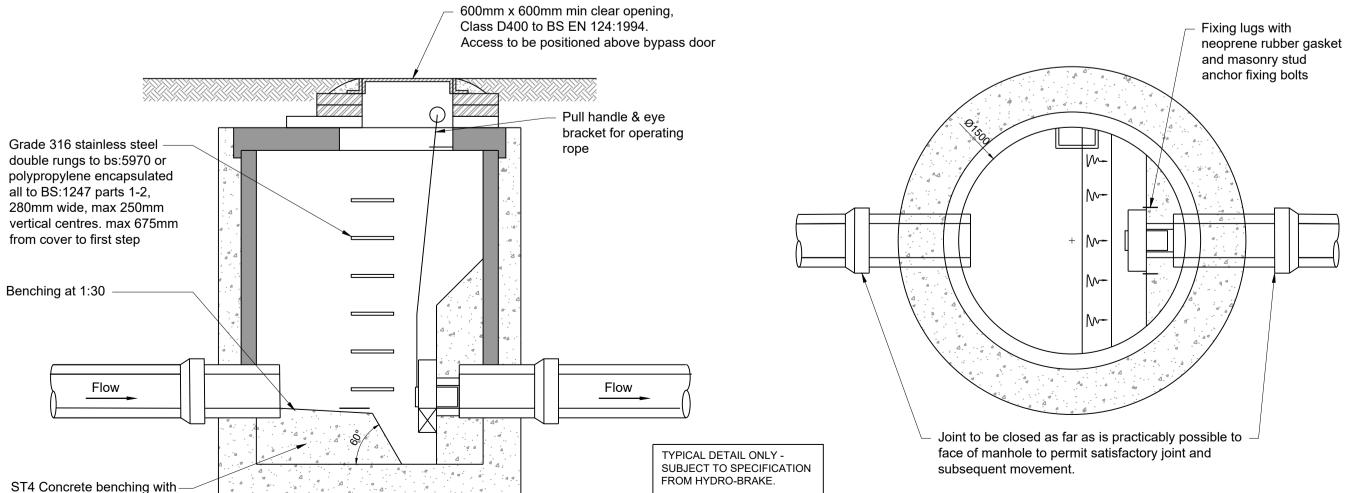
Scale U.N.O. February 2024



TYPICAL BEDDING DETAILS


Note: The above details provided for guidance only, refer to manufacturers technical manual for installation guidance and further details. Scale 1:20



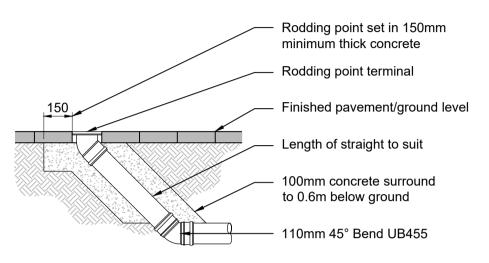

PLAN

Cover & Frame Class—

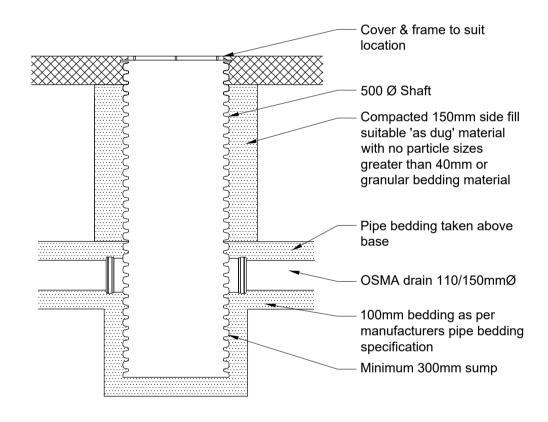
D400 Trafficked areas

Cover & frame secured to shaft.

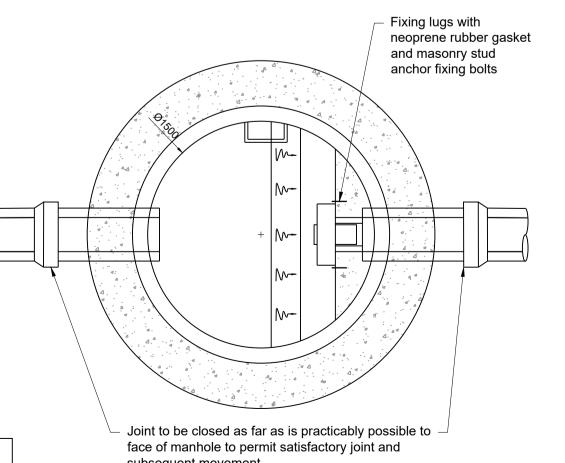
Flow Control Chamber - Typical Section Note: Refer to Typical Manhole Detail for details of manhole construction


SECTION

20mm thick granolithic


concrete topping

Note General:


- 1. All levels relate to Topographical Survey .
- 2. This document has been created in accordance with PDC Engineering Ltd. terms & conditions along with the scope of works provided by the client to PDC Engineering Ltd. Any use of this document other than for its original purpose is prohibited, PDC Engineering Ltd. accepts no liability for any third party use of this document.
- 3. PDC Engineering Ltd. is to be informed immediately of any alterations/deviations identified on-site from the information shown on the engineering drawings
- 4. PDC Engineering Ltd. to be immediately notified of any suspected omissions or discrepancies.
- 5. All proprietary materials to be fixed strictly in accordance with manufacturer's recommendations using materials approved by the manufacturer.
- 6. Inspections by the Local Authority, shall be arranged by the contractor to suit
- their program.
- 7. Until technical approval has been obtained from the relevant authorities it should be understood that all drawings issued are preliminary and not for construction. Should the contractor start site work prior to approval being given, it is entirely at their own risk.

Typical Rodding Eye **Access Point Detail** Scale 1:20

Typical Silt Trap (ST) Arrangement Installed as inspection chamber

PLAN

0 26-02-24 MJH

Rev Date

Willisham Hall Barns Willisham Hall Road, Willisham, Ipswich, IP8 4SL

This drawing and the works depicted

PRELIMINARY

First Issue

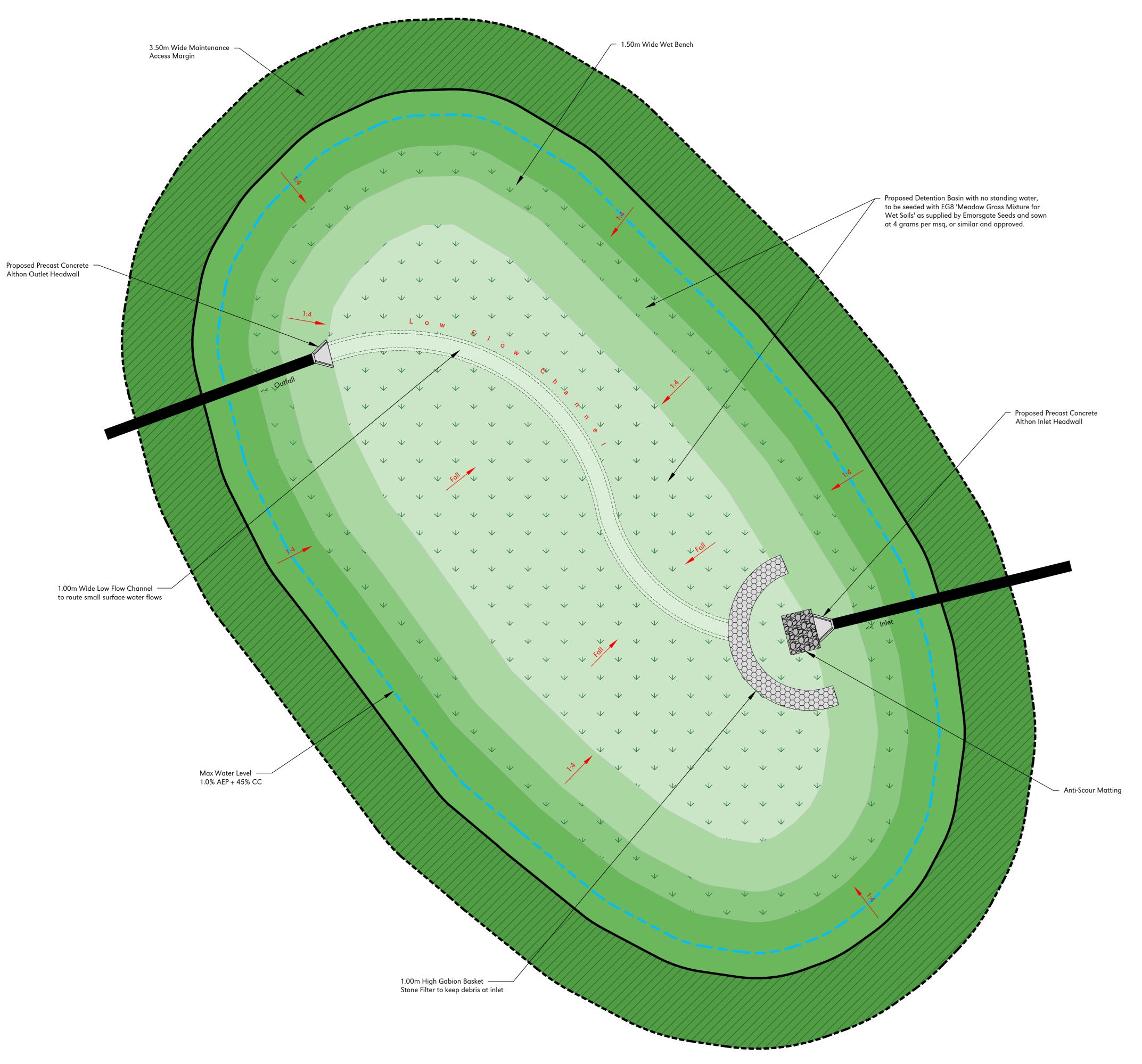
Connaught Road Attleborough Norfolk NR17 2BW

Telephone: (01953) 452001 Fax: (01953) 456955

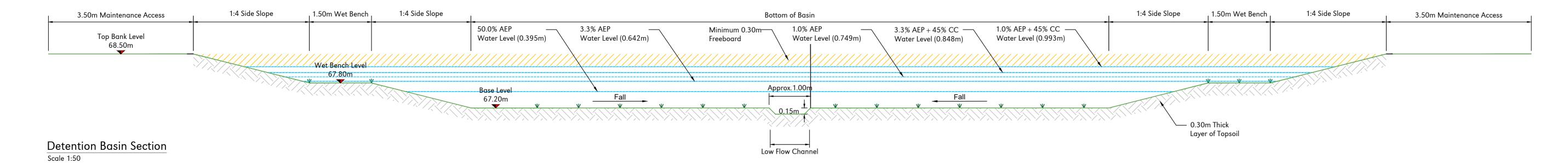
civil / structural / environmental / surveying

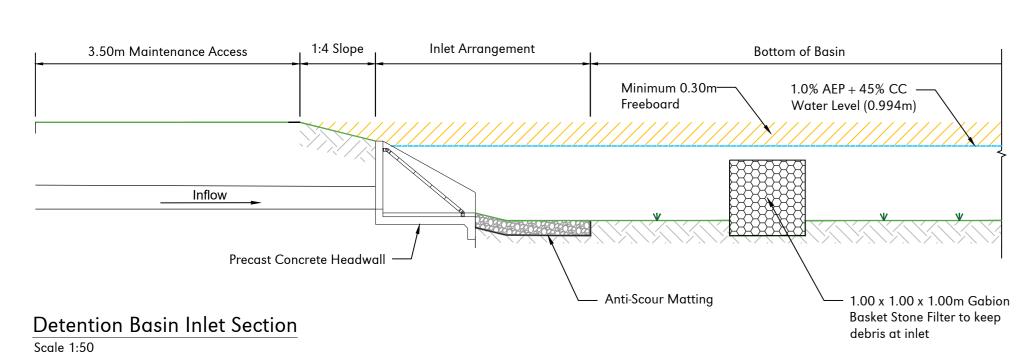
Herin Property Investments LLP

E-mail: pdc@plandescil.co.uk www.plandescil.co.uk


Rev By Chkd Description

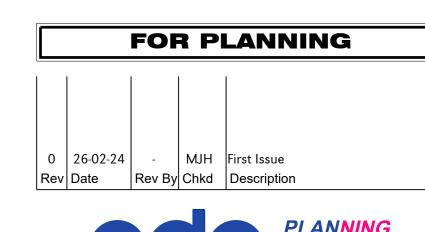
thereon are the copyright of Plandescil
Consulting Engineers Ltd. Unauthorised


Drawing Title


Drainage Details

Scale U.N.O. As Noted (A1	Date February 2024	Drawn By MJH
Drawing No.	29478/010	Rev 0

Detention Basin Schematic Plan Scale 1:100


This drawing and the works depicted thereon are the copyright of Plandescil Consulting Engineers Ltd. Unauthorised reproduction infringes copyright.

Note General:

- 1. This document has been created in accordance with PDC Engineering terms & conditions along with the scope of works provided by the client to PDC Engineering. Any use of this document other than for its original purpose is prohibited, PDC Engineering accepts no liability for any third party use of this
- 2. PDC Engineering is to be informed immediately of any alterations/deviations identified on-site from the information shown
- on the engineering drawings.
 3. PDC Engineering to be immediately notified of any suspected omissions or discrepancies. 4. All proprietary materials to be fixed strictly in accordance with
- manufacturer's recommendations using materials approved by the manufacturer. 5. Inspections by the Local Authority, shall be arranged by the contractor to suit their program.
- 6. Until technical approval has been obtained from the relevant authorities it should be understood that all drawings issued are preliminary and not for construction. Should the contractor start site work prior to approval being given, it is entirely at their own

Note Drainage:

- 1. Unless noted otherwise all pipework shall be constructed from PVC-U to BS EN 1401-1 bedded and backfilled as per the manufacturer's recommendations and the above listed publications.
- 2. All private drainage shall be in accordance with BS EN 752 and relevant sections of Approved Document H of the Building Regulations. The Contractor's attention is drawn to Diagrams 7 and 8 of 'The Building Regulations Approved Document H' showing
- details of drains laid below and near to buildings. 3. Generally, pipes to have granular bed & surround in accordance with manufacturers recommendations, ensuring adequate
- protection with respect to depth and location. 4. All surface water pipes to be 150mm ø, and laid no flatter than 1:100 unless stated otherwise.
- 5. RWP's are shown indicatively only. Refer to architect's drawings for accurate locations.
- 6. Where surface water drains to ground, the existing ground should be broken up prior to laying the subgrade to aid infiltration.
- 7. All covers, gratings and frames to chambers, gullies, channels etc. shall be of the correct load class to suit their location: • Load Class A15 Domestic gardens (not accessible by vehicles.)
- Load Class B125 Pedestrian areas where occasional vehicular access is likely Load class C250 Driveways, public open space, paved areas and landscaping.
- Gratings in pedestrian areas to be designed for pedestrian use (i.e. heel safe). 8. All pre-cast and in-situ concrete and mortars used in the construction of drains and sewers shall be made from sulphate
- resisting cement. 9. All levels and dimensions should be checked on-site by contractors and relevant sub-contractors.
- 10.Existing services & sewers indicated on this and any other related drawings are shown indicatively. All existing public utility services and private apparatus are not necessarily shown on the drawings. The contractor shall liaise with the utility provider to determine precise location of existing services. Existing services should be marked out on-site prior to any excavation works. All utility company guidelines, and health & safety procedures must be
- strictly followed. 11. Prior to commencement of the works all drainage outfall points, whether existing sewer, drain, or watercourse, shall be verified on-site by the Contractor. If the outfall point is found to be higher or significantly lower than shown on the drawings then PDC Engineering shall be notified immediately. Prior to commencement of construction on-site the Contractor shall install all off-site drainage connections, or satisfy themselves that there are no obstructions or other reasons why the drainage connections cannot

Units T6 & T7 Snetterton Business Park Harling Road Snetterton Norfolk NR16 2JU Telephone: (01953) 452001 E-mail: pdc@pdcengineering.co.uk www.pdcengineering.co.uk

PDC Engineering a Plandescil Ltd Company civil • structural • environmental • surveying

Herin Property Investments

Willisham Hall, Willisham Hall Road,

Willisham, IP8 4SL Drawing Title

Detention Basin Plan

and Details Scale U.N.O. Date

As Noted (A1) February 2024

Drawn By

APPENDIX A

CONTENTS

Info Drainage Design Simulations for the Attenuation System

Project: 29478 Attenuation Rev0	Date: 22/02/2024				
Willisham Barns	Designed by:	Checked by:	Approved By:	7	
Willisham	CES	MJH	MJH	PLANNING	
Report Details:	Company Addres	s:	•	DOC DESIGN CIVIL	
Type: Stormwater Controls	PDC Engine	ering		CIVIL	
Storm Phase: Phase	Unit T6 & T7	_			
	Snetterton Bu	ısiness Park			

Detention Basin

Type : Pond

D :		
I)ime	ensions	

Exceedance Level (m)	68.500
Depth (m)	1.300
Base Level (m)	67.200
Freeboard (mm)	300
Initial Depth (m)	0.000
Porosity (%)	100
Average Slope (1:X)	5.684
Total Volume (m³)	652.239

Depth (m)	Area (m²)	Volume (m³)	
0.000	404.00	0.000	
0.600	622.00	305.457	
0.601	776.00	306.155	
1.300	1102.00	959.194	

Inlets

Inlet

Inlet Type	Point Inflow
Incoming Item(s)	1.012
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	Basin
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	1.013
Outlet Type	Free Discharge

Perimeter	Rectangular
Length (m)	52.000
Friction Scheme	Manning's n
n	0.03

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details:	Company Addres			
Type: Stormwater Controls	PDC Engine	ering		
Storm Phase: Phase	Unit T6 & T7	Unit T6 & T7		
	Snetterton Bu	ısiness Park		

Type: Porous Paving

9.049
250
J.250
3.799
80
0.000
30
5.080
00.00
5.146
2.305
5

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Pervious 2
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	Plot B1
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection Outlet Type	2.000 Orifice	
Diameter (m)	0.150)
Coefficient of Discharge	0.600)
Invert Level (m)	68.799)

Conductivity (m/hr)	0.1
---------------------	-----

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details:	Company Addres	s:		
Type: Stormwater Controls	PDC Enginee	ering		
Storm Phase: Phase	Unit T6 & T7			
	Snetterton Bu	ısiness Park		

Type: Porous Paving

Dimensions	
Exceedance Level (m)	69.625
Depth (m)	0.250
Base Level (m)	69.375
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	9.668
Long. Slope (1:X)	500.00
Width (m)	1.888
Total Volume (m³)	1.051

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet (1)

Inlet Type	Lateral Inflow	
Incoming Item(s)	Pervious 1	
Bypass Destination	(None)	
Capacity Type	No Restriction	

Outlets

Outlet

Outgoing Connection	3.000	
Outlet Type	Orifice	
Diameter (m)	0.15	50
Coefficient of Discharge	0.60	00
Invert Level (m)	69.37	75

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerir Unit T6 & T7 Snetterton Busi	J		poc

Type : Porous Paving

Dimensions	
Exceedance Level (m)	68.988
Depth (m)	0.250
Base Level (m)	68.738
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	14.000
Long. Slope (1:X)	500.00
Width (m)	5.000
Total Volume (m³)	3.743

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Pervious 4
Bypass Destination	(None)
Capacity Type	No Restriction
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	Plot D-E5
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	10.000	
Outlet Type	Orifice	
Diameter (m)		0.150
Coefficient of Discharge		0.600
Invert Level (m)		68.738

Conductivity	(m/hr)	0.	1
--------------	--------	----	---

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerin Unit T6 & T7 Snetterton Busii			poc

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.442
Depth (m)	0.250
Base Level (m)	69.192
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	14.000
Long. Slope (1:X)	500.00
Width (m)	5.000
Total Volume (m³)	3.743

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Pervious 5
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	Plot F2
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	11.000	
Outlet Type	Orifice	
Diameter (m)	0.150)
Coefficient of Discharge	0.600)
Invert Level (m)	69.192	2

Conductivity (m/hr)	0.1
---------------------	-----

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	٦ .
Willisham	CES	MJH	MJH	HOCC "
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerin Unit T6 & T7 Snetterton Busir	J		poc

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.235
Depth (m)	0.250
Base Level (m)	68.985
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	28.720
Long. Slope (1:X)	500.00
Width (m)	7.660
Total Volume (m³)	11.556

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
	Road 3
Incoming Item(s)	Road 5
	Road 4
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection Outlet Type	8.000 Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	68.985

Conductivity	(m/hr)	0.	1
--------------	--------	----	---

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerir Unit T6 & T7 Snetterton Busi	J		poc

Type : Porous Paving

69.179
09.179
0.250
68.929
80
1000.0
30
12.500
500.00
5.000
3.342

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Parking 5
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	12.000	
Outlet Type	Orifice	
Diameter (m)		0.150
Coefficient of Discharge		0.600
Invert Level (m)		68.929

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerin Unit T6 & T7 Snetterton Busin	•		bac

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.152
Depth (m)	0.250
Base Level (m)	68.902
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	12.460
Long. Slope (1:X)	500.00
Width (m)	7.500
Total Volume (m³)	4.920
rotal volatilo (iii)	7.020

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Parking 4
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	13.000	
Outlet Type	Orifice	
Diameter (m)		.150
Coefficient of Discharge		0.600
Invert Level (m)	68	3.902

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls	Company Address PDC Enginee			bac
Storm Phase: Phase	Unit T6 & T7	J		
	Snetterton Bu	ısiness Park		

Type : Porous Paving

69.329
0.250
69.079
80
1000.0
30
32.400
500.00
5.000
8.634

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Parking 2
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	6.000	
Outlet Type	Orifice	
Diameter (m)	0.15	0
Coefficient of Discharge	0.60	00
Invert Level (m)	69.07	'9

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns Willisham	Designed by: CES	Checked by:	Approved By: MJH	
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineeri Unit T6 & T7 Snetterton Busi	ng	Imeri	POC "

Type : Porous Pavino	T۱	vne		Porous	Pavino
----------------------	----	-----	--	--------	--------

Dimensions	
Exceedance Level (m)	69.524
Depth (m)	0.250
Base Level (m)	69.274
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	33.000
Long. Slope (1:X)	500.00
Width (m)	5.000
Total Volume (m³)	8.793

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Parking 1
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	5.000
Outlet Type	Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	69.274

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	_
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerin Unit T6 & T7 Snetterton Busir			poc

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.706
Depth (m)	0.250
Base Level (m)	69.456
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	18.500
Long. Slope (1:X)	500.00
Width (m)	6.000
Total Volume (m³)	5.887
Under Drain	
Height Above Base (m)	0.000
Diameter (mm)	150

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Road 1
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	4.000	
Outlet Type	Orifice	
Diameter (m)	0.15	0
Coefficient of Discharge	0.60	0
Invert Level (m)	69.45	6

Conductivity ((m/hr)	0.	.1
----------------	--------	----	----

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details:	Company Addres			
Type: Stormwater Controls	PDC Engine	ering		
Storm Phase: Phase	Unit T6 & T7			
	Snetterton Bu	ısiness Park		

Type: Porous Paving

69.425
0.250
69.175
80
1000.0
30
41.000
500.00
6.100
13.200

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Road 2
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	7.000
Outlet Type	Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	69.175

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Addres PDC Enginee Unit T6 & T7 Snetterton Bu	ering		poc

Type: Porous Paving

Dimensions	
Exceedance Level (m)	69.500
Depth (m)	0.250
Base Level (m)	69.250
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	11.830
Long. Slope (1:X)	500.00
Width (m)	11.830
Total Volume (m³)	7.284

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Driveway 1
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
In a project (town(a)	Plot 1A
Incoming Item(s)	Garage 1
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	17.000
Outlet Type	Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	69.250

Conductivity (m/hr)	0.1
Conductivity (III/III)	0.1

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerir Unit T6 & T7 Snetterton Busi			poc '

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.554
Depth (m)	0.250
Base Level (m)	69.304
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	12.000
Long. Slope (1:X)	500.00
Width (m)	5.000
Total Volume (m³)	3.208
	_

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow	
Incoming Item(s)	Pervious 3	
Bypass Destination	(None)	
Capacity Type	No Restriction	

Outlets

Outlet

Outgoing Connection	15.000	
Outlet Type	Orifice	
Diameter (m)		0.150
Coefficient of Discharge		0.600
Invert Level (m)		69.304

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	_
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerin Unit T6 & T7 Snetterton Busir			poc

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.094
Depth (m)	0.250
Base Level (m)	68.844
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	4.800
Long. Slope (1:X)	500.00
Width (m)	4.800
Total Volume (m³)	1.234
Under Drain	

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	e Lateral Inflow	
Incoming Item(s)	Parking 6	
Bypass Destination	(None)	
Capacity Type	No Restriction	

Outlets

Outlet

Outgoing Connection	19.000	
Outlet Type	Orifice	
Diameter (m)		0.150
Coefficient of Discharge		0.600
Invert Level (m)		68.844

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	OOO PL
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address PDC Enginee Unit T6 & T7 Snetterton Bu	ring		

Type: Porous Paving

Dimensions	
Exceedance Level (m)	68.957
Depth (m)	0.250
Base Level (m)	68.707
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	8.900
Long. Slope (1:X)	500.00
Width (m)	8.900
Total Volume (m³)	4.150

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow	
Incoming Item(s)	Road 8	
Bypass Destination	(None)	
Capacity Type	No Restriction	

Outlets

Outlet

Outgoing Connection	20.000	
Outlet Type	Orifice	
Diameter (m)		0.150
Coefficient of Discharge		0.600
Invert Level (m)		68.707

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details:	Company Addres	s:		
Type: Stormwater Controls	PDC Enginee	ering		
Storm Phase: Phase	Unit T6 & T7			
	Snetterton Bu	ısiness Park		

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.391
Depth (m)	0.250
Base Level (m)	69.141
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	20.000
Long. Slope (1:X)	500.00
Width (m)	6.500
Total Volume (m³)	6.873

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Road 6
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	16.000	
Outlet Type	Orifice	
Diameter (m)		0.150
Coefficient of Discharge		0.600
Invert Level (m)		69.141

Conductivity ((m/hr)	0.	.1
----------------	--------	----	----

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	_
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerin Unit T6 & T7 Snetterton Busir			poc

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.494
Depth (m)	0.250
Base Level (m)	69.244
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	28.125
Long. Slope (1:X)	500.00
Width (m)	4.800
Total Volume (m³)	7.216

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Road 7
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	18.000	
Outlet Type	Orifice	
Diameter (m)	0.1	50
Coefficient of Discharge	0.6	00
Invert Level (m)	69.2	44

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns Willisham	Designed by: CES	Checked by:	Approved By: MJH	
Report Details: Type: Stormwater Controls Storm Phase: Phase	CES Company Addres PDC Enginee Unit T6 & T7 Snetterton Bu	s: ering	IMJH	po

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.420
Depth (m)	0.250
Base Level (m)	69.170
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	22.650
Long. Slope (1:X)	500.00
Width (m)	8.830
Total Volume (m³)	10.473
. ,	

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Driveway 2
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	Garage 3B
	Plot 3B
	Plot 2A
	Garage 2A
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	23.000
Outlet Type	Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	69.170

Conductivity (m/hr)	0.1
Conductivity (m/nr)	0.1

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns Willisham	Designed by: CES	Checked by:	Approved By: MJH	
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineeri Unit T6 & T7 Snetterton Busi	ng	Imeri	POC "

Type : Porous Paving

Dimensions	
Exceedance Level (m)	68.743
Depth (m)	0.250
Base Level (m)	68.493
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	15.830
Long. Slope (1:X)	500.00
Width (m)	6.000
Total Volume (m³)	5.039

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Road 9
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	26.000	
Outlet Type	Orifice	
Diameter (m)	0.1	50
Coefficient of Discharge	0.6	00
Invert Level (m)	68.4	93

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Addres PDC Engines Unit T6 & T7 Snetterton Bi	ering		poc

Type: Porous Paving

Dimensions	
Exceedance Level (m)	68.726
Depth (m)	0.250
Base Level (m)	68.476
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	17.220
Long. Slope (1:X)	500.00
Width (m)	14.520
Total Volume (m³)	12.963
Hadaa Daaba	•

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Itom(a)	Driveway 7
Incoming Item(s)	Driveway 6
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
In a series of Italian (s)	Plot 8-9A
Incoming Item(s)	Plot10-11 A
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	25.000
Outlet Type	Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	68.476

Conductivity (m/hr)	0.1

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Addres PDC Enginee Unit T6 & T7 Snetterton Bi	ering		Pot

Type: Porous Paving

Depth (m) 0.25 Base Level (m) 68.20 Paving Layer Depth (mm) 8 Membrane Percolation (m/hr) 1000. Porosity (%) 3 Length (m) 16.66	Dimensions	
Base Level (m) 68.20 Paving Layer Depth (mm) 8 Membrane Percolation (m/hr) 1000. Porosity (%) 3 Length (m) 16.66	Exceedance Level (m)	68.452
Paving Layer Depth (mm) Membrane Percolation (m/hr) Porosity (%) Length (m) 8 1000. 3 16.66	Depth (m)	0.250
Membrane Percolation (m/hr)1000.Porosity (%)3Length (m)16.66	Base Level (m)	68.202
Porosity (%) 3 Length (m) 16.66	Paving Layer Depth (mm)	80
Length (m) 16.66	Membrane Percolation (m/hr)	1000.0
5 ()	Porosity (%)	30
Long. Slope (1:X) 500.0	Length (m)	16.660
	Long. Slope (1:X)	500.00
Width (m) 8.40	Width (m)	8.400
Total Volume (m³) 7.34	Total Volume (m³)	7.342

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Driveway 5
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
In a consist of the marks	Plot 7B
Incoming Item(s)	Garage 7A
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	29.000
Outlet Type	Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	68.202

Conductivity (m/hr)	0.1
---------------------	-----

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	odc
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerii Unit T6 & T7 Snetterton Busi	J		poc

Type : Porous Paving

68.625 0.250 68.375 80
68.375
90
00
1000.0
30
26.740
500.00
4.600
6.590

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Road 10
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	27.000	
Outlet Type	Orifice	
Diameter (m)	0.	150
Coefficient of Discharge	0.	600
Invert Level (m)	68.	375

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineerin Unit T6 & T7 Snetterton Busii			poc

Type: Porous Paving

Dimensions	
Exceedance Level (m)	68.774
Depth (m)	0.250
Base Level (m)	68.524
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	33.000
Long. Slope (1:X)	500.00
Width (m)	11.000
Total Volume (m³)	18.891

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Driveway 4
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	Plot 6A
	Garage 5B
	Plot 5B
	Garage 6A
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	28.000
Outlet Type	Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	68.524

Conductivity (m/hr)	0.1
Conductivity (III/III)	0.1

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	000
Report Details: Type: Stormwater Controls Storm Phase: Phase	Company Address: PDC Engineering Unit T6 & T7 Snetterton Business Park		poc	

Type: Porous Paving

68.968
0.250
68.718
80
1000.0
30
7.750
500.00
7.750
3.159

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Driveway 3
Bypass Destination	(None)
Capacity Type	No Restriction

Inlet (1)

Inlet Type	Point Inflow
Incoming Item(s)	Garage 4B Plot 4B
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	32.000
Outlet Type	Orifice
Diameter (m)	0.150
Coefficient of Discharge	0.600
Invert Level (m)	68.718

Conductivity (m/hr)	0.1
---------------------	-----

Project: 29478 Attenuation Rev0	Date: 22/02/2024				
Willisham Barns	ů ,	Checked by:	Approved By:	1	
Willisham Report Details:	CES MJH MJH Company Address:			- DOC "	
Type: Stormwater Controls Storm Phase: Phase	PDC Engineering Unit T6 & T7				
	Snetterton Busin	Snetterton Business Park			

PP25

Type : Porous Paving

Dimensions	
Exceedance Level (m)	69.104
Depth (m)	0.250
Base Level (m)	68.854
Paving Layer Depth (mm)	80
Membrane Percolation (m/hr)	1000.0
Porosity (%)	30
Length (m)	12.500
Long. Slope (1:X)	500.00
Width (m)	5.000
Total Volume (m³)	3.342

Under Drain

Height Above Base (m)	0.000
Diameter (mm)	150
No. of Barrels	1
Release Height (m)	0.000
Friction Scheme	Manning's n
n	0.015

Inlets

Inlet

Inlet Type	Lateral Inflow
Incoming Item(s)	Parking 3
Bypass Destination	(None)
Capacity Type	No Restriction

Outlets

Outlet

Outgoing Connection	14.000	
Outlet Type	Orifice	
Diameter (m)		0.150
Coefficient of Discharge		0.600
Invert Level (m)		68.854

Advanced

Conductivity	(m/hr)	0).1	
--------------	--------	---	-----	--

Project:	Date:			
29478 Attenuation Rev0		22/02/2024		
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	
Report Details:	Company Addres	Company Address:		
Type: Inflow Summary	PDC Engine	PDC Engineering		
Storm Phase: Phase	Unit T6 & T7			
Snetterton Business Park				

Inflow Label	Connected To	Flow (L/s)	Runoff Method	Area (ha)	Percentage Impervious	Urban Creep (%)	Adjusted Percentage Impervious	Area Analysed
	10		Wietried		(%)	(70)	(%)	(ha)
Access	6		Time of Concentratio n	0.008	100	0	100	0.008
Basin	Detention Basin		Time of Concentratio n	0.128	100	0	100	0.128
Driveway 1	PP12		Time of Concentratio n	0.014	100	0	100	0.014
Driveway 2	PP18		Time of Concentratio n	0.020	100	0	100	0.020
Driveway 3	PP24		Time of Concentratio n	0.006	100	0	100	0.006
Driveway 4	PP23		Time of Concentratio n	0.033	100	0	100	0.033
Driveway 5	PP21		Time of Concentratio n	0.014	100	0	100	0.014
Driveway 6	PP20		Time of Concentratio n	0.015	100	0	100	0.015
Driveway 7	PP20		Time of Concentratio n	0.010	100	0	100	0.010
Footpath 1	6		Time of Concentratio n	0.010	100	0	100	0.010
Garage 1	PP12		Time of Concentratio n	0.004	100	0	100	0.004
Garage 2A	PP18		Time of Concentratio n	0.002	100	0	100	0.002
Garage 2B	20		Time of Concentratio n	0.002	100	0	100	0.002
Garage 3B	PP18		Time of Concentratio n	0.002	100	0	100	0.002
Garage 3A	22		Time of Concentratio n	0.002	100	0	100	0.002
Garage 4B	PP24		Time of Concentratio n	0.002	100	0	100	0.002
Garage 4A	29		Time of Concentratio n	0.002	100	0	100	0.002
Garage 5B	PP23		Time of Concentratio	0.002	100	0	100	0.002
Garage 5A	33		Time of Concentratio	0.002	100	0	100	0.002
Garage 6B	25		Time of Concentratio	0.002	100	0	100	0.002
Garage 6A	PP23		Time of Concentratio	0.002	100	0	100	0.002

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	PLANNING
Report Details:	Company Address	s:	•	DESIGN
Type: Inflow Summary	PDC Enginee	ering	CIVIL	
Storm Phase: Phase	Unit T6 & T7	-		
	Constitution D.	ioinaga Dark		

Storm Phase	: Pnase		Snette	ton Business F	Park			
Garage 7B	19	Co n	me of oncentratio	0.002	100	0	100	0.002
Garage 7A	PP21		me of oncentratio	0.002	100	0	100	0.002
Parking 1	PP9		me of oncentratio	0.021	100	0	100	0.021
Parking 2	PP8		me of oncentratio	0.024	100	0	100	0.024
Parking 3	PP25		me of oncentratio	0.006	100	0	100	0.006
Parking 4	PP7	Ti	me of oncentratio	0.009	100	0	100	0.009
Parking 5	PP6	Ti	me of oncentratio	0.008	100	0	100	0.008
Parking 6	PP14	Ti	me of oncentratio	0.002	100	0	100	0.002
Pervious 1	PP2	Ti	me of oncentratio	0.002	100	0	100	0.002
Pervious 2	PP1	Ti	me of oncentratio	0.010	100	0	100	0.010
Pervious 3	PP13	Ti	me of oncentratio	0.006	100	0	100	0.006
Pervious 4	PP3	Ti	me of oncentratio	0.007	100	0	100	0.007
Pervious 5	PP4	Ti	me of oncentratio	0.007	100	0	100	0.007
Plot2D	20	Ti	me of oncentratio	0.003	100	0	100	0.003
Plot10-11C	16		me of oncentratio	0.003	100	0	100	0.003
Plot10-11 A	PP20	Ti	me of oncentratio	0.005	100	0	100	0.005
Plot 1D	9		me of oncentratio	0.001	100	0	100	0.001
Plot 1C	10		me of oncentratio	0.005	100	0	100	0.005
Plot 1A	PP12		me of oncentratio	0.004	100	0	100	0.004
Plot 1B	9		me of oncentratio	0.002	100	0	100	0.002
Plot 2A	PP18		me of oncentratio	0.002	100	0	100	0.002
Plot 2B	20		me of oncentratio	0.002	100	0	100	0.002

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	PLANNING
Report Details:	Company Addres	s:	•	DESIGN
Type: Inflow Summary	PDC Enginee	ering	CIVIL	
Storm Phase: Phase	Unit T6 & T7	•		
	Spotterton Ru	icinose Park		

Storm Phase	e: Phase		Snette	ton Business F	Park			
Plot 2C	23	C		0.003	100	0	100	0.003
Plot 3A	22		ime of Concentratio	0.004	100	0	100	0.004
Plot 3B	PP18		ime of Concentratio	0.002	100	0	100	0.002
Plot 3C	23		ime of concentratio	0.004	100	0	100	0.004
Plot 4A	29		ime of concentratio	0.004	100	0	100	0.004
Plot 4B	PP24		ime of Concentratio	0.002	100	0	100	0.002
Plot 4C	30	Т	ime of Concentratio	0.004	100	0	100	0.004
Plot 4D	31	Т	ime of Concentratio	0.003	100	0	100	0.003
Plot 5A	33	Т	ime of Concentratio	0.006	100	0	100	0.006
Plot 5B	PP23	Т	ime of Concentratio	0.002	100	0	100	0.002
Plot 5C	32	Т	ime of Concentratio	0.002	100	0	100	0.002
Plot 5D	34	Т	ime of Concentratio	0.002	100	0	100	0.002
Plot 6A	PP23	Т	ime of Concentratio	0.004	100	0	100	0.004
Plot 6B	25	Т	ime of Concentratio	0.002	100	0	100	0.002
Plot 6D	25	Т	ime of Concentratio	0.002	100	0	100	0.002
Plot 6C	34	Т	ime of Concentratio	0.005	100	0	100	0.005
Plot 7C	28	Т	ime of Concentratio	0.007	100	0	100	0.007
Plot 7B	PP21	Т	ime of Concentratio	0.004	100	0	100	0.004
Plot 7A	25	Т	ime of Concentratio	0.002	100	0	100	0.002
Plot 8-9C	16	Т	ime of Concentratio	0.001	100	0	100	0.001
Plot 8-9B	18	Т	ime of Concentratio	0.005	100	0	100	0.005
Plot 8-9A	PP20	Т	ime of Concentratio	0.005	100	0	100	0.005

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:		
Willisham	CES	MJH	MJH	PLANNING
Report Details:	Company Addres	S:		DESIGN
Type: Inflow Summary	PDC Enginee	ering	CIVIL	
Storm Phase: Phase	Unit T6 & T7	_		
	Snetterton Bu	isiness Park		

		Sr	netterton Business Pa	ark			
Plot 10-11B	16	Time of Concentra	atio 0.002	100	0	100	0.002
Plot A1	6	Time of Concentra n	atio 0.010	100	0	100	0.010
Plot B1	PP1	Time of Concentra n	atio 0.005	100	0	100	0.005
Plot B2	6	Time of Concentra n	atio 0.005	100	0	100	0.005
Plot C1	3	Time of Concentra n	atio 0.002	100	0	100	0.002
Plot C2	2	Time of Concentra	atio 0.003	100	0	100	0.003
Plot C3	5	Time of Concentra	atio 0.002	100	0	100	0.002
Plot C4	2	Time of Concentra	atio 0.003	100	0	100	0.003
Plot D-E1	2	Time of Concentra	atio 0.002	100	0	100	0.002
Plot D-E2	1	Time of Concentra	atio 0.006	100	0	100	0.006
Plot D-E3	4	Time of Concentra	atio 0.005	100	0	100	0.005
Plot D-E4	11	Time of Concentra	atio 0.004	100	0	100	0.004
Plot D-E5	PP3	Time of Concentra	atio 0.004	100	0	100	0.004
Plot F1	11	Time of Concentra	atio 0.006	100	0	100	0.006
Plot F2	PP4	Time of Concentra n	atio 0.006	100	0	100	0.006
Road 1	PP10	Time of Concentra	atio 0.015	100	0	100	0.015
Road 2	PP11	Time of Concentra n	atio 0.025	100	0	100	0.025
Road 3	PP5	Time of Concentra	atio 0.022	100	0	100	0.022
Road 4	PP5	Time of Concentra	atio 0.007	100	0	100	0.007
Road 5	PP5	Time of Concentra	atio 0.008	100	0	100	0.008
Road 6	PP16	Time of Concentra	atio 0.017	100	0	100	0.017
Road 7	PP17	Time of Concentra	atio 0.018	100	0	100	0.018

Project: 29478 Attenuation Rev0	Date: 22/02/2024					
Willisham Barns	Designed by:	Checked by:	Approved By:			
Willisham	CES	MJH	MJH	PLANNING		
Report Details:	Company Address			OOC DESIGN CIVIL		
Type: Inflow Summary	PDC Enginee	ring		CIVIL		
Storm Phase: Phase	Unit T6 & T7					
	Snetterton Bu	siness Park				
	F					

Road 8	PP15		Time of Concentratio n	0.009	100	0	100	0.009
Road 9	PP19		Time of Concentratio n	0.012	100	0	100	0.012
Road 10	PP22		Time of Concentratio n	0.021	100	0	100	0.021
TOTAL		0.0		0.709				0.709

Project:	Date:					
29478 Attenuation Rev0	22/02/2024					
Willisham Barns	Designed by:	Designed by: Checked by: Approved By:				
Willisham	CES	MJH	MJH	000	PLANNING	
Report Title:	Company Addres	s:	•		DESIGI CIVI	
	PDC Enginee	ering			CIVI	
Rainfall Analysis Criteria	Unit T6 & T7	Unit T6 & T7				
•	Snetterton Bu					

Runoff Type	Dynamic
Output Interval (mins)	5
Time Step	Reduced
Urban Creep	Apply Global Value
Urban Creep Global Value (%)	0
Junction Flood Risk Margin (mm)	300
Perform No Discharge Analysis	

Rainfall

FEH		
Site Location	GB 606966 250623 TM 06966 50623	
Rainfall Version	2022	
Summer	✓	
Winter	✓	

Return Period

Г	Return Period (years)	Increase Rainfall (%)
	100.0	45.000
	100.0	0.000
	30.0	45.000
	30.0	0.000
	2.0	0.000

Storm Durations

Duration (mins)	Run Time (mins)
15	30
30	60
60	120
120	240
180	360
240	480
360	720
480	960
600	1200
720	1440
960	1920
1440	2880
2160	4320
2880	5760
4320	8640
5760	11520
7200	14400
8640	17280
10080	20160

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:		
Willisham	CES	MJH	MJH	PLANNING
Report Details:	Company Address	S:		OCC PLANNING DESIGN CIVIL
Type: Junctions Summary	PDC Enginee	ring	CIVIL	
Storm Phase: Phase	Unit T6 & T7	_		
	Snetterton Bu	siness Park		

FEH: 100 years: Increase Rainfall (%): +45: Critical Storm Per Item: Rank By: Max. Flooded Volume

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
3	FEH: 100 years: +45 %: 15 mins: Summer	69.36 4	68.71 4	68.744	0.030	2.4	0.006	0.000	2.4	3.070	ОК
2	FEH: 100 years: +45 %: 15 mins: Summer	69.20 2	68.34 4	68.443	0.100	13.2	0.020	0.000	12.2	7.805	ок
1	FEH: 100 years: +45 %: 15 mins: Summer	69.20 3	68.50 3	68.561	0.058	4.8	0.011	0.000	4.6	2.072	ОК
6	FEH: 100 years: +45 %: 15 mins: Summer	69.68 4	69.03 4	69.177	0.143	31.1	0.028	0.000	28.9	16.381	ОК
5	FEH: 100 years: +45 %: 15 mins: Summer	69.28 3	68.04 0	68.241	0.201	53.5	0.227	0.000	51.8	38.162	ОК
4	FEH: 100 years: +45 %: 15 mins: Summer	69.22 7	68.15 7	68.274	0.118	16.2	0.133	0.000	15.5	9.406	ОК
7	FEH: 100 years: +45 %: 15 mins: Summer	69.44 7	67.99 0	68.156	0.166	59.7	0.187	0.000	58.0	52.335	ОК
8	FEH: 100 years: +45 %: 15 mins: Summer	69.16 4	67.82 5	68.078	0.253	82.7	0.286	0.000	80.8	72.507	ОК
10	FEH: 100 years: +45 %: 15 mins: Summer	69.30 3	68.70 3	68.734	0.031	6.3	0.006	0.000	6.3	2.765	ОК
9	FEH: 100 years: +45 %: 15 mins: Summer	69.42 3	68.82 3	68.862	0.039	2.4	0.008	0.000	2.3	1.036	ОК
12	FEH: 100 years: +45 %: 15 mins: Summer	69.14 2	68.05 0	68.269	0.219	15.5	0.043	0.000	14.5	10.945	Surcharge d
11	FEH: 100 years: +45 %: 15 mins: Summer	69.28 8	68.63 8	68.697	0.059	11.4	0.011	0.000	11.2	6.882	ОК
13	FEH: 100 years: +45 %: 15 mins: Summer	69.08 4	67.78 0	68.023	0.243	107.9	0.274	0.000	109.9	93.111	ОК
15	FEH: 100 years: +45 %: 15 mins: Summer	68.94 2	67.63 6	67.965	0.329	111.1	0.372	0.000	113.9	94.646	ОК
16	FEH: 100 years: +45 %: 15 mins: Summer	68.89 5	68.29 5	68.342	0.048	4.8	0.009	0.000	4.7	2.072	ОК
14	FEH: 100 years: +45 %: 15 mins: Summer	69.43 2	68.78 2	68.858	0.076	16.4	0.015	0.000	16.5	12.608	ОК
17	FEH: 100 years: +45 %: 15 mins: Summer	68.68 9	67.57 4	67.924	0.350	140.4	0.396	0.000	143.4	121.077	ОК
20	FEH: 100 years: +45 %: 15 mins: Summer	69.50 0	68.85 0	68.912	0.062	9.0	0.012	0.000	9.0	9.062	ОК
21	FEH: 100 years: +45 %: 15 mins: Summer	69.27 3	68.56 5	68.624	0.059	17.9	0.012	0.000	17.5	13.508	ОК

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	PLANNING
Report Details:	Company Addres	s:	DOC DESIGN CIVIL	
Type: Junctions Summary	PDC Engine	ering	CIVIL	
Storm Phase: Phase	Unit T6 & T7	•		
	Snetterton Bu	ısiness Park		

				Snette	erton Bus	siness Pa					
23	FEH: 100 years: +45 %: 15 mins: Summer	69.42 3	68.71 8	68.814	0.097	10.2	0.019	0.000	9.9	4.498	ОК
22	FEH: 100 years: +45 %: 15 mins: Summer	69.46 5	68.86 5	68.934	0.068	4.8	0.013	0.000	4.6	2.073	ОК
19	FEH: 100 years: +45 %: 15 mins: Summer	68.68 2	67.94 8	68.014	0.066	5.5	0.013	0.000	5.2	2.391	ОК
18	FEH: 100 years: +45 %: 15 mins: Summer	68.67 9	68.02 9	68.083	0.055	4.0	0.011	0.000	3.9	1.728	ОК
24	FEH: 100 years: +45 %: 15 mins: Summer	68.62 9	67.53 2	67.871	0.339	151.1	0.384	0.000	152.9	126.765	ОК
25	FEH: 100 years: +45 %: 15 mins: Summer	68.65 0	67.49 0	67.806	0.316	167.2	0.357	0.000	169.1	141.167	ОК
26	FEH: 100 years: +45 %: 15 mins: Summer	68.73 8	68.08 8	68.125	0.037	6.8	0.007	0.000	6.8	6.927	ОК
27	FEH: 100 years: +45 %: 15 mins: Summer	68.70 7	67.38 7	67.696	0.309	182.4	0.350	0.000	183.8	155.552	ОК
35	FEH: 100 years: +45 %: 15 mins: Summer	68.55 6	67.36 0	67.617	0.257	183.8	0.291	0.000	184.2	154.426	ОК
28	FEH: 100 years: +45 %: 15 mins: Summer	68.46 4	67.81 4	67.857	0.043	5.6	0.008	0.000	5.5	2.417	ОК
34	FEH: 100 years: +45 %: 15 mins: Summer	68.82 8	67.96 4	68.041	0.077	26.0	0.087	0.000	25.4	13.487	ОК
32	FEH: 100 years: +45 %: 15 mins: Summer	68.78 2	68.03 2	68.156	0.124	21.4	0.141	0.000	20.4	11.085	ОК
31	FEH: 100 years: +45 %: 15 mins: Summer	68.79 9	68.14 9	68.213	0.064	10.1	0.013	0.000	9.9	4.491	ОК
30	FEH: 100 years: +45 %: 15 mins: Summer	69.00 5	68.25 3	68.334	0.081	7.8	0.016	0.000	7.7	3.456	ОК
33	FEH: 100 years: +45 %: 15 mins: Summer	68.95 3	68.30 3	68.368	0.065	10.0	0.013	0.000	9.9	5.943	ОК
29	FEH: 100 years: +45 %: 15 mins: Summer	69.01 9	68.41 9	68.487	0.068	4.8	0.013	0.000	4.6	2.073	ОК
36	FEH: 100 years: +45 %: 15 mins: Summer	68.32 4	67.16 0	67.615	0.454	7.4	0.514	0.000	0.9	1.063	Surcharge d
37	FEH: 100 years: +45 %: 15 mins: Summer	68.06 3	66.98 9	67.015	0.025	0.9	0.000	0.000	0.9	0.968	ОК

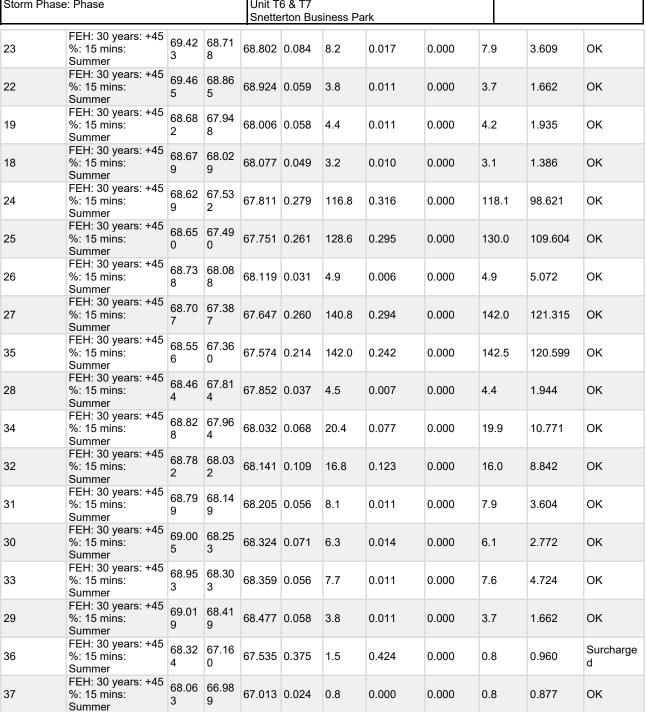
Project:	Date: 22/02/2024			
29478 Attenuation Rev0				
Willisham Barns	Designed by:	Checked by:	_	
Willisham	CES	MJH	PLANNING	
Report Details:	Company Address	:		
Type: Junctions Summary	PDC Enginee	ring		CIVIL
Storm Phase: Phase	Unit T6 & T7			
	Snetterton Bu	siness Park		

FEH: 100 years: Increase Rainfall (%): +0: Critical Storm Per Item: Rank By: Max. Flooded Volume

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
3	FEH: 100 years: +0 %: 15 mins: Summer	69.36 4	68.71 4	68.736	0.023	1.5	0.004	0.000	1.4	1.674	ОК
2	FEH: 100 years: +0 %: 15 mins: Summer	69.20 2	68.34 4	68.421	0.077	9.0	0.015	0.000	8.3	4.936	ок
1	FEH: 100 years: +0 %: 15 mins: Summer	69.20 3	68.50 3	68.551	0.048	3.3	0.009	0.000	3.2	1.429	ок
6	FEH: 100 years: +0 %: 15 mins: Summer	69.68 4	69.03 4	69.125	0.091	20.9	0.018	0.000	20.4	11.130	ОК
5	FEH: 100 years: +0 %: 15 mins: Summer	69.28 3	68.04 0	68.194	0.153	36.3	0.173	0.000	34.3	25.107	ОК
4	FEH: 100 years: +0 %: 15 mins: Summer	69.22 7	68.15 7	68.247	0.090	11.1	0.102	0.000	10.6	6.015	ОК
7	FEH: 100 years: +0 %: 15 mins: Summer	69.44 7	67.99 0	68.115	0.125	38.7	0.141	0.000	37.2	34.064	ОК
8	FEH: 100 years: +0 %: 15 mins: Summer	69.16 4	67.82 5	68.008	0.183	53.7	0.207	0.000	52.2	47.499	ОК
10	FEH: 100 years: +0 %: 15 mins: Summer	69.30 3	68.70 3	68.728	0.025	4.3	0.005	0.000	4.3	1.898	ОК
9	FEH: 100 years: +0 %: 15 mins: Summer	69.42 3	68.82 3	68.855	0.032	1.6	0.006	0.000	1.6	0.709	ОК
12	FEH: 100 years: +0 %: 15 mins: Summer	69.14 2	68.05 0	68.131	0.081	9.3	0.016	0.000	9.1	7.369	ОК
11	FEH: 100 years: +0 %: 15 mins: Summer	69.28 8	68.63 8	68.684	0.046	7.2	0.009	0.000	7.1	4.659	ОК
13	FEH: 100 years: +0 %: 15 mins: Summer	69.08 4	67.78 0	67.953	0.173	69.7	0.196	0.000	70.9	60.831	ОК
15	FEH: 100 years: +0 %: 15 mins: Summer	68.94 2	67.63 6	67.866	0.230	71.7	0.260	0.000	73.4	61.820	ОК
16	FEH: 100 years: +0 %: 15 mins: Summer	68.89 5	68.29 5	68.333	0.038	3.3	0.007	0.000	3.2	1.424	ОК
14	FEH: 100 years: +0 %: 15 mins: Summer	69.43 2	68.78 2	68.840	0.058	10.5	0.011	0.000	10.5	8.156	ОК
17	FEH: 100 years: +0 %: 15 mins: Summer	68.68 9	67.57 4	67.824	0.250	89.7	0.283	0.000	91.5	78.863	ОК
20	FEH: 100 years: +0 %: 15 mins: Summer	69.50 0	68.85 0	68.896	0.046	5.2	0.009	0.000	5.3	5.812	ок
21	FEH: 100 years: +0 %: 15 mins: Summer	69.27 3	68.56 5	68.611	0.046	11.9	0.009	0.000	11.7	8.868	ОК

Project:	Date:					
29478 Attenuation Rev0	22/02/2024					
Willisham Barns	Designed by:	Checked by:	Approved By:			
Willisham	CES	MJH	000	PLANNING		
Report Details:	Company Addres	s:		DESIGN CIVIL		
Type: Junctions Summary	PDC Engine	PDC Engineering				
Storm Phase: Phase	Unit T6 & T7					
	Cnatterton D	ioinaga Dark				

				Snette	rton Bu	siness Pa	ark				
23	FEH: 100 years: +0 %: 15 mins: Summer	69.42 3	68.71 8	68.795	0.077	7.0	0.015	0.000	6.8	3.096	ОК
22	FEH: 100 years: +0 %: 15 mins: Summer	69.46 5	68.86 5	68.918	0.053	3.3	0.010	0.000	3.2	1.426	ОК
19	FEH: 100 years: +0 %: 15 mins: Summer	68.68 2	67.94 8	68.001	0.053	3.8	0.010	0.000	3.5	1.659	ОК
18	FEH: 100 years: +0 %: 15 mins: Summer	68.67 9	68.02 9	68.073	0.045	2.7	0.009	0.000	2.7	1.188	ОК
24	FEH: 100 years: +0 %: 15 mins: Summer	68.62 9	67.53 2	67.777	0.245	96.6	0.277	0.000	97.7	82.567	ОК
25	FEH: 100 years: +0 %: 15 mins: Summer	68.65 0	67.49 0	67.720	0.230	106.1	0.260	0.000	107.4	91.498	ОК
26	FEH: 100 years: +0 %: 15 mins: Summer	68.73 8	68.08 8	68.115	0.027	3.8	0.005	0.000	3.8	4.011	ОК
27	FEH: 100 years: +0 %: 15 mins: Summer	68.70 7	67.38 7	67.619	0.232	116.7	0.262	0.000	117.9	101.622	ОК
35	FEH: 100 years: +0 %: 15 mins: Summer	68.55 6	67.36 0	67.550	0.190	117.9	0.214	0.000	118.5	101.128	ОК
28	FEH: 100 years: +0 %: 15 mins: Summer	68.46 4	67.81 4	67.849	0.034	3.9	0.007	0.000	3.8	1.671	ОК
34	FEH: 100 years: +0 %: 15 mins: Summer	68.82 8	67.96 4	68.026	0.062	17.3	0.070	0.000	16.8	9.213	ОК
32	FEH: 100 years: +0 %: 15 mins: Summer	68.78 2	68.03 2	68.131	0.099	14.2	0.112	0.000	13.4	7.558	ОК
31	FEH: 100 years: +0 %: 15 mins: Summer	68.79 9	68.14 9	68.199	0.050	6.9	0.010	0.000	6.7	3.091	ОК
30	FEH: 100 years: +0 %: 15 mins: Summer	69.00 5	68.25 3	68.319	0.065	5.4	0.013	0.000	5.3	2.376	ОК
33	FEH: 100 years: +0 %: 15 mins: Summer	68.95 3	68.30 3	68.354	0.051	6.5	0.010	0.000	6.3	4.029	ОК
29	FEH: 100 years: +0 %: 15 mins: Summer	69.01 9	68.41 9	68.472	0.053	3.3	0.010	0.000	3.2	1.426	ОК
36	FEH: 100 years: +0 %: 15 mins: Summer	68.32 4	67.16 0	67.488	0.327	1.2	0.370	0.000	0.8	0.893	Surcharge d
37	FEH: 100 years: +0 %: 15 mins: Summer	68.06 3	66.98 9	67.013	0.023	0.8	0.000	0.000	0.8	0.825	ОК


Project:	Date: 22/02/2024			
29478 Attenuation Rev0				
Willisham Barns	Designed by:	Checked by:	_	
Willisham	CES	MJH	PLANNING	
Report Details:	Company Address	:		
Type: Junctions Summary	PDC Enginee	ring		CIVIL
Storm Phase: Phase	Unit T6 & T7			
	Snetterton Bu	siness Park		

FEH: 30 years: Increase Rainfall (%): +45: Critical Storm Per Item: Rank By: Max. Flooded Volume

Junction	Storm Event	Cover Level (m)		Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
3	FEH: 30 years: +45 %: 15 mins: Summer	69.36 4	68.71 4	68.739	0.025	1.8	0.005	0.000	1.7	2.166	ОК
2	FEH: 30 years: +45 %: 15 mins: Summer	69.20 2	68.34 4	68.429	0.085	10.5	0.017	0.000	9.7	5.962	OK
1	FEH: 30 years: +45 %: 15 mins: Summer	69.20 3	68.50 3	68.555	0.051	3.8	0.010	0.000	3.7	1.664	ок
6	FEH: 30 years: +45 %: 15 mins: Summer	69.68 4	69.03 4	69.136	0.102	24.6	0.020	0.000	24.0	13.041	OK
5	FEH: 30 years: +45 %: 15 mins: Summer	69.28 3	68.04 0	68.211	0.171	43.1	0.193	0.000	41.0	29.834	OK
4	FEH: 30 years: +45 %: 15 mins: Summer	69.22 7	68.15 7	68.257	0.100	12.9	0.113	0.000	12.4	7.229	OK
7	FEH: 30 years: +45 %: 15 mins: Summer	69.44 7	67.99 0	68.130	0.140	46.6	0.158	0.000	44.9	40.687	OK
8	FEH: 30 years: +45 %: 15 mins: Summer	69.16 4	67.82 5	68.033	0.208	65.2	0.235	0.000	63.2	56.572	ОК
10	FEH: 30 years: +45 %: 15 mins: Summer	69.30 3	68.70 3	68.730	0.027	5.1	0.005	0.000	5.0	2.213	ОК
9	FEH: 30 years: +45 %: 15 mins: Summer	69.42 3	68.82 3	68.858	0.035	1.9	0.007	0.000	1.9	0.826	ОК
12	FEH: 30 years: +45 %: 15 mins: Summer	69.14 2	68.05 0	68.158	0.108	11.5	0.021	0.000	11.8	8.676	ОК
11	FEH: 30 years: +45 %: 15 mins: Summer	69.28 8	68.63 8	68.689	0.051	8.7	0.010	0.000	8.5	5.473	ОК
13	FEH: 30 years: +45 %: 15 mins: Summer	69.08 4	67.78 0	67.977	0.197	84.2	0.223	0.000	85.6	72.540	ОК
15	FEH: 30 years: +45 %: 15 mins: Summer	68.94 2	67.63 6	67.901	0.265	86.5	0.300	0.000	88.5	73.723	ОК
16	FEH: 30 years: +45 %: 15 mins: Summer	68.89 5	68.29 5	68.336	0.042	3.8	0.008	0.000	3.8	1.658	ОК
14	FEH: 30 years: +45 %: 15 mins: Summer	69.43 2	68.78 2	68.847	0.065	12.7	0.013	0.000	12.8	9.773	OK
17	FEH: 30 years: +45 %: 15 mins: Summer	68.68 9	67.57 4	67.860	0.286	108.6	0.324	0.000	110.6	94.183	ОК
20	FEH: 30 years: +45 %: 15 mins: Summer	69.50 0	68.85 0	68.902	0.052	6.6	0.010	0.000	6.7	6.990	ок
21	FEH: 30 years: +45 %: 15 mins: Summer	69.27 3	68.56 5	68.616	0.051	14.1	0.010	0.000	13.7	10.554	OK

Project:	Date:				
29478 Attenuation Rev0	22/02/2024				
Willisham Barns	Designed by:	Checked by:	Approved By:		
Willisham	CES	MJH	MJH	000	PLANNING
Report Details:	Company Addres	S:			DESIGN CIVIL
Type: Junctions Summary	PDC Engine	ering			CIVIL
Storm Phase: Phase	Unit T6 & T7	_			
	0 " 1 "				

Project:	Date: 22/02/2024			
29478 Attenuation Rev0				
Willisham Barns	Designed by:	Checked by:	_	
Willisham	CES	MJH	PLANNING	
Report Details:	Company Address	:		
Type: Junctions Summary	PDC Enginee	ring		CIVIL
Storm Phase: Phase	Unit T6 & T7			
	Snetterton Bu	siness Park		

FEH: 30 years: Increase Rainfall (%): +0: Critical Storm Per Item: Rank By: Max. Flooded Volume

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
3	FEH: 30 years: +0 %: 15 mins: Summer	69.36 4	68.71 4	68.734	0.020	1.2	0.004	0.000	1.1	1.137	ОК
2	FEH: 30 years: +0 %: 15 mins: Summer	69.20 2	68.34 4	68.411	0.067	7.2	0.013	0.000	6.6	3.757	ОК
1	FEH: 30 years: +0 %: 15 mins: Summer	69.20 3	68.50 3	68.545	0.042	2.6	0.008	0.000	2.5	1.147	ОК
6	FEH: 30 years: +0 %: 15 mins: Summer	69.68 4	69.03 4	69.113	0.079	16.5	0.015	0.000	16.1	8.841	ОК
5	FEH: 30 years: +0 %: 15 mins: Summer	69.28 3	68.04 0	68.173	0.132	28.3	0.150	0.000	26.8	19.517	ОК
4	FEH: 30 years: +0 %: 15 mins: Summer	69.22 7	68.15 7	68.235	0.078	8.8	0.088	0.000	8.4	4.637	ОК
7	FEH: 30 years: +0 %: 15 mins: Summer	69.44 7	67.99 0	68.095	0.105	30.0	0.119	0.000	28.8	26.217	ОК
8	FEH: 30 years: +0 %: 15 mins: Summer	69.16 4	67.82 5	67.979	0.154	41.1	0.174	0.000	40.1	36.730	ОК
10	FEH: 30 years: +0 %: 15 mins: Summer	69.30 3	68.70 3	68.725	0.022	3.5	0.004	0.000	3.4	1.530	ОК
9	FEH: 30 years: +0 %: 15 mins: Summer	69.42 3	68.82 3	68.851	0.028	1.3	0.006	0.000	1.3	0.574	ок
12	FEH: 30 years: +0 %: 15 mins: Summer	69.14 2	68.05 0	68.120	0.070	6.9	0.014	0.000	7.2	5.800	ОК
11	FEH: 30 years: +0 %: 15 mins: Summer	69.28 8	68.63 8	68.678	0.040	5.5	0.008	0.000	5.4	3.684	ок
13	FEH: 30 years: +0 %: 15 mins: Summer	69.08 4	67.78 0	67.925	0.145	53.1	0.165	0.000	54.1	46.921	ок
15	FEH: 30 years: +0 %: 15 mins: Summer	68.94 2	67.63 6	67.827	0.191	54.8	0.216	0.000	55.9	47.684	OK
16	FEH: 30 years: +0 %: 15 mins: Summer	68.89 5	68.29 5	68.328	0.033	2.6	0.007	0.000	2.6	1.146	ОК
14	FEH: 30 years: +0 %: 15 mins: Summer	69.43 2	68.78 2	68.831	0.049	7.8	0.010	0.000	7.8	6.231	ОК
17	FEH: 30 years: +0 %: 15 mins: Summer	68.68 9	67.57 4	67.782	0.208	67.8	0.235	0.000	69.1	60.694	ОК
20	FEH: 30 years: +0 %: 15 mins: Summer	69.50 0	68.85 0	68.889	0.039	4.1	0.008	0.000	4.0	4.420	ОК
21	FEH: 30 years: +0 %: 15 mins: Summer	69.27 3	68.56 5	68.606	0.041	9.4	0.008	0.000	9.2	6.870	ОК

Project: 29478 Attenuation Rev0	Date: 22/02/2024						
Willisham Barns	Designed by:	Checked by:	Approved By:				
Willisham	CES	MJH	MJH	PLANNING			
Report Details:	Company Addres	SS:	•	OOC DESIGN CIVIL			
Type: Junctions Summary	PDC Engine	ering	CIVIL				
Storm Phase: Phase	Unit T6 & T7	•					
	Spottern Rusiness Park						

				Snette	erton Bus	siness Pa	ark				
23	FEH: 30 years: +0 %: 15 mins: Summer	69.42 3	68.71 8	68.786	0.068	5.7	0.013	0.000	5.5	2.483	ок
22	FEH: 30 years: +0 %: 15 mins: Summer	69.46 5	68.86 5	68.912	0.047	2.6	0.009	0.000	2.6	1.147	ОК
19	FEH: 30 years: +0 %: 15 mins: Summer	68.68 2	67.94 8	67.995	0.047	3.0	0.009	0.000	2.8	1.335	ОК
18	FEH: 30 years: +0 %: 15 mins: Summer	68.67 9	68.02 9	68.068	0.040	2.2	0.008	0.000	2.1	0.954	ОК
24	FEH: 30 years: +0 %: 15 mins: Summer	68.62 9	67.53 2	67.736	0.204	73.1	0.231	0.000	73.9	63.529	ОК
25	FEH: 30 years: +0 %: 15 mins: Summer	68.65 0	67.49 0	67.683	0.193	79.9	0.218	0.000	80.9	70.100	ОК
26	FEH: 30 years: +0 %: 15 mins: Summer	68.73 8	68.08 8	68.111	0.023	2.6	0.004	0.000	2.6	2.787	ОК
27	FEH: 30 years: +0 %: 15 mins: Summer	68.70 7	67.38 7	67.584	0.197	88.5	0.222	0.000	89.5	78.281	ОК
35	FEH: 30 years: +0 %: 15 mins: Summer	68.55 6	67.36 0	67.521	0.161	89.5	0.182	0.000	90.0	78.037	ОК
28	FEH: 30 years: +0 %: 15 mins: Summer	68.46 4	67.81 4	67.845	0.031	3.1	0.006	0.000	3.0	1.341	ОК
34	FEH: 30 years: +0 %: 15 mins: Summer	68.82 8	67.96 4	68.019	0.055	13.6	0.062	0.000	13.2	7.365	ОК
32	FEH: 30 years: +0 %: 15 mins: Summer	68.78 2	68.03 2	68.119	0.087	11.1	0.099	0.000	10.5	6.033	ОК
31	FEH: 30 years: +0 %: 15 mins: Summer	68.79 9	68.14 9	68.191	0.042	5.5	0.008	0.000	5.4	2.479	ОК
30	FEH: 30 years: +0 %: 15 mins: Summer	69.00 5	68.25 3	68.311	0.058	4.3	0.011	0.000	4.2	1.908	ОК
33	FEH: 30 years: +0 %: 15 mins: Summer	68.95 3	68.30 3	68.347	0.044	5.0	0.009	0.000	4.8	3.204	ОК
29	FEH: 30 years: +0 %: 15 mins: Summer	69.01 9	68.41 9	68.465	0.046	2.6	0.009	0.000	2.6	1.147	ОК
36	FEH: 30 years: +0 %: 15 mins: Summer	68.32 4	67.16 0	67.429	0.268	1.4	0.304	0.000	0.9	0.815	Surcharge d
37	FEH: 30 years: +0 %: 15 mins: Summer	68.06 3	66.98 9	67.015	0.025	0.9	0.000	0.000	0.9	0.775	ОК

Project:	Date:			
29478 Attenuation Rev0	22/02/2024			
Willisham Barns	Designed by:	Checked by:	_	
Willisham	CES	MJH	PLANNING	
Report Details:	Company Address	3:		DOC DESIGN CIVIL
Type: Junctions Summary	PDC Enginee	ring	CIVIL	
Storm Phase: Phase	Unit T6 & T7			
	Snetterton Bu	siness Park		

FEH: 2 years: Increase Rainfall (%): +0: Critical Storm Per Item: Rank By: Max. Flooded Volume

Junction	Storm Event	Cover Level (m)	Invert Level (m)	Max. Level (m)	Max. Depth (m)	Max. Inflow (L/s)	Max. Resident Volume (m³)	Max. Flooded Volume (m³)	Max. Outflow (L/s)	Total Discharge Volume (m³)	Status
3	FEH: 2 years: +0 %: 15 mins: Summer	69.36 4	68.71 4	68.727	0.013	0.5	0.003	0.000	0.5	0.332	ОК
2	FEH: 2 years: +0 %: 15 mins: Summer	69.20 2	68.34 4	68.386	0.042	3.2	0.008	0.000	2.9	1.513	ок
1	FEH: 2 years: +0 %: 15 mins: Summer	69.20 3	68.50 3	68.531	0.028	1.2	0.006	0.000	1.1	0.511	ок
6	FEH: 2 years: +0 %: 15 mins: Summer	69.68 4	69.03 4	69.083	0.049	7.1	0.010	0.000	6.9	3.734	ОК
5	FEH: 2 years: +0 %: 15 mins: Summer	69.28 3	68.04 0	68.122	0.082	11.8	0.093	0.000	11.0	7.613	ОК
4	FEH: 2 years: +0 %: 15 mins: Summer	69.22 7	68.15 7	68.206	0.050	3.8	0.056	0.000	3.6	1.926	ОК
7	FEH: 2 years: +0 %: 15 mins: Summer	69.44 7	67.99 0	68.050	0.060	11.9	0.068	0.000	11.4	9.631	ОК
8	FEH: 2 years: +0 %: 15 mins: Summer	69.16 4	67.82 5	67.911	0.086	16.0	0.097	0.000	14.8	13.695	ОК
10	FEH: 2 years: +0 %: 15 mins: Summer	69.30 3	68.70 3	68.718	0.015	1.6	0.003	0.000	1.5	0.684	ОК
9	FEH: 2 years: +0 %: 15 mins: Summer	69.42 3	68.82 3	68.842	0.019	0.6	0.004	0.000	0.6	0.256	ОК
12	FEH: 2 years: +0 %: 15 mins: Summer	69.14 2	68.05 0	68.089	0.039	2.5	0.008	0.000	2.5	2.305	ОК
11	FEH: 2 years: +0 %: 15 mins: Summer	69.28 8	68.63 8	68.663	0.025	2.2	0.005	0.000	2.2	1.514	ОК
13	FEH: 2 years: +0 %: 15 mins: Summer	69.08 4	67.78 0	67.853	0.073	17.9	0.083	0.000	18.3	17.110	ОК
15	FEH: 2 years: +0 %: 15 mins: Summer	68.94 2	67.63 6	67.736	0.100	18.6	0.113	0.000	19.1	17.385	ОК
16	FEH: 2 years: +0 %: 15 mins: Summer	68.89 5	68.29 5	68.316	0.022	1.2	0.004	0.000	1.2	0.511	ОК
14	FEH: 2 years: +0 %: 15 mins: Summer	69.43 2	68.78 2	68.807	0.025	2.1	0.005	0.000	2.1	2.088	ок
17	FEH: 2 years: +0 %: 15 mins: Summer	68.68 9	67.57 4	67.683	0.109	23.0	0.123	0.000	23.6	21.831	ок
20	FEH: 2 years: +0 %: 15 mins: Summer	69.50 0	68.85 0	68.874	0.024	1.7	0.005	0.000	1.6	1.432	ок
21	FEH: 2 years: +0 %: 15 mins: Summer	69.27 3	68.56 5	68.592	0.027	4.0	0.005	0.000	3.9	2.528	ОК

Project: 29478 Attenuation Rev0	Date: 22/02/2024	I =						
Willisham Barns	Designed by:	Checked by:	Approved By:					
Willisham	CES	MJH	MJH	PLANNING				
Report Details:	Company Addres	s:	•	DESIGN				
Type: Junctions Summary	PDC Engine	ering		CIVIL				
Storm Phase: Phase	Unit T6 & T7	•						
	Spotterton B	icinose Dark						

				Snette	rton Bus	siness Pa	ark				
23	FEH: 2 years: +0 %: 15 mins: Summer	69.42 3	68.71 8	68.762	0.044	2.5	0.009	0.000	2.4	1.114	ок
22	FEH: 2 years: +0 %: 15 mins: Summer	69.46 5	68.86 5	68.895	0.030	1.2	0.006	0.000	1.1	0.517	ОК
19	FEH: 2 years: +0 %: 15 mins: Summer	68.68 2	67.94 8	67.979	0.031	1.3	0.006	0.000	1.2	0.598	ОК
18	FEH: 2 years: +0 %: 15 mins: Summer	68.67 9	68.02 9	68.055	0.026	1.0	0.005	0.000	0.9	0.427	ОК
24	FEH: 2 years: +0 %: 15 mins: Summer	68.62 9	67.53 2	67.640	0.109	24.9	0.123	0.000	25.2	22.786	ОК
25	FEH: 2 years: +0 %: 15 mins: Summer	68.65 0	67.49 0	67.593	0.103	26.9	0.117	0.000	27.4	24.715	ОК
26	FEH: 2 years: +0 %: 15 mins: Summer	68.73 8	68.08 8	68.099	0.011	0.6	0.002	0.000	0.6	0.626	ОК
27	FEH: 2 years: +0 %: 15 mins: Summer	68.70 7	67.38 7	67.498	0.111	30.7	0.125	0.000	31.5	28.205	ОК
35	FEH: 2 years: +0 %: 15 mins: Summer	68.55 6	67.36 0	67.453	0.093	31.5	0.105	0.000	31.8	28.078	ОК
28	FEH: 2 years: +0 %: 15 mins: Summer	68.46 4	67.81 4	67.835	0.021	1.4	0.004	0.000	1.3	0.598	ОК
34	FEH: 2 years: +0 %: 15 mins: Summer	68.82 8	67.96 4	68.000	0.036	5.7	0.041	0.000	5.5	3.183	ОК
32	FEH: 2 years: +0 %: 15 mins: Summer	68.78 2	68.03 2	68.088	0.056	4.7	0.063	0.000	4.3	2.588	ОК
31	FEH: 2 years: +0 %: 15 mins: Summer	68.79 9	68.14 9	68.173	0.024	2.5	0.005	0.000	2.4	1.112	ОК
30	FEH: 2 years: +0 %: 15 mins: Summer	69.00 5	68.25 3	68.292	0.039	1.9	0.008	0.000	1.9	0.859	ОК
33	FEH: 2 years: +0 %: 15 mins: Summer	68.95 3	68.30 3	68.331	0.028	1.9	0.005	0.000	1.9	1.331	ОК
29	FEH: 2 years: +0 %: 15 mins: Summer	69.01 9	68.41 9	68.449	0.030	1.2	0.006	0.000	1.1	0.517	ОК
36	FEH: 2 years: +0 %: 15 mins: Summer	68.32 4	67.16 0	67.291	0.130	3.8	0.147	0.000	1.0	0.809	ОК
37	FEH: 2 years: +0 %: 15 mins: Summer	68.06 3	66.98 9	67.015	0.026	1.0	0.000	0.000	1.0	0.776	ОК

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	1	
Willisham	CES	MJH	MJH	PLANNING
Report Details: Type: Stormwater Controls Summary Storm Phase: Phase	Company Address PDC Enginee Unit T6 & T7 Snetterton Bu	ring	POC DESIGN CIVIL	

FEH: 100 years: Increase Rainfall (%): +45: Critical Storm Per Item: Rank By: Max. Resident Volume

Stormwat er Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Dept h (m)	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m³)	Total Lost Volume (m³)	Max. Outfl ow (L/s)	Total Dischar ge Volume (m³)	Percentag e Available (%)	Status
Detention Basin	FEH: 100 years: +45 %: 2160 mins: Winter	68.193	68.193	0.993	0.993	14.9	644.00 6		0.000	1.4	303.82 9	1.262	ОК
PP1	FEH: 100 years: +45 %: 60 mins: Summer	68.964	68.866	0.074	0.067	6.8	5.253	0.000	0.000	3.9	7.756	57.309	ок
PP2	FEH: 100 years: +45 %: 15 mins: Summer	69.428	69.405	0.034	0.030	1.6	0.176	0.000	0.000	1.2	0.662	83.288	ОК
PP3	FEH: 100 years: +45 %: 30 mins: Summer	68.849	68.819	0.083	0.081	5.8	1.767	0.000	0.000	5.1	4.824	52.788	ОК
PP4	FEH: 100 years: +45 %: 30 mins: Summer	69.317	69.284	0.097	0.092	6.8	2.018	0.000	0.000	6.2	5.733	46.070	ОК
PP5	FEH: 100 years: +45 %: 30 mins: Summer	69.165	69.116	0.122	0.131	19.4	8.827	0.000	0.000	10.5	15.064	23.621	ок
PP6	FEH: 100 years: +45 %: 30 mins: Summer	69.013	68.995	0.059	0.065	4.2	1.190	0.000	0.000	3.7	3.503	64.405	ок
PP7	FEH: 100 years: +45 %: 30 mins: Summer	68.983	68.964	0.057	0.062	4.7	1.721	0.000	0.000	3.5	3.814	65.015	ок
PP8	FEH: 100 years: +45 %: 30 mins: Summer	69.231	69.187	0.087	0.108	12.6	5.083	0.000	0.000	7.8	10.061	41.134	ок
PP9	FEH: 100 years: +45 %: 30 mins: Summer	69.416	69.371	0.076	0.097	11.0	4.592	0.000	0.000	6.7	8.698	47.773	ок
PP10	FEH: 100 years: +45 %: 30 mins: Summer	69.569	69.544	0.076	0.088	7.9	2.816	0.000	0.000	5.8	6.419	52.166	ок
PP11	FEH: 100 years: +45 %: 60 mins: Summer	69.329	69.273	0.072	0.098	11.4	6.980	0.000	0.000	6.8	13.331	47.123	ок
PP12	FEH: 100 years: +45 %: 30 mins: Summer	69.389	69.357	0.115	0.107	11.6	4.729	0.000	0.000	7.7	9.305	35.070	ОК
PP13	FEH: 100 years: +45 %: 30 mins: Summer	69.377	69.357	0.049	0.053	3.2	0.947	0.000	0.000	2.7	2.604	70.478	ОК

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	
Report Details:	Company Addres	SS:		
Type: Stormwater Controls Summary	PDC Engine	ering		
Storm Phase: Phase	Unit T6 & T7	•		
	Snetterton B			

					Snett	erton Bu	ısiness P	ark					
PP14	FEH: 100 years: +45 %: 15 mins: Summer	68.884	68.872	0.031	0.028	1.6	0.202	0.000	0.000	1.0	0.653	83.598	ОК
PP15	FEH: 100 years: +45 %: 30 mins: Summer	68.787	68.774	0.061	0.067	4.7	1.523	0.000	0.000	3.8	3.903	63.306	ОК
PP16	FEH: 100 years: +45 %: 30 mins: Summer	69.260	69.232	0.079	0.091	8.9	3.401	0.000	0.000	6.1	7.182	50.520	ок
PP17	FEH: 100 years: +45 %: 30 mins: Summer	69.377	69.338	0.076	0.094	9.4	3.642	0.000	0.000	6.4	7.600	49.528	ок
PP18	FEH: 100 years: +45 %: 30 mins: Summer	69.335	69.285	0.119	0.115	14.7	7.160	0.000	0.000	8.6	11.274	31.630	ок
PP19	FEH: 100 years: +45 %: 30 mins: Summer	68.594	68.572	0.069	0.079	6.3	2.151	0.000	0.000	4.9	5.154	57.315	ОК
PP20	FEH: 100 years: +45 %: 60 mins: Summer	68.641	68.602	0.130	0.126	15.9	9.781	0.000	0.000	9.9	18.872	24.545	ОК
PP21	FEH: 100 years: +45 %: 30 mins: Summer	68.341	68.302	0.106	0.100	10.5	4.381	0.000	0.000	7.0	8.416	40.326	ок
PP22	FEH: 100 years: +45 %: 30 mins: Summer	68.521	68.485	0.092	0.110	11.0	3.898	0.000	0.000	8.1	9.052	40.844	ОК
PP23	FEH: 100 years: +45 %: 60 mins: Summer	68.719	68.645	0.129	0.121	19.6	14.504	0.000	0.000	9.3	22.275	23.223	ок
PP24	FEH: 100 years: +45 %: 30 mins: Summer	68.815	68.796	0.081	0.078	5.3	1.436	0.000	0.000	4.8	4.413	54.549	ОК
PP25	FEH: 100 years: +45 %: 30 mins: Summer	68.926	68.906	0.048	0.053	3.2	0.978	0.000	0.000	2.7	2.595	70.746	ОК

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	1	
Willisham	CES	MJH	MJH	PLANNING
Report Details: Type: Stormwater Controls Summary Storm Phase: Phase	Company Address PDC Enginee Unit T6 & T7 Snetterton Bu	ring	POC DESIGN CIVIL	

FEH: 100 years: Increase Rainfall (%): +0: Critical Storm Per Item: Rank By: Max. Resident Volume

Stormwat er Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Dept h (m)	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m³)	Total Lost Volume (m³)	Max. Outfl ow (L/s)	Total Dischar ge Volume (m³)	Percentag e Available (%)	Status
Detention Basin	FEH: 100 years: +0 %: 1440 mins: Winter	67.949	67.949	0.749	0.749	14.5	425.63 4		0.000	1.2	194.46 3	34.743	ОК
PP1	FEH: 100 years: +0 %: 60 mins: Summer	68.949	68.847	0.060	0.048	4.7	3.937	0.000	0.000	2.3	5.132	68.006	OK
PP2	FEH: 100 years: +0 %: 15 mins: Summer	69.422	69.397	0.027	0.022	1.1	0.135	0.000	0.000	0.7	0.447	87.162	ОК
PP3	FEH: 100 years: +0 %: 30 mins: Summer	68.832	68.800	0.066	0.062	4.0	1.383	0.000	0.000	3.4	3.277	63.057	ОК
PP4	FEH: 100 years: +0 %: 30 mins: Summer	69.296	69.262	0.076	0.070	4.7	1.576	0.000	0.000	4.1	3.897	57.882	ОК
PP5	FEH: 100 years: +0 %: 60 mins: Summer	69.126	69.088	0.083	0.103	11.6	6.513	0.000	0.000	7.3	13.768	43.639	ОК
PP6	FEH: 100 years: +0 %: 30 mins: Summer	69.000	68.979	0.045	0.049	2.9	0.922	0.000	0.000	2.4	2.380	72.421	ОК
PP7	FEH: 100 years: +0 %: 30 mins: Summer	68.969	68.947	0.043	0.045	3.3	1.295	0.000	0.000	2.1	2.557	73.682	ОК
PP8	FEH: 100 years: +0 %: 30 mins: Summer	69.205	69.161	0.061	0.082	8.7	3.785	0.000	0.000	5.2	6.744	56.161	ОК
PP9	FEH: 100 years: +0 %: 60 mins: Summer	69.394	69.348	0.054	0.074	6.6	3.477	0.000	0.000	4.5	7.836	60.450	ОК
PP10	FEH: 100 years: +0 %: 30 mins: Summer	69.550	69.521	0.057	0.065	5.4	2.113	0.000	0.000	3.7	4.318	64.114	ОК
PP11	FEH: 100 years: +0 %: 60 mins: Summer	69.308	69.249	0.051	0.074	7.9	5.253	0.000	0.000	4.4	8.949	60.201	ОК
PP12	FEH: 100 years: +0 %: 30 mins: Summer	69.362	69.332	0.088	0.082	8.0	3.542	0.000	0.000	5.2	6.246	51.373	ОК
PP13	FEH: 100 years: +0 %: 30 mins: Summer	69.366	69.344	0.038	0.039	2.2	0.732	0.000	0.000	1.7	1.757	77.176	ОК

Project: 29478 Attenuation Rev0	Date: 22/02/2024							
Willisham Barns	Designed by:	Checked by:	Approved By:					
Willisham	CES	MJH	MJH					
Report Details:	Company Addres	SS:						
Type: Stormwater Controls Summary	PDC Engine	ering						
Storm Phase: Phase	Unit T6 & T7							

Storm P	Storm Phase: Phase					Snetterton Business Park							
PP14	FEH: 100 years: +0 %: 30 mins: Summer	68.878	68.865	0.025	0.021	0.7	0.160	0.000	0.000	0.7	0.602	87.040	ОК
PP15	FEH: 100 years: +0 %: 30 mins: Summer	68.773	68.757	0.048	0.049	3.3	1.155	0.000	0.000	2.4	2.639	72.167	ок
PP16	FEH: 100 years: +0 %: 30 mins: Summer	69.239	69.208	0.058	0.067	6.2	2.532	0.000	0.000	3.8	4.823	63.160	ОК
PP17	FEH: 100 years: +0 %: 30 mins: Summer	69.356	69.314	0.056	0.070	6.5	2.717	0.000	0.000	4.1	5.102	62.342	ОК
PP18	FEH: 100 years: +0 %: 60 mins: Summer	69.303	69.259	0.087	0.088	8.8	5.445	0.000	0.000	5.8	10.330	48.008	ОК
PP19	FEH: 100 years: +0 %: 30 mins: Summer	68.577	68.552	0.052	0.058	4.3	1.629	0.000	0.000	3.1	3.482	67.673	ок
PP20	FEH: 100 years: +0 %: 60 mins: Summer	68.606	68.572	0.096	0.096	11.0	7.353	0.000	0.000	6.5	12.741	43.278	ОК
PP21	FEH: 100 years: +0 %: 30 mins: Summer	68.317	68.279	0.081	0.077	7.2	3.272	0.000	0.000	4.7	5.634	55.428	ОК
PP22	FEH: 100 years: +0 %: 30 mins: Summer	68.495	68.458	0.066	0.083	7.6	2.915	0.000	0.000	5.3	6.115	55.769	ОК
PP23	FEH: 100 years: +0 %: 60 mins: Summer	68.683	68.616	0.093	0.091	13.5	10.694	0.000	0.000	6.1	14.901	43.389	ОК
PP24	FEH: 100 years: +0 %: 30 mins: Summer	68.799	68.777	0.065	0.059	3.6	1.122	0.000	0.000	3.2	3.000	64.481	ОК
PP25	FEH: 100 years: +0 %: 30 mins: Summer	68.915	68.893	0.037	0.039	2.2	0.753	0.000	0.000	1.7	1.748	77.454	ОК

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	1	
Willisham	CES	MJH	MJH	PLANNING
Report Details: Type: Stormwater Controls Summary Storm Phase: Phase	Company Address PDC Enginee Unit T6 & T7 Snetterton Bu	ring	POC DESIGN CIVIL	

FEH: 30 years: Increase Rainfall (%): +45: Critical Storm Per Item: Rank By: Max. Resident Volume

Stormwat er Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Dept h (m)	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m³)	Total Lost Volume (m³)	Max. Outfl ow (L/s)	Total Dischar ge Volume (m³)	Percentag e Available (%)	Status
Detention Basin	FEH: 30 years: +45 %: 2160 mins: Winter	68.048	68.048	0.848	0.848	12.2	511.47 9	0.000	0.000	1.3	282.88 1	21.581	ОК
PP1	FEH: 30 years: +45 %: 60 mins: Summer	68.954	68.854	0.064	0.055	5.4	4.374	0.000	0.000	2.8	5.945	64.454	ок
PP2	FEH: 30 years: +45 %: 15 mins: Summer	69.424	69.400	0.030	0.025	1.3	0.150	0.000	0.000	0.9	0.524	85.682	ОК
PP3	FEH: 30 years: +45 %: 30 mins: Summer	68.838	68.807	0.072	0.069	4.6	1.515	0.000	0.000	4.0	3.790	59.532	ОК
PP4	FEH: 30 years: +45 %: 30 mins: Summer	69.303	69.270	0.083	0.078	5.4	1.727	0.000	0.000	4.8	4.506	53.850	ОК
PP5	FEH: 30 years: +45 %: 30 mins: Summer	69.137	69.098	0.095	0.113	15.4	7.231	0.000	0.000	8.4	11.720	37.432	ок
PP6	FEH: 30 years: +45 %: 30 mins: Summer	69.004	68.984	0.050	0.055	3.3	1.014	0.000	0.000	2.8	2.750	69.663	ОК
PP7	FEH: 30 years: +45 %: 30 mins: Summer	68.974	68.953	0.047	0.051	3.8	1.443	0.000	0.000	2.6	2.978	70.671	ок
PP8	FEH: 30 years: +45 %: 15 mins: Summer	69.213	69.169	0.069	0.091	15.4	4.226	0.000	0.000	6.0	4.983	51.059	ОК
PP9	FEH: 30 years: +45 %: 30 mins: Summer	69.401	69.356	0.061	0.082	8.7	3.845	0.000	0.000	5.2	6.761	56.266	ОК
PP10	FEH: 30 years: +45 %: 30 mins: Summer	69.556	69.529	0.063	0.073	6.2	2.353	0.000	0.000	4.4	5.011	60.038	ОК
PP11	FEH: 30 years: +45 %: 60 mins: Summer	69.315	69.257	0.057	0.082	9.0	5.808	0.000	0.000	5.2	10.323	56.001	ОК
PP12	FEH: 30 years: +45 %: 30 mins: Summer	69.371	69.341	0.097	0.091	9.2	3.953	0.000	0.000	6.0	7.272	45.723	ОК
PP13	FEH: 30 years: +45 %: 30 mins: Summer	69.370	69.348	0.041	0.044	2.5	0.808	0.000	0.000	2.1	2.043	74.812	ОК

Project:	Date:			
29478 Attenuation Rev0	22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	
Willisham	CES	MJH	MJH	
Report Details:	Company Addres	s:		
Type: Stormwater Controls Summary	PDC Engine	ering		
Storm Phase: Phase	Unit T6 & T7			

Storm Ph	Storm Phase: Phase					6 & T7 erton Bu							
PP14	FEH: 30 years: +45 %: 30 mins: Summer	68.880	68.868	0.027	0.024		0.174		0.000	0.8	0.698	85.929	ОК
PP15	FEH: 30 years: +45 %: 30 mins: Summer	68.778	68.763	0.053	0.055	3.8	1.283	0.000	0.000	2.9	3.062	69.091	ОК
PP16	FEH: 30 years: +45 %: 30 mins: Summer	69.246	69.216	0.065	0.075	7.1	2.829	0.000	0.000	4.5	5.603	58.841	ОК
PP17	FEH: 30 years: +45 %: 30 mins: Summer	69.363	69.322	0.062	0.078	7.5	3.032	0.000	0.000	4.8	5.927	57.979	ОК
PP18	FEH: 30 years: +45 %: 30 mins: Summer	69.315	69.268	0.099	0.097	11.6	5.997	0.000	0.000	6.7	8.746	42.743	ОК
PP19	FEH: 30 years: +45 %: 30 mins: Summer	68.583	68.559	0.058	0.065	5.0	1.809	0.000	0.000	3.7	4.035	64.107	ок
PP20	FEH: 30 years: +45 %: 60 mins: Summer	68.617	68.582	0.106	0.106	12.5	8.122	0.000	0.000	7.6	14.653	37.342	ОК
PP21	FEH: 30 years: +45 %: 30 mins: Summer	68.325	68.287	0.090	0.085	8.3	3.658	0.000	0.000	5.5	6.566	50.179	ок
PP22	FEH: 30 years: +45 %: 30 mins: Summer	68.503	68.468	0.074	0.092	8.7	3.246	0.000	0.000	6.2	7.087	50.742	ОК
PP23	FEH: 30 years: +45 %: 60 mins: Summer	68.694	68.625	0.104	0.101	15.4	11.916	0.000	0.000	7.1	17.227	36.922	ОК
PP24	FEH: 30 years: +45 %: 30 mins: Summer	68.804	68.784	0.071	0.066	4.2	1.231	0.000	0.000	3.7	3.479	61.018	ОК
PP25	FEH: 30 years: +45 %: 30 mins: Summer	68.919	68.897	0.041	0.044	2.5	0.833	0.000	0.000	2.0	2.034	75.085	ок

Project: 29478 Attenuation Rev0	Date: 22/02/2024			
Willisham Barns	Designed by:	Checked by:	1	
Willisham	CES	MJH	MJH	PLANNING
Report Details: Type: Stormwater Controls Summary Storm Phase: Phase	Company Address PDC Enginee Unit T6 & T7 Snetterton Bu	ring	POC DESIGN CIVIL	

FEH: 30 years: Increase Rainfall (%): +0: Critical Storm Per Item: Rank By: Max. Resident Volume

Stormwat er Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Dept h (m)	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m³)	Total Lost Volume (m³)	Max. Outfl ow (L/s)	Total Dischar ge Volume (m³)	Percentag e Available (%)	Status
Detention Basin	FEH: 30 years: +0 %: 1440 mins: Winter	67.842	67.842	0.642	0.642	12.1	338.60 1		0.000	1.1	164.32 1	48.086	ОК
PP1	FEH: 30 years: +0 %: 60 mins: Summer	68.942	68.837	0.052	0.038	3.7	3.215	0.000	0.000	1.7	3.901	73.872	OK
PP2	FEH: 30 years: +0 %: 30 mins: Summer	69.418	69.393	0.024	0.018	0.6	0.116	0.000	0.000	0.6	0.476	88.923	OK
PP3	years: +0 %: 30 mins: Summer	68.823	68.789	0.057	0.051	3.2	1.186	0.000	0.000	2.6	2.567	68.313	ОК
PP4	FEH: 30 years: +0 %: 30 mins: Summer	69.286	69.251	0.066	0.059	3.7	1.354	0.000	0.000	3.1	3.055	63.824	ОК
PP5	FEH: 30 years: +0 %: 60 mins: Summer	69.110	69.072	0.067	0.087	9.1	5.430	0.000	0.000	5.7	10.704	53.016	ОК
PP6	years: +0 %: 30 mins: Summer	68.993	68.970	0.039	0.041	2.3	0.784	0.000	0.000	1.8	1.861	76.538	ОК
PP7	FEH: 30 years: +0 %: 60 mins: Summer	68.962	68.939	0.035	0.037	2.2	1.077	0.000	0.000	1.6	2.629	78.107	ОК
PP8	years: +0 %: 30 mins: Summer	69.193	69.148	0.050	0.069	6.9	3.197	0.000	0.000	4.0	5.226	62.978	ОК
PP9	years: +0 %: 60 mins: Summer	69.384	69.337	0.044	0.062	5.2	2.943	0.000	0.000	3.4	6.095	66.534	ОК
PP10	FEH: 30 years: +0 %: 30 mins: Summer	69.540	69.509	0.047	0.053	4.3	1.762	0.000	0.000	2.7	3.359	70.063	ОК
PP11	FEH: 30 years: +0 %: 60 mins: Summer	69.299	69.235	0.042	0.060	6.2	4.385	0.000	0.000	3.2	6.902	66.779	ОК
PP12	FEH: 30 years: +0 %: 15 mins: Summer	69.344	69.316	0.071	0.066	9.7	2.962	0.000	0.000	3.7	2.987	59.330	ОК
PP13	FEH: 30 years: +0 %: 30 mins: Summer	69.360	69.336	0.032	0.032	1.7	0.621	0.000	0.000	1.3	1.370	80.648	ок

Project:	Date:						
29478 Attenuation Rev0	22/02/2024	22/02/2024					
Willisham Barns	Designed by:	Checked by:	Approved By:				
Willisham	CES	MJH	MJH				
Report Details:	Company Addres	SS:					
Type: Stormwater Controls Summary	PDC Engine	PDC Engineering					
Storm Phase: Phase	Unit T6 & T7						
	Snetterton Business Park						

Storm P	Storm Phase: Phase					Snetterton Business Park								
PP14	FEH: 30 years: +0 %: 30 mins: Summer	68.876	68.862	0.022	0.018		0.139		0.000	0.5	0.470	88.705	ОК	
PP15	FEH: 30 years: +0 %: 30 mins: Summer	68.766	68.748	0.041	0.040	2.6	0.965	0.000	0.000	1.8	2.050	76.736	ОК	
PP16	FEH: 30 years: +0 %: 30 mins: Summer	69.229	69.197	0.048	0.056	4.9	2.114	0.000	0.000	2.9	3.728	69.239	OK	
PP17	FEH: 30 years: +0 %: 30 mins: Summer	69.346	69.303	0.046	0.059	5.2	2.270	0.000	0.000	3.1	3.955	68.535	ОК	
PP18	FEH: 30 years: +0 %: 60 mins: Summer	69.289	69.243	0.074	0.073	6.9	4.597	0.000	0.000	4.4	8.025	56.111	ок	
PP19	FEH: 30 years: +0 %: 30 mins: Summer	68.568	68.541	0.043	0.047	3.4	1.364	0.000	0.000	2.3	2.712	72.924	ок	
PP20	FEH: 30 years: +0 %: 60 mins: Summer	68.592	68.554	0.081	0.078	8.7	6.152	0.000	0.000	4.8	9.871	52.539	OK	
PP21	FEH: 30 years: +0 %: 30 mins: Summer	68.305	68.266	0.069	0.064	5.7	2.768	0.000	0.000	3.6	4.358	62.293	ОК	
PP22	FEH: 30 years: +0 %: 30 mins: Summer	68.483	68.444	0.054	0.068	6.0	2.434	0.000	0.000	3.9	4.765	63.064	OK	
PP23	FEH: 30 years: +0 %: 60 mins: Summer	68.669	68.598	0.079	0.074	10.6	8.756	0.000	0.000	4.5	11.416	53.648	ОК	
PP24	FEH: 30 years: +0 %: 30 mins: Summer	68.791	68.767	0.057	0.049	2.9	0.962	0.000	0.000	2.4	2.348	69.532	ок	
PP25	FEH: 30 years: +0 %: 30 mins: Summer	68.910	68.885	0.031	0.032	1.7	0.637	0.000	0.000	1.3	1.362	80.929	ок	

Project:	Date:			
29478 Attenuation Rev0	22/02/2024			
Willisham Barns	Designed by:	Checked by:	Approved By:	_
Willisham	CES	MJH	MJH	PLANNING
Report Details:	Company Addres	S:		OCC PLANNING DESIGN CIVIL
Type: Stormwater Controls Summary	PDC Enginee	ering	GIVIL	
Storm Phase: Phase	Unit T6 & T7			
	Snetterton Bu	ısiness Park		

FEH: 2 years: Increase Rainfall (%): +0: Critical Storm Per Item: Rank By: Max. Resident Volume

Stormwat er Control	Storm Event	Max. US Level (m)	Max. DS Level (m)	Max. US Depth (m)	Max. DS Dept h (m)	Max. Inflow (L/s)	Max. Reside nt Volume (m³)	Max. Flood ed Volu me (m³)	Total Lost Volume (m³)	Max. Outfl ow (L/s)	Total Dischar ge Volume (m³)	Percentag e Available (%)	Status
Detention Basin	FEH: 2 years: +0 %: 960 mins: Winter FEH: 2	67.595	67.595	0.395	0.395	10.0	186.03 7		0.000	1.1	87.080	71.477	ОК
PP1	years: +0 %: 180 mins: Summer	68.917	68.819	0.028	0.020	1.1	1.956	0.000	0.000	0.6	3.012	84.102	ОК
PP2	FEH: 2 years: +0 %: 30 mins: Summer	69.411	69.385	0.016	0.010	0.3	0.071	0.000	0.000	0.2	0.201	93.253	ОК
PP3	FEH: 2 years: +0 %: 15 mins: Summer	68.799	68.762	0.033	0.024	2.2	0.670	0.000	0.000	0.8	0.667	82.108	ОК
PP4	FEH: 2 years: +0 %: 15 mins: Summer	69.259	69.221	0.039	0.029	2.6	0.773	0.000	0.000	1.1	0.822	79.352	ОК
PP5	FEH: 2 years: +0 %: 120 mins: Summer	69.077	69.031	0.035	0.046	3.3	3.038	0.000	0.000	2.2	6.589	73.712	ОК
PP6	FEH: 2 years: +0 %: 60 mins: Summer	68.975	68.949	0.021	0.020	0.9	0.429	0.000	0.000	0.6	1.021	87.171	ОК
PP7	FEH: 2 years: +0 %: 120 mins: Summer	68.947	68.921	0.020	0.019	0.8	0.634	0.000	0.000	0.6	1.619	87.116	ОК
PP8	FEH: 2 years: +0 %: 120 mins: Summer	69.169	69.116	0.025	0.037	2.2	1.831	0.000	0.000	1.6	4.319	78.795	ОК
PP9	FEH: 2 years: +0 %: 120 mins: Summer	69.364	69.307	0.024	0.033	1.9	1.699	0.000	0.000	1.3	3.745	80.674	ОК
PP10	FEH: 2 years: +0 %: 120 mins: Summer	69.518	69.484	0.026	0.028	1.4	1.007	0.000	0.000	1.0	2.718	82.903	ОК
PP11	FEH: 2 years: +0 %: 120 mins: Summer	69.281	69.206	0.024	0.031	2.2	2.516	0.000	0.000	1.2	4.282	80.943	ОК
PP12	FEH: 2 years: +0 %: 120 mins: Summer	69.315	69.286	0.042	0.036	2.0	1.722	0.000	0.000	1.5	3.989	76.359	ОК
PP13	FEH: 2 years: +0 %: 60 mins: Summer	69.346	69.320	0.017	0.016		0.348		0.000	0.4	0.763	89.143	OK 51

Project: 29478 Attenuation Rev0	Date: 22/02/2024								
Willisham Barns	Designed by:	Approved By:							
Willisham	CES	MJH	MJH						
Report Details: Type: Stormwater Controls Summary Storm Phase: Phase	Company Addres PDC Engines Unit T6 & T7 Snetterton B	ering							

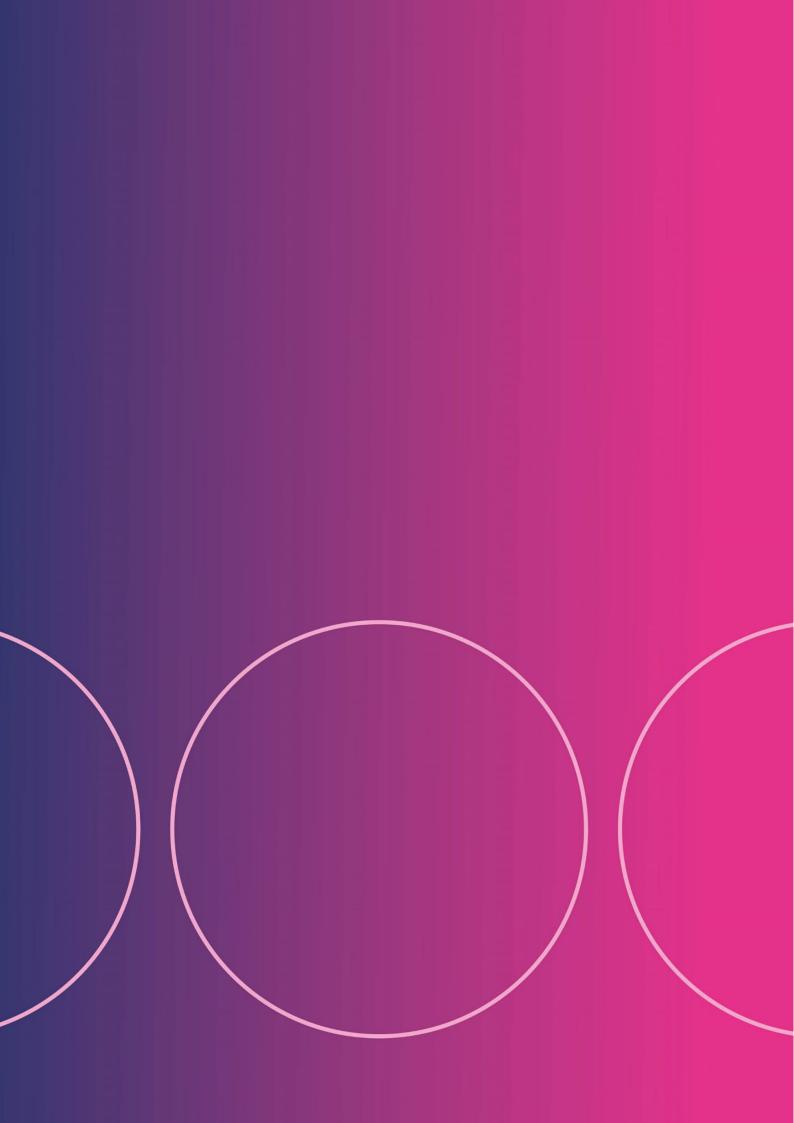
J					Snell	erton Bu	siness Pa	ark					
PP14	FEH: 2 years: +0 %: 60 mins: Summer	68.868	68.853	0.015	0.009	0.2	0.081	0.000	0.000	0.2	0.269	93.410	OK
PP15	FEH: 2 years: +0 %: 120 mins: Summer	68.750	68.728	0.025	0.020	0.8	0.539	0.000	0.000	0.6	1.635	87.009	ок
PP16	FEH: 2 years: +0 %: 120 mins: Summer	69.208	69.171	0.027	0.030	1.5	1.236	0.000	0.000	1.1	3.070	82.021	ОК
PP17	FEH: 2 years: +0 %: 120 mins: Summer	69.325	69.275	0.024	0.031	1.6	1.325	0.000	0.000	1.2	3.255	81.634	ок
PP18	FEH: 2 years: +0 %: 120 mins: Summer	69.257	69.208	0.042	0.038	2.5	2.635	0.000	0.000	1.7	4.955	74.839	ОК
PP19	FEH: 2 years: +0 %: 120 mins: Summer	68.548	68.518	0.023	0.025	1.1	0.769	0.000	0.000	0.9	2.190	84.728	ОК
PP20	FEH: 2 years: +0 %: 120 mins: Summer	68.559	68.517	0.048	0.041	3.2	3.468	0.000	0.000	1.8	6.133	73.247	ОК
PP21	FEH: 2 years: +0 %: 120 mins: Summer	68.273	68.235	0.038	0.033	1.8	1.615	0.000	0.000	1.3	3.601	78.006	ок
PP22	FEH: 2 years: +0 %: 60 mins: Summer	68.457	68.411	0.028	0.036	2.3	1.360	0.000	0.000	1.5	2.638	79.356	ОК
PP23	FEH: 2 years: +0 %: 180 mins: Summer	68.634	68.565	0.043	0.041	3.2	5.097	0.000	0.000	1.9	8.872	73.017	ок
PP24	FEH: 2 years: +0 %: 15 mins: Summer	68.769	68.743	0.035	0.025	2.0	0.545	0.000	0.000	0.9	0.654	82.758	ОК
PP25	FEH: 2 years: +0 %: 60 mins: Summer	68.896	68.870	0.017	0.016	0.7	0.361	0.000	0.000	0.4	0.759	89.211	ок

APPENDIX B

CONTENTS

Surface Water Maintenance Plan

Surface Water Maintenance Plan


Revision 0

Job No. 29478

Proposed Mixed Use Development
Willisham Hall
Barking Road
Willisham
Suffolk
IP8 4SL

Client: Herin Property Investments LLP

February 2024

REPORT CONTROL SHEET

Client: Herin Property Investments LLP Job No.: 29478

Project Name: Proposed Mixed Use Development

Willisham Hall Barking Road Willisham Suffolk IP8 4SI

Issue					
		Report Prepared by:			
Revision 0	February 2024	Chloe Spencer M.Sc, AMIEnvSc Senior Environmental Consultant			
		Report Reviewed & Authorised by: Matt Hare B.Sc, CEng, MCIWEM, C.WEM, MICE, MIMechE Director - Infrastructure			

CONDITIONS OF INVESTIGATION & REPORTING

This report and its findings should be considered in relation to the terms of the brief and objectives agreed between PDC Engineering and the Client.

PDC Engineering are only able to work with information available at the time when the Surface Water Maintenance Plan is carried out which have been applied to the Surface Water Maintenance Plan in accordance with current best practice. PDC Engineering cannot be held responsible for any subsequent flooding to the development or surrounding area.

The details contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by PDC Engineering has not been independently verified by PDC Engineering, unless otherwise stated in the report.

This report was prepared and provided for the sole and specific use of the client. PDC Engineering shall not be responsible for any use of the report or its contents for any other purpose. Copies of the report to other parties for information should be copied in full but PDC Engineering shall extend no professional liability or warranty to other parties in this connection without written consent. The copyright of this report and other plans and documents prepared by PDC Engineering are owned by them.

TABLE OF CONTENTS

REPO	ORT CONTROL SHEET	i
CON	IDITIONS OF INVESTIGATION & REPORTING	i
TABL	LE OF CONTENTS	1
1.0	INTRODUCTION	2
1.1	Background Information	
1.2	Objectives	2
2.0	PROPOSED SURFACE WATER DRAINAGE SYSTEM	2
3.0	SUDS DESCRIPTION	2
4.0	MANAGING SUDS	3
5.0	DRAINAGE FEATURES	3
6.0	SUSTAINABLE DRAINAGE MAINTENANCE SPECIFICATION	3
6.1	Inlet Structure, Inspection Chambers, and Pipe Network	5
6.2	Pervious Pavements	6
6.3	Detention Basin	7
6.4	Ditch and Ordinary Watercourse	9

1.0 INTRODUCTION

1.1 Background Information

This Surface Water Maintenance Plan (SWMP) was prepared by PDC Engineering. The report was commissioned by Hollins Architects and Surveyors on behalf of Herin Property Investments LLP.

This has been prepared to address Mid Suffolk District Council's Planning Condition 13 of Planning Application, Reference DC/20/02426, for the erection of eleven dwellings, five commercial B1 (office) space units, a A1/A3 farm shop/cafe, play area, footpath, and associated parking at Willisham Hall, Barking Road, Willisham, Suffolk, IP8 4SL, referred to here within as the site.

1.2 Objectives

This report has been prepared to enable the surface water drainage system to be maintained and operated as intended within the design. It is based upon guidance provided by the CIRIA C753 SuDS Manual as well as information found online at http://www.susdrain.org/.

This SWMP is also required by Suffolk County Council to support the planning condition for the proposed development.

2.0 PROPOSED SURFACE WATER DRAINAGE SYSTEM

The surface water drainage system within the site has been designed to contain up to and including the 100 year rainfall event including a 45% allowance for climate change. On-site storage/attenuation has been provided within the SuDS components.

The SuDS system aims to manage rainfall and use landscape features where possible to manage the surface water, this includes:

- Control the flow and volume of water leaving the development.
- Pollution prevention by intercepting silt and cleaning runoff from hard surfaces.

The flood risks to the site have been ascertained within the Flood Risk Assessment and Drainage Strategy undertaken by Create Consulting. in June 2020, as part of the original planning application.

3.0 SUDS DESCRIPTION

During rainfall events surface water runoff from the roofs enters the below ground drainage system via rainwater downpipes. The water is then either discharged into the permeable paved driveways or directly into the pipe network. From here the water travels through the pipe network until it discharges into the attenuation/detention basin in the south-west of the site, where it then outfalls into the ditch to the south-west of the site at a restricted rate.

The runoff from private access roads and drives enters directly into the permeable paving where it is intercepted by the paving drain and conveyed through the pipe network before discharging to the basin.

4.0 MANAGING SUDS

The SuDS have been designed for easy maintenance to comprise:

- Regular day to day care litter collection, regular gardening to control vegetation growth and checking inlets where water inters the SuDS feature.
- Occasional tasks checking the SuDS feature and removing any silt that builds up in the SuDS feature.
- Remedial Work repairing damage where necessary.

5.0 DRAINAGE FEATURES

The following lists the SuDS components and extra features which are found on the site.

- Inlet structures such as rainwater downpipes, gullies and channel drains convey water to the SuDS system.
- Manholes, inspection chambers, and rodding eyes are used on bends or where pipes come together.
- Below ground drainage pipes convey water to the SuDS system.
- Detention basins are designed to attenuate runoff and provide treatment during and after storm events.
- Pervious pavements are porous to allow rain to percolate through the surface into underlying ground or act as storage.
- Drainage channels convey water through the SuDS system.

6.0 SUSTAINABLE DRAINAGE MAINTENANCE SPECIFICATION

All components of the SuDS design should be regularly inspected and maintained, an overview of this is detailed in **Table 6.0.2** below, items highlighted in **Table 6.0.2** below are used on this site. As shown in **Table 6.0.1**, there are various frequencies and types of maintenance tasks.

Required Action	Schedule	Frequency	
Routine/regular maintenance	Monthly (for normal care of SuDS)	 Litter picking Grass cutting Inspection of inlets, outlets and control structures. 	
Occasional maintenance	Annually (dependent on the design)	 Silt control around components Vegetation management around components Suction sweeping of permeable paving Silt removal from catchpits, soakaways and cellular storage. 	
Remedial maintenance	As required (tasks to repair problems due to damage or vandalism)	 Inlet/outlet repair Erosion repairs Reinstatement of edgings Reinstatement following pollution Removal of silt build up. 	

Table 6.0.1. General Requirements of SuDS Maintenance.

The use of weed-killers, pesticides and de-icing agents should be avoided to prevent chemical pollution.

Protect all below ground drainage through careful selection and placement of hard and soft landscaping.

	SuDS Component				
Operation & Maintenance Activity	Detention Basin	Pervious Pavement			
Regular Maintenance					
Inspection	•	•			
Litter and debris removal	•	•			
Grass cutting	•	0			
Weed/ invasive plant control	0	0			
Shrub management (including pruning)	0	0			
Shoreline vegetation management	0				
Aquatic vegetation management	0				
Occasional Maintenance					
Sediment management*	•	•			
Vegetation replacement	0				
Vacuum sweeping & brushing		•			
Remedial Maintenance	Remedial Maintenance				
Structure rehabilitation/ repair	0	0			
Infiltration surface reconditioning		0			

will be required
 may be required

Table 6.0.2. Typical key SuDS components operation and maintenance activities.

^{*} Sediment should be collected & managed in pre-treatment systems, upstream of the main device.

6.1 Inlet Structure, Inspection Chambers, and Pipe Network

Inlet structures such as rainwater downpipes, road gullies and channel drains, should be free from obstruction at all times to allow free flow through the SuDS.

Inspection chambers and rodding eyes are used on bends or where pipes come together, and allow access and cleaning to the system if necessary.

Table 6.1 below details the required actions, frequencies, and responsibilities of the different elements of maintenance and remedial actions. The below responsibilities will be a combination of the residents and the management company depending upon the location of the particular action.

Schedule	Required Action	Frequency	Responsibility
	Inspect and identify any areas that are not operating correctly. If required take remedial action.	Monthly for 3 months then annually	Resident & Management Company
	Inspect flow control manhole and check for blockages to grates and outlets.	Monthly and after large storm events	Resident & Management Company
Regular Maintenance	Remove debris from the catchment surface (where it may cause risks to performance).	Monthly	Resident & Management Company
/ Inspections	Maintain vegetation to designed limits within the vicinity of below ground drainage pipes to avoid damage to system.	Monthly, or as required	Resident & Management Company
	Inspect rainwater down pipes, channel drains and road gullies, removing obstructions and silt as necessary. Check there is no physical damage.	Monthly	Resident & Management Company
	Remove silt and leaf build up from manholes, gutters etc.	Annually, or as required,	Resident & Management Company
Occasional Maintenance	Remove sediment from pre- treatment inlet structures and inspection chambers.	Annually, or as required,	Resident & Management Company
	Remove inspection covers and inspect, ensuring that the water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually	Resident & Management Company
	Removal of sediment, oil, grease and floatables from pre-treatment structures.	Half yearly, or as required	Resident & Management Company
Remedial Actions	Replacement of malfunctioning parts.	As required	Resident & Management Company

Schedule	Required Action	Frequency	Responsibility
Remedial Actions	Repair physical damage if necessary.	As required	Resident & Management Company
	Inspect inlets and pre-treatment systems for silt accumulation. Establish appropriate silt removal frequencies.	Half yearly	Resident & Management Company
	Undertake inspection after leaf fall in Autumn.	Annually	Resident & Management Company
	Inspect all inlets, outlets and vents to ensure that they are in good condition and operating as designed.	Annually	Resident & Management Company
Monitoring	Survey inside of pipe runs for sediment build up and remove if necessary.	Every 5 years, or as required	Resident & Management Company
	Check outlet for blockages to ditch outlet.	Quarterly	Resident & Management Company
	Check flow control for blockages.	Quarterly	Resident & Management Company
	Check manholes, gutters etc. for silt and leaf build up.	Annually	Resident & Management Company

Table 6.1 Operation and maintenance activity schedule for inlet structure, inspection chambers, and pipe network.

6.2 Pervious Pavements

Pervious pavement is porous to allow rain to percolate through the surface into underlying ground, therefore must be protected from silt, sand, compost, mulch, etc.

Table 6.2 below details the required actions, frequencies, and responsibilities of the different elements of maintenance and remedial actions. The below responsibilities will be a combination of the residents and the management company depending upon the location of the particular action.

Schedule	Required Action	Frequency	Responsibility
Regular Maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface).	Annually, after autumn leaf fall, or reduced frequency as required, based on site-specific observations or manufacturer's recommendations of clogging pay particular attention to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment	Resident & Management Company

Schedule	Required Action	Frequency	Responsibility
	Stabilise and mow contributing and adjacent areas.	As required	Resident & Management Company
Occasional Maintenance	Removal of weeds or management using glyphosphate applied directly into the weeds by an applicator rather than spraying.	As required - once per year on less frequently used pavements	Resident & Management Company
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50mm of the level of the paving.	As required	Resident & Management Company
Remedial Actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost jointing material.	As required	Resident & Management Company
	Rehabilitation of surface and upper substructure by remedial sweeping.	Every 10 to 15 years or as required (if infiltration performance is reduced due to significant clogging)	Resident & Management Company
	Initial inspection.	Monthly for three months after installation	Resident & Management Company
Monitoring	Inspect for evidence of poor operation and/or weed growth - if required, take remedial action.	Quarterly, 48 hours after large storm in first six months	Resident & Management Company
Monitoring	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually	Resident & Management Company
	Monitor inspection chambers.	Annually	Resident & Management Company

Table 6.2 Operation and maintenance activity schedule for pervious pavements.

6.3 Detention Basin

The detention basin is designed to attenuate runoff and, where vegetated, provide treatment during, and after storm events.

Table 6.3 below details the required actions, frequencies, and responsibilities of the different elements of maintenance and remedial actions. The below will be the responsibilities of the management company.

Schedule	Required Action	Frequency	Responsibility
	Remove litter and debris.	Monthly	Management Company
	Cut grass - for spillways and access	Monthly (during growing	Management
	routes.	season), or as required	Company
	Cut grass - meadow grass in and	Half yearly (spring - before	Management
	around basin.	nesting season, and autumn)	Company
	Manage other vegetation and	Monthly at start, then as	Management
	remove nuisance plants.	required	Company
	Inspect inlets, outlets and overflows	Monthly	Management
	for blockages, and clear if required.	Wientiny	Company
Regular	Inspect banksides, structures,		Management
Maintenance	pipework etc. for evidence of	Monthly	Company
/ Inspections	physical damage.		Company
/ mopeodions	Inspect inlets and facility surface for	Monthly (for first year), then	Management
	silt accumulation, establish	annually, or as required	Company
	appropriate silt removal frequencies.	amiaany, or as required	, ,
	Check any penstocks and other	Annually	Management
	mechanical devices.	7 4111.4411.9	Company
	Tidy all dead growth before start of	Annually	Management
	growing season.	7	Company
	Remove sediment from inlets, outlet	Annually, or as required	Management
	and forebay.	,	Company
	Manage wetland plants in outlet	Annually (as set out in Chapter	Management
	pool - where provided.	23 of the SuDS manual)	Company
	Reseed areas of poor vegetation	As required	Management
	growth.	, to rodanica	Company
	Prune and trim any trees and	Every 2 years, or as required	Management
Occasional	remove cuttings.		Company
Maintenance		Every 5 years, or as required	
	Remove sediment from inlets,	(likely to be minimal	Management
	outlets, forebay and main basin	requirements where effective	Company
	when required.	upstream source control is	Company
		provided)	
	Repair erosion or other damage by	As required	Management
	re-turfing or reseeding.	, to rodanica	Company
	Realignment of rip-rap.	As required	Management
Remedial		 	Company
Actions	Repair/rehabilitate inlets, outlet and	As required	Management
	overflows.		Company
	Relevel uneven surfaces and	As required	Management
	reinstate design levels.	4	Company

 Table 6.3 Operation and maintenance activity schedule for detention basin.

6.4 Ditch and Ordinary Watercourse

Ditches and Ordinary Watercourses convey water through the environment.

Table 6.4 below details the required actions, frequencies, and responsibilities of the different elements of maintenance and remedial actions. The below will be the responsibilities of the management company.

Schedule	Required Action	Frequency	Responsibility
	Remove litter and debris.	Monthly, or as required	Management Company
	Cut the grass - to retain grass height within specified design range.	Monthly or as required (August - March).	Management Company
	Inspect marginal and bankside vegetation and remove nuisance plants (for first 3 years).	Monthly at start, then as required.	Management Company
Regular	Inspect inlets, outlets, banksides, structures, pipework, culverts etc. for evidence of blockage and/or physical damage.	Monthly	Management Company
Maintenance / Inspections	Inspect water body for signs of poor water quality.	Monthly (May - October)	Management Company
	Tidy all dead growth (scrub clearance) before start of growing season (Note: tree maintenance is usually part of overall landscape management contract).	Annually	Management Company
	Remove 25% of bank vegetation from water's edge to a minimum of 1m above water level.	Annually	Management Company
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies.	Half yearly	Management Company
Occasional Maintenance	Remove sediment from the ditch but maintain the original profile and cross section	With effective pre- treatment, this will only be required rarely, e.g. every 25 - 50 years	Management Company
	Repair erosion or other damage.	As required	Management Company
Remedial Actions	Repair/rehabilitate inlets, outlets and overflows.	As required	Management Company
	Remove and dispose of oils or petrol residues using safe standard practices.	As required	Management Company

Table 6.4 Operation and maintenance activity schedule for ditches and ordinary watercourses.

APPENDIX C

CONTENTS

Preliminary Trial Pit Logs

	V	A F Howland Associates Geotechnical Engineers					Site Willisham Hall, Willisham,	Suffolk, IP8 4SL		Trial Pit Number CBR01
Excavation Machine due (JCB 3CX)		Dimens		Gro	und L	.evel (mOD) 9.57	Client Herin Property Investments	s LLP		Job Number 24.017
		Locatio 60	n 6977 E 250658 N	Date	e s 20/0	02/2024	Engineer			Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	ords Lev (mC	vel OD)	Depth (m) (Thickness)	De	escription		Kater Marger
0.50-0.75	B1		20/02/2024:DRY	69	9.27	0.30) - (0.20) - (0.25) - (0.25) - (0.75) - (0.26) - (0.26) - (0.27) - (0.27) - (0.28) - (0.2	Soft off white slightly sands subangular to subrounded Stiff light brown mottled gresubangular to subrounded Complete at 0.75m	y very gravelly CLAY Grave fine to coarse chalk		
Plan .					•	- 1	Remarks 1. Location CAT scanned pri 2. No groundwater encounte 3. Trial pit remained open an 4. Trial pit backfilled with aris	ior to excavation		
					•	•	Irial pit remained open an Trial pit backfilled with aris	nd sidewalls stable during e sings upon completion.	xcavatio	n.
					•	•				
						. s	Scale (approx)	Logged By	Figure	No.
							1:20	PAS	24.01	7.CBR01

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	A F Howlan Geotechnic			Site Willisham Hall, Willisham,	Suffolk, IP8 4SL	Trial Num CBI	nber
Excavation Hand dug pi		Dimens		Groun	d Level (mOD) 68.77	Client Herin Property Investment	s LLP	Job Num 24.0	nber
		Locatio 60	n 6963 E 250609 N	Dates	19/02/2024- 20/02/2024	Engineer		Shee	et /1
Depth (m)	Sample / Tests	Water Depth (m)	Field Reco	rds Level	Depth (m) (Thickness	D	escription	Leger	Water Dr
0.50-0.75	B1		19/02/2024·DDV	68.6		MADE GROUND (Brown s Gravel is subangular to su concrete and brick fragme	y) slightly sandy gravelly clay. ibrounded fine to coarse ch ints)	alk,	
Div			19/02/2024:DRY			Complete at 0.75m			
Plan .		•				Location CAT scanned pr No groundwater encounts	ior to excavation		
		•				Location CAT scanned pr No groundwater encounte Trial pit remained open ar Trial pit backfilled with ari	nd sidewalls stable during e sings upon completion.	xcavation.	
		•							
		•				Scale (approx)	Logged By	Figure No.	
						1:20	PAS	24.017.CBF	R02

			A F How	land Ass	socia	tes	Site Trial Pit Number Willisham Hall, Willisham, Suffolk, IP8 4SL			
		7 (Geotech	nical Eng	ineer	5	Willisham Hall, Willisham,	Suffolk, IP8 4SL	CBR03	
Excavation Machine dug (JCB 3CX)		Dimens 1.50 m	ions L x 0.45 m W x	(0.75 m D		Level (mOD) 68.48	Client Herin Property Investment	s LLP	Job Number 24.017	
		Locatio 60	n 6912 E 250590) N	Dates 20	/02/2024	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field F	Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Nater Nater	
0.40-0.60	B1		20/02/2024:DI	RY	68.18 67.88 67.73	(0.15)		avelly CLAY. Gravel is subangular to n chalk and flint	0 0 0	
Plan .						•	Remarks 1. Location CAT scanned price. 2. No groundwater encounter.	ior to excavation		
		•					Location CAT scanned pr No groundwater encounte Trial pit remained open ar Trial pit backfilled with aris	nd sidewalls stable during ex sings upon completion.	cavation.	
				·						
		•		•		.	Scale (approx)	Logged By	Figure No.	
							1:20	PAS	24.017.CBR03	

		1	A F Howland Geotechnica				Williaham Hall Williaham Cuffally ID0 401			Trial Pi Numbe	er
Excavation Machine du (JCB 3CX)		Dimensi			Ground	Level (mOD) 68.77	Client Herin Property Investment	s LLP		Job Numbe 24.017	er
(,		Location 606	n 6963 E 250609 N		Dates 20)/02/2024	Engineer			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	ls	Level (mOD)	Depth (m) (Thickness)	D	escription		Legend	Water
			20/02/2024:DRY		67.97		MADE GROUND (Brown some source of the contract	slightly sandy gravelly clay. brounded fine to coarse ch nts)	alk,		
Plan .							Remarks 1. Location CAT scanned pr 2. No groundwater encounte 3. Trial pit remained open ar 4. Trial pit aborted due to en 5. Trial pit backfilled with ari 6. Relocated trial pit approx	ered id sidewalls stable during e countering concrete culverl sings 2.0 m (See SA01A)			
				•			Scale (approx) 1:10	Logged By DGWD	Figure 24.0	No. 17.SA01	

xcavation Method		1	A F Howland As Seotechnical Eng			Site Willisham Hall, Willisham,	Trial Pi Numbe SA01	
cavation N chine dug B 3CX)		Dimension 1.50 m L	ons _ x 0.45 m W x 0.80 m D		Level (mOD) 68.77	D) Client Herin Property Investments LLP		Job Numbe 24.017
		Location 606	963 E 250609 N	Dates 20	/02/2024	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
				60.60	(0.15)	TOPSOIL (Dark brown cla		
				68.62	- 0.15 -	MADE GROUND (Brown Gravel is subangular to su brick and concrete fragme	slightly sandy gravelly clay. ubrounded fine to coarse cha ents)	alk,
					(0.50)	, and the second	,	
				68.12	- 0.65	drainage pipe		
			20/02/2024:DRY		-	Aborted at 0.65m		
					-			
					_			
					- -			
					_ - _			
					_			
					_			
					-			
			•					
					_		,	
					- -			
		Aug.			F	Remarks		
						Location CAT scanned pr No groundwater encount	rior to excavation ered	
						 Trial pit remained open a Trial pit aborted due to er Trial pit backfilled with ari 	ior to excavation ered nd sidewalls stable during ex countering drainage pipe sings 2.0 m (See SA01B)	ccavation.
		俊.				Relocated trial pit approx	2.0 m (See SA01B)	
	62.00							
	4 7	16						
		X CAR				Scale (approx)	Logged By	Figure No.

		\	A F Howland Seotechnical I			Site Willisham Hall, Willisham,	Suffolk, IP8 4SL		Trial Pit Numbe	r
Excavation Machine du (JCB 3CX)		Dimensi		Ground	I Level (mOD) 68.77	Client Herin Property Investment	s LLP		Job Numbe 24.017	r
		Location 606	n 6963 E 250609 N	Dates 2	0/02/2024	Engineer			Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	I	Legend	Water
			20/02/2024:DRY	67.8		MADE GROUND (Brown some of Gravel is subangular to subrick and concrete fragme) clay drainage pipe Aborted at 0.90m	slightly sandy gravelly clay. brounded fine to coarse chants)	alk,		
Plan .				•		Remarks 1. Location CAT scanned pr	ior to excavation			
						2. No groundwater encounts 3. Trial pit remained open ar 4. Trial pit aborted due to en 5. Trial pit backfilled with aris 6. Relocated trial pit approx	ered nd sidewalls stable during e countering clay drainage pi sings 2.0 m (See SA01C)	xcavatior pe	1.	
				•						
						Scale (approx)	Logged By	Figure 24.01	No. 7.SA01E	

	V	A F Howland Associates Geotechnical Engineers					Site Willisham Hall, Willisham, Suffolk, IP8 4SL Trial F Numb SA0			
Excavation Machine due		Dimensi			Ground	Level (mOD) 68.77	Client Herin Property Investment	s LLP		Job Number 24.017
		Location 606	n 6963 E 250609 N	I	Dates 20)/02/2024	Engineer			Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness)	Do	escription	L	.egend Mater
1.00	D1		seepage(1) at 1	.50m.	67.27	(1.35)	Firm light brown gravelly C subrounded fine to coarse Aborted at 1.50m		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
						•	Location CAT scanned pri Groundwater encountered	ior to excavation d at 1.5 m nd sidewalls stable during e	xcavation	
-	-	-	•	·	·	-	Trial pit remained open ar Trial pit aborted due to gro Trial pit backfilled with aris	oundwater sings.		
		•		•		•				
				•				•		
							Scale (approx)	Logged By	Figure I	No.
							1:10	DGWD	24.017	7.SA01C

Geotechnical Engineers Dimensions		ssociates gineers Ground Level (mOD)		Willisham Hall, Willisham, Suffolk, IP8 4SL		SA0		
Aachine dug pit JCB 3CX)		1.50 m L x 0.45 m W x 2.00 m D		68.48 Dates 20/02/2024		D) Client Herin Property Investments LLP		Number 24.01
						Engineer		Sheet
		606912 E 250590 N						1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
					 - _	TOPSOIL (Dark brown cla	y)	
					(0.30)			
				68.18	0.30	Stiff light brown slightly gra	avelly CLAY. Gravel is subangu	ılar 🏃 🚣 🙏
					(0.30)	to subrounded fine chaik		0 0 0
				67.88	0.60	Stiff light brown grovelly C	LAV Crovel is subangular to	0000
					_	subrounded fine to mediumwith fine to coarse ang	LAY. Gravel is subangular to m chalk and flint jular to subangular flint gravel	
					-			0000
4					(0.70)			
					_			0 0 0
					<u>-</u>			0 0 0
				67.18	- 1.30 -	Stiff light brown mottled gr	ey gravelly CLAY. Gravel is I fine to coarse chalk	
						3		0 0 0
	1				(0.70)			0 0 0
					(0.70)			0 0 0
					<u>-</u> -			
			20/02/2024:DRY	66.48	2.00			
			:0/02/2024.DN1			Complete at 2.00m		
					F			
					H			
					_		•	
					<u>-</u> -			
The same		Service .				Remarks		
		1				Location CAT scanned pr Groundwater not encount Trial pit remained and area.	ior to excavation tered during excavation nd sidewalls stable during exca to 1.0 m and then arisings to su between 1.0 m and 2.0 m n 21/02/2024 prior to test	watio=
						4. Pit backfilled with gravel t5. Soakage test performed t	to 1.0 m and then arisings to stockween 1.0 m and 2.0 m	ırface
			1			6. Groundwater at 1.64 m or	n 21/02/2024 prior to test	
		d d						
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
		*	1		5	Scale (approx)	Logged By F	igure No.
		2				1:20	PAS	24.017.SA02

A F Howland Associates **Geotechnical Engineers**

Soakage Test (BRE Digest 365)

Site : Willisham Hall, Willisham, Suffolk, IP8 4SL Job Number 24.017

Client : Herin Property Investments LLP

Sheet

Engineer:

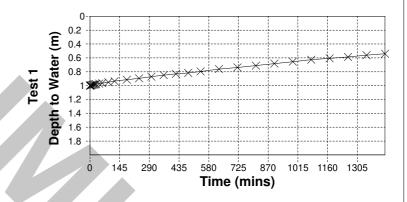
1/3

Location	Date	Level	Location
SA02	21/02/2024	68.48 mOD	E: 606912 N: 250590

Pit Width (m)	0.45
Pit Depth (m)	2.00
Pit Length (m)	1.50

Soil type at test level	Gravelly CLAY	
Groundwater	Groundwater at 1.64 m	
Drain discharge depth	Not known	
Sidewall stability Stable, vertical		
Stone filled or open pit	Stone filled	

	1
Effective depth (m)	1.00
Volume outflowing between 75% & 25% (m3)*	
Mean surface area through which outflow occurs (m2)	
Time for outflow between 75% & 25% (min)	
SOIL INFILTRATION RATE (ms-1), f	Test Failed


Remarks

- 1. Soakage test undertaken between 1.0 m and 2.0 m 2. Groundwater encountered at 1.64 m 3. Datalogger serial no. 12726020 4. Test 1 carried out on 21/02/2024 5. Test failed due to insufficient drainage within 24 hour period 6. Heavy rainfall during test

* Volume outflowing reduced to account for granular backfill used during testing (30 % of free volume assumed).

= apood time	Dopui to mate.	
(mins)	Test 1	L
0	1.001	
1	1.00	
2	0.999	
3	0.998	
4	0.997	
5	0.996	
10	0.991	
15	0.987	
20	0.984	
25	0.982	
30	0.979	
45	0.972	
60	0.964	
90	0.951	
120	0.936	
180	0.915	
240	0.895	
300	0.871	
360	0.849	
420	0.831	
480	0.817	
540	0.796	
630	0.761	
720	0.738	
810	0.712	
900	0.683	
990	0.655	
1080	0.626	
1170	0.606	
1260	0.587	
1350	0.561	
1440	0.54	
		l

Elapsed time Depth to Water

		1	F Howland As eotechnical Eng			Site Willisham Hall, Willisham,	Suffolk, IP8 4SL	Trial Pit Numbe SA03
Excavation Method Machine dug pit (JCB 3CX)		Dimensions 1.50 m L x 0.45 m W x 1.20 m D		Ground Level (mOl 68.46		D) Client Herin Property Investments LLP		Job Numbe 24.017
		Location 6069	924 E 250577 N	Dates 20)/02/2024	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
			20/02/2024:DRY	67.46 67.26	1.00 - (0.20) - 1.20		ELAY. Gravel is subangular to chalk Tey gravelly CLAY. Gravel is a fine to coarse chalk and flire.	0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
						Location CAT scanned pr No groundwater encounts Trial pit remained open at Pit backfilled with gravel to Soakage test performed to	rior to excavation ered nd sidewalls stable during e to 0.2 m and then arisings to between 0.2 m and 1.2 m	xcavation.
					S	Scale (approx)	Logged By	Figure No.
	F. O. L. S. C. S.	COLD BY A POST IN				1:20	PAS	24.017.SA03

A F Howland Associates **Geotechnical Engineers**

Soakage Test (BRE Digest 365)

Site : Willisham Hall, Willisham, Suffolk, IP8 4SL Job Number

24.017

2/3

Sheet

Client : Herin Property Investments LLP

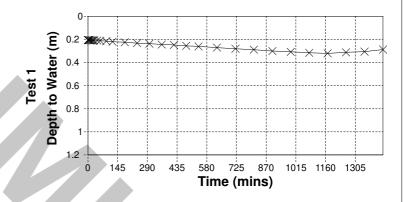
Engineer:

Location	Date	Level	Location
SA03	21/02/2024	68.46 mOD	E: 606924 N: 250577

Pit Width (m)	0.45
Pit Depth (m)	1.20
Pit Length (m)	1.50

Soil type at test level	Gravelly CLAY	
Groundwater	Not encountered	
Drain discharge depth	Not known	
Sidewall stability	Stable, vertical	
Stone filled or open pit	Stone filled	

	1
Effective depth (m)	0.99
Volume outflowing between 75% & 25% (m3)*	
Mean surface area through which outflow occurs (m2)	
Time for outflow between 75% & 25% (min)	
SOIL INFILTRATION RATE (ms-1), f	Test Failed
	•


Remarks

- Soakage test undertaken between 0.2 m and 1.2 m
 No groundwater encountered
 Datalogger serial no. 10109040
 Test 1 carried out on 20/02/2024
 Test 1 carried out on sufficient drainage within 24 hour period
 Heavy rainfall during test

^{*} Volume outflowing reduced to account for granular backfill used during testing (30 % of free volume assumed).

= upoou time	Doptil to mate.	
(mins)	Test 1	L
0	0.206	
1	0.206	
2	0.206	
3	0.206	
4	0.207	
5	0.207	
10	0.207	
15	0.208	
20	0.208	
25	0.208	
30	0.208	
45	0.21	
60	0.212	
90	0.215	
120	0.22	
180	0.225	
240	0.232	
300	0.237	
360	0.244	
420	0.248	
480	0.256	
540	0.261	
630	0.271	
720	0.281	
810	0.289	
900	0.301	
990	0.308	
1080	0.316	
1170	0.321	
1260	0.312	
1350	0.306	
1440	0.288	
1		

Elapsed time Depth to Water

A F Howland Associates Geotechnical Engineers Ground Level (mOF)				s	Willisham Hall, Willisham,	SA0		
xcavation Method lachine dug pit ICB 3CX)		Dimension 1.50 m L	ons x 0.45 m W x 2.00 m D	Ground Level (mO		O) Client Herin Property Investments LLP		Job Number 24.01
		Location 606933 E 250563 N		Dates 20/02/2024		Engineer		Sheet
Depth (m)	Sample / Tests	Water Depth (m) Field Records		Level Depth		Description		Legend
(,	Gumple / Tests	(m)	Tiola Heodras	(mob)	Depth (m) (Thickness)			Zegend
					(0.40)	TOPSOIL (Dark brown cla	у)	
					(0.40)			
				67.52	-	Off white silty sandy GRAN	VEL. Gravel is subangular to chalk	
				67.32	(0.20) - - - 0.60			* * * * * * * * * * * * * * * * * * *
					<u>-</u> -	subangular to subrounded	ey gravelly CLAY. Gravel is I fine to coarse flint and chal	lk
					(0.60)			0 0 0 0
								0 0 0
				66.72	 			0 0 0
					_	subrounded fine to coarse	AY. Gravel is subangular to chalk	0 0 0 0
					_			0 0 0 0
					(0.80)			0 0 0 0
					_			0 0 0
					_			0 0 0
		2	20/02/2024:DRY	65.92	2.00	Complete at 2.00m		
					-			
					_			
	M					Remarks		
						Location CAT scanned pr Groundwater not encount	ior to excavation tered during excavation	
		ý				Location CAT scanned pr Groundwater not encount Trial pit remained open ar Pit backfilled with gravel t Soakage test performed b Groundwater at 1.64 m or	nd sidewalls stable during extends to 1.0 m and then arisings to between 1.0 m and 2.0 m	xcavation. surface
			The state of the s			6. Groundwater at 1.64 m or	n 21/02/2024 prior to test	
		(Part						
		7			s	Scale (approx)	Logged By	Figure No.
		A Con				1:20	PAS	24.017.SA04

A F Howland Associates **Geotechnical Engineers**

Soakage Test (BRE Digest 365)

Site : Willisham Hall, Willisham, Suffolk, IP8 4SL Job Number

24.017

Sheet

Client : Herin Property Investments LLP

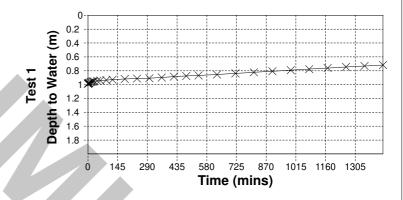
Engineer:

3/3

Location	cation Date	Level	Location
SA04	A04 21/02/2024	67.92 mOD	E: 606933 N: 250563

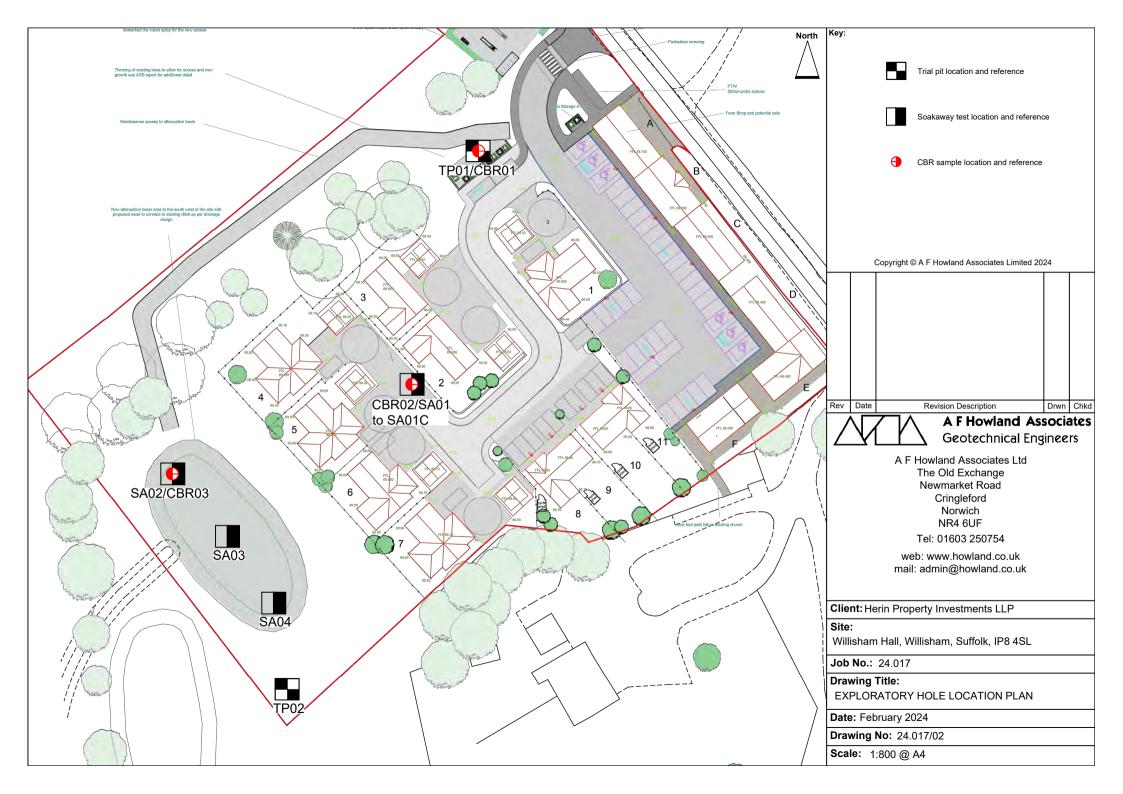
Pit Width (m)	0.45
Pit Depth (m)	2.00
Pit Length (m)	1.50

Soil type at test level	Gravelly CLAY		
Groundwater	Groundwater at 1.70 m		
Drain discharge depth Not known			
Sidewall stability	Stable, vertical		
Stone filled or open pit	Stone filled		


	1
Effective depth (m)	1.01
Volume outflowing between 75% & 25% (m3)*	
Mean surface area through which outflow occurs (m2)	
Time for outflow between 75% & 25% (min)	
SOIL INFILTRATION RATE (ms-1), f	Test Failed

Remarks

- 1. Soakage test undertaken between 1.0 m and 2.0 m 2. Groundwater encountered at 1.70 m 3. Datalogger serial no. 10226030 4. Test 1 carried out on 21/02/2024 5. Test failed due to insufficient drainage within 24 hour period 6. Heavy rainfall during test


^{*} Volume outflowing reduced to account for granular backfill used during testing (30 % of free volume assumed). Elapsed time Depth to Water

Liapseu tiille	Dopin to Water				
(mins)	Test 1				
0	0.99				
1	0.987				
2	0.983				
3	0.98				
4	0.978				
5	0.976				
10	0.968				
15	0.963				
20	0.958				
25	0.954				
30	0.953				
45	0.946				
60	0.941				
90	0.935				
120	0.929				
180	0.919				
240	0.913				
300	0.908				
360	0.898				
420	0.885				
480	0.876				
540	0.868				
630	0.855				
720	0.838				
810	0.823				
900	0.807				
990	0.792				
1080	0.776				
1170	0.761				
1260	0.745				
1350	0.731				
1440	0.718				

A F Howland Associates Geotechnical Engineers						Site Willisham Hall, Willisham, Suffolk, IP8 4SL		
Excavation Method Machine dug pit (JCB 3CX) Dimensions 1.80 m L x 0.45 m W x 3.00 m Location 606977 E 250658 N			Ground Level (mOD) 69.57 Dates 20/02/2024		Client Herin Property Investments LLP Engineer		Job Numbe 24.017	
							Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
20	D1			69.27	- (0.30) - 0.30 - (0.20)	TOPSOIL (Dark brown cla	y) y very gravelly CLAY Grave I fine to coarse chalk	lis Orași orași
50	D2			69.07	0.50 - - - - - - - - - - - - - - - - - - -	Stiff light brown mottled gr subangular to subrounded	ey gravelly CLAY. Gravel is I fine to coarse flint and cha	k
00	D4		seepage(1) at 1.90m.	68.17	1.40	Stiff light grey gravelly CL subrounded fine to coarse	AY. Gravel is subangular to flint and chalk	
				66.57	(1.60)		•	
				00.5/	- 1	Complete at 3.00m Remarks 1. Location CAT scanned pr 2. Groundwater seepage at 3. Trial pit remained open at 4. Trial pit backfilled with ari	ior to excavation 1.90 m nd sidewalls stable during e sings upon completion.	xcavation.
			可 看了			Scale (approx)	Logged By	Figure No.
					3	ocale (approx)	Logged by	rigure No.

A F Howland Associates Geotechnical Engineers						Site Willisham Hall, Willisham, Suffolk, IP8 4SL		
Excavation Method Machine dug pit (JCB 3CX)		Dimensions 1.80 m L x 0.45 m W x 3.00 m D Location 606936 E 250544 N		Ground Level (mOD) 67.38 Dates 20/02/2024		Client Herin Property Investments LLP Engineer		Job Number 24.01
								Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
					-	TOPSOIL (Dark brown cla	y)	
.20	D1				(0.30)			
.20				67.08	0.30	Stiff light brown gravelly C	LAY. Gravel is subangular to chalk	, , , , , , , , , , , , , , , , , , ,
					-	subrounded fine to coarse	cnaik	0 0 0
								0 0 0
					_			, , ,
					(0.90)			0 0 0
					_			0 0 0
00	D2							* * * *
Ť					_			
				66.18	1.20	Stiff light brown mottled gr	ey gravelly CLAY Gravel is I fine to coarse chalk	
					-	Subangular to subrounded	Time to coarse chair	0 0 0 0
								0 0 0
					_			, , ,
					_			
					_			0 0 0 0
					(1.60)			0 0 0
								0 0 0
					E/			0 0 0 0
								. 4
			•					0 0 0
50	D3							0 0 0
					F			
				64.58	2.80	Very stiff dark grey gravell	y CLAY. Gravel is subangula chalk	ır to
					(0.20)	subrounded fine to coarse	chalk	0 0 0
00	D4	2	0/02/2024:DRY	64.38	3.00	Complete at 3.00m		
		0			ı	Remarks		
	4/1	4				1. Location CAT scanned pr 2. No groundwater encounted	ior to excavation ered	
						No groundwater encounted 3. Trial pit remained open are 4. Trial pit backfilled with arise.	nd sidewalls stable during ex sings upon completion.	cavation.
		AS ALL						
		W						
	4							
		700						
		2 34						
					S	Scale (approx)	Logged By	Figure No.
	THE REAL PROPERTY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND				1:20	PAS	24.017.TP02	

Civil engineering and building

- Industrial, Commercial, Agricultural and Domestic building design
- Foundation Design and ground improvements
- Highway Engineering including Civil 3D
- Retaining walls
- Sheet Piling

- Infrastructure planning and design
- Design of sustainable drainage system (SUDS)
- Soakaway design
- Architectural design of industrial buildings
- Planning and building regulation applications

- 3D conceptual models
- Renewable Energy Civil Engineering design and project management
- Anaerobic Digestion and Waste to Energy Project design and detail

Environmental engineering

- Contaminated Land reports
- Environmental impact assessments (EIA)
- Flood Risk Assessments
- Water supply, treatment, storage and distribution
- Foul and surface water & effluent/leachate drainage design
- Drainage network modelling
- 1D & 2D flood modelling
- Hydraulic river modelling
- Flood Alleviation
- Breach & overtopping analysis
- Reservoir flood inundation modelling
- Consent to discharge applications
- Environmental Permits
- Nutrient Neutrality

Structural engineering

- Structural calculations for Commercial, Agricultural and Domestic building design
- Structural design using steel, stainless & carbon steel, concrete, timberand masonry
- Maritime and Hydraulic structures
- Structural surveys and structural suitability surveys
- Structural failure studies
- Subsidence claims
- 3D Finite Element Analysis
- Structural monitoring
- Structural enhancement/ remedial work
- Historic building advice
- 3D Revit & Level 2 BIM structural design & modelling

Surveying land and buildings

- Geomatic / topographical site surveys
- Building, Road, and Earthworks Setting out
- Engineering Setting out
- Establish precise site survey control
- o 3D digital terrain modelling

- Volumetric analysis
- Site area computations
- Flood risk surveys using GPS active network
- Measured building floor plans and elevation surveys
- Land transfer plans to Land Registry requirements
- Drainage network surveys
- Assistance/Expert witness in land boundary disputes
- Deterioration monitoring
- Preparation of asset plans
- As built record surveys

PDC Engineering

Units T6 & T7, Snetterton Business Park, Harling Road, Snetterton, NR16 2JU

01953 452001

e: pdc@pdcengineering.co.uk

pdcengineering.co.uk

PDC Engineering is a trading name of Plandescil Limited whose registered company number is 01447113 and whose registered office is Units T6 & T7, Snetterton Business Park, Harling Road, Snetterton, NR16 2JU.