Aval Consulting Group.

Drainage Strategy

Friars Garth, Epsom KT18 5DH Weldin Builders Ltd

February 2024

Project Information

Title	Drainage Strategy
Job Code	91833
Sector	Drainage
Report Type	DS
Client	Weldin Builders Ltd
Revision	D
Status	Final
Date of Issue	27 February 2024

Revision History

Revision	Date	Author	Reviewer	Approver	Status
A	12 July 2022	PR	WR	AC	Draft
A	14 July 2022	PR	WR	AC	Final
В	02 September 2022	PR	WR	AC	Final
C D	28 September 2022 27 February 2024	PR PR	WR WR	AC AC	Final Final

Disclaimer

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party. This report may include data obtained from trusted third-party consultants/laboratories that have been supplied to us in good faith. Whilst we do everything, we can to ensure the quality of all the data we use, we cannot be held responsible for the accuracy or integrity of third party data.

Table of Contents

Project	Information	i
1. Ex	ecutive Summary	4
2. Int	troduction	5
2.1	Overview	5
2.2	Site Location and Details	5
3. Re	elevant Standards and Policies	6
3.1	The National Planning Policy Framework (NPPF)	6
3.2	Flood and Water Management Act 2010	6
3.3	Epsom and Ewell Borough Council Core Strategy	6
4. Cli	imate Change and Surface Water Management	8
4.1	Climate Change	8
4.2	Small and Urban Catchment Climate Change Growth	8
4.3	Existing Public and Private Sewers	9
4.4	Methods of Surface Water Management	9
4.5	Proposed Surface Water Discharge Strategy	10
5. Fo	ul Water Discharge	11
5.1	Existing Public and Private Sewers	11
5.2	Proposed Foul Water Discharge Strategy	11
6. Ex	ceedance Flow and Drainage During Construction	11
7. Su	DS Appraisal and Proposed SuDS for Development	12
7.1	SuDS- General	12
7.2	SuDS Appraisal	12
7.3	Types of SuDS with Respect to Proposed Development	13
8. M	aintenance	13
9. Co	nclusion	14
Append	lices	15

iii

1. Executive Summary

Aval Consulting Limited has been commissioned by Weldin Builders Ltd ('the client') to provide a Drainage Strategy in relation to a planning application for the proposed development of a residential flat block with associated gardens, public open spaces, new road and associated infrastructure located at Friars Garth, Epsom KT18 5DH.

This report covers the proposed drainage strategy and will explain the philosophy of the drainage design, with details on infiltration testing and surface water discharge.

The proposed development will also include information on surface water management and SuDS for the proposed development to reduce surface water discharge.

Maintenance details, exceedance flow and the protection of the surface water drainage system will also be highlighted.

Introduction 2.

2.1 **Overview**

AVAL Consulting Group Limited (ACL) has been commissioned by the client to produce a Drainage Strategy at Friars Garth, Epsom KT18 5DH. This is to accompany the planning application to the Local Authority for consent to undertake the proposed work.

The site drawings are presented in Appendix A.

2.2 **Site Location and Details**

Figure 2.1 shows the proposed site location. The surroundings of the proposed development are largely residential in nature. The site is bounded by The Parade Road to the north, The Cressinghams Private Road to the south and east and The Newlife Fertilitiy Clinic to the west.

Figure 2.1: Proposed Site Location (Source: nyesaunders)

AVAL Consulting Group Limited, Newhaven Enterprise Centre, Denton Island, Newhaven, BN9 9BA Tel: +44 (0) 191 269 6829/W www.aval-group.co.uk/E contact@aval-group.co.uk

3. Relevant Standards and Policies

This section summarises all legislation, policy, statutory and non-statutory guidelines relevant to the proposed development. That also includes all the latest regional and local planning policy guidance specifically applicable to the proposed development.

3.1 The National Planning Policy Framework (NPPF)

The latest National Planning Policy Framework (NPPF) was published on 20th July 2021. The NPPF is supported by technical guidance set out within the Planning Practice Guidance for Flood Risk and Drainage, including the classification of the site vulnerability and the requirement do an Exception Test in relation to the Flood Zone and Vulnerability Classification.

One of the key aims of the NPPF is to ensure that flood risk is taken into account at all stages of the planning process to avoid inappropriate development in areas at risk of flooding and to direct development away from areas of highest risk.

It advises that where new development is necessary in areas of higher risk, flood mitigation resilience and resistance measures should be incorporated which can include but not limited to a higher finished floor level, installing flood boards and moving electrical points above. The developments upstream of the proposed development should also be taken into the consideration of flood risk.

The NPPF's flood risk advice is all set out in Chapter 14 of the Framework document, meeting the challenge of climate change, flooding and coastal change.

3.2 Flood and Water Management Act 2010

The Flood and Water Management Act 2010 received Royal Assent on 8th April 2010. This Act provides duties on the Environment Agency, Local Authorities, Developers and other bodies to manage flood risks. The Act has significant planning and design implications for Developers.

It should be noted that these standards and procedures are being reviewed by the respective regulatory bodies and third parties against the requirements imposed by the Flood and Water Management Act 2010. The advice and recommendations provided may change when associated regulations have been issued in order to implement the full scope of the Act.

3.3 Epsom and Ewell Borough Council Core Strategy

Epsom and Ewell Borough Council's Core Strategy (adopted on 24th July 2007) highlights the main policy regarding Flood Risk.

Policy CS 6 states:

"Proposals for development should result in a sustainable environment and reduce, or have a neutral impact upon, pollution and climate change. The Council will expect proposals to demonstrate how sustainable construction and design can be incorporated to improve the energy efficiency of development - both new build and conversion.

In order to conserve natural resources, minimise waste and encourage recycling, the Council will ensure that new development:

AVAL Consulting Group Limited, Newhaven Enterprise Centre, Denton Island, Newhaven, BN9 9BA Tel: +44 (0) 191 269 6829/W www.aval-group.co.uk/E contact@aval-group.co.uk

• minimises the use of energy in the scheme by using an appropriate layout, building design and orientation;

 minimises the emission of pollutants, including noise, water and light pollution, into the wider environment;

• has no adverse effects on water quality, and helps reduce potential water consumption, for example by the use of water conservation and recycling measures and by minimising off-site water discharge by using methods such as sustainable urban drainage;

• avoids increasing the risk of, or from, flooding;

• minimises the energy requirements of construction, for example by using sustainable construction technologies and encouraging the recycling of materials;

• encourages the use of renewable energy by the incorporation of production facilities within the design of the scheme;

• incorporates waste management processes, for example for the recycling of water and waste. The waste hierarchy (Reduce-Reuse-Recycle-Recover-Dispose) should be applied to all stages of development design, construction and final operation."

4. Climate Change and Surface Water Management

The National Planning Policy Framework 2021 (NPPF) and accompanying Planning Practice Guidance indicate surface water run-off should be controlled as near to its source as possible through a sustainable drainage approach to surface water management.

Consideration should therefore firstly be given to using sustainable urban drainage (SuDS) techniques including soakaways, infiltration trenches, permeable pavements, grassed swales, ponds and wetlands to reduce flood risk by attenuating the rate and quantity of surface water run-off from a site. This approach can also offer other benefits in terms of promoting groundwater recharge, water quality improvement and amenity enhancements. The NPPF sets out a hierarchy for the disposal of surface water which encourages a SuDS approach, which will be mentioned in Section 4.4.

4.1 Climate Change

There are indications that the climate in the UK is changing significantly, and it is widely believed that the nature of climate change will vary greatly by region. Current expert opinion indicates the likelihood that future climate change would produce more frequent short-duration and high-intensity rainfall events with the addition of more frequent periods of long-duration rainfall.

The Environment Agency has highlighted the climate change allowance for all proposed developments as described in Section 4.2

4.2 Small and Urban Catchment Climate Change Growth

Applies across all of England	Total potential change anticipated for the '2020s' (2015 to 2039)	Total potential change anticipated for the '2050s' (2040 to 2069)	Total potential change anticipated for the '2080s' (2070 to 2115)	
Upper end	10%	20%	40%	
Central	5%	10%	20%	

The table below highlights the potential climate change expected in the future.

As this development is for residential use, <u>a climate change growth factor of 40% is</u> <u>proposed</u> to be used for the surface water runoff/storage calculations.

4.3 Existing Public and Private Sewers

There is evidence of an existing 450mm diameter Thames Water surface water sewer located north of the site on The Parade.

Appendix B contains the Thames Water Asset Search.

4.4 Methods of Surface Water Management

As set out within the NPPF 2021, there are four methods that have been reviewed for the management and discharge of surface water for the site which are detailed below; these may be applied individually or collectively to form a complete strategy. They should be applied in the order of priority as listed:

- Discharge via infiltration;
- Discharge via watercourse;
- Discharge via a dedicated public surface water system; and
- Discharged via a combined sewer.

Discharge via Infiltration

The first consideration for the disposal of surface water is via infiltration. Infiltration tests were undertaken at the site by the client (Weldin Builders Ltd) to investigate the potential method of discharging surface water via infiltration. The tests were undertaken as per BRE 365 guidance, with three tests undertaken within the same trial pit.

Appendix C contains the results of the infiltration tests. As can be seen, the results show the infiltration rates are very poor at the site, with the highest infiltration rate of 0.012 m/hr (3.37×10^{-6} m/s) in the first test and the lowest infiltration rate of 0.0069 m/hr (1.92×10^{-6} m/s) in the third test. The lowest infiltration rate is to be used to design a soakaway. Therefore, the infiltration rate of 0.0069 m/hr is not sufficient for the disposal of surface water via infiltration.

Further calculations were taken into consideration to understand if a portion of the site could be drained via infiltration. The driveway of the proposed development has a suitable surface area to propose permeable paving and was used to check if infiltration would be viable within this area. The infiltration rate of 0.0069 m/hr was used and results concluded the infiltration rates were not sufficient and would cause flooding. The calculations can be seen in Appendix D.

Appendix C contains the borehole testing which was undertaken by Albury S.I. Ltd between the 6th and 7th of June 2022 which identifies groundwater at 2.5m deep. No information was available on the groundwater levels during the winter months and as expected the groundwater levels would rise during the winter months, which needs to be taken into consideration.

Therefore, it is recommended to undertake boreholes testing during the winter months to confirm groundwater levels as this may have an effect on the design of the Drainage system and the placement of the attenuation tank.

AVAL Consulting Group Limited, Newhaven Enterprise Centre, Denton Island, Newhaven, BN9 9BA Tel: +44 (0) 191 269 6829/W www.aval-group.co.uk/E contact@aval-group.co.uk

As noted above, the shallow groundwater levels would also limit the potential performance of the infiltration system. With shallower groundwater levels during the winter, the infiltration system may not be able to discharge surface water and would therefore cause flooding within the site.

Therefore, a discharge via infiltration is not possible.

Discharge to a Watercourse

Where infiltration techniques are not considered or not feasible, suitable a connection to a watercourse is the preferred option.

There are no watercourses in close vicinity to the proposed development and so, a discharge towards a river is not possible.

Discharge via a Dedicated Surface Water Sewer

Following the above, the preferred option to discharge surface water is to the existing Thames Water surface water sewer network located at the access of the site on The Parade Road.

4.5 Proposed Surface Water Discharge Strategy

The primary option for surface water disposal is via the existing 450mm diameter Thames Water surface water gravity sewer located north of the site on The Parade Road.

Sustainable Urban Drainage Systems (SuDS) are important in every development to ensure the long-term functionality of drainage systems both locally and regionally. As part of this design, SUDS have been incorporated wherever practicably feasible. The SuDS element proposed within this design includes surface water attenuation (an attenuation tank) prior to off-site discharge.

As per the LLFA's requirements, the proposed discharge rate under the 1 in 1 flood event should be no more than 1.9 l/s and no more than 2.9 l/s under the 1 in 100 year flood event with 40% Climate Change.

The proposed Drainage Strategy meets the LLFA's requirements by achieving maximum surface water discharge rates of 1.6 l/s under the 1 in 1 year flood event and 1.8 l/s under the 1 in 100 year flood event plus 40% Climate Change, respectively.

To achieve the maximum discharge rates, a suitably designed vortex flow control unit (Hydrobrake or equivalent, constructed within manhole) is proposed to limit the discharge flow rate, with an attenuation tank proposed to temporarily hold excess surface water during larger rainfall events. The attenuation tank has been sized to accommodate the 1 in 100 year flood event plus a 40% allowance for climate change. An urban creep of 10% has also been included within the drained areas.

As stated above in section 4.4, borehole testing would need to be undertaken during the winter months to ensure the tanks are not affected due to any buoyancy from shallow groundwater levels.

AVAL Consulting Group Limited, Newhaven Enterprise Centre, Denton Island, Newhaven, BN9 9BA Tel: +44 (0) 191 269 6829/W www.aval-group.co.uk/E contact@aval-group.co.uk

Currently the proposed location and depth of the storage tank satisfies the requirements of a 1m unsaturated zone between the ground water level and the invert of the tank. However, as the borehole testing were undertaken in the summer months it is expected that the ground water levels could be higher during the winter months, which would result in potential buoyancy. A solution to protect the tank from potential buoyancy is to use a cover slab to weigh the units down. This would need to be confirmed during the detailed design stage. If groundwater levels are within 1m of the tanks and fail to achieve the 1m unsaturated zone then a redesign is required.

Permeable paving is also used to temporarily store surface water prior to discharging into the sewer. The proposed system includes a 0.3m deep sub-base which allows for surfacer wate from the carpark to be stored within the sub-base. An Orifice Plate is added to restrict the discharge rate from the permeable paving sub-base into the rest of the proposed drainage system.

The new connection is subject to a formal Thames Water Section 106 agreement. Appendix D includes the drawings and calculations of the Drainage Strategy.

5. Foul Water Discharge

5.1 Existing Public and Private Sewers

There is evidence of an existing 300mm diameter Thames Water foul water sewer located north of the site on The Parade.

5.2 **Proposed Foul Water Discharge Strategy**

Based on the peak daily flow of 4000 litres per dwelling as per the BS EN 12056-2 System II, the 12no. residential units within the proposed development will generate a peak foul design flow of 0.45 l/s. This will be discharged into the existing Thames Water 300mm diameter foul water sewer network via the existing connection from the site.

This is subject to a formal Thames Water Section 106 agreement. The Drainage Strategy drawing in Appendix D includes a preliminary foul drainage layout.

6. Proposed Exceedance Flow and Drainage During Construction

Under rainfall events which are greater than design events or if the proposed drainage system had to fail due to blockages, the surface water would flow towards the access of the site and away from the residential block.

A Construction Environmental Management Plan (CEMP), which was undertaken by Weldin Builders, was also created to highlight the method of protecting the drainage system during construction and the method of handling runoff during construction.

Appendix E contains the flood exceedance flow plan and the CEMP.

AVAL Consulting Group Limited, Newhaven Enterprise Centre, Denton Island, Newhaven, BN9 9BA Tel: +44 (0) 191 269 6829/W www.aval-group.co.uk/E contact@aval-group.co.uk

7. SuDS Appraisal and Proposed SuDS for Development

7.1 SuDS- General

Whilst the temporary storage volumes will be provided within an oversized pipework, the means by which the surface water is both stored and conveyed to the attenuation system should also incorporate various forms of Sustainable Drainage Systems (SuDS) where possible in accordance with the Environment Agency's general guidance and the National Planning Policy Framework.

Appropriately designed, constructed and maintained, SuDS are more sustainable than conventional drainage systems. Their benefits in general terms are summarised below.

SuDS can:

- Reduce run-off surface water flow-rates and/or volumes and hence reduce the risk of flooding;
- Encourage natural groundwater re-charge;
- Reduce pollutant concentrations in storm water;
- Provide habitats for wildlife.

7.2 SuDS Appraisal

There are many site-specific factors which will influence the choice of any single or combination of SuDS device used within a development. The primary factors are:

- Whether the development is domestic, commercial or industrial;
- Whether the underlying ground is contaminated. If so, infiltration systems (soakaways) will most probably not be permitted;
- Whether the underlying ground is permeable enough for infiltration systems (soakaways) to be considered;
- Whether the groundwater levels are deep enough for infiltration systems (soakaways) to be considered;
- Whether the site is steeply sloping and its general topography;
- The availability of space inside the development for each potential SuDS facility;

Health and Safety aspects should the development be likely to be inhabited or used by children.

7.3 Types of SuDS with Respect to Proposed Development

Based on local and regional policy, the primary SuDS elements proposed for this development are outlined below:

7.3.1 Attenuation Storage

Attenuation storage can assist with the temporary storage of surface water whilst also allowing for a reduction in discharge rate. This will benefit by preventing any potential flooding at the site or elsewhere.

The proposed development requires an impermeable area of 860m² to be accommodated via attenuation storage at a maximum discharge rate of 1.90 l/s. A storage capacity of 30m³ was calculated using these requirements.

The storage is proposed to be placed within the car parking area as the available surface area of the site is limited.

7.3.2 Permeable Paving

Permeable Paving is proposed to be included within the driveway/carpark. Permeable paving allows for a sustainable discharge of surface water via the sub-base whilst also being able to absorb any carbon-induced particles from vehicles.

In this case, a direct discharge from sub-base to the proposed surface water system is chosen as the infiltration rate is too low for a natural discharge.

8. Maintenance

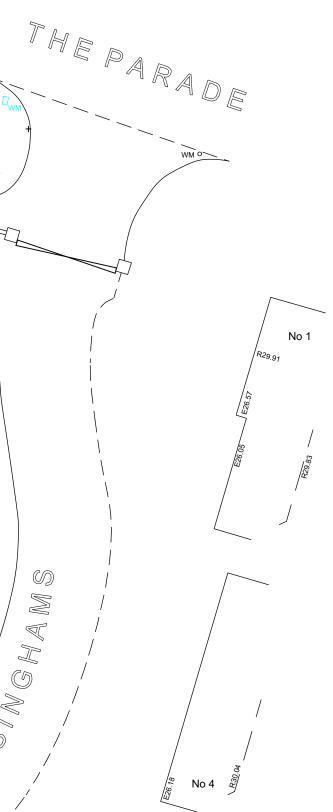
A maintenance plan is provided under a separate document. This can be seen in Appendix F.

9. Conclusion

The primary option for surface water disposal is via attenuation and discharge to the Thames Water surface water sewer located on The Parade, which is subject to section 106 approval by Thames Water.

The primary option for foul water disposal is proposed to be discharged to an existing Thames Water foul water sewer located on The Parade, which is subject to section 106 approval by Thames Water.

The surface water discharge rate is proposed to be restricted to no more than 1.5 l/s under the 1 in 1 year flood event and no more than 1.8 l/s under the 1 in 100 year flood event with 40% Climate Change.

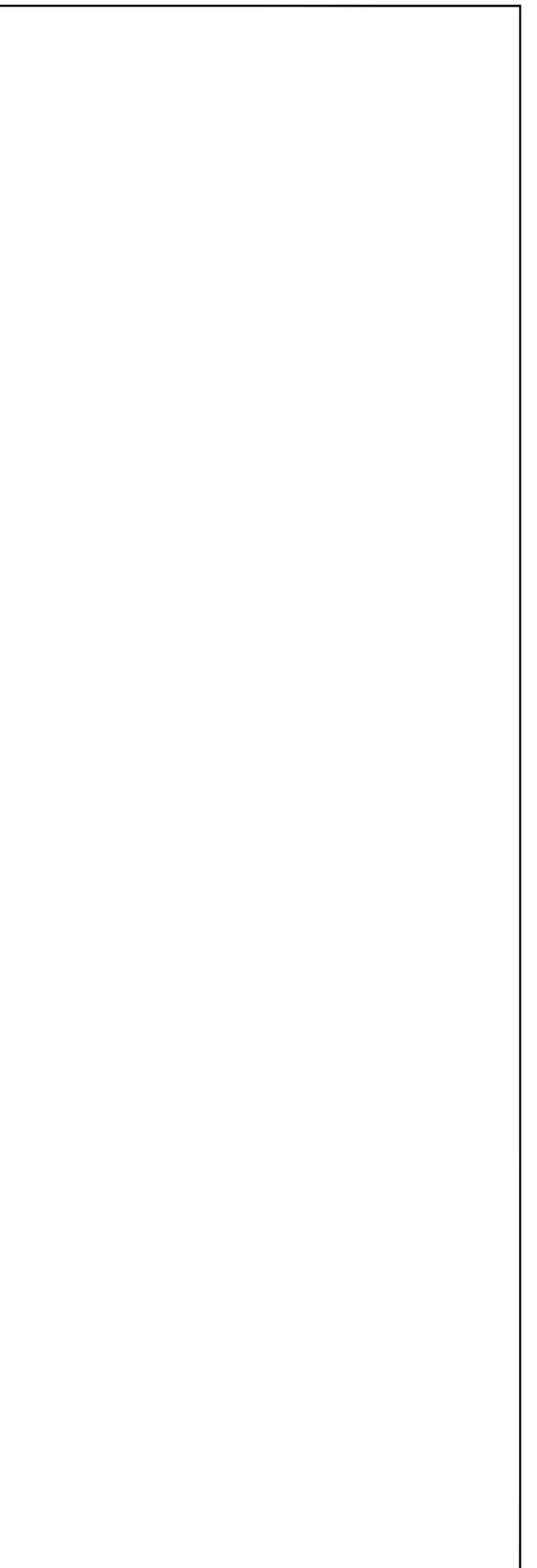

SuDS in the form of attenuation tanks are proposed to store surface water prior to being discharged.

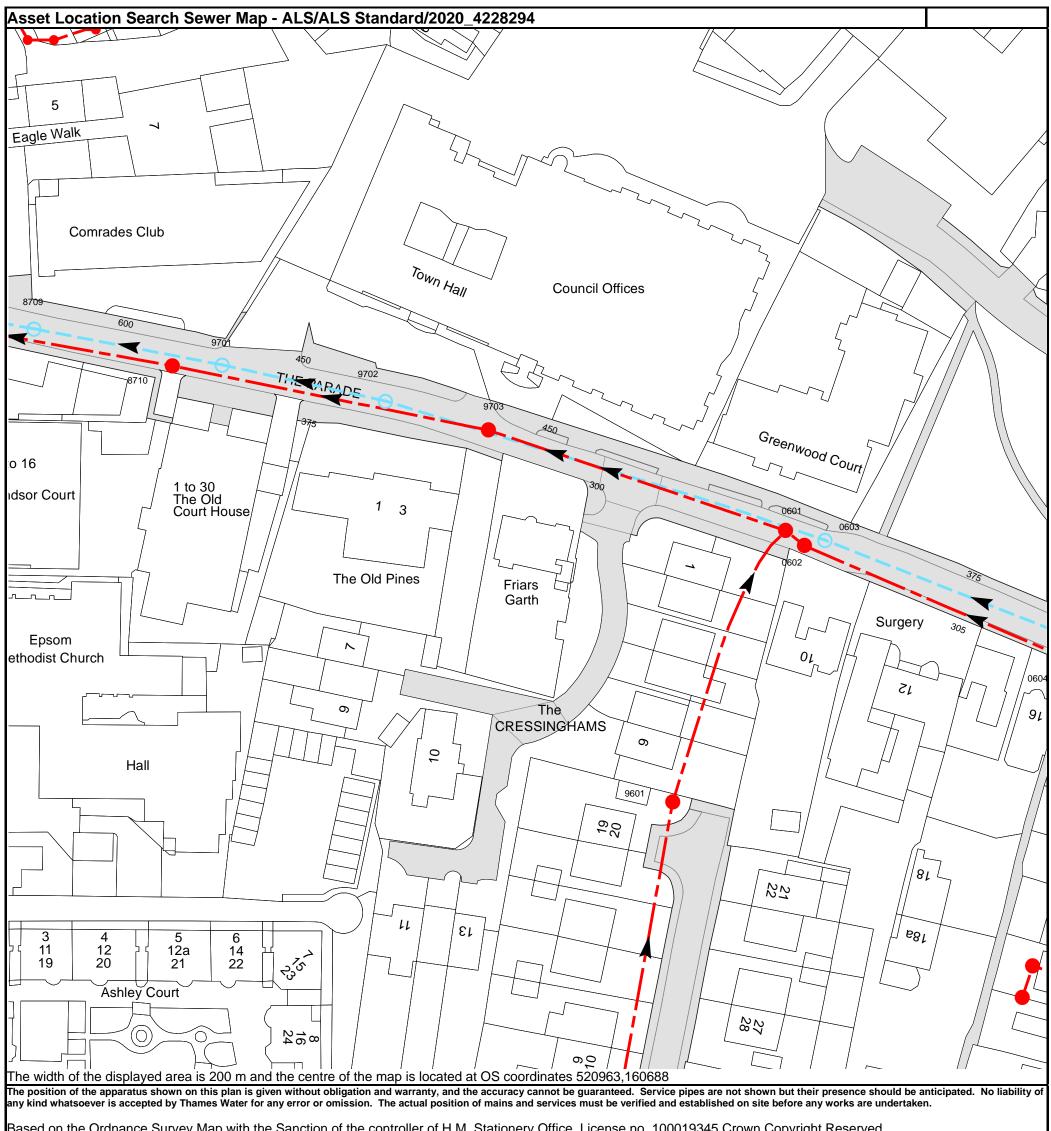
Appendices

- Appendix A: Existing and Proposed Site Plan and Topographical Survey
- Appendix B: Infiltration Test Results and Borehole Testing
- Appendix C: Thames Water Asset Map
- Appendix D: Proposed Drainage Strategy and Calculations
- Appendix E: Exceedance Flow Route and CEMP
- Appendix F: Maintenance Plan

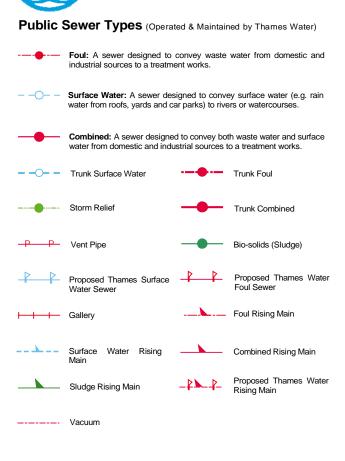
Appendix A: Existing and Proposed Site Plan and Topographical Survey

Nyesaunders CHARTERED ARCHITECTS 04/2021 Checked By 3 Church Street, Godalming, Surrey. GU7 1EQ rs.co.uk e-mail: info@nyesaunders.co.uk Tel: 01483 418


Date


	LEGEI	ND	
Survey 🛆 Station	•	Building	
Slopes	top	Contours Fence Vegetation	50.00
Gate 🖂	bottom	Vegetation Hedge, width to scale	
Tree The S	pecies are indicative only	Kerb/Upstands Overhead Feature Safety Barrier	
	mean spread and bole rawn to scale	Safety Barrier Verge/Edge of Surface Water	
	ABBREV	VIATIONS	
B Bolla	rtisement Board rd	R Ridge Leve RE Rodding Ey RFL Roof Level	/e
BB Belist BL Bed BLT Base	na Beacon Level ment Light	RS Road Sign R/W Retaining RWP Rainwater	Wall
BS Bus BT Britis CATV Cable	Stop h Telecom e Television	SC Stop Cock SFL Soffit Leve SV Sluice Valv	il re
CT Cabir	- Level let	SW Surface W TB Telephone TCSU Traffic Sig	Box nal Cover
E Eave: EL Elect	age Channel 3 Level ricity Cable Pit	THL Threshold ToW Top of Wa TL Traffic Ligt	ll nt
EP Elect ER Earth F/B Flowe	ricity Pole Rod r Bed	TM Ticket Mac TP Telegraph UC Unknown C UTI Ungble To	Pole Cover
FL Floor	Hydrant Level Light Pole	UTL Unable To VP Vent Pipe WCP Water Con WL Water Leve	trol Pillar
FP Flag FW Foul G Gully GV Gas	Water	WL Water Leve WM Water Mete WO Wash Out SVP Soil & Ven	er
h Heigh GP Guide IB Illumi	t Post nated Bollard	FENCE DESCR	PTIONS
IC Inspe IL Invert KO Kerb	ction Cover Level Outlet	CIF Corrugate	arded Fence d Iron Fence
	Hole Post		Paling Fence Slab Fence
NB Notic	er ead Wire e Board	MRF Metal Rai IWF Interwover LLF Larch Lap	lings n Fence o Fence
NP Name P Post PB Post	Plate Box	OBF Open Boo PAF Paling Fe PRF Post & R	rd Fence nce ail Fence
PBU Push	Button Unit ng Meter		/ire Fence
<u>NOTES</u> All levels are based	on TBM Value 20.00	ituated on Floor Lauri	
All levels are based as shown on Surve	l on TBM Value 20.00m, S y.	nuatea on Floor Level,	
	\wedge	`	
	/or	\sim	
		\Diamond	
		-	
	tive		
	dicat		
	ĹĔ		
Survey	Conterel	2019	
Date:	September	2018	
Client:	Latchmere	Properties I	.td
	Latchmere	House	
	134-136 So	uth Street	
	Dorking RH4 2EU		
	n	V 2	
	SUIV	re ys	
		nkasurveys.co.uk surveys.co.uk	
WOODVIEW, W	estern Road, Crow t • 01892		JSSEX, TN6 3EW
	t :01892 m: 07768		
	2077		
Job No:	2077		
Job Name:	Friars Garth	1	
	Epsom	I	
Title:		ical Survey	
nue:	Topograph	ical survey	
Scalar	1.200@^1		
Scale: Sheet:	1:200@A1 1		
Sheet.	I		

R29.02


Appendix B: Thames Water Asset Search

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
06ZQ	n/a	n/a
06ZP	n/a	n/a
9601	n/a	n/a
0602	47.21	44.51
0603	47.24	45.44
0601	47.15	44.43
87XV	n/a	n/a
87XW	n/a	n/a
87XY	n/a	n/a
8709	46.51	42.73
8710	n/a	n/a
9701	46.03	43.39
9702	45.77	44.03
9703	n/a	n/a

ALS Sewer Map Key

Sewer Fittings

A feature in a sewer that does not affect the flow in the pipe. Example: a vent is a fitting as the function of a vent is to release excess gas.

- Air Valve Dam Chase Fitting
- ≥ Meter

Π

0 Vent Column

Operational Controls

A feature in a sewer that changes or diverts the flow in the sewer. Example: A hydrobrake limits the flow passing downstream.

X Control Valve Ф Drop Pipe Ξ Ancillary Weir

Outfall

Inlet

Undefined End

End Items

いし

End symbols appear at the start or end of a sewer pipe. Examples: an Undefined End at the start of a sewer indicates that Thames Water has no knowledge of the position of the sewer upstream of that symbol, Outfall on a surface water sewer indicates that the pipe discharges into a stream or river.

- **Other Symbols**
- Symbols used on maps which do not fall under other general categories
- ****/ Public/Private Pumping Station
- * Change of characteristic indicator (C.O.C.I.)
- Ø Invert Level
- < Summit

Areas

Lines denoting areas of underground surveys, etc.

Agreement **Operational Site** :::::: Chamber Tunnel Conduit Bridge

Other Sewer Types (Not Operated or Maintained by Thames Water)

Notes:

hames

Water

- 1) All levels associated with the plans are to Ordnance Datum Newlyn.
- 2) All measurements on the plans are metric.
- 3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate direction of flow.
- 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded.
- 5) 'na' or '0' on a manhole level indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in milimetres. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology present on the plan, please contact a member of Property Insight on 0845 070 9148.

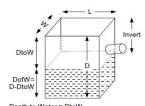
Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Appendix C: Site Investigation and Infiltration Tests

 Aval
 Site Location
 Friars Garth, KT18 5DH

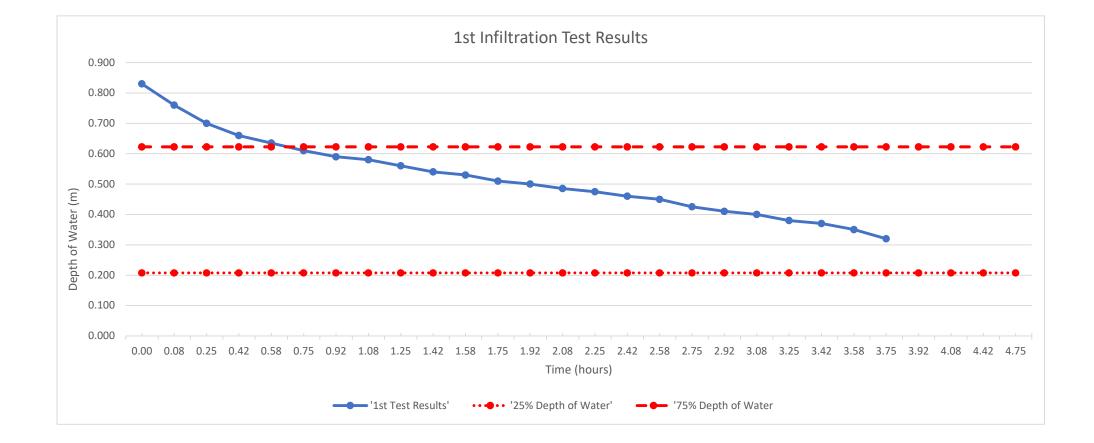
 Aval
 Weather
 Dry Sun + Cloudy

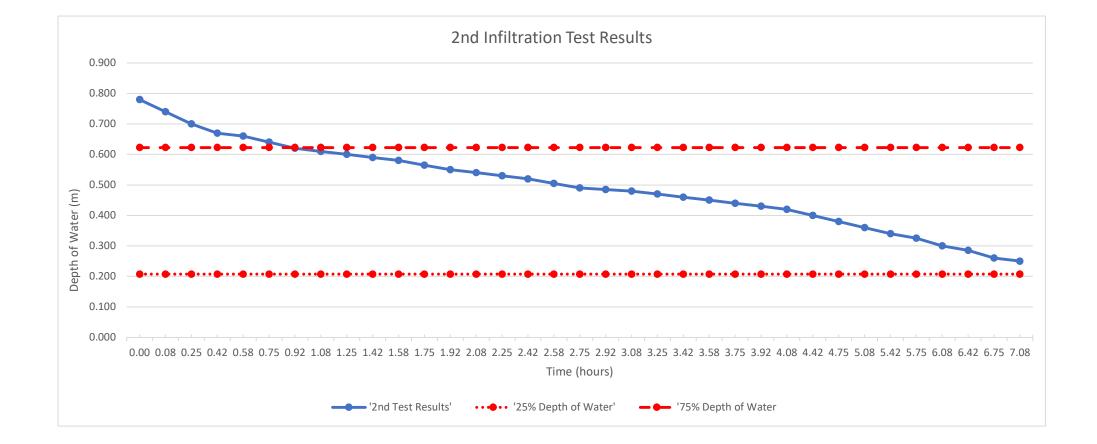
 Consulting
 Position on Site Hole Number
 Rear of Existing House

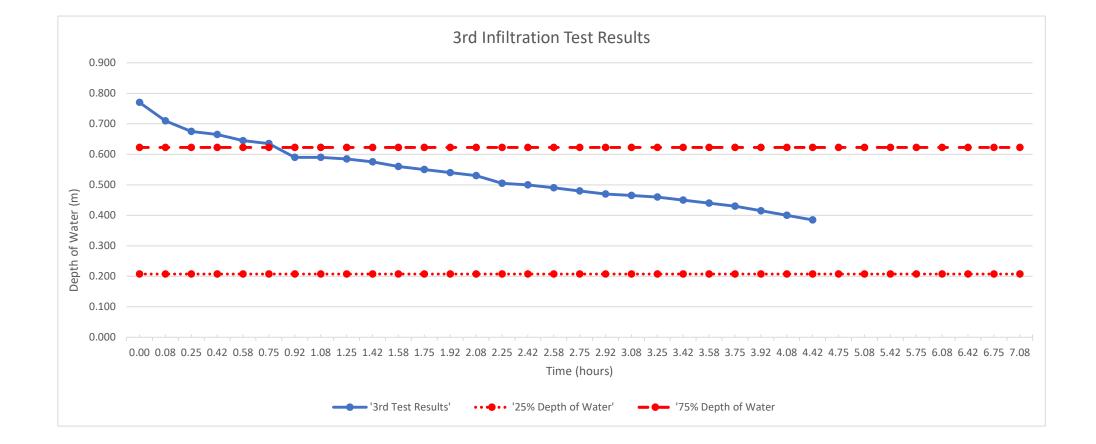

 Group.
 Hole Dimensions (m)
 Length Width

n) Length Width Depth

1.000


0.300


1.700



Depth to Water = DtoW Depth of Water (DofW) = Depth (D) - DtoW

1st Test			2nd Test			3rd Test		
Depth To Water (DtoW)	Depth of Water (DofW)	Time Elapsed (hrs)	Depth To Water (DtoW)	Depth of Water (DofW)	Time Elapsed (hrs)	Depth To Water (DtoW)	Depth of Water (DofW)	Time Elapsed (hrs)
0.870	0.830	0.00	0.920	0.780	0.00	0.930	0.770	0.00
0.940	0.760	0.08	0.960		0.08	0.990	0.710	0.17
1.000	0.700	0.25	1.000	0.700	0.25	1.025	0.675	0.33
1.040	0.660	0.42	1.030	0.670	0.42	1.035	0.665	0.50
1.065	0.635	0.58	1.040	0.660	0.58	1.055	0.645	0.67
1.090	0.610	0.75	1.060	0.640	0.75	1.065	0.635	0.83
1.110	0.59	0.92	1.080		0.92	1.110	0.590	0.00
1.120	0.58	1.08	1.090		1.08	1.110	0.590	1.17
1.140	0.56	1.25	1.100	0.600	1.25	1.115	0.585	1.33
1.160	0.54	1.42	1.110	0.590	1.42	1.125	0.575	1.50
1.170	0.53	1.58	1.120	0.580	1.58	1.14	0.560	1.67
1.190	0.51	1.75	1.135	0.565	1.75	1.15	0.55	1.83
1.200	0.5	1.92	1.150		1.92	1.16	0.54	1.00
1.215	0.485	2.08	1.160	0.54	2.08	1.17	0.53	2.17
1.225	0.475	2.25	1.170	0.53	2.25	1.195	0.505	2.33
1.24	0.46	2.42	1.180	0.52	2.42	1.2	0.5	2.50
1.25	0.45	2.58	1.195	0.505	2.58	1.21	0.49	2.67
1.275	0.425	2.75	1.210	0.49	2.75	1.22	0.48	2.83
1.29	0.41	2.92	1.215	0.485	2.92	1.23	0.47	2.00
1.3	0.4	3.08	1.220	0.48	3.08	1.235	0.465	3.17
1.32	0.38	3.25	1.230	0.47	3.25	1.24	0.46	3.33
1.33	0.37	3.42	1.24	0.46	3.42	1.25	0.45	3.50
1.35	0.35	3.58	1.25	0.45	3.58	1.26	0.44	3.67
1.38	0.32	3.75	1.26	0.44	3.75	1.27	0.43	3.83
			1.27	0.43	3.92	1.285	0.415	4.00
			1.28	0.42	4.08	1.3	0.4	4.17
			1.3	0.4	4.42	1.315	0.385	4.33
			1.32	0.38	4.75			
			1.34	0.36	5.08			
			1.36	0.34	5.42			
			1.375	0.325	5.75			
			1.4	0.3	6.08			
			1.415	0.285	6.42			
			1.44	0.26	6.75			
			1.45	0.25	7.08			
-								

Infiltration Rate for Test 1		Infiltration Rate for T	Test 2	Infiltration Rate fo	Infiltration Rate for Test 3	
Vp75-25	0.1245	Vp75-25	0.1245	Vp75-25	0.1245	
ap50	2.51	ap50	2.51	ap50	2.51	
tp75-25 (hour)	4.085	tp75-25 (hour)	6.16	tp75-25 (hour)	7.165	
Soil Infiltration rate f		Soil Infiltration rate	f	Soil Infiltration		
(m/hr)	0.012142373	(m/hr)	0.008052207	rate f (m/hr)	0.006922763	
Soil Infiltration rate f		Soil Infiltration rate	f	Soil Infiltration		
(m/s)	3.37288E-06	(m/s)	2.23672E-06	rate f (m/s)	1.92299E-06	

Soil Infiltration rate to be used for calculations

0.006922763	m/hr
1.92299E-06	m/sec

PHASE 2 REPORT ON A SITE INVESTIGATION

Site

FRIARS GARTH, THE PARADE, EPSOM, SURREY KT18 5DH

Client

WELDIN BUILDERS LTD

Report Ref 22/12385/KJC

Issued JUNE 2022

ALBURY S.I. LTD

Geotechnical and Environmental Consultants

Miltons Yard, Petworth Road, Witley, Surrey GU8 5LH

> T: 01428 684 836 F: 01428 685 261 info@alburysi.co.uk www.alburysi.co.uk

ALBURY S.I. LTD

DOCUMENT CONTROL					
Report Title	Phase 2 Report on a S	ite Investigation			
Contract	The Parade, Epsom				
Report Reference	22/12385/KJC				
Client	Weldin Builders Ltd				
Prepared by	K J Clark BSc Hons Director				
Reviewed by	G C D Owens BSc MSc F Director	G C D Owens BSc MSc FGS MIEnvSc			
Revision No.	Status	Date of Issue	Final Issue Check		
0	Final	27/06/2022			

Albury S.I. Limited has prepared this Report with reasonable skill and care for the sole use of the Client in accordance with the terms and conditions of the contract under which our services were provided. No duty of care and no contractual obligation (whether expressed or implied) is owed to any third party. Should any third party rely on this Report then they do so at their own risk and Albury S.I. Limited shall have no liability whether in contract or in tort, in negligence, for breach of statutory duty or otherwise to any such party. No warranty, expressed or implied, is made as to the professional advice included in this Report or any services provided by Albury S.I. Limited.

This Report is prepared for the specific purpose stated and in relation to the development proposals or usage indicated to Albury S.I. Limited at the time of preparation. The recommendations should not be used for adjacent schemes and may not be appropriate for alternative proposals.

The recommendations made and opinions expressed in this Report are based on the strata conditions revealed by the fieldworks as indicated on the exploratory records, together with an assessment of the data from in situ and laboratory tests. No liability can be accepted for conditions which have not been revealed by the fieldworks, for example, between exploratory positions. While this Report may offer opinions on the possible configuration of strata, both between the excavations and below the maximum depth achieved by the investigation, these comments are for guidance only and no liability can be accepted for their accuracy. The data obtained relate to the conditions which are relevant at the time of the investigation.

The groundwater observations entered on exploratory records are those noted at the time of the investigation. The normal rate of progress does not usually permit the recording of any equilibrium water level for any one water strike. It should be noted that groundwater levels are prone to seasonal variation and to changes in local drainage conditions. The word 'none' indicates that groundwater was sealed off by the borehole casing or that no water was observed in the exploratory hole upon completion.

This Report is the Copyright of Albury S.I. Limited

REPORT REF: 22/12385/KJC CONTRACT: THE PARADE, EPSOM

TABLE OF CONTENTS

1	INT	RODUCTION	1
2	FIEI	LDWORKS	1
3	3 GROUND CONDITIONS		
	3.1	Geology	2
	3.2	Stratigraphy	2
	3.3	Groundwater	3
	3.4	In Situ Testing	
4	LAE	BORATORY TESTING	
	4.1	Water Content	
	4.2	Index Properties	
	4.3	Particle Size Distribution	
	4.4	Triaxial Compression	
	4.5	Chemical Testing – Soluble Sulphates & pH	
	4.6	Geochemical Testing	
5		OTECHNICAL DISCUSSION	
	5.1	Foundations	
	5.2	Stability of Excavations	
	5.3	Groundwater	
	5.4	Drainage	
	5.5	Ground Floor Slabs	
,	5.6		
6			
	6.1	Human Health	
יח	6.2	Preliminary Waste Assessment	/
	EFEREN	ABBREVIATIONS	
LI.			

FIGURES

- Site Layout Plan 1
- Proposed Layout 2

APPENDICES

- 1
- Exploratory Records Laboratory Test Results 2
- Desiccation 3
- 4 Waste

1 INTRODUCTION

The Client proposes to construct a block of flats with associated car parking following the demolition of the existing structures at Friars Garth, The Parade, Epsom ("the site"). Albury SI Ltd completed a Phase 1 Desk Study for the site, report reference 20/11876/KJC, issued in July 2020. Consequently, in order to assist with the discharge of planning conditions an intrusive site investigation has been undertaken to ascertain the nature and engineering properties of the soils underlying the proposed development site and to obtain data which will assist in the formulation of a safe and economical foundation solution. In addition, a geo-environmental appraisal of the site has also been carried out. At the time of the site works, the site was occupied and the existing buildings were present.

In accordance with the Client's requirements the programme of this investigation comprised the construction of a single deep cable percussive borehole and six boreholes using hand-held window sampling techniques. During this work samples were recovered for further examination and laboratory testing. In addition, a number of in situ tests were also performed.

This report describes the work undertaken, presents the information obtained and discusses the ground conditions with respect to foundation design, construction and potential contamination.

2 FIELDWORKS

The boreholes were constructed on 6th and 7th June 2022 at locations as shown on the site plan, drawing no. 22/12385/1, which is presented as Figure 1. The exploratory positions were located in order to provide adequate site coverage taking into account the presence of the existing house and the proposed layout.

The depths and descriptions of the strata encountered in the boreholes are given on the records which comprise Appendix 1 to this report. These records note the depths at which samples were taken, the results of in situ tests and the groundwater observations noted at the time of the fieldworks.

Photographs which give a general impression of the site at the time of the fieldworks are included below.

3 GROUND CONDITIONS

3.1 Geology

Reference has been made to the published 1:50,000 scale British Geological Survey (BGS) digital mapping of the area and the Phase 1 Desk Study. The site is indicated as being underlain by River Terrace Deposits of geologically recent age. These superficial deposits are underlain by the Lambeth Group of Eocene age.

3.2 Stratigraphy

Consideration of the borehole records indicates that made ground varying in composition from dark brown silty sand with brick fragments to paving over concrete was present at the investigatory locations and was shown to extend to depths of between 0.40m and 1.70m.

Granular soils ranging from brown clayey sand with gravel to brown sandy gravel were encountered beneath the made ground and were proved to depths of between 2.30m and 2.80m. These soils are thought to represent the River Terrace Deposits.

Light brown sandy clay to green-grey very sandy clay was observed upon penetration of the River Terrace Deposits and was exposed to the concluding depth of boreholes 2 to 7 at 3.10m and to 6.90m in borehole 1. A thin band of grey-brown sand was observed interbedded within the sandy clay at 5.00m to 5.40m. Dark blue-grey/brown clayey sand was noted beneath the sandy clay, which extended to 8.70m. At this level, blue-grey/brown very sandy clay was exposed and proved to 11.00m. Blue-grey sand was encountered upon penetration of the very sandy clay. This fine grained soil continued to the full depth of borehole 1 at 15.00m. The above soils are collectively considered to represent the Lambeth Group.

3.3 Groundwater

During the construction of the exploratory positions tentative groundwater strikes were estimated at depths of the order of 2.50m within boreholes 2 to 7. In borehole 1 water strikes were noted at 4.70m, 6.90m and 11.00m. Short-term standing water levels upon completion of the boreholes of 3.80m and 2.08m were recorded in boreholes 1 and 5. On completion of the remaining boreholes the excavations were noted to have collapsed in to 2.50m.

3.4 In Situ Testing

During the construction of borehole 1 in situ Standard Penetration Tests [SPT] were performed. The test results are presented in terms of the number of blows to achieve a seating drive for 150mm of penetration, recorded as two 75mm increments and the test drive over 300mm recorded as four 75mm increments. The test drive is used to derive the penetration resistance for that soil layer and is recorded as the uncorrected SPT N value. A penetration resistance or N value of 18 blows/300mm was recorded in the made ground. N values ranging between 9 blows/300mm to 34 blows/300mm were recorded in the upper levels of the Lambeth Group, which, using established correlations, infers a firm to very stiff condition in situ for a cohesive soil or medium dense to dense condition for a granular soil. Three tests were conducted within the soils at the base of the borehole and N values of 85-97 blows/300mm were recorded, which infer that the soils are very dense in nature.

4 LABORATORY TESTING

A programme of laboratory testing has been undertaken and the results are presented as Appendix 2 to this report. The geotechnical soil testing was undertaken by Albury S.I. Ltd, whilst representative samples were submitted for geochemical testing at the UKAS accredited laboratories operated by i2 Analytical Ltd. Each type of test is summarised below and the results obtained have been used to assist in the formulation of the discussion.

4.1 Water Content

The water contents of samples of the soils encountered at this site have been determined. Water contents within the range 15.5% to 20.3% have been recorded.

4.2 Index Properties

The liquid and plastic limits of samples of the clay soils have been determined. The results of this work indicate that the samples tested can generally be described as inorganic clays of low to intermediate plasticity and of low shrinkage potential. In one instance the test sample proved to be non-plastic.

4.3 Particle Size Distribution

Samples of the soils encountered at this site have been subjected to sieve analysis in order to determine the soils' particle size distribution. The results of this work are presented in the form of grading curves.

4.4 Triaxial Compression

The undrained shear strength characteristics of samples of the cohesive soils encountered at this site have been determined by testing 100mm diameter specimens in the triaxial compression apparatus. Under the conditions of this work cohesions of 40kPa and 75kPa were obtained, which is indicative of a firm to stiff condition for a cohesive soil.

4.5 Chemical Testing – Soluble Sulphates & pH

Samples of the soils and groundwater encountered at this site have been subjected to chemical analyses in order to determine their soluble sulphate contents and pH values. Under the conditions of this work low concentrations of soluble sulphate have been recorded in association with near neutral pH values.

4.6 Geochemical Testing

Selected samples of the made ground have been submitted to the UKAS accredited laboratories operated by i2 Analytical Ltd. The testing comprises a suite of typical inorganic and organic priority contaminants including metals, PAH, TPH CWG and an asbestos screen.

5 GEOTECHNICAL DISCUSSION

5.1 Foundations

The Client proposes to construct a new block of flats, which will not incorporate a basement. The proposed layout is shown in Figure 2. At the time of the preparation of this report no information had been provided with respect to the anticipated structural loads.

It cannot be recommended that major structural foundations be located within the made ground revealed by this investigation. Soils of this origin are frequently present in a weak and variable condition such that unacceptable settlement could occur even under the action of light loading intensities. Therefore, it will be necessary to continue foundation excavations through these undesirable materials where they are of less than 1.00m in thickness to this minimum depth in order to avoid that zone of soil which is subject to normal seasonal moisture variation or frost action. The above precautions need not necessarily be applied to light ancillary structures, which will be formed structurally discrete from the main development and in which a greater degree of settlement can be tolerated.

It is known that a number of trees are present in the vicinity of the proposed structure. A discussion of the causes, effects and classification of desiccation in clay soils is included in Appendix 3 to this report. Consideration of the results of the laboratory testing indicates that moisture deficiency is not present within the cohesive soils encountered at this site. Nevertheless, it will be necessary to ensure that foundations comply with NHBC criteria on the basis that the cohesive soils are of low shrinkage potential.

Interpretation of the data derived from this investigation indicates that non-shrinkable granular soils will be present at a nominal depth of 1.25m beneath the made ground. Cohesive soils were noted to underlie the granular soils at depths of between 2.30m and 2.80m. It is possible that strip or spread foundations, constructed at a minimum depth of 1.00m, compliant with NHBC Criteria can be adopted. It is considered that the brown silty sand is competent to accept a maximum increase in load of 100kPa. At this loading intensity a factor of safety of 3 against general shear failure will be operative. Moreover, settlements should remain within tolerable limits for the type of structure proposed. These movements are likely to be sensibly complete during a normal construction period due to the free draining nature of the underlying soils.

An increased thickness of made ground was recorded to 1.70m depth at the location of borehole 1. Therefore, where required, local extension of foundation excavations should be undertaken to ensure that a consistent founding medium is achieved.

Should it be found that foundation depths do not comply with NHBC Criteria or a greater bearing is required then consideration should be given to use of piles. The design of piles lies outside the scope of this report as it is dependent upon the type of pile employed, its size and bearing capacity. Therefore, when the loadings are known it will be sensible to seek the advice of suitably experienced specialist piling contractors in order to provide a satisfactory solution to the problem. The information given in Appendices 1 and 2 of this report may be used in pile design.

5.2 Stability of Excavations

Excavations of less than 1.00m depth should not require temporary support to their sides. However, where foundation excavations are extended below this level, adequate temporary support or shoring should be provided in order to comply with current statutory safety regulations and to maintain the stability of the excavation sides.

5.3 Groundwater

The groundwater observations noted at the time of the fieldworks suggest that this phenomenon should not represent an engineering problem in respect of shallow depth excavation. Any seepages or surface water run-off accumulating in foundation excavations should be removed expeditiously by the construction of sumps from which the water can be pumped.

5.4 Drainage

The near surface drainage characteristics of the underlying granular soils have not been considered as part of this investigation. It is believed that these may act as a suitable drainage medium and this should be confirmed by carrying out full scale soakaway tests.

5.5 Ground Floor Slabs

The thickness of made ground revealed by this investigation, commonly in excess of 0.60m, infers that a system of fully suspended floor slabs should be incorporated within the proposed structure in accordance with NHBC criteria.

5.6 Buried Concrete

The information obtained from this investigation has been compared with the criteria proposed in BRE Special Digest 1, 2005 Edition, Concrete in Aggressive Ground. Using the information in Table C1 (natural ground) or C2 (brownfield locations) of this publication the Aggressive Chemical Environment for Concrete Classification (ACEC) is AC-1s, which coincides with a Design Sulphate Class DS-1. The ACEC Class above can be used to determine the Design Chemical Class for concrete for general cast-in-situ use as required Part D of the Digest.

6 GROUND CONTAMINATION

A Conceptual Site Model (CSM) was formulated for this site as part of the Phase 1 Desk Study. This report has been used to inform the current Phase 2 intrusive investigation. The CSM produced as part of the Desk Study noted a low risk of the presence of heavy metals and PAH's. The report also highlighted the need for the completion of an asbestos survey on the existing building.

6.1 Human Health

A generic assessment of the chronic or long-term risk to human health from soil contamination has been made using the available generic screening criteria. The screening

values include the Category 4 Screening Levels [C4SLs] (DEFRA, 2014) and Suitable for Use Levels [S4ULs] (LQM/CIEH, 2014) derived using the CLEA software. It should be appreciated that these do not consider the short-term or acute risks, such as to construction workers or SI personnel.

The results have been compared against the criteria for a Residential (with home-grown produce) end-use and appropriate SOM. A study of the data reveals elevated levels of PAH's, namely benzo(a)pyrene and dibenz(a,h)anthracene, which exceed the S4UL GAC in the test sample from borehole 5. Elevated levels of lead were also recorded at the locations of boreholes 1, 2, 3 and 5. Additional testing at these positions revealed elevated levels of lead at 0.50m depth in boreholes 1, 2 and 5. Acceptable PAH levels were recorded at 0.50m in borehole 5.

Remedial measures will need to be implemented as part of the redevelopment. It is recommended that 600mm of material should be removed from all soft landscaped areas. Thereafter, clean material should be placed comprising 450mm of granular subsoil, overlain by a minimum thickness of 150mm of clean topsoil. A formal Remediation Method Statement is likely to be required to satisfy the Local Authority and warranty provider with supplementary validation to confirm the measures have been implemented.

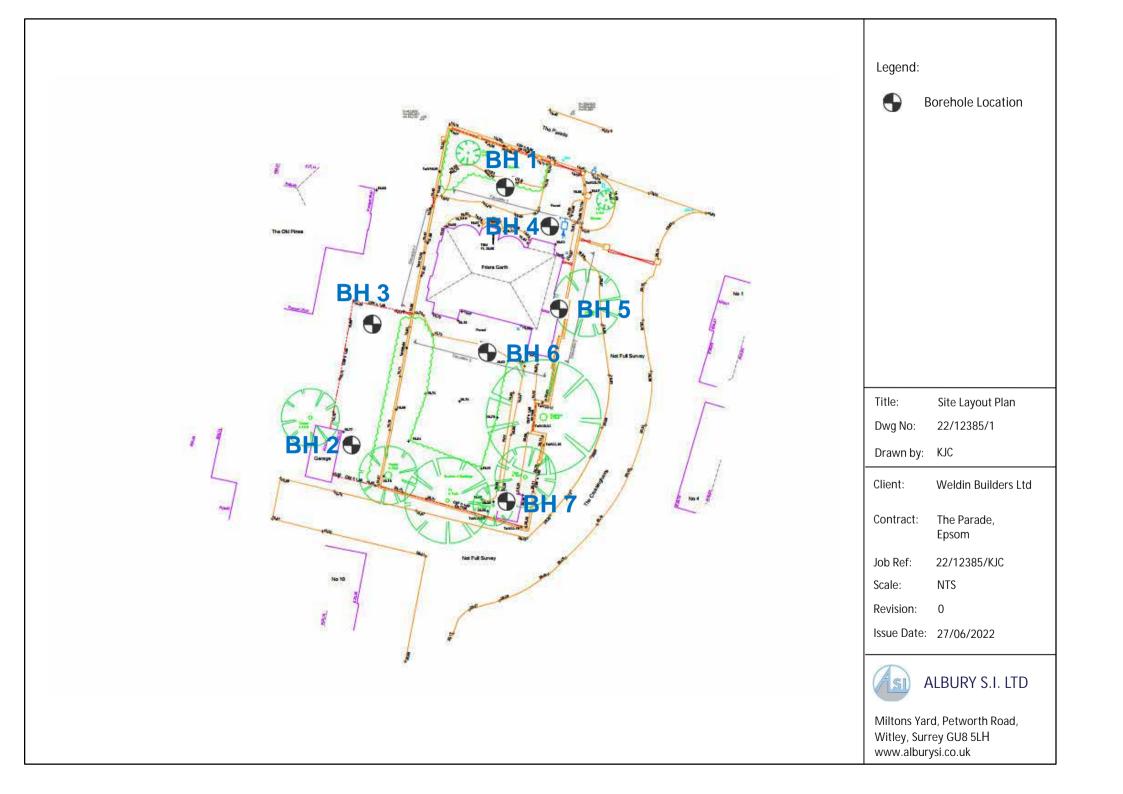
In areas of hard cover, i.e. parking and the proposed block of flats, remedial measures will not be required as the PAH contaminated soils will be removed and replaced as part of road and floor slab construction. Moreover, no viable pathway will exist where hard cover is present.

6.2 Preliminary Waste Assessment

Where excavated soils cannot be re-used or retained on site, then these surplus materials will require off-site disposal. It may be possible to divert the unwanted material to a soil treatment hub where it can be recycled. Where material cannot be re-used or recycled then disposal at a licensed landfill site can be considered. It will then be necessary to classify the spoil as inert, non-hazardous or hazardous. A discussion of the current regime for the classification and treatment of waste soils is included in Appendix 4.

An initial assessment of the geochemical results obtained from this investigation has been carried out to provide a preliminary classification of the surplus materials. The Atkins CAT-WASTE tool determines whether waste soil should be classified as being non-hazardous or hazardous. The output from the CAT-WASTE assessment is located in Appendix 4. Based on the output waste soil arisings from this site have been tentatively identified as being non-hazardous waste. The underlying soils are considered to be inert for disposal purposes. No asbestos was detected in any of the test samples.

This assessment is preliminary and based upon the information obtained from the investigation. Where made ground is excavated then these materials should be stockpiled and segregated. Further sampling, testing and characterisation to accurately classify waste soil arisings may be required. It should be appreciated that it is the responsibility of the waste producer to sufficiently characterise their waste. Moreover, the agreement of the waste acceptor should be sought.


- British Standards (2016). Methods of test for soils for civil engineering purposes, BS 1377-1:2016. British Standard Institution, London.
- British Standards (2011). Investigation of potentially contaminated sites. Code of Practice. BS 10175+A2:2017. British Standard Institution, London.
- British Standards (2013). Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs). BS 8576. British Standard Institution, London.
- British Standards (2015). Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings. BS 8485+A1:2019. British Standard Institution, London.
- British Standards (2015). Code of practice for ground investigations, BS 5930:2015. British Standard Institution, London.
- Building Research Establishment [BRE] (2004). Cover systems for land regeneration: Thickness of cover systems for contaminated land (BR 465). BRE Watford, UK.
- Building Research Establishment [BRE] (2005). Concrete in aggressive ground: Special Digest 1 (3rd Ed.). BRE Watford, UK.
- Building Research Establishment [BRE] (2015). Guidance on protective measures for new buildings. (BR 212). BRE Watford, UK.
- Contaminated land: Applications in Real Environments. (2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination Final Project Report.
- Chartered Institute of Environmental Health and Contaminated Land: Applications in Real Environments (2008). The Guidance on Comparing Soil Contamination Data with Critical Concentration. London, UK.
- Environment Agency (2004). Model Procedures for the Management of Contaminated Land. Contaminated Land Report (CLR) 11, SC02000028, Environment Agency, Bristol, UK.
- Environment Agency (2015). Interpretation of the definition and classification of hazardous waste. 1st edition. Technical Guidance WM3. Environment Agency, UK.
- Nathanail, C.P., McCaffrey, C., Gillett, A.G., Ogden, R.C. and Nathanail, J.F. (2015). The LQM/CIEH S4ULs for Human Health Risk Assessment. Land Quality Press, Nottingham. Publication Number S4UL3073.
- Stroud, M. A. (1974). The standard penetration test in insensitive clays and soft rocks. Proceedings of the European Symposium on Penetration Testing, Stockholm, 2, 367-375.

LIST OF ABBREVIATIONS

AOD	-	Above Ordnance Datum
ACM	-	Asbestos-containing Material
AST	-	Above-ground Storage Tank
BGS	-	British Geological Survey
BH	-	Borehole
BRE	-	Building Research Establishment
BSI	-	British Standards Institution
BS	-	British Standard
C4SL	-	Category Four Screening Level
CIRIA	-	Construction Industry Research and Information Association
СР	-	Cable Percussive
DPH	-	Dynamic Probing Heavy
DPSH	-	Dynamic Probing Super Heavy
EA	-	Environment Agency
GAC	-	Generic Assessment Criteria
LL	-	Liquid Limit
mAOD	-	Metres Above Ordnance Datum
mBGL	-	Metres Below Ground Level
mOD	-	Metres Ordnance Datum
OS	-	Ordnance Survey
PAH	-	Polycyclic Aromatic Hydrocarbons
PCB	-	Polychlorinated Biphenyl
PID	-	Photo Ionisation Detector
PL	-	Plastic Limit
PSD	-	Particle Size Distribution
SGV	-	Soil Guideline Value
SOM	-	Soil Organic Matter
SPT	-	Standard Penetration Test
SPZ	-	Source Protection Zone
SVOC	-	Semi-volatile Organic Compounds
TPH	-	Total Petroleum Hydrocarbon
UST	-	Underground Storage Tank
UXB	-	Unexploded Bombs
UXO	-	Unexploded Ordnance
VOC	-	Volatile Organic Compound

FIGURE 1

SITE LAYOUT PLAN

FIGURE 2

PROPOSED LAYOUT

APPENDIX 1

EXPLORATORY RECORDS

	ALBURY		TD oad, Witley, Surrey G	U8 5I H				BOREHOLE		1		
Cont			The Parade, Epse					Report Ref		22/12	385/KJC	
Clier	nt		Weldin Builders	Ltd				Ground Level		mAOD	I	
Site	Address		Friars Garth, The	e Parade,	Epsom, S	urrey KT18 5DI	Н	Date Commenced 06/06/202 Date Completed 06/06/202				
Туре	& Diameter of	Boring	Light Cable Percus	sion: 150m	n: 150mm diameter Sheet No 1 of 2							
	Water Strikes, ı	-				Water leve	els recorded during b	poring, m				
1 2	4.70 6.90		Date Hole Depth		5/2022 .10	06/06/2022 15.00	06/06/2022 15.00					
3	11.00		Casing Depth		one	12.50	none					
4			Water Level	4	.00	11.00	3.80					
Rema Stari	ter pit comple	ted to cl	ear services									
Sam	oles or Tests		ndard Penetration	Tests	Depth	Legend		Strata Desc	rintion			
Гуре	Depth, m	Seat	Test Drive	Ν	m				•		and reats)	
D B	0.30 0.50						MADE GROUND	(dark brown/grey	sand wi	ith gravei	and roots)	
D D	1.00 1.20-1.65	4,4	5,5,4,4	18	1.00		MADE GROUND	(grey sand and gra	avel)			
D D	1.75 2.00-2.45	1,1	2,2,2,3	9	1.70		Loose brown clay	yey SAND with gra	avel; gra	vel reduc	es with deptl	
D U	2.75 3.00-3.45				2.60	• • •	Firm orange-brow	wn/grey sandy CL	AY			
D D	3.75 4.00-4.45	5,7	7,8,9,10	34	3.70		Very stiff green-ç	grey very sandy Cl	LAY			
D	5.00-5.45	4,6	7,8,9,8	32	5.00 5.40	• •	Dense grey-brow		CL AV			
D	6.00						Pale blue-yl eyrbl	rown very sandy (ULAT			
U	6.50-6.95				6.50 6.90	• <u>•</u>	Stiff green-grey/l	brown very sandy	CLAY w	ith grave	I	
D	7.50				0.70		Medium dense d	ark blue-grey/bro	own clay	ey SAND		
D	8.00-8.45	4,5	6,8,8,7	29								
					8.70							
l					1 × //1							

Sample Code: U - Intact 100mm Ø B - Large Disturbed D - Small Disturbed W - Water Sample (U)* - Non-recovery of Intact 100mm Ø sample [+] - extrapolated SPT N value

	ALBURY Miltons Yard, Pe	S.I.L etworth R	TD oad, Witley, Surrey GL	J8 5LH			Sheet 2 of 2	BOREHOLE	1		
Con	tract	The P	arade, Epsom					Report Ref	22/12385/KJC		
	ples or Tests		ndard Penetration T		Depth	Legend		Strata Descripti	on		
Туре	Depth, m	Seat	Test Drive	N	m	5	Very stiff blue-grey very sandy CLAY (continued)				
D	9.50-9.95	4,7	8,7,8,9	32		· 	very stin blue-gre				
D	10.50					 					
D	11.00-11.45	10,14	17,18,25,25	85	11.00	•	Very dense blue-ç	jrey SAND			
D	12.00										
D	12.50-13.00	14,18	20,24,25,25	94							
D	13.50					 					
D	14.50-14.95	10,17	22,25,25,25	97	15.00	· · ·	END OF BOREHOL	E			

Sample Code: U - Intact 100mm Ø B - Large Disturbed D - Small Disturbed W - Water Sample (U)* - Non-recovery of Intact 100mm Ø sample [+] - extrapolated SPT N value

(s)	ALBUR Miltons Yard	/ S.I. LT d, Petworth	D Road, Witle	y, Sı	urrey GU8 5L	Н	BOREHOLE	2		
Contract			de, Epsom				Report Ref	22/12385/KJC		
Client		Weldin B	uilders Ltd				Date	07/06/2022		
Site Addr	ess	Friars Ga	rth, The Par	ade,	, Epsom, Surr	ey KT18 5DH	Ground Level			
Type of ex Water s	cavator trikes, m	Window Dime	Sampler ensions, m		Water leve	l after completion, m Ease	blocked @ 2.50 of excavation, m			
1	2.60?	Diameter	0.06		Very easy		Difficult GL-	1.50		
2					Moderate	1.50-3.10	Very hard			
Remarks Obstructi	on at 0.70m	on first atter	mpted posit	ion						
	s or tests	Shear Strength	Depth		Legend		Strata Description			
Type D	Depth, m 0.10	kPa	-	_		MADE GROUND (gra	ss over brown silty SAN	ID with occasional		
D	0.10				$\left \right\rangle$	brick fragments)				
D	0.50				\sum					
					\times					
D	1.00									
D	1.30		1.10		• × •	Orange-brown silty SAND with seams of grey sandy clay with roots (1.30m)				
D	1.50				•	,				
					• × •					
D	2.00				•					
			2.20		• × •					
D	2.50				• • •	Brown SAND with ra	re graver			
			2.60		-	Pale grey/brown san	dy CLAY			
D	3.00									
D	0.00		3.10		•	END OF BOREHOLE				

	ALBUR Miltons Yard			/, Sui	rrey GU8 5LI	H	BOREHOLE	3					
Contract			de, Epsom				Report Ref	22/12385/KJC					
Client		Weldin B	uilders Ltd				Date	07/06/2022					
Site Addr	ess	Friars Gar	rth, The Para	ade,	Epsom, Surr	ey KT18 5DH	Ground Level						
Type of ex Water s	cavator trikes, m	Window S Dime	Sampler nsions, m		Water leve	l after completion, m Ease of	blocked @ 2.50 excavation, m						
1	2.50?	Diameter	0.06		Very easy		Difficult GL-1	.00					
2					Moderate	1.00-3.10	Very hard						
Remarks													
Samples	s or tests	Shear Strength	Depth		Legend		Strata Description						
Туре	Depth, m	kPa	Deptil		Legend								
D	0.10				\times	MADE GROUND (grass over dark brown/grey silty SAND with extensive brick in the upper margins)							
D	0.30				\times								
D	0.50			<u> </u>	\times								
					\times								
D	1.00				\times								
D	1.00		1.10		$\times \times$								
						Orange-brown SAND v	with rare gravei						
D	1.50												
			1.70		• •								
					-	Brown/grey gravelly S	AND						
D	2.00				• • •								
_					• • •								
D	2.50		2.60										
					•	Light brown very sand	y CLAY						
D	3.00				·								
D	5.00		3.10	ΞĻ	•	END OF BOREHOLE							
				\square									
				H									

			y, Su	Irrey GU8 5L	Η	BOREHOLE	4
						Report Ref	22/12385/KJC
	Weldin B	uilders Ltd				Date	07/06/2022
ess	Friars Gar	th, The Para	ade,	Epsom, Surr	ey KT18 5DH	Ground Level	
cavator				Water leve		blocked @ 2.50	
				Vorugeou	Ease o		00
2.301	Diameter	0.00					.00
				Moderate	1.00-3.10	Very hard	
s or tests	Shear Strength	Donth		legend		Strata Description	
Depth, m	kPa			Logenu			
0.20		0.10	$\left - \right $	\times		-	h group and brief
				$\bigvee \bigvee$	concrete fragments)	y/brown silly saind wit	n gravei and brick/
0.50				$\langle \rangle \rangle$			
		0.70		$\langle \rangle \rangle$			
		0170		$\langle \rangle \rangle$		k grey-brown clayey SA	ND with occasional
1.00				\times	gravel at depth)		
		1 20		$\times \times$			
		1.20			Orange-brown SAND	with rare gravel	
1.50				•			
2.00							
				•			
2.50			\square				
		2.60	\square		Green-grey/brown	andy CLAY with rare are	wel
2.70				•	or con-grey/brown So	anay olari witi hale yia	
3.00							
		3.10		•	END OF BOREHOLE		
			$\left - \right $				
•	Miltons Yard ess cavator trikes, m 2.50? Depth, m 0.20 0.50 1.00 1.00 1.50 2.00 2.50 2.70	Miltons Yard, PetworthThe ParadThe ParadWeldin BitessFriars GarcavatorWindow Strikes, mDime2.50?Diameter0.20Shear0.20Strength0.201.001.001.502.50?2.502.702.70	The Parade, Epsom Weldin Builders Ltd ess Friars Garth, The Para cavator Window Sampler trikes, m Diameter 0.06 Sor tests Shear Strength Depth, m Depth 0.20 0.10 0.10 0.20 0.10 0.10 0.50 0.70 0.70 1.00 1.20 1.20 1.50 1.20 1.20 2.50 2.60 2.60 3.00 2.60 2.60	Miltons Yard, Petworth Road, Witley, Su The Parade, Epsom Weldin Builders Ltd ess Friars Garth, The Parade, cavator Window Sampler trikes, m Dimensions, m 2.50? Diameter 0.06 or tests Shear Strength kPa Depth 0.20 0.10 0 0.50 0.70 1 1.00 1.20 1 1.50 1.20 1 2.501 2.60 1	Miltons Yard, Petworth Road, Witley, Surrey GU8 5L1 The Parade, Epsom Weldin Builders Ltd ess Friars Garth, The Parade, Epsom, Surread Vindow Sampler Water leve trikes, m Dimensions, m 2.50? Diameter 0.06 Very easy Moderate Strength Bepth, m Legend 0.20 0.10 Image: Colspan="2">Image: Colspan="2">Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Co	Miltons Yard, Petworth Road, Witley, Surrey GU8 5LH The Parade, Epsom Weldin Builders Ltd ess Friars Garth, The Parade, Epsom, Surrey KT18 5DH cavator Window Sampler Water level after completion, m trikes, m Dimensions, m Ease of 2.50? Diameter 0.06 Very easy Moderate 1.00-3.10 MADE GROUND (pav MADE GROUND (pav MADE GROUND (grey concrete fragments) 0.50 0.70 MADE GROUND (dari gravel at depth) 1.00 1.20 MADE GROUND (dari gravel at depth) 1.50 2.00 2.60 . 2.50 2.60 . . . 3.00 2.10 . . .	Miltons Yard. Petworth Road, Wittey, Surrey GU8 5LH Defection The Parade, Epsom Report Ref Weldin Builders Ltd Date ess Friars Garth, The Parade, Epsom, Surrey KT18 5DH Ground Level cavator Window Sampler Water level after completion, m blocked @ 2.50 trikes, m Dimensions, m Ease of excavation, m Ease of excavation, m 2.50? Diameter 0.06 Very easy Difficult GL-1 Moderate 1.00-3.10 Very hard

	ALBUR Miltons Yard			y, Si	ırrey GU8 5LI	Н	BOREHOLE	5			
Contract			de, Epsom				Report Ref	22/12385/KJC			
Client		Weldin B	uilders Ltd				Date	07/06/2022			
Site Addre	ess	Friars Gar	th, The Para	ade,	Epsom, Surr	ey KT18 5DH	Ground Level				
Type of exc		Window			Water leve	l after completion, m	2.08				
	trikes, m	Dime	nsions, m 0.06		Veryeen	Ease of	f excavation, m	00			
	2.50?	Diametei	0.06		Very easy		Difficult GL-1	.00			
2					Moderate	1.00-3.10	Very hard				
Remarks											
	s or tests	Shear Strength	Depth		Legend		Strata Description				
Туре	Depth, m	kPa				MADE GROUND (conc					
D	0.20		0.10		\times	MADE GROUND (conc MADE GROUND (grey		silty SAND with			
					\succ	gravel and brick fragm					
D	0.50				\times						
					$\times \times$						
					$\bigvee \bigvee$						
D	1.00		0.90			Orange-brown SAND	with gravel (tiny amou	nt of chalk present			
					• •	on boundary @ 2.8m)		·			
					•						
D	1.50										
D	1.50			<u> </u>							
					-						
D	2.00			_	•						
					· .						
D	2.50				•						
			2.80		-	Green-grey/brown sa	adv CLAV				
D	3.00				•	Green-grey/brown sa	ndy CLAY				
			3.10			END OF BOREHOLE					
W	(2.08)										
	(2.00)										
				\vdash							
				\vdash							

(s)	ALBUR Miltons Yard			y, Si	urrey GU8 5L	Н	BOREHOLE	6			
Contract			de, Epsom				Report Ref	22/12385/KJC			
Client		Weldin B	uilders Ltd				Date	07/06/2022			
Site Addr	ess	Friars Ga	rth, The Para	ade,		ey KT18 5DH	Ground Level				
Type of ex	cavator	Window	Sampler		Water leve	l after completion, m	blocked @ 2.50				
1	trikes, m 2.50?	Diameter	ensions, m 0.06		Very easy	Ease of	excavation, m Difficult				
	2.50:	Diameter	0.00			1 50 0 40		50			
2					Moderate	1.50-3.10	Very hard GL-1	.50			
Remarks											
Commission	o or tooto	Shear									
-	s or tests	Strength	Depth		Legend		Strata Description				
Type D	Depth, m 0.10	kPa				MADE GROUND (grass	over dark grey/browi	n silty SAND with			
D	0.30				$\langle \rangle \rangle$	gravel and roots)					
D	0.50				$\langle \rangle \rangle$						
D	0.50				\times						
			0.80		$\times \times$						
D	1.00		0.00		<u> </u>	Brown sandy GRAVEL;	becoming gravelly SA	ND			
D	1.00				• 0 •						
					o • o						
D	1.50				• • •						
D	1.50				0 • 0						
D	2.00				• • •						
D	2.00				-						
					• • •						
D	2.50				-						
D	2.50		2.60								
D	2.75					Pale grey/orange-brow	vn sandy CLAY				
					•						
D	3.00		3.10		•	END OF BOREHOLE					
						END OF BOREHOLE					
				\square							
				1							

(Is)	ALBUR Miltons Yard			y, Sı	urrey GU8 5L	H	BOREHOLE	7	
Contract			de, Epsom				Report Ref	22/12385/KJC	
Client		Weldin B	uilders Ltd				Date	07/06/2022	
Site Addr	ess	Friars Ga	rth, The Par	ade,	Epsom, Surr	ey KT18 5DH	Ground Level		
Type of ex	cavator	Window	Sampler		Water leve	l after completion, m	blocked @ 2.50		
	trikes, m	Dime	ensions, m 0.06		Varuanau	Ease of	excavation, m	1.00	
1	2.50?	Diametei	0.06		Very easy)-1.80	
2					Moderate	1.80-3.10	Very hard GL-1	1.30	
Remarks									
Samples	s or tests	Shear Strength	Depth		Legend		Strata Description		
Туре	Depth, m	kPa	Doptil		Logona				
D	0.10				$\times \times$	MADE GROUND (grass gravel and roots)	s over dark grey/brow	n silty SAND with fine	
D	0.30		0.40		\sim	g ,			
D	0.50		0.40	_		Brown SAND AND GRA	AVEL		
					0 • 0				
					- 0 -				
D	1.00								
	1.00				•••				
			1.20			Brown silty SAND with	rare gravel		
	1.50				-		raio graver		
D	1.50			_					
					-				
D	2.00			_					
			0.00						
			2.30			Grey/brown sandy CLA	ΑY		
D	2.50					5			
					•				
				\vdash					
D	3.00		0.10						
			3.10			END OF BOREHOLE			
				\vdash					

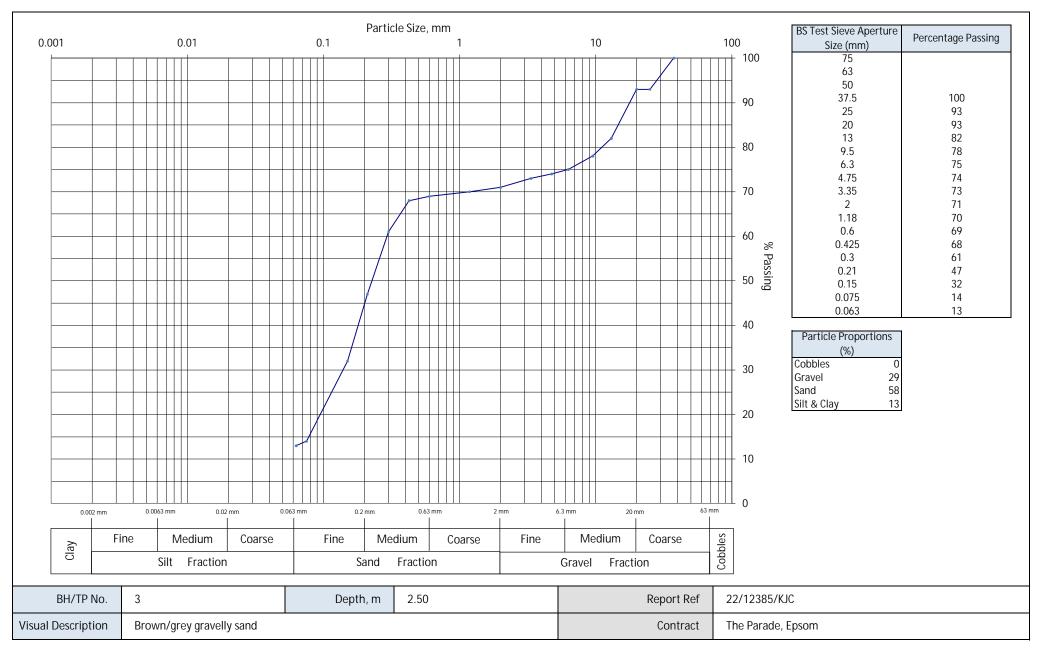
APPENDIX 2

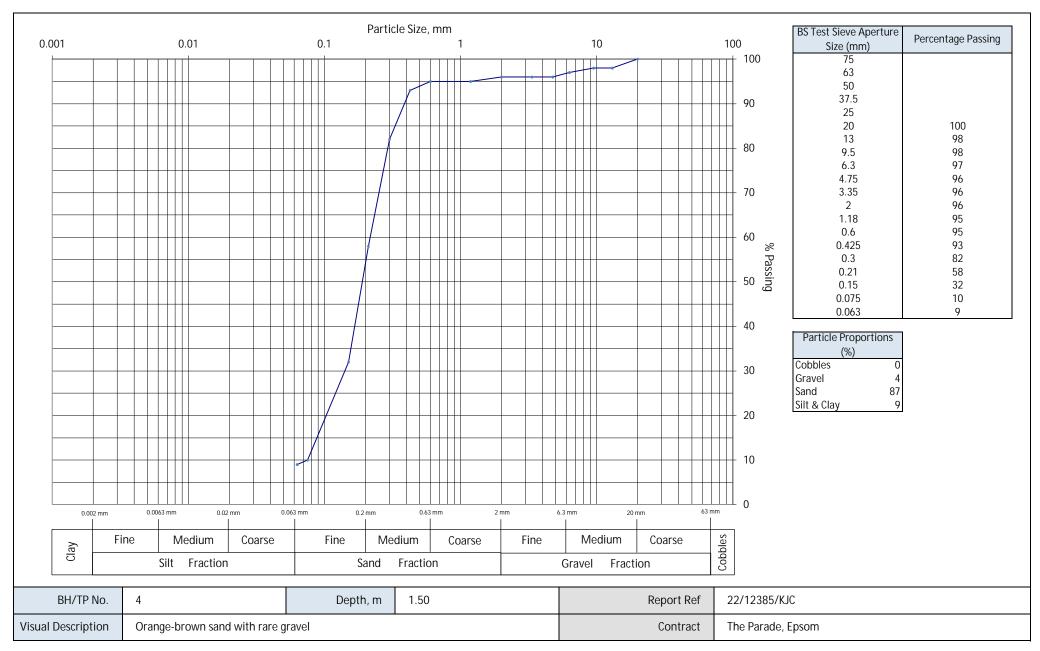
LABORATORY TEST RESULTS

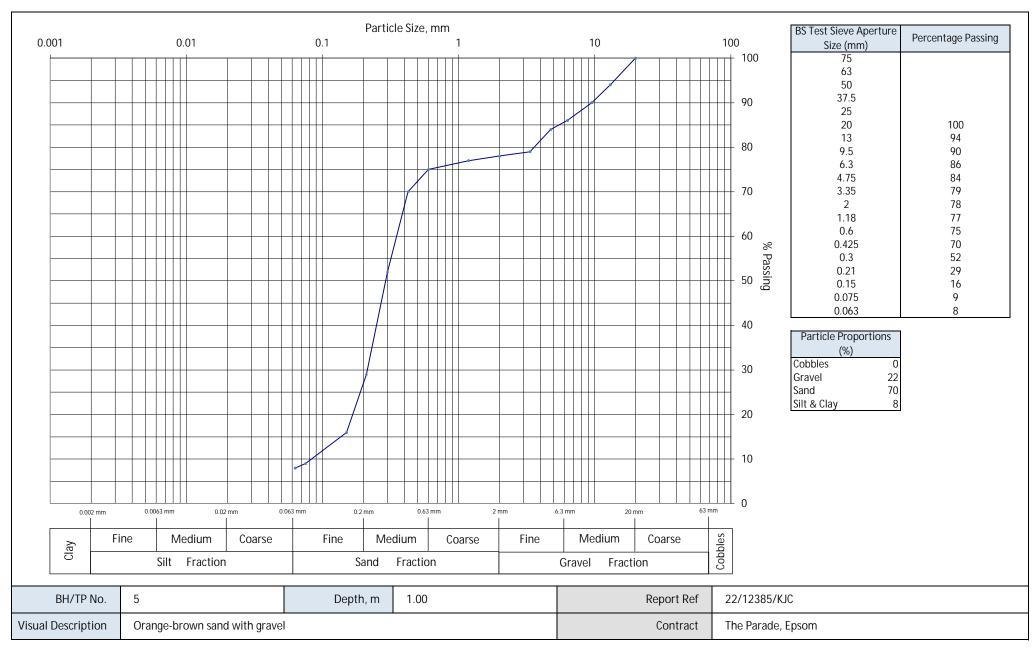

INDEX PROPERTIES & TRIAXIAL COMPRESSION TESTS

BS 1377 : Parts 2 & 7 : 1990

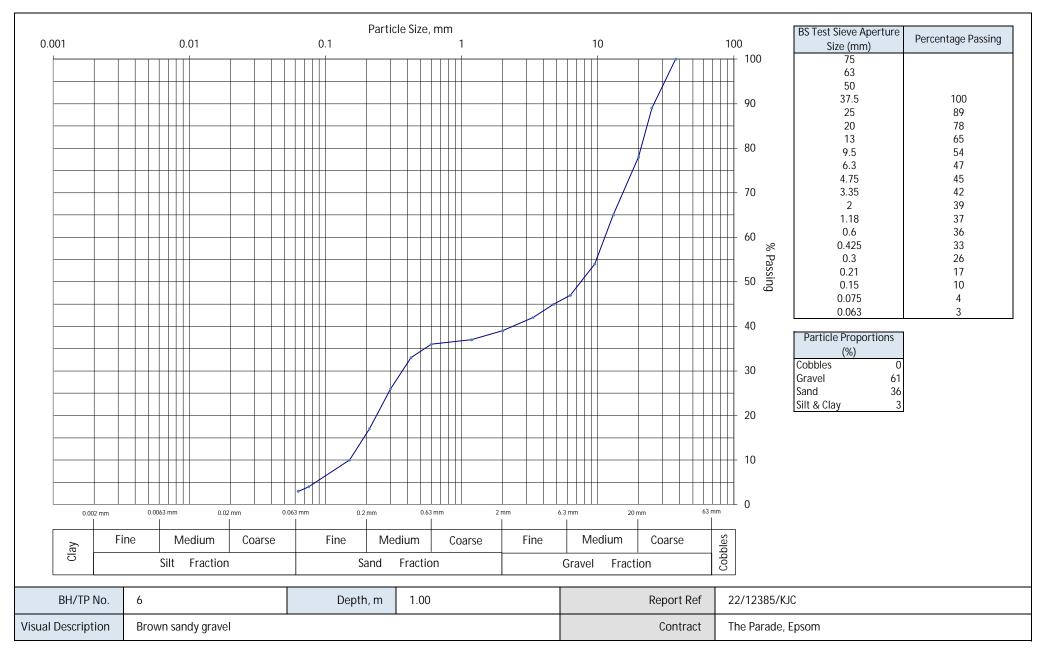
Repo	rt Ref	22/12385/KJC	Contract		The Par	ade, Epsom										
		Sample			INDEX PR	OPERTIES					TRIAXI	AL COMPR	ESSION			
BH/TP No.	Depth m	Description	Liquid Limit %	Plastic Limit %	Plasticity Index %	% Passing 425micron Sieve	Corrected Plasticity Index IP %	Soil Plasticity	Code	Lateral Pressure kPa	Compressive Strength kPa	Cohesion kPa	Angle of Friction	Bulk Density kg/cu.m	Water Content % dry wt	Remarks
BH 1	2.00	Brown clayey sand with gravel				73		NP							15.8	Non-plastic
	3.00- 3.45	Orange-brown/grey sandy clay							U100	70	75	40	0	2280	20.3	
	6.50- 6.95	Green-grey/brown very sandy clay with gravel	31	20	11	76	8	CL	U100	140	150	75	0	2045	15.3	
BH 2	3.00	Pale grey/brown sandy clay	34	14	20	91	18	CL							19.6	
BH 4	2.70	Green-grey/brown sandy clay	30	15	15	91	14	CL							16.1	
BH 6	2.75	Pale grey/orange-brown sandy clay	35	15	20	94	19	CL/CI							16.6	
KEY:	Code: Soil Type:	38 - 38mm nominal diameter s U - Undrained C - Clay	pecimen	CD		ominal diame ted Drained	eter specime	en	CU	- Remoulde - Consolida - Organic		ed	M	- Functiona - Multi Stag - Non Plasti	je	LV - Laboratory Vane S - Single Stage
	Plasticity:	L - Low			- sin - Intermedi	ate				- Organic - High				- Very High		E - Extremely High

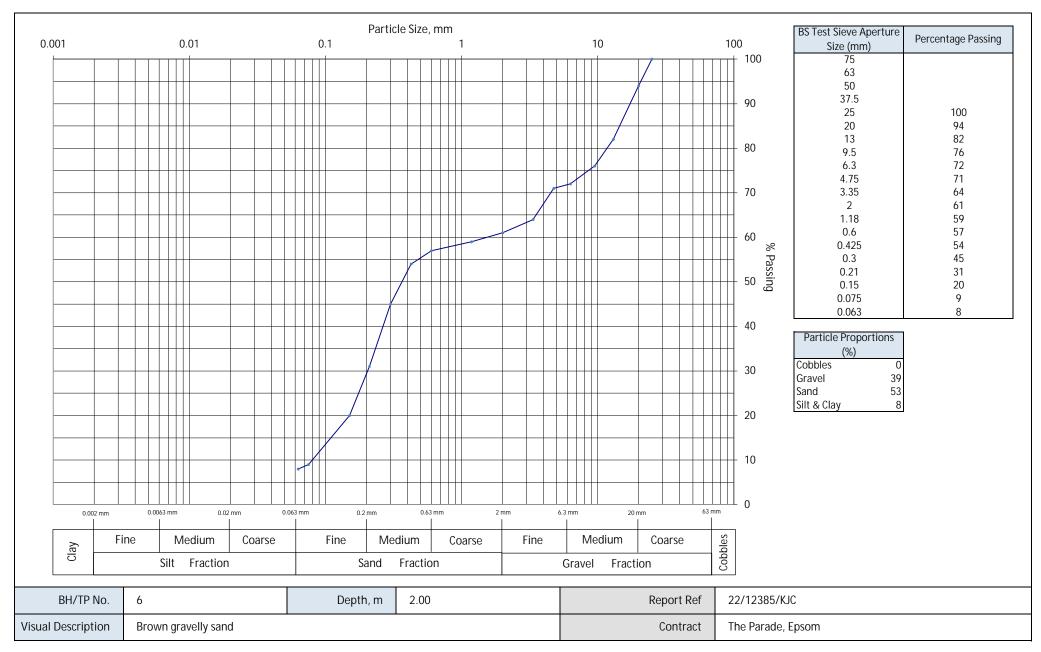

ALBURY S.I. LTD Miltons Yard, Petworth Road, Witley, Surrey, GU8 5LH


0.001	0.01		icle Size, mm 1	10		100	BS Test Sieve Aperture Size (mm)	Percentage Passing
	0.01	0.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fine Medium	20 mm 63 m Coarse ction	100 100 90 80 70 60 87 50 90 40 40 30 20 10 10 90 10 10 10 10 10 10 10 10 10 1	Size (mm) 75 63 50 37.5 25 20 13 9.5 6.3 4.75 3.35 2 1.18 0.6 0.425 0.3 0.21 0.15 0.075 0.063	Percentage Passing 100 99 90 65 40 19 18
			I		1			
BH/TP No. Visual Description	2 Orange-brown silty sand with	Depth, m rare seams of grey sand	1.30 dy clay		Report Ref Contract	22/12385/KJ The Parade, E		


0.001	0.01		icle Size, mm	10	100	BS Test Sieve Aperture Size (mm)	ing
0.001		Parti	1			Size (mm) Percentage Pass 75 63 50 37.5 25 20 13 9.5 6.3 4.75 100 3.35 99 2 1.18 99 0.6 99 0.425 98	ing
					40 40 20 10 10	0.3 87 0.21 51 0.15 23 0.075 7 0.063 6 Particle Proportions (%) Cobbles 0 Gravel 1 Sand 93 Silt & Clay 6	
C	ine Medium Coarse Silt Fraction	Sand	edium Coarse	Fine Medium Coal Gravel Fraction	Cobbi		
BH/TP No. Visual Description	3 Orange-brown sand with rare	Depth, m gravel	1.50		ort Ref 22/12385/k ontract The Parade		

PARTICLE SIZE DISTRIBUTION TEST BS 1377 : Part 2 : Clauses 9.2, 9.3 : 1990 Particle Size Distribution by Wet/Dry Sieving Method


ALBURY S.I. LTD Miltons Yard, Petworth Road, Witley, Surrey GU8 5LH



PARTICLE SIZE DISTRIBUTION TEST BS 1377 : Part 2 : Clauses 9.2, 9.3 : 1990 Particle Size Distribution by Wet/Dry Sieving Method

0.001		rticle Size, mm		10		100	BS Test Sieve Aperture	Percentage Passing
0.001 0.01	0.1	1		10		100	Size (mm)	r creentage r assing
		╵╵┟┟┼┼┼┝╼╼╼┾				100	75	
						<u></u>	63 50	
							37.5	
						90	25	
						++-	20	
							13	100
						80	9.5	99
	/				+ $+$ $+$ $+$ $+$	++-	6.3	99
							4.75	99
						70	3.35	99
					+	++-	2 1.18	99 99
							0.6	99 98
						60	0.425	97
						Passing	0.3	89
						ass	0.21	70
						+++ ⁵⁰ ja	0.15	44
							0.075	13
							0.063	12
						40		
							Particle Proportions	
							(%)	
	/					30	Cobbles 0 Gravel 1	
							Sand 87	
							Silt & Clay 12	
						20		
					+ $+$ $+$ $+$	+++ 10		
					63 mr			
0.002 mm 0.0063 mm 0.02 mm	0.063 mm 0.2 mm	0.63 mm 2 mm	n 6.3	mm 20 mm	63 mr			
🥿 Fine Medium Coa	arse Fine M	Medium Coarse	Fine	Medium Coars	so	S		
					30	pble		
Silt Fraction	Sand	Fraction	(Gravel Fraction		Cobbles		
	I							
BH/TP No. 5	Depth, m	2.00		Repo	rt Ref	22/12385/K	IC	
Visual Description Orange-brown sand with	rare gravel	I		Cor	ntract	The Parade,	Epsom	

SUMMARY OF CHEMICAL ANALYSES

Determination of Soluble Sulphate Contents of Soil and Groundwater, Organic Matter Content and pH Value

Report Ref		22/12385/KJC		Contract	The Parade, Epsom					
BH/TP		Sample			n of Sulphates ed as SO4	рН	Organic			
No.	Depth m	Soil Type	% passing 2mm sieve	2:1 Water:Soil Extract mg/l	Groundwater mg/l	Value	Content %			
BH1	0.50	Made ground	90	<250		7.2				
	1.20-1.65	Made ground	53	<250		7.6				
	3.00-3.45	Sandy clay	99	<250		7.7				
	6.50-6.95	Sandy clay with gravel	84	<250		8.1				
	11.00	Silty sand	100	436		6.1				
BH2	1.00	Made ground	47	<250		7.7				
	2.00	Silty sand with rare gravel	99	<250		7.9				
BH3	1.50	Silty sand and gravel	99	<250		7.9				
BH4	2.70	Sandy clay with rare gravel	98	<250		8.0				
BH5	1.00	Silty sand with gravel	78	<250		7.9				
	2.08	Water			<80	7.6				
BH6	2.00	Silty sand with gravel	61	<250		8.0				

Keith Clark Albury SI Ltd Miltons Yard Petworth Road Witley Surrey GU8 5LH

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: keith.clark@alburysi.co.uk

Analytical Report Number : 22-63376

Project / Site name:	The Parade Epsom	Samples received on:	08/06/2022
Your job number:	22 12385	Samples instructed on/ Analysis started on:	08/06/2022
Your order number:	14494	Analysis completed by:	15/06/2022
Report Issue Number:	1	Report issued on:	15/06/2022
Samples Analysed:	5 soil samples		

Adam Fenwick Technical Reviewer For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

 4 weeks from reporting
- 2 weeks from reporting
- 2 weeks from reporting
- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-63376 Project / Site name: The Parade Epsom Your Order No: 14494

Lab Sample Number				2305142	2305143	2305144	2305145	2305146
Sample Reference	1	2	3	5	7			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.30	0.10	0.30	0.20	0.10			
Date Sampled					07/06/2022	07/06/2022	07/06/2022	07/06/2022
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	46	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	7.7	11	5.5	5.8	13
Total mass of sample received	kg	0.001	NONE	0.6	0.6	0.6	0.6	0.6
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	DSA	DSA	DSA	DSA	DSA
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	7.9	7.7	8.0	10.4	4.9
Total Cyanide	mg/kg	1	MCERTS	< 1.0	2.5	< 1.0	< 1.0	2.5
Total Sulphate as SO4	mg/kg	50	MCERTS	510	690	650	3000	790
Water Soluble Sulphate as SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	27	43	63	300	130
Equivalent)	g/l	0.00125	MCERTS	0.014	0.022	0.031	0.15	0.067
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	13.6	21.5	31.3	151	66.5
Sulphide	mg/kg	1	MCERTS	20	12	12	9.3	12
Elemental Sulphur	mg/kg	5	MCERTS	< 5.0	37	< 5.0	< 5.0	< 5.0
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	2.1	1.7	1.8	0.9	-
Total Organic Carbon (TOC) – Manual	%	0.1	MCERTS	-	-	-	-	10
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	3
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.2	< 0.05	0.86	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.2	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	1.5	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.96	0.92	1	12	0.45
Anthracene	mg/kg	0.05	MCERTS	0.22	0.26	0.25	2.5	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	2.7	2.6	2.2	11	1.1
Pyrene	mg/kg	0.05	MCERTS	2.3	2.4	2	8.9	1.1
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2	1.6	1.5	4.9	0.86
Chrysene	mg/kg	0.05	MCERTS	1.5	1.7	1.1	4.2	0.7
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	2.1	2.1	1.7	3.6	0.82
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.2	1.1	0.82	1.8	0.51
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.9	1.8	1.4	3.3	0.64
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.1	1.2	0.81	1.6	0.5
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.24	0.28	0.22	0.41	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.2	1.4	1.1	1.9	0.57
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	17.3	17.5	14.1	59.4	7.28

Analytical Report Number: 22-63376 Project / Site name: The Parade Epsom Your Order No: 14494

Lab Sample Number				2305142	2305143	2305144	2305145	2305146
Sample Reference				1	2	3	5	7
Sample Number				None Supplied				
Depth (m)				0.30	0.10	0.30	0.20	0.10
Date Sampled		07/06/2022	07/06/2022	07/06/2022	07/06/2022	07/06/2022		
Time Taken				None Supplied				
	I I		I					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids		8	8					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	21	21	22	16	11
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.89	0.8	0.9	0.66	0.58
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	0.6	0.4	0.9	1
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	NONE	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	22	24	22	22	15
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	22	24	22	23	16
Copper (aqua regia extractable)	mg/kg	1	MCERTS	36	45	34	23	38
Lead (aqua regia extractable)	mg/kg	1	MCERTS	460	290	390	210	200
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	340	290	370	260	170
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	1.3	0.6	0.6	0.6
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	16	20	18	15	10
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	38	40	41	38	26
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	170	130	190	160	72
Monoaromatics & Oxygenates		-	-					
Benzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons								
TPH C6 - C40 _{EH_CU+HS_CU_ID_TOTAL}	mg/kg	10	NONE	50	43	39	100	86
THE CO CHO ENCLUTHS_UU_ID_IOTAL	5.5			50	40	57	100	00
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_ID_AL	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 _{HS_1D_AL} TPH-CWG - Aliphatic >EC10 - EC12 _{EH CU 1D AL}	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC10 - EC12 $_{ELCU_1D_{AL}}$ TPH-CWG - Aliphatic >EC12 - EC16 $_{EL_{CU_1D_{AL}}}$	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC12 - EC16 $_{\text{EH_CU_1D_AL}}$ TPH-CWG - Aliphatic >EC16 - EC21 $_{\text{EH_CU_1D_AL}}$	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC10 - EC21 $_{EH_{CU_1D_{AL}}}$ TPH-CWG - Aliphatic >EC21 - EC35 $_{EH_{CU_1D_{AL}}}$	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL TPH-CWG - Aliphatic >EC21 - EC40 EH_CU_1D_AL	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic > EC37 - EC40 $_{EH_CU_1D_{AL}}$ TPH-CWG - Aliphatic > EC35 - EC44 $_{EH_CU_1D_{AL}}$	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) ELC44 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_ID_AL	mg/kg	10	NONE	< 10	< 10	< 10	< 10	< 10
							. 10	. 10
TPH-CWG - Aromatic >EC5 - EC7 _{HS 1D AR}	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS 1D AR	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 _{HS 1D AR}	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 _{EH CU 1D AR}	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	13	12
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	12	13	13	31	20
TPH-CWG - Aromatic >EC21 - EC35 EH CU 1D AR	mg/kg	10	MCERTS	33	29	26	47	54
TPH-CWG - Aromatic >EC21 - EC40 EH CU 1D AR	mg/kg	10	NONE	38	29	26	55	54
TPH-CWG - Aromatic > EC35 - EC44 $_{EH_{CU_{-}1D_{-}AR}}$	mg/kg	8.4	NONE	< 8.4	< 8.4	< 8.4	8.5	< 8.4
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	MCERTS	44	43	39	91	86
TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_ID_AR	mg/kg	10	NONE	44	43	39	100	86

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 22-63376 Project / Site name: The Parade Epsom

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2305142	1	None Supplied	0.3	Brown loam and clay with gravel and vegetation.
2305143	2	None Supplied	0.1	Brown loam and clay with gravel and vegetation.
2305144	3	None Supplied	0.3	Brown loam and clay with stones and vegetation.
2305145	5	None Supplied	0.2	Brown loam and clay with gravel and vegetation.
2305146	7	None Supplied	0.1	Brown loam and clay with gravel and vegetation.

Analytical Report Number : 22-63376 Project / Site name: The Parade Epsom

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Elemental sulphur in soil	Determination of elemental sulphur in soil by extraction in acetonitrile followed by HPLC.	In-house method based on Secondsite Property Holdings Guidance for Assessing and Managing Potential	L021-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soll by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE

Analytical Report Number : 22-63376 Project / Site name: The Parade Epsom

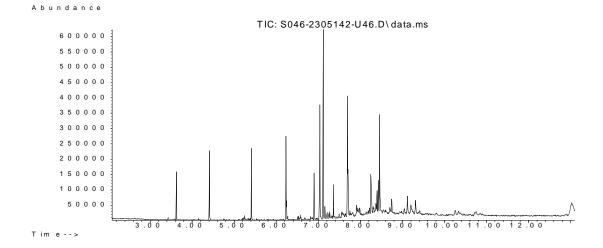
Water matrix abbreviations:

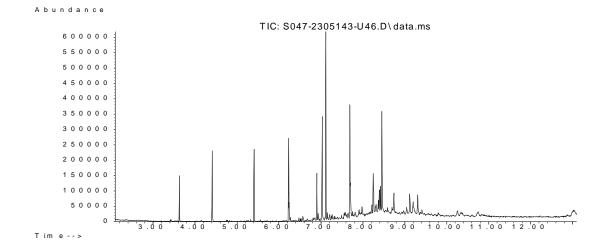
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

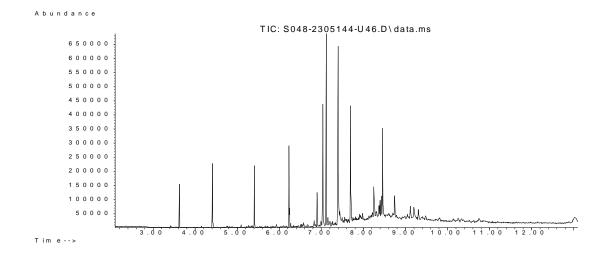
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L023-PL	D	MCERTS
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	NONE
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

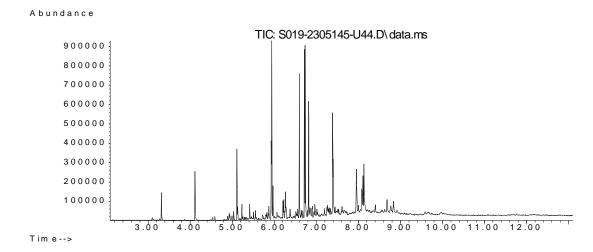
For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

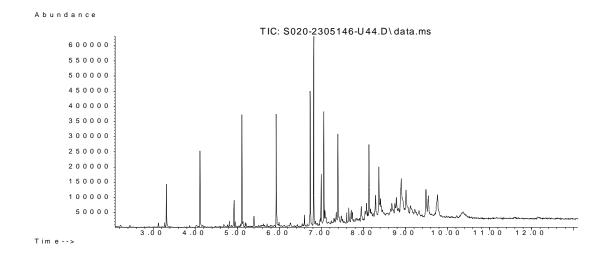
For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.


Soil analytical results are expressed on a dry weight basis. Where analysis is carried out more as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.


Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.


Information in Support of Analytical Results


List of HWOL Acronyms and Operators


Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Keith Clark Albury SI Ltd Miltons Yard Petworth Road Witley Surrey GU8 5LH

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404

f: 01923 237404

e: reception@i2analytical.com

e: keith.clark@alburysi.co.uk

Analytical Report Number : 22-65374

Project / Site name:	The Parade Epsom	Samples received on:	16/06/2022
Your job number:	22 12385 KJC	Samples instructed on/ Analysis started on:	16/06/2022
Your order number:	14494	Analysis completed by:	23/06/2022
Report Issue Number:	1	Report issued on:	23/06/2022
Samples Analysed:	4 soil samples		

Joanna Wawrzeczko Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-65374 Project / Site name: The Parade Epsom Your Order No: 14494

Lab Sample Number		2316380	2316381	2316382	2316383		
Sample Reference				1	2	3	5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.30	0.50	0.50
Date Sampled				07/06/2022	07/06/2022	07/06/2022	07/06/2022
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	-						
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	7.1	6.4	8	8.8
Total mass of sample received	kg	0.001	NONE	1.3	0.5	0.6	0.5

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	-	-	0.58
Anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	1.4
Pyrene	mg/kg	0.05	MCERTS	-	-	-	1.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	0.79
Chrysene	mg/kg	0.05	MCERTS	-	-	-	0.81
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	0.91
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	0.52
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	0.9
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	0.43
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	0.54

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	-	-	8.11
Heavy Metals / Metalloids							
Lead (agua regia extractable)	mg/kg	1	MCERTS	300	170	340	270

U/S = Unsuitable Sample I/S = Insufficient Sample

Analytical Report Number : 22-65374 Project / Site name: The Parade Epsom

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2316380	1	None Supplied	0.5	Brown loam and sand with gravel.
2316381	2	None Supplied	0.3	Brown loam and sand with gravel and brick.
2316382	3	None Supplied	0.5	Brown loam and sand with gravel.
2316383	5	None Supplied	0.5	Brown loam and sand with gravel.

Analytical Report Number : 22-65374 Project / Site name: The Parade Epsom

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 300C.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

APPENDIX 3

DESICCATION

DESICCATION

Classification

The removal of moisture from a soil as a result of external influences with a constant stress regime, results in shrinkage or settlement of the soil. The magnitude of shrinkage is dependent upon the geological stress history of the soil, its clay content and the composition of the clay minerals. Under normal climatic conditions, there is a seasonal cyclic variation in soil moisture and, hence, volume change, which extends to depths of approximately 1m. When the soil moisture deficit attains a critical value, the shrinkage of the soil can become significant. In these circumstances, the soil can be regarded as being present in a desiccated state.

Causes

A common cause of desiccation consists of the reduction in soil moisture by tree root action. In the absence of a water table at shallow depth, root action of trees will reduce the soil moisture level in order to maintain growth. In general terms, the increase in rainfall which occurs during winter periods will allow for some replacement of the moisture content of the soil, particularly where isolated or immature trees are concerned.

However, when drought summer conditions or limited winter rainfall occurs, desiccated zones will develop within the zone of influence of tree roots. In woodland, desiccation develops as it is not possible for rainfall to overcome the soil moisture deficit. Other causes of desiccation, which have created problems to structures, include incorrectly installed and insulated heating pipes or ducts and industrial processes, ie furnaces or brick kilns.

Effects

The development of desiccation in clay soils will result in an increase in strength of the material. In addition, negative pore water pressure or soil suction will develop. Any foundation system located within soil which is subject to a reduction in soil moisture can experience structural distress, which results from the loss in volume or shrinkage of the ground. Also, if the source of the desiccation is removed, there will be heave of the soils as a result of an increase in equilibrium water content

It is evident, therefore, that foundation systems founded in soils which are actively experiencing an increase or decrease in soil moisture, will be subject to either heave or settlement, which can induce stresses within the structure. It should also be appreciated that a desiccated soil, which is experiencing an increase in equilibrium water content, will attempt to increase its volume in a horizontal as well as vertical plane. It is important, therefore, to ensure that horizontal movements do not apply differential stresses to structural elements, by incorporating collapsible membranes within remedial works.

Identification

A soil in a state of equilibrium is present in a semi-solid state. At the onset of desiccation, the condition of the soil moves towards the boundary between a solid and semi-solid state, this boundary being defined as the plastic limit of the soil. It follows, therefore, that when the natural water content of a soil lies close to, or falls below, the value of the plastic limit, the soil can be considered to be desiccated.

An alternative proposal was made by Driscoll (1983), who related the soil suction induced by desiccation to a function of the liquid limit of the soil. In general terms, desiccation is assumed to be present when the moisture content falls below a level of 40% liquid limit. The arbitrary factor of 0.4 relates to a soil suction value proposed by Croney (1977) and may vary with the composition and mineralogy of different soil types. This approach is only considered to be valid over a limited depth range as the overburden effect will result in a natural reduction in soil moisture and result in the development of negative pore pressures.

A further approach, which considers the shear strength of the clay, Pugh et al (1995), recognises the fact that a reduction in soil moisture will result in an increase in undrained shear strength as well as the development of negative pore pressures. Whilst this approach has a considerable amount of merit, care is required in establishing the value of the soil's in situ shear strength, particularly if it is not possible to obtain representative "undisturbed" samples from cable percussion boreholes. The proposal made in the Pugh paper that the simple pocket penetrometer will provide accurate consistent results should be treated with care, as the pocket penetrometer can take no account of the effects of disturbance and remoulding that are inevitable when completing a trial pit with a mechanical excavator. It is for this reason that this Company attempts to establish the shear strength of clay soils by using the Geonor Field Vane. With this test equipment the appropriate-sized vane is pushed into the side of the pit, through the thin disturbed zone which is caused by the teeth of the bucket during excavation. Furthermore, by use of the 'blank' probe, it is possible to take account of any skin friction which builds up on the shaft of the vane and thus provide a more accurate assessment of the shear strength of the soils.

Hence, a combination of the methods discussed above should be considered in order to confirm whether the development of soil moisture reduction to achieve a desiccated state has occurred within a particular site. The data for affected areas should, where possible, be compared with soils which lie outside the influence of tree root bulbs and may, therefore, be considered to be present in a stable and equilibrium state.

References

Croney D (1977)	The Design and Performance of Road Pavements London HMSO pp 674
Driscoll R (1983)	The Influence of Vegetation on the Swelling and Shrinking of Clay Soils in Britain Geotechnique 33.4 pp 93-105
Pugh RS, Parnell PG and Parks RD (1995)	A rapid and reliable on site method of assessing desiccation in clay soils Geotechnical Engineering 13 Jan 1995 pp 25—30

APPENDIX 4

The European Waste Framework Directive is implemented in the UK by the 2002 Landfill Regulations, together with a number of other acts and regulations. A key part of this process is to establish the hazardous properties of potential waste. The classification and definition of hazardous waste is interpreted within the Environment Agency guidance WM3 and all wastes require classifying in accordance with the European Waste Catalogue [EWC]. The EWC is a detailed list of typical industry waste types and each has a 6 digit code. Typically the appropriate EWC codes for excavated soil being disposed off site are:

- $17\ 05\ 03^{\star}$ $\,$ soil and stones containing dangerous substances, or
- 17 05 04 soil and stones other than those mentioned in 17 05 03

If excavated soils are to be discarded or exported from site then they would be considered controlled waste and require classification. However, if soils can be re-used on site then they are not considered to be controlled waste. A Desk Study, soil descriptions, laboratory chemical analysis and risk assessment can all contribute to basic waste characterisation. Depending upon the chemical composition or levels of contaminants in the waste (e.g. metals, TPH, asbestos), soil and stones can either be hazardous or nonhazardous. Waste Acceptance Criteria [WAC] test results are used to determine the suitability of the waste intended for disposal against the acceptance criteria for a particular class of landfill site. WAC tests are not used for the classification of waste soils and are only required for inert or hazardous excavated material which is destined for landfill.

Wastes containing asbestos with a concentration of >0.10% weight/weight (w/w) are generally considered to be hazardous. While waste with <0.10% w/w of asbestos are considered non-hazardous. Where free fibres or fibrous asbestos is present at concentrations of >0.001% then these are considered to pose a risk to human health and are deemed hazardous waste. These waste materials also require a suitably licensed company to handle them.

Waste Treatment

It is a requirement of the 2002 Landfill Regulations that all wastes must undergo some form of pre-treatment prior to disposal at an appropriately licensed landfill. Treatment is defined using a 'three-point test' and can include physical, chemical, biological or thermal processes, which must change the characteristics of the waste in order to:

- reduce its volume, or
- reduce its hazardous nature, or
- facilitate its handling, or
- enhance its recovery.

The exceptions to this are:

- inert waste for which treatment is not technically feasible.
- it is waste other than inert waste and treatment would not reduce its quantity or its hazards to human health or the environment.

The waste producer should either treat their own waste or ensure that the waste will be treated by a subsequent handler. The waste producer should record the type and amount of pre-treatment undertaken prior to disposal.

Examples of treatment include mechanical segregation or sorting, compositing, soil treatment hubs and incineration. This can include physical sorting of waste soil types into separate stockpiles at the producer site, e.g. topsoil, made ground and natural clay, sand or gravels.

Classification Assessment Tool of Soil Wastes - Hazard Summary Sheet

ATKINS CatWasteSoil

Site Name	The Parade
Location	Epsom
Site ID	
Job Number	22/12385/KJC
Date	27/06/2022
User Name	
Company Name	Albury S.I Ltd

Hole ID	Sample Depth	Hazardous Waste Y/N	HP1	HP2	HP3	HP4	HP5	HP6	HP7	HP8	HP9	HP10	HP11	HP12	HP13	HP14	HP15	HP16
1	0.30	N	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
2	0.10	N	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
3	0.30	N	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
5	0.20	N	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
7	0.10	N	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No
																		L
																		L
																		ļ
																		ļ
																		ļ
																		L
																		L
			-							-	-		-					↓
	-																	
																		
																		
																		
	<u> </u>	1																
	+		<u> </u>							<u> </u>	<u> </u>		<u> </u>					<u> </u>
			-								-		-					<u> </u>
			-								-		-					<u> </u>
<u> </u>			<u> </u>							<u> </u>	<u> </u>		<u> </u>					
	1		t							t	t		t					I
			<u> </u>							<u> </u>	<u> </u>		<u> </u>					
	1		1							1	1		1					
	1		1							1	1		1					
	1	1																
	1	1																
	1		1							1	1		1					<u>ا</u>

Site Name	The Parade
Location	Epsom
Site ID	
Job Number	22/12385/KJC
Date	27/06/2022
User Name	
Company Name	Albury S.I Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
1	0.30	рН	0.00000	N				
1	0.30	Benzene	0.00010	N				H225 test
1	0.30	Toluene	0.00010	N				H225 test
1	0.30	Ethylbenzene	0.00010	N				H225 test
1	0.30	m,p-xylene	0.00010	N				H226 test
1	0.30	o-xylene	0.00000	N				H226 test
1	0.30	Naphthalenene	0.00001	N				H228 test
1	0.30	Acenaphthylene	0.00001	N				
1	0.30	Acenaphthene	0.00001	N				
1	0.30	Fluorene	0.00001	N				
1	0.30	Phenanthrene	0.00010	N				
1	0.30	Anthracene	0.00002	Ν				
1	0.30	Fluoranthene	0.00027	N				
1	0.30	Pyrene	0.00023	N				
1	0.30	Benzo(a)anthracene	0.00020	N				
1	0.30	Chrysene	0.00015	N				
1	0.30	Benzo(b)fluoranthene	0.00021	Ν				
1	0.30	Benzo(k)fluoranthene	0.00012	N				
1	0.30	Benzo(a)pyrene	0.00019	N				
1	0.30	Indeno(1,2,3-cd)pyrene	0.00011	N				
1	0.30	Di-benz(a,h,)anthracene	0.00002	N				
1	0.30	Benzo(g,h,i)perylene	0.00012	N				
1	0.30	Phenol	0.00010	N				
1	0.30	nydrocarbon/oil with marker	0.00500	N				H225 test
1	0.30	Arsenic	0.00322	N				
1	0.30	Boron	0.00162	N				
1	0.30	Cadmium	0.00004	N				
1	0.30	Hexavalent Chromium	0.00012	N				
1	0.30	Chromium (Total)	0.00304	N				
1	0.30	Copper	0.00904	N				
1	0.30	Lead	0.00000	N				
1	0.30	Leadx	0.04600	N				
1	0.30	Manganese	0.09346	Ν				
1	0.30	Mercury	0.00009	N				
1	0.30	Nickel	0.00422	N				
1	0.30	Selenuim	0.00038	N				
1	0.30	Zinc	0.00000	N				
1	0.30	Zincx	0.04198	N				
1	0.30	Vanadium	0.00678	N				
2	0.10	pH	0.00000	N				
2	0.10	Benzene	0.00010	N				H225 test
2	0.10	Toluene	0.00010	N				H225 test
2	0.10	Ethylbenzene	0.00010	N				H225 test
2	0.10	m,p-xylene	0.00010	N				H226 test
2	0.10	o-xylene	0.00000	N				H226 test
2	0.10	Naphthalenene	0.00001	N				H228 test
2								
2	0.10	Naphthalenene Acenaphthylene	0.00001 0.00002	N N				HZZØ TEST

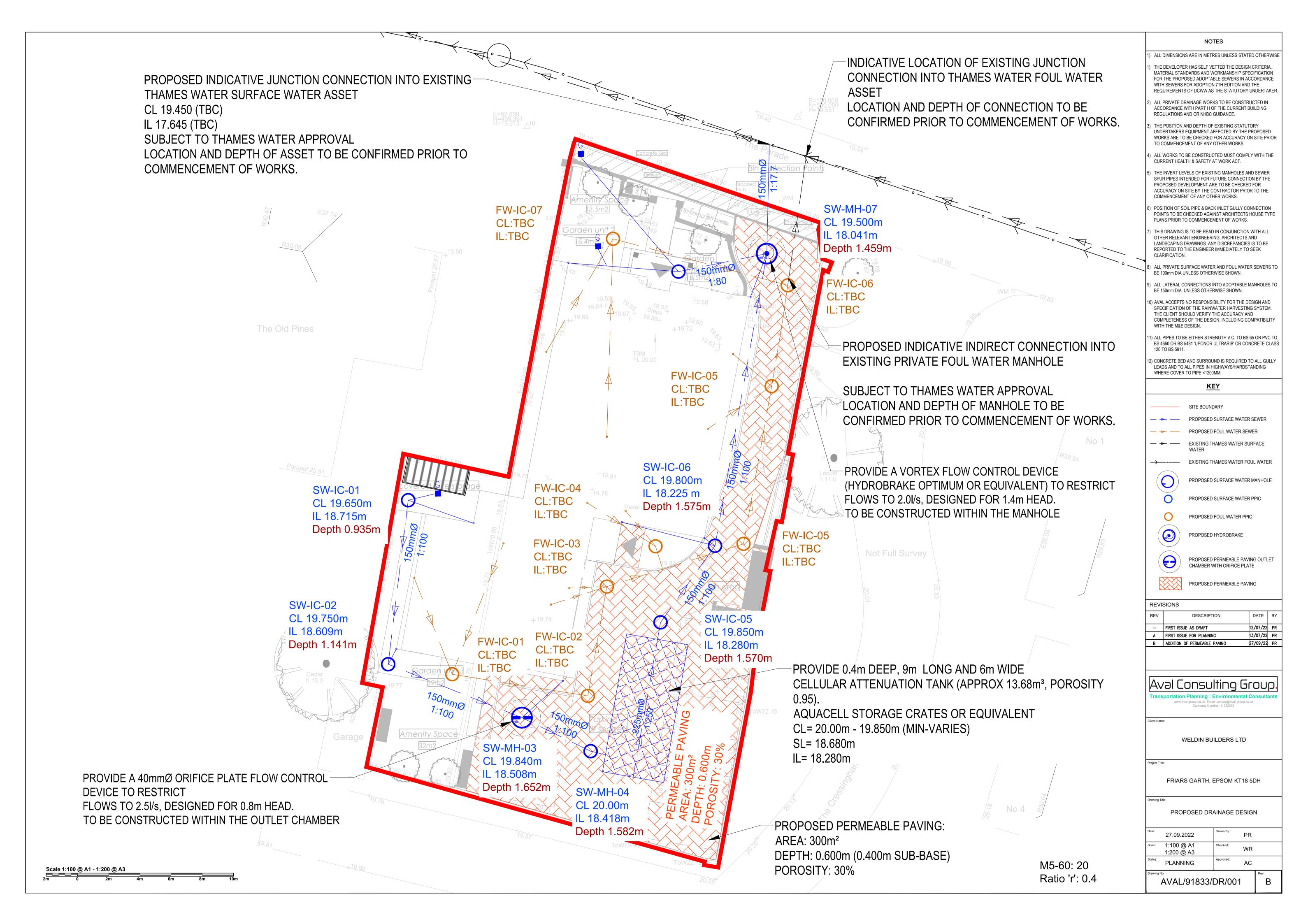
Site Name	The Parade	The Parade					
Location	Epsom						
Site ID							
Job Number	22/12385/KJC						
Date	27/06/2022						
User Name							
Company Name	Albury S.I Ltd						

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
2	0.10	Acenaphthene	0.00001	N				
2	0.10	Fluorene	0.00001	N				
2	0.10	Phenanthrene	0.00009	N				
2	0.10	Anthracene	0.00003	N				
2	0.10	Fluoranthene	0.00026	N				
2	0.10	Pyrene	0.00024	N				
2	0.10	Benzo(a)anthracene	0.00016	N				
2	0.10	Chrysene	0.00017	N				
2	0.10	Benzo(b)fluoranthene	0.00021	N				
2	0.10	Benzo(k)fluoranthene	0.00011	N				
2	0.10	Benzo(a)pyrene	0.00018	N				
2	0.10	Indeno(1,2,3-cd)pyrene	0.00012	N				
2	0.10	Di-benz(a,h,)anthracene	0.00003	N				
2	0.10	Benzo(g,h,i)perylene	0.00014	N				
2	0.10	Phenol	0.00010	N				
2	0.10	hydrocarbon/oil with marker	0.00430	N				H225 test
2	0.10	Arsenic	0.00322	N				
2	0.10	Boron	0.00139	N				
2	0.10	Cadmium	0.00004	N				
2	0.10	Hexavalent Chromium	0.00012	N				
2	0.10	Chromium (Total)	0.00333	N				
2	0.10	Copper	0.01130	N				
2	0.10	Lead	0.00000	N				
2	0.10	Leadx	0.02900	N				
2	0.10	Manganese	0.07971	N				
2	0.10	Mercury	0.00013	N				
2	0.10	Nickel	0.00527	N				
2	0.10	Selenuim	0.00038	N				
2	0.10	Zinc	0.00000	N				
2	0.10	Zincx	0.03210	N				
2	0.10	Vanadium	0.00714	N				
3	0.30	pH	0.00000	N				
3	0.30	Benzene	0.00000	N				H225 test
3	0.30	Toluene	0.00000	N				H225 test
3	0.30	Ethylbenzene	0.00000	N				H225 test
3	0.30	m,p-xylene	0.00000	N				H226 test
3	0.30	o-xylene	0.00000	N				H226 test
3	0.30	Naphthalenene	0.00001	N				H228 test
3	0.30	Acenaphthylene	0.00001	N				
3	0.30	Acenaphthene	0.00001	N				
3	0.30	Fluorene	0.00001	N				
2	0.30	Phenanthrene	0.0001	N				
3	0.30	Anthracene	0.00010	N				
2	0.30	Fluoranthene	0.00003	N				
2			0.00022	N				
3	0.30	Pyrene Dense (a) anthronous	0.00020					
3	0.30	Benzo(a)anthracene		N				
ა	0.30	Chrysene	0.00011	N				

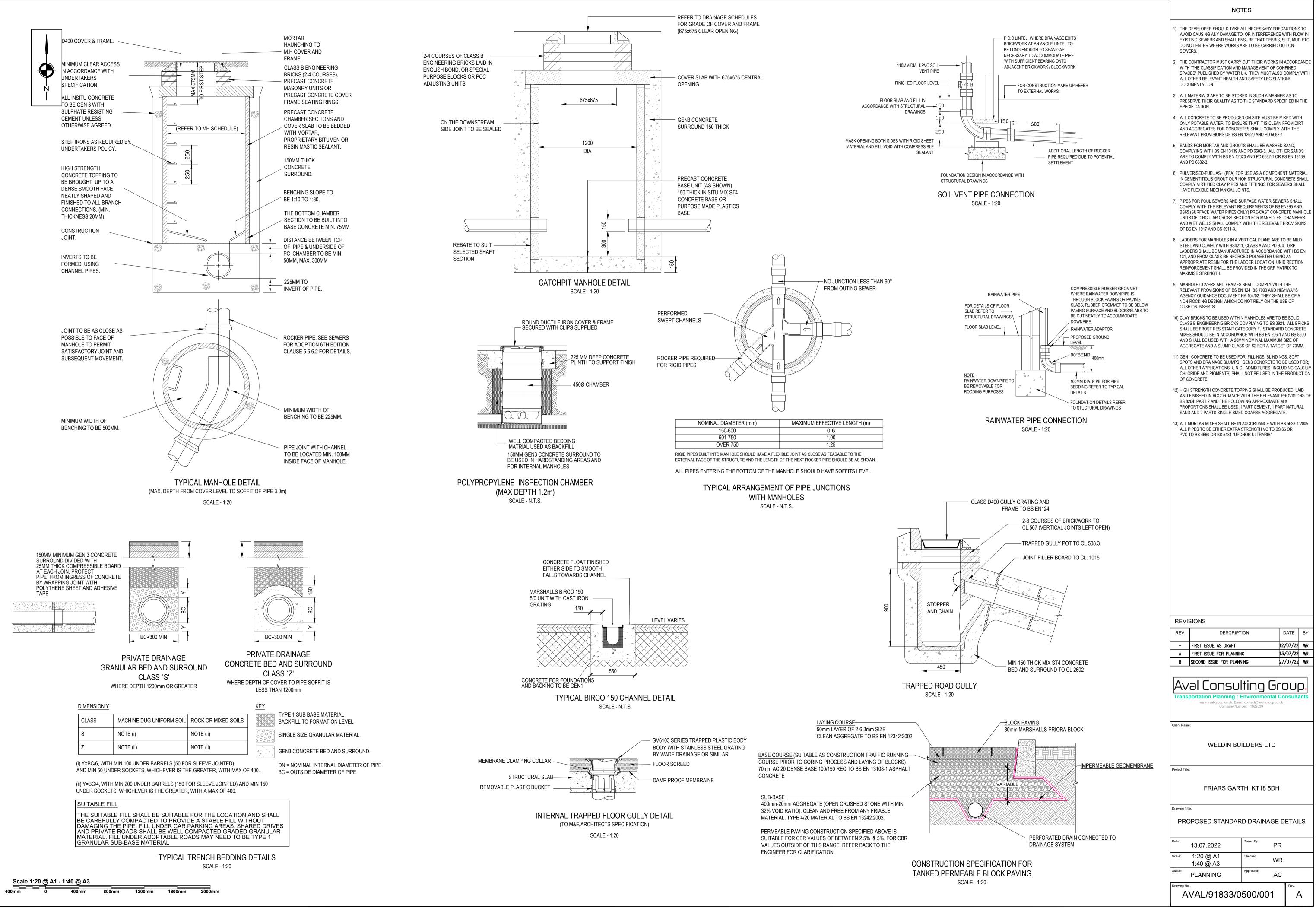
Site Name	The Parade
Location	Epsom
Site ID	
Job Number	22/12385/KJC
Date	27/06/2022
User Name	
Company Name	Albury S.I Ltd

Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
3	0.30	Benzo(b)fluoranthene	0.00017	N				
3	0.30	Benzo(k)fluoranthene	0.00008	N				
3	0.30	Benzo(a)pyrene	0.00014	N				
3	0.30	Indeno(1,2,3-cd)pyrene	0.00008	N				
3	0.30	Di-benz(a,h,)anthracene	0.00002	N				
3	0.30	Benzo(g,h,i)perylene	0.00011	N				
3	0.30	Phenol	0.00010	N				
3	0.30	nydrocarbon/oil with marker	0.00390	N				H225 test
3	0.30	Arsenic	0.00337	N				
3	0.30	Boron	0.00093	N				
3	0.30	Cadmium	0.00004	N				
3	0.30	Hexavalent Chromium	0.00012	N				
3	0.30	Chromium (Total)	0.00304	N				
3	0.30	Copper	0.00854	N				
3	0.30	Lead	0.00000	N				
3	0.30	Leadx	0.03900	N				
3	0.30	Manganese	0.10170	N				
3	0.30	Mercury	0.00006	N				
3	0.30	Nickel	0.00475	N				
3	0.30	Selenuim	0.00038	N				
3	0.30	Zinc	0.00000	N				
3	0.30	Zincx	0.04691	N				
3	0.30	Vanadium	0.00732	N				
5	0.20	pH	0.00000	N				
5	0.20	Benzene	0.00000	N				H225 test
5	0.20	Toluene	0.00000	N				H225 test
5	0.20	Ethylbenzene	0.00000	N				H225 test
5	0.20	m,p-xylene	0.00000	N				H226 test
5	0.20	o-xylene	0.00000	N				H226 test
5	0.20	Naphthalenene	0.00001	N				H228 test
5	0.20	Acenaphthylene	0.00009	N				
5	0.20	Acenaphthene	0.00012	N				
5	0.20	Fluorene	0.00015	N				
5	0.20	Phenanthrene	0.00120	N				
5	0.20	Anthracene	0.00025	N				
5	0.20	Fluoranthene	0.00110	N				
5	0.20	Pyrene	0.00089	N				
5	0.20	Benzo(a)anthracene	0.00049	N				
5	0.20	Chrysene	0.00043	N				
5	0.20	Benzo(b)fluoranthene	0.00036	N				
5	0.20	Benzo(k)fluoranthene	0.00018	N				
5	0.20	Benzo(a)pyrene	0.00033	N				
5	0.20	Indeno(1,2,3-cd)pyrene	0.00035	N			<u> </u>	
5	0.20	Di-benz(a,h,)anthracene	0.00004	N				
5	0.20	Benzo(g,h,i)perylene	0.00004	N				
5	0.20	Phenol	0.00019	N			<u> </u>	
5		hydrocarbon/oil with marker	0.01000	N				H225 test
5	0.20	iyorocarbon/oir with marker	0.01000	IN				1220 1001

Site Name	The Parade
Location	Epsom
Site ID	
Job Number	22/12385/KJC
Date	27/06/2022
User Name	
Company Name	Albury S.I Ltd


Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
5	0.20	Arsenic	0.00245	N				
5	0.20	Boron	0.00208	N				
5	0.20	Cadmium	0.00004	N				
5	0.20	Hexavalent Chromium	0.00012	N				
5	0.20	Chromium (Total)	0.00319	N				
5	0.20	Copper	0.00578	N				
5	0.20	Lead	0.00000	N				
5	0.20	Leadx	0.02100	N				
5	0.20	Manganese	0.07147	N				
5	0.20	Mercury	0.00006	N				
5	0.20	Nickel	0.00395	N				
5	0.20	Selenuim	0.00038	N				
5	0.20	Zinc	0.00000	N				
5	0.20	Zincx	0.03951	N				
5	0.20	Vanadium	0.00678	N				
7	0.10	рН	0.00000	N				
7	0.10	Benzene	0.00010	N				H225 test
7	0.10	Toluene	0.00010	N				H225 test
7	0.10	Ethylbenzene	0.00010	N				H225 test
7	0.10	m,p-xylene	0.00010	N				H226 test
7	0.10	o-xylene	0.00010	N				H226 test
7	0.10	Naphthalenene	0.00001	N				H228 test
7	0.10	Acenaphthylene	0.00001	N				
7	0.10	Acenaphthene	0.00001	N				
7	0.10	Fluorene	0.00001	N				
7	0.10	Phenanthrene	0.00005	N				
7	0.10	Anthracene	0.00001	N				
7	0.10	Fluoranthene	0.00011	N				
7	0.10	Pyrene	0.00011	N				
7	0.10	Benzo(a)anthracene	0.00009	N				
7	0.10	Chrysene	0.00007	N				
7	0.10	Benzo(b)fluoranthene	0.00008	N				
7	0.10	Benzo(k)fluoranthene	0.00005	N				
7	0.10	Benzo(a)pyrene	0.00006	N				
7	0.10	Indeno(1,2,3-cd)pyrene	0.00005	N	1			
7	0.10	Di-benz(a,h,)anthracene	0.00001	N	1			
7	0.10	Benzo(g,h,i)perylene	0.00006	N	1			
7	0.10	Phenol	0.00030	N				
7		hydrocarbon/oil with marker	0.00860	N				H225 test
7	0.10	Arsenic	0.00169	N	1			
7	0.10	Boron	0.00231	N				
7	0.10	Cadmium	0.00004	N				
7	0.10	Hexavalent Chromium	0.00012	N				
7	0.10	Chromium (Total)	0.00216	N				
7	0.10	Copper	0.00955	N				
7	0.10	Lead	0.00000	N				
7	0.10	Leadx	0.02000	N				
Ľ	0.10	Leaux	0.02000	IN IN			I	

Site Name	The Parade
Location	Epsom
Site ID	
Job Number	22/12385/KJC
Date	27/06/2022
User Name	
Company Name	Albury S.I Ltd


Hole ID	Sample Depth	Contaminant	Contaminant Concentration (%)	Hazardous Waste Y/N	Hazard Property	Individual Hazard Statements Exceeded	Cumulative Hazard Statements Exceeded	Additional Hazard Statements (see notes section)
7	0.10	Manganese	0.04673	N				
7	0.10	Mercury	0.00006	N				
7	0.10	Nickel	0.00264	Ν				
7	0.10	Selenuim	0.00038	N				
7	0.10	Zinc	0.00000	N				
7								
/	0.10	Zincx	0.01778	N				
7	0.10	Vanadium	0.00464	N				
-								
	+							
L	I							1

ATKIN	5	Note	s - Additional Information on Hazard Properties
Hazardous Property	Description	Hazard Statement	Note
HP1	Explosive	H200, H201, H202, H203, H204, H240 and H241	A waste is assessed for HP1 via test methods, rather than a concentration limit. If you have substances or a mixture containing explosive properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.
HP2	Oxidising	H270, H271, H272	A waste is assessed for HP2 via test methods, rather than a concentration limit. If you have substances or a mixture containing oxidising properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.
HP3	Flammable	H220 to H226, H228, H242, H250, H251m H252, H260, H261	A waste is assessed for HP3 via test methods, rather than a concentration limit. If you have substances or a mixture containing flammable properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria. If a waste contains either H220, H221, H260 or H261 a calculation can be performed to identify the minimum amount of that substance that will trigger HP3.
HP5	Specific Target Organ Toxicity (STOT)	H304	Should a waste contain two or more compounds displaying H304 (Asp. Tox 1) and equal or exceed its specific concentration limit of 10%, then a waste will be hazardous by HP5 if its kinematic viscosity exceeds 20.5 mm ² /s. Guidance should be sought from the CLP Criteria.
HP9	Infectious	N/A	A waste is assessed for HP9 via further testing, rather than a concentration limit. In cases where there is the potential for toxins to be present, further testing will be required. For healthcare waste reference should be made to the Department of health guidance: Safe management of healthcare waste.
HP12	Release of acute toxic gas	EUH029, EUH031, EUH032, H260 or H261	A waste is assessed for HP12 via test methods, rather than a concentration limit. If you have substances or a mixture that may release acute toxic gas the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.
HP15	Explosive or explosive properties	H205, EUH001, EUH019 or EUH044	A waste is assessed for HP15 via test methods, rather than a concentration limit. If you have substances or a mixture that may exhibit explosive or explosive properties the waste should be tested in accordance with the European Chemical Agency's guidance on the application of the CLP Criteria.
HP16	Persistent organic pollutants	N/A	A waste is considered hazardous if the concentration of one or more compound (persistent organic pollutant) as listed in Appendix C of Environment Agency guidance WM3 is above its assigned concentration limit. For reference for dioxins and furans, this assessment incorporates the use of specific toxicity equivalent factors.

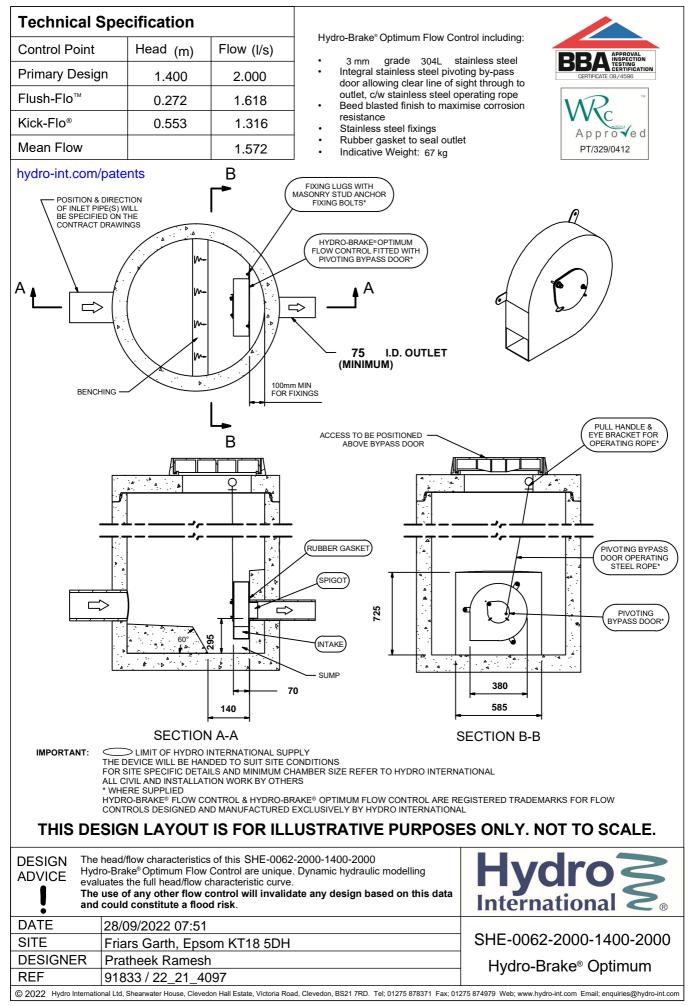
Appendix D: Proposed Drainage Strategy and Calculations

Name Area (ha) T of E (ha) Cover (mm) Diameter (mm) Design Settings Name Maximum Rainfall (mm/hr) 50.0 Maximum Rainfall (mm/hr) 50.0 Matiour Connection Type Level Soffits Minimum Backdrop Height (m) 0.2000 Ratio-R 0.400 CV 0.840 Minimum Backdrop Height (m) 0.200 Time of Entry (mins) 5.00 Volue Intermediate Ground V 0.840 Include Intermediate Ground Include Intermediate Ground Include Intermediate Ground IC-01 0.008 5.00 19.750 750 1.341 IC-03 0.005 5.00 19.750 750 1.570 IC-04 20.000 750 1.570 1.570 IC-06 0.036 5.00 19.800 750 1.570 IC-06 0.036 5.00 19.800 750	
Return Period (years) 100 Maximum Rainfall (mm/hr) 50.0 Additional Flow (%) 0 Minimum Bainfall (mm/hr) 50.0 FSR Region England and Wales Connection Type Level Soffits M5-60 (mm) 20.000 Preferred Cover Depth (m) 0.200 Ratio-R 0.400 Preferred Cover Depth (m) 1.200 CV 0.840 Include Intermediate Ground Time of Entry (mins) 5.00 Nodes Preferred Cover Depth (m) .200 Name Area T of E Cover Diameter Depth (ha) (mins) Level (mm) (m) IC-01 0.008 5.00 19.650 750 0.935 IC-02 0.005 5.00 19.750 750 1.41 IC-03 0.005 5.00 19.800 750 1.575 IC-06 0.005 5.00 19.800 750 1.575 MH-07 0.013 5.00 19.800 750 1.250 Licrks Links Links	
Name Area (ha) T of E (m) Cover Level (m) Diameter (mm) Depth (m) IC-01 0.008 5.00 19.650 750 0.935 IC-02 0.005 5.00 19.750 750 1.141 IC-03 0.005 5.00 20.160 750 1.652 IC-04 20.000 750 1.582 IC-05 0.005 5.00 19.850 750 1.570 IC-06 0.005 5.00 19.800 750 1.575 MH-07 0.013 5.00 19.800 750 1.459 Junc_Prop 19.450 19.800 750 1.575 Carpark 0.036 5.00 19.800 750 1.250	
(ha) (mins) Level (m) (mm) (m) IC-01 0.008 5.00 19.650 750 0.935 IC-02 0.005 5.00 19.750 750 1.141 IC-03 0.005 5.00 20.160 750 1.652 IC-04 20.000 750 1.582 IC-05 0.005 5.00 19.850 750 1.570 IC-06 0.005 5.00 19.800 750 1.575 MH-07 0.013 5.00 19.500 1200 1.459 Junc_Prop 19.450 1.805 1.805	
IC-01 0.008 5.00 19.650 750 0.935 IC-02 0.005 5.00 19.750 750 1.141 IC-03 0.005 5.00 20.160 750 1.652 IC-04 20.000 750 1.582 IC-05 0.005 5.00 19.850 750 1.570 IC-06 0.005 5.00 19.800 750 1.575 MH-07 0.013 5.00 19.500 1200 1.459 Junc_Prop 19.450 1.805 1.805	
IC-03 0.005 5.00 20.160 750 1.652 IC-04 20.000 750 1.582 IC-05 0.005 5.00 19.850 750 1.570 IC-06 0.005 5.00 19.800 750 1.575 MH-07 0.013 5.00 19.500 1200 1.459 Junc_Prop 19.450 1.805 1.805 Carpark 0.036 5.00 19.800 750 1.250	
IC-04 20.000 750 1.582 IC-05 0.005 5.00 19.850 750 1.570 IC-06 0.005 5.00 19.800 750 1.575 MH-07 0.013 5.00 19.500 1200 1.459 Junc_Prop 19.450 1.805 Carpark 0.036 5.00 19.800 750 1.250 Links	
IC-05 0.005 5.00 19.850 750 1.570 IC-06 0.005 5.00 19.800 750 1.575 MH-07 0.013 5.00 19.500 1200 1.459 Junc_Prop 19.450 1.805 Carpark 0.036 5.00 19.800 750 1.250 <u>Links</u>	
IC-06 0.005 5.00 19.800 750 1.575 MH-07 0.013 5.00 19.500 1200 1.459 Junc_Prop 19.450 1.805 Carpark 0.036 5.00 19.800 750 1.250 <u>Links</u>	
MH-07 0.013 5.00 19.500 1200 1.459 Junc_Prop 19.450 1.805 1.805 Carpark 0.036 5.00 19.800 750 1.250 Links	
Carpark 0.036 5.00 19.800 750 1.250 Links	
Links	
Name US DS Length ks (mm) / US IL DS IL Fall Slope Dia T of C	
	Rain
	1m/hr) 50.0
1.001 IC-01 IC-02 10.600 0.600 18.715 18.609 0.106 100.0 150 5.18 1.002 IC-02 IC-03 10.100 0.600 18.609 18.508 0.101 100.0 150 5.34	50.0
1.003 IC-03 IC-04 9.000 0.600 18.508 18.418 0.090 100.0 150 5.49	50.0
1.004 IC-04 IC-05 13.800 0.600 18.418 18.280 0.138 100.0 150 5.72	50.0
1.005 IC-05 IC-06 5.500 0.600 18.280 18.225 0.055 100.0 150 5.81	50.0
1.006 IC-06 MH-07 18.400 0.600 18.225 18.041 0.184 100.0 150 6.12	50.0
1.007 MH-07 Junc_Prop 7.000 0.600 18.041 17.645 0.396 17.7 150 6.17	50.0
1.008 Carpark IC-03 2.000 0.600 18.550 18.530 0.020 100.0 150 5.03	50.0
Name Vel Cap Flow US DS ΣArea ΣAdd Pro Pro (m/s) (l/s) (l/s) Depth Depth (ha) Inflow Depth Velocity (m) (m) (l/s) (mm) (m/s)	
1.001 1.005 17.8 1.2 0.785 0.991 0.008 0.0 27 0.576 1.002 1.005 17.8 2.0 0.001 1.502 0.012 0.0 24 0.552	
1.0021.00517.82.00.9911.5020.0130.0340.6631.0031.00517.88.21.5021.4320.0540.0720.986	
1.004 1.005 17.8 8.2 1.432 1.420 0.054 0.0 72 0.986	
1.005 1.005 17.8 9.0 1.420 1.425 0.059 0.0 75 1.006	
1.006 1.005 17.8 9.7 1.425 1.309 0.064 0.0 79 1.028	
1.007 2.407 42.5 11.7 1.309 1.655 0.077 0.0 54 2.058	
1.008 1.005 17.8 5.5 1.100 1.480 0.036 0.0 57 0.886	

		AVAL	. Consu	lting Group	o Ltd	File: 9183	3 Prop SW C	Calc 03.pf	Page 2		
Aval Consultin		New	haven B	Enterprise (Centre	Network:	Storm Netw	/ork	91833	Friars Garth, KT1	.8 5DH
	יט טוטן	Dent	on Islaı	nd		Pratheek	Ramesh		Propos	ed Surface Wate	r
		New	haven B	3N9 9BA		27/09/202	22		Calcula	ntions	
					Pipeline So	<u>chedule</u>					
Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth	
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)	
1.001	10.600	100.0	150	Circular	19.650	18.715	0.785	19.750	18.609	0.991	
1.002	10.100	100.0	150	Circular	19.750	18.609	0.991	20.160	18.508	1.502	
1.003	9.000	100.0	150	Circular	20.160	18.508	1.502	20.000	18.418	1.432	
1.004	13.800	100.0	150	Circular	20.000	18.418	1.432	19.850	18.280	1.420	
1.005	5.500	100.0	150	Circular	19.850	18.280	1.420	19.800	18.225	1.425	
1.006	18.400	100.0	150	Circular	19.800	18.225	1.425	19.500	18.041	1.309	
1.007	7.000	17.7	150	Circular	19.500	18.041	1.309	19.450	17.645	1.655	
1.008	2.000	100.0	150	Circular	19.800	18.550	1.100	20.160	18.530	1.480	
	.ink U	S I	Dia	Node	МН	DS	Dia	Node		ин	
	No	de (r	nm)	Туре	Туре	Nod	e (mm)	Туре	Т	уре	
1	.001 IC-0	1	750	Manhole	Adoptable	IC-02	750	Manho	le Ado	ptable	
1	.002 IC-0	2	750	Manhole	Adoptable	IC-03	750	Manho	le Ado	ptable	
1	.003 IC-0	3	750	Manhole	Adoptable	IC-04	750	Manho	le Ado	ptable	
1	.004 IC-0	4	750	Manhole	Adoptable		750	Manho	le Ado	ptable	
1	.005 IC-0	5	750	Manhole	Adoptable	IC-06	750	Manho	le Ado	ptable	
1	.006 IC-0	6	750	Manhole	Adoptable	MH-07	1200	Manho	le Ado	ptable	
1	.007 MH	-07 1	.200	Manhole	Adoptable	Junc_P	rop	Junctio	n		
1	.008 Car	oark	750	Manhole	Adoptable	IC-03	750	Manho	le Ado	ptable	

Manhole Schedule

Node	CL (m)	Depth (m)	Dia (mm)	Connectio	ons	Link	IL (m)	Dia (mm)
IC-01	19.650	0.935	750					
				\bigcirc				
					0	1.001	18.715	150
IC-02	19.750	1.141	750		1	1.001	18.609	150
				\bigcirc				
					0	1.002	18.609	150
IC-03	20.160	1.652	750		1	1.008	18.530	150
				\bigcirc	2	1.002	18.508	150
					0	1.003	18.508	150
IC-04	20.000	1.582	750		1	1.003	18.418	150
				\bigcirc				
					0	1.004	18.418	150
IC-05	19.850	1.570	750		1	1.004	18.280	150
				\bigcirc				
					0	1.005	18.280	150
IC-06	19.800	1.575	750		1	1.005	18.225	150
				\bigcirc				
					0	1.006	18.225	150

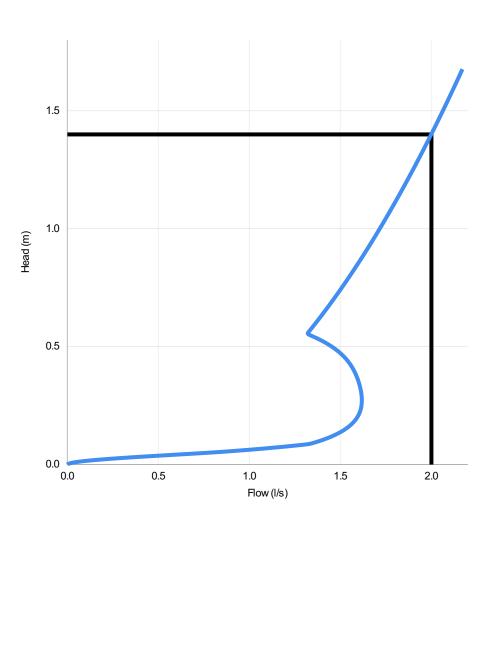

Aval Consulting Group.	AVAL Consu Newhaven Denton Isla Newhaven	Enterprise nd	-	File: 91833 F Network: Sto Pratheek Ra 27/09/2022	orm	Netwo	-		ars Garth, KT18 5DH Surface Water ns
			<u>Manhol</u>	<u>e Schedule</u>					
Node		Depth	Dia	Connections		Link	IL (Dia	
MH-07	(m) 19.500	(m) 1.459	(mm) 1200		1	1.006	(m) 18.041	(mm) 150	
	19.900	1.455	1200	\bigcirc	-	1.000	10.041	100	
				\bigcirc	0	1.007	18.041	150	
Junc_Pr	op 19.450	1.805			1	1.007	17.645	150	
				o					
Carpark	19.800	1.250	750						
•				\bigcirc					
				\bigcirc	0	1.008	18.550	150	
			Simulati	on Cottings	1				
			<u>Simulau</u>	on Settings					
Rainfall N	Aethodology FSR Region	FSR England	d and Wal	95	cı	Analysis kip Stead	-	Normal x	
	M5-60 (mm)	20.000				wn Time	-	x 240	
	Ratio-R	0.400				Storage		20.0	
	Summer CV Winter CV	0.750 0.840				ischarge scharge '		x x	
			Storm	Durations					
15 60 30 120	180 240	360 480	600	960 2160 1440 2880		4320 5760	7200 8640		30
R	eturn Period (years)		e Change C %)	Additional Ai (A %)	rea		ional Flo [.] Q %)	w	
	(years) 1		0	(~ /0)	0	,	Q /0j	0	
	100		40		0			0	
		<u>Node C</u>	Carpark O	<u>nline Orifice Co</u>	ontro	<u>ol</u>			
F	lap Valve x		Design	Depth (m) 1.2	250	Dis	charge C	oefficient	0.600
Replaces Downsti	ream Link x		Design	Flow (I/s) 4.0					
Invert	Level (m) 1	8.550	Dia	meter (m) 0.0	040				
	<u>N</u>	lode MH	-07 Online	<u>e Hydro-Brake®</u>	Co	<u>ntrol</u>			
	lap Valve x			Object			/linimise	upstream s	storage
Replaces Downstr		8.041		Sump Availa Product Num		√ (TL-SI		-2000-1400	1-2000
		.400	Min Ou	itlet Diameter (0.075	12-0002-	2000-1400	, 2000
Design	Flow (l/s) 2	.0	Min No	de Diameter (m	nm)	1200			
		Node Car	rpark Carp	oark Storage Sti	ruct	<u>ure</u>			
Base Inf Coefficient	t (m/hr) 0.0	0000		Invert Level (m)	19.000)	Slope (1:X)	350.0
Side Inf Coefficient	t (m/hr) 0.0	0000	Time to	half empty (mir	ns)	0		Depth (m)	0.300
	y Factor 2.0 Porosity 0.3			Width (Length (20.000 15.000		Depth (m)	
	,	1		0(,		í.		

Aval Consulting Gr	oup.	Newł Dento	Consulting G naven Enterp on Island naven BN9 9E	rise Cent		File: 91 Networ Prathee 27/09/2	rk: Sto ek Rar	orm Ne				d Surface	, KT18 5D Water
			Node I	<u>C-05 Dep</u>	th/Are	ea Stora	ige Sti	ructure	<u>e</u>				
Base Inf Coo Side Inf Coo		-		Safe	ety Fac Poros		0 95	Time	e to h		Level (m) oty (mins)	18.280	
(m) (Area (m²) 36.0	Inf Area (m²) 0.0	Depth (m) 0.400	Area (m²) 36.0) (m		(1	e pth m) 401	Area (m²) 0.0	Inf Area (m²) 0.0		
					<u>Rain</u>	<u>fall</u>							
			I	Event			Inte	eak nsity	Inte	rage nsity			
		-	ear 15 minute ear 15 minute		r		109	1/hr) 9.521 5.857	30	n/hr)).991).991			
		1 ye	ear 30 minute ear 30 minute ear 60 minute	e winter			50	1.439).133 3.435	20).215).215 2.800			
		1 ye 1 ye	ear 60 minute ear 120 minu	e winter te summe	er		32 30	2.179).053	12 7	2.800 7.942			
		1 ye 1 ye	ar 120 minu ar 180 minu ar 180 minu	te summe te winter	er		23 15	9.966 3.233 5.102	5	2.942 5.979 5.979			
		1 ye	ar 240 minu ar 240 minu ar 360 minu	te winter			12	3.475 2.274 4.169	4	.882 .882 .646			
		1 ye	ear 360 minu ear 480 minu ear 480 minu	te summe	er		11).210 1.185 7.431	2	8.646 2.956 2.956			
		1 ye 1 ye	ear 600 minu ear 600 minu ear 720 minu	te summe te winter	er		9 6).182 5.274 3.203	2 2	2.511 2.511 2.199			
		1 ye 1 ye	ear 720 minu ear 720 minu ear 960 minu ear 960 minu	te winter te summe	er		5 6	5.513 5.768 1.483	2 1				
		1 ye 1 ye	ar 1440 min ar 1440 min	ute sumn ute winte	ner er		4 3	1.949 3.326	1 1	326 326			
		1 ye	ear 2160 min ear 2160 min ear 2880 min	ute winte	er		2	8.574 2.462 2.986	C).988).988).800			
		1 ye	ear 2880 min ear 4320 min ear 4320 min	ute sumn	ner		2	2.007 2.276 1.499	C).800).595).595			
		1 ye 1 ye	ar 5760 min ar 5760 min ar 7200 min	ute sumn ute winte	ner er		1	885 220 609	C).483).483).410			
		1 ye 1 ye	ar 7200 min ar 8640 min	ute winte ute sumn	er ner		1 1	038 409	C).410).359			
		1 ye 1 ye	ear 8640 min ear 10080 min ear 10080 min	nute sum nute wint	imer ter		1 0).910 1.260).813	C).359).322).322			
		100	year +40% C year +40% C year +40% C	C 15 min	ute w	inter	342 320	3.233 2.620).551	138 90	8.153 8.153 0.705			
			year +40% C year +40% C					1.948 1.603).705 5.713			

Aval Consulting Group.	AVAL Consulting Group Ltd Newhaven Enterprise Centre Denton Island Newhaven BN9 9BA			•	Page 5 91833 Friars Garth, KT18 5DH Proposed Surface Water Calculations
	Rai	<u>nfall</u>			
	Event		Peak Intensity (mm/hr)	Average Intensity (mm/hr)	
	100 year +40% CC 60 minute wi	nter	142.577	56.713	
	100 year +40% CC 120 minute s		129.587	34.246	
	100 year +40% CC 120 minute w	vinter	86.094	34.246	
	100 year +40% CC 180 minute s	ummer	97.729	25.149	
	100 year +40% CC 180 minute w	vinter	63.526	25.149	
	100 year +40% CC 240 minute s	ummer	75.977	20.078	
	100 year +40% CC 240 minute w	vinter	50.477	20.078	
	100 year +40% CC 360 minute s	ummer	56.677	14.585	
	100 year +40% CC 360 minute w	vinter	36.841	14.585	
	100 year +40% CC 480 minute s	ummer	43.979	11.622	
	100 year +40% CC 480 minute w	vinter	29.219	11.622	
	100 year +40% CC 600 minute s	ummer	35.604	9.738	
	100 year +40% CC 600 minute w	vinter	24.327	9.738	
	100 year +40% CC 720 minute s	ummer	31.433	8.424	
	100 year +40% CC 720 minute w	vinter	21.125	8.424	
	100 year +40% CC 960 minute s	ummer	25.432	6.697	
	100 year +40% CC 960 minute w	vinter	16.847	6.697	
	100 year +40% CC 1440 minute	summer	18.055	4.839	
	100 year +40% CC 1440 minute		12.134	4.839	
	100 year +40% CC 2160 minute	summer	12.630	3.490	
	100 year +40% CC 2160 minute		8.702	3.490	
	100 year +40% CC 2880 minute	summer	10.319	2.766	
	100 year +40% CC 2880 minute		6.935	2.766	
	100 year +40% CC 4320 minute		7.609	1.989	
	100 year +40% CC 4320 minute		5.011	1.989	
	100 year +40% CC 5760 minute		6.145	1.573	
	100 year +40% CC 5760 minute		3.978	1.573	
	100 year +40% CC 7200 minute		5.137	1.311	
	100 year +40% CC 7200 minute		3.316	1.311	
	100 year +40% CC 8640 minute		4.424	1.129	
	100 year +40% CC 8640 minute		2.855	1.129	
	100 year +40% CC 10080 minute 100 year +40% CC 10080 minute		3.897	0.994	
			2.515	0.994	

					-					
	AVAL Co	nsulting	Grou	ıp Ltd		-	SW Calc 0		Page 6	
Aval Consulting Group.	Newhave	en Enter	prise	Centre		rk: Storm				riars Garth, KT18 5D
ן.כט ואט פו וווטפ ט טטאן	Denton I	sland			Prathe	ek Ramesl	h		Propose	d Surface Water
	Newhave	en BN9 9	9BA		27/09/	/2022			Calculat	ions
Res	ults for 1	year Crit	tical S	Storm Du	ration. Lo	owest mas	ss balance	: 99.09	<u>)%</u>	
Node Event	US	Pe	eak	Level	Depth	Inflow	Node	Floo	d	Status
	Node	(m	ins)	(m)	(m)	(I/s)	Vol (m ³)	(m³		
15 minute winter	IC-01	•	11	18.740	0.025	1.1	0.0155	0.000	•	
15 minute winter	IC-02		11	18.641	0.032	1.8	0.0170	0.000	о ок	
15 minute winter	IC-03		11	18.563	0.055	4.7	0.0277	0.000	о ок	
15 minute winter	IC-04		10	18.477	0.059	4.7	0.0261	0.000	о ок	
60 minute winter	IC-05		51	18.378	0.098	4.5	3.3860	0.000	о ок	
60 minute winter	IC-06		52	18.377	0.152	3.0	0.0770	0.000	DO <mark>SU</mark> F	CHARGED
60 minute winter	MH-07		50	18.376	0.335	3.0	0.4386	0.000	DO <mark>SU</mark> F	CHARGED
15 minute summer	Junc_Pr	ор	29	17.665	0.020	1.6	0.0000	0.000	00 ОК	
15 minute winter	Carpark		14	19.023	0.473	5.1	1.0190	0.000	DO <mark>Suf</mark>	RCHARGED
Link Event	US	Link		DS	Outflow	Velocity	Flow/C	ар	Link	Discharge
(Upstream Depth)	Node		N	lode	(I/s)	(m/s)		v	′ol (m³)	Vol (m³)
15 minute winter	IC-01	1.001	IC-C)2	1.1	0.468	0.0	62	0.0250	
15 minute winter	IC-02	1.002	IC-C)3	1.8	0.422	0.1	01	0.0437	
15 minute winter	IC-03	1.003	IC-C)4	4.7	0.773	0.2	63	0.0552	
15 minute winter	IC-04	1.004	IC-C)5	4.7	1.191	0.2	67	0.0691	
60 minute winter	IC-05	1.005	IC-C)6	2.7	0.611	0.1	52	0.0818	
60 minute winter	IC-06	1.006	MH	-07	2.1	0.168	0.1	17	0.3239	
60 minute winter	MH-07	1.007	Jun	c_Prop	1.6	1.149	0.0	38	0.0099	8.3
15 minute winter	Carpark	1.008	IC-0	13	2.2	0.639	0.1	74	0.0069	

Aval Consulting Group. <u>Results f</u>	AVAL Co Newhave Denton I Newhave	en Enter sland en BN9	rprise 9BA	e Centre	Netwo Prathe 27/09/	rk: Storm ek Rames /2022	SW Calc 0 Network h		Propose Calcula	
Node Event	US	Pe	eak	Level	Depth	Inflow	Node	Floo	bd	Status
	Node	(m	ins)	(m)	(m)	(I/s)	Vol (m³)	(m ³	³)	
180 minute winter	IC-01	•	128	19.161	0.446	1.2	0.2733	0.00	•	RCHARGED
180 minute winter	IC-02		128	19.161	0.552	2.1	0.2920	0.00	00 <mark>SUI</mark>	RCHARGED
180 minute winter	IC-03		128	19.162	0.654	4.8	0.3283	0.00	00 <mark>SUI</mark>	RCHARGED
180 minute winter	IC-04		128	19.161	0.743	4.7	0.3283	0.00	00 <mark>SUI</mark>	RCHARGED
180 minute winter	IC-05		128	19.160	0.880	5.7	14.1416	0.00	00 <mark>SUI</mark>	RCHARGED
180 minute winter	IC-06		128	19.160	0.935	2.8	0.4722	0.00	00 <mark>SUI</mark>	RCHARGED
180 minute winter	MH-07		128	19.159	1.118	2.4	1.4640	0.00	00 <mark>SUI</mark>	RCHARGED
180 minute winter	Junc_Pro	ор	128	17.666	0.021	1.8	0.0000	0.00	00 OK	
120 minute winter	Carpark		120	19.158	0.608	7.2	12.9364	0.00	00 <mark>SU</mark> I	RCHARGED
Link Event	US	Link		DS	Outflow	Velocity	y Flow/C	ар	Link	Discharge
(Upstream Depth)	Node		r	Vode	(I/s)	(m/s)		,	Vol (m³)	Vol (m³)
180 minute winter	IC-01	1.001	IC-0		1.2	0.486	5 0.0	68	0.1866	
180 minute winter	IC-02	1.002	IC-0	03	1.9	0.437	7 0.1	.07	0.1778	
180 minute winter	IC-03	1.003	IC-0		4.7	0.807		67	0.1584	
180 minute winter	IC-04	1.004	IC-0		4.4	0.852		46	0.2429	
180 minute winter	IC-05	1.005	IC-0		2.5	0.573		.42	0.0968	
180 minute winter	IC-06	1.006		1-07	1.7	0.184			0.3239	
180 minute winter	MH-07	1.007	Jun	ic_Prop	1.8	1.184	4 0.0	42	0.0106	37.4
120 minute winter	Carpark	1.008	IC-(03	2.3	0.644	4 0.1	.28	0.0352	


pratheek.ramesh@aval-group.co.uk

Technical Sp	pecificatio	on
Control Point	Head (m)	Flow (l/s)
Primary Design	1.400	2.000
Flush-Flo	0.272	1.618
Kick-Flo®	0.553	1.316
Mean Flow		1.572

hydro-int.com/patents

Head (m)	Flow (l/s)
0.000	0.000
0.048	0.735
0.097	1.372
0.145	1.516
0.193	1.586
0.241	1.614
0.290	1.617
0.338	1.605
0.386	1.582
0.434	1.545
0.483	1.484
0.531	1.383
0.579	1.343
0.628	1.392
0.676	1.439
0.724	1.484
0.772	1.528
0.821	1.570
0.869	1.611
0.917	1.650
0.966	1.689
1.014	1.727
1.062	1.763
1.110	1.799
1.159	1.834
1.207	1.868
1.255	1.902
1.303	1.935
1.352	1.967
1.400	1.999

DESIGN ADVICE	The head/flow characteristics of this SHE-0062-2000-1400-2000 Hydro-Brake Optimum® Flow Control are unique. Dynamic hydraulic modelling evaluates the full head/flow characteristic curve.	Hydro S
!	The use of any other flow control will invalidate any design based on this data and could constitute a flood risk.	International 📚
DATE	28/09/2022 07:51	SHE-0062-2000-1400-2000
Site	Friars Garth, Epsom KT18 5DH	SITE-0002-2000-1400-2000
DESIGNER	Pratheek Ramesh	Hydro-Brake Optimum®
Ref	91833 / 22_21_4097	
© 2018 Hydro Interr	national, Shearwater House, Clevedon Hall Estate, Victoria Road, Clevedon, BS21 7RD. Tel 01275 878371 Fax 01275 874979 V	Veb www.hydro-int.com Email designtools@hydro-int.com

Appendix E: Proposed Exceedance Flow Route and CEMP

		NOTES	
	 THIS DRAWING IS TO RELEVANT SPECIALIST DI ALL DIMENSIONS ARE IN I 	ETAILS AND SPECIFICATION	NS.
		KEY	
		OUNDARY	
		OSED EXCEEDANCE FL	
WM 0 +19.83			
.03			
/ No 1			
/R29.91			
15			
/ 6			
E20.57			
26.05 33			
	REVISIONS		
		CRIPTION	DATE E
			DATE E 31/08/22 V
	REV DES		
	REV DESC – FIRST ISSUE PLANNI	NG	31/08/22 v
	REV DESC - FIRST ISSUE PLANNI	sulting G	
	REV DESC - FIRST ISSUE PLANNI FIRST ISSUE PLANNI Transportation Plannii WWW.aval-group.co.u	sulting G	31/08/22 v
	REV DESC - FIRST ISSUE PLANNI FIRST ISSUE PLANNI Transportation Plannii WWW.aval-group.co.u	NG 501ting G Ing : Environmental (Ik, Email: contact@aval-group.co	31/08/22 v
	REV DESC – FIRST ISSUE PLANNI FIRST ISSUE PLANNI DESC FIRST ISSUE PLANNI WWW.aval-group.co.u Compa Client Name:	NG 501ting G Ing : Environmental (Ik, Email: contact@aval-group.co	31/08/22 v
	REV DESC – FIRST ISSUE PLANNI FIRST ISSUE PLANNI DESC FIRST ISSUE PLANNI WWW.aval-group.co.u Compa Client Name:	NG 501ting G Ing : Environmental (Ik, Email: contact@aval-group.co ny Number: 11922039	31/08/22 v
	REV DESC – FIRST ISSUE PLANNI FIRST ISSUE PLANNI DESC FIRST ISSUE PLANNI WWW.aval-group.co.u Compa Client Name:	NG 501ting G Ing : Environmental (Ik, Email: contact@aval-group.co ny Number: 11922039	31/08/22 v
	REV DESC - FIRST ISSUE PLANNI Avail Correst Transportation Plannii www.aval-group.co.t Client Name: WELDIN Project Title:	NG 501ting G Ing : Environmental (Ik, Email: contact@aval-group.co ny Number: 11922039	31/08/22 v
	REV DESC - FIRST ISSUE PLANNI Avail Correst Transportation Plannii www.aval-group.co.t Client Name: WELDIN Project Title:	NG SUITING G ng : Environmental (IK, Email: contact@aval-group.co ny Number: 11922039 I BUILDERS LTD	31/08/22 v
	REV DESC – FIRST ISSUE PLANNI – VELOIN Project Title: FRIARS GART Drawing Title: FRIARS GART	NG SUITING G ng : Environmental (IK, Email: contact@aval-group.co ny Number: 11922039 I BUILDERS LTD	31/08/22 v COUP Consultant
	REV DESC - FIRST ISSUE PLANNI Image: Comparison of the second	I BUILDERS LTD TH, EPSOM KT18 EEDANCE FLOW	31/08/22 v COUP Consultant Consultant
	REV DESC – FIRST ISSUE PLANNI – Veltoine Client Name: WELDIN Project Title: FRIARS GART Drawing Title: PROPOSED EXCO Date: 13.07.2022 Scale: 1:100 @ A1	I BUILDERS LTD	31/08/22 v COUC Consultant 5DH ROUTE
	REV DESC – FIRST ISSUE PLANNI FIRST ISSUE PLANNI FIRST ISSUE PLANNI Image: Client Name: Image: Client Name: Client Name: Image: Client Name: Project Title: FRIARS GAR* Drawing Title: PROPOSED EXCO Date: 13.07.2022 Scale: 1:100 @ A1 1:200 @ A3	I BUILDERS LTD TH, EPSOM KT18 EEDANCE FLOW Drawn By: PF Checked: W	31/08/22 v COUP Consultant 5DH ROUTE
	REV DESC – FIRST ISSUE PLANNI – FIRST ISSUE PLANNI Project Title: WELDIN Project Title: FRIARS GAR Drawing Title: PROPOSED EXCO Date: 13.07.2022 Scale: 1:100 @ A1 1:200 @ A3	NG SUITING Group Group of the second secon	31/08/22 v COUP Consultant 5DH ROUTE

CEMP for protection of drainage system

Friars Garth The Parade Epsom Surrey

Liquids Management

To eliminate the risk of any potential ground, water course or drainage contamination from the various liquids which are used on site and from generated effluents the following control measures will be implemented on site

Liquids Control Measures

• All diesel fuel for the site plant will be stored on site within double skinned fuel bowsers located at predetermined points on site for easy access by plant but away from any drainage access point. The refuelling lines will be fitted with automatic shut off devices and unattended refuelling will not be allowed at any time. Lorries and other vehicles normally used on public roads will not be refuelled on site.

• The plant refuelling areas will be on a hard stand area and have a quantity of absorbent materials (Anti Spill Kit) available in case of any diesel spillage, which will be cleaned up immediately.

• Other items requiring storage on site such as hydraulic oils etc. will be in the appropriate storage drums stored in a provided secure container located at the appropriate position within the plant and material area shown in method of construction drawing

• All site welfare facilities effluent and sewage discharge will be via connections to the public drainage system.

• All wastewater from the site welfare facilities shall flow through fixed connections to the appropriate drains. At no time will any effluent be allowed to discharge directly onto the ground or surrounding.

• All active drainage points within and adjacent to the site will be clearly identified and where necessary a means of water filtration installed around them.

• All waste water from the onsite asbestos personnel de-contamination units will pass through installed propriety waste water filters before entering the drainage system. (No asbestos detected)

- At the onset of demolition existing hardstanding's and unsuitable sub-base material where necessary will be removed and replaced with a temporary permeable hard standing constructed of crushed concrete, hard-core or type 1 road stone and maintained as necessary for the duration of the project. Creating a permeable surface within the site allowing for natural drainage and removing the risk of surface water run-off.
- In addition to the above a concrete bund (sleeping policeman type hump) will be constructed across the existing entrance of the site on The Parade with a gully inside the site falling to the "filtration trench and silt settlement tank/pond

• At no time will any dust control water sprays be allowed to generate a flow of runoff water.

• All such water spray operations will always be controlled and managed by appointed site personnel in attendance. Filters will be installed over drain outlets.

• Demolition site damping down water run-off and all other wastewaters will be disposed of in accordance with the requirements of the Environmental Agency.

• The company will identify then regularly inspect all on-site drainage systems and those adjacent to the site boundary and will ensure that they are maintained in an efficient state of repair and remain free of contamination and are not providing a potential means of rodent access.

• A specialist waste contractor will be employed to dispose of any hazardous liquid wastes found on site and disposed of in accordance with those regulations

Ground Contamination

To minimise the risk of ground contamination on site the following control measures will be implemented which will be actioned by designated site personnel using liquid absorbent materials such as granules, Anti Spill Kits and fine sand, which will be stored at a designated location on site. All such wastes from clearing a spillage incident will be placed into the appropriate waste container such as an oil drum which will then be removed from site for disposal as Hazardous Waste under consignment note.

To ensure ground contamination is kept at a minimum the following standards will be actioned:

• All diesel storage and refuelling areas will be on a hard stand which will be covered in absorbent granules and have their own fire points & Anti Spill Kits.

• An area on site will be designated the plant service and maintenance area where it will be covered in absorbent granules with Anti Spill Kits located nearby.

• Any liquid escape or spillage such as an oil leak will be cleaned up immediately by the designated site personnel acting as a site spillage team

• All standing plant will have drip trays placed underneath them

• Silt run off Land, water borne Measures to be put in place to prevent run off, filtration trench and silt settlement tank / pond.

In the event of a significant environmental pollution occurrence, Environment Agency and the Corporation of London will be advised immediately.

Appendix F: Maintenance Plan

AVAL Consulting Group Limited, Newhaven Enterprise Centre, Denton Island, Newhaven, BN9 9BA Tel: +44 (0) 191 269 6829 / W www.aval-group.co.uk / E contact@aval-group.co.uk

Aval Consulting Group.

Drainage Strategy – Maintenance Plan

Friars Garth, Epsom KT18 5DH Weldin Builders Ltd

February 2024

Project Information

Title	Drainage Strategy – Maintenance Plan
Job Code	91833
Sector	Drainage
Report Type	DS
Client	Weldin Builders Ltd
Revision	В
Status	Final
Date of Issue	27 February 2024

Revision History

Revision	Date	Author	Reviewer	Approver	Status
Α	28 September 2022	PR	WR	AC	Final
В	27 February 2024	PR	WR	AC	Final

Disclaimer

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no responsibility is undertaken to any third party. This report may include data obtained from trusted third-party consultants/laboratories that have been supplied to us in good faith. Whilst we do everything, we can to ensure the quality of all the data we use, we cannot be held responsible for the accuracy or integrity of third party data.

1. Introduction

Aval Consulting Limited has been commissioned by Weldin Builders Ltd ('the client') to provide a Drainage Infrastructure Maintenance Plan in relation to a planning application for the proposed development of a residential flat block with associated gardens, public open spaces, new road and associated infrastructure located at Friars Garth, Epsom KT18 5DH.

The purpose of the report is to set out the maintenance plan of various SuDS used within the site. Maintenance programmes will be provided to ensure optimal performance of the SuDS proposed within the site to prevent any unforeseen risks of flooding within the site or elsewhere.

The maintenance and inspection programme are standard to the proposed SuDS. However, suppliers of the SuDS may request additional maintenance and inspections if necessary. It is therefore recommended to adjust the maintenance and inspection programme in order to maximise the performance efficiency of the SuDS.

The contractor/company in charge of the maintenance and inspection is expected to follow the proposed maintenance and inspection plans.

2. **Proposed SuDS as Part of Proposed Development**

The proposed development includes the following SuDS within the design:

- Permeable Paving
- Attenuation Storage
- Flow Controls (Hydrobrake and Orifice Plate)

Permeable paving is proposed to be used within the driveway/carpark area of the site. The surface water from the driveway/carpark will be discharged using the sub-base as a tank into the surface water drainage network, via an Orifice Plate being used to restrict the surface water discharge from the permeable paving sub-base.

It is proposed to have a 0.4m sub-base to temporarily store and discharge surface water.

Attenuation Storage is proposed to be placed at the rear of the site to allow for any additional surface water from the proposed building and the permeable paving to be temporarily stored prior to discharge to the public surface water sewer.

A Hydrobrake will be used to restrict the discharge of surface water prior to discharge into the public surface water sewer.

3. SuDS Maintenance Plan

There are three types of maintenance that may be required to be undertaken:

- Regular Maintenance
- Occasional Maintenance
- Remedial Maintenance

Regular maintenance is a frequent and planned maintenance/inspection schedule. This can include but is not limited to basic tasks such as debris removal, vegetation clearance/management, etc.

Occasional maintenance is a much less frequent and predictable schedule. It is mostly done periodically. This can include but is not limited to sediment removal.

Remedial maintenance is where maintenance is done to fix or repair faults within the system. This can be in the form of restricting the attenuation tanks, repairing flow controls, etc.

In all cases, all maintenance and inspections carried out should be recorded by the contractor/company in charge of the maintenance of the system. This should include information about the status of the system and the actions taken during any maintenance tasks.

Table 1 is the Maintenance Plan for the permeable paving.

Table 1: Maintenance Plan for Permeable Paving

Type of Maintenance	Action Required	Frequency
	Inspection of plant growth	Quarterly
Monitoring/Inspection	Review surface for any evidence of displacement/misshape/damage of paving blocks	Quarterly
	Review of clogging within joints of paving blocks	Quarterly
	Cleaning of the surface with brush and vacuum	Annually (preferably during autumn)
Regular Maintenance	Removing any silt/dirt	Annually

3

Occasional Maintenance	To clean off contributing areas	As required
	Removing any plant growth or managing the growth of plants	As required
Remedial Actions	To restore landscape where vegetation has raised to above 50mm from paving surface	As required
	To lift/replace any damaged blocks and to repair joints	As required
	Repair of inner structure	As required

Table 2 contains the maintenance plans of the attenuation storage.

Table 2: Maintenance Plan for Attenuation Storage

Type of Maintenance	Action Required	Frequency
	Inspection of inlet and outlet pipes	Quarterly
Monitoring/Inspection	Review of water levels within the system	Quarterly
	CCTV survey of the tank to inspect the condition	Annually
Regular Maintenance	Removing any silt/dirt	Bi-annually
Occasional Maintenance	Flushing of system to remove any dirt/silt	As required
Remedial Actions	To replace/repair damaged components	As required

4

Table 3 contains the maintenance plans of the flow controls.

Table 3: Maintenance Plan for Flow Controls

Type of Maintenance	Action Required	Frequency
	Inspection of flow control from the surface	Monthly
Regular Maintenance	Removing any silt/dirt	Monthly
Occasional Maintenance	Checking connection features of flow control to ensure parts such as bolts are not loose	Annually unless required
Remedial Actions	To replace and repair damaged components	As required

5