Beam/lintel section

Calculations for timber beams/lintels are in accordance with BS5268:Pt 2:2002

Service class -2 (Covered and heated or unheated)
Maximum design moment
Design shear force at left hand support
$=3.26 \mathrm{kNm}$
$=4.35 \mathrm{kN}$
Design shear force at right hand support
$=4.35 \mathrm{kN}$

Load Description	Type	A	B	C	Gk	Qk
	UDL	0	3		1.5	1.4

Grade stresses

Bending parallel to grain	$=7.5 \mathrm{~N} / \mathrm{mm}^{2}$
Shear parallel to grain	$=0.71 \mathrm{~N} / \mathrm{mm}^{2}$
Compression perpendicular to grain	$=2.4 \mathrm{~N} / \mathrm{mm}^{2}$

(wane prohibited at bearing areas)
Modification factors

For service class 2	- moment	$\mathrm{K}_{2 \mathrm{M}}$	$=1$
	- shear	$\mathrm{K}_{2 \mathrm{~V}}$	$=1$
	- bearing	$\mathrm{K}_{2 \mathrm{~B}}$	$=1$
	- Youngs mod	$\mathrm{K}_{2 \mathrm{E}}$	$=1$
	- Shear mod	$\mathrm{K}_{2 \mathrm{E}}$	$=1$
	- long	K_{3}	$=1$
For load duration	- left end	K_{41}	$=1$
For end bearing	- right end	$\mathrm{K}_{4 \mathrm{r}}$	$=1$
	- left end	K_{51}	$=1$
For no end notch	- right end	$\mathrm{K}_{5 r}$	$=1$

For depth between 72 and 300 mm

$$
\begin{aligned}
\mathrm{K}_{7} & =(300 / \mathrm{h})^{0.11} \\
& =(300 / 175)^{0.11} \\
& =1.06 \\
\mathrm{~K}_{8} & =1.1 \\
\mathrm{~K}_{9} & =1.21
\end{aligned}
$$

For load sharing system
For 3 pieces of softwood

The section is checked assuming that all the pieces of the beam/lintel act together as a load sharing system. The pieces must be connected together in such a manner to ensure this is achieved.

Bending Design

The allowable bending stress is

$$
\begin{aligned}
\sigma_{\text {bpall }} & =\sigma_{b p}{ }^{*} \mathrm{~K}_{2 \mathrm{M}}{ }^{*} \mathrm{~K}_{3}{ }^{*} \mathrm{~K}_{7}{ }^{*} \mathrm{~K}_{8} \\
& =7.5 *{ }^{*} * 11.06 * 1.1 \\
& =8.75 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The required section modulus is

$$
\begin{aligned}
z_{\text {reqd }} & =M^{*} 10^{6} / \sigma_{\text {bpall }} \\
& =3.26^{*} 10^{6} / 8.75 \\
& =372571 \mathrm{~mm}^{3}
\end{aligned}
$$

The section modulus of the beam/lintel chosen is 720000 mm ^3.

Shear Design

Left hand support

The allowable shear stress is

$$
\begin{aligned}
\sigma_{\text {cpaall }} \quad & =\sigma_{\text {cpa }}{ }^{*} \mathrm{~K}_{2 \mathrm{~V}}{ }^{*} \mathrm{~K}_{3}{ }^{*} \mathrm{~K}_{51}{ }^{*} \mathrm{~K}_{8} \\
& =0.711^{*} 1^{*} 1^{*} 1 * 1.1 \\
& =0.78 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The required cross sectional area is

$$
\begin{aligned}
\mathrm{A}_{\text {lreqd }} \quad & =3^{*} \mathrm{R}_{1}^{*} 10^{3} /\left(2^{*} \sigma_{\text {cpaall }}\right) \\
& =3^{*} 4.35^{*} 10^{3} /\left(2^{*} 0.78\right) \\
& =8365 \mathrm{~mm}^{2}
\end{aligned}
$$

The cross sectional area of the beam/lintel chosen is

$$
\begin{aligned}
\mathrm{A}_{\text {lprov }} & =\mathrm{N}_{\text {tim }} * \mathrm{~b}^{* h} \\
& =3^{*} 47^{*} 175 \\
& =24675 \mathrm{~mm}^{2}
\end{aligned}
$$

Right hand support
The allowable shear stress is

$$
\begin{aligned}
\sigma_{\text {cpaall }} \quad & =\sigma_{\text {cpa }}{ }^{*} \mathrm{~K}_{2 V}{ }^{*} \mathrm{~K}_{3}{ }^{*} \mathrm{~K}_{55}{ }^{*} \mathrm{~K}_{8} \\
& =0.711^{*} 1^{*} 1^{*} 1^{*} 1.1 \\
& =0.78 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The required cross sectional area is

$$
\begin{aligned}
A_{\text {reqd }} & =3^{*} R_{r}^{*} 10^{3} /\left(2^{*} \sigma_{\text {cpaall }}\right) \\
& =3^{*} 4.35^{*} 10^{3} /\left(2^{*} 0.78\right) \\
& =8365 \mathrm{~mm}^{2}
\end{aligned}
$$

The cross sectional area of the beam/lintel chosen is

$$
\begin{aligned}
\mathrm{A}_{\text {rprov }} & =\mathrm{N}_{\text {tim }}{ }^{*} \mathrm{~b}^{*} \mathrm{~h} \\
& =3^{*} 47^{*} 175 \\
& =24675 \mathrm{~mm}^{2}
\end{aligned}
$$

Bearing Design

Left hand support

The allowable bearing stress is

$$
\begin{aligned}
\sigma_{\text {cpeall }} & =\sigma_{\text {cpe }}{ }^{*} \mathrm{~K}_{2 \mathrm{~B}}{ }^{*} \mathrm{~K}_{3}{ }^{*} \mathrm{~K}_{41}{ }^{*} \mathrm{~K}_{8} \\
& =2.4^{*} 1^{*} 1^{*} * 1 * 1.1 \\
& =2.64 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The required bearing area is

$$
\begin{aligned}
\mathrm{A}_{\text {blreqd }} & =\mathrm{R}_{1}^{*} 10^{3} / \sigma_{\text {cpeall }} \\
& =4.35^{*} 10^{3} / 2.64 \\
& =1648 \mathrm{~mm}^{2}
\end{aligned}
$$

The bearing area of the beam/lintel chosen is

$$
\begin{aligned}
A_{\text {blprov }} & =N_{\text {tim }}{ }^{*} b^{*} Y_{1} \\
& =3^{*} 47^{*} 50 \\
& =7050 \mathrm{~mm}^{2}
\end{aligned}
$$

Right hand support

The allowable bearing stress is

$$
\begin{aligned}
\sigma_{\text {cpeall }} \quad & =\sigma_{\text {cpe }}{ }^{*} \mathrm{~K}_{2 \mathrm{~B}}{ }^{*} \mathrm{~K}_{3}{ }^{*} \mathrm{~K}_{4 \mathrm{r}}{ }^{*} \mathrm{~K}_{8} \\
& =2.4{ }^{*} * 1^{*} 1^{*} 1.1 \\
& =2.64 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

The required bearing area is

$$
\begin{aligned}
\mathrm{A}_{\text {breqd }} & =\mathrm{R}_{\mathrm{r}}^{*} 10^{3} / \sigma_{\text {cpeall }} \\
& =4.35^{*} 10^{3} / 2.64 \\
& =1648 \mathrm{~mm}^{2}
\end{aligned}
$$

The bearing area of the beam/lintel chosen is

$$
\begin{aligned}
A_{\text {brprov }} & =N_{\text {tim }}^{*}{ }^{*} * Y_{r} \\
& =3^{*} 47^{*} 50 \\
& =7050 \mathrm{~mm}^{2}
\end{aligned}
$$

Deflection check

The deflection calculated includes for shear deflection and is based on the following material properties which incorporate modification factors K_{2} and K_{9} as appropriate.

- Young's modulus	-E	$=8712 \mathrm{~N} / \mathrm{mm}^{2}$
- Shear modulus	-G	$=545 \mathrm{~N} / \mathrm{mm}^{2}$
- Shape factor	-F	$=1.2$ (for rectangular sections)
n properties of		
- Area	-A	$=247 \mathrm{~cm}^{2}$
- Mom. of inertia	-I	$=6300 \mathrm{~cm}^{4}$

The maximum calculated deflection is 5.8 mm .
The allowable deflection in accordance with clause 2.10 .7 is 9 mm (0.003^{*} Span).
The section PASSES all the checks.

