CAMERON DARROCH ASSOCIATES

SURFACE WATER DRAINAGE STRATEGY FOR REDEVLOPMENT OF LAND AT 57 TOP DARTFORD ROAD, HEXTABLE, KENT, BR8 7SG.

DATE: March 2024

OUR REF: CDA-2601 v1.1

CAMERON DARROCH ASSOCIATES

INTRODUCTION

This document has been developed based on the planning approved Flood Risk Assessment and drainage strategy prepared by Clancy Consulting and related correspondence with the LPA/LLFA a copy of which is contained in Appendix VI for ease of reference. The proposal is for the redevelopment of an existing dwelling known as 57 Top Dartford Road, Hextable. A copy of the topographical survey, for the existing site, together with the Architects proposed site layout is contained within Appendix II.

Surface Water Drainage

As outlined in the original FRA and as required by current planning guidance and Part H of the Building Regulations, the utilisation of SuDS measures as the primary method of surface water disposal should be considered. The hierarchy for preferred disposal options for surface water run-off is as follows:

1. Infiltration into the ground
2. Discharge to Surface waters
3. Discharge to Sewer

Due to the poor infiltration rates identified for the shallow strata across the site the use of attenuation with direct infiltration was discounted. There are no watercourses within close proximity of the site. Neither is there a surface water sewer. Further deep bore site investigations found good infiltration rates at greater depth and as a result the chosen solution was to adopt deep bore soakaways for the disposal of surface water run-off from the redeveloped site.

A copy of the site investigation and test results, extracted from the Clancy report, are contained in Appendix III for ease of reference.

The proposed drainage network including attenuation structure have been designed to resrict discharge to manageable levels and to suit the infiltration rates for the deeper ground strata across the site. The system(s) have been designed to ensure there is flooding during the critical 1 in 30 year storm event and 1 in 100 year storm event including a 40% allowance for climate change. A copy of the hydraulic calculations are contained in Appendix IV.

Silt sumps have been incorporated directly upstream of the attenuation tank soakaway to provide interception of any minimal silt/detritus and to prevent it entering the structure. The attenuation tanks are to have an inspection tunnel and/or appropriate means of gaining access to the bottom of the soakaway to enable periodic inspection and maintenance, including cleaning, of the structure to ensure optimum performance for the life of the development.

CAMERON DARROCH ASSOCIATES

There are opportunities to incorporate various SuDS features in accordance with current best practice and National Policy Guidelines and the Ciria SuDS Manual. The viability and practicality of the various SuDS features has been discussed below:

1.00 SUSTAINABLE DRAINAGE PROPOSALS

1.01 Storm Water Management and SuDS

1.01.01 Sustainable Drainage Systems (SuDS) involve the management of storm water from developments effectively in order to reduce the impact of run-off both to the site in question and properties downstream, and not to exacerbate existing problems. This is achieved by not increasing peak flows that will otherwise result from the development. The philosophy of SuDS is to mimic as closely as possible, the natural drainage from a site before development, and to ensure that storm water runoff is treated so there is no detriment to water quality of the receiving watercourse.

Using SuDS may provide water quantity and quality control, as well as increased amenity value. Appropriately designed and maintained schemes may improve the sustainable water management at the site by:

- Reducing peak flows to watercourses or sewers and potentially reducing the risk of flooding downstream.
- Reducing the volume, rate of discharge, and the frequency of water flowing directly to watercourses or sewers from the developed sites.
- Improving water quality compared with conventional surface water sewers by removing pollutants.
1.01.02 The following section represents the considered views on suitable SuDS options appropriate to this site. CIRIA C7536 The SuDS Manual was consulted to examine the use of SuDS on this site. Conclusions are based on the assessment of the site and the evaluation of the relevant design requirements.

CAMERON DARROCH ASSOCIATES

1.02 Potential SuDS Techniques Considered for this Site

1.02.01 Green Roofs

Green roofs comprise a multi-layered system that covers the roof of a building or podium structure with vegetation cover, over a drainage layer. They are designed to intercept and retain precipitation, reducing the volume of run-off and attenuating peak flows.

The proposed building \& roof design are not appropriate for the use of green roofs. The cost to the structure can be considerable and prohibitive.

Not recommended or proposed.

1.02.02 Soakaways

Soakaways are square or circular excavations either filled with rubble or lined with brickwork, precast concrete or polyethylene rings/perforated storage structures surrounded by granular backfill. They can be grouped and linked together to drain large areas including highways. The supporting structure and backfill can be substituted by modular geocellular units. Soakaways provide storm water attenuation, storm water treatment and groundwater recharge.

The prevailing ground conditions at shallow depths are unsuitable for infiltration. However, acceptable infiltration rates were identified at greater depth and the use of deep bore soakaways with infiltration into the deeper underlaying strata is considered to be the most appropriate solution for this site.

Recommended and proposed. Refer to drainage plan.

1.02.03 Swales

Swales are linear vegetated drainage features in which surface water can be stored or conveyed. They can be designed to allow infiltration, where appropriate. They should promote low flow velocities to allow much of the suspended particulate load in the storm water runoff to settle out, thus providing effective pollutant removal. Roadside swales can replace conventional gullies and drainage pipes.

CAMERON DARROCH ASSOCIATES

Due to the land take for the development swales are not considered feasible.

Not recommended or proposed

1.02.04 Pervious Pavements

Pervious pavements provide a pavement suitable for pedestrian and/or vehicular traffic, while allowing rainwater to infiltrate through the surface and into the underlying layers. The water is temporarily stored between infiltration to the ground, reuse or discharge to a watercourse or other drainage system.
Pavements with aggregate sub-bases can provide good water quality treatment.

Due to the limited viability of infiltration at shallow depth a Type C permeable paving system (Non-infiltration) is proposed with perforated collector pipes installed within the granular sub-base to convey run-off to the below ground drainage network.

Recommended and proposed. Refer to drainage plan.

1.02.05 Geo-cellular/Modular Systems

Modular plastic geo-cellular systems with a high void ratio that can be used to create a below ground storage structure.

Modular tanks can be used for run-off attenuation but requires silt trap protection and a suitable means of access for cleaning and inspection.

Recommended and proposed to provide attenuation prior to discharge to the borehole soakaways. Refer to drainage plan.

1.02.06 Ponds/Infiltration Basin

Ponds can provide both storm water attenuation and treatment.
They are designed to support emergent and submerged aquatic vegetation along their shoreline. Run off from each rain event

CAMERON DARROCH ASSOCIATES
KESTREL BUSINESS CENTRE, PRIVATE ROAD No. 2, COLWICK, NOTTINGHAM, NG4 2JR

CAMERON DARROCH ASSOCIATES

is detained and treated in the pool. The retention time promotes removal through sedimentation and the opportunity for biological uptake mechanisms to reduce nutrient concentrations.

Due to the land take for the development ponds are not feasible on this development.

Not recommended or proposed.

1.02.07 Rainwater Gardens

Rain gardens are relatively small depressions in the ground that can act as infiltration points for roof water and other 'clean' surface water - i.e. water that is low in contamination levels. They are designed to intercept and retain precipitation, reducing the volume of run-off and attenuating peak flows.

Due to the limited space within the site rainwater gardens are not considered to be feasible.

Not recommended or proposed.

1.02.09 Vegetation Expansion

Consideration to be given to planting more expansive vegetation rather than traditional lawns.

Areas of soft landscaping and amenity areas have been maximised as part of the development. There are no further areas in which vegetation expansion could be incorporated based on the current proposals.

Not proposed.
Where possible the above SuDS features have been incorporated within the scheme and have been indicated on the drainage layout contained in Appendix I.

In line with recognized practice the drainage and proposed topography have been designed to direct any temporary flood water generated by storm events exceeding the drainage system design parameters away from any buildings or structures. An exceedance diagram has been included in Appendix V.

CAMERON DARROCH ASSOCIATES

A maintenance regime will need to be established for all drainage systems and SuDS features with the responsibility for maintenance being with the site owner at no cost to the public. Refer to separate CDA Drainage System Maintenance Strategy document.

Foul Water Drainage

The site is already served by existing foul drainage connected to the public foul sewer in Top Dartford Road. It is proposed to provide a new connection into the public sewer manhole into which the site already discharges.

CAMERON DARROCH ASSOCIATES

APPENDIX I

CAMERON DARROCH ASSOCIATES

APPENDIX II

CAMERON DARROCH ASSOCIATES

APPENDIX III

Figure 9 - SFRA mapping for Cumulative impact Assessment.
5.3.2 A ground investigation was carried out in July 2021. This found that the permeability of the ground across the site were not conducive for shallow infiltration features due to the size of attenuation needed to capture and infiltrate via soakaways. There was insufficient available space, given the dimensions of the proposed building.
5.3.3 Further ground investigation was undertaken during October 2021 that included 4 No. trial pits and infiltration tests. Again these determined that shallow infiltration was not a viable option to drain the site.
5.3.4 Given the above results, deep bore investigations where carried out early December 2021. The results confirmed that to a depth of 20 m ; no ground water was encountered to a depth of 30.0 m and infiltration rates are acceptable to drain within the development site boundaries. All results of ground investigations can be found in Appendix B.

Permeability rates recorded from the falling head tests are presented in the table below:

Location	Depth (m)	Run	Permeability $\mathrm{k}(\mathrm{m} / \mathrm{s})$
BH01	10	1	1.74×10^{-4}
	15	1	5.73×10^{-4}
		2	2.61×10^{-4}
	20	1	4.31×10^{-4}
		2	3.76×10^{-4}
BH02	10	1	2.46×10^{-4}
		2	4.12×10^{-4}
	15	1	1.37×10^{-4}
		2	4.03×10^{-4}
	20	1	2.29×10^{-4}
		2	4.98×10^{-4}

Figure 10 - extract of tabled permeability results

Printed By GeoLogs (www.GeoLogs.com)

Printed By GeoLogs (www.GeoLogs.com)

			Project Title: 57 Top Dartford Road, Hextable					
			Project Numbe	r: 10/178		Client: Barchester Healthcare Ltd.		
			GL (mAOD):			N Coord: 170856	E Coord: 552485	
Date: 07/10			Method: JCB			Logged By: EB	Scale: 1:10	
Depth (m)	Type	Test Result	Level	Legend	Depth (m)	Description		Water
						MADE GROUND: Grass ove CLAY, with roots and rootle Gravel is fine to coarse, sub chalk, brick, glass and metal Structureless CHALK, compos gravelly SILT. Gravel is weak coarse and subangular. (LEWES NODULAR CHALK FOR Structureless CHALK, compo gravelly SILT. Gravel is weak coarse and subangular. (LEWES NODULAR CHALK FOR Structureless CHALK, comp sandy GRAVEL and COBBLE density, white, fine to coa subangular flint cobble co (LEWES NODULAR CHALK FOR Structureless CHALK, compo slightly sandy GRAVEL and CO medium density, white with lo coarse and subangular. Med content. (LEWES NODULAR CHALK FOR End Of Trial Pit At 1.45 m	very soft sandy gravelly s. Sand is fine to coarse. ounded to angular of flint, ed of brownish white sandy low density, white, fine to RMATION) sed of white slightly sandy low density, white, fine to RMATION) sed of white silty slightly . Clasts are weak, medium se and subangular. Low tent. RMATION) sed of yellowish white silty OBBLES. Clasts are weak, alised iron staining, fine to um subangular flint cobble RMATION)	
KEY D - Disturbe B - Bulk Sa W - Water V - Hand S	$\begin{aligned} & \text { Sample } \\ & \text { ple } \\ & \text { mple } \\ & \text { ar Van } \end{aligned}$		ㄱ - Groundwater Strike Groundwater Level			No Groundwater Encountered Location scanned with CAT prior to excavation. Trial pit backfilled with arisings upon completion.		

			Project Title: 57 Top Dartford Road, Hextable				TP04 Sheet 1 Of 1	
			Project Numb	r: 10/178		Client: Barchester Healthcare Ltd.		
			GL (mAOD):			N Coord: 170833	E Coord: 552488	
Date: 07/10			Method: JCB			Logged By:	Scale: 1:10	
Depth (m)	Type	Test Result	Level	Legend	Depth (m)	Description		Water
						TOPSOIL: Grass over very slightly gravelly CLAY, with ro to medium. Gravel is fine subangular of flint and ch Very soft light orangish brow rootlets. Sand is fine to medi subrounded to subangular of Structureless CHALK, compo gravelly SILT. Gravel is weak coarse and subangular. (LEWES NODULAR CHALK F Structureless chalk compos cobbly SILT. Clasts are wea coarse and subangular. Med content. LEWES NODULAR CHALK F Structureless CHALK, com GRAVEL and COBBLES. Cla white with localised iron stair subangular. Medium suban (LEWES NODULAR CHALK F 1.35-1.45 Subangular flint bo	oft dark brown silty sandy ts and rootlets. Sand is fine coarse, subrounded to k. sandy gravelly CLAY, with m. Gravel is fine to coarse, lint and chalk. ed of brownish white sandy low density, white fine to RMATION) d of white sandy gravelly low density, white, fine to um subangular flint cobble RMATION) sed of white silty sandy are weak, medium density, ining, fine to coarse and ular flint cobble content. RMATION)	
KEY D - Disturbe B - Bulk Sa W - Water V - Hand S	Sampl e ple Van		ㄱ - Groundwater Strike Groundwater Level			No Groundwater Encountered Location scanned with CAT prior to excavation. Trial pit backfilled with arisings upon completion.		

Printed By GeoLogs (www.GeoLogs.com)

Printed By GeoLogs (www.GeoLogs.com)

Printed By GeoLogs (www.GeoLogs.com)

