

Appendix A.3 – Southern Water Asset Location Data

(c) Crown copyright and database rights 2023 Ordnance Survey 100031673	Date: 10/08/23		Scal	le: 1:1250
The positions of pipes shown on this plan are believed to be correct, but Southern Water Services Ltd accept no responsibility in the e actual positions should be determined on site. This plan is produced by Southern Water Services Ltd (c) Crown copyright and databas		Combined Pumping Station	Foul Manhole	flood@herringtonconsulting.co.uk
Survey 100031673 .This map is to be used for the purposes of viewing the location of Southern Water plant only. Any other uses of th copies is not permitted.	e map data or further	Austral Males Cause Studies Males Dising Main	on Combined Manhole	1077/LS
WARNING: BAC pipes are constructed of Bonded Asbestos Cement.	Foul Gravity Combined Gravity Culv Sewer Sewer o	Iverted Water Course Surface Water Rising Main, Pour Pumping Station or Treated Effluent Gravity Sewer Vacuum or Syphon	Side Entry Manhole, Decarcation Chamber,	
WARNING: Unknown (UNK) materials may include Bonded Asbestos Cement.	Combined Outfall - Foul Outfall	Surface Water Outfall (Surface Water Inlet)	Durimy Manhole or Surface Vater Soakaway	

ence Liquid Type		Invert Level	Depth to Invert
С	42.57	38.28	
C	39.43	35.79	
С	42.94	39.69	
С	44.76	42.96	
С	44.39	42.31	
С	44.70	41.76	
С	44.23	42.78	
С	44.15	42.35	
	43.98	42.30	
	36.74	34.51	
С	37.27	35.10	
С	38.52	35.93	
С	39.32	35.65	
С	34.46	30.74	
С	43.80	42.13	
С	39.53	37.83	
С	41.45	39.08	
С	42.84	0.00	
С	46.09	46.09	
С	45.76	0.00	
С	43.56	40.76	
С	40.49	0.00	
С	43.32	41.77	
С	44.27	42.46	
С	44.69	43.13	
С	45.84	44.52	
		44.02	
	47.34		
	47.23	43.41	
C	47.38	0.00	
C	37.98	0.00	
C	0.00	0.00	
C	40.29	37.76	
C	39.46	36.22	
С	39.99	0.00	
С	37.59	0.00	
С	41.86	0.00	
F	0.00	0.00	
F	0.00	0.00	
F	46.02	45.36	
F	46.25	45.65	
F	46.25	45.18	
F	46.15	44.71	
F	46.20	44.02	
F	46.24	45.70	
F	45.05	41.10	
F	45.50	41.50	
	45.90	42.74	
F	+0.00		
F F	46.20	42.47	
		42.47 42.08	
F	46.20		
F F	46.20 45.65	42.08	
F F F	46.20 45.65 43.92	42.08 40.50	
	CCC<	C 39.43 C 40.86 C 44.55 C 39.64 C 43.48 C 43.67 C 45.15 C 45.11 C 45.11 C 44.93 C 44.93 C 44.76 C 44.39 C 44.76 C 44.73 C 44.76 C 43.78 C 44.76 C 43.78 C 44.76 C 43.78 C 43.78 C 43.78 C 43.78 C 43.61 C 43.61 C 43.64 C 43.61 C 43.61 C 43.61 C 43.62 C 35.2 C 36.17 C 37.59 C 44.63 C 37.2	C 39.43 35.79 C 40.86 36.42 C 44.55 43.16 C 39.64 35.87 C 43.87 41.06 C 43.67 41.06 C 45.15 42.36 C 44.76 42.96 C 44.76 42.96 C 44.76 42.96 C 44.70 41.76 C 44.73 42.78 C 44.76 43.92 C 44.76 43.92 C 44.78 42.96 C 44.76 43.92 C 44.76 43.92 C 44.78 42.96 C 43.85 42.15 C 38.54 42.15 C 38.54 42.15 C 43.85 42.15 C 43.85 42.15 C 43.85 42.15 C

Manhala Poforanco		Coverlevel	Invort Loval	Dopth to Invort
Manhole Reference		Cover Level		Depth to Invert
3204	F	0.00	0.00	
3205	F	0.00	0.00	
3206	F	0.00	0.00	
3304	F	0.00	0.00	
3305	F	0.00	0.00	
3306	F	0.00	0.00	
3702	F	0.00	0.00	
3703	F	0.00	0.00	
4203	F	0.00	0.00	
4204	F	0.00	0.65	
4205	F	0.00	0.70	
4206	F	0.00	0.70	
4207	F	0.00	0.70	
4303	F	0.00	0.00	
4304	F	0.00	0.00	
4305	F	0.00	0.00	
5204	F	0.00	0.00	
8101	F	45.23	41.94	
8204	F	45.06	42.63	
8205	F	45.03	42.59	
8303	F	0.00	0.00	
9203	F	45.13	42.75	
		1		
				1

	er Level	ver Leve	Cover	С	•	Туре	iquid Ty	≱ Li	nce	ence	eferen	e Refere	hole F	lanho	N	rt	nver	to Inv	epth to	De	I	vert Level	Inve	ver Level	С	Liquid Type	ce L	Reference	Manhole		t	Invert	Depth to In	D	vert Level	Inv	Level	Cover Le	С	quid Type	eL	e Reference	Manhole
				+	-			-	_						_	_				+			-		+		-							+					_		-		
				-				1								_														_				+									
				-	_			+	-							_				+			-		+		+				_			+		-			-		-		
				_				\square	\square											_					_									\mp									
								\pm								_																		+									
				_	_			_								_																		_									
				+				t																										+									
				_	_			+	_						_	_				-			-		-		_							+					_		_		
				+				t																										+									
				_				+							_	_				-					-		_				_			+		-			_		_		
				_				t								_																		1									
				-	_			+	_						_					-			-		+		_							+		-			_		-		
				_				t																										+									
				+	_			+	_						_	_				-			-		-		-			_				+					-		_		
				+				F																										+									
				+	-			+	-							_				-					+		-							+					-		-		
				_				+																										+									
				_	_			-	_																									-									
					_			_							_					_					_									_									
								\pm																										+									
				_	_			+							_	_				-			-		-		_				_			+					_		_		
								t																										1									
				-	_			+	_						_	_				-					+		-			_	_			+					_		_		
								F																										_									
				-	_			+	_						_					+			-		+		-				_			+					-		-		
				—				F								_																		+									
				-	-			+	-						_	_				+					+		-							+					-		-		
				_				—								_				_														+									
								\pm																										+									
				_	_			+							_	_				-			_		_		_			_				+					_		_		
								t																										+									
				+	_			+	_						_					-			-		-		-				_			+		-			_		-		
								1																										1									
				+	_			+	_						_					+			-		+		-							+					-		-		
				_				F																										_									
					_			+	_						_	_				+			-		+		-				_			+					-		_		
				_				-								_																		-									
								\pm																										+									
Image: Problem Imade: Problem Image: Problem Image: Proble				+	_			+							_					_			_		_		_							+					_				
								t																										+									
Image: Problem Imade: Problem Image: Problem Image: Proble				+	_			+	_						_					-					_		_							+					_		_		
Image: Section of the section of t								1																										+									
Image: Problem Imade: Problem Image: Problem Image: Proble				+	-			+	_						_	_				-					-		-				_			+					-				
Image: state				-				F								_																		+									
Image: Problem Imade: Problem Image: Problem Image: Proble				_	_			+	_																									-							_		
Image: Problem Imade: Problem Image: Problem Image: Proble				_				\square								_				_					_									+									
Image: Problem Image: Proble								-	_																									+									
Image: Problem interprotect Image: Problem inter				_				_																										_									
Image: Problem Imade: Problem Image: Problem Image: Proble								t																										+									
Image: Problem interprotect Image: Problem inter				+	_			+	_											-			_		-		-				_			+					_		_		
Image: Problem Image: Proble								1																										+									
Image: state in the state i				_	_			+	_						_	_				+			-		+		-							+					_		_		
Image: Problem index inde				_				t																										_									
Image: state in the state i				+	-			+	_						_	_				-					-		-			_				+					-		_		
Image: Problem index inde				_				t																										1									
Image: state in the state i					_			+	_						_	_				+			-		+		-				_			+					-		-		
Image: state in the state i				+				F																										+									
Image: state in the state i				+	+			+	_						_	_				-					+		-			_				+					-		-		
Image: Problem in the state of the state				_				F								_																		+									
Image: series of the series				+				+								_																		+		-			_		-		
Image: state in the image: st				Ŧ				Ŧ			_																							Ŧ			_		-		-		_
Image: state in the state i				+				+															-											+									
Image: Construction of the second				+				Ŧ																	-									+		-			+		+		
Image: Second				+				+																										+									
				Ŧ	4			F																										Ŧ					+		Ŧ		
				+				+								_																		+		-					-		
				F	_			F	\neg																									-									
				+				+																										_									

	2	Invert Level	Depth to Invert
	E		Depth to Invert
Image: Construct of the section of			
Image: Construct of the section of the sect			
II			
II			
Image: Section of the section of th			
II			
Image: Constraint of the section of the sec			
II			
Image: Section of the section of th			
Image: Section of the section of t			
II			
Image: Section of the section of th			
Image: Section of the section of t			
Image: Section of the section of t			
Image: Section of the section of th			
Image: Section of the section of th			
Image:			
. . .			
Image: Section of the section of th			
Image: Constraint of the sector of the se			
Image: Section of the section of th			
Image: state			
Image: Constraint of the sector of the se			
Image: Constraint of the sector of the se			
Image: Section of the section of t			
Image: Constraint of the sector of the se			
Image: Constraint of the second se			

Appendix A.4 – Site Investigation Report undertaken by EPS

Ground Investigation Report

Flambeau EuroPlast Ltd

Manston Road Ramsgate Kent CT12 6HW

Prepared for:

Flambeau EuroPlast Ltd

Manston Road Ramsgate Kent CT12 6HW

EPS Project Reference:

UK23.6529

Date Issued: 10th August 2023

Report Status:

FLAMBEAU EUROPLAST LTD, RAMSGATE

NON-TECHNICAL CLIENT SUMMARY

This report presents the findings of a Ground Investigation undertaken to determine ground conditions and also provide information for use in infiltration design for the site and its future development. Pertinent findings and conclusions may be summarised as follows:

- The study area is a triangular plot of land located to the south of Manston Road in the north western outskirts of Ramsgate in Kent. The property comprises a large commercial building and a loop access road as well as external areas of storage, parking and soft landscaping. This ground investigation has focussed on assessing the permeability of the soil layers beneath the north of the plot, specifically the feasibility of adopting infiltration drainage as part of future redevelopment works, which are anticipated to comprise an outline residential scheme.
- The investigation involved excavating three trial pits to a maximum depth of 1.7m and one deeper borehole to 8.0m. The ground conditions were slightly variable with made ground found to a maximum of 0.65m with superficial Head Deposits (sandy silty clays) recovered in TP01 and TP02; and are thought to prevail throughout the central third (north to south). Outside of this area and towards the north western corner where TP03 and BH01 were formed, chalk bedrock was recovered, in the form of a weathered material (clay) initially, transitioning into strutureless chalk from roughly 1.0m. Groundwater was not encountered in any of the intrusive locations.
- Soakaway testing was attempted at the three trial pit locations and the initial rates were calculated as 1.68*10⁻⁶m/s for TP01 and 1.27*10⁻⁶m/s for TP02. However, rates for the second tests in both of these locations, and for the first test in TP03 could only be estimated based on extrapolated data or not calculable, as the pits didn't drain sufficiently in the time available.
- During the formation of the deep borehole 'falling head' infiltration tests were completed at approximately 6.0m and 8.0m in the structureless chalk and produced results of 3.24*10⁻⁶m/s and 2.40*10⁻⁶m/s; which are slightly more favourable than the results derived from the trial holes formed in the clay based soils.
- Overall, it is anticipated that the Margate Chalk Member may well provide a more viable infiltration medium, as long as the upper weathered/ finer layers are fully penetrated. It is also anticipated that this material will become closer to surface towards the eastern and western boundaries of the site and therefore the use of traditional soakaways or other similar methods may be more likely in these areas, as oppose to the central third, where cohesive superficial deposits were encountered. The risk of chalk dissolution will have to be considered throughout the design process, and may limit where soakaways or other similar features can be placed in relation to proposed structures for example.

The above points represent a simplified summary of the findings of this assessment and **must not** form the basis for key decisions for the proposed development. A thorough review of the details is contained within the following report, or alternatively get in touch and we'll talk you through it.

Project Reference:	UK23.6529	
Title:	Ground Investigation Repor	t – Flambeau EuroPlast Ltd, Ramsgate
Client:	Flambeau EuroPlast Ltd	
Date:	10 th August 2023	
EPS Contact Details:	7B Caxton House Broad Street Cambourne Cambridge CB23 6JN	T: 01954 710666 F: 01954 710677 E: info@epstrategies.co.uk W: www.epstrategies.co.uk
Status:	Issue 1	

Author:	Reviewed:	Authorised:
Junhart	BUitte	Sheve Bullad
James Bowley	Ben Virtue	Steve Bullock
Senior Consultant	Principal Consultant	Director

This report has been prepared for the client(s) listed on the report title page. EPS accepts no liability or responsibility for use of, or reliance upon, this report and / or the information contained within it by third parties.

If third parties have been contracted / consulted during compilation of this report, the validity of any data they may have supplied, and which are included in the report, have been assessed as far as possible by EPS however, EPS cannot guarantee the validity of these data.

No part of this report, or references to it, may be included in published documents of any kind without approval from EPS. This report and its contents, together with any supporting correspondence or other documentation, remain the property of Environmental Protection Strategies Ltd until paid for in full.

The report has been written, reviewed and authorised by the persons listed above. It has also undergone EPS' in house quality management inspection. Should you require any further assistance regarding the information provided within the report, please do not hesitate to contact us.

The National Planning Policy Framework requires a competent person to prepare site investigation information, which is defined as a person with a recognised relevant qualification, sufficient experience in dealing with the type(s) of pollution or land instability, and membership of a relevant professional organisation. EPS considers that it fulfils these criteria and would welcome any request for staff CVs or case studies to demonstrate it.

TABLE OF CONTENTS

1	INTRODUCTION 1	l
1.1	Objectives 1	l
1.2	Scope of Works 1	l
1.3	Limitations and Constraints)
2	GEO-ENVIRONMENTAL SETTING	;
2.1	Site Location and Description	;
3	SUMMARY OF INVESTIGATIONS	
3.1	Trial Pit Locations	;
3.2	Infiltration Testing & Soil Sampling 5	;
4	FINDINGS OF THE INVESTIGATION	5
4.1	Ground Conditions	5
4.1.1	Made Ground	Ś
4.1.2	Head Deposits	5
4.1.3	Margate Chalk Member	7
4.2	Groundwater	7
4.3	Physical Evidence of Contamination	7
4.4	Infiltration Testing Results	7
4.4.1	Head Deposits and Weathered Chalk (clay)	7
4.4.2	Margate Chalk Member	3
4.5	Conclusions)

Figures

Figure 1	Site Location Plan
Figure 2	Intrusive Investigation Location Plan

Appendices

Appendix A	Selected Site Photographs
Appendix B	Site Specific Borehole & Trial Pit Logs

1 INTRODUCTION

In June 2023, Environmental Protection Strategies Ltd (EPS) was commissioned by Flambeau EuroPlast Ltd to complete a Ground Investigation Report at Flambeau EuroPlast Ltd, Manston Road, Ramsgate, Kent, CT12 6HW ('the site'); see Figure 1.

The work was commissioned in order to provide ground conditions information and infiltration data to support drainage design for a proposed redevelopment, understood to comprise a residential scheme, which has not yet been finalised at the time of writing. Selected site photographs are presented as Appendix A.

This report presents the findings, conclusions, and recommendations of the ground investigation undertaken as instructed. It should be appreciated that the assessment of any soil contamination including a Phase I Desk Study did not form part of the brief for the works undertaken.

1.1 Objectives

The objectives of this investigation were as follows:

- a) Collect information on the nature of the ground conditions beneath the site in areas considered potentially suitable for the use of infiltration drainage systems.
- b) Conduct infiltration testing to assess the permeability of sub-surface soils and the suitability of sustainable drainage systems (such as soakaways), in support of the proposed scheme.

1.2 Scope of Works

To perform an exploratory assessment of the site in accordance with the principles and requirements of BS 5930:2015+A1:2020 '*Code of practice for ground investigations*', the following tasks were undertaken.

Intrusive Investigation:

- Site walkover, inspection and obtaining photographic records.
- Health and safety briefing / site supervision.
- Excavation of three trial pits using a track-mounted mechanical excavator, to a maximum depth of 1.7m below ground level (bgl); with infiltration testing subsequently attempted at all three locations.
- Drilling of one cable percussive (shell & auger) borehole to 8.0m bgl, with the completion of 'falling head' infiltration testing at predetermined depths.
- Continual logging of ground conditions including inspection of soils for visual and olfactory contamination (on a purely precautionary basis).

Reporting:

- Data collection and interpretation.
- Reporting.

The findings of these investigations and their conclusions are presented in the following sections.

1.3 Limitations and Constraints

The purpose of this report is to present the findings of a ground investigation conducted at the location(s) specified. When examining the data collected from the investigations made during the assessment, Environmental Protection Strategies Ltd (EPS) makes the following statements:

No investigation method is capable of completely identifying all the ground conditions that might be present beneath a site. Where outlined in our report, we have examined the ground beneath a site by constructing a number of boreholes / trial pits to recover soil samples. The locations of these excavations and sampling points are considered to be representative of the condition of the whole site subsurface. However, it should be appreciated that ground conditions are naturally variable. For this reason, it is possible that samples collected during the investigation may not represent the conditions across the entire site.

This report does not include specific investigation for the presence of either Potential Asbestos Containing Material (PACM) or Japanese Knotweed at the subject site. However, if obvious evidence of either is observed during EPS site walkover, details will be provided in this report. Specialist contractors should be commissioned to make detailed assessments and recommendations if these materials are suspected.

2 GEO-ENVIRONMENTAL SETTING

The following section provides a summary of pertinent background information in relation to the site location and geo-environmental context.

2.1 Site Location and Description

Detail	Description
Location	The site is located to the south of Manston Road in the north western outskirts of Ramsgate in Kent.
National Grid Reference	636341, 165571
Topography	The intrusive works were focused in the north/ north western area of the site and levels were largely flat, lying between 46m and 47m above ordnance datum (AOD). The wider site did slope down from the northwest to the south east, with levels at the lowest point between 42m and 43m AOD.
	The site was accessed from Manston Road in the northwest corner and was a roughly triangular plot of land, thinning from west to east.
Description of Site	The majority of the property was covered by the Flambeau factory building, which is understood to be a plastics manufacturing firm. The main structure was largely of brick construction with two-storey office space and more open warehouse style sections and the footprint mirrored the shape of the land itself. A one way (clockwise) concrete surfaced access road ran around the perimeter of the building, leading to employee car park along the western boundary. The southeast corner and southern area off of the same route was used for storing materials and a couple of water tanks were also situated adjacent to the south of the building used for the sprinkler system. The site was surrounded with a combination of metal fencing and well established shrubs/ hedges.
	Areas of soft landscaping were present adjacent to the building on the northern side where the building's shape was stepped as well as in the northwest next to the building and was surfaced with grass and a mature tree was also present. Overall, the vegetation was quite overgrown at the time of the EPS visit.
	Evidence of underground utilities was also recorded during the site walkover including a number of manholes present in the access road thought to be surface/ foul drainage. Approximately halfway down the northern side of the building, a secured gas junction box was noted that then entered the factory.
Surrounding Land Use	Residential properties and a primary school are located to the north with the schools field and Manston Road situated to the east. A railway line (trending east-west) is located to the south with a supermarket and petrol station west of the site.

Detail	Description
Geology	Geological maps provided by the British Geological Survey (BGS) indicate that superficial Head Deposits (clay and silt) are intermittently present in the local area. The bedrock geology is mapped as chalk of the Margate Chalk Member.

A plan showing the site location is provided as Figure 1, selected site photographs are included as Appendix A and a proposed development plan is included as Appendix B

3 SUMMARY OF INVESTIGATIONS

The intrusive ground investigation was undertaken on the 4^{th} and 5^{th} of July 2023, in accordance with EPS standard operating procedures, copies of which will be made available on request. A summary of the site activities is presented in the following sections:

3.1 Trial Pit Locations

The borehole and trial pit locations were selected following the requirements of the Clients drainage engineers with consideration also given to the locations of below ground utilities and infrastructure, as well as operational/ health and safety considerations associated with working at an active commercial site.

Additionally, due to the presence of a potential water supply and storage facility somewhere beneath the southern area of the property, no intrusive locations were formed in this area.

The main objective in terms of trial pit and borehole locations was to assess the permeability of the underlying soils beneath the northern sections of the site, and ultimately the feasibility in incorporating infiltration drainage systems for the management of surface water disposal as part of any future development. The trial pits (TP01-TP03) were utilised to provide lateral coverage of the shallow ground conditions and capture any variability in the soil profile, with the deeper borehole (BH01) targeting the deeper lying conditions and the presence/ nature of any chalk bedrock; which may be a more suitable infiltration medium.

The trial pits and borehole were formed in accordance with standard EPS methodologies, and all sub-contractors were supervised by an EPS engineer throughout the works.

Upon completion all positions were backfilled with compacted soil arising's and levelled at the surface. The location of the intrusive works are shown on the location plan included as Figure 2.

3.2 Infiltration Testing & Soil Sampling

Each position was logged for ground conditions encountered and inspected for any physical evidence of contamination, such as soil staining, odour and the presence of separate phase liquids (on a purely precautionary basis).

Furthermore, soakaway infiltration testing was attempted at all three trial pit locations (TP01-TP03) to provide an assessment of shallow soil permeability, and the feasibility of the use of soakaways or other similar methods of surface water disposal.

Within the deep borehole (BH01) 'falling head' infiltration tests were undertaken at depths of 6.0m and 8.0m. These tests were undertaken exclusively within the chalk bedrock to offer a direct comparison of the permeability of the soil layers.

4 FINDINGS OF THE INVESTIGATION

This section of the report provides a summary of the findings of the intrusive investigations undertaken.

4.1 Ground Conditions

Four intrusive positions were formed in the northern and north western area of the site and the ground conditions encountered, from surface level, have been interpreted to comprise:

- Made Ground
- Head Deposits
- Margate Chalk Member

Site specific trial pit and borehole logs are included as Appendix C and give full descriptions and depths of strata encountered. A summary of the general ground profile is provided in the table below, with more detailed description given in the following sub-sections.

Geological Strata	Maximum Depth to Base of Strata (m bgl)	Strata Thickness (m)
Made Ground	0.65	0.3-0.65
Head Deposits	>1.7	>0.9->1.05 (where encountered)
Margate Chalk Member	>8.0	>0.16->7.7 (where encountered)

4.1.1 Made Ground

Made ground was encountered from the surface at all four locations and was recovered as initially greyish brown sandy clayey silt with common rootlets and rare brick fragments in TP01-TP03. From around 0.1m to 0.25m this then transitioned to a brownish grey slightly sandy gravelly silty clay with asphalt, brick, concrete and rubble in the trial pits; and this material was also present from surface in BH01. A couple of small suspected fragments of asbestos were also encountered in TP02 in the clay based infilled soils and this layer extended to a maximum of 0.65m at the same location.

4.1.2 Head Deposits

The natural soils underlying the made ground in TP01 and TP02 were interpreted to be representative of the superficial Head Deposits and were described as an orangish brown sandy silty clay. These soils extended beyond the full completion depth of both locations (1.5m in TP01 and to 1.7m at TP02), but were not identified in TP03 or BH01, which were positioned closer to the north western corner of the site. These findings broadly align with the local geological maps where the superficial units are anticipated to thin and ultimately pinch out towards the eastern and western boundaries respectively.

4.1.3 Margate Chalk Member

Bedrock of the Margate Chalk Member was encountered at BH01 and TP03, directly beneath the made ground, with no superficial soils recorded. Initially this was a light brown weathered chalk recovered as a silty clay with chalk gravel, and was clearly distinguishable for the Head Deposits based on colour and composition. This layer was proven to 1.0m in BH01, and then transitioned to a white structureless chalk in a silt dominated matrix with chalk gravel and occasional flints which extended to the base of the borehole (>8.0m).

4.2 Groundwater

No evidence of groundwater was recorded at any of the intrusive locations as part of this investigation.

4.3 Physical Evidence of Contamination

Despite the presence of a notable thickness of made ground materials which contained construction debris throughout, no physical evidence of contamination such as separate phase liquids, hydrocarbon odours or putrefiable material was recorded in the any of the soils recovered from any of the locations formed as part of the EPS investigation.

However, a couple of small suspected asbestos fragments were noted within the made ground recovered at TP02.

4.4 Infiltration Testing Results

4.4.1 Head Deposits and Weathered Chalk (clay)

Infiltration testing was completed at all three trial pit locations (TP01 – TP03) focussed to the north and northwest of the factory building, in general accordance with *BRE Digest 365 'Soakaway Design*', although it should be appreciated that full testing could not be completed due to the geology encountered. The ground profile in these locations was found to comprise clay soils, either the Superficial Head Deposits in TP01 and TP02 or the weathered chalk in TP03.

The results of the soakaway infiltration testing as applicable to the trial holes are summarised in the table below and discussed in the subsequent paragraphs.

Location	Trial Hole Depth (m bgl)	Infiltration Rate (m/s)	Comments
TP01 (<i>Test 1</i>)	1.5	1.68*10 ⁻⁶	Test left running overnight and reached full completion. Some sediments collecting at the base of the excavation, with the total depth recorded as \sim 1.4m at the end of the testing period.
TP01 (Test 2)	1.4	~1.59*10 ⁻⁶	Test failed to reach completion, but did progress beyond 50% in time allowed. Calculated rate has been extrapolated and therefore is approximate.
TP02 (Test 1)	1.7	1.27*10 ⁻⁶	Test left running overnight and reached full completion. Some sediments collecting at the base of the excavation, with the total depth recorded as \sim 1.6m at the end of the testing period.
TP02 (<i>Test 2</i>)	1.6	Not calculable	Test failed to reach 50% completion.
TP03 (Test 1)	0.6	Not calculable	Test failed to reach 50% completion (extended overnight).

4.4.2 Margate Chalk Member

During the formation of the deep borehole (BH01), 'falling head' infiltration tests were undertaken at specified depths in order to assess the permeability of the chalk bedrock (beneath the upper weathered layer). The results of the tests are summarised in the below table and discussed in the subsequent paragraphs.

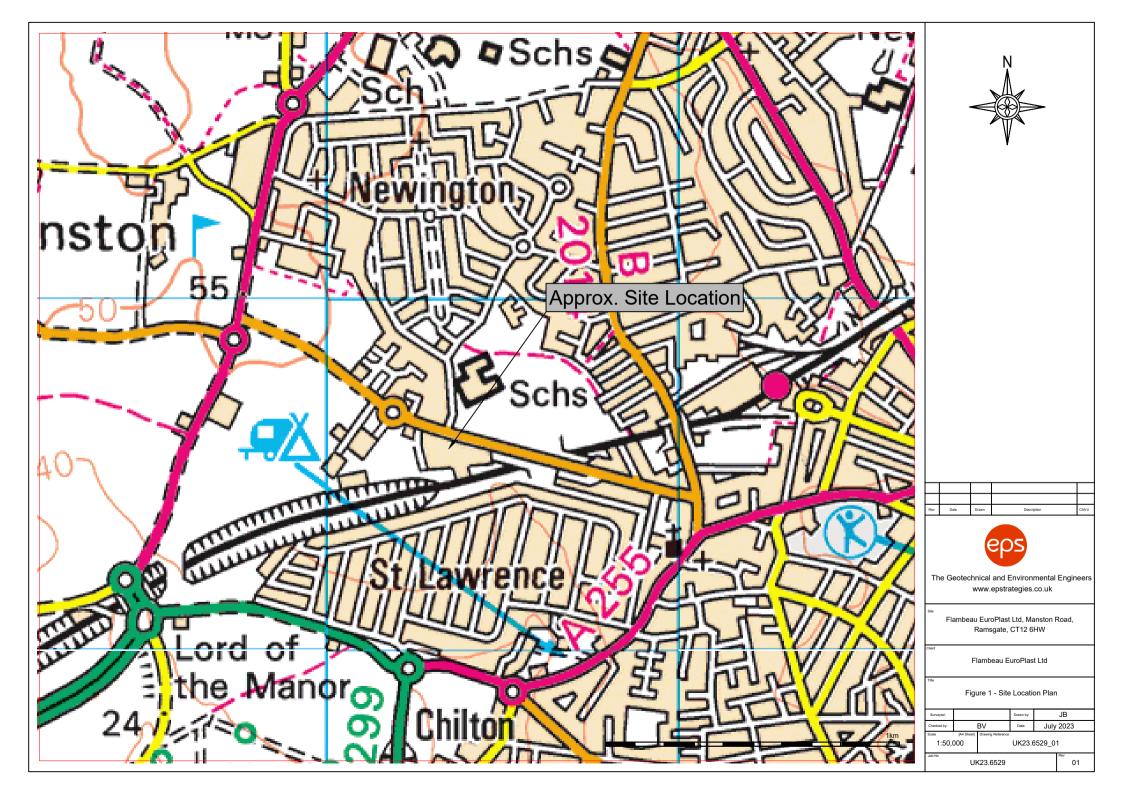
Location	Uncased Profile Response Zone (m bgl)	Infiltration Rate (m/s)	Comments
BH01 (Test 1)	2.7m to 6.0m	3.24*10 ⁻⁶	Approximately 100 litres of water added to the borehole and drained to a final depth of 4.6m within an hour. Testing completed entirely within the chalk response zone.
BH02 (Test 2)	3.8m to 8.0m	2.40*10-6	Approximately 100 litres of water added to the borehole and drained to a final depth of 5.65m within an hour. Testing completed entirely within the chalk response zone.

4.5 Conclusions

The calculated infiltration rates in both the boreholes and trial pits confirm 'very low' to 'low' permeability conditions; however these results were calculated using different methods of testing and within separate strata as the targeted infiltration medium.

The first tests for TP01 and TP02 were left to run overnight within the superficial Head Deposits and reached full completion, with calculated rates of 1.68*10⁻⁶m/s and 1.59*10⁻⁶m/s respectively. However, both of the second tests in these locations were slower, and failed to reach the same stage during the allotted time period. Therefore, the rate for the repeat test in TP01 was extrapolated based on at least 50% being achieved, but the second test in TP02 failed to reach this marker and therefore calculating a rate to a reasonable degree of accuracy was not possible. This was similar in TP03, which despite technically being formed within the chalk bedrock, the trial hole was formed in the upper weathered section of this strata (recovered as clay), and no rate was calculable based on data recorded from this location either.

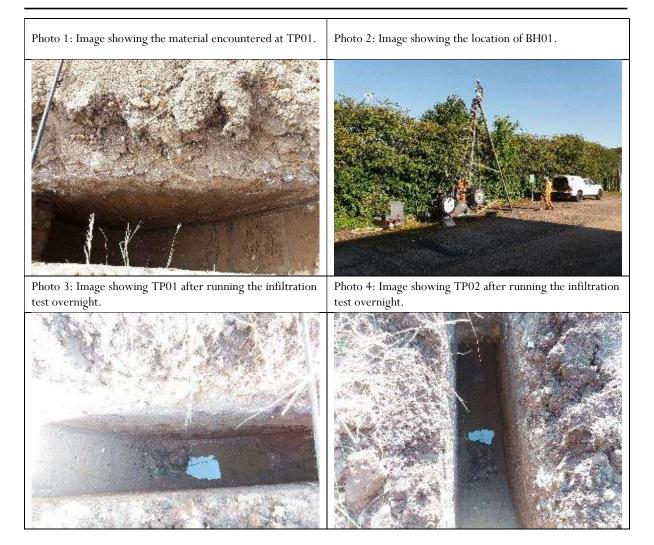
In the deep borehole, BH01, formed in the north western area, the initial weathered chalk (clay layer) was fully penetrated and the position progressed into the white structureless chalk in a silt dominated matrix with chalk gravel. Whilst this material was still relatively fine, with limited granular content, the 'falling head' tests completed at 6.0m and 8.0m produced results of 3.24*10⁻⁶ and 2.40*10⁻⁶, which are slightly more favourable than the results derived from the trial holes.


Borehole tests can often produce slightly favourable results when compared to more conventional trial holes and whilst this may marginally impact the rates recovered, this in broadly in line with expectations of the anticipated permeability of the materials based on composition. Furthermore, it is recognised that the superficial Head Deposits were slightly variable and small pockets of coarser granular material did exist any may have resulted in more favourable conditions during the first test which then became saturated and resulted in the significantly poorer drainage observed during the second tests.

Overall, based on the results of the testing in the different strata, as well as EPS's experience of the geological units encountered, it is anticipated that the Margate Chalk Member may well provide a more viable infiltration medium, providing the upper weathered/ finer layers are fully penetrated. It is also anticipated that this material will become closer to surface towards the eastern and western boundaries of the site and therefore the use of traditional soakaways or other similar methods may be more likely in these areas, as oppose to the central third, where cohesive superficial deposits were encountered. Groundwater was not identified within 8.0m of existing surface level and therefore isn't likely to constrain the design of shallow infiltration features.

Additionally, consideration should be given to the potential for dissolution features to be created from any infiltration drainage infrastructure that are to be adopted as part of the proposed scheme. It would be prudent to consider the risk of creating such features by discharging surface waters into the ground at a focussed point. It is recommended to consult local building control to confirm any mitigation measures that would typically be expected.

FIGURES


APPENDICES

APPENDIX A

Selected Site Photographs

APPENDIX B

Site Specific Borehole & Trial Pit Logs

CT12 6HW Flambeau Eur Sample and In	oPlast Ltd, Mans oPlast Ltd	Projec UK23. ston Road Depth (m) 0.30 1.00	6529	gate, Legend	Co-ords: 154818E - 6681739N Hole Tr CP Level: Scal Dates: 05/07/2023 Loggec JB Stratum Description Made Ground: brown silty gravelly CLAY with brick fragments and rootlets. Light brown to pale cream weathered CHALK in a silty CLAY matrix with chalk gravel. (WEATHERED MARGATE CHALK MEMBER) White Structureless CHALK in a silt dominated matrix with harder intact fragments of chalk gravel and flint. (MARGATE CHALK MEMBER)	By
CT12 6HW Flambeau Eur Sample and In 5	oPlast Ltd Situ Testing	Depth (m)	l, Ramso Level		Level: Scal Dates: 05/07/2023 Stratum Description JB Made Ground: brown silty gravelly CLAY with brick fragments and rootlets. Light brown to pale cream weathered CHALK in a silty CLAY matrix with chalk gravel. (WEATHERED MARGATE CHALK MEMBER) White Structureless CHALK in a silt dominated matrix with harder intact fragments of chalk gravel and flint. (MARGATE CHALK	By
Flambeau Eur	Situ Testing	0.30			Dates: 05/07/2023 Logged JB Stratum Description Made Ground: brown silty gravelly CLAY with brick fragments and rootlets. Light brown to pale cream weathered CHALK in a silty CLAY matrix with chalk gravel. (WEATHERED MARGATE CHALK MEMBER) White Structureless CHALK in a silt dominated matrix with harder intact fragments of chalk gravel and flint. (MARGATE CHALK	By
		0.30			Stratum Description Made Ground: brown silty gravelly CLAY with brick fragments and rootlets. Light brown to pale cream weathered CHALK in a silty CLAY matrix with chalk gravel. (WEATHERED MARGATE CHALK MEMBER) White Structureless CHALK in a silt dominated matrix with harder intact fragments of chalk gravel and flint. (MARGATE CHALK	
repth (m) Type	In Situ Results	0.30	(m)		Made Ground: brown silty gravelly CLAY with brick fragments and rootlets. Light brown to pale cream weathered CHALK in a silty CLAY matrix with chalk gravel. (WEATHERED MARGATE CHALK MEMBER) White Structureless CHALK in a silt dominated matrix with harder intact fragments of chalk gravel and flint. (MARGATE CHALK	
					 rootlets. Light brown to pale cream weathered CHALK in a silty CLAY matrix with chalk gravel. (WEATHERED MARGATE CHALK MEMBER) White Structureless CHALK in a silt dominated matrix with harder intact fragments of chalk gravel and flint. (MARGATE CHALK 	
						2 3 4 5 6 7
		8.00			End of Borehole at 8.000m	9
	ncountered.	ncountered.				8.00 End of Borehole at 8.000m

e	eps					Tri	ial Pit Log	Trialpit N TP01 Sheet 1 of	
Projec Name:		u EuroPl	last Ltd	Projec			Co-ords: 155012.92 - 6681690.06	Date	20
	Flamboa	u EuroPl	last Ltd, Manston R	UK23. Road, Rams			Level: Dimensions 1.4	04/07/202 Scale	23
Locatio	^{on:} 6HW		,	,	5,-		(m):	1:10	1
Client:	Flambea	u EuroPl	last Ltd		1		Depth o 1.50	Logged JB	
Water Strike		r	Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
Ϋ́ς Ϋ́ς	Depth	Туре	Results	0.10			Made Ground: greyish brown sandy clayey SILT wi common rootlets and rare brick fragments.		-
				0.10			Made Ground: brownish grey slightly sandy gravelly CLAY with brick, chalk and rubble.	y silty	-
				0.50			Made Ground: dark brown slightly sandy silty CLAY rare brick fragments.	' with	-
				0.60			Orangish brown slightly sandy silty CLAY. (HEAD DEPOSITS)		- - - - - - - - - - - - - - - - - - -
Remai Stabili			not encountered. hilst excavating.					AG	S

e	os					Tri	al Pit Log	Trialpit N TP02 Sheet 1 o	2
Project Name:	Flambea	u EuroP	last Ltd	Projec UK23.			Co-ords: 155067.26 - 6681668.87	Date 04/07/202	23
Location	Flambea	u EuroP	last Ltd, Manston Ro			T12	Dimensions 1.7	Scale	
Client:	[·] 6HW Flambea		last I td				(m): Depth 6	1:10 Logged	ł
				_			1.70	JB	
Water Strike	Sample	s and In Type	Results	Depth (m)	Level (m)			with elly silty ected	
				1.70			End of pit at 1.70 m		
Remarks Stability:			not encountered. /hilst excavating.					AG	2 - I S

e	eps					Tri	ial Pit Log	Trialpit N TP03 Sheet 1 o	3
Project		au EuroP	last Ltd	Projec			Co-ords: 154841.83 - 6681715.44	Date	
Name:	Flambor	au EuroP	last Ltd, Manston F	UK23. Road, Rams		T12	Level: Dimensions 1.5	04/07/203 Scale	
Locatio	6HW						(m): Depth 0	1:10 Logged	
Client:	Flambea	au EuroP	last Ltd			1	0.60	JB	а
Water Strike		1	Situ Testing	Depth (m)	Level (m)	Legend	d Stratum Description		
<u>st</u>	Depth	Туре	Results	0.12			Made Ground: greyish brown sandy clayey SIL common rootlets and rare brick fragments. Made Ground: brownish grey slightly sandy gra CLAY with asphalt, brick and chalk.		
				0.44			Light brown to medium brown silty gravelly CLA is fine to coarse subrounded to subangular cha (WEATHERED MARGATE CHALK MEMBER)	Y. Gravel lk.	-
				0.60			End of pit at 0.60 m		1
Remar Stabilit			not encountered. /hilst excavating.					AG	ı S

ISO 9001 Certified

7B Caxton House Broad Street Cambourne Cambridge CB23 6JN T +44(0) 1954 710666 F +44(0) 1954 710677 E info@epstrategies.co.uk W www.epstrategies.co.uk

Registered Number: 4330320

Appendix A.5 - Surface Water Management Calculations

Herrington Cor N S U L T I N G Part of pos	nsulting Ltd	File: 1077_existing_r0.pfd Network: Storm Network Natasha Ames 14/02/2024	Page 1	
		Design Settings		
Rainfall Methodology Return Period (years) Additional Flow (%) CV Time of Entry (mins)	100 Maximur 45 Minin 1.000 Minin	m Rainfall (mm/hr) 200.0 num Velocity (m/s) 1.00 E Connection Type Level Inverts ackdrop Height (m) 0.200	Preferred Cover Depth (m) 0.350 Include Intermediate Ground √ inforce best practice design rules x	
	NameArea (ha)T of E (mins)Existing2.0004.00	Nodes Cover Diameter Easting Northi Level (mm) (m) (m) (m) 41.300 1000 -1.111 6.4	(m) 81 2.270	
	Existing 1	41.630 1000 10.286 6.1		
Name Existing		nm) / US IL DS IL Fall Slop n (m) (m) (m) (1:X 0.600 39.030 38.640 0.390 76.) (mm) (mins) (mm/hr)	
	Name Vel Cap Flow (m/s) (l/s) (l/s)	Depth Depth (ha) Inflow D (m) (m) (l/s) (Pro Pro epth Velocity mm) (m/s)	
	Existing 1.492 59.3 1667.5	2.045 2.765 2.000 0.0	225 1.520	

Nerrington ONSULTING Part of eps	Herrington Consulting Ltd	File: 1077_existing_r0. Network: Storm Netwo Natasha Ames 14/02/2024		Page 2
		Pipeline Schedule		
	Link Length Slope Dia (m) (1:X) (mm) Existing 30.000 76.9 225) Type (m) (m)	S Depth DS CL DS IL (m) (m) (m) 2.045 41.630 38.640	DS Depth (m) 2.765
	Link US Dia Node (mm) Existing Existing 1000	NodeMHDSTypeTypeNodeManholeAdoptableExisting	Dia Node M (mm) Type Tyj 1 1000 Manhole Adop	be a second s
		Manhole Schedule		
	Node Easting Northing (m) (m)	CL Depth Dia Con (m) (m) (mm)	nections Link IL (m)	Dia (mm)
	Existing -1.111 6.481	41.300 2.270 1000	, (,)	(
	Existing 1 10.286 6.147	41.630 2.990 1000	0 Existing 39.03 1 Existing 38.64	
		Simulation Settings	I	
	Rainfall Methodology FEH-22 Summer CV 1.000 Winter CV 1.000	Analysis Speed Norr Skip Steady State x Drain Down Time (mins) 1008	Check Discharge Ra	ate(s) x
		Storm Durations 360 600 960 2160 480 720 1440 2880		80

	on Consultin	g Ltd					Page 3		
Return Period C (years)	limate Chang (CC %)		nal Area Additional Flow %) (Q %)	Return Peri (years)		Change A	Additional Area / (A %)	Additional Flov (Q %)	v
2		0	0 0		30	. 0	0		0
10		0	0 0	1	00	0	0		0
			Node Existing Tim	ne-Area Diagra	am				
Over	Overi rides Design	ides Design Additional Ir		age Depth (mr		vapo-transp	iration (mm/day)	0	
			<u>Rain</u>	<u>fall</u>					
Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	<u>Rain</u> Event	Peak Intensity	Average Intensity (mm/hr)		Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
	Intensity (mm/hr)	Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Intensity (mm/hr)	2 vear 86		Intensity (mm/hr)	Intensity (mm/hr)
2 year 15 minute summer	Intensity (mm/hr) 103.193	Intensity (mm/hr) 29.200	Event 2 year 600 minute winter	Peak Intensity (mm/hr) 7.093	Intensity (mm/hr) 2.840		640 minute summe	Intensity (mm/hr) er 1.662	Intensity (mm/hr) 0.424
	Intensity (mm/hr)	Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Intensity (mm/hr)	2 year 86		Intensity (mm/hr) er 1.662 1.073	Intensity (mm/hr)
2 year 15 minute summer 2 year 15 minute winter	Intensity (mm/hr) 103.193 72.416	Intensity (mm/hr) 29.200 29.200	Event 2 year 600 minute winter 2 year 720 minute summer	Peak Intensity (mm/hr) 7.093 9.220	Intensity (mm/hr) 2.840 2.471	2 year 86 2 year 10	i40 minute summe i40 minute winter	Intensity (mm/hr) er 1.662 1.073 eer 1.534	Intensity (mm/hr) 0.424 0.424
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer	Intensity (mm/hr) 103.193 72.416 66.439	Intensity (mm/hr) 29.200 29.200 18.800	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute winter	Peak Intensity (mm/hr) 7.093 9.220 6.196	Intensity (mm/hr) 2.840 2.471 2.471	2 year 86 2 year 10 2 year 10	640 minute summe 640 minute winter 1080 minute summ	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990	Intensity (mm/hr) 0.424 0.424 0.391
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter	Intensity (mm/hr) 103.193 72.416 66.439 46.624	Intensity (mm/hr) 29.200 29.200 18.800 18.800	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute winter 2 year 960 minute summer	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973	Intensity (mm/hr) 2.840 2.471 2.471 1.977	2 year 86 2 year 10 2 year 10 10 year 1	540 minute summe 540 minute winter 1080 minute summ 1080 minute winter	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990	Intensity (mm/hr) 0.424 0.424 0.391 0.391
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894	Intensity (mm/hr) 29.200 29.200 18.800 18.800 11.600	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute winter 2 year 960 minute summer 2 year 960 minute winter	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977	2 year 86 2 year 10 2 year 10 10 year 1 10 year 1	540 minute summe 540 minute winter 1080 minute summ 1080 minute winter 15 minute summer	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513	Intensity (mm/hr) 0.424 0.424 0.391 0.391 57.062
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 60 minute winter	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162	Intensity (mm/hr) 29.200 29.200 18.800 18.800 11.600 11.600	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute winter 2 year 960 minute summer 2 year 960 minute summer 2 year 1440 minute summer	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440	2 year 86 2 year 10 2 year 10 10 year 1 10 year 1 10 year 3	640 minute summe 640 minute winter 0080 minute summ 0080 minute winter 5 minute summer 5 minute winter	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513	Intensity (mm/hr) 0.424 0.424 0.391 0.391 57.062 57.062
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 60 minute winter 2 year 120 minute summer	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162 31.218	Intensity (mm/hr) 29.200 29.200 18.800 18.800 11.600 11.600 8.250	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute winter 2 year 960 minute summer 2 year 960 minute winter 2 year 1440 minute summer 2 year 1440 minute winter	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440 1.440	2 year 86 2 year 10 2 year 10 10 year 1 10 year 1 10 year 3 10 year 3	640 minute summe 640 minute winter 0080 minute summ 0080 minute winter .5 minute summer .5 minute winter 60 minute summer	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513 130.514 91.589	Intensity (mm/hr) 0.424 0.424 0.391 0.391 57.062 57.062 36.931
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 60 minute summer 2 year 120 minute winter 2 year 120 minute winter	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162 31.218 20.741	Intensity (mm/hr) 29.200 29.200 18.800 18.800 11.600 8.250 8.250	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute summer 2 year 960 minute summer 2 year 960 minute winter 2 year 1440 minute summer 2 year 1440 minute summer 2 year 2160 minute summer	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610 3.816 2.629	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440 1.440 1.055	2 year 86 2 year 10 2 year 10 10 year 1 10 year 1 10 year 3 10 year 3 10 year 6	640 minute summe 640 minute winter 0080 minute summ 0080 minute winter 5 minute summer 5 minute summer 60 minute summer 60 minute winter	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513 130.514 91.589	Intensity (mm/hr) 0.424 0.391 0.391 57.062 57.062 36.931 36.931
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 60 minute summer 2 year 120 minute summer 2 year 120 minute summer	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162 31.218 20.741 25.353	Intensity (mm/hr) 29.200 29.200 18.800 18.800 11.600 11.600 8.250 8.250 6.524	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute winter 2 year 960 minute summer 2 year 960 minute winter 2 year 1440 minute summer 2 year 1440 minute summer 2 year 2160 minute winter	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610 3.816 2.629	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440 1.440 1.055 1.055	2 year 86 2 year 10 2 year 10 10 year 1 10 year 3 10 year 6 10 year 6	540 minute summe 540 minute winter 5080 minute summ 5080 minute winter 55 minute summer 50 minute summer 50 minute summer 50 minute summer	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513 130.514 91.589 86.449 57.434	Intensity (mm/hr) 0.424 0.391 0.391 57.062 57.062 36.931 36.931 22.846
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 120 minute summer 2 year 120 minute summer 2 year 180 minute winter	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162 31.218 20.741 25.353 16.480	Intensity (mm/hr) 29.200 29.200 18.800 11.600 11.600 8.250 8.250 6.524 6.524	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute winter 2 year 960 minute summer 2 year 960 minute winter 2 year 1440 minute summer 2 year 2160 minute winter 2 year 2160 minute winter 2 year 2880 minute summer	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610 7.507 4.973 7.507	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440 1.440 1.055 1.055 0.852	2 year 86 2 year 10 2 year 10 10 year 1 10 year 3 10 year 3 10 year 6 10 year 1	640 minute summe 640 minute winter 0080 minute summ 0080 minute summer 15 minute summer 15 minute summer 10 minute summer 160 minute summer 160 minute summer	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513 130.514 91.589 86.449 57.434	Intensity (mm/hr) 0.424 0.391 0.391 57.062 57.062 36.931 36.931 22.846 22.846
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 120 minute summer 2 year 120 minute summer 2 year 180 minute summer 2 year 180 minute winter 2 year 240 minute summer	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162 31.218 20.741 25.353 16.480 20.602	Intensity (mm/hr) 29.200 29.200 18.800 18.800 11.600 11.600 8.250 8.250 8.250 6.524 6.524 5.445	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute summer 2 year 960 minute summer 2 year 960 minute winter 2 year 1440 minute summer 2 year 2160 minute summer 2 year 2160 minute summer 2 year 2880 minute summer 2 year 2880 minute winter	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610 7.507 4.973 7.507	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440 1.055 1.055 0.852 0.852	2 year 86 2 year 10 2 year 10 10 year 1 10 year 3 10 year 3 10 year 6 10 year 1 10 year 1	640 minute summe 640 minute winter 0080 minute summ 0080 minute summer 55 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513 130.514 91.589 86.449 57.434 er 55.222 36.688	Intensity (mm/hr) 0.424 0.391 0.391 57.062 57.062 36.931 36.931 22.846 22.846 14.594
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 60 minute winter 2 year 120 minute summer 2 year 120 minute summer 2 year 180 minute summer 2 year 240 minute winter	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162 31.218 20.741 25.353 16.480 20.602 13.688	Intensity (mm/hr) 29.200 29.200 18.800 18.800 11.600 8.250 8.250 6.524 6.524 5.445 5.445	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute summer 2 year 960 minute summer 2 year 960 minute summer 2 year 1440 minute summer 2 year 1440 minute summer 2 year 2160 minute summer 2 year 2880 minute summer 2 year 2880 minute summer 2 year 4320 minute summer	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610 7.507 4.973 5.372 3.610 7.507 4.973 7.507 7	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440 1.055 1.055 0.852 0.852 0.852 0.644	2 year 86 2 year 10 2 year 10 10 year 1 10 year 3 10 year 3 10 year 3 10 year 6 10 year 1 10 year 1	640 minute summe 640 minute winter 0080 minute summ 0080 minute winter 55 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer 20 minute summer 20 minute summer	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513 130.514 91.589 86.449 57.434 er 55.222 36.688	Intensity (mm/hr) 0.424 0.391 0.391 57.062 57.062 36.931 36.931 22.846 22.846 14.594
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 60 minute winter 2 year 120 minute summer 2 year 120 minute summer 2 year 180 minute summer 2 year 240 minute summer 2 year 240 minute winter 2 year 360 minute summer	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162 31.218 20.741 25.353 16.480 20.602 13.688 16.062	Intensity (mm/hr) 29.200 29.200 18.800 11.600 11.600 8.250 8.250 6.524 6.524 6.524 5.445 5.445 5.445	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute summer 2 year 960 minute summer 2 year 960 minute winter 2 year 1440 minute summer 2 year 1440 minute summer 2 year 2160 minute summer 2 year 2880 minute summer 2 year 2880 minute summer 2 year 4320 minute summer 2 year 4320 minute winter	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610 7.507 4.973 5.372 3.610 7.507 4.973 7.507 7	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440 1.440 1.055 1.055 0.852 0.852 0.852 0.644 0.644	2 year 86 2 year 10 2 year 10 10 year 1 10 year 3 10 year 3 10 year 3 10 year 6 10 year 1 10 year 1 10 year 1 10 year 1	640 minute summe 640 minute winter 0080 minute summ 0080 minute winter 5 minute summer 60 minute summer 60 minute summer 60 minute summer 60 minute summer 20 minute summe 20 minute summe 20 minute summe	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513 130.514 91.589 86.449 57.434 er 55.222 36.688 er 42.983 27.940	Intensity (mm/hr) 0.424 0.391 0.391 57.062 57.062 36.931 36.931 22.846 22.846 14.594 14.594 11.061
2 year 15 minute summer 2 year 15 minute winter 2 year 30 minute summer 2 year 30 minute winter 2 year 60 minute summer 2 year 60 minute summer 2 year 120 minute summer 2 year 120 minute summer 2 year 180 minute summer 2 year 240 minute summer 2 year 240 minute summer 2 year 360 minute winter	Intensity (mm/hr) 103.193 72.416 66.439 46.624 43.894 29.162 31.218 20.741 25.353 16.480 20.602 13.688 16.062 10.441	Intensity (mm/hr) 29.200 29.200 18.800 11.600 11.600 8.250 8.250 6.524 6.524 5.445 5.445 5.445 4.133 4.133	Event 2 year 600 minute winter 2 year 720 minute summer 2 year 720 minute summer 2 year 960 minute summer 2 year 960 minute winter 2 year 1440 minute summer 2 year 1440 minute summer 2 year 2160 minute summer 2 year 2160 minute summer 2 year 2880 minute summer 2 year 4320 minute summer 2 year 4320 minute summer 2 year 5760 minute summer	Peak Intensity (mm/hr) 7.093 9.220 6.196 7.507 4.973 5.372 3.610 7.507 4.973 7.507 7.507 7.507 4.973 7.507 7.507 4.973 7.507 7	Intensity (mm/hr) 2.840 2.471 2.471 1.977 1.977 1.440 1.440 1.055 1.055 0.852 0.852 0.852 0.644 0.644 0.536	2 year 86 2 year 10 2 year 10 10 year 1 10 year 3 10 year 3 10 year 6 10 year 1 10 year 1 10 year 1 10 year 1 10 year 2	640 minute summe 640 minute winter 0080 minute summe 0080 minute winter 5 minute summer 50 minute summer 60 minute summer 60 minute summe 20 minute summe 20 minute summe 20 minute summe 20 minute summe 80 minute summe	Intensity (mm/hr) er 1.662 1.073 er 1.534 r 0.990 201.657 141.513 130.514 91.589 86.449 57.434 er 55.222 36.688 er 42.983 27.940	Intensity (mm/hr) 0.424 0.391 0.391 57.062 57.062 36.931 36.931 22.846 22.846 14.594 14.594 14.594 11.061 11.061

Flow+ v10.8 Copyright © 1988-2024 Causeway Technologies Ltd

Herringt	on Consultir	ng Ltd	File: 1077_exi Network: Stor Natasha Ames 14/02/2024	m Network		Page 4		
			<u>Rainfall</u>					
Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
10 year 360 minute winter	16.910	6.694	30 year 120 minute winter	46.965	18.682	100 year 15 minute winter	233.123	94.001
10 year 480 minute summer	20.365	5.382	30 year 180 minute summer	54.404	14.000	100 year 30 minute summer	218.450	61.814
10 year 480 minute winter	13.530	5.382	30 year 180 minute winter	35.364	14.000	100 year 30 minute winter	153.298	61.814
10 year 600 minute summer	16.568	4.532	30 year 240 minute summer	43.048	11.376	100 year 60 minute summer	145.809	38.533
10 year 600 minute winter	11.320	4.532	30 year 240 minute winter	28.600	11.376	100 year 60 minute winter	96.872	38.533
10 year 720 minute summer	14.672	3.932	30 year 360 minute summer	32.904	8.467	100 year 120 minute summer	88.847	23.480
10 year 720 minute winter	9.861	3.932	30 year 360 minute winter	21.388	8.467	100 year 120 minute winter	59.028	23.480
10 year 960 minute summer	11.917	3.138	30 year 480 minute summer	26.003	6.872	100 year 180 minute summer	68.400	17.602
10 year 960 minute winter	7.894	3.138	30 year 480 minute winter	17.276	6.872	100 year 180 minute winter	44.461	17.602
10 year 1440 minute summer	8.497	2.277	30 year 600 minute summer	21.395	5.852	100 year 240 minute summer	54.490	14.400
10 year 1440 minute winter	5.710	2.277	30 year 600 minute winter	14.618	5.852	100 year 240 minute winter	36.202	14.400
10 year 2160 minute summer	5.976	1.652	30 year 720 minute summer	19.170	5.138	100 year 360 minute summer	42.630	10.970
10 year 2160 minute winter	4.118	1.652	30 year 720 minute winter	12.884	5.138	100 year 360 minute winter	27.710	10.970
10 year 2880 minute summer	4.924	1.320	30 year 960 minute summer	15.944	4.199	100 year 480 minute summer	34.796	9.196
10 year 2880 minute winter	3.309	1.320	30 year 960 minute winter	10.562	4.199	100 year 480 minute winter	23.118	9.196
10 year 4320 minute summer	3.716	0.972	30 year 1440 minute summer	11.827	3.170	100 year 600 minute summer	29.472	8.061
10 year 4320 minute winter	2.447	0.972	30 year 1440 minute winter	7.949	3.170	100 year 600 minute winter	20.137	8.061
10 year 5760 minute summer	3.081	0.789	30 year 2160 minute summer	8.602	2.377	100 year 720 minute summer	27.061	7.253
10 year 5760 minute winter	1.994	0.789	30 year 2160 minute winter	5.927	2.377	100 year 720 minute winter	18.187	7.253
10 year 7200 minute summer	2.652	0.676	30 year 2880 minute summer	7.161	1.919	100 year 960 minute summer	23.232	6.118
10 year 7200 minute winter	1.711	0.676	30 year 2880 minute winter	4.813	1.919	100 year 960 minute winter	15.390	6.118
10 year 8640 minute summer	2.351	0.600	30 year 4320 minute summer	5.328	1.393	100 year 1440 minute summer	17.638	4.727
10 year 8640 minute winter	1.517	0.600	30 year 4320 minute winter	3.509	1.393	100 year 1440 minute winter	11.854	4.727
10 year 10080 minute summer	2.132	0.544	30 year 5760 minute summer	4.311	1.104	100 year 2160 minute summer	12.828	3.545
10 year 10080 minute winter	1.376	0.544	30 year 5760 minute winter	2.790	1.104	100 year 2160 minute winter	8.839	3.545
30 year 15 minute summer	263.529	74.570	30 year 7200 minute summer	3.598	0.918	100 year 2880 minute summer	10.598	2.840
30 year 15 minute winter	184.933	74.570	30 year 7200 minute winter	2.322	0.918	100 year 2880 minute winter	7.122	2.840
30 year 30 minute summer	171.314	48.476	30 year 8640 minute summer	3.097	0.790	100 year 4320 minute summer	7.792	2.037
30 year 30 minute winter	120.220	48.476	30 year 8640 minute winter	1.999	0.790	100 year 4320 minute winter	5.131	2.037
30 year 60 minute summer	113.999	30.126	30 year 10080 minute summer	2.733	0.697	100 year 5760 minute summer	6.211	1.590
30 year 60 minute winter	75.738	30.126	30 year 10080 minute winter	1.764	0.697	100 year 5760 minute winter	4.020	1.590
30 year 120 minute summer	70.691	18.682	100 year 15 minute summer	332.201	94.001	100 year 7200 minute summer	5.110	1.303

SULTING Part of eps			Natasha Ames 14/02/2024					
			<u>Rainfall</u>					
Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year 7200 minute winter 100 year 8640 minute summer	3.298 4.333	1.303 1.105	100 year 8640 minute winter 100 year 10080 minute summer	2.796 3.763	1.105 0.960	100 year 10080 minute winter	2.429	0.960

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.93%

Node Event		US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute sum	mer Ex	isting	7	41.300	0 2.270	374.5	1.7820	54.3523	FLOOD
15 minute sum	mer Ex	isting 1	6	38.853	3 0.213	138.9	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	No	ode	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	Existing	Existin	ng Exist	ing 1	138.9	3.493	2.341	1.1811	92.5

Results for 10 year Critical Storm Duration. Lowest mass balance: 99.93%

Node Event		-	S de	Peak (mins)	Leve (m)	I	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute sumn	ner	Exist	ing	12	41.30	0	2.270	630.7	1.7820	171.3046	FLOOD
15 minute sumn	ner	Exist	ing 1	4	38.85	3	0.213	138.9	0.0000	0.0000	ОК
Link Event (Upstream Depth)	U No	-	Link	-	DS lode	0	outflow (I/s)	Velocity (m/s)	Flow/Ca	o Link Vol (m³)	Discharge Vol (m ³)
30 minute summer	Exist	ting	Existi	ng Exi	sting 1		138.9	3.493	2.34	1 1.1811	197.1

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.93%

Node Event		US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute sumn	ner E	xisting	10	41.300	2.270	828.8	1.7820	261.6898	FLOOD
15 minute sumn	ner E	xisting 1	3	38.853	0.213	138.9	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Nod	Link	-	DS ode	Outflow (I/s)	Velocity (m/s)	Flow/Ca	o Link Vol (m³)	Discharge Vol (m³)
30 minute summer	Existi	ng Existi	ng Exis	ting 1	138.9	3.493	2.34	1 1.1811	222.3

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.93%

Node Event			JS ode	Peal (min		Level (m)		Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winte	er	Exist	ing		6	41.300)	2.270	816.0	1.7820	380.1036	FLOOD
15 minute sumr	ner	Exist	ing 1		3	38.853	3	0.213	138.9	0.0000	0.0000	ОК
Link Event (Upstream Depth)	U No	-	Link)S)de		utflow (I/s)	Velocity (m/s)	Flow/Cap	o Link Vol (m³)	Discharge Vol (m ³)
30 minute winter	Exis	ting	Existir	ng E	xist	ing 1		138.9	3.493	2.342	1 1.1811	237.7

herrington consulting Part of eps		24				Page 1						
Rainf Retu Adı Tim	centration Rainfall (r Im Velocit Connectic kdrop Heij	.00 0.0 00 vel Inverts 200	In Enforc	clude Int	d Cover Depth (m) ermediate Ground actice design rules	0.350 √ x						
				No	<u>des</u>							
	Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)				
	PP1	0.967	4.00	41.000		-0.235	7.968	1.100				
	TANK1			41.000		2.994	8.053	2.100				
	MH1			41.000	1200	5.841	8.226	2.300				
	PP2	0.628	4.00	41.000		-0.211	5.370	1.100				
	TANK2			41.000		3.000	5.367	2.100				
	MH2			41.000	1200	6.026	5.871	2.300				
	OUTFALL Depth/Are	- 1		41.630 41.630	1200 1200	8.595 10.460	7.282 7.244	2.990 3.010				

Herringto	n Consulting	g Ltd		Netw Nata:	1077_mod ork: Storn sha Ames 2/2024		<			Page	2	
					<u>Links</u>							
Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)	
2.000	PP1	TANK1	3.230			39.500	0.400	8.1	300	4.01	157.0	
2.001	TANK1	MH1	2.852	0.600	38.900		0.100	28.5	300	4.03	157.0	
2.002	MH1	OUTFALL	2.911	0.600	38.700	38.640	0.060	48.5	225	4.05	157.0	
1.000	PP2	TANK2	3.211	0.600			0.400	8.0	300	4.01	157.0	
1.001	TANK2	MH2	3.068				0.100	30.7	300	4.03	157.0	
1.002	MH2	OUTFALL	2.931		38.700		0.060	48.8	225	4.05	157.0	
1.003	OUTFALL	Depth/Area	a 1 1.865	0.600	38.640	38.620	0.020	93.3	300	4.07	157.0	
	Na	me Vel	Con I	low US	DS	Σ Area	Σ Add	Pro	Pr	•		
	INd	(m/s)	•	l/s) Dept			Inflow					
		(11,3)	(1/3)	(m)		(110)	(I/s)	(mm)		-		
	2.0	5.564	393.3	795.8 0.80		0.967	0.0			636		
	2.0	01 2.955	208.8	795.8 <u>1.80</u>	0 1.900	0.967	0.0	300) 2.	992		
	2.0	02 1.882	74.8	795.8 <mark>2.07</mark>	5 2.765	0.967	0.0	225	5 1.	917		
	1.0	00 5.581	394.5	516.8 <mark>0.80</mark>	0 1.200	0.628	0.0	300) 5.	652		
	1.0			516.8 <u>1.80</u>			0.0			885		
	1.0			516.8 2.07			0.0			910		
	1.0	03 1.628	115.1 13	312.6 2.69	0 2.710	1.595	0.0	300) 1.	649		

O N S U L T I N G Part of eps	on Consul	ting Ltd										Page 3	
						<u>Pipeline</u>	<u>Schedule</u>						
	Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS (SIL	DS Depth	
	2.000	(m) 3.230	(1:X) 8.1	(mm) 300		(m) 41.000	(m) 39.900	(m) 0.800	(m 41.0		m) .500	(m) 1.200	
	2.000	2.852	28.5	300		41.000		1.800	41.0		.800	1.200	
	2.001	2.911	48.5	225				2.075	41.6		.640	2.765	
	1.000	3.211	8.0	300				0.800	41.0		.500	1.200	
	1.001	3.068	30.7	300		41.000		1.800	41.0		.800	1.900	
	1.002	2.931	48.8	225		41.000		2.075	41.6		.640	2.765	
	1.003	1.865	93.3	300	Circular	41.630	38.640	2.690	41.6	30 38	.620	2.710	
			_				_						
	Link	US Nod		Dia nm)	Node Type	MH Type	D: No			Node Type		МН Туре	
	2.000			•	lunction	Type	TANK1		•	unctior		Type	
	2.001		1		lunction		MH1	12		Manhol		loptable	
	2.002	MH1	1	200	Manhole	Adoptabl	e OUTFA	L 12	1 00	Manhol	e Ad	loptable	
	1.000				lunction		TANK2			unctior			
	1.001		2		lunction		MH2			Manhol		loptable	
	1.002					Adoptabl				Manhol		loptable	
	1.003	OUTF	ALL 1	200 N	Manhole	Adoptabl	e Depth/	Area 1 12	00	vlanhol	e Ad	loptable	
						Manhole	<u>Schedule</u>						
	Node	e Eastii	ng Noi	rthing	CL	Depth	Dia C	onnections	L	.ink	IL	Dia	
		(m)		(m)	(m)		(mm)				(m)	(mm)	
	PP1	-0.23	35	7.968	41.000	1.100							
								⊶→0					
									0 2	.000	39.900	300	
	TANK	1 2.99	94	8.053	41.000	2.100					39.500		
								>0					
							1 -						
							1		0 2	.001 3	38.900	300	

Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

Manhole Schedule Node Easting Northing CL Depth Dia Connections Link	
Node Easting Northing CL Depth Dia Connections Link	
(m) (m) (m) (mm)	IL Dia (m) (mm)
	38.800 300
PP2 -0.211 5.370 41.000 1.100 2.002	38.700 225
°→• 0 1.000	39.900 300
TANK2 3.000 5.367 41.000 2.100 1 1.000 1	39.500 300
	38.90030038.800300
0 1.002	38.700 225
OUTFALL 8.595 7.282 41.630 2.990 1200 1 2.002	38.64022538.640225
	38.640 300 38.620 300
Simulation Settings	
Rainfall MethodologyFEH-22Analysis SpeedNormalAdditional StoraSummer CV1.000Skip Steady StatexCheck DischarWinter CV1.000Drain Down Time (mins)10080Check Dischar	ge Rate(s) x

	[مماما برع بملاما			Page 5								
Herrington Consulting Ltd	File: 1077_mc												
	Natasha Ame												
	12/02/2024	.5											
	12/02/2024												
	Storm Durati	ions											
15 60 180 360	600 960	2160	4320 72	200 1008	30								
30 120 240 480	720 1440	2880	5760 86	640									
Return Period Climate Change Additional Area Addition		eturn Period	Climate Cha	-	onal Area	Additional Flo	w						
	.%)	(years)	(CC %)	-	A %)	(Q %)							
2 0 10	0	100		0	10		0						
10 0 10	0	100		45	10		0						
30 0 10	0												
61-J- 6411	12 Online Uselse		*ol										
Node MH	12 Online Hydro	J-brake" Cont											
Flap Valve √		Objective	(HE) Minimi	ise upstream s	storage								
Replaces Downstream Link x	Sun	mp Available	\checkmark										
Invert Level (m) 38.700		luct Number		34-8000-2300	-8000								
Design Depth (m) 2.300	Min Outlet D	Diameter (m)	0.075										
Design Flow (I/s) 0.8 Min Node Diameter (mm) 1200													
Node MH	Node MH1 Online Hydro-Brake [®] Control												
		Objective											
Flap Valve x	Sum	Objective	(HE) Minimis	ise upstream s	storage								
Replaces Downstream Link √ Invert Level (m) 38.700		mp Available luct Number		42-1200-2300	1200								
Design Depth (m) 2.300	Min Outlet D		0.075	42-1200-2300	-1200								
Design Flow (I/s) 1.2	Min Node Dia		1200										
		()											
Node P	P2 Carpark Stor	rage Structure	2										
		1		1									
Base Inf Coefficient (m/hr) 0.00000	•			354.000	Depth (r	-							
	vert Level (m)		- · ·		Inf Depth (r	m)							
Safety Factor 2.0 Time to half	empty (mins)		Slope (1:X)	9999.0									
AI-J- 7881													
Node IAN	IK2 Soakaway S	norage Struct	ure										
Base Inf Coefficient (m/hr) 0.00000	Porosity (0.95 P	vit Width (m)	10.000	Inf De	pth (m)							
	-		it Length (m)			equired 1							
Safety Factor 2.0 Time to half e			Depth (m)										
	1/ (/	I	-1 ()										
Flow+ v10.7 Copyrigh	nt © 1988-2024	Causeway Teo	chnologies Lto	d									

Herrington Consulting Ltd		Network Natasha 12/02/2	024	ork	Page 6						
	Nod	le PP1 Carpar	k Storage Stru	<u>cture</u>							
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0	Time to h	Poro Invert Level nalf empty (m	(m) 39.900	Width (m)577.000Length (m)10.000Slope (1:X)9999.0	Dep Inf Dep	th (m) 0.900 th (m)					
	Node 1	TANK1 Soakav	way Storage St	<u>ructure</u>							
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0		Poros Invert Level (alf empty (mir	m) 38.900	Pit Width (m) 30.000 Pit Length (m) 10.000 Depth (m) 1.800		f Depth (m) er Required 1	L				
Rainfall											
Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)		Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)					
2 year +10% A 15 minute summer	103.193	29.200	2 year +10%	A 960 minute summer	7.507	1.977					
2 year +10% A 15 minute winter	72.416	29.200		A 960 minute winter	4.973	1.977					
2 year +10% A 30 minute summer	66.439	18.800	2 year +10%	A 1440 minute summer	5.372	1.440					
2 year +10% A 30 minute winter	46.624	18.800	2 year +10%	A 1440 minute winter	3.610	1.440					
2 year +10% A 60 minute summer	43.894	11.600	2 year +10%	A 2160 minute summer	3.816	1.055					
2 year +10% A 60 minute winter	29.162	11.600	2 year +10%	A 2160 minute winter	2.629	1.055					
2 year +10% A 120 minute summer	31.218	8.250	-	A 2880 minute summer	3.180	0.852					
2 year +10% A 120 minute winter	20.741	8.250	-	A 2880 minute winter	2.137	0.852					
2 year +10% A 180 minute summer	25.353	6.524	-	A 4320 minute summer	2.463	0.644					
2 year +10% A 180 minute winter	16.480	6.524 5.445		A 4320 minute winter	1.622	0.644					
2 year +10% A 240 minute summer 2 year +10% A 240 minute winter	20.602 13.688	5.445 5.445	-	A 5760 minute summer A 5760 minute winter	2.092 1.354	0.536 0.536					
2 year +10% A 240 minute winter 2 year +10% A 360 minute summer	16.062	4.133		A 7200 minute summer	1.839	0.338					
2 year +10% A 360 minute summer	10.002	4.133	-	A 7200 minute winter	1.187	0.469					
2 year +10% A 480 minute summer	12.697	3.355		A 8640 minute summer	1.662	0.424					
2 year +10% A 480 minute winter	8.435	3.355		A 8640 minute winter	1.073	0.424					
2 year +10% A 600 minute summer	10.382	2.840	-	A 10080 minute summer	1.534	0.391					
2 year +10% A 600 minute winter	7.093	2.840	•	A 10080 minute winter	0.990	0.391					
2 year +10% A 720 minute summer	9.220	2.471	10 year +10	% A 15 minute summer	201.657	57.062					
2 year +10% A 720 minute winter	6.196	2.471	-	% A 15 minute winter	141.513	57.062					

Herrington Consulting Ltd

herrington consulting Part of eps

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
10 year +10% A 30 minute summer	130.514	36.931	10 year +10% A 8640 minute summer	2.351	0.600
10 year +10% A 30 minute winter	91.589	36.931	10 year +10% A 8640 minute winter	1.517	0.600
10 year +10% A 60 minute summer	86.449	22.846	10 year +10% A 10080 minute summer	2.132	0.544
10 year +10% A 60 minute winter	57.434	22.846	10 year +10% A 10080 minute winter	1.376	0.544
10 year +10% A 120 minute summer	55.222	14.594	30 year +10% A 15 minute summer	263.529	74.570
10 year +10% A 120 minute winter	36.688	14.594	30 year +10% A 15 minute winter	184.933	74.570
10 year +10% A 180 minute summer	42.983	11.061	30 year +10% A 30 minute summer	171.314	48.476
10 year +10% A 180 minute winter	27.940	11.061	30 year +10% A 30 minute winter	120.220	48.476
10 year +10% A 240 minute summer	34.139	9.022	30 year +10% A 60 minute summer	113.999	30.126
10 year +10% A 240 minute winter	22.681	9.022	30 year +10% A 60 minute winter	75.738	30.126
10 year +10% A 360 minute summer	26.014	6.694	30 year +10% A 120 minute summer	70.691	18.682
10 year +10% A 360 minute winter	16.910	6.694	30 year +10% A 120 minute winter	46.965	18.682
10 year +10% A 480 minute summer	20.365	5.382	30 year +10% A 180 minute summer	54.404	14.000
10 year +10% A 480 minute winter	13.530	5.382	30 year +10% A 180 minute winter	35.364	14.000
10 year +10% A 600 minute summer	16.568	4.532	30 year +10% A 240 minute summer	43.048	11.376
10 year +10% A 600 minute winter	11.320	4.532	30 year +10% A 240 minute winter	28.600	11.376
10 year +10% A 720 minute summer	14.672	3.932	30 year +10% A 360 minute summer	32.904	8.467
10 year +10% A 720 minute winter	9.861	3.932	30 year +10% A 360 minute winter	21.388	8.467
10 year +10% A 960 minute summer	11.917	3.138	30 year +10% A 480 minute summer	26.003	6.872
10 year +10% A 960 minute winter	7.894	3.138	30 year +10% A 480 minute winter	17.276	6.872
10 year +10% A 1440 minute summer	8.497	2.277	30 year +10% A 600 minute summer	21.395	5.852
10 year +10% A 1440 minute winter	5.710	2.277	30 year +10% A 600 minute winter	14.618	5.852
10 year +10% A 2160 minute summer	5.976	1.652	30 year +10% A 720 minute summer	19.170	5.138
10 year +10% A 2160 minute winter	4.118	1.652	30 year +10% A 720 minute winter	12.884	5.138
10 year +10% A 2880 minute summer	4.924	1.320	30 year +10% A 960 minute summer	15.944	4.199
10 year +10% A 2880 minute winter	3.309	1.320	30 year +10% A 960 minute winter	10.562	4.199
10 year +10% A 4320 minute summer	3.716	0.972	30 year +10% A 1440 minute summer	11.827	3.170
10 year +10% A 4320 minute winter	2.447	0.972	30 year +10% A 1440 minute winter	7.949	3.170
10 year +10% A 5760 minute summer	3.081	0.789	30 year +10% A 2160 minute summer	8.602	2.377
10 year +10% A 5760 minute winter	1.994	0.789	30 year +10% A 2160 minute winter	5.927	2.377
10 year +10% A 7200 minute summer	2.652	0.676	30 year +10% A 2880 minute summer	7.161	1.919
10 year +10% A 7200 minute winter	1.711	0.676	30 year +10% A 2880 minute winter	4.813	1.919

Flow+ v10.7 Copyright © 1988-2024 Causeway Technologies Ltd

	Herrington Consulting Ltd	File: 1077_model_r3.pfd	Page 8
Inerrinoton		Network: Storm Network	
		Natasha Ames	
CONSULTING Part of eps		12/02/2024	

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
30 year +10% A 4320 minute summer	5.328	1.393	100 year +10% A 1440 minute summer	17.638	4.727
30 year +10% A 4320 minute winter	3.509	1.393	100 year +10% A 1440 minute winter	11.854	4.727
30 year +10% A 5760 minute summer	4.311	1.104	100 year +10% A 2160 minute summer	12.828	3.545
30 year +10% A 5760 minute winter	2.790	1.104	100 year +10% A 2160 minute winter	8.839	3.545
30 year +10% A 7200 minute summer	3.598	0.918	100 year +10% A 2880 minute summer	10.598	2.840
30 year +10% A 7200 minute winter	2.322	0.918	100 year +10% A 2880 minute winter	7.122	2.840
30 year +10% A 8640 minute summer	3.097	0.790	100 year +10% A 4320 minute summer	7.792	2.037
30 year +10% A 8640 minute winter	1.999	0.790	100 year +10% A 4320 minute winter	5.131	2.037
30 year +10% A 10080 minute summer	2.733	0.697	100 year +10% A 5760 minute summer	6.211	1.590
30 year +10% A 10080 minute winter	1.764	0.697	100 year +10% A 5760 minute winter	4.020	1.590
100 year +10% A 15 minute summer	332.201	94.001	100 year +10% A 7200 minute summer	5.110	1.303
100 year +10% A 15 minute winter	233.123	94.001	100 year +10% A 7200 minute winter	3.298	1.303
100 year +10% A 30 minute summer	218.450	61.814	100 year +10% A 8640 minute summer	4.333	1.105
100 year +10% A 30 minute winter	153.298	61.814	100 year +10% A 8640 minute winter	2.796	1.105
100 year +10% A 60 minute summer	145.809	38.533	100 year +10% A 10080 minute summer	3.763	0.960
100 year +10% A 60 minute winter	96.872	38.533	100 year +10% A 10080 minute winter	2.429	0.960
100 year +10% A 120 minute summer	88.847	23.480	100 year +45% CC +10% A 15 minute summer	481.691	136.302
100 year +10% A 120 minute winter	59.028	23.480	100 year +45% CC +10% A 15 minute winter	338.029	136.302
100 year +10% A 180 minute summer	68.400	17.602	100 year +45% CC +10% A 30 minute summer	316.753	89.630
100 year +10% A 180 minute winter	44.461	17.602	100 year +45% CC +10% A 30 minute winter	222.283	89.630
100 year +10% A 240 minute summer	54.490	14.400	100 year +45% CC +10% A 60 minute summer	211.424	55.873
100 year +10% A 240 minute winter	36.202	14.400	100 year +45% CC +10% A 60 minute winter	140.465	55.873
100 year +10% A 360 minute summer	42.630	10.970	100 year +45% CC +10% A 120 minute summer	128.828	34.046
100 year +10% A 360 minute winter	27.710	10.970	100 year +45% CC +10% A 120 minute winter	85.590	34.046
100 year +10% A 480 minute summer	34.796	9.196	100 year +45% CC +10% A 180 minute summer	99.179	25.522
100 year +10% A 480 minute winter	23.118	9.196	100 year +45% CC +10% A 180 minute winter	64.469	25.522
100 year +10% A 600 minute summer	29.472	8.061	100 year +45% CC +10% A 240 minute summer	79.011	20.880
100 year +10% A 600 minute winter	20.137	8.061	100 year +45% CC +10% A 240 minute winter	52.493	20.880
100 year +10% A 720 minute summer	27.061	7.253	100 year +45% CC +10% A 360 minute summer	61.813	15.907
100 year +10% A 720 minute winter	18.187	7.253	100 year +45% CC +10% A 360 minute winter	40.180	15.907
100 year +10% A 960 minute summer	23.232	6.118	100 year +45% CC +10% A 480 minute summer	50.455	13.334
100 year +10% A 960 minute winter	15.390	6.118	100 year +45% CC +10% A 480 minute winter	33.521	13.334

	Herrington Consulting Ltd	File: 1077_model_r3.pfd	Page 9
herrinoton		Network: Storm Network	
I I O I I I I G CO I I		Natasha Ames	
CONSULTING Part of eps		12/02/2024	

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year +45% CC +10% A 600 minute summer	42.734	11.689	100 year +45% CC +10% A 2880 minute winter	10.327	4.118
100 year +45% CC +10% A 600 minute winter	29.198	11.689	100 year +45% CC +10% A 4320 minute summer	11.298	2.954
100 year +45% CC +10% A 720 minute summer	39.238	10.516	100 year +45% CC +10% A 4320 minute winter	7.440	2.954
100 year +45% CC +10% A 720 minute winter	26.371	10.516	100 year +45% CC +10% A 5760 minute summer	9.006	2.306
100 year +45% CC +10% A 960 minute summer	33.687	8.871	100 year +45% CC +10% A 5760 minute winter	5.829	2.306
100 year +45% CC +10% A 960 minute winter	22.315	8.871	100 year +45% CC +10% A 7200 minute summer	7.409	1.890
100 year +45% CC +10% A 1440 minute summer	25.575	6.854	100 year +45% CC +10% A 7200 minute winter	4.782	1.890
100 year +45% CC +10% A 1440 minute winter	17.188	6.854	100 year +45% CC +10% A 8640 minute summer	6.282	1.603
100 year +45% CC +10% A 2160 minute summer	18.601	5.141	100 year +45% CC +10% A 8640 minute winter	4.055	1.603
100 year +45% CC +10% A 2160 minute winter	12.817	5.141	100 year +45% CC +10% A 10080 minute summer	5.456	1.392
100 year +45% CC +10% A 2880 minute summer	15.367	4.118	100 year +45% CC +10% A 10080 minute winter	3.521	1.392

	Heri
herrinaton	
CONSULTING Part of eps	

errington Consulting Ltd

File: 1077_model_r3.pfd Network: Storm Network Natasha Ames 12/02/2024

Results for 2 year +10% A Critical Storm Duration. Lowest mass balance: 90.93%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute summer	PP1	108	39.962	0.062	74.9	105.7253	0.0000	OK
10080 minute summer	TANK1	6900	39.942	1.042	11.7	297.0930	0.0000	SURCHARGED
10080 minute summer	MH1	6540	39.944	1.244	3.2	1.4065	0.0000	SURCHARGED
10080 minute summer	PP2	6720	39.968	0.068	27.2	71.3925	0.0000	ОК
10080 minute summer	TANK2	7020	40.011	1.111	38.0	158.3233	0.0000	SURCHARGED
10080 minute summer	MH2	6780	40.010	1.310	2.1	1.4817	0.0000	SURCHARGED
10080 minute summer	OUTFALL	6360	38.666	0.026	1.5	0.0297	0.0000	ОК
10080 minute summer	Depth/Area 1	7080	38.644	0.024	1.5	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
180 minute summer	PP1	2.000	TANK1	36.7	3.540	0.093	0.0335	
10080 minute summer	TANK1	2.001	MH1	3.2	0.660	0.015	0.2008	
10080 minute summer	MH1	Hydro-Brake®	OUTFALL	0.9				
10080 minute summer	PP2	1.000	TANK2	38.0	1.558	0.096	0.1322	
10080 minute summer	TANK2	1.001	MH2	2.1	0.562	0.011	0.2160	
10080 minute summer	MH2	1.002	OUTFALL	0.6	0.354	0.008	0.0054	
10080 minute summer	OUTFALL	1.003	Depth/Area 1	1.5	0.544	0.013	0.0053	1152.6

1 1 1	H
harrington	
nonngun	
CONSULTING \sim Part of eps	

Herrington Consulting Ltd

File: 1077_model_r3.pfd Network: Storm Network Natasha Ames 12/02/2024

Results for 10 year +10% A Critical Storm Duration. Lowest mass balance: 90.93%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
10080 minute summer	PP1	7140	40.037	0.137	41.6	236.9897	0.0000	OK
10080 minute summer	TANK1	7500	40.075	1.175	80.4	334.9664	0.0000	SURCHARGED
10080 minute summer	MH1	7500	40.078	1.378	3.2	1.5581	0.0000	SURCHARGED
10080 minute winter	PP2	7620	40.081	0.181	40.7	191.5459	0.0000	ОК
8640 minute summer	TANK2	5100	40.088	1.188	68.0	169.2371	0.0000	SURCHARGED
8640 minute summer	MH2	5100	40.088	1.388	2.5	1.5700	0.0000	SURCHARGED
10080 minute summer	OUTFALL	7500	38.667	0.027	1.6	0.0303	0.0000	ОК
10080 minute summer	Depth/Area 1	7500	38.645	0.025	1.6	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
10080 minute summer	PP1	2.000	TANK1	80.4	1.865	0.205	0.1645	
10080 minute summer	TANK1	2.001	MH1	3.2	0.661	0.015	0.2008	
10080 minute summer	MH1	Hydro-Brake®	OUTFALL	1.0				
10080 minute winter	PP2	1.000	TANK2	78.1	1.451	0.198	0.1843	
8640 minute summer	TANK2	1.001	MH2	2.5	0.561	0.012	0.2160	
8640 minute summer	MH2	1.002	OUTFALL	0.6	0.354	0.009	0.0055	
10080 minute summer	OUTFALL	1.003	Depth/Area 1	1.6	0.550	0.014	0.0054	1562.2

herrinoton	Herrington Consulting I	_td			File: 1077_ Network: S	Page	12					
ionnig (on					Natasha Ar							
					12/02/202							
					,,	-				1		
	<u>R</u> (esults for a	30 year +109	<u>% A Crit</u>	ical Storm D	ouration	. Lowes	t mass ba	alance: 90.9	<u>3%</u>		
			US	Peak	Level	Depth	Inflow	Node	e Flood	Stat	us	
			Node	(mins)	(m)	(m)	(I/s)	Vol (m	ı³) (m³)			
	4320 minute wi	nter PP1	L	4200	40.188	0.288	42.5	498.00	10 0.0000	OK		
	4320 minute wi	nter TAN	NK1	4200	40.188	1.288	81.3	367.14	71 0.0000	SURCHA	ARGED	
	4320 minute wi	nter MH	11	4260	40.188	1.488	3.4	1.68	28 0.0000	SURCHA	ARGED	
	4320 minute wi	nter PP2	2	4200	40.243	0.343	39.2	363.37	08 0.0000	SURCHA	ARGED	
	4320 minute wi	nter TAN	IK2	4200	40.243	1.343	69.3	191.33	44 0.0000	SURCHA	ARGED	
	4320 minute wi	nter MH	12	4260	40.243	1.543	2.1	1.74	49 0.0000	SURCHA	ARGED	
	4320 minute wi	nter OU	TFALL	4200	38.667	0.027	1.7	0.03	09 0.0000	OK	ОК	
	4320 minute wi	nter De	oth/Area 1	4200	38.645	0.025	1.7	0.00	00 0.0000	OK		
	Link Event	US	Link		DS	Out	flow \	/elocity	Flow/Cap	Link	Discharge	
	(Upstream Depth)	Node			Node	(I)	/s)	(m/s)		Vol (m³)	Vol (m³)	
	4320 minute winter	PP1	2.000		TANK1		81.3	2.083	0.207	0.2260		
	4320 minute winter	TANK1	2.001		MH1		3.4	0.590	0.016	0.2008		
	4320 minute winter	MH1	Hydro-Br	ake®	OUTFALL		1.0					
	4320 minute winter	PP2	1.000		TANK2		69.3	1.724	0.176	0.2261		
	4320 minute winter	TANK2	1.001		MH2		2.1	0.511	0.011	0.2160		
	4320 minute winter	MH2	1.002		OUTFALL		0.7	0.355	0.009	0.0057		
	4320 minute winter	OUTFALL	1.003		Depth/Area	1	1.7	0.557	0.014	0.0056	1294.3	

Derrington ONSULTING Part of eps	Herrington Consulting Ltd	File: 1077_model_r3.pfd Network: Storm Network Natasha Ames 12/02/2024							13				
	Resi	ults for 1	00 year +10%	6 A Crit			Lowes	t mass ba	lance	e: 90.93	%		
	Node Event		US Node	Peak (mins)		Depth (m)	Inflow (I/s)	Nod Vol (n		Flood (m³)	Stat	us	
	4320 minute winte	er PP	1	4260		0.526	57.3	•	-	0.0000	SURCHA	RGED	
	4320 minute winte	er TA	NK1	4260	40.426	1.526	59.4	434.91	48	0.0000	SURCHA	RGED	
	4320 minute winte	er Ml	11	4260	40.426	1.726	2.1	1.95	17	0.0000	SURCHA	RGED	
	4320 minute winte	er PP	PP2		40.495	0.595	46.4	631.82	34	0.0000	SURCHA	SURCHARGED	
	4320 minute winte	er TA	NK2	4260	40.496	1.596	44.6	227.35	89	0.0000	SURCHA	RGED	
	4320 minute sumr	ner Ml	12	4320	40.494	1.794	1.9	2.02	88	0.0000	SURCHA	RGED	
	4320 minute winte	er OL	ITFALL	4260	38.668	0.028	1.8	0.03	20	0.0000	OK		
	4320 minute winte	er De	pth/Area 1	4260	38.646	0.026	1.8	0.00	00	0.0000	ОК		
	Link Event	US	Link		DS	Out	flow \	/elocity	Flow	/Cap	Link	Discharge	
	(Upstream Depth)	Node			Node	(1)	/s)	(m/s)			Vol (m³)	Vol (m³)	
	4320 minute winter	PP1	2.000		TANK1		59.4	2.073		0.151	0.2275		
	4320 minute winter	TANK1	2.001		MH1		2.1	0.583		0.010	0.2008		
	4320 minute winter	MH1	Hydro-Br	ake®	OUTFALL		1.1						

TANK2

OUTFALL

Depth/Area 1

MH2

PP2

TANK2

MH2

4320 minute winter 4320 minute winter

4320 minute summer

4320 minute winter

1.000

1.001

1.002

OUTFALL 1.003

1.640

0.434

0.361

0.567

44.6

2.1

0.7

1.8

0.113

0.010

0.010

0.015

0.2261

0.2160

0.0060

0.0058

1388.4

herrington consulting Part of eps	Herrington Consulting Ltd		N N	ile: 1077_ Ietwork: S Iatasha Ar 2/02/2024	torm Net nes	•			Page 14
	Results for 1	<u>00 year +45% (</u>	CC +10% A (Critical Sto	orm Dura	tion. Lov	vest mass bal	ance: 90.9	93%
	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow	Node	Flood (m³)	Status
					(111)	(1/5)	VOI (m ⁻)	(m)	
	4320 minute winter	PP1	3960	40.701	0.801	(I/s) 66.2	Vol (m³) 1386.2590	0.0000	FLOOD RISK
	4320 minute winter 5760 minute winter	PP1 TANK1	• •	• •	• •		• •		FLOOD RISK FLOOD RISK
			3960	40.701	0.801	66.2	1386.2590	0.0000	
	5760 minute winter	TANK1	3960 5160	40.701 40.727	0.801 1.827	66.2 55.3	1386.2590 513.1425	0.0000	FLOOD RISK
	5760 minute winter 8640 minute winter	TANK1 MH1	3960 5160 7020	40.701 40.727 40.713	0.801 1.827 2.013	66.2 55.3 13.2	1386.2590 513.1425 2.2769	0.0000 0.0000 0.0000	FLOOD RISK FLOOD RISK

0.029

1.9

1.9

0.0330 0.0000 OK

0.0000 0.0000 OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
•••••••		2 000				0 1 2 2	• •	vor (m)
4320 minute winter	PP1	2.000	TANK1	-48.3	1.973	-0.123	0.2275	
5760 minute winter	TANK1	2.001	MH1	-6.2	0.527	-0.030	0.2008	
8640 minute winter	MH1	Hydro-Brake®	OUTFALL	1.1				
4320 minute winter	PP2	1.000	TANK2	77.4	1.617	0.196	0.2261	
5760 minute winter	TANK2	1.001	MH2	-17.7	0.425	-0.088	0.2160	
5760 minute winter	MH2	1.002	OUTFALL	0.8	0.367	0.010	0.0062	
2880 minute summer	OUTFALL	1.003	Depth/Area 1	1.9	0.575	0.016	0.0061	1349.5

2760 38.669

2760 38.647 0.027

2880 minute summer OUTFALL

2880 minute summer Depth/Area 1

Natasha Ames

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Site Details

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge

Where flow rates are less than 5.0 l/s consent

for discharge is usually set at 5.0 l/s if blockage

from vegetation and other materials is possible. Lower consent flow rates may be set where the

blockage risk is addressed by using appropriate

Where groundwater levels are low enough the

use of soakaways to avoid discharge offsite would normally be preferred for disposal of

Site name:	Manston Road		Latitude:	51.33974° N
Site location:	Ramsgate		Longitude:	1.39235° E
criteria in line with	Environment Agency guida	rates that are used to meet normal b nce "Rainfall runoff management for		1172141404
standards for SuDS	(Defra, 2015). This informa	anual C753 (Ciria, 2015) and the non-sta tion on greenfield runoff rates may be ace water runoff from sites.		Jan 04 2024 13:08
Runoff est	imation	FEH Statistical		

approach

Site characteristics

Total site area (ha):

Specify BFI manually

Calculate from BFI and SAAR

Notes

(1) Is Q_{BAR} < 2.0 l/s/ha?

rates are set at 2.0 l/s/ha.

drainage elements.

surface water runoff.

(3) Is SPR/SPRHOST \leq 0.3?

(2) Are flow rates < 5.0 l/s?

3.5

Methodology

Q_{MED} estimation method: BFI and SPR method:

HOST class:

BFI / BFIHOST:

Q_{MED} (I/s):

QBAR / QMED factor.

N/A 0.788 1.14

Hydrological characteristics	Default	Edited
SAAR (mm):	583	595
Hydrological region:	7	7
Growth curve factor 1 year.	0.85	0.85
Growth curve factor 30 years:	2.3	2.3
Growth curve factor 100 years:	3.19	3.19
Growth curve factor 200	3.74	3.74

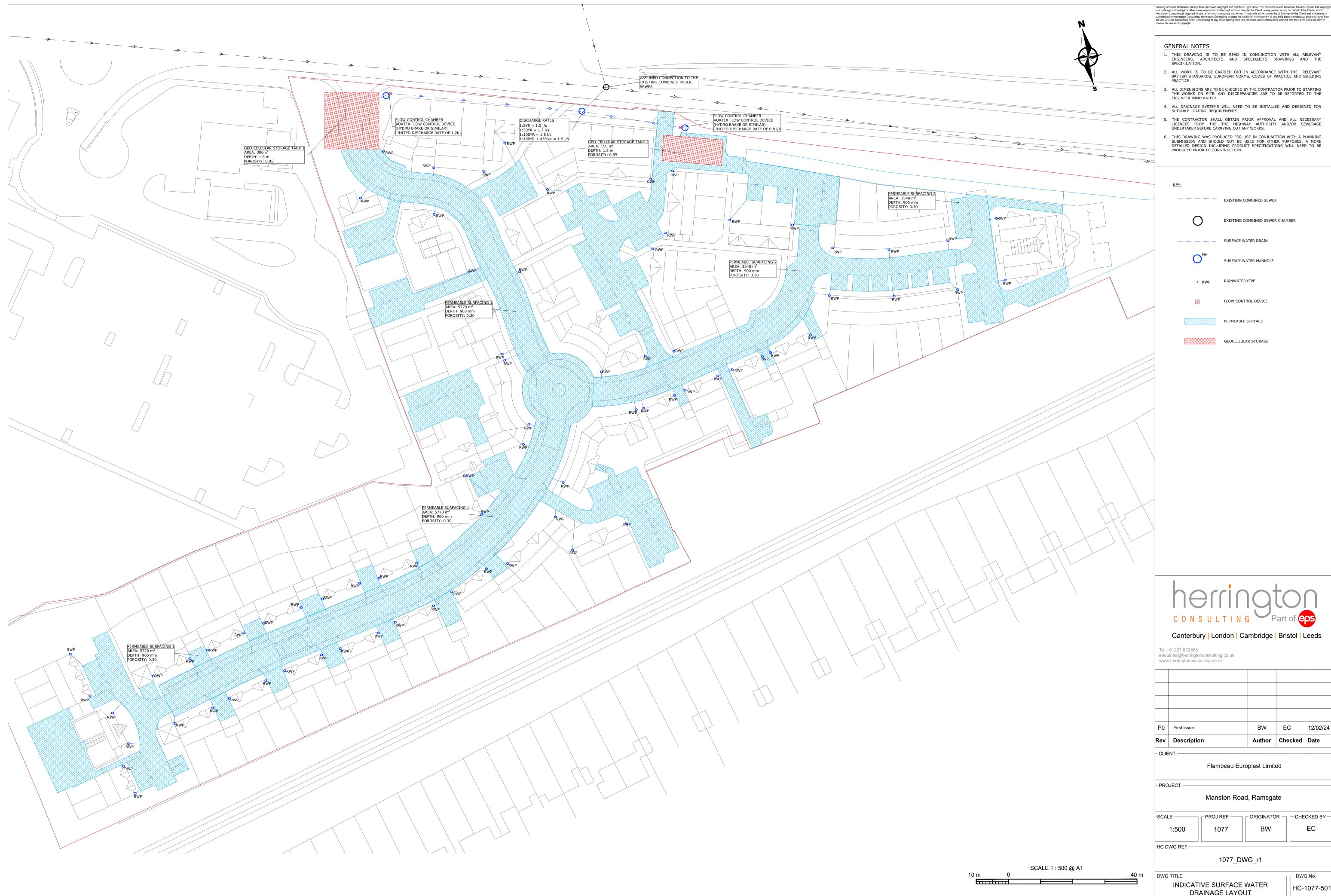
We use cookies on this site to enhance years: your user experience

OK, I AGREE

MORE INFO

By clicking the Accept button, you agree to us doing Greenfised runoff rates Default Edited

Q _{BAR} (I/s):	2.32	
1 in 1 year (l/s):	1.97	
1 in 30 years (l/s):	5.34	
1 in 100 year (l/s):	7.41	
1 in 200 years (l/s):	8.69	


This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

By clicking the Accept button, you agree to us doing so.

Appendix A.6 – Indicative Drainage Layout

EC BW 1077_DWG_r1 – DWG No. —

BW

HC-1077-501

eps

EC 12/02/24

CHECKED BY-

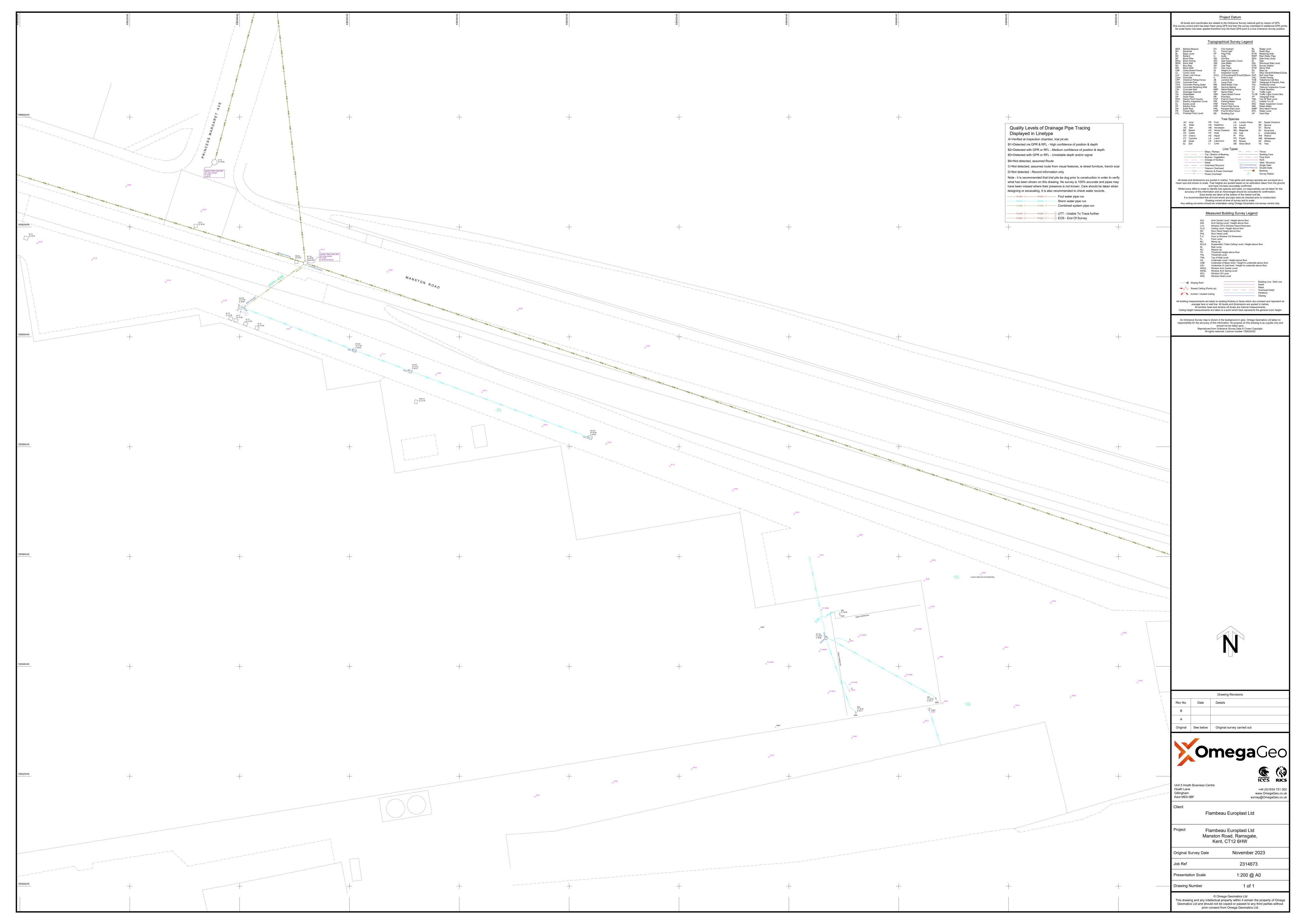
Appendix A.7 – Maintenance Schedules

Operation and Maintenance Schedule – Geo-Cellular Storage System						
Maintenance Schedule	Required Action	Typical Frequency				
	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months then annually				
Regular maintenance	Remove debris and sediment from the catchment surface, wherever is presents a risk to the performance of the drainage system,	Monthly, or as required based on inspection frequencies.				
	Remove sediment from pre-treatment structurers (e.g. sediment traps) and from internal forebays	Annually or as required based on inspection frequencies				
Remedial Actions	Repair; inlets, outlets, overflow pipes, and vent mechanisms	As required, based on inspections				
	Replace tank or geotextile if significant damage is observed or geotextile is torn.	As required				
	Inspect and check all inlets, outlets, vents, and overflows to ensure that they are in good condition and operating as designed.	Following installation, and annually hereafter				
Monitoring	Survey inside of tank, and at any sediment trap mechanisms, for sediment build-up and remove sediment if necessary. Use inspections to develop a regular maintenance and inspection procedure for sediment removal.	Every 5 years, or as required if inspections show high siltation rates.				

General Operation and Maintenance Table for Geo-Cellular Storage Systems

Operation and Maintenance Schedule – Pervious paving / surfacing						
Maintenance Schedule	Maintenance Schedule Required Action					
Regular Maintenance	Brushing and vacuuming (for driveways this can be a standard cosmetic sweep over whole surface).	At minimum once a year, after autumn leaf fall, or reduced frequency as required, based on site- specific observations of clogging or manufacturer's recommendations – particular attention must be payed to areas where water runs onto pervious surface from adjacent impermeable areas as this area is most likely to collect the most sediment.				
	Stabilise and mow contributing and adjacent areas.	As required.				
Occasional maintenance	Removal of weeds or management using a suitable weed killer which will not adversely affect water quality. Weed killer should be applied directly into the weeds by an applicator rather than spraying.	As required – once per year on less frequently used pavements.				
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving / surfacing.	As required when damage or erosion is detected following inspection. For block paving systems				
Remedial Actions	Remedial work to any depressions. Rutting and cracked or broken blocks and replace lost jointing material (where block paving is used).	jointing material to be replaced shortly after installation and subsequently when required.				
	Initial inspection	Monthly for three months after installation				
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after large storms in first six months				
wontohing	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually				
	Monitor inspection chambers	Annually				

General Maintenance Requirements for Permeable Surfacing (additional requirements may apply depending on type of surfacing material used).



Operation and Maintenance Schedule – Water Butts					
Maintenance Schedule	Required Action	Typical Frequency			
	Inspection and cleaning of debris and sedimentation at the base of the tank.	At least once per year and following any noticeable deterioration in performance (e.g. observation of sediment entrained within water).			
	Cleaning out of house guttering	As frequently as advised by maintenance plan for the property. Must be cleaned as soon as possible if blockage of guttering occurs.			
Regular Inspections and Maintenance	Inspection and repair of areas receiving overflow from the tank in the event of erosion	Inspected at least once every 3 months for the first year following installation, reduced inspection frequencies thereafter, at least once per year.			
	inspection and repair of the inlet, outlet and overflows.	Inspected at least once every 3 months for the first year following installation, reduced inspection frequencies thereafter, at least once per year.			
	cleaning of the tank, inlets, outlets, filters (if present) and removal of debris.	Inspected at least once every 3 months for the first year following installation, reduced inspection frequencies thereafter, at least once per year.			
	Repairing of any erosive damage or damage to the tank				
Remedial Maintenance	Inspection of the tank for debris, leaks or other damage and repair where necessary.	As required, whenever damage leaks or erosion is detected.			
	Inspection of area receiving overflow from the tank in the event of erosion				
Occasional maintenance	Replacement of any filters	When Required, due to clogging, or manufacturer specific instructions.			

Typical Maintenance Requirements for Water Butts.

Appendix A.8 Drainage Survey

