#### **Regulations Compliance Report**

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.16 *Printed on 14 February 2023 at 15:23:39* 

Project Information:

Assessed By: Harry Hinchcliffe (STRO034627) Building Type: Detached House

Dwelling Details:

**NEW DWELLING DESIGN STAGE**Total Floor Area: 99.55m<sup>2</sup>

Site Reference: 15592 - L1a Assessment Plot Reference: 15592 - L1a Assessment

Address: New Dwelling @, 34 Summer House Way, Langley, WD5 0DY

Client Details:

Name: Address :

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 19.12 kg/m<sup>2</sup>

Dwelling Carbon Dioxide Emission Rate (DER)

18.11 kg/m<sup>2</sup>

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 62.3 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 61.2 kWh/m²

OK

2 Fabric U-values

| Element       | Average          | Highest          |    |
|---------------|------------------|------------------|----|
| External wall | 0.24 (max. 0.30) | 0.24 (max. 0.70) | OK |
| Floor         | 0.18 (max. 0.25) | 0.18 (max. 0.70) | OK |
| Roof          | 0.11 (max. 0.20) | 0.14 (max. 0.35) | OK |
| Openings      | 1.41 (max. 2.00) | 1.60 (max. 3.30) | OK |

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.00 (design value)

Maximum 10.0 **OK** 

4 Heating efficiency

Main Heating system: Database: (rev 504, product index 017929):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35

(Combi)

Efficiency 89.6 % SEDBUK2009

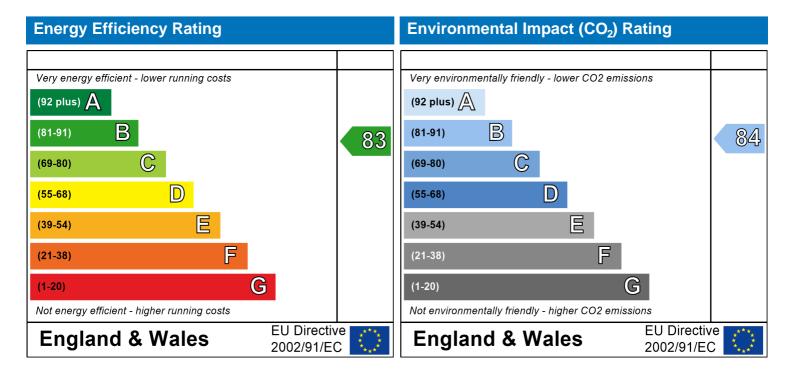
Minimum 88.0 %

Secondary heating system: None

OK

# **Regulations Compliance Report**

| 5 Cylinder insulation              |                       |                        |    |
|------------------------------------|-----------------------|------------------------|----|
| Hot water Storage:                 | No cylinder           |                        |    |
| 6 Controls                         |                       |                        |    |
|                                    |                       |                        |    |
| Space heating controls             | TTZC by plumbing an   | nd electrical services | oK |
| Hot water controls:                | No cylinder thermosta | at                     |    |
|                                    | No cylinder           |                        |    |
| Boiler interlock:                  | Yes                   |                        | OK |
| 7 Low energy lights                |                       |                        |    |
| Percentage of fixed lights with lo | w-energy fittings     | 100.0%                 |    |
| Minimum                            |                       | 75.0%                  | OK |
| 8 Mechanical ventilation           |                       |                        |    |
| Not applicable                     |                       |                        |    |
| 9 Summertime temperature           |                       |                        |    |
| Overheating risk (Thames valley    | <b>'</b> ):           | Medium                 | OK |
| Based on:                          |                       |                        |    |
| Overshading:                       |                       | Average or unknown     |    |
| Windows facing: South West         |                       | 7.78m²                 |    |
| Windows facing: North East         |                       | 18.86m²                |    |
| Windows facing: South East         |                       | 2.76m²                 |    |
| Windows facing: North West         |                       | 0.69m²                 |    |
| Ventilation rate:                  |                       | 4.00                   |    |
| 10 Key features                    |                       |                        |    |
| Roofs U-value                      |                       | 0.11 W/m²K             |    |


#### **Predicted Energy Assessment**



New Dwelling @ 34 Summer House Way Langley WD5 0DY Dwelling type: Date of assessment: Produced by: Total floor area: Detached House 14 February 2023 Harry Hinchcliffe 99.55 m<sup>2</sup>

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

### **Developer Confirmation Report**

#### Property Details: 15592 - L1a Assessment

Address: New Dwelling @, 34 Summer House Way, Langley, WD5 0DY

Located in: England Region: Thames valley

UPRN:

Date of assessment: 14 February 2023 Date of certificate: 14 February 2023

Assessment type: New dwelling design stage

Transaction type: New dwelling

Thermal Mass Parameter: Indicative Value Low

Comments:

#### Property description:

Dwelling type: House
Detachment: Detached
Year Completed: 2023
Front of dwelling faces: North

Comments:

#### Opening types:

| Name:         | Type:   | Frame Factor: | g-value: | U-Value: | Area: |
|---------------|---------|---------------|----------|----------|-------|
| Front Door    | Solid   | 0.7           | 0        | 1.6      | 2.1   |
| Front Windows | Windows | 0.7           | 0.63     | 1.4      | 7.78  |
| Rear Windows  | Windows | 0.7           | 0.63     | 1.4      | 18.86 |
| SE Windows    | Windows | 0.7           | 0.63     | 1.4      | 2.76  |
| NW Window     | Windows | 0.7           | 0.63     | 1.4      | 0.69  |

Overshading: Average or unknown

Comments:

#### **Opaque Elements:**

Type: U-Value: Kappa:

**External Elements** 

External Walls

0.24 Please provide the U-Value calculation to justify the U-Value entered into the assessment.

N/A

Flat Roof

0.14 Please provide the U-Value calculation to justify the U-Value entered into the assessment.

N/A

Pitched Roof

0.11 Please provide the U-Value calculation to justify the U-Value entered into the assessment.

N/A

#### **Developer Confirmation Report**

**Ground Floor** 0.18 Please provide the U-Value calculation to justify the U-Value entered into the assessment.

Internal Elements (Area, Kappa) Party Elements (Area, Kappa)

N/A

#### Thermal bridges:

| Thermal bridges: |       | User-defined | (individual PS | SI-value | es) Y-Value = 0.0746                          |
|------------------|-------|--------------|----------------|----------|-----------------------------------------------|
|                  |       | Length       | Psi-value      |          |                                               |
| [Appro           | oved] | 18.94        | 0.3            | E2       | Other lintels (including other steel lintels) |
| [Appro           | oved] | 18.94        | 0.04           | E3       | Sill                                          |
| [Appro           | oved] | 37.22        | 0.05           | E4       | Jamb                                          |
| [Appro           | oved] | 29.75        | 0.16           | E5       | Ground floor (normal)                         |
| [Appro           | oved] | 31.3         | 0.07           | E6       | Intermediate floor within a dwelling          |
| [Appro           | oved] | 31.3         | 0.06           | E10      | Eaves (insulation at ceiling level)           |

#### 4.18 E14 [Approved] 31.8 0.09 E16 Corner (normal)

[Approved] 7.95 -0.09 Corner (inverted internal area greater than external area) E17

Flat roof

#### Comments:

If specific construction details have been adopted then please provide the associated checklists; signed and dated.

Pressure test: Yes (As designed)

Natural ventilation (extract fans) Ventilation:

Pressure test:

Comments:

Please provide the pressure test certificate, or certificates if the result is based on an average; signed and dated.

#### Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 504, product index 017929) Efficiency: Winter 87.3 % Summer: 90.5

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35

(Combi boiler) Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature <= 35°C

Boiler interlock: Yes Delayed start

Comments:

# **Developer Confirmation Report**

| Main heating Control:                                                          |                                                                                                                                 |
|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Main heating Control:  Comments:                                               | Time and temperature zone control by suitable arrangement of plumbing and electrical services                                   |
|                                                                                |                                                                                                                                 |
| Secondary heating system:                                                      |                                                                                                                                 |
| Secondary heating system:  Comments:                                           | None                                                                                                                            |
|                                                                                |                                                                                                                                 |
| Water heating:                                                                 |                                                                                                                                 |
| Water heating:<br>Comments:                                                    | No hot water cylinder                                                                                                           |
|                                                                                |                                                                                                                                 |
|                                                                                | Solar panel: False                                                                                                              |
| Others:                                                                        |                                                                                                                                 |
| Electricity tariff: Low energy lights:                                         | Standard Tariff 100%                                                                                                            |
| Terrain type: Wind turbine:                                                    | Low rise urban / suburban<br>No                                                                                                 |
| Photovoltaics: Comments:                                                       | None                                                                                                                            |
| Please provide the MCS certificate or cinclude any calculations to support a p | data sheet equivalent confirming the size of the array on the roof. This should proportioned amount included in the assessment. |
|                                                                                |                                                                                                                                 |
| Declaration:                                                                   |                                                                                                                                 |
| I confirm that the property has been bu<br>Signed:                             | ilt to the above specification.                                                                                                 |
| Date:                                                                          |                                                                                                                                 |

#### **SAP Input**

#### Property Details: 15592 - L1a Assessment

Address: New Dwelling @, 34 Summer House Way, Langley, WD5 0DY

Located in: England Region: Thames valley

UPRN:

Date of assessment: 14 February 2023 Date of certificate: 14 February 2023

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling
Unknown

No related party
Indicative Value Low

Water use <= 125 litres/person/day: True

PCDF Version: 504

#### Property description:

Dwelling type: House
Detachment: Detached
Year Completed: 2023

Floor Location: Floor area:

Floor 0 52.34 m<sup>2</sup> 2.39 m Floor 1 47.21 m<sup>2</sup> 2.65 m

Living area: 29.43 m<sup>2</sup> (fraction 0.296)

Front of dwelling faces: North

#### Opening types:

| Name:         | Source:      | Type:   | Glazing:      | Argon: | Frame: |
|---------------|--------------|---------|---------------|--------|--------|
| Front Door    | Manufacturer | Solid   |               |        | PVC-U  |
| Front Windows | Manufacturer | Windows | double-glazed | No     |        |
| Rear Windows  | Manufacturer | Windows | double-glazed | No     |        |
| SE Windows    | Manufacturer | Windows | double-glazed | No     |        |
| NW Window     | Manufacturer | Windows | double-glazed | No     |        |

Storey height:

1.4

0.69

| Name:         | Gap:         | Frame Fa | actor: g-value: | U-value: | Area: | No. of Openings: |
|---------------|--------------|----------|-----------------|----------|-------|------------------|
| Front Door    | mm           | 0.7      | 0               | 1.6      | 2.1   | 1                |
| Front Windows | 16mm or more | 0.7      | 0.63            | 1.4      | 7.78  | 1                |
| Rear Windows  | 16mm or more | 0.7      | 0.63            | 1.4      | 18.86 | 1                |
| SE Windows    | 16mm or more | 0.7      | 0.63            | 1.4      | 2.76  | 1                |

0.63

| Name:         | Type-Name: | Location:      | Orient:    | Width: | Height: |
|---------------|------------|----------------|------------|--------|---------|
| Front Door    |            | External Walls | South West | 0      | 0       |
| Front Windows |            | External Walls | South West | 0      | 0       |
| Rear Windows  |            | External Walls | North East | 0      | 0       |
| SE Windows    |            | External Walls | South East | 0      | 0       |
| NW Window     |            | External Walls | North West | 0      | 0       |

0.7

Overshading: Average or unknown

16mm or more

#### Opaque Flements:

**NW Window** 

| Type:                  | Gross area: | Openings: | Net area: | U-value: | Ru value: | Curtain wall: | Карра: |
|------------------------|-------------|-----------|-----------|----------|-----------|---------------|--------|
| <u>External Elemen</u> | <u>ts</u>   |           |           |          |           |               |        |
| External Walls         | 154.05      | 32.19     | 121.86    | 0.24     | 0         | False         | N/A    |
| Flat Roof              | 4.67        | 0         | 4.67      | 0.14     | 0         |               | N/A    |
| Pitched Roof           | 47.5        | 0         | 47.5      | 0.11     | 0         |               | N/A    |

#### **SAP Input**

**Ground Floor** 52.34 0.18 N/A

**Internal Elements** Party Elements

| Thormal | bridges: |
|---------|----------|
| HIEHHai | ninges.  |

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0746

|            | Length | `Psi-value | ,   |                                                            |
|------------|--------|------------|-----|------------------------------------------------------------|
| [Approved] | 18.94  | 0.3        | E2  | Other lintels (including other steel lintels)              |
| [Approved] | 18.94  | 0.04       | E3  | Sill                                                       |
| [Approved] | 37.22  | 0.05       | E4  | Jamb                                                       |
| [Approved] | 29.75  | 0.16       | E5  | Ground floor (normal)                                      |
| [Approved] | 31.3   | 0.07       | E6  | Intermediate floor within a dwelling                       |
| [Approved] | 31.3   | 0.06       | E10 | Eaves (insulation at ceiling level)                        |
|            | 4.18   | 0          | E14 | Flat roof                                                  |
| [Approved] | 31.8   | 0.09       | E16 | Corner (normal)                                            |
| [Approved] | 7.95   | -0.09      | E17 | Corner (inverted internal area greater than external area) |

Pressure test: Yes (As designed)

Natural ventilation (extract fans) Ventilation:

Number of chimneys: 0 Number of open flues: 0 0 Number of fans: Number of passive stacks: 0 Number of sides sheltered: 1 Pressure test: 5

Boiler systems with radiators or underfloor heating Main heating system:

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 504, product index 017929) Efficiency: Winter 87.3 % Summer: 90.5

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35 (Combi boiler)

Systems with radiators

Central heating pump: 2013 or later

Design flow temperature: Design flow temperature<=35°C

Boiler interlock: Yes Delayed start

Time and temperature zone control by suitable arrangement of plumbing and electrical Main heating Control:

services

Control code: 2110

Secondary heating system: None

From main heating system Water heating:

> Water code: 901 Fuel: mains gas No hot water cylinder Solar panel: False

Standard Tariff Electricity tariff: In Smoke Control Area: Unknown

# **SAP Input**

Conservatory: No conservatory

Low energy lights: 100%

Low rise urban / suburban

Terrain type: EPC language: English Wind turbine: No None Photovoltaics: No Assess Zero Carbon Home:

|                               |                                                                    | User Details:                                     |                        |                                                                       |              |       |
|-------------------------------|--------------------------------------------------------------------|---------------------------------------------------|------------------------|-----------------------------------------------------------------------|--------------|-------|
| Assessor Name:                | Harry Hinchcliffe                                                  | Stroma Nu                                         | mber:                  | STRO                                                                  | 034627       |       |
| Software Name:                | Stroma FSAP 2012                                                   | Software V                                        | ersion:                | Versio                                                                | n: 1.0.5.16  |       |
|                               |                                                                    | Property Address: 1559                            |                        | ment                                                                  |              |       |
| Address :                     | New Dwelling @, 34 Summ                                            | ner House Way, Langle                             | y, WD5 0DY             |                                                                       |              |       |
| Overall dwelling dime         | ensions:                                                           | A ( 0)                                            | A 11 : 14              | `                                                                     |              |       |
| Ground floor                  |                                                                    | Area(m²)  52.34 (1a)                              | Av. Height(r           | <b>n)</b><br>(2a) = [                                                 | Volume(m³)   | (3a)  |
| First floor                   |                                                                    | 47.21 (1b)                                        |                        | $(2b) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ | 125.11       | ](3b) |
|                               | a)+(1b)+(1c)+(1d)+(1e)+(1                                          |                                                   | 2.00                   | (20) -                                                                | 125.11       | (00)  |
| ·                             | a)+(1b)+(1b)+(1b)+(1b)+(1                                          | ,,                                                |                        | <i>(</i> - ).                                                         |              | _     |
| Dwelling volume               |                                                                    | (3a)+                                             | (3b)+(3c)+(3d)+(3e)    | +(3n) =                                                               | 250.2        | (5)   |
| 2. Ventilation rate:          | main                                                               |                                                   | 464-1                  |                                                                       |              |       |
|                               | main seconda<br>heating heating                                    |                                                   | total                  |                                                                       | m³ per houi  |       |
| Number of chimneys            | 0 + 0                                                              | + 0 =                                             | 0                      | x 40 =                                                                | 0            | (6a)  |
| Number of open flues          | 0 + 0                                                              | + 0 =                                             | 0                      | x 20 =                                                                | 0            | (6b)  |
| Number of intermittent fa     | ns                                                                 |                                                   | 0                      | x 10 =                                                                | 0            | (7a)  |
| Number of passive vents       |                                                                    |                                                   | 0                      | x 10 =                                                                | 0            | (7b)  |
| Number of flueless gas fi     | res                                                                |                                                   | 0                      | x 40 =                                                                | 0            | (7c)  |
|                               |                                                                    |                                                   |                        |                                                                       |              | _     |
|                               |                                                                    |                                                   |                        | Air ch                                                                | anges per ho | ur    |
| '                             | ys, flues and fans = $(6a)+(6b)+(6b)+(6b)+(6b)+(6b)+(6b)+(6b)+(6b$ |                                                   | 0                      | ÷ (5) =                                                               | 0            | (8)   |
| Number of storeys in t        | een carried out or is intended, proce<br>ne dwelling (ns)          | ea to (17), otnerwise continu                     | e trom (9) to (16)     | Г                                                                     | 0            | (9)   |
| Additional infiltration       | ic dwelling (113)                                                  |                                                   |                        | [(9)-1]x0.1 =                                                         | 0            | (10)  |
|                               | .25 for steel or timber frame of                                   | or 0.35 for masonry con                           |                        |                                                                       | 0            | (11)  |
|                               | resent, use the value corresponding                                | •                                                 |                        | L                                                                     |              | 」、 ′  |
|                               | floor, enter 0.2 (unsealed) or (                                   | 0.1 (sealed), else enter                          | 0                      |                                                                       | 0            | (12)  |
| If no draught lobby, en       | ter 0.05, else enter 0                                             |                                                   |                        | Ī                                                                     | 0            | (13)  |
| Percentage of windows         | s and doors draught stripped                                       |                                                   |                        | Ī                                                                     | 0            | (14)  |
| Window infiltration           |                                                                    | 0.25 - [0.2 x (14)                                | ÷ 100] =               | Ī                                                                     | 0            | (15)  |
| Infiltration rate             |                                                                    | (8) + (10) + (11)                                 | + (12) + (13) + (15) = | = [                                                                   | 0            | (16)  |
| Air permeability value,       | q50, expressed in cubic metr                                       | es per hour per square                            | metre of envelo        | pe area                                                               | 5            | (17)  |
| If based on air permeabil     | ity value, then $(18) = [(17) \div 20] +$                          | -(8), otherwise $(18) = (16)$                     |                        | Ī                                                                     | 0.25         | (18)  |
| Air permeability value applie | es if a pressurisation test has been do                            | one or a degree air permeabi                      | lity is being used     |                                                                       |              |       |
| Number of sides sheltere      | ed                                                                 | (00) 4 [0.075                                     | (40)]                  | -                                                                     | 1            | (19)  |
| Shelter factor                |                                                                    | (20) = 1 - [0.075]                                |                        | ļ                                                                     | 0.92         | (20)  |
| Infiltration rate incorporat  | _                                                                  | $(21) = (18) \times (20)$                         | =                      |                                                                       | 0.23         | (21)  |
| Infiltration rate modified f  | <del></del>                                                        | <del>, , , , , , , , , , , , , , , , , , , </del> |                        |                                                                       |              |       |
| Jan Feb                       | Mar Apr May Jun                                                    | Jul Aug Se                                        | p Oct No               | ov Dec                                                                |              |       |
| Monthly average wind sp       | eed from Table 7                                                   |                                                   |                        |                                                                       |              |       |

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

| (22a)m= 1.27                                                                                                                                                                                                                                | 1.25                                                                                                   | 1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.08              | 0.95                                                                                       | 0.95                                                      | 0.92                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.08                                                                 | 1.12                                    | 1.18                      |        |                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|---------------------------|--------|-----------------------------------------------------------------------------------------------|
| A II                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                            |                                                           | (24.)                                                                                                               | (00.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                      |                                         |                           | _      |                                                                                               |
| Adjusted infiltr                                                                                                                                                                                                                            |                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 1                                                                                          | <del>i                                    </del>          | <del>`                                    </del>                                                                    | <u>, ,                                  </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                 |                                         | T 0.07                    | 1      |                                                                                               |
| Calculate effe                                                                                                                                                                                                                              | 0.29<br>Ctive air                                                                                      | 0.28<br>change i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25<br>rate for t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25<br>the appli | 0.22<br>cable ca                                                                           | 0.22<br>S <b>e</b>                                        | 0.21                                                                                                                | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25                                                                 | 0.26                                    | 0.27                      | ]      |                                                                                               |
| If mechanica                                                                                                                                                                                                                                | al ventila                                                                                             | ition:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                            |                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                         |                           | (      | ) (2                                                                                          |
| If exhaust air h                                                                                                                                                                                                                            | eat pump (                                                                                             | using Appe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | endix N, (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23b) = (23a       | a) × Fmv (e                                                                                | equation (N                                               | N5)) , othe                                                                                                         | rwise (23b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) = (23a)                                                            |                                         |                           | (      | ) (2                                                                                          |
| If balanced with                                                                                                                                                                                                                            | n heat reco                                                                                            | overy: effic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iency in %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | allowing f        | for in-use f                                                                               | actor (from                                               | n Table 4h                                                                                                          | ) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                      |                                         |                           | (      | ) (2                                                                                          |
| a) If balance                                                                                                                                                                                                                               | ed mecha                                                                                               | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ntilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | with he           | at recove                                                                                  | ery (MVI                                                  | HR) (24a                                                                                                            | a)m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2b)m + (                                                             | 23b) × [                                | 1 – (23c)                 | ÷ 100] |                                                                                               |
| (24a)m= 0                                                                                                                                                                                                                                   | 0                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0                                                                                          | 0                                                         | 0                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                    | 0                                       | 0                         |        | (2                                                                                            |
| b) If balance                                                                                                                                                                                                                               | ed mecha                                                                                               | anical ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ntilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | without           | heat red                                                                                   | covery (N                                                 | ИV) (24b                                                                                                            | m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2b)m + (                                                             | 23b)                                    | ,                         | 7      |                                                                                               |
| (24b)m= 0                                                                                                                                                                                                                                   | 0                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                 | 0                                                                                          | 0                                                         | 0                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                    | 0                                       | 0                         |        | (2                                                                                            |
| c) If whole h                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                 | •                                                                                          |                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F (00)                                                               | - \                                     |                           |        |                                                                                               |
| <u> </u>                                                                                                                                                                                                                                    | n < 0.5 ×                                                                                              | (23b), t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hen (24)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c) = (23b)        | o); other                                                                                  | wise (24)                                                 | c) = (22t)                                                                                                          | o) m + 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $5 \times (230)$                                                     | o)<br>  o                               | 0                         | 1      | (2                                                                                            |
| ,                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | <u> </u>                                                                                   |                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                    |                                         | 0                         | ]      | (2                                                                                            |
| d) If natural<br>if (22b)r                                                                                                                                                                                                                  |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ve input<br>erwise (2                                                                      |                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.51                                                                 |                                         |                           |        |                                                                                               |
| (24d)m= 0.54                                                                                                                                                                                                                                | 0.54                                                                                                   | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53              | 0.52                                                                                       | 0.52                                                      | 0.52                                                                                                                | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53                                                                 | 0.53                                    | 0.54                      | ]      | (2                                                                                            |
|                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                            |                                                           |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |                                         | !                         | _      |                                                                                               |
| Effective air                                                                                                                                                                                                                               | change                                                                                                 | rate - er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iter (24a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ) or (24k         | b) or (24                                                                                  | c) or (24                                                 | d) in box                                                                                                           | k (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                         |                           |        |                                                                                               |
| Effective air (25)m= 0.54                                                                                                                                                                                                                   | change<br>0.54                                                                                         | rate - er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53              | o) or (24<br>0.52                                                                          | c) or (24<br>0.52                                         | d) in box<br>0.52                                                                                                   | x (25)<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53                                                                 | 0.53                                    | 0.54                      | 1      | (2                                                                                            |
| (25)m= 0.54                                                                                                                                                                                                                                 | 0.54                                                                                                   | 0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53              | <del>í `</del>                                                                             | <del>ŕ `</del>                                            | <del></del>                                                                                                         | <del>` ´ </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.53                                                                 | 0.53                                    | 0.54                      |        | (2                                                                                            |
| (25)m= 0.54<br>3. Heat losse                                                                                                                                                                                                                | 0.54                                                                                                   | 0.54<br>eat loss p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53<br>paramet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53<br>er:       | 0.52                                                                                       | 0.52                                                      | 0.52                                                                                                                | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                      |                                         |                           | ]<br>e |                                                                                               |
| (25)m= 0.54                                                                                                                                                                                                                                 | 0.54                                                                                                   | 0.54<br>eat loss p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53  Daramet  Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53<br>er:       | <del>í `</del>                                                                             | 0.52<br>ea                                                | <del></del>                                                                                                         | 0.53<br>ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.53<br>A X U<br>(W/                                                 |                                         | 0.54<br>k-value<br>kJ/m²- |        | A X k kJ/K                                                                                    |
| (25)m= 0.54<br>3. Heat losse                                                                                                                                                                                                                | 0.54<br>s and he                                                                                       | 0.54<br>eat loss p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53  Daramet  Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53<br>er:       | 0.52                                                                                       | 0.52<br>ea                                                | 0.52                                                                                                                | 0.53<br>ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AXU                                                                  |                                         | k-valu                    |        | ΑXk                                                                                           |
| 3. Heat losse ELEMENT                                                                                                                                                                                                                       | 0.54<br>s and he<br>Gros<br>area                                                                       | 0.54<br>eat loss p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53  Daramet  Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53<br>er:       | 0.52<br>Net Ar<br>A ,r                                                                     | 0.52                                                      | U-val                                                                                                               | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A X U<br>(W/                                                         |                                         | k-valu                    |        | A X k<br>kJ/K                                                                                 |
| 3. Heat losse ELEMENT Doors                                                                                                                                                                                                                 | o.54 s and he Gros area                                                                                | 0.54<br>eat loss p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53  Daramet  Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53<br>er:       | 0.52<br>Net Ar<br>A ,r                                                                     | 0.52                                                      | 0.52<br>U-valı<br>W/m2                                                                                              | 0.53  ue ek 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A X U<br>(W/                                                         |                                         | k-valu                    |        | A X k<br>kJ/K                                                                                 |
| 3. Heat losse ELEMENT Doors Windows Type                                                                                                                                                                                                    | o.54  s and he  Gros area                                                                              | 0.54<br>eat loss p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53  Daramet  Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53<br>er:       | 0.52  Net Ar A ,r 2.1 7.78                                                                 | 0.52 rea m² x1/ 3 x1/                                     | 0.52<br>U-valu<br>W/m2<br>1.6<br>/[1/( 1.4 )+                                                                       | 0.53  ue 2K  = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A X U<br>(W/)<br>3.36<br>10.31                                       |                                         | k-valu                    |        | A X k<br>kJ/K<br>(2                                                                           |
| 3. Heat losse ELEMENT Doors Windows Type Windows Type                                                                                                                                                                                       | o.54  S and he  Gros area  1 2 2                                                                       | 0.54<br>eat loss p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53  Daramet  Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53<br>er:       | 0.52  Net Ar A ,r 2.1 7.78                                                                 | 0.52 rea m² x1/ x1/                                       | U-valu<br>W/m2<br>1.6<br>/[1/( 1.4 )+                                                                               | 0.53  ue 2K  = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A X U (W/) 3.36 10.31                                                |                                         | k-valu                    |        | A X k<br>kJ/K<br>(2<br>(2                                                                     |
| 3. Heat losse ELEMENT Doors Windows Type Windows Type Windows Type                                                                                                                                                                          | o.54  S and he  Gros area  1 2 2                                                                       | 0.54<br>eat loss p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53  Daramet  Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53<br>er:       | 0.52  Net Ar A ,r  2.1  7.78  18.86                                                        | 0.52  rea m² x1/ x1/ x1/ x1/                              | 0.52<br>U-vali<br>W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                       | 0.53  ue 2K  = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A X U (W/) 3.36 10.31 25 3.66                                        | K)                                      | k-valu                    |        | A X k kJ/K (2 (2 (2 (2                                                                        |
| 3. Heat losse ELEMENT Doors Windows Type Windows Type Windows Type Windows Type                                                                                                                                                             | o.54  S and he  Gros area  1 2 2                                                                       | o.54 eat loss pass (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53  Daramet  Openin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.53<br>er:       | 0.52  Net Ar A ,r 2.1 7.78 18.86 2.76 0.69                                                 | 0.52  rea m² x1 x1 x1 x1 x1 x1 x1                         | 0.52<br>U-val<br>W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                        | 0.53  ue 2K  = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A X U (W/) 3.36 10.31 25 3.66 0.91                                   | K)                                      | k-valu                    |        | A X k kJ/K (2 (2 (2 (2 (2                                                                     |
| 3. Heat losse ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Floor                                                                                                                                                       | o.54  S and he  Gros area  1 2 2 3 4                                                                   | 0.54 eat loss pass (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53  Daramet  Openir  m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.53<br>er:       | 0.52  Net Ar A ,r 2.1 7.78 18.86 2.76 0.69 52.34                                           | 0.52  rea m² x1       | U-val<br>W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.18                                        | 0.53  ue  eK  = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A X U (W/) 3.36 10.31 25 3.66 0.91 9.42120                           | K)                                      | k-valu                    |        | A X k kJ/K (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2                                             |
| 3. Heat losse ELEMENT Doors Windows Type | 0.54  S and he  Gros area  1 2 3 4 154.                                                                | 0.54 eat loss pass (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53  Openir n  32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53<br>er:       | 0.52  Net Ar A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8                              | 0.52  rea m² x1/      | U-value W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24                                                 | 0.53  ue  e  K  = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] | A X U (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25 | K)                                      | k-valu                    |        | A X k kJ/K (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2                                             |
| 3. Heat losse ELEMENT Doors Windows Type Roor Walls Roof Type1                                                                      | 0.54  S and he  Gros area  1 2 2 2 3 3 4 4  154.6  47.6                                                | 0.54  eat loss pass (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.53  Daramet Openir m  32.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.53<br>er:       | 0.52  Net Ar A ,r 2.1 7.78 18.86 2.76 0.69 52.34 121.8 4.67                                | 0.52  rea m² x1/2 x1/4 x x 6 x x x                        | 0.52<br>U-vally W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>0.18<br>0.24<br>0.14 | 0.53  UE  O.04] = [  0.04] = [  0.04] = [  0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A X U (W/) 3.36 10.31 25 3.66 0.91 9.42120 29.25 0.65                | K)                                      | k-valu                    |        | A X k kJ/K (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2                                             |
| 3. Heat losse ELEMENT Doors Windows Type Roof Type1 Roof Type2                                                                      | 0.54  S and he  Gros area  1 1 2 2 2 3 3 4 4 4 4.6                                                     | 0.54  eat loss page (m²)  05  7  5  , m²  ows, use e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53  Openin m  32.1  0  offective with the state of the  | 0.53  er: ngs n²  | 0.52  Net Ar A ,r 2.1 7.78 18.86 2.76 0.69 52.34 121.8 4.67 47.5 258.5 alue calcul         | 0.52  rea m² x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/ x1/          | 0.52  U-vali W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14                         | 0.53  UE  O.04] = [  0.04] = [  0.04] = [  0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A X U (W// 3.36 10.31 25 3.66 0.91 9.42120 29.25 0.65 5.22           | K)                                      | k-value<br>kJ/m²-         | K [    | A X k kJ/K (2 (2 (2 (2 (2 (2 (2 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3                        |
| 3. Heat losse ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Walls Roof Type1 Roof Type2 Total area of e * for windows and                                                                     | 0.54  Gros area  1 2 2 3 4 4 154.  4.67  47.9  Elements  I roof winder as on both                      | 0.54  eat loss pass (m²)  05  7  5  ows, use esides of in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.53  Openir m  32.1  0  offective waternal wate | 0.53  er: ngs n²  | 0.52  Net Ar A ,r 2.1 7.78 18.86 2.76 0.69 52.34 121.8 4.67 47.5 258.5 alue calcul         | 0.52  rea m² x1/ x1/ x1/ x1/ x1/ x1/ 4 x 6 x x ated using | 0.52  U-vali W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14                         | 0.53  ue 2K  = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A X U (W// 3.36 10.31 25 3.66 0.91 9.42120 29.25 0.65 5.22           | K)                                      | k-value<br>kJ/m²-         | K [    | A X k kJ/K (2 (2 (2 (2 (2 (2 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3                           |
| 3. Heat losse ELEMENT Doors Windows Type Tloor Walls Roof Type1 Roof Type2 Total area of e * for windows and ** include the area Fabric heat los              | 0.54  S and he Gros area  1 1 2 2 2 3 3 4 4 4.6i  47.9  Elements I roof windows on both ss, W/K =      | 0.54  eat loss part los part los part loss part los p | 0.53  Openir m  32.1  0  offective waternal wate | 0.53  er: ngs n²  | 0.52  Net Ar A ,r 2.1 7.78 18.86 2.76 0.69 52.34 121.8 4.67 47.5 258.5 alue calcul         | 0.52  rea m² x1/ x1/ x1/ x1/ x1/ x1/ 4 x 6 x x ated using | 0.52  U-vali W/m2  1.6  /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.24  0.14  0.11                              | 0.53  ue 2K  = [ 0.04] = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A X U (W// 3.36 10.31 25 3.66 0.91 9.42120 29.25 0.65 5.22           | K)  IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | k-value<br>kJ/m²-         | K [    | A X k kJ/K (2 (2 (2 (2 (2 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3                              |
| 3. Heat losse ELEMENT Doors Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type Tloor Walls Roof Type1 Roof Type2 Total area of e * for windows and ** include the area ** include the area                       | 0.54  S and he Gros area  1 2 2 3 3 4 4 4.66  47.9  Elements Froof winder as on both ss, W/K = Cm = S( | 0.54  eat loss page (m²)  0.54  out loss page (m²)  out loss page (m²)  out loss page (m²)  out loss page (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.53  Daramet Openir m  32.1  0  offective waternal wall U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9                 | 0.52  Net Ar A ,r 2.1 7.78 18.86 2.76 0.69 52.34 121.8 4.67 47.5 258.5 alue calculatitions | 0.52  rea m² x1/ x1/ x1/ 4 x 6 x kated using              | 0.52  U-vali W/m2  1.6  /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.24  0.14  0.11                              | 0.53  ue 2K  = [ 0.04] = [ 0.04] = [ 0.04] = [ 0.04] = [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A X U (W// 3.36 10.31 25 3.66 0.91 9.42120 29.25 0.65 5.22           | K)                                      | k-value<br>kJ/m²-         | h 3.2  | A X k kJ/K (2 (2 (2 (2 (2 (3 (3 (3 (3 (3 8.53 (3 (3 (3 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 |

|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0                                                                                                                         | are not kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | own (36) =                                                                             | = 0.05 x (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1)                                      |                                                       |                                                         |                                     |                             |                                       |         |         | _                                            |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------|-----------------------------|---------------------------------------|---------|---------|----------------------------------------------|
|                                                                                                                           | abric he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         | . ,                                 | (36) =                      |                                       |         | 107.07  | (37)                                         |
| Ventila                                                                                                                   | ation hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                       |                                                       |                                                         | ` ,                                 | `                           | 25)m x (5)                            |         |         |                                              |
|                                                                                                                           | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                    | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun                                     | Jul                                                   | Aug                                                     | Sep                                 | Oct                         | Nov                                   | Dec     |         | (00)                                         |
| (38)m=                                                                                                                    | 44.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.73                                                                                                                       | 44.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.95                                                                                  | 43.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.28                                   | 43.28                                                 | 43.17                                                   | 43.49                               | 43.83                       | 44.08                                 | 44.33   |         | (38)                                         |
| Heat t                                                                                                                    | ransfer c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oefficier                                                                                                                   | nt, W/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         | (39)m                               | = (37) + (3                 | 38)m                                  |         |         |                                              |
| (39)m=                                                                                                                    | 151.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 151.81                                                                                                                      | 151.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 151.03                                                                                 | 150.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150.35                                  | 150.35                                                | 150.25                                                  | 150.57                              | 150.91                      | 151.15                                | 151.41  |         | _                                            |
| Heat le                                                                                                                   | oss para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | meter (H                                                                                                                    | HLP), W/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ′m²K                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         |                                     | Average =<br>= (39)m ÷      | Sum(39) <sub>1.</sub>                 | 12 /12= | 151.03  | (39)                                         |
| (40)m=                                                                                                                    | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52                                                                                                                        | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52                                                                                   | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.51                                    | 1.51                                                  | 1.51                                                    | 1.51                                | 1.52                        | 1.52                                  | 1.52    |         |                                              |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         | ,                                   | Average =                   | Sum(40) <sub>1</sub> .                | 12 /12= | 1.52    | (40)                                         |
| Numb                                                                                                                      | er of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s in mor                                                                                                                    | nth (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | le 1a)                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         |                                     |                             | Ι                                     |         |         |                                              |
|                                                                                                                           | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                    | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun                                     | Jul                                                   | Aug                                                     | Sep                                 | Oct                         | Nov                                   | Dec     |         |                                              |
| (41)m=                                                                                                                    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                     | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                      | 31                                                    | 31                                                      | 30                                  | 31                          | 30                                    | 31      |         | (41)                                         |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         |                                     |                             |                                       |         |         |                                              |
| 4. Wa                                                                                                                     | ater heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing ener                                                                                                                    | gy requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | irement:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         |                                     |                             |                                       | kWh/ye  | ear:    |                                              |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         |                                     |                             |                                       |         |         |                                              |
|                                                                                                                           | ned occu<br>FA > 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1 - AVD                                                                               | ( <u>-</u> 0 0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40 v (TE                                | -13 Q                                                 | )2)] <b>+</b> 0 (                                       | 1013 v /                            | Γ <b>Γ</b> Δ -13            |                                       | 74      |         | (42)                                         |
|                                                                                                                           | FA £ 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | + 1.70 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [ı - exp                                                                               | (-0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49 X (11                                | A - 13.9                                              | )2)] + 0.C                                              | ) X C 1 O                           | IFA - 13.                   | 9)                                    |         |         |                                              |
|                                                                                                                           | al averag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                           | ater usaç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ge in litre                                                                            | s per da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y Vd,av                                 | erage =                                               | (25 x N)                                                | + 36                                |                             | 99                                    | .16     |         | (43)                                         |
|                                                                                                                           | the annua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                       | _                                                     | to achieve                                              | a water us                          | se target o                 |                                       |         |         | , ,                                          |
| not mor                                                                                                                   | e that 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | litres per p                                                                                                                | person per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | day (all w                                                                             | ater use, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | not and co                              | ld)                                                   |                                                         |                                     |                             |                                       |         |         |                                              |
|                                                                                                                           | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                    | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun                                     | Jul                                                   | Aug                                                     | Sep                                 | Oct                         | Nov                                   | Dec     |         |                                              |
| Hot wat                                                                                                                   | er usage in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n litres per                                                                                                                | day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ach month                                                                              | Vd,m = fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ctor from T                             | Table 1c x                                            | (43)                                                    |                                     |                             |                                       |         |         |                                              |
| (44)m=                                                                                                                    | 109.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.11                                                                                                                      | 101.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.18                                                                                  | 93.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89.25                                   | 89.25                                                 | 93.21                                                   | 97.18                               | 101.15                      | 105.11                                | 109.08  |         |                                              |
| Energy                                                                                                                    | content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hot water                                                                                                                   | used - cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | culated mo                                                                             | onthly = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 190 x Vd,n                              | n x nm x D                                            | OTm / 3600                                              |                                     |                             | m(44) <sub>112</sub> =<br>ables 1b, 1 |         | 1189.97 | (44)                                         |
| (45)m=                                                                                                                    | 161.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 141.48                                                                                                                      | 145.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.28                                                                                 | 122.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105.39                                  | 97.66                                                 | 112.06                                                  | 113.4                               | 132.16                      | 144.26                                | 156.66  |         |                                              |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>.                                    </u>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         |                                     |                             | <u> </u>                              |         |         | _                                            |
| If instan                                                                                                                 | taneous w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                       |                                                         | -                                   | Fotal = Su                  | m(45) <sub>112</sub> =                |         | 1560.23 | (45)                                         |
|                                                                                                                           | nanoodo w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ater heatir                                                                                                                 | ng at point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of use (no                                                                             | hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | storage),                               | enter 0 in                                            | boxes (46,                                              |                                     | Γotal = Su                  | m(45) <sub>112</sub> =                |         | 1560.23 | (45)                                         |
|                                                                                                                           | 24.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.22                                                                                                                       | ng at point<br>21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of use (no                                                                             | hot water<br>18.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | storage),                               | enter 0 in<br>14.65                                   | boxes (46,                                              |                                     | Total = Su<br>19.82         | m(45) <sub>112</sub> =                | 23.5    | 1560.23 | (45)<br>(46)                                 |
| Water                                                                                                                     | 24.26<br>storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.22<br>loss:                                                                                                              | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.09                                                                                  | 18.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.81                                   | 14.65                                                 | 16.81                                                   | 17.01                               | 19.82                       | · ·                                   |         | 1560.23 |                                              |
| Water                                                                                                                     | 24.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.22<br>loss:                                                                                                              | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.09                                                                                  | 18.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.81                                   | 14.65                                                 | 16.81                                                   | 17.01                               | 19.82                       | 21.64                                 |         | 1560.23 |                                              |
| Water<br>Storag                                                                                                           | 24.26<br>storage<br>ge volum<br>munity h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.22<br>loss:<br>e (litres)<br>eating a                                                                                    | 21.9<br>includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.09  ng any so                                                                       | 18.32<br>Dlar or W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.81<br>/WHRS :                        | 14.65<br>storage                                      | 16.81<br>within sa<br>(47)                              | 17.01<br>ame ves                    | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)                                         |
| Storag<br>If com<br>Other                                                                                                 | 24.26<br>storage<br>ge volum<br>munity h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.22<br>loss:<br>e (litres)<br>eating a                                                                                    | 21.9<br>includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.09  ng any so                                                                       | 18.32<br>Dlar or W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.81<br>/WHRS :                        | 14.65<br>storage                                      | 16.81<br>within sa<br>(47)                              | 17.01<br>ame ves                    | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)                                         |
| Water<br>Storag<br>If com<br>Other<br>Water                                                                               | 24.26<br>storage<br>ge volum<br>munity h<br>wise if no<br>storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.22<br>loss:<br>e (litres)<br>eating a<br>o stored<br>loss:                                                               | 21.9<br>including<br>and no tath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19.09  ng any so ank in dwer (this in                                                  | 18.32<br>blar or W<br>relling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.81 /WHRS : nter 110                  | storage<br>litres in<br>neous co                      | 16.81<br>within sa<br>(47)                              | 17.01<br>ame ves                    | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)                                 |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n                                                                    | 24.26<br>storage<br>ge volum<br>munity h<br>wise if no<br>storage<br>nanufact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.22<br>loss:<br>e (litres)<br>eating a<br>o stored<br>loss:<br>urer's de                                                  | 21.9 including nd no tale hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.09  Ing any so ank in dwer (this in oss factor)                                     | 18.32<br>blar or W<br>relling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15.81 /WHRS : nter 110                  | storage<br>litres in<br>neous co                      | 16.81<br>within sa<br>(47)                              | 17.01<br>ame ves                    | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)                         |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n                                                                    | 24.26<br>storage<br>ge volum<br>munity h<br>wise if no<br>storage<br>nanufact<br>erature fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.22 loss: e (litres) eating a stored loss: urer's de                                                                      | 21.9 including no tale hot water eclared lem Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.09  Ing any so ank in dwer (this in oss factor 2b                                   | 18.32<br>plar or W<br>relling, e<br>includes in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.81 /WHRS : nter 110                  | storage<br>litres in<br>neous co<br>n/day):           | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)                                 |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n<br>Tempo<br>Energ                                                  | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from                                                         | 21.9 including nd no tale hot water eclared less torage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.09  Ing any so ank in dwer (this in oss factor 2b                                   | 18.32<br>plar or Warelling, eacludes in the properties of the propert | 15.81 /WHRS : nter 110 nstantan         | storage<br>litres in<br>neous co<br>n/day):           | 16.81<br>within sa<br>(47)                              | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)                         |
| Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa                                                        | 24.26 storage ge volum munity havise if no storage manufact erature fay lost fromanufact ater storage that is to a storage manufact ater storage that is to a storage that is to a storage at the storage | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from m water urer's de                                       | 21.9 including no talent water the colored learned to storage eclared of factor fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.09  Ing any so ank in dwer (this in oss factor 2b explinder left)                   | 18.32  Dlar or Warelling, eacludes in the control of the control o    | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage litres in neous con/day):                     | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)                 |
| Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa If com                                                 | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from m water urer's de age loss eating s                     | 21.9 including not not a hot water eclared least storage eclared of factor free sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.09  Ing any so ank in dwer (this in oss factor 2b explinder left)                   | 18.32  Dlar or Warelling, eacludes in the control of the control o    | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage litres in neous con/day):                     | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51) |
| Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa If com Volum                                           | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from water urer's de age loss eating s from Tal              | including and no tale hot water eclared less storage eclared of factor free sections and the sections are the sections and the sections are the sections and the sections are th | 19.09  Ing any so ank in dwer (this in oss factors, kWh/ye cylinder I from Tablon 4.3  | 18.32  Dlar or Warelling, eacludes in the control of the control o    | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage litres in neous con/day):                     | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64<br>47)                          | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51) |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n<br>Tempe<br>b) If n<br>Hot wa<br>If com<br>Volum<br>Tempe          | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor erature fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from urer's de age loss eating s from Tal actor from         | including and no tale hot water eclared leastorage eclared of factor free sections ble 2a m Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.09  Ing any so ank in dwer (this in oss factors, kWh/ye cylinder I from Tabloon 4.3 | olar or Welling, encludes in the property of t    | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage<br>litres in<br>neous co<br>n/day):<br>known: | 16.81<br>within sa<br>(47)<br>ombi boild<br>(48) x (49) | 17.01<br>17.01<br>ame vessers) ente | 19.82<br>sel<br>er 'O' in ( | 21.64<br>47)                          | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51) |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n<br>Tempe<br>b) If n<br>Hot wa<br>If com<br>Volum<br>Tempe<br>Energ | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.22 loss: e (litres) eating a o stored loss: urer's de actor froi urer's de age loss eating s from Tal actor froi m water | including and no tale hot water leclared to factor from the second control of the second | 19.09  Ing any so ank in dwer (this in oss factors, kWh/ye cylinder I from Tabloon 4.3 | olar or Welling, encludes in the property of t    | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage<br>litres in<br>neous co<br>n/day):<br>known: | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>ame vessers) ente | 19.82<br>sel<br>er 'O' in ( | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51) |

| Water Storag                                                                                                                                                               | e loss cal                                                                                                                           | culated f                                                                                                                    | or each                                                                                            | month                                                                          |                                                                         |                                                                             | ((56)m = (                                                           | 55) × (41)                                                          | m                                                                |                                                    |                                                    |               |                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|---------------|--------------------------------------|
| (56)m= 0                                                                                                                                                                   | 0                                                                                                                                    | 0                                                                                                                            | 0                                                                                                  | 0                                                                              | 0                                                                       | 0                                                                           | 0                                                                    | 0                                                                   | 0                                                                | 0                                                  | 0                                                  |               | (56)                                 |
| If cylinder conta                                                                                                                                                          | ins dedicate                                                                                                                         | d solar sto                                                                                                                  | rage, (57)ı                                                                                        | m = (56)m                                                                      | x [(50) – (                                                             | H11)] ÷ (5                                                                  | 0), else (5 <sup>-</sup>                                             | 7)m = (56)                                                          | m where (                                                        | H11) is fro                                        | m Append                                           | ı<br>ix H     |                                      |
| (57)m= 0                                                                                                                                                                   | 0                                                                                                                                    | 0                                                                                                                            | 0                                                                                                  | 0                                                                              | 0                                                                       | 0                                                                           | 0                                                                    | 0                                                                   | 0                                                                | 0                                                  | 0                                                  |               | (57)                                 |
| Primary circu                                                                                                                                                              | ıit loss (ar                                                                                                                         | nnual) fro                                                                                                                   | m Table                                                                                            | 3                                                                              |                                                                         |                                                                             |                                                                      |                                                                     |                                                                  |                                                    | 0                                                  |               | (58)                                 |
| Primary circu                                                                                                                                                              | iit loss cal                                                                                                                         | culated t                                                                                                                    | for each                                                                                           | month (                                                                        | 59)m = (                                                                | (58) ÷ 36                                                                   | 55 × (41)                                                            | m                                                                   |                                                                  |                                                    |                                                    | •             |                                      |
| (modified I                                                                                                                                                                | by factor f                                                                                                                          | rom Tab                                                                                                                      | le H5 if t                                                                                         | here is s                                                                      | solar wat                                                               | ter heatii                                                                  | ng and a                                                             | cylinde                                                             | r thermo                                                         | stat)                                              | _                                                  |               |                                      |
| (59)m= 0                                                                                                                                                                   | 0                                                                                                                                    | 0                                                                                                                            | 0                                                                                                  | 0                                                                              | 0                                                                       | 0                                                                           | 0                                                                    | 0                                                                   | 0                                                                | 0                                                  | 0                                                  |               | (59)                                 |
| Combi loss o                                                                                                                                                               | alculated                                                                                                                            | for each                                                                                                                     | month (                                                                                            | (61)m =                                                                        | (60) ÷ 36                                                               | 65 × (41)                                                                   | )m                                                                   |                                                                     |                                                                  |                                                    |                                                    |               |                                      |
| (61)m= 14.14                                                                                                                                                               | 12.76                                                                                                                                | 14.11                                                                                                                        | 13.61                                                                                              | 14.03                                                                          | 13.54                                                                   | 13.97                                                                       | 14.01                                                                | 13.58                                                               | 14.07                                                            | 13.66                                              | 14.13                                              |               | (61)                                 |
| Total heat re                                                                                                                                                              | quired for                                                                                                                           | water he                                                                                                                     | eating ca                                                                                          | alculated                                                                      | l for eacl                                                              | h month                                                                     | (62)m =                                                              | 0.85 ×                                                              | (45)m +                                                          | (46)m +                                            | (57)m +                                            | (59)m + (61)m |                                      |
| (62)m= 175.9                                                                                                                                                               | 1 154.24                                                                                                                             | 160.1                                                                                                                        | 140.89                                                                                             | 136.16                                                                         | 118.93                                                                  | 111.62                                                                      | 126.07                                                               | 126.98                                                              | 146.23                                                           | 157.92                                             | 170.79                                             |               | (62)                                 |
| Solar DHW inpu                                                                                                                                                             | t calculated                                                                                                                         | using App                                                                                                                    | endix G or                                                                                         | Appendix                                                                       | H (negati                                                               | ve quantity                                                                 | /) (enter '0                                                         | if no sola                                                          | r contribut                                                      | ion to wate                                        | er heating)                                        | '             |                                      |
| (add addition                                                                                                                                                              | al lines if                                                                                                                          | FGHRS                                                                                                                        | and/or V                                                                                           | VWHRS                                                                          | applies                                                                 | , see Ap                                                                    | pendix (                                                             | €)                                                                  |                                                                  |                                                    |                                                    |               |                                      |
| (63)m= 0                                                                                                                                                                   | 0                                                                                                                                    | 0                                                                                                                            | 0                                                                                                  | 0                                                                              | 0                                                                       | 0                                                                           | 0                                                                    | 0                                                                   | 0                                                                | 0                                                  | 0                                                  |               | (63)                                 |
| Output from                                                                                                                                                                | water hea                                                                                                                            | ter                                                                                                                          |                                                                                                    |                                                                                | -                                                                       | -                                                                           |                                                                      |                                                                     | -                                                                | -                                                  | -                                                  |               |                                      |
| (64)m= 175.9                                                                                                                                                               | 1 154.24                                                                                                                             | 160.1                                                                                                                        | 140.89                                                                                             | 136.16                                                                         | 118.93                                                                  | 111.62                                                                      | 126.07                                                               | 126.98                                                              | 146.23                                                           | 157.92                                             | 170.79                                             |               |                                      |
|                                                                                                                                                                            | •                                                                                                                                    | •                                                                                                                            |                                                                                                    |                                                                                |                                                                         |                                                                             | Outp                                                                 | out from w                                                          | ater heate                                                       | r (annual)₁                                        | 12                                                 | 1725.84       | (64)                                 |
| Heat gains fr                                                                                                                                                              | om water                                                                                                                             | heating,                                                                                                                     | kWh/mo                                                                                             | onth 0.2                                                                       | 5 ´ [0.85                                                               | × (45)m                                                                     | + (61)m                                                              | n] + 0.8 x                                                          | κ [(46)m                                                         | + (57)m                                            | + (59)m                                            | ]             | _                                    |
| (65)m= 57.32                                                                                                                                                               | 50.23                                                                                                                                | 52.07                                                                                                                        | 45.72                                                                                              | 44.12                                                                          | 38.43                                                                   | 35.96                                                                       | 40.76                                                                | 41.1                                                                | 47.46                                                            | 51.38                                              | 55.62                                              |               | (65)                                 |
| include (57                                                                                                                                                                | 7)m in cal                                                                                                                           | culation of                                                                                                                  | of (65)m                                                                                           | only if c                                                                      | ylinder i                                                               | s in the o                                                                  | dwelling                                                             | or hot w                                                            | ater is fr                                                       | om com                                             | munity h                                           | eating        |                                      |
| ,                                                                                                                                                                          | gains (see                                                                                                                           |                                                                                                                              | . ,                                                                                                | •                                                                              | •                                                                       |                                                                             | •                                                                    |                                                                     |                                                                  |                                                    | •                                                  | •             |                                      |
|                                                                                                                                                                            | J (                                                                                                                                  |                                                                                                                              | and 5a                                                                                             | ):                                                                             |                                                                         |                                                                             |                                                                      |                                                                     |                                                                  |                                                    |                                                    |               |                                      |
|                                                                                                                                                                            | ine (Tahle                                                                                                                           |                                                                                                                              |                                                                                                    | ):                                                                             |                                                                         |                                                                             |                                                                      |                                                                     |                                                                  |                                                    |                                                    |               |                                      |
| Jan                                                                                                                                                                        | ins (Table                                                                                                                           |                                                                                                                              | ts                                                                                                 |                                                                                | Jun                                                                     | Jul                                                                         | Aug                                                                  | Sep                                                                 | Oct                                                              | Nov                                                | Dec                                                |               |                                      |
|                                                                                                                                                                            | Feb                                                                                                                                  | e 5), Wat                                                                                                                    |                                                                                                    | May                                                                            | Jun<br>164.12                                                           | Jul<br>164.12                                                               | Aug<br>164.12                                                        | Sep<br>164.12                                                       | Oct                                                              | Nov<br>164.12                                      | Dec<br>164.12                                      |               | (66)                                 |
| (66)m= 164.1                                                                                                                                                               | Feb<br>2 164.12                                                                                                                      | 5), Wat<br>Mar<br>164.12                                                                                                     | ts<br>Apr<br>164.12                                                                                | May<br>164.12                                                                  | 164.12                                                                  | 164.12                                                                      | 164.12                                                               | 164.12                                                              | -                                                                |                                                    |                                                    |               | (66)                                 |
| Jan<br>(66)m= 164.1<br>Lighting gain                                                                                                                                       | Feb<br>2 164.12<br>s (calcula                                                                                                        | e 5), Wat<br>Mar<br>164.12<br>ted in Ap                                                                                      | Apr<br>164.12<br>opendix                                                                           | May<br>164.12<br>L, equat                                                      | 164.12                                                                  | 164.12                                                                      | 164.12<br>Iso see                                                    | 164.12<br>Table 5                                                   | 164.12                                                           | 164.12                                             | 164.12                                             |               | ` ,                                  |
| (66)m= 164.1<br>Lighting gain<br>(67)m= 56.97                                                                                                                              | Feb 2 164.12 s (calcula 50.6                                                                                                         | e 5), Wat<br>Mar<br>164.12<br>ted in Ap                                                                                      | Apr<br>164.12<br>opendix<br>31.15                                                                  | May<br>164.12<br>L, equat<br>23.29                                             | 164.12<br>ion L9 o                                                      | 164.12<br>r L9a), a<br>21.24                                                | 164.12<br>Iso see                                                    | 164.12<br>Table 5                                                   | 164.12<br>47.06                                                  |                                                    |                                                    |               | (66)<br>(67)                         |
| Jan (66)m= 164.1 Lighting gain (67)m= 56.97 Appliances g                                                                                                                   | Feb 2 164.12 s (calcula 50.6 tains (calcula                                                                                          | Mar<br>164.12<br>ted in Ap<br>41.15                                                                                          | Apr<br>164.12<br>ppendix<br>31.15                                                                  | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq                                | 164.12<br>ion L9 o<br>19.66<br>uation L                                 | 164.12<br>r L9a), a<br>21.24<br>13 or L1                                    | 164.12<br>Iso see 27.61<br>3a), also                                 | 164.12<br>Table 5<br>37.06<br>see Ta                                | 164.12<br>47.06<br>ble 5                                         | 164.12<br>54.92                                    | 164.12<br>58.55                                    |               | (67)                                 |
| Jan<br>(66)m= 164.1<br>Lighting gain<br>(67)m= 56.97<br>Appliances g<br>(68)m= 381.4                                                                                       | Feb 2 164.12 s (calcula 50.6 ains (calcula 9 385.45                                                                                  | e 5), Wat<br>Mar<br>164.12<br>ted in Ap<br>41.15<br>culated in<br>375.47                                                     | Apr<br>164.12<br>ppendix<br>31.15<br>Append<br>354.24                                              | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq<br>327.43                      | 164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23                      | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4                           | 164.12<br>Iso see 27.61<br>3a), also                                 | 164.12<br>Table 5<br>37.06<br>see Ta                                | 164.12<br>47.06<br>ble 5<br>312.65                               | 164.12                                             | 164.12                                             |               | ` ,                                  |
| Jan (66)m= 164.1 Lighting gain (67)m= 56.97 Appliances g                                                                                                                   | Feb 2 164.12 s (calcula 50.6 ains (calcula 9 385.45 ns (calcula                                                                      | e 5), Wat<br>Mar<br>164.12<br>ted in Ap<br>41.15<br>culated in<br>375.47                                                     | Apr<br>164.12<br>ppendix<br>31.15<br>Append<br>354.24                                              | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq<br>327.43                      | 164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23                      | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4                           | 164.12<br>Iso see 27.61<br>3a), also                                 | 164.12<br>Table 5<br>37.06<br>see Ta                                | 164.12<br>47.06<br>ble 5<br>312.65                               | 164.12<br>54.92                                    | 164.12<br>58.55                                    |               | (67)                                 |
| Jan<br>  (66)m=   164.1<br>  Lighting gain<br>  (67)m=   56.97<br>  Appliances g<br>  (68)m=   381.4<br>  Cooking gain<br>  (69)m=   54.15                                 | Feb 2 164.12 s (calcula 50.6 ains (calcula 9 385.45 ns (calcula 54.15                                                                | e 5), Wat<br>Mar<br>164.12<br>ted in Ap<br>41.15<br>culated in<br>375.47<br>ated in A                                        | Apr<br>164.12<br>opendix<br>31.15<br>Append<br>354.24<br>opendix<br>54.15                          | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq<br>327.43<br>L, equat          | 164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>ion L15           | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)               | 164.12<br>Iso see 27.61<br>3a), also 281.44                          | 164.12<br>Table 5<br>37.06<br>see Ta<br>291.42<br>ee Table          | 47.06<br>ble 5<br>312.65                                         | 164.12<br>54.92<br>339.46                          | 58.55<br>364.66                                    |               | (67)<br>(68)                         |
| Jan (66)m= 164.1 Lighting gain (67)m= 56.97 Appliances g (68)m= 381.4 Cooking gain (69)m= 54.15 Pumps and f                                                                | Feb 2 164.12 s (calcula 50.6 ains (calcula 9 385.45 ns (calcula 54.15                                                                | e 5), Wat<br>Mar<br>164.12<br>ted in Ap<br>41.15<br>culated in<br>375.47<br>ated in A                                        | Apr<br>164.12<br>opendix<br>31.15<br>Append<br>354.24<br>opendix<br>54.15                          | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq<br>327.43<br>L, equat<br>54.15 | 164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>ion L15<br>54.15  | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)               | 164.12<br>lso see 27.61<br>3a), also<br>281.44<br>, also se<br>54.15 | 164.12<br>Table 5<br>37.06<br>see Ta<br>291.42<br>ee Table<br>54.15 | 47.06<br>ble 5<br>312.65<br>5<br>54.15                           | 164.12<br>54.92<br>339.46<br>54.15                 | 58.55<br>364.66<br>54.15                           |               | (67)<br>(68)<br>(69)                 |
| Jan   (66)m=   164.1                                                                                                                                                       | Feb 2 164.12 s (calcular 50.6 ains (calcular 9 385.45 ns (calcular 54.15 ans gains 3                                                 | e 5), Wat<br>Mar<br>164.12<br>ted in Ap<br>41.15<br>culated in<br>375.47<br>ated in Ap<br>54.15<br>(Table 5                  | Apr<br>164.12<br>opendix<br>31.15<br>Append<br>354.24<br>opendix<br>54.15<br>5a)                   | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq<br>327.43<br>L, equat<br>54.15 | 164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>tion L15<br>54.15 | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15      | 164.12<br>Iso see 27.61<br>3a), also 281.44                          | 164.12<br>Table 5<br>37.06<br>see Ta<br>291.42<br>ee Table          | 47.06<br>ble 5<br>312.65                                         | 164.12<br>54.92<br>339.46                          | 58.55<br>364.66                                    |               | (67)<br>(68)                         |
| Jan (66)m= 164.1  Lighting gain (67)m= 56.97  Appliances g (68)m= 381.4  Cooking gain (69)m= 54.15  Pumps and f (70)m= 3  Losses e.g. 6                                    | Feb 2 164.12 s (calcula 50.6 ains (calcula 9 385.45 as (calcula 54.15 ans gains 3 evaporatio                                         | e 5), Wat Mar 164.12 ted in Ap 41.15 culated in 375.47 ated in Ap 54.15 (Table 5                                             | Apr<br>164.12<br>opendix<br>31.15<br>Append<br>354.24<br>opendix<br>54.15<br>5a)                   | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq<br>327.43<br>L, equat<br>54.15 | 164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>ion L15<br>54.15  | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15      | 164.12<br>Iso see 27.61<br>3a), also 281.44<br>, also se 54.15       | 164.12<br>Table 5<br>37.06<br>see Ta<br>291.42<br>ee Table<br>54.15 | 47.06<br>ble 5<br>312.65<br>5<br>54.15                           | 164.12<br>54.92<br>339.46<br>54.15                 | 58.55<br>364.66<br>54.15                           |               | (67)<br>(68)<br>(69)                 |
| Jan (66)m= 164.1 Lighting gain (67)m= 56.97 Appliances g (68)m= 381.4 Cooking gain (69)m= 54.15 Pumps and f (70)m= 3 Losses e.g. (71)m= -109.4                             | Feb 2 164.12 s (calcular 50.6 ains (calcular 9 385.45 as (calcular 54.15 ans gains 3 evaporation 1 -109.41                           | e 5), Wat<br>Mar<br>164.12<br>ted in Ap<br>41.15<br>culated in<br>375.47<br>ated in A<br>54.15<br>(Table 5<br>3<br>on (negat | Apr<br>164.12<br>ppendix<br>31.15<br>Append<br>354.24<br>ppendix<br>54.15<br>5a)<br>3              | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq<br>327.43<br>L, equat<br>54.15 | 164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>tion L15<br>54.15 | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15      | 164.12<br>lso see 27.61<br>3a), also<br>281.44<br>, also se<br>54.15 | 164.12<br>Table 5<br>37.06<br>see Ta<br>291.42<br>ee Table<br>54.15 | 47.06<br>ble 5<br>312.65<br>5<br>54.15                           | 164.12<br>54.92<br>339.46<br>54.15                 | 58.55<br>364.66<br>54.15                           |               | (67)<br>(68)<br>(69)<br>(70)         |
| Jan (66)m= 164.1  Lighting gain (67)m= 56.97  Appliances g (68)m= 381.4  Cooking gain (69)m= 54.15  Pumps and f (70)m= 3  Losses e.g. 6                                    | Feb 2 164.12 s (calcula 50.6 ains (calcula 9 385.45 as (calcula 54.15 ans gains 3 evaporatio 1 -109.41 g gains (1                    | e 5), Wat<br>Mar<br>164.12<br>ted in Ap<br>41.15<br>culated in<br>375.47<br>ated in A<br>54.15<br>(Table 5<br>3<br>on (negat | Apr<br>164.12<br>ppendix<br>31.15<br>Append<br>354.24<br>ppendix<br>54.15<br>5a)<br>3              | May<br>164.12<br>L, equat<br>23.29<br>dix L, eq<br>327.43<br>L, equat<br>54.15 | 164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>ion L15<br>54.15  | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15      | 164.12<br>Iso see 27.61<br>3a), also 281.44<br>, also se 54.15       | 164.12<br>Table 5<br>37.06<br>see Ta<br>291.42<br>ee Table<br>54.15 | 47.06<br>ble 5<br>312.65<br>5<br>54.15                           | 164.12<br>54.92<br>339.46<br>54.15                 | 58.55<br>364.66<br>54.15                           |               | (67)<br>(68)<br>(69)<br>(70)         |
| Jan (66)m= 164.1 Lighting gain (67)m= 56.97 Appliances g (68)m= 381.4 Cooking gain (69)m= 54.15 Pumps and f (70)m= 3 Losses e.g. 6 (71)m= -109.4 Water heatin (72)m= 77.05 | Feb 2 164.12 s (calcula 50.6 ains (calcula 9 385.45 as (calcula 54.15 ans gains 3 evaporatio 1 -109.41 g gains (7 74.75              | e 5), Wat Mar 164.12 ted in Ap 41.15 culated in 375.47 ated in Ap 54.15 (Table 5 3 on (negat -109.41 Table 5) 69.99          | Apr<br>164.12<br>opendix<br>31.15<br>Append<br>354.24<br>opendix<br>54.15<br>5a)<br>3<br>tive valu | May 164.12 L, equat 23.29 dix L, eq 327.43 L, equat 54.15  3 es) (Tab          | 164.12 ion L9 of 19.66 uation L 302.23 ion L15 54.15  3 le 5) -109.41   | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15      | 164.12<br>Iso see 27.61<br>3a), also 281.44<br>, also se 54.15<br>3  | 164.12 Table 5 37.06 see Ta 291.42 ee Table 54.15 3 -109.41         | 164.12<br>47.06<br>ble 5<br>312.65<br>5<br>54.15<br>3<br>-109.41 | 164.12<br>54.92<br>339.46<br>54.15<br>3<br>-109.41 | 164.12<br>58.55<br>364.66<br>54.15<br>3<br>-109.41 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Jan (66)m= 164.1 Lighting gain (67)m= 56.97 Appliances g (68)m= 381.4 Cooking gain (69)m= 54.15 Pumps and f (70)m= 3 Losses e.g. (71)m= -109.4 Water heatin                | Feb 2 164.12 s (calcular 50.6 ains (calcular 9 385.45 as (calcular 54.15 ans gains 3 evaporation 1 -109.41 g gains (74.75 al gains = | e 5), Wat Mar 164.12 ted in Ap 41.15 culated in 375.47 ated in Ap 54.15 (Table 5 3 on (negat -109.41 Table 5) 69.99          | Apr<br>164.12<br>opendix<br>31.15<br>Append<br>354.24<br>opendix<br>54.15<br>5a)<br>3<br>tive valu | May 164.12 L, equat 23.29 dix L, eq 327.43 L, equat 54.15  3 es) (Tab          | 164.12 ion L9 of 19.66 uation L 302.23 ion L15 54.15  3 le 5) -109.41   | 164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15<br>3 | 164.12<br>Iso see 27.61<br>3a), also 281.44<br>, also se 54.15<br>3  | 164.12 Table 5 37.06 see Ta 291.42 ee Table 54.15 3 -109.41         | 164.12<br>47.06<br>ble 5<br>312.65<br>5<br>54.15<br>3<br>-109.41 | 164.12<br>54.92<br>339.46<br>54.15<br>3<br>-109.41 | 164.12<br>58.55<br>364.66<br>54.15<br>3<br>-109.41 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Facto<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|---------------------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                   | x | 18.86      | x | 11.28            | x | 0.63           | x | 0.7            | <b>=</b> | 65.03        | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 22.97            | x | 0.63           | x | 0.7            | =        | 132.38       | (75) |
| Northeast 0.9x 0.77                   | x | 18.86      | x | 41.38            | x | 0.63           | x | 0.7            | =        | 238.5        | (75) |
| Northeast <sub>0.9x</sub> 0.77        | X | 18.86      | x | 67.96            | x | 0.63           | x | 0.7            | =        | 391.69       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | X | 18.86      | x | 91.35            | X | 0.63           | x | 0.7            | =        | 526.51       | (75) |
| Northeast 0.9x 0.77                   | x | 18.86      | x | 97.38            | x | 0.63           | x | 0.7            | =        | 561.31       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 91.1             | x | 0.63           | x | 0.7            | =        | 525.09       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 72.63            | x | 0.63           | x | 0.7            | =        | 418.61       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 50.42            | x | 0.63           | x | 0.7            | =        | 290.62       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 28.07            | x | 0.63           | x | 0.7            | =        | 161.78       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 14.2             | x | 0.63           | x | 0.7            | =        | 81.83        | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 9.21             | x | 0.63           | x | 0.7            | =        | 53.11        | (75) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 36.79            | x | 0.63           | x | 0.7            | =        | 31.04        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 62.67            | x | 0.63           | x | 0.7            | =        | 52.86        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 85.75            | x | 0.63           | x | 0.7            | =        | 72.33        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 106.25           | x | 0.63           | x | 0.7            | =        | 89.62        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 119.01           | x | 0.63           | x | 0.7            | =        | 100.38       | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 118.15           | x | 0.63           | x | 0.7            | =        | 99.66        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 113.91           | x | 0.63           | x | 0.7            | =        | 96.08        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 104.39           | x | 0.63           | x | 0.7            | =        | 88.05        | (77) |
| Southeast 0.9x 0.77                   | X | 2.76       | x | 92.85            | x | 0.63           | x | 0.7            | =        | 78.32        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 69.27            | x | 0.63           | x | 0.7            | =        | 58.43        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 44.07            | x | 0.63           | x | 0.7            | =        | 37.17        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 31.49            | x | 0.63           | x | 0.7            | =        | 26.56        | (77) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 36.79            |   | 0.63           | X | 0.7            | =        | 87.48        | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 62.67            | ] | 0.63           | x | 0.7            | =        | 149.02       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 85.75            |   | 0.63           | X | 0.7            | =        | 203.89       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | X | 7.78       | X | 106.25           |   | 0.63           | X | 0.7            | =        | 252.63       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | X | 7.78       | x | 119.01           | ] | 0.63           | X | 0.7            | =        | 282.97       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | X | 7.78       | X | 118.15           |   | 0.63           | X | 0.7            | =        | 280.92       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | X | 7.78       | X | 113.91           |   | 0.63           | X | 0.7            | =        | 270.84       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 104.39           |   | 0.63           | X | 0.7            | =        | 248.21       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 92.85            |   | 0.63           | X | 0.7            | =        | 220.77       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 69.27            |   | 0.63           | X | 0.7            | =        | 164.7        | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 44.07            | ] | 0.63           | x | 0.7            | =        | 104.79       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 31.49            | ] | 0.63           | x | 0.7            | =        | 74.87        | (79) |
| Northwest 0.9x 0.77                   | x | 0.69       | x | 11.28            | x | 0.63           | x | 0.7            | =        | 2.38         | (81) |
| Northwest 0.9x 0.77                   | x | 0.69       | x | 22.97            | x | 0.63           | x | 0.7            | ] =      | 4.84         | (81) |
| Northwest 0.9x 0.77                   | X | 0.69       | x | 41.38            | x | 0.63           | X | 0.7            | =        | 8.73         | (81) |

| Northwest 0.9x                | 0.77        | X         | 0.6       | 69          | x          | 67          | 7.96     | X                                       |               | 0.63           | x          | 0.7          | =                | 14.33  | (81)        |
|-------------------------------|-------------|-----------|-----------|-------------|------------|-------------|----------|-----------------------------------------|---------------|----------------|------------|--------------|------------------|--------|-------------|
| Northwest <sub>0.9x</sub>     | 0.77        | x         | 0.6       | 69          | x [        | 91          | .35      | x                                       |               | 0.63           | x [        | 0.7          | =                | 19.26  | (81)        |
| Northwest <sub>0.9x</sub>     | 0.77        | x         | 0.6       | 69          | x          | 97          | 7.38     | X                                       |               | 0.63           | x          | 0.7          | =                | 20.54  | (81)        |
| Northwest <sub>0.9x</sub>     | 0.77        | X         | 0.6       | 69          | x [        | 9           | 1.1      | X                                       |               | 0.63           | x [        | 0.7          | =                | 19.21  | (81)        |
| Northwest <sub>0.9x</sub>     | 0.77        | X         | 0.6       | 69          | x          | 72          | 2.63     | X                                       |               | 0.63           | x [        | 0.7          | =                | 15.32  | (81)        |
| Northwest <sub>0.9x</sub>     | 0.77        | X         | 0.6       | 69          | x          | 50          | ).42     | X                                       |               | 0.63           | x          | 0.7          | =                | 10.63  | (81)        |
| Northwest 0.9x                | 0.77        | X         | 0.6       | 69          | x          | 28          | 3.07     | X                                       |               | 0.63           | x          | 0.7          | =                | 5.92   | (81)        |
| Northwest <sub>0.9x</sub>     | 0.77        | ×         | 0.6       | 69          | x $\lceil$ | 1           | 4.2      | x                                       |               | 0.63           | x          | 0.7          |                  | 2.99   | (81)        |
| Northwest <sub>0.9x</sub>     | 0.77        | ×         | 0.6       | 69          | x $\lceil$ | 9           | .21      | x                                       |               | 0.63           | _ x [      | 0.7          |                  | 1.94   | (81)        |
| _                             |             |           |           |             |            |             |          |                                         |               |                |            |              |                  |        | <del></del> |
| Solar gains in                | watts, ca   | alculated | for eac   | h month     |            |             |          | (83)m                                   | ı = Sı        | ım(74)m        | (82)m      |              |                  |        |             |
| (83)m= 185.93                 | 339.1       | 523.45    | 748.27    | 929.12      | 962        | 2.43        | 911.23   | 770                                     | .18           | 600.34         | 390.82     | 226.78       | 156.48           |        | (83)        |
| Total gains – i               | nternal a   | and solar | (84)m =   | = (73)m ·   | + (83      | 3)m ,       | watts    |                                         |               | •              |            |              | •                | •      |             |
| (84)m= 813.29                 | 961.75      | 1121.91   | 1309.02   | 1450.98     | 144        | 9.54        | 1378.06  | 1245                                    | 5.88          | 1097.76        | 926.17     | 804.38       | 766.3            |        | (84)        |
| 7. Mean inter                 | nal tem     | perature  | (heating  | season      | )          |             |          |                                         |               |                |            |              |                  |        |             |
| Temperature                   |             |           | `         |             | <i>'</i>   | rea fr      | om Tab   | ole 9.                                  | . Th1         | 1 (°C)         |            |              |                  | 21     | (85)        |
| Utilisation fac               | ŭ           | ٠.        |           |             | •          |             |          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,             | . ( •)         |            |              |                  |        | (\          |
| Jan                           | Feb         | Mar       | Apr       | May         | Ė.         | un          | Jul      | Aı                                      | ug            | Sep            | Oct        | Nov          | Dec              | 1      |             |
| (86)m= 0.94                   | 0.92        | 0.88      | 0.79      | 0.68        | _          | 54          | 0.43     | 0.4                                     | <del></del>   | 0.67           | 0.84       | 0.92         | 0.95             | -      | (86)        |
| ` '                           |             |           | <br>      | L T4 /6     |            |             | 0.040.7  |                                         |               | . 0-1          |            | <u> </u>     |                  | ]      |             |
| Mean interna (87)m= 18.19     | 18.52       | 19.07     | 19.75     | 20.33       |            | v step      | 20.88    | 20.8                                    | $\overline{}$ | 20.52          | 19.75      | 18.84        | 18.11            | 1      | (87)        |
| ` '                           |             |           |           |             | l          |             |          | l                                       |               |                | 19.75      | 10.04        | 10.11            |        | (01)        |
| Temperature                   | <del></del> | neating p | i         | i e         | _          | <del></del> | from Ta  | ble 9                                   | 9, Th         | 12 (°C)        |            |              |                  | 7      |             |
| (88)m= 19.67                  | 19.67       | 19.67     | 19.67     | 19.68       | 19         | .68         | 19.68    | 19.0                                    | 68            | 19.68          | 19.68      | 19.67        | 19.67            |        | (88)        |
| Utilisation fac               | ctor for g  | ains for  | rest of d | welling,    | h2,n       | n (se       | e Table  | 9a)                                     |               |                |            |              |                  |        |             |
| (89)m= 0.93                   | 0.91        | 0.86      | 0.76      | 0.62        | 0.4        | 46          | 0.32     | 0.3                                     | 36            | 0.59           | 0.81       | 0.91         | 0.94             | ]      | (89)        |
| Mean interna                  | l temper    | rature in | the rest  | of dwelli   | na T       | Γ2 (fo      | llow ste | ns 3                                    | to 7          | ' in Tabl      | e 9c)      |              | •                | •      |             |
| (90)m= 16.01                  | 16.49       | 17.26     | 18.2      | 18.98       | <u> </u>   | .45         | 19.61    | 19.                                     | $\overline{}$ | 19.24          | 18.23      | 16.95        | 15.9             | 1      | (90)        |
| . ,                           | 1           |           | L         | L           | <u> </u>   |             |          |                                         |               |                | LA = Livii | ng area ÷ (4 | <u>1</u><br>4) = | 0.3    | (91)        |
|                               |             |           |           |             | ,          |             |          | ,,                                      |               |                |            |              |                  |        | ` ′         |
| Mean interna                  | <del></del> | <u> </u>  | 1         |             |            |             |          |                                         |               |                | 40.00      | 1,754        | 40.50            | 1      | (02)        |
| (92)m= 16.65                  | 17.09       | 17.79     | 18.66     | 19.38       |            | .82         | 19.99    | 19.9                                    |               | 19.62          | 18.68      | 17.51        | 16.56            |        | (92)        |
| Apply adjustr                 | 1           | î .       | i         | <del></del> | _          |             |          | <del></del>                             |               | <del></del>    | •          | 17.00        | 40.44            | 1      | (02)        |
| (93)m= 16.5                   | 16.94       | 17.64     | 18.51     | 19.23       | 19         | .67         | 19.84    | 19.8                                    | 81            | 19.47          | 18.53      | 17.36        | 16.41            |        | (93)        |
| 8. Space hea                  |             |           |           |             |            | -1 -1-      | . 44 . ( | T - 1. 1                                | - 01          | (l)            |            | (70)         | dan ad           | . 1.4. |             |
| Set Ti to the the utilisation |             |           | •         |             | ied a      | at ste      | p 11 of  | rabi                                    | e 9b          | , so tha       | t 11,m=    | (76)m an     | d re-cal         | culate |             |
| Jan                           | Feb         | Mar       | Apr       | May         | l .ı       | un          | Jul      | Aı                                      | ug            | Sep            | Oct        | Nov          | Dec              | 1      |             |
| Utilisation fac               |             |           | <u> </u>  | ividy       |            | <u> </u>    | oui      |                                         | ug į          | ОСР            |            | 1407         | _ <u></u>        |        |             |
| (94)m= 0.9                    | 0.87        | 0.81      | 0.72      | 0.6         | 0.4        | 46          | 0.33     | 0.3                                     | 38            | 0.58           | 0.77       | 0.87         | 0.91             | ]      | (94)        |
| Useful gains,                 |             |           | l         | L<br>4)m    |            |             |          | <u> </u>                                |               | ļ              |            |              | <u> </u>         | 1      |             |
| (95)m= 734.02                 | 835.77      | 914.08    | 948.08    | 873.52      | 663        | 3.73        | 454.8    | 468                                     | .05           | 636.23         | 715.38     | 701.8        | 698.64           | ]      | (95)        |
| Monthly aver                  | <u> </u>    | l         |           | l .         | able       | 8           |          | ı                                       |               |                |            | 1            | <u> </u>         | 1      |             |
| (96)m= 4.3                    | 4.9         | 6.5       | 8.9       | 11.7        |            | 4.6         | 16.6     | 16.                                     | .4            | 14.1           | 10.6       | 7.1          | 4.2              | ]      | (96)        |
| Heat loss rate                | ļ.          |           | <u> </u>  | erature.    | Lm .       | , W =       | [(39)m : | x [(93                                  | <br>3)m-      | I<br>- (96)m ˈ | 1          | Į.           | <u>I</u>         | 1      |             |
| (97)m= 1854.5                 | 1           | 1         | 1451.35   | r           |            | 2.75        | 487.01   | 512                                     | <del></del>   | 808.12         | 1196.82    | 1550.63      | 1847.97          | ]      | (97)        |
|                               |             |           | !         | !           |            |             |          |                                         |               | !              |            |              | !                | 1      |             |

| Space heatin                          | ř ·           |            | 1           |           | ı        |          |                | ì                                       | <u> </u>             | <u> </u>                |            |          |                    |
|---------------------------------------|---------------|------------|-------------|-----------|----------|----------|----------------|-----------------------------------------|----------------------|-------------------------|------------|----------|--------------------|
| 8)m= 833.64                           | 666.33        | 577.23     | 362.35      | 195.33    | 0        | 0        | 0<br>Tota      | 0                                       | 358.19<br>(kWh/year  | 611.16                  | 855.1      | 4459.33  | (98)               |
| 0                                     |               |            | 1-10/15 / 2 | 16        |          |          | Tota           | i per year                              | (Kvvii/yeai          | ) = Sum(9               | 0)15,912 = |          | ╡                  |
| Space heatin                          | • •           |            |             | •         |          |          |                | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                      |                         | L          | 44.79    | (99)               |
| a. Energy red                         |               | nts – Indi | ividual h   | eating sy | ystems i | ncluding | micro-C        | CHP)                                    |                      |                         |            |          |                    |
| <b>Space heatir</b><br>Fraction of sp | _             | nt from se | econdar     | y/supple  | mentary  | system   |                |                                         |                      |                         | Г          | 0        | (20                |
| Fraction of sp                        | ace hea       | nt from m  | nain syst   | em(s)     |          | •        | (202) = 1 -    | - (201) =                               |                      |                         |            | 1        | (202               |
| Fraction of to                        | tal heatii    | ng from    | main sys    | stem 1    |          |          | (204) = (20    | 02) × [1 –                              | (203)] =             |                         |            | 1        | (204               |
| Efficiency of r                       | main spa      | ace heat   | ing syste   | em 1      |          |          |                |                                         |                      |                         | Ì          | 93.5     | (20                |
| Efficiency of s                       | seconda       | ry/supple  | ementar     | y heating | g system | າ, %     |                |                                         |                      |                         | Ī          | 0        | (20                |
| Jan                                   | Feb           | Mar        | Apr         | May       | Jun      | Jul      | Aug            | Sep                                     | Oct                  | Nov                     | Dec        | kWh/ye   | <del></del><br>ear |
| Space heatin                          | g require     | ement (c   | alculate    | d above)  | )        | 1        | I              |                                         | 1                    |                         |            |          |                    |
| 833.64                                | 666.33        | 577.23     | 362.35      | 195.33    | 0        | 0        | 0              | 0                                       | 358.19               | 611.16                  | 855.1      |          |                    |
| 211)m = {[(98                         | <del></del>   |            |             |           |          |          |                |                                         |                      |                         |            |          | (21                |
| 891.59                                | 712.65        | 617.36     | 387.54      | 208.9     | 0        | 0        | 0<br>Tota      | 0<br>L (k\\/b/voc                       | 383.09<br>ar) =Sum(2 | 653.65                  | 914.55     | 4769.33  | (21                |
| Space heatin<br>{[(98)m x (20         | •             |            | - /         | month     |          |          |                |                                         |                      |                         | L          |          |                    |
| 15)m= 0                               | 0             | 00 + (20   | 0           | 0         | 0        | 0        | 0              | 0                                       | 0                    | 0                       | 0          |          |                    |
|                                       |               |            |             |           |          |          | Tota           | l (kWh/yea                              | ar) =Sum(2           | 215) <sub>15,1012</sub> |            | 0        | (21                |
| /ater heating                         | j             |            |             |           |          |          |                |                                         |                      |                         |            |          |                    |
| utput from w                          | ater hea      | ter (calc  | ulated al   |           | 118.93   | 111.62   | 126.07         | 126.98                                  | 146.23               | 157.92                  | 170.70     |          |                    |
| fficiency of w                        |               |            | 140.69      | 136.16    | 116.93   | 111.02   | 120.07         | 120.96                                  | 140.23               | 157.92                  | 170.79     | 87.3     | (21                |
| 17)m= 89.93                           | 89.88         | 89.79      | 89.58       | 89.16     | 87.3     | 87.3     | 87.3           | 87.3                                    | 89.55                | 89.82                   | 89.95      | 07.0     | (21                |
| uel for water                         | L<br>heating, | kWh/mo     | L<br>onth   |           |          |          |                |                                         |                      |                         |            |          |                    |
| 219)m = (64)                          |               |            |             |           |          |          |                |                                         |                      | .==                     |            |          |                    |
| 19)m= 195.61                          | 171.61        | 178.31     | 157.28      | 152.72    | 136.23   | 127.86   | 144.41<br>Tota | 145.45<br>I = Sum(2                     | 163.3                | 175.81                  | 189.87     | 1938.47  | (21                |
| nnual totals                          |               |            |             |           |          |          |                | . • • • • • • • • • • • • • • • • • • • |                      | Wh/year                 | <u> </u>   | kWh/yea  |                    |
| pace heating                          |               | ed, main   | system      | 1         |          |          |                |                                         | K                    | rvii, y cai             |            | 4769.33  |                    |
| ater heating                          | fuel use      | d          |             |           |          |          |                |                                         |                      |                         | Ī          | 1938.47  | Ħ                  |
| ectricity for p                       | oumps, fa     | ans and    | electric    | keep-ho   | t        |          |                |                                         |                      |                         | L          |          | _                  |
| central heatin                        | g pump:       |            |             | -         |          |          |                |                                         |                      |                         | 30         |          | (23                |
| ooiler with a f                       | • •           |            |             |           |          |          |                |                                         |                      |                         | 45         |          | (23                |
| otal electricity                      |               |            | ⟨Wh/vea     | r         |          |          | sum            | of (230a).                              | (230g) =             |                         |            | 75       | (23                |
| lectricity for li                     |               |            | , J O a     | -         |          |          |                | , ,                                     | . 3,                 |                         | L<br>T     | 402.42   | (23                |
| otal delivered                        |               | for all    | 000 /011    | \ (224\   | . (224)  | . (222)  | (227h)         | _                                       |                      |                         | Ĺ          | 7185.22  | =                  |
| TIST CIPTIVE FAC                      | ı enerav      | TOT All US | ses (ZTT    | ューフノコ     | + (/31)  | + (/3/)  | (Z3/D)         | =                                       |                      |                         |            | 7 185.22 | (33                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>Fuel</b><br>kWh/year                                                                                                   | Fuel Price<br>(Table 12)                                                                                        | Fuel Cost<br>£/year                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Space heating - main system 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (211) x                                                                                                                   | 3.48 × 0.01                                                                                                     | = 165.97 (240)                                                                                                                                                                |
| Space heating - main system 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (213) x                                                                                                                   | 0 x 0.01                                                                                                        | = 0 (241)                                                                                                                                                                     |
| Space heating - secondary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (215) x                                                                                                                   | 13.19 x 0.01                                                                                                    | = 0 (242)                                                                                                                                                                     |
| Water heating cost (other fuel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (219)                                                                                                                     | 3.48 x 0.01                                                                                                     | = 67.46 (247)                                                                                                                                                                 |
| Pumps, fans and electric keep-hot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (231)                                                                                                                     | 13.19 x 0.01                                                                                                    | 9.89 (249)                                                                                                                                                                    |
| (if off-peak tariff, list each of (230a) to (250a) to (250a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 230g) separately as applicable and (232)                                                                                  | apply fuel price according  13.19 × 0.01                                                                        |                                                                                                                                                                               |
| Additional standing charges (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           | 10.10                                                                                                           | 120 (251)                                                                                                                                                                     |
| Appendix Q items: repeat lines (253) ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | od (254) as pooded                                                                                                        |                                                                                                                 | , ,                                                                                                                                                                           |
| Total energy cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (245)(247) + (250)(254) =                                                                                                 |                                                                                                                 | 416.4 (255)                                                                                                                                                                   |
| 11a. SAP rating - individual heating sy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | stems                                                                                                                     |                                                                                                                 |                                                                                                                                                                               |
| Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                                                                                                 | 0.42 (256)                                                                                                                                                                    |
| Energy cost factor (ECF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [(255) x (256)] ÷ [(4) + 45.0] =                                                                                          |                                                                                                                 | 1.21 (257)                                                                                                                                                                    |
| SAP rating (Section 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                                                                 | 83.12 (258)                                                                                                                                                                   |
| 12a. CO2 emissions – Individual heati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng systems including micro-CHP                                                                                            |                                                                                                                 |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy                                                                                                                    | <b>Emission factor</b>                                                                                          | <b>Emissions</b>                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/year                                                                                                                  | kg CO2/kWh                                                                                                      | kg CO2/year                                                                                                                                                                   |
| Space heating (main system 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                           |                                                                                                                 |                                                                                                                                                                               |
| Space heating (main system 1) Space heating (secondary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kWh/year                                                                                                                  | kg CO2/kWh                                                                                                      | kg CO2/year                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/year<br>(211) x                                                                                                       | kg CO2/kWh  0.216 =                                                                                             | kg CO2/year                                                                                                                                                                   |
| Space heating (secondary)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kWh/year<br>(211) x<br>(215) x                                                                                            | kg CO2/kWh  0.216 =  0.519 =  0.216 =                                                                           | kg CO2/year  1030.18 (261)  0 (263)                                                                                                                                           |
| Space heating (secondary) Water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)                                                        | kg CO2/kWh  0.216 =  0.519 =  0.216 =                                                                           | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)                                                                                                                             |
| Space heating (secondary) Water heating Space and water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)                                                        | kg CO2/kWh  0.216 =  0.519 =  0.216 =                                                                           | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)                                                                                                              |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (231) x  (232) x                                      | kg CO2/kWh  0.216 =  0.519 =  0.216 =  0.519 =                                                                  | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)                                                                                                 |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric lefter to the secondary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (231) x  (232) x                                      | kg CO2/kWh  0.216 =  0.519 =  0.519 =  0.519 =  0.519 =                                                         | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)  208.86 (268)                                                                                   |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric lefter to the lefter le | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (231) x  (232) x                                      | kg CO2/kWh  0.216 =  0.519 =  0.216 =  0.519 =  0.519 =  0.519 =  sum of (265)(271) =                           | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)  208.86 (268)  1696.67 (272)                                                                    |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric lefter to the Electricity for lighting Total CO2, kg/year CO2 emissions per m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (231) x  (232) x                                      | kg CO2/kWh  0.216 =  0.519 =  0.216 =  0.519 =  0.519 =  0.519 =  sum of (265)(271) =                           | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)  208.86 (268)  1696.67 (272)  17.04 (273)                                                       |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric leftericity for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (231) x  (232) x                                      | kg CO2/kWh  0.216 =  0.519 =  0.216 =  0.519 =  0.519 =  0.519 =  sum of (265)(271) =                           | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)  208.86 (268)  1696.67 (272)  17.04 (273)                                                       |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric leftericity for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (232) x   Energy                                      | kg CO2/kWh  0.216 =  0.519 =  0.519 =  0.519 =  0.519 =  (272) ÷ (4) =                                          | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)  208.86 (268)  1696.67 (272)  17.04 (273)  84 (274)  P. Energy                                  |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric lefter for lighting Total CO2, kg/year CO2 emissions per m² El rating (section 14)  13a. Primary Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (231) x  (232) x   Energy  kWh/year                   | kg CO2/kWh  0.216 =  0.519 =  0.216 =  0.519 =  0.519 =  (272) ÷ (4) =   Primary factor                         | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)  208.86 (268)  1696.67 (272)  17.04 (273)  84 (274)  P. Energy kWh/year                         |
| Space heating (secondary)  Water heating  Space and water heating  Electricity for pumps, fans and electric leader of the secondary  Total CO2, kg/year  CO2 emissions per m²  El rating (section 14)  13a. Primary Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (231) x  (232) x   Energy  kWh/year  (211) x          | kg CO2/kWh  0.216 =  0.519 =  0.519 =  0.519 =  0.519 =  (272) ÷ (4) =   Primary factor  1.22 =                 | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)  208.86 (268)  1696.67 (272)  17.04 (273)  84 (274)  P. Energy kWh/year  5818.59 (261)          |
| Space heating (secondary)  Water heating  Space and water heating  Electricity for pumps, fans and electric leader of the secondary of the sec | kWh/year  (211) x  (215) x  (219) x  (261) + (262) + (263) + (264)  (231) x  (232) x   Energy  kWh/year  (211) x  (215) x | kg CO2/kWh  0.216 =  0.519 =  0.519 =  0.519 =  0.519 =  (272) ÷ (4) =   Primary factor  1.22 =  3.07 =  1.22 = | kg CO2/year  1030.18 (261)  0 (263)  418.71 (264)  1448.88 (265)  38.93 (267)  208.86 (268)  1696.67 (272)  17.04 (273)  84 (274)  P. Energy kWh/year  5818.59 (261)  0 (263) |

Electricity for lighting (232) x 0 = 1235.43 (268) 'Total Primary Energy sum of (265)...(271) = 9649.2 (272) **Primary energy kWh/m²/year** (272)  $\div$  (4) = 96.93 (273)

|                                                           |                                                                      | User Details:                |                            |                 |                |
|-----------------------------------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------|-----------------|----------------|
| Assessor Name:                                            | Harry Hinchcliffe                                                    | Stroma Nur                   | nber: STRO                 | 0034627         |                |
| Software Name:                                            | Stroma FSAP 2012                                                     | Software Ve                  | ersion: Versi              | on: 1.0.5.16    |                |
|                                                           | Pro                                                                  | operty Address: 15592        | 2 - L1a Assessment         |                 |                |
| Address:                                                  | New Dwelling @, 34 Summer                                            | r House Way, Langley         | , WD5 0DY                  |                 |                |
| 1. Overall dwelling dime                                  | nsions:                                                              |                              |                            |                 |                |
|                                                           |                                                                      | Area(m²)                     | Av. Height(m)              | Volume(m³)      |                |
| Ground floor                                              |                                                                      | 52.34 (1a) x                 | 2.39 (2a) =                | 125.09 (3       | 3a)            |
| First floor                                               |                                                                      | 47.21 (1b) x                 | 2.65 (2b) =                | 125.11          | Bb)            |
| Total floor area TFA = (1a                                | a)+(1b)+(1c)+(1d)+(1e)+(1n)                                          | 99.55 (4)                    |                            | _               |                |
| Dwelling volume                                           |                                                                      | (3a)+(3                      | (3c)+(3c)+(3d)+(3e)+(3n) = | 250.2 (5        | 5)             |
| 2. Ventilation rate:                                      |                                                                      |                              |                            |                 |                |
|                                                           | main secondary<br>heating heating                                    | other                        | total                      | m³ per hour     |                |
| Number of chimneys                                        | 0 + 0                                                                | + 0 =                        | 0 x 40 =                   | 0 (6            | Sa)            |
| Number of open flues                                      | 0 + 0                                                                | + 0 =                        | 0 x 20 =                   | 0 (6            | Sb)            |
| Number of intermittent far                                | ns                                                                   |                              | 0 x 10 =                   | 0 (7:           | 7a)            |
| Number of passive vents                                   |                                                                      |                              | 0 x 10 =                   | 0 (7            | <b>7</b> b)    |
| Number of flueless gas fil                                | res                                                                  |                              | 0 x 40 =                   | 0 (7            | <b>7</b> c)    |
|                                                           |                                                                      |                              | Air c                      | hanges per hour |                |
| Infiltration due to chimne                                | ys, flues and fans = $(6a)+(6b)+(7a)$                                | u)+(7b)+(7c) =               | 0 ÷ (5) =                  | 0 (8            | <i>8)</i>      |
| •                                                         | een carried out or is intended, proceed                              |                              |                            | 0 (0,           | ')             |
| Number of storeys in th                                   | ne dwelling (ns)                                                     |                              |                            | 0 (9)           | <del>)</del> ) |
| Additional infiltration                                   |                                                                      |                              | [(9)-1]x0.1 =              | 0 (1            | 10)            |
| Structural infiltration: 0.                               | 25 for steel or timber frame or 0                                    | 0.35 for masonry cons        | struction                  | 0 (1            | 11)            |
| if both types of wall are pr<br>deducting areas of openin | resent, use the value corresponding to t<br>nas): if equal user 0.35 | the greater wall area (after |                            |                 |                |
|                                                           | loor, enter 0.2 (unsealed) or 0.1                                    | (sealed), else enter (       | )                          | 0 (1:           | 12)            |
| If no draught lobby, ent                                  | ter 0.05, else enter 0                                               |                              |                            | 0 (1:           | 13)            |
| Percentage of windows                                     | s and doors draught stripped                                         |                              |                            | 0 (14           | 14)            |
| Window infiltration                                       |                                                                      | 0.25 - [0.2 x (14) ÷         | - 100] =                   | 0 (1            | 15)            |
| Infiltration rate                                         |                                                                      | (8) + (10) + (11) +          | (12) + (13) + (15) =       | 0 (1            | 16)            |
| Air permeability value,                                   | q50, expressed in cubic metres                                       | per hour per square          | metre of envelope area     | 5 (1            | 17)            |
| If based on air permeabili                                | ity value, then $(18) = [(17) \div 20] + (8)$                        | , otherwise $(18) = (16)$    |                            | 0.25 (1         | 18)            |
| Air permeability value applies                            | s if a pressurisation test has been done                             | or a degree air permeabili   | ty is being used           |                 |                |
| Number of sides sheltere                                  | d                                                                    | (00) 4 [0.075]               | (40)1                      | i               | 19)            |
| Shelter factor                                            |                                                                      | (20) = 1 - [0.075  x]        |                            |                 | 20)            |
| Infiltration rate incorporat                              |                                                                      | $(21) = (18) \times (20) =$  | =                          | 0.23            | 21)            |
| Infiltration rate modified for                            | <del></del>                                                          |                              | <u> </u>                   | 7               |                |
| Jan Feb                                                   | Mar Apr May Jun                                                      | Jul Aug Sep                  | Oct Nov Dec                | J               |                |
| Monthly average wind sp                                   | eed from Table 7                                                     |                              |                            | _               |                |

3.7

3.4

3.1

3

3.4

3.6

3.3

3.6

3.9

3.9

| Wind Facto                                                                                                                                                                     | or (22a)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (22)m ÷                                                                                                            | 4                                                                            |                                                              |                                                                                                  |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                           |                   |                         |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------|-------------------|-------------------------|---------------------------------------------------|
| (22a)m= 0.9                                                                                                                                                                    | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                  | 0.92                                                                         | 0.85                                                         | 0.78                                                                                             | 0.85                                                                                 | 0.75                                                                                                                  | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9                                                                                           | 0.82                      | 0.9               | ]                       |                                                   |
| Adjusted in                                                                                                                                                                    | filtration rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e (allowi                                                                                                          | ng for sh                                                                    | nelter an                                                    | d wind s                                                                                         | speed) =                                                                             | (21a) x                                                                                                               | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                           |                   |                         |                                                   |
| 0.2                                                                                                                                                                            | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.23                                                                                                               | 0.21                                                                         | 0.2                                                          | 0.18                                                                                             | 0.2                                                                                  | 0.17                                                                                                                  | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.21                                                                                          | 0.19                      | 0.21              | ]                       |                                                   |
|                                                                                                                                                                                | <i>effective air</i><br>nical ventila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                  | rate for t                                                                   | he appli                                                     | cable ca                                                                                         | se                                                                                   | •                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                           |                   |                         | (220)                                             |
|                                                                                                                                                                                | air heat pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                    | endix N (2                                                                   | 3h) = (23a                                                   | a) × Fmv (e                                                                                      | equation (N                                                                          | NS)) othe                                                                                                             | rwise (23h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n) = (23a)                                                                                    |                           |                   | 0                       | (23a)                                             |
|                                                                                                                                                                                | with heat reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 11                                                                                                               |                                                                              | , ,                                                          | ,                                                                                                | . `                                                                                  | ,, .                                                                                                                  | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) = (20a)                                                                                     |                           |                   | 0                       | (23b)                                             |
|                                                                                                                                                                                | nced mech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                  | -                                                                            | _                                                            |                                                                                                  |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2h)m + (                                                                                      | ′23h) <b>x</b> [          | 1 – (23c)         | 0<br>- 1001             | (23c)                                             |
| (24a)m= 0                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                  | 0                                                                            | 0                                                            | 0                                                                                                | 0                                                                                    | 0                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             | 0                         | 0                 | ]                       | (24a)                                             |
| b) If bala                                                                                                                                                                     | nced mech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | anical ve                                                                                                          | entilation                                                                   | without                                                      | heat red                                                                                         | covery (N                                                                            | иV) (24b                                                                                                              | m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2b)m + (                                                                                      | 23b)                      | 1                 | J                       |                                                   |
| (24b)m= 0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                  | 0                                                                            | 0                                                            | 0                                                                                                | 0                                                                                    | 0                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             | 0                         | 0                 | ]                       | (24b)                                             |
| c) If who                                                                                                                                                                      | le house ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tract ven                                                                                                          | tilation o                                                                   | or positiv                                                   | e input v                                                                                        | ventilatio                                                                           | n from o                                                                                                              | outside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !                                                                                             | · ·                       |                   | •                       |                                                   |
| if (22                                                                                                                                                                         | 2b)m < 0.5 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (23b), t                                                                                                           | hen (24                                                                      | c) = (23b                                                    | ); other                                                                                         | wise (24                                                                             | c) = (22l                                                                                                             | o) m + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .5 × (23k                                                                                     | o)                        | _                 |                         |                                                   |
| (24c)m = 0                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                  | 0                                                                            | 0                                                            | 0                                                                                                | 0                                                                                    | 0                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             | 0                         | 0                 |                         | (24c)                                             |
| ,                                                                                                                                                                              | ıral ventilatio<br>2b)m = 1, th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                              |                                                              | •                                                                                                |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51                                                                                          |                           |                   |                         |                                                   |
| (24d)m= 0.5                                                                                                                                                                    | <del>- '</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.53                                                                                                               | 0.52                                                                         | 0.52                                                         | 0.52                                                                                             | 0.52                                                                                 | 0.52                                                                                                                  | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.52                                                                                          | 0.52                      | 0.52              | ]                       | (24d)                                             |
| Effective                                                                                                                                                                      | air change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rate - er                                                                                                          | nter (24a                                                                    | ) or (24k                                                    | o) or (24                                                                                        | c) or (24                                                                            | d) in bo                                                                                                              | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                           |                   | J                       |                                                   |
| (25)m= 0.5                                                                                                                                                                     | 53 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.53                                                                                                               | 0.52                                                                         | 0.52                                                         | 0.52                                                                                             | 0.52                                                                                 | 0.52                                                                                                                  | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.52                                                                                          | 0.52                      | 0.52              | ]                       | (25)                                              |
| 2 Heatle                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                    |                                                                              |                                                              |                                                                                                  |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                           |                   | _                       |                                                   |
| .5 Hear 10                                                                                                                                                                     | sses and he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | eat loss r                                                                                                         | paramete                                                                     | er.                                                          |                                                                                                  |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                           |                   |                         |                                                   |
| S. Heat 10                                                                                                                                                                     | I <b>T</b> Gros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS                                                                                                                 | oaramete<br>Openin                                                           | gs                                                           | Net Ar                                                                                           |                                                                                      | U-val                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΑXU                                                                                           |                           | k-value           |                         | ΑXk                                               |
| ELEMEN                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SS                                                                                                                 |                                                                              | gs                                                           | A ,r                                                                                             | n²                                                                                   | W/m2                                                                                                                  | 2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/                                                                                           |                           | k-value<br>kJ/m²- |                         | kJ/K                                              |
| <b>ELEMEN</b> Doors                                                                                                                                                            | IT Gros<br>area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS                                                                                                                 | Openin                                                                       | gs                                                           | A ,r                                                                                             | m² x                                                                                 | W/m2                                                                                                                  | 2K =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>3.36                                                                                   |                           |                   |                         | kJ/K (26)                                         |
| ELEMEN  Doors  Windows T                                                                                                                                                       | IT Gros<br>area<br>Type 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SS                                                                                                                 | Openin                                                                       | gs                                                           | A ,r                                                                                             | m <sup>2</sup> x x x 1/2                                                             | W/m2<br>1.6<br>/[1/( 1.4 )+                                                                                           | 2K =  <br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (W/<br>3.36<br>10.31                                                                          |                           |                   |                         | kJ/K                                              |
| ELEMEN  Doors  Windows T  Windows T                                                                                                                                            | T Gros<br>area<br>ype 1<br>ype 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SS                                                                                                                 | Openin                                                                       | gs                                                           | A ,r                                                                                             | m <sup>2</sup> x x1/3 x1/3                                                           | W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                           | 2K =  <br>0.04] =  <br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (W/<br>3.36                                                                                   |                           |                   |                         | kJ/K (26)                                         |
| Doors Windows T Windows T Windows T                                                                                                                                            | Type 1 Type 2 Type 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS                                                                                                                 | Openin                                                                       | gs                                                           | A ,r<br>2.1<br>7.78                                                                              | x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2                                              | W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                           | eK = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (W/<br>3.36<br>10.31                                                                          |                           |                   |                         | kJ/K (26) (27)                                    |
| Doors Windows T Windows T Windows T Windows T                                                                                                                                  | Type 1 Type 2 Type 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS                                                                                                                 | Openin                                                                       | gs                                                           | A ,r 2.1 7.78 18.86                                                                              | x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2                                              | W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                           | eK = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (W/<br>3.36<br>10.31<br>25                                                                    |                           |                   |                         | kJ/K<br>(26)<br>(27)<br>(27)                      |
| Doors Windows T Windows T Windows T Windows T Floor                                                                                                                            | Type 1 Type 2 Type 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS                                                                                                                 | Openin                                                                       | gs                                                           | A ,r 2.1 7.78 18.86 2.76                                                                         | m <sup>2</sup>                                                                       | W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                           | eK = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (W/<br>3.36<br>10.31<br>25<br>3.66                                                            | K)                        |                   |                         | kJ/K (26) (27) (27) (27)                          |
| Doors Windows T Windows T Windows T Windows T                                                                                                                                  | Type 1 Type 2 Type 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ss<br>(m²)                                                                                                         | Openin                                                                       | gs<br><sub>2</sub>                                           | A ,r 2.1 7.78 18.86 2.76 0.69                                                                    | m <sup>2</sup>                                                                       | W/m2  1.6  /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+                                                                     | eK = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91                                                    | K)                        |                   |                         | kJ/K (26) (27) (27) (27) (27)                     |
| Doors Windows T Windows T Windows T Windows T Floor                                                                                                                            | Type 1 Type 2 Type 3 Type 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ss (m²)                                                                                                            | Openin<br>m                                                                  | gs<br><sub>2</sub>                                           | A ,r 2.1 7.78 18.86 2.76 0.69 52.34                                                              | m <sup>2</sup>                                                                       | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+                                                         | eK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0 | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120                                         | K)                        |                   |                         | kJ/K (26) (27) (27) (27) (27) (28)                |
| ELEMEN  Doors  Windows T  Windows T  Windows T  Floor  Walls                                                                                                                   | Type 1 Type 2 Type 3 Type 4 Type 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | os (m²)                                                                                                            | Openin m                                                                     | gs<br><sub>2</sub>                                           | A ,r 2.1 7.78 18.86 2.76 0.69 52.34 121.8                                                        | x1/2 x1/2 x1/4 x x1/4 x x1/4 x x x1/4 x x x1/4 x x x x x x x x x x x x x x x x x x x | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24                                              | eK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25                                | K)                        |                   |                         | kJ/K (26) (27) (27) (27) (27) (28)                |
| Doors Windows T Windows T Windows T Windows T Floor Walls Roof Type Roof Type                                                                                                  | Type 1 Type 2 Type 3 Type 4 Type 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 05<br>7                                                                                                            | 32.19<br>0                                                                   | gs<br><sub>2</sub>                                           | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67                                           | m <sup>2</sup>                                                                       | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14                                        | EK =   0.04] =   0.04] =   0.04] =   0.04] =   =   =   =   =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65                        | K)                        |                   |                         | kJ/K (26) (27) (27) (27) (27) (28) (29)           |
| Doors Windows T Windows T Windows T Windows T Floor Walls Roof Type Roof Type Total area * for windows                                                                         | Type 1 Type 2 Type 3 Type 4 Ty | 05<br>7<br>5<br>, m <sup>2</sup>                                                                                   | Openin m  32.19 0 0 effective wi                                             | gs<br>p                                                      | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcul                 | x1/2 x1/2 x1/4 x x1/4 x x x x x x x x x x x x x x x x x x x                          | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14                                        | EK =   0.04] =   0.04] =   0.04] =   0.04] =   =   =   =   =   =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                | K)                        | kJ/m²-            | K                       | kJ/K (26) (27) (27) (27) (27) (28) (29) (30)      |
| Doors Windows T Windows T Windows T Windows T Windows T Floor Walls Roof Type Roof Type Total area * for windows ** include the                                                | Type 1 Type 2 Type 3 Type 4 Ty | 05<br>7<br>5<br>, m <sup>2</sup><br>ows, use e                                                                     | 32.19 0 0 offective winternal wall                                           | gs<br>p                                                      | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcul                 | x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4                                    | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14                                        | 2K =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                | K)                        | kJ/m²-            | K                       | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)      |
| Doors Windows T Windows T Windows T Windows T Floor Walls Roof Type Roof Type Total area * for windows ** include the Fabric head                                              | Type 1 Type 2 Type 3 Type 4 Tel: 154. The standard of wind areas on both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 05<br>7<br>5<br>, m <sup>2</sup><br>ows, use e<br>sides of in                                                      | 32.19 0 0 offective winternal wall                                           | gs<br>p                                                      | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcul                 | x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4                                    | W/m2  1.6  /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11                                 | 2K =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                | K)                        | kJ/m²•            | n 3.2                   | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)      |
| Doors Windows T Windows T Windows T Windows T Windows T Floor Walls Roof Type Roof Type Total area * for windows ** include the Fabric hear Heat capac                         | Type 1 Type 2 Type 3 Type 4 Type 5 Type 4 Type 7 Ty | 05<br>7<br>5<br>, m <sup>2</sup><br>ows, use e<br>sides of in<br>= S (A x<br>(A x k)                               | 32.19 0 0 oriffective winternal walk                                         | gs<br>2<br>9<br>Indow U-ve                                   | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcultitions          | x1/2 x1/2 x1/4 x x1/4 x x x1/4 x x x1/4 x x x x x x x x x x x x x x x x x x x        | W/m2  1.6  /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11                                 | EK =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                | K)                        | kJ/m²•            | 1 3.2<br>87.8           | (26) (27) (27) (27) (28) (29) (30) (31)           |
| Doors Windows T Windows T Windows T Windows T Windows T Floor Walls Roof Type Roof Type Total area * for windows ** include the Fabric head Heat capac Thermal m For design as | Type 1 Type 2 Type 3 Type 4 Tel 4.6 Type 4 Type 4 Type 4 Type 4 Type 4 Type 4 Type 3 Type 4 Type 4 Type 3 Type 4 Type 5 Type 5 Type 5 Type 5 Type 7 T | 05<br>7<br>5<br>, m <sup>2</sup><br>ows, use e<br>sides of in<br>= S (A x<br>(A x k )<br>otter (TMF)<br>ere the de | 32.19 0 0 effective with ternal walk U) $P = Cm = 0$ tails of the            | gs<br>p<br>ndow U-va<br>ls and pan                           | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calculatitions         | x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4                                    | W/m2  1.6  /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11  formula 1 (26)(30 | 2K =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22<br>ue)+0.04] a | as given ir<br>2) + (32a) | kJ/m²-            | 7 3.2<br>87.8<br>13538. | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)      |
| Doors Windows T Windows T Windows T Windows T Floor Walls Roof Type Total area * for windows ** include the Fabric head Heat capac Thermal m For design as can be used if      | Type 1 Type 2 Type 3 Type 4 Type 5 Type 4 Type 5 Type 5 Type 5 Type 7 Ty | oss (m²)  7  5  , m²  ows, use e sides of in = S (A x k) eter (TMF) ere the de tailed calculations.                | 32.19 32.19 0 0 offective winternal walk U)  P = Cm - tails of the culation. | gs<br>2<br>Indow U-valls and part<br>- TFA) ir<br>constructi | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calculations  n kJ/m²K | x1/x1/x1/xx/6 x x x 6 x x x 6 atted using                                            | W/m2  1.6  /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11  formula 1 (26)(30 | 2K =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22<br>ue)+0.04] a | as given ir<br>2) + (32a) | kJ/m²-            | 7 3.2<br>87.8<br>13538. | kJ/K (26) (27) (27) (27) (28) (29) (30) (31) (31) |

| if details of therm           | nal bridging | are not kn                                       | own (36) = | = 0.05 x (3    | 1)          |            |             |              |             |                                              |         |         |       |
|-------------------------------|--------------|--------------------------------------------------|------------|----------------|-------------|------------|-------------|--------------|-------------|----------------------------------------------|---------|---------|-------|
| Total fabric he               | eat loss     |                                                  |            |                |             |            |             | (33) +       | (36) =      |                                              |         | 107.07  | (37)  |
| Ventilation he                | at loss ca   | alculated                                        | monthl     | у              | ī           | 1          | г           | (38)m        | = 0.33 × (  | 25)m x (5)                                   | )<br>T  | •       |       |
| Jan                           | Feb          | Mar                                              | Apr        | May            | Jun         | Jul        | Aug         | Sep          | Oct         | Nov                                          | Dec     |         |       |
| (38)m= 43.38                  | 43.38        | 43.49                                            | 43.17      | 42.88          | 42.61       | 42.88      | 42.52       | 42.88        | 43.07       | 42.79                                        | 43.07   |         | (38)  |
| Heat transfer                 | coefficie    | nt, W/K                                          |            |                |             |            |             | (39)m        | = (37) + (  | 38)m                                         |         |         |       |
| (39)m= 150.46                 | 150.46       | 150.57                                           | 150.25     | 149.95         | 149.68      | 149.95     | 149.6       | 149.95       | 150.15      | 149.86                                       | 150.15  |         |       |
|                               |              | \                                                |            |                |             |            |             |              | _           | Sum(39) <sub>1</sub>                         | 12 /12= | 150.08  | (39)  |
| Heat loss par                 | <del></del>  | <del>-                                    </del> | r —        | 1 . 5 .        |             |            |             | · · ·        | = (39)m ÷   | <u>`                                    </u> |         | Ī       |       |
| (40)m= 1.51                   | 1.51         | 1.51                                             | 1.51       | 1.51           | 1.5         | 1.51       | 1.5         | 1.51         | 1.51        | 1.51                                         | 1.51    | 4.54    | 7(40) |
| Number of da                  | ys in mo     | nth (Tab                                         | le 1a)     |                |             |            |             | ,            | Average =   | Sum(40) <sub>1</sub>                         | 12 /12= | 1.51    | (40)  |
| Jan                           | Feb          | Mar                                              | Apr        | May            | Jun         | Jul        | Aug         | Sep          | Oct         | Nov                                          | Dec     |         |       |
| (41)m= 31                     | 28           | 31                                               | 30         | 31             | 30          | 31         | 31          | 30           | 31          | 30                                           | 31      |         | (41)  |
|                               | •            | •                                                | •          |                | •           | •          | •           | •            | •           | •                                            | •       |         |       |
| 4. Water hea                  | ating ene    | rgy requi                                        | irement:   |                |             |            |             |              |             |                                              | kWh/ye  | ear:    |       |
| A sourced a se                |              | N I                                              |            |                |             |            |             |              |             |                                              |         | Ī       | (40)  |
| Assumed occ<br>if TFA > 13    |              |                                                  | :[1 - exp  | (-0.0003       | 349 x (TF   | FA -13.9   | )2)1 + 0.0  | 0013 x (     | ΓFA -13.    |                                              | .74     |         | (42)  |
| if TFA £ 13                   |              |                                                  |            | (              | (           | ,          | , ,1        | ,            |             | - /                                          |         |         |       |
| Annual avera                  |              |                                                  |            |                |             |            |             |              |             |                                              | ).16    |         | (43)  |
| Reduce the annu               | _            |                                                  |            |                | _           | -          | o acriieve  | a water us   | se largel o | ı                                            |         |         |       |
| Jan                           | Feb          | Mar                                              | Apr        | May            | Jun         | Jul        | Aug         | Sep          | Oct         | Nov                                          | Dec     |         |       |
| Hot water usage               |              |                                                  | <u> </u>   |                |             |            |             | Оср          | 001         | I NOV                                        | Dec     |         |       |
| (44)m= 109.08                 | 105.11       | 101.15                                           | 97.18      | 93.21          | 89.25       | 89.25      | 93.21       | 97.18        | 101.15      | 105.11                                       | 109.08  |         |       |
| ( )                           | 1            |                                                  |            |                |             |            |             | l            |             | m(44) <sub>112</sub> =                       |         | 1189.97 | (44)  |
| Energy content of             | of hot water | used - cal                                       | culated m  | onthly $= 4$ . | 190 x Vd,r  | m x nm x D | Tm / 3600   | ) kWh/mor    | nth (see Ta | ables 1b, 1                                  | c, 1d)  |         | _     |
| (45)m= 161.76                 | 141.48       | 145.99                                           | 127.28     | 122.13         | 105.39      | 97.66      | 112.06      | 113.4        | 132.16      | 144.26                                       | 156.66  |         |       |
|                               |              |                                                  |            |                |             |            |             |              | Total = Su  | m(45) <sub>112</sub> =                       | =       | 1560.23 | (45)  |
| If instantaneous              | water heati  | ng at point                                      | of use (no | not water      | r storage), | enter 0 in | boxes (46)  | ) to (61)    | T           | 1                                            | 1       | Ī       |       |
| (46)m= 24.26                  | 21.22        | 21.9                                             | 19.09      | 18.32          | 15.81       | 14.65      | 16.81       | 17.01        | 19.82       | 21.64                                        | 23.5    |         | (46)  |
| Water storage Storage volur   |              | ) includir                                       | na anv sa  | olar or W      | /WHRS       | storane    | within sa   | ame ves      | امء         |                                              | 0       |         | (47)  |
| If community                  | ` '          |                                                  | •          |                |             | •          |             | 21110 100    | 001         |                                              | 0       |         | (47)  |
| Otherwise if r                | _            |                                                  |            | _              |             |            | ` '         | ers) ente    | er '0' in ( | 47)                                          |         |         |       |
| Water storage                 |              |                                                  | `          |                |             |            |             | ,            | `           | ,                                            |         |         |       |
| a) If manufac                 | cturer's de  | eclared I                                        | oss facto  | or is kno      | wn (kWł     | n/day):    |             |              |             |                                              | 0       |         | (48)  |
| Temperature                   | factor fro   | m Table                                          | 2b         |                |             |            |             |              |             |                                              | 0       |         | (49)  |
| Energy lost fr                |              | _                                                | -          |                |             |            | (48) x (49) | ) =          |             |                                              | 0       |         | (50)  |
| b) If manufac                 |              |                                                  | -          |                |             |            |             |              |             |                                              |         | I       | 4     |
| Hot water sto<br>If community | -            |                                                  |            | ie Z (KVV      | n/iitre/da  | ay)        |             |              |             |                                              | 0       |         | (51)  |
| Volume factor                 | _            |                                                  | UII 7.U    |                |             |            |             |              |             |                                              | 0       |         | (52)  |
| Temperature                   |              |                                                  | 2b         |                |             |            |             |              |             | -                                            | 0       |         | (53)  |
| Energy lost fr                | om water     | storage                                          | , kWh/ve   | ear            |             |            | (47) x (51) | ) x (52) x ( | 53) =       |                                              | 0       |         | (54)  |
| Enter (50) or                 |              | _                                                | ,          |                |             |            | , ,         | •            |             | <b>—</b>                                     | 0       |         | (55)  |
|                               |              |                                                  |            |                |             |            |             |              |             |                                              |         | •       |       |

| Water storage                                                                                                                                                                                                   | loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culated f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or each                                                                                                 | month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                |                                                                               | ((56)m = (                                                                           | 55) × (41)ı                                                                 | m                                             |                                                |                                 |               |                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------|---------------------------------|---------------|----------------------------------------------|
| (56)m= 0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                              | 0                                                                             | 0                                                                                    | 0                                                                           | 0                                             | 0                                              | 0                               |               | (56)                                         |
| If cylinder contain                                                                                                                                                                                             | s dedicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d solar sto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rage, (57)ı                                                                                             | m = (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x [(50) – (                                                                    | H11)] ÷ (5                                                                    | 0), else (5                                                                          | 7)m = (56)                                                                  | m where (                                     | H11) is fro                                    | m Append                        | ix H          |                                              |
| (57)m= 0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                              | 0                                                                             | 0                                                                                    | 0                                                                           | 0                                             | 0                                              | 0                               |               | (57)                                         |
| Primary circui                                                                                                                                                                                                  | t loss (ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nnual) fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m Table                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                |                                                                               |                                                                                      |                                                                             |                                               |                                                | 0                               |               | (58)                                         |
| Primary circui                                                                                                                                                                                                  | t loss cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | culated t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                                | month (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59)m = (                                                                       | (58) ÷ 36                                                                     | 65 × (41)                                                                            | m                                                                           |                                               |                                                |                                 |               |                                              |
| (modified b                                                                                                                                                                                                     | y factor f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rom Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | le H5 if t                                                                                              | here is s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | solar wat                                                                      | ter heatii                                                                    | ng and a                                                                             | cylinde                                                                     | r thermo                                      | stat)                                          |                                 |               |                                              |
| (59)m= 0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                              | 0                                                                             | 0                                                                                    | 0                                                                           | 0                                             | 0                                              | 0                               |               | (59)                                         |
| Combi loss ca                                                                                                                                                                                                   | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | month (                                                                                                 | (61)m =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (60) ÷ 36                                                                      | 65 × (41)                                                                     | )m                                                                                   |                                                                             |                                               |                                                |                                 |               |                                              |
| (61)m= 14.14                                                                                                                                                                                                    | 12.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.61                                                                                                   | 14.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.54                                                                          | 13.97                                                                         | 14.01                                                                                | 13.58                                                                       | 14.07                                         | 13.66                                          | 14.13                           |               | (61)                                         |
| Total heat rec                                                                                                                                                                                                  | uired for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eating ca                                                                                               | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | for eacl                                                                       | h month                                                                       | (62)m =                                                                              | 0.85 × (                                                                    | (45)m +                                       | (46)m +                                        | (57)m +                         | (59)m + (61)m |                                              |
| (62)m= 175.91                                                                                                                                                                                                   | 154.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140.89                                                                                                  | 136.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.93                                                                         | 111.62                                                                        | 126.07                                                                               | 126.98                                                                      | 146.23                                        | 157.92                                         | 170.79                          |               | (62)                                         |
| Solar DHW input                                                                                                                                                                                                 | calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | using App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | endix G or                                                                                              | Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H (negati                                                                      | ve quantity                                                                   | /) (enter '0                                                                         | if no sola                                                                  | r contribut                                   | ion to wate                                    | er heating)                     | •             |                                              |
| (add additiona                                                                                                                                                                                                  | al lines if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and/or \                                                                                                | VWHRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | applies                                                                        | , see Ap                                                                      | pendix (                                                                             | 3)                                                                          |                                               | _                                              |                                 |               |                                              |
| (63)m= 0                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                              | 0                                                                             | 0                                                                                    | 0                                                                           | 0                                             | 0                                              | 0                               |               | (63)                                         |
| Output from w                                                                                                                                                                                                   | ater hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                               |                                                                                      |                                                                             |                                               |                                                |                                 |               |                                              |
| (64)m= 175.91                                                                                                                                                                                                   | 154.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 140.89                                                                                                  | 136.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 118.93                                                                         | 111.62                                                                        | 126.07                                                                               | 126.98                                                                      | 146.23                                        | 157.92                                         | 170.79                          |               |                                              |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                |                                                                               | Outp                                                                                 | out from wa                                                                 | ater heate                                    | r (annual) <sub>1</sub>                        | 12                              | 1725.84       | (64)                                         |
| Heat gains fro                                                                                                                                                                                                  | m water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | heating,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/mo                                                                                                  | onth 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 ´ [0.85                                                                      | × (45)m                                                                       | + (61)m                                                                              | n] + 0.8 x                                                                  | (46)m                                         | + (57)m                                        | + (59)m                         | ]             |                                              |
| (65)m= 57.32                                                                                                                                                                                                    | 50.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.72                                                                                                   | 44.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38.43                                                                          | 25.00                                                                         | 40.70                                                                                | 44.4                                                                        |                                               |                                                |                                 |               | (65)                                         |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.72                                                                                                   | 44.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.43                                                                          | 35.96                                                                         | 40.76                                                                                | 41.1                                                                        | 47.46                                         | 51.38                                          | 55.62                           |               | (03)                                         |
| include (57)                                                                                                                                                                                                    | m in cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                       | <u> </u>                                                                      | ļ                                                                                    |                                                                             |                                               | <u> </u>                                       |                                 | eating        | (03)                                         |
| include (57)                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | culation o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m                                                                                                | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                       | <u> </u>                                                                      | ļ                                                                                    |                                                                             |                                               | <u> </u>                                       |                                 | eating        | (03)                                         |
| 5. Internal g                                                                                                                                                                                                   | ains (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                      | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                       | <u> </u>                                                                      | ļ                                                                                    |                                                                             |                                               | <u> </u>                                       |                                 | eating        | (03)                                         |
| · ·                                                                                                                                                                                                             | ains (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                      | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                       | <u> </u>                                                                      | ļ                                                                                    |                                                                             |                                               | <u> </u>                                       |                                 | eating        | (03)                                         |
| 5. Internal g                                                                                                                                                                                                   | ains (see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | culation of Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of (65)m<br>and 5a                                                                                      | only if c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ylinder i                                                                      | s in the o                                                                    | dwelling                                                                             | or hot w                                                                    | ater is fr                                    | om com                                         | munity h                        | eating        | (66)                                         |
| 5. Internal g Metabolic gai                                                                                                                                                                                     | ains (see<br>ns (Table<br>Feb<br>164.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Table 5<br>e 5), Wat<br>Mar<br>164.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>and 5a<br>ts<br>Apr<br>164.12                                                               | only if constant of the consta | Jun<br>164.12                                                                  | Jul<br>164.12                                                                 | Aug<br>164.12                                                                        | or hot w<br>Sep<br>164.12                                                   | ater is fr                                    | om com                                         | munity h                        | eating        |                                              |
| 5. Internal g Metabolic gain Jan (66)m= 164.12                                                                                                                                                                  | ains (see<br>ns (Table<br>Feb<br>164.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Table 5<br>e 5), Wat<br>Mar<br>164.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | of (65)m<br>and 5a<br>ts<br>Apr<br>164.12                                                               | only if constant of the consta | Jun<br>164.12                                                                  | Jul<br>164.12                                                                 | Aug<br>164.12                                                                        | or hot w<br>Sep<br>164.12                                                   | ater is fr                                    | om com                                         | munity h                        | eating        |                                              |
| 5. Internal g  Metabolic gain  Jan  (66)m= 164.12  Lighting gains                                                                                                                                               | ns (Table<br>Feb<br>164.12<br>(calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E Table 5 E 5), Wat Mar 164.12 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m<br>6 and 5a<br>ts<br>Apr<br>164.12<br>opendix<br>31.15                                         | only if constraints only if constraints only if constraints on the constraint on the constraints on the constraint on the constraints of the constraints on the constraint on of the constraint on the constraint of the constraint on t | Jun<br>164.12<br>ion L9 o                                                      | Jul<br>164.12<br>r L9a), a<br>21.24                                           | Aug<br>164.12<br>Iso see                                                             | Sep<br>164.12<br>Table 5<br>37.06                                           | Oct 164.12                                    | Nov                                            | Dec                             | eating        | (66)                                         |
| 5. Internal g  Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97                                                                                                                                 | ns (Table<br>Feb<br>164.12<br>(calcula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E Table 5 E 5), Wat Mar 164.12 ted in Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m<br>6 and 5a<br>ts<br>Apr<br>164.12<br>opendix<br>31.15                                         | only if constraints only if constraints only if constraints on the constraint on the constraints on the constraint on the constraints of the constraints on the constraint on of the constraint on the constraint of the constraint on t | Jun<br>164.12<br>ion L9 o                                                      | Jul<br>164.12<br>r L9a), a<br>21.24                                           | Aug<br>164.12<br>Iso see                                                             | Sep<br>164.12<br>Table 5<br>37.06                                           | Oct 164.12                                    | Nov                                            | Dec                             | eating        | (66)                                         |
| 5. Internal g  Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga                                                                                                                  | res (Table Feb 164.12 (calcula 50.6 sins (calcula 385.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culation of Table 5 (a) Wat Mar 164.12 ted in Ap 41.15 culated in 375.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m<br>and 5a<br>ts<br>Apr<br>164.12<br>opendix<br>31.15<br>Appendix<br>354.24                     | only if construction in the construction in th | Jun<br>164.12<br>ion L9 o<br>19.66<br>uation L<br>302.23                       | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4                      | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also                                       | Sep<br>164.12<br>Table 5<br>37.06<br>see Tal<br>291.42                      | Oct 164.12 47.06 ble 5 312.65                 | Nov<br>164.12<br>54.92                         | Dec 164.12 58.55                | eating        | (66)<br>(67)                                 |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga  (68)m= 381.49                                                                                                                  | res (Table Feb 164.12 (calcula 50.6 sins (calcula 385.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culation of Table 5 (a) Wat Mar 164.12 ted in Ap 41.15 culated in 375.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of (65)m<br>and 5a<br>ts<br>Apr<br>164.12<br>opendix<br>31.15<br>Appendix<br>354.24                     | only if construction in the construction in th | Jun<br>164.12<br>ion L9 o<br>19.66<br>uation L<br>302.23                       | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4                      | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also                                       | Sep<br>164.12<br>Table 5<br>37.06<br>see Tal<br>291.42                      | Oct 164.12 47.06 ble 5 312.65                 | Nov<br>164.12<br>54.92                         | Dec 164.12 58.55                | eating        | (66)<br>(67)                                 |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga  (68)m= 381.49  Cooking gains                                                                                                   | res (Table Feb 164.12 (calcula 50.6 s) (calcula 385.45 s) (calcula 54.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culation of Table 5 2 5), Wat Mar 164.12 ted in Ap 41.15 culated in 375.47 ated in A 54.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>s and 5a<br>ts<br>Apr<br>164.12<br>opendix<br>31.15<br>Append<br>354.24<br>opendix<br>54.15 | only if constructions only if constructions only if constructions on the construction of the construction  | Jun 164.12 ion L9 of 19.66 uation L 302.23                                     | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)          | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also<br>281.44                             | Sep 164.12 Table 5 37.06 see Tal 291.42 ee Table                            | Oct 164.12 47.06 ble 5 312.65                 | Nov<br>164.12<br>54.92                         | Dec 164.12 58.55                | eating        | (66)<br>(67)<br>(68)                         |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga  (68)m= 381.49  Cooking gains  (69)m= 54.15                                                                                     | res (Table Feb 164.12 (calcula 50.6 s) (calcula 385.45 s) (calcula 54.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culation of Table 5 2 5), Wat Mar 164.12 ted in Ap 41.15 culated in 375.47 ated in A 54.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of (65)m<br>s and 5a<br>ts<br>Apr<br>164.12<br>opendix<br>31.15<br>Append<br>354.24<br>opendix<br>54.15 | only if constructions only if constructions only if constructions on the construction of the construction  | Jun 164.12 ion L9 of 19.66 uation L 302.23                                     | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)          | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also<br>281.44                             | Sep 164.12 Table 5 37.06 see Tal 291.42 ee Table                            | Oct 164.12 47.06 ble 5 312.65                 | Nov<br>164.12<br>54.92                         | Dec 164.12 58.55                | eating        | (66)<br>(67)<br>(68)                         |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga  (68)m= 381.49  Cooking gains  (69)m= 54.15  Pumps and fa                                                                       | reb 164.12 (calcula 50.6 ains (calcula 54.15 ans gains 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | culation of Table 5 2 5), Wat Mar 164.12 ted in Ap 41.15 culated in 375.47 ated in Ap 54.15 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m ts Apr 164.12 ppendix 31.15 Appendix 54.24 ppendix 54.15 5a) 3                                 | only if construction only if c | Jun<br>164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>tion L15<br>54.15 | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15 | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also<br>281.44<br>), also se<br>54.15      | Sep<br>164.12<br>Table 5<br>37.06<br>see Tal<br>291.42<br>ee Table<br>54.15 | Oct 164.12 47.06 ble 5 312.65 5 54.15         | Nov<br>164.12<br>54.92<br>339.46               | Dec 164.12 58.55 364.66 54.15   | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances gains  (68)m= 381.49  Cooking gains  (69)m= 54.15  Pumps and fains  (70)m= 3                                                       | res (Table Feb 164.12 (calcula 50.6 ains (calcula 54.15 as gains 3 vaporatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | culation of Table 5 2 5), Wat Mar 164.12 ted in Ap 41.15 culated in 375.47 ated in Ap 54.15 (Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of (65)m ts Apr 164.12 ppendix 31.15 Appendix 54.24 ppendix 54.15 5a) 3                                 | only if construction only if c | Jun<br>164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>tion L15<br>54.15 | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15 | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also<br>281.44<br>), also se<br>54.15      | Sep<br>164.12<br>Table 5<br>37.06<br>see Tal<br>291.42<br>ee Table<br>54.15 | Oct 164.12 47.06 ble 5 312.65 5 54.15         | Nov<br>164.12<br>54.92<br>339.46               | Dec 164.12 58.55 364.66 54.15   | eating        | (66)<br>(67)<br>(68)<br>(69)                 |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga  (68)m= 381.49  Cooking gains  (69)m= 54.15  Pumps and fa  (70)m= 3  Losses e.g. e                                              | res (Table Feb 164.12 (calcula 50.6 ains (calcula 54.15 as (calcula 54.15 as yaporatic -109.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | culation of the Europe Solution of the Europe | of (65)m ts Apr 164.12 opendix 31.15 Append 354.24 opendix 54.15 5a) 3 tive valu                        | only if construction only if c | Jun<br>164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>tion L15<br>54.15 | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15 | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also<br>281.44<br>, also se<br>54.15       | Sep<br>164.12<br>Table 5<br>37.06<br>see Tal<br>291.42<br>ee Table<br>54.15 | Oct 164.12 47.06 ble 5 312.65 5 54.15         | Nov<br>164.12<br>54.92<br>339.46               | Dec 164.12 58.55 364.66 54.15   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga  (68)m= 381.49  Cooking gains  (69)m= 54.15  Pumps and fa  (70)m= 3  Losses e.g. e  (71)m= -109.41                              | res (Table Feb 164.12 (calcula 50.6 ains (calcula 54.15 as (calcula 54.15 as yaporatic -109.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | culation of the Europe Solution of the Europe | of (65)m ts Apr 164.12 opendix 31.15 Append 354.24 opendix 54.15 5a) 3 tive valu                        | only if construction only if c | Jun<br>164.12<br>ion L9 of<br>19.66<br>uation L<br>302.23<br>tion L15<br>54.15 | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15 | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also<br>281.44<br>, also se<br>54.15       | Sep<br>164.12<br>Table 5<br>37.06<br>see Tal<br>291.42<br>ee Table<br>54.15 | Oct 164.12 47.06 ble 5 312.65 5 54.15         | Nov<br>164.12<br>54.92<br>339.46               | Dec 164.12 58.55 364.66 54.15   | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga  (68)m= 381.49  Cooking gains  (69)m= 54.15  Pumps and fa  (70)m= 3  Losses e.g. e  (71)m= -109.41  Water heating               | res (Table Feb 164.12 (calcula 50.6 ains (calcula 54.15 as (calcula 54.15 as gains 3 vaporatio 74.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | culation of the Coulation of the Coulati | of (65)m ts Apr 164.12 ppendix 31.15 Appendix 54.15 5a) 3 tive valu -109.41                             | only if constructions  | Jun 164.12 ion L9 o 19.66 uation L 302.23 tion L15 54.15  3 ble 5) -109.41     | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15 | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also<br>281.44<br>), also se<br>54.15<br>3 | Sep 164.12 Table 5 37.06 see Tal 291.42 ee Table 54.15 3 -109.41            | Oct 164.12 47.06 ble 5 312.65 5 -109.41 63.79 | Nov<br>164.12<br>54.92<br>339.46<br>54.15<br>3 | Dec 164.12 58.55 364.66 54.15 3 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |
| Metabolic gain  Jan  (66)m= 164.12  Lighting gains  (67)m= 56.97  Appliances ga  (68)m= 381.49  Cooking gains  (69)m= 54.15  Pumps and fa  (70)m= 3  Losses e.g. e  (71)m= -109.41  Water heating  (72)m= 77.05 | res (Table Feb 164.12 (calcula 50.6 ains (calcula 54.15 as (calcula 54.15 as gains 3 avaporatio 74.75 gains (Table Feb 164.12 as (calcula 54.15 as gains 3 avaporatio 74.75 as (calcula 54.15 as gains 64.15 as gains 64 | culation of the Coulation of the Coulati | of (65)m ts Apr 164.12 ppendix 31.15 Appendix 54.15 5a) 3 tive valu -109.41                             | only if constructions  | Jun 164.12 ion L9 o 19.66 uation L 302.23 tion L15 54.15  3 ble 5) -109.41     | Jul<br>164.12<br>r L9a), a<br>21.24<br>13 or L1<br>285.4<br>or L15a)<br>54.15 | Aug<br>164.12<br>Iso see<br>27.61<br>3a), also<br>281.44<br>), also se<br>54.15<br>3 | Sep 164.12 Table 5 37.06 see Tal 291.42 ee Table 54.15 3 -109.41            | Oct 164.12 47.06 ble 5 312.65 5 -109.41 63.79 | Nov<br>164.12<br>54.92<br>339.46<br>54.15<br>3 | Dec 164.12 58.55 364.66 54.15 3 | eating        | (66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|----------------------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 12.93            | x | 0.63           | x | 0.7            | =        | 74.52        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 24.22            | x | 0.63           | x | 0.7            | <b>=</b> | 139.61       | (75) |
| Northeast 0.9x 0.77                    | x | 18.86      | x | 43.36            | x | 0.63           | x | 0.7            | <u> </u> | 249.91       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 72.26            | x | 0.63           | x | 0.7            | ] =      | 416.52       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 94.65            | x | 0.63           | x | 0.7            | ] =      | 545.55       | (75) |
| Northeast 0.9x 0.77                    | x | 18.86      | x | 108.13           | x | 0.63           | x | 0.7            | =        | 623.24       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 99.28            | x | 0.63           | x | 0.7            | =        | 572.24       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 80.36            | x | 0.63           | x | 0.7            | =        | 463.16       | (75) |
| Northeast 0.9x 0.77                    | x | 18.86      | x | 56.56            | x | 0.63           | x | 0.7            | =        | 326.01       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 31.11            | x | 0.63           | x | 0.7            | =        | 179.29       | (75) |
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 16.69            | x | 0.63           | x | 0.7            | =        | 96.21        | (75) |
| Northeast <sub>0.9x</sub> 0.77         | x | 18.86      | x | 10.44            | x | 0.63           | x | 0.7            | =        | 60.16        | (75) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 40.57            | x | 0.63           | x | 0.7            | =        | 34.22        | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 63.28            | x | 0.63           | x | 0.7            | =        | 53.37        | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 85.85            | x | 0.63           | x | 0.7            | =        | 72.41        | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 108.59           | x | 0.63           | x | 0.7            | =        | 91.59        | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 119.53           | x | 0.63           | x | 0.7            | =        | 100.82       | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 127.75           | x | 0.63           | x | 0.7            | =        | 107.75       | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 120.63           | x | 0.63           | x | 0.7            | =        | 101.75       | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 111.38           | x | 0.63           | x | 0.7            | =        | 93.95        | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 99.66            | x | 0.63           | x | 0.7            | =        | 84.06        | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 73.37            | x | 0.63           | x | 0.7            | =        | 61.89        | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 49.78            | x | 0.63           | x | 0.7            | =        | 41.99        | (77) |
| Southeast 0.9x 0.77                    | x | 2.76       | x | 34.39            | x | 0.63           | x | 0.7            | =        | 29.01        | (77) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 40.57            | ] | 0.63           | X | 0.7            | =        | 96.47        | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 63.28            | ] | 0.63           | x | 0.7            | =        | 150.45       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 85.85            | ] | 0.63           | X | 0.7            | =        | 204.12       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 108.59           | ] | 0.63           | X | 0.7            | =        | 258.18       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 119.53           | ] | 0.63           | X | 0.7            | =        | 284.21       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | X | 127.75           | ] | 0.63           | X | 0.7            | =        | 303.74       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | X | 120.63           | ] | 0.63           | X | 0.7            | =        | 286.83       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 111.38           | ] | 0.63           | X | 0.7            | =        | 264.83       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 99.66            | ] | 0.63           | X | 0.7            | =        | 236.97       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 73.37            | ] | 0.63           | X | 0.7            | =        | 174.46       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 49.78            | ] | 0.63           | x | 0.7            | =        | 118.35       | (79) |
| Southwest <sub>0.9x</sub> 0.77         | X | 7.78       | x | 34.39            | ] | 0.63           | x | 0.7            | =        | 81.78        | (79) |
| Northwest 0.9x 0.77                    | X | 0.69       | x | 12.93            | x | 0.63           | x | 0.7            | =        | 2.73         | (81) |
| Northwest 0.9x 0.77                    | X | 0.69       | x | 24.22            | x | 0.63           | x | 0.7            | ] =      | 5.11         | (81) |
| Northwest 0.9x 0.77                    | X | 0.69       | × | 43.36            | × | 0.63           | X | 0.7            | =        | 9.14         | (81) |

| _                         |            |            |            |           |         |         |           |                                                   |                                              |           |            |              |                    |         |       |      |
|---------------------------|------------|------------|------------|-----------|---------|---------|-----------|---------------------------------------------------|----------------------------------------------|-----------|------------|--------------|--------------------|---------|-------|------|
| Northwest <sub>0.9x</sub> | 0.77       | Х          | 0.6        | 9         | x       | 7       | 2.26      | X                                                 |                                              | 0.63      | X          | 0.7          | =                  |         | 15.24 | (81) |
| Northwest 0.9x            | 0.77       | X          | 0.6        | 9         | x       | 9       | 4.65      | X                                                 |                                              | 0.63      | х          | 0.7          | =                  |         | 19.96 | (81) |
| Northwest 0.9x            | 0.77       | X          | 0.6        | 9         | x       | 10      | 08.13     | X                                                 |                                              | 0.63      | х          | 0.7          | =                  | :       | 22.8  | (81) |
| Northwest 0.9x            | 0.77       | X          | 0.6        | 9         | x       | 9       | 9.28      | X                                                 |                                              | 0.63      | x          | 0.7          | -                  | :       | 20.94 | (81) |
| Northwest 0.9x            | 0.77       | X          | 0.6        | 9         | x       | 8       | 0.36      | X                                                 |                                              | 0.63      | x          | 0.7          | -                  |         | 16.94 | (81) |
| Northwest 0.9x            | 0.77       | X          | 0.6        | 9         | x       | 5       | 6.56      | X                                                 |                                              | 0.63      | х          | 0.7          | -                  |         | 11.93 | (81) |
| Northwest 0.9x            | 0.77       | X          | 0.6        | 9         | x       | 3       | 1.11      | X                                                 |                                              | 0.63      | x [        | 0.7          |                    |         | 6.56  | (81) |
| Northwest 0.9x            | 0.77       | X          | 0.6        | 9         | x       | 1       | 6.69      | X                                                 |                                              | 0.63      | x [        | 0.7          |                    | :       | 3.52  | (81) |
| Northwest 0.9x            | 0.77       | X          | 0.6        | 9         | x       | 1       | 0.44      | X                                                 |                                              | 0.63      | x          | 0.7          | -                  | :       | 2.2   | (81) |
|                           |            |            |            |           |         |         |           |                                                   |                                              |           |            |              |                    |         |       |      |
| Solar gains in            | watts, ca  | alculated  | for eacl   | n month   |         | _       |           | (83)m                                             | n = Su                                       | ım(74)m . | (82)m      | _            |                    | _       |       |      |
| (83)m= 207.93             | 348.54     | 535.59     | 781.53     | 950.54    | 10      | 57.53   | 981.75    | 838                                               | .89                                          | 658.97    | 422.19     | 260.07       | 173.1              | 5       |       | (83) |
| Total gains – ir          | nternal a  | nd solar   | (84)m =    | (73)m     | + (8    | 33)m    | , watts   |                                                   |                                              |           |            | _            |                    | _       |       |      |
| (84)m= 835.29             | 971.19     | 1134.05    | 1342.28    | 1472.4    | 15      | 44.64   | 1448.59   | 1314                                              | 4.58                                         | 1156.38   | 957.55     | 837.67       | 782.9 <sup>-</sup> | 7       |       | (84) |
| 7. Mean inter             | nal temp   | erature    | (heating   | season    | )       |         |           |                                                   |                                              |           |            |              |                    |         |       |      |
| Temperature               | during h   | eating p   | eriods ir  | the livi  | ng a    | area f  | rom Tab   | ole 9,                                            | , Th′                                        | I (°C)    |            |              |                    |         | 21    | (85) |
| Utilisation fac           | tor for g  | ains for I | iving are  | a, h1,m   | (se     | ee Ta   | ble 9a)   |                                                   |                                              |           |            |              |                    |         |       |      |
| Jan                       | Feb        | Mar        | Apr        | May       | Γ,      | Jun     | Jul       | A                                                 | ug                                           | Sep       | Oct        | Nov          | Dec                | ;       |       |      |
| (86)m= 0.94               | 0.92       | 0.87       | 0.77       | 0.64      | С       | ).47    | 0.35      | 0.3                                               | 38                                           | 0.62      | 0.82       | 0.91         | 0.95               |         |       | (86) |
| Mean internal             | temper     | ature in   | living are | ea T1 (fo | ollo:   | w ste   | ns 3 to 7 | in T                                              | able                                         | . 9c)     |            |              | •                  | _       |       |      |
| (87)m= 18.32              | 18.6       | 19.2       | 19.88      | 20.45     | _       | 0.82    | 20.94     | 20.                                               | $\overline{}$                                | 20.63     | 19.89      | 18.97        | 18.23              |         |       | (87) |
| Tomporoturo               | during b   | ooting n   | oriodo ir  | root of   | طيد     | ممنالم  | from To   | ا مام د                                           | <br>> Th                                     | )2 (°C)   |            | 1            | l                  |         |       |      |
| Temperature (88)m= 19.68  | 19.68      | 19.68      | 19.68      | 19.68     | _       | 9.68    | 19.68     | 19.                                               |                                              | 19.68     | 19.68      | 19.68        | 19.68              |         |       | (88) |
| ` '                       |            |            |            |           |         |         |           | L                                                 | <u> </u>                                     |           | .0.00      | 1 .0.00      | 1 .0.00            |         |       | ()   |
| Utilisation fac           |            |            |            |           |         |         |           | r –                                               | <u>,,                                   </u> | 0.50      | 0.70       | 1 00         | 0.04               | 7       |       | (00) |
| (89)m= 0.93               | 0.9        | 0.84       | 0.74       | 0.58      |         | ).38    | 0.23      | 0.2                                               |                                              | 0.53      | 0.78       | 0.9          | 0.94               |         |       | (89) |
| Mean internal             | <u> </u>   |            |            |           | Ť       |         |           | <del>i                                     </del> |                                              |           | e 9c)      | ,            |                    | _       |       |      |
| (90)m= 16.2               | 16.6       | 17.46      | 18.38      | 19.14     | 1:      | 9.55    | 19.66     | 19.                                               | 65                                           | 19.37     | 18.43      | 17.14        | 16.07              |         |       | (90) |
|                           |            |            |            |           |         |         |           |                                                   |                                              | f         | LA = Livii | ng area ÷ (4 | 4) =               |         | 0.3   | (91) |
| Mean internal             | temper     | ature (fo  | r the wh   | ole dwe   | lling   | g) = fl | _A × T1   | + (1                                              | – fL                                         | A) × T2   |            |              |                    |         |       |      |
| (92)m= 16.82              | 17.2       | 17.97      | 18.83      | 19.53     | 1:      | 9.93    | 20.04     | 20.                                               | 03                                           | 19.75     | 18.86      | 17.68        | 16.71              |         |       | (92) |
| Apply adjustm             | nent to th | ne mean    | internal   | temper    | atu     | re fro  | m Table   | 4e,                                               | whe                                          | re appro  | priate     | -            |                    | _       |       |      |
| (93)m= 16.67              | 17.05      | 17.82      | 18.68      | 19.38     | 1       | 9.78    | 19.89     | 19.                                               | 88                                           | 19.6      | 18.71      | 17.53        | 16.56              |         |       | (93) |
| 8. Space hear             |            |            |            |           |         |         |           |                                                   |                                              |           |            |              |                    |         |       |      |
| Set Ti to the r           |            |            |            |           | ed      | at ste  | ep 11 of  | Tabl                                              | le 9b                                        | , so tha  | t Ti,m=    | (76)m an     | d re-ca            | lculate | 9     |      |
| the utilisation  Jan      | Feb        | Mar        | Apr        | May       | Г       | Jun     | Jul       | Λ.                                                |                                              | Sep       | Oct        | Nov          | Dec                | П       |       |      |
| Utilisation fac           |            |            |            | iviay     | <u></u> | Juli    | Jui       | A                                                 | ug                                           | Sep       | Oct        | INOV         | Dec                |         |       |      |
| (94)m= 0.9                | 0.86       | 0.8        | 0.7        | 0.57      |         | 0.39    | 0.25      | 0.2                                               | 28                                           | 0.53      | 0.75       | 0.86         | 0.91               |         |       | (94) |
| Useful gains,             |            |            |            |           |         |         |           |                                                   |                                              |           |            | 1 3.33       |                    |         |       |      |
| (95)m= 748.07             | 839.65     | 910.69     | 943.56     | 834.56    | 59      | 95.86   | 359.22    | 367                                               | .55                                          | 607.66    | 716.8      | 720.84       | 709.4              |         |       | (95) |
| Monthly avera             | age exte   | rnal tem   | perature   | from T    | able    | <br>e 8 |           | · · · · ·                                         |                                              |           |            | 1            |                    |         |       |      |
| (96)m= 4.6                | 5.1        | 7          | 9.4        | 12.4      | _       | 15.4    | 17.4      | 17.                                               | .3                                           | 14.7      | 11.1       | 7.4          | 4.5                |         |       | (96) |
| Heat loss rate            | for mea    | an intern  | al tempe   | erature,  | Lm      | , W =   | =[(39)m : | x [(9                                             | 3)m-                                         | - (96)m   | ]          |              |                    | _       |       |      |
| (97)m= 1816.31            | 1797.26    | 1629.56    | 1393.59    | 1045.96   | 65      | 55.24   | 372.83    | 385                                               | .52                                          | 734.2     | 1142.41    | 1517.89      | 1810.5             | 7       |       | (97) |
|                           |            |            |            |           |         |         |           |                                                   |                                              |           |            |              |                    | _       |       |      |

| Space heating                    | g require           | ement fo           | r each n    | nonth, k\          | Wh/mon   | th = 0.02 | 24 x [(97)    | )m – (95          | )m] x (4   | 1)m                     |                        |         |        |
|----------------------------------|---------------------|--------------------|-------------|--------------------|----------|-----------|---------------|-------------------|------------|-------------------------|------------------------|---------|--------|
| (98)m= 794.77                    | 643.51              | 534.84             | 324.02      | 157.28             | 0        | 0         | 0             | 0                 | 316.65     | 573.88                  | 819.27                 |         |        |
|                                  | -                   | -                  | <u>-</u>    |                    | -        | _         | Tota          | l per year        | (kWh/year  | ) = Sum(9               | 8) <sub>15,912</sub> = | 4164.22 | (98)   |
| Space heating                    | g require           | ement in           | kWh/m²      | <sup>2</sup> /year |          |           |               |                   |            |                         |                        | 41.83   | (99)   |
| 9a. Energy red                   | quiremer            | nts – Indi         | ividual h   | eating sy          | ystems i | ncluding  | micro-C       | HP)               |            |                         |                        |         |        |
| Space heatir                     | _                   |                    |             |                    |          |           |               |                   |            |                         | r                      |         | _      |
| Fraction of sp                   |                     |                    |             |                    | mentary  | -         |               | 4                 |            |                         | ļ                      | 0       | (201)  |
| Fraction of sp                   |                     |                    | -           | ` ,                |          |           | (202) = 1 -   |                   | (222)      |                         | ļ                      | 1       | (202)  |
| Fraction of to                   |                     | •                  | -           |                    |          |           | (204) = (204) | 02) <b>x</b> [1 – | (203)] =   |                         |                        | 1       | (204)  |
| Efficiency of r                  |                     |                    | •           |                    |          |           |               |                   |            |                         | ļ                      | 93.5    | (206)  |
| Efficiency of s                  | seconda             | ry/suppl           | ementar     | y heating          | g systen | າ, %      |               |                   |            |                         |                        | 0       | (208)  |
| Jan                              | Feb                 | Mar                | Apr         | May                | Jun      | Jul       | Aug           | Sep               | Oct        | Nov                     | Dec                    | kWh/ye  | ear    |
| Space heating                    | g require<br>643.51 | ement (c           | alculate    | d above)           | 0        | 0         | 0             | 0                 | 316.65     | 573.88                  | 819.27                 |         |        |
|                                  |                     |                    |             |                    | 0        | U         | U             | 0                 | 310.03     | 373.00                  | 019.21                 |         | (044)  |
| $(211)m = \{[(98) \\ 850.03]$    | 688.24              | 572.02             | 346.54      | 168.22             | 0        | 0         | 0             | 0                 | 338.67     | 613.77                  | 876.22                 |         | (211)  |
|                                  |                     |                    |             |                    |          |           |               |                   | ar) =Sum(2 |                         |                        | 4453.72 | (211)  |
| Space heating                    | g fuel (s           | econdar            | y), kWh/    | month              |          |           |               |                   |            |                         | L                      |         |        |
| $= \{[(98) \text{m x } (20)]\}$  | •                   |                    | • •         |                    |          |           |               |                   |            |                         |                        |         |        |
| (215)m= 0                        | 0                   | 0                  | 0           | 0                  | 0        | 0         | 0             | 0                 | 0          | 0                       | 0                      |         | _      |
|                                  |                     |                    |             |                    |          |           | Tota          | I (kWh/yea        | ar) =Sum(2 | 215) <sub>15,1012</sub> | F                      | 0       | (215)  |
| Water heating                    |                     | tor (oolo          | ulated al   | hovo)              |          |           |               |                   |            |                         |                        |         |        |
| Output from wa                   | 154.24              | 160.1              | 140.89      | 136.16             | 118.93   | 111.62    | 126.07        | 126.98            | 146.23     | 157.92                  | 170.79                 |         |        |
| Efficiency of w                  | ater hea            | ıter               | !           |                    |          |           |               |                   | ļ          |                         |                        | 87.3    | (216)  |
| (217)m= 89.9                     | 89.86               | 89.74              | 89.51       | 88.99              | 87.3     | 87.3      | 87.3          | 87.3              | 89.46      | 89.79                   | 89.93                  |         | (217)  |
| Fuel for water                   | -                   |                    |             |                    |          |           |               |                   |            |                         |                        |         |        |
| (219)m = (64)<br>(219)m = 195.66 | m x 100             | ) ÷ (217)<br>178.4 | m<br>157.41 | 153.01             | 136.23   | 127.86    | 144.41        | 145.45            | 163.45     | 175.88                  | 189.91                 |         |        |
| ( ),                             |                     | <u> </u>           | <u> </u>    |                    |          |           |               | I = Sum(2         |            |                         |                        | 1939.32 | (219)  |
| Annual totals                    |                     |                    |             |                    |          |           |               |                   | k\         | Wh/year                 |                        | kWh/yea |        |
| Space heating                    | fuel use            | ed, main           | system      | 1                  |          |           |               |                   |            | -                       |                        | 4453.72 |        |
| Water heating                    | fuel use            | d                  |             |                    |          |           |               |                   |            |                         |                        | 1939.32 |        |
| Electricity for p                | oumps, f            | ans and            | electric    | keep-ho            | t        |           |               |                   |            |                         | •                      |         |        |
| central heatin                   | g pump              | :                  |             |                    |          |           |               |                   |            |                         | 30                     |         | (230c) |
| boiler with a f                  | an-assis            | sted flue          |             |                    |          |           |               |                   |            |                         | 45                     |         | (230e) |
| Total electricity                | y for the           | above, I           | kWh/yea     | r                  |          |           | sum           | of (230a).        | (230g) =   |                         |                        | 75      | (231)  |
| Electricity for li               | ighting             |                    |             |                    |          |           |               |                   |            |                         | j                      | 402.42  | (232)  |
| Total delivered                  | d energy            | for all u          | ses (211    | )(221)             | + (231)  | + (232).  | (237b)        | =                 |            |                         | ļ                      | 6870.46 | (338)  |
| 10a. Fuel cos                    | sts - <u>indi</u> v | vidual he          | eating sy   | stems:             |          |           |               |                   |            |                         | L                      |         |        |

|                                                                                                                                                                                                                                                                                          | <b>Fuel</b><br>kWh/year                                                                                                                                 | Fuel Price<br>(Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fuel Cost<br>£/year                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Space heating - main system 1                                                                                                                                                                                                                                                            | (211) x                                                                                                                                                 | 3.74 × 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01 = 166.57 (240)                                                                                                                                           |
| Space heating - main system 2                                                                                                                                                                                                                                                            | (213) x                                                                                                                                                 | 0 x 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 (241)                                                                                                                                                     |
| Space heating - secondary                                                                                                                                                                                                                                                                | (215) x                                                                                                                                                 | 20.43 × 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 (242)                                                                                                                                                     |
| Water heating cost (other fuel)                                                                                                                                                                                                                                                          | (219)                                                                                                                                                   | 3.74 × 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 01 = 72.53 (247)                                                                                                                                            |
| Pumps, fans and electric keep-hot                                                                                                                                                                                                                                                        | (231)                                                                                                                                                   | 0 x 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 01 = 15.32 (249)                                                                                                                                            |
| (if off-peak tariff, list each of (230a) to (23<br>Energy for lighting                                                                                                                                                                                                                   | 30g) separately as applicable and a                                                                                                                     | apply fuel price according x 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |
| Additional standing charges (Table 12)                                                                                                                                                                                                                                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95 (251)                                                                                                                                                    |
| Appendix Q items: repeat lines (253) and                                                                                                                                                                                                                                                 | l (254) as needed                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                          | (245)(247) + (250)(254) =                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 431.64 (255)                                                                                                                                                |
| 11a. SAP rating - individual heating syst                                                                                                                                                                                                                                                | tems                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                             |
| Energy cost deflator (Table 12)                                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.42 (256)                                                                                                                                                  |
| Energy cost factor (ECF)                                                                                                                                                                                                                                                                 | $[(255) \times (256)] \div [(4) + 45.0] =$                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.18 (257)                                                                                                                                                  |
| SAP rating (Section 12)                                                                                                                                                                                                                                                                  |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83.57 (258)                                                                                                                                                 |
| 12a. CO2 emissions – Individual heating                                                                                                                                                                                                                                                  | g systems including micro-CHP                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                          | Energy                                                                                                                                                  | Emission factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Emissions                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                          | kWh/year                                                                                                                                                | kg CO2/kWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kg CO2/year                                                                                                                                                 |
| Space heating (main system 1)                                                                                                                                                                                                                                                            | (211) x                                                                                                                                                 | 0.216 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 962 (261)                                                                                                                                                   |
| Space heating (main system 1) Space heating (secondary)                                                                                                                                                                                                                                  | •                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                          | (211) x                                                                                                                                                 | 0.216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 962 (261)                                                                                                                                                   |
| Space heating (secondary)                                                                                                                                                                                                                                                                | (211) x<br>(215) x                                                                                                                                      | 0.216 = 0.519 = 0.216 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 962 (261)                                                                                                                                                   |
| Space heating (secondary) Water heating                                                                                                                                                                                                                                                  | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)                                                                                          | 0.216 = 0.519 = 0.216 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 962 (261)<br>0 (263)<br>418.89 (264)                                                                                                                        |
| Space heating (secondary) Water heating Space and water heating                                                                                                                                                                                                                          | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)                                                                                          | 0.216 = 0.519 = 0.216 = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 962 (261)<br>0 (263)<br>418.89 (264)<br>1380.9 (265)                                                                                                        |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric ke                                                                                                                                                                              | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>ep-hot (231) x<br>(232) x                                                             | 0.216 = 0.519 = 0.519 = 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)                                                                                                 |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric kee                                                                                                                                                                             | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>ep-hot (231) x<br>(232) x                                                             | 0.216 = 0.519 = 0.519 = 0.519 = 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)  208.86 (268)                                                                                   |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric ke Electricity for lighting Total CO2, kg/year                                                                                                                                  | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>ep-hot (231) x<br>(232) x                                                             | 0.216 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)  208.86 (268)  1628.68 (272)                                                                    |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric kee Electricity for lighting Total CO2, kg/year Dwelling CO2 Emission Rate                                                                                                      | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>ep-hot (231) x<br>(232) x                                                             | 0.216 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)  208.86 (268)  1628.68 (272)  16.36 (273)                                                       |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric ke Electricity for lighting Total CO2, kg/year Dwelling CO2 Emission Rate El rating (section 14)                                                                                | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>ep-hot (231) x<br>(232) x                                                             | 0.216 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)  208.86 (268)  1628.68 (272)  16.36 (273)                                                       |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric ke Electricity for lighting Total CO2, kg/year Dwelling CO2 Emission Rate El rating (section 14)                                                                                | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>eep-hot (231) x<br>(232) x                                                            | 0.216 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)  208.86 (268)  1628.68 (272)  16.36 (273)  85 (274)  P. Energy                                  |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric kee Electricity for lighting Total CO2, kg/year Dwelling CO2 Emission Rate El rating (section 14)  13a. Primary Energy                                                          | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>ep-hot (231) x<br>(232) x<br>s<br>(232) x                                             | 0.216 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)  208.86 (268)  1628.68 (272)  16.36 (273)  85 (274)  P. Energy kWh/year                         |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric kee Electricity for lighting Total CO2, kg/year Dwelling CO2 Emission Rate El rating (section 14)  13a. Primary Energy  Space heating (main system 1)                           | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>ep-hot (231) x<br>(232) x<br>s<br>(232) x<br>Energy<br>kWh/year<br>(211) x            | 0.216 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)  208.86 (268)  1628.68 (272)  16.36 (273)  85 (274)  P. Energy kWh/year  5433.53 (261)          |
| Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric kee Electricity for lighting Total CO2, kg/year Dwelling CO2 Emission Rate El rating (section 14)  13a. Primary Energy  Space heating (main system 1) Space heating (secondary) | (211) x<br>(215) x<br>(219) x<br>(261) + (262) + (263) + (264)<br>ep-hot (231) x<br>(232) x<br>s<br>(232) x<br>Energy<br>kWh/year<br>(211) x<br>(215) x | 0.216 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 = 0.519 | 962 (261)  0 (263)  418.89 (264)  1380.9 (265)  38.93 (267)  208.86 (268)  1628.68 (272)  16.36 (273)  85 (274)  P. Energy kWh/year  5433.53 (261)  0 (263) |

Electricity for lighting (232) x 0 = 1235.43 (268) 'Total Primary Energy sum of (265)...(271) = 9265.19 (272) **Primary energy kWh/m²/year** (272)  $\div$  (4) = 93.07 (273)

|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | User Details:                   |                        |                       |              |      |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|-----------------------|--------------|------|
| Assessor Name:                                            | Harry Hinchcliffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stroma Nu                       | mber:                  | STRO                  | 034627       |      |
| Software Name:                                            | Stroma FSAP 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Software V                      | ersion:                | Versio                | n: 1.0.5.16  |      |
|                                                           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Property Address: 1559          | 2 - L1a Assessn        | nent                  |              |      |
| Address :                                                 | New Dwelling @, 34 Summ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ner House Way, Langle           | y, WD5 0DY             |                       |              |      |
| 1. Overall dwelling dime                                  | nsions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                        |                       |              |      |
| Ground floor                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Area(m²)  52.34 (1a) x          | Av. Height(n           | <b>n)</b><br>(2a) = [ | Volume(m³)   | (3a) |
| First floor                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                        | <b>-</b>              |              | Ⅎ    |
|                                                           | -) . (4 -) . (4 -) . (4 -) (4 -)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.21 (1b) x                    | 2.65                   | (2b) =                | 125.11       | (3b) |
| ·                                                         | a)+(1b)+(1c)+(1d)+(1e)+(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                               |                        | _                     |              | _    |
| Dwelling volume                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3a)+(                          | 3b)+(3c)+(3d)+(3e)+    | +(3n) =               | 250.2        | (5)  |
| 2. Ventilation rate:                                      | main cocondo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m. othor                        | total                  |                       | m3 nor hou   |      |
|                                                           | main seconda<br>heating heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ry other                        | total                  | _                     | m³ per hou   | _    |
| Number of chimneys                                        | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 0 =                           | 0                      | x 40 =                | 0            | (6a) |
| Number of open flues                                      | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 0 =                           | 0                      | x 20 =                | 0            | (6b) |
| Number of intermittent fa                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 3                      | x 10 =                | 30           | (7a) |
| Number of passive vents                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | 0                      | x 10 =                | 0            | (7b) |
| Number of flueless gas fi                                 | res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 0                      | x 40 =                | 0            | (7c) |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                        | A ! I                 |              |      |
| 1.66                                                      | (0-)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 | 7-1.77.1.4                      |                        | -                     | anges per ho | _    |
| •                                                         | ys, flues and fans = (6a)+(6b)+(<br>een carried out or is intended, proced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 30 se from (9) to (16) | ÷ (5) =               | 0.12         | (8)  |
| Number of storeys in the                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ou to (11), outor mod continue  | 7 110111 (0) 10 (10)   | Γ                     | 0            | (9)  |
| Additional infiltration                                   | <b>5</b> (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | [                      | (9)-1]x0.1 =          | 0            | (10) |
| Structural infiltration: 0                                | .25 for steel or timber frame o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r 0.35 for masonry con          | struction              |                       | 0            | (11) |
| if both types of wall are pa<br>deducting areas of openia | resent, use the value corresponding t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to the greater wall area (after |                        |                       |              |      |
|                                                           | loor, enter 0.2 (unsealed) or (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 (sealed), else enter        | 0                      | Γ                     | 0            | (12) |
| If no draught lobby, en                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,                             |                        | <u> </u>              | 0            | (13) |
| • •                                                       | s and doors draught stripped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                        |                       | 0            | (14) |
| Window infiltration                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25 - [0.2 x (14)              | ÷ 100] =               |                       | 0            | (15) |
| Infiltration rate                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (8) + (10) + (11) +             | - (12) + (13) + (15) = | <u> </u>              | 0            | (16) |
| Air permeability value,                                   | q50, expressed in cubic metr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es per hour per square          | metre of envelo        | pe area               | 5            | (17) |
| If based on air permeabil                                 | ity value, then $(18) = [(17) \div 20] +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (8), otherwise (18) = (16)      |                        | · [                   | 0.37         | (18) |
| Air permeability value applie                             | s if a pressurisation test has been do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne or a degree air permeabil    | ity is being used      | -                     |              | _    |
| Number of sides sheltere                                  | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                        |                       | 1            | (19) |
| Shelter factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (20) = 1 - [0.075)              |                        |                       | 0.92         | (20) |
| Infiltration rate incorporat                              | ing shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(21) = (18) \times (20)$       | =                      | [                     | 0.34         | (21) |
| Infiltration rate modified f                              | or monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1                             |                        |                       |              |      |
| Jan Feb                                                   | Mar Apr May Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jul Aug Se                      | o Oct No               | v Dec                 |              |      |
| Monthly average wind sp                                   | eed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                       |              |      |

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

| (22a)m= 1.27 1.25 1.23 1.1 1.08 0.95 0.95 0.92 1 1.08 1.12 1.18  Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m                                                                                                                                                                                                   |                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m                                                                                                                                                                                                                                                                    |                                                              |
|                                                                                                                                                                                                                                                                                                                                                      |                                                              |
| 0.44                                                                                                                                                                                                                                                                                                                                                 |                                                              |
| Calculate effective air change rate for the applicable case  If mechanical ventilation:                                                                                                                                                                                                                                                              | (23                                                          |
| If mechanical ventilation: $0$ If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) $0$                                                                                                                                                                                                           | (23i                                                         |
| If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =                                                                                                                                                                                                                                                         | (23)                                                         |
| a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [1 – (23c) ÷ 100]                                                                                                                                                                                                                                          | (230                                                         |
| (24a)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                | (24                                                          |
| b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m + (23b)                                                                                                                                                                                                                                                             |                                                              |
| (24b)m= 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                        | (24                                                          |
| c) If whole house extract ventilation or positive input ventilation from outside                                                                                                                                                                                                                                                                     |                                                              |
| if $(22b)m < 0.5 \times (23b)$ , then $(24c) = (23b)$ ; otherwise $(24c) = (22b)m + 0.5 \times (23b)$                                                                                                                                                                                                                                                |                                                              |
| (24c)m= 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                      | (240                                                         |
| d) If natural ventilation or whole house positive input ventilation from loft                                                                                                                                                                                                                                                                        |                                                              |
| if $(22b)m = 1$ , then $(24d)m = (22b)m$ otherwise $(24d)m = 0.5 + [(22b)m^2 \times 0.5]$<br>(24d)m = 0.6                                                                                                                                                                                                                                            | (240                                                         |
|                                                                                                                                                                                                                                                                                                                                                      | (240                                                         |
| Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25)  (25)m= 0.6 0.59 0.59 0.57 0.57 0.55 0.55 0.56 0.57 0.57 0.58                                                                                                                                                                                                         | (25)                                                         |
|                                                                                                                                                                                                                                                                                                                                                      | (20)                                                         |
| 3. Heat losses and heat loss parameter:                                                                                                                                                                                                                                                                                                              |                                                              |
|                                                                                                                                                                                                                                                                                                                                                      | Χk<br>⁄κ                                                     |
| area (m²)                                                                                                                                                                                                                                                                                                                                            | 11                                                           |
| area (m²) $m^2$ A , $m^2$ W/m2K (W/K) kJ/m²·K kJ.  Doors $2.1$ x $1$ = $2.1$                                                                                                                                                                                                                                                                         | (26)                                                         |
|                                                                                                                                                                                                                                                                                                                                                      |                                                              |
| Doors $2.1 	 x 	 1 = 2.1$<br>Windows Type 1 $5.89 	 x^{1/[1/(1.4) + 0.04]} = 7.81$                                                                                                                                                                                                                                                                   | (26)<br>(27)                                                 |
| Doors                                                                                                                                                                                                                                                                                                                                                | (26)<br>(27)<br>(27)                                         |
| Doors                                                                                                                                                                                                                                                                                                                                                | (26)<br>(27)<br>(27)<br>(27)                                 |
| Doors                                                                                                                                                                                                                                                                                                                                                | (26)<br>(27)<br>(27)<br>(27)<br>(27)                         |
| Doors                                                                                                                                                                                                                                                                                                                                                | (26)<br>(27)<br>(27)<br>(27)<br>(27)                         |
| Doors       2.1       x 1       = 2.1         Windows Type 1 $5.89$ $x1/[1/(1.4) + 0.04] = 7.81$ Windows Type 2 $14.28$ $x1/[1/(1.4) + 0.04] = 18.93$ Windows Type 3 $2.09$ $x1/[1/(1.4) + 0.04] = 2.77$ Windows Type 4 $0.52$ $x1/[1/(1.4) + 0.04] = 0.69$ Floor $52.34$ $x$ $0.13$ = $6.8042$ Walls $154.05$ $24.88$ $129.17$ $x$ $0.18$ = $23.25$ | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)         |
| Doors  2.1                                                                                                                                                                                                                                                                                                                                           | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30) |
| Doors    2.1                                                                                                                                                                                                                                                                                                                                         | (26) (27) (27) (27) (28) (29) (30)                           |
| Doors  2.1                                                                                                                                                                                                                                                                                                                                           | (26)<br>(27)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30) |
| Doors    2.1                                                                                                                                                                                                                                                                                                                                         | (26)<br>(27)<br>(27)<br>(27)<br>(28)<br>(29)<br>(30)<br>(31) |
| Doors    2.1   x   1   =   2.1                                                                                                                                                                                                                                                                                                                       | (26) (27) (27) (27) (28) (29) (30) (31)                      |
| Doors    2.1                                                                                                                                                                                                                                                                                                                                         | (26) (27) (27) (27) (28) (29) (30) (31)                      |
| Doors    2.1   x   1   =   2.1                                                                                                                                                                                                                                                                                                                       | (26) (27) (27) (27) (28) (29) (30) (31)                      |
| Doors  2.1                                                                                                                                                                                                                                                                                                                                           | (26) (27) (27) (27) (28) (29) (30) (31)                      |

| Total f                                                                                                       | s or therma                                                                                                                    | ii briugirig                                                                                                                | are not kn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | own (36) =                                                                                                | = 0.05 x (3                                                       | 1)                                 |                                                  |                                               |                               |                         |                                       |         |         | _                                                            |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------|--------------------------------------------------|-----------------------------------------------|-------------------------------|-------------------------|---------------------------------------|---------|---------|--------------------------------------------------------------|
|                                                                                                               | abric he                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                   |                                    |                                                  |                                               | (33) +                        | (36) =                  |                                       |         | 82.01   | (37)                                                         |
| Ventila                                                                                                       | ation hea                                                                                                                      | it loss ca                                                                                                                  | alculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l monthly                                                                                                 | y<br>—                                                            |                                    |                                                  |                                               | ` '                           | = 0.33 × (              | 25)m x (5)                            |         |         |                                                              |
|                                                                                                               | Jan                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                       | May                                                               | Jun                                | Jul                                              | Aug                                           | Sep                           | Oct                     | Nov                                   | Dec     |         |                                                              |
| (38)m=                                                                                                        | 49.14                                                                                                                          | 48.83                                                                                                                       | 48.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.13                                                                                                     | 46.87                                                             | 45.64                              | 45.64                                            | 45.42                                         | 46.12                         | 46.87                   | 47.4                                  | 47.96   |         | (38)                                                         |
| Heat t                                                                                                        | ransfer c                                                                                                                      | oefficier                                                                                                                   | nt, W/K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |                                                                   |                                    |                                                  |                                               | (39)m                         | = (37) + (3             | 38)m                                  |         |         |                                                              |
| (39)m=                                                                                                        | 131.15                                                                                                                         | 130.85                                                                                                                      | 130.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 129.14                                                                                                    | 128.88                                                            | 127.66                             | 127.66                                           | 127.43                                        | 128.13                        | 128.88                  | 129.41                                | 129.97  |         |                                                              |
| Heat l                                                                                                        | oss para                                                                                                                       | meter (H                                                                                                                    | HLP), W/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ′m²K                                                                                                      |                                                                   |                                    |                                                  |                                               |                               | Average =<br>= (39)m ÷  | Sum(39) <sub>1</sub> . · (4)          | 12 /12= | 129.14  | (39)                                                         |
| (40)m=                                                                                                        | 1.32                                                                                                                           | 1.31                                                                                                                        | 1.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.3                                                                                                       | 1.29                                                              | 1.28                               | 1.28                                             | 1.28                                          | 1.29                          | 1.29                    | 1.3                                   | 1.31    |         |                                                              |
|                                                                                                               |                                                                                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                   |                                    |                                                  |                                               | ,                             | Average =               | Sum(40) <sub>1</sub> .                | 12 /12= | 1.3     | (40)                                                         |
| Numb                                                                                                          | er of day                                                                                                                      | s in mor                                                                                                                    | nth (Tab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | le 1a)                                                                                                    |                                                                   |                                    |                                                  |                                               |                               |                         | ī                                     |         |         | _                                                            |
|                                                                                                               | Jan                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                       | May                                                               | Jun                                | Jul                                              | Aug                                           | Sep                           | Oct                     | Nov                                   | Dec     |         |                                                              |
| (41)m=                                                                                                        | 31                                                                                                                             | 28                                                                                                                          | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                                                                                        | 31                                                                | 30                                 | 31                                               | 31                                            | 30                            | 31                      | 30                                    | 31      |         | (41)                                                         |
|                                                                                                               |                                                                                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                   |                                    |                                                  |                                               |                               |                         |                                       |         |         |                                                              |
| 4. W                                                                                                          | ater heat                                                                                                                      | ing ener                                                                                                                    | gy requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | irement:                                                                                                  |                                                                   |                                    |                                                  |                                               |                               |                         |                                       | kWh/ye  | ear:    |                                                              |
|                                                                                                               |                                                                                                                                |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                   |                                    |                                                  |                                               |                               |                         |                                       |         |         |                                                              |
|                                                                                                               | ned occu                                                                                                                       |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1 ove                                                                                                    | ( 0 0003                                                          | 140 v /TF                          | -A 42.0°                                         | \2\1 · 0 (                                    | 0012 v /                      | FFA 10                  |                                       | 74      |         | (42)                                                         |
|                                                                                                               | FA > 13.9<br>FA £ 13.9                                                                                                         |                                                                                                                             | + 1.76 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [1 - ехр                                                                                                  | (-0.0003                                                          | 349 X (11                          | -A -13.9                                         | )2)] + 0.0                                    | 013 X (                       | IFA -13.                | .9)                                   |         |         |                                                              |
|                                                                                                               | al averag                                                                                                                      | •                                                                                                                           | ater usad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ae in litre                                                                                               | s per da                                                          | ıv Vd.av                           | erage =                                          | (25 x N)                                      | + 36                          |                         | 90                                    | .16     |         | (43)                                                         |
|                                                                                                               | the annua                                                                                                                      |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                   |                                    |                                                  |                                               |                               | se target o             |                                       | .10     |         | (.0)                                                         |
| not mor                                                                                                       | e that 125                                                                                                                     | litres per p                                                                                                                | person per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | day (all w                                                                                                | ater use, l                                                       | not and co                         | ld)                                              |                                               |                               |                         |                                       |         |         |                                                              |
|                                                                                                               | Jan                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr                                                                                                       | May                                                               | Jun                                | Jul                                              | Aug                                           | Sep                           | Oct                     | Nov                                   | Dec     |         |                                                              |
| Hot wat                                                                                                       | er usage in                                                                                                                    | n litres per                                                                                                                | day for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ach month                                                                                                 | Vd,m = fa                                                         | ctor from 7                        | Table 1c x                                       | (43)                                          |                               |                         |                                       |         |         |                                                              |
| (44)m=                                                                                                        | 109.08                                                                                                                         | 105.11                                                                                                                      | 101.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 97.18                                                                                                     | 93.21                                                             | 89.25                              | 89.25                                            | 93.21                                         | 97.18                         | 101.15                  | 105.11                                | 109.08  |         |                                                              |
| Energy                                                                                                        | content of                                                                                                                     | hot water                                                                                                                   | used - cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | culated mo                                                                                                | onthly = 4.                                                       | 190 x Vd,r                         | n x nm x D                                       | Tm / 3600                                     |                               |                         | m(44) <sub>112</sub> =<br>ables 1b, 1 |         | 1189.97 | (44)                                                         |
| >                                                                                                             | 404.70                                                                                                                         | 141.48                                                                                                                      | 145.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 127.28                                                                                                    | 122.13                                                            | 105.39                             | 97.66                                            | 112.06                                        | 113.4                         | 132.16                  | 144.26                                | 156.66  |         |                                                              |
| (45)m =                                                                                                       | 1 101./01                                                                                                                      |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                   |                                    | 000                                              |                                               |                               |                         |                                       |         |         |                                                              |
| (45)m=                                                                                                        | 161.76                                                                                                                         | 141.40                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                  |                                                                   |                                    | !                                                |                                               | _                             | L<br>Total – Su         | l<br>m(45), ,,, ==                    |         | 1560 23 | (45)                                                         |
| , ,                                                                                                           | ntaneous w                                                                                                                     |                                                                                                                             | ng at point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of use (no                                                                                                | hot water                                                         | storage),                          | enter 0 in                                       | boxes (46)                                    |                               | Γotal = Su              | I<br>m(45) <sub>112</sub> =           |         | 1560.23 | (45)                                                         |
| If instan                                                                                                     | ntaneous w                                                                                                                     |                                                                                                                             | ng at point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of use (no                                                                                                | ) hot water<br>0                                                  | storage),                          | enter 0 in                                       | boxes (46,                                    |                               | Total = Su              | m(45) <sub>112</sub> =                | 0       | 1560.23 | (45)<br>(46)                                                 |
| If instant<br>(46)m=                                                                                          | ntaneous w                                                                                                                     | rater heatii<br>0                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                                   |                                    |                                                  | ` '                                           | to (61)                       |                         | · , ,                                 |         | 1560.23 |                                                              |
| If instant<br>(46)m=<br>Water                                                                                 | ntaneous w                                                                                                                     | ater heatii<br>0<br>loss:                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                         | 0                                                                 | 0                                  | 0                                                | 0                                             | 0 to (61)                     | 0                       | 0                                     |         | 1560.23 |                                                              |
| If instant (46)m= Water Storage                                                                               | otaneous w  0 storage                                                                                                          | o loss:                                                                                                                     | 0 includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o<br>ng any so                                                                                            | o<br>olar or W                                                    | 0<br>/WHRS                         | o<br>storage                                     | 0<br>within sa                                | 0 to (61)                     | 0                       | 0                                     | 0       | 1560.23 | (46)                                                         |
| If instant<br>(46)m=<br>Water<br>Storag                                                                       | otaneous w  0 storage ge volum                                                                                                 | o loss: e (litres) eating a                                                                                                 | 0 includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 ng any so                                                                                               | olar or W                                                         | 0<br>/WHRS<br>nter 110             | o<br>storage                                     | 0<br>within sa<br>(47)                        | 0<br>nme ves                  | 0<br>sel                | 0                                     | 0       | 1560.23 | (46)                                                         |
| If instant (46)m= Water Storag If com Other Water                                                             | otaneous w  0 storage ge volum munity h wise if no                                                                             | o loss: e (litres) eating a stored loss:                                                                                    | 0 includir nd no ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o<br>ng any so<br>ank in dw<br>er (this in                                                                | 0<br>olar or W<br>relling, e                                      | 0<br>/WHRS<br>nter 110<br>nstantar | o<br>storage<br>litres in<br>neous co            | 0<br>within sa<br>(47)                        | 0<br>nme ves                  | 0<br>sel                | 0                                     | 0       | 1560.23 | (46)                                                         |
| If instant (46)m= Water Storag If com Other Water                                                             | otaneous w  o storage ge volum munity h wise if no                                                                             | o loss: e (litres) eating a stored loss:                                                                                    | 0 includir nd no ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o<br>ng any so<br>ank in dw<br>er (this in                                                                | 0<br>olar or W<br>relling, e                                      | 0<br>/WHRS<br>nter 110<br>nstantar | o<br>storage<br>litres in<br>neous co            | 0<br>within sa<br>(47)                        | 0<br>nme ves                  | 0<br>sel                | 47)                                   | 0       | 1560.23 | (46)                                                         |
| If instant (46)m= Water Storag If com Other Water a) If n                                                     | otaneous w  0 storage ge volum munity h wise if no                                                                             | o loss: e (litres) eating a o stored loss: urer's de                                                                        | o including the notate of the contract of the  | ong any so<br>ank in dw<br>er (this ir                                                                    | 0<br>olar or W<br>relling, e                                      | 0<br>/WHRS<br>nter 110<br>nstantar | o<br>storage<br>litres in<br>neous co            | 0<br>within sa<br>(47)                        | 0<br>nme ves                  | 0<br>sel                | 47)                                   | 0       | 1560.23 | (46)<br>(47)                                                 |
| If instant (46)m= Water Storag If com Other Water a) If n Tempe                                               | staneous w  storage ge volum munity h wise if no storage nanufact                                                              | oloss: e (litres) eating a stored loss: urer's de                                                                           | including nd no tath the water lectured lem Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o ong any so<br>ank in dw<br>er (this in<br>oss facto                                                     | oblar or Welling, endinger is known                               | 0<br>/WHRS<br>nter 110<br>nstantar | o<br>storage<br>litres in<br>neous co<br>n/day): | 0<br>within sa<br>(47)                        | 0 to (61) 0 mme vessers) ente | 0<br>sel                | 47)                                   | 0       | 1560.23 | (46)<br>(47)<br>(48)                                         |
| If instant (46)m= Water Storag If com Other Water a) If n Tempe Energ b) If n                                 | ataneous w  storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact                               | o loss: e (litres) eating a stored loss: urer's de actor fro m water urer's de                                              | including nd no tale hot water leclared lem Table storage eclared to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | og any so<br>ank in dw<br>er (this ir<br>oss facto<br>2b<br>, kWh/ye                                      | oblar or Welling, encludes in or is known ear                     | 0 /WHRS nter 110 nstantar wn (kWh  | storage litres in neous con/day):                | o<br>within sa<br>(47)<br>mbi boild           | 0 to (61) 0 mme vessers) ente | 0<br>sel                | 47)                                   | 0       | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)                         |
| If instant (46)m= Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa                          | ataneous w  o storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora                  | o loss: e (litres) eating a stored loss: urer's de actor fro m water urer's de age loss                                     | including nd no tale hot water eclared lem Table storage eclared of factor fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | og any so<br>ank in dw<br>er (this in<br>oss facto<br>2b<br>c, kWh/ye<br>cylinder l                       | oblar or Welling, encludes in or is known ear                     | 0 /WHRS nter 110 nstantar wn (kWh  | storage litres in neous con/day):                | o<br>within sa<br>(47)<br>mbi boild           | 0 to (61) 0 mme vessers) ente | 0<br>sel                | 47)                                   | 0       | 1560.23 | (46)<br>(47)<br>(48)<br>(49)                                 |
| If instant (46)m= Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa If com                   | staneous w storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h            | o loss: e (litres) eating a o stored loss: urer's de actor fro m water urer's de age loss eating s                          | including nd no tale hot water eclared less storage eclared of factor free sections.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | og any so<br>ank in dw<br>er (this in<br>oss facto<br>2b<br>c, kWh/ye<br>cylinder l                       | oblar or Welling, encludes in or is known ear                     | 0 /WHRS nter 110 nstantar wn (kWh  | storage litres in neous con/day):                | o<br>within sa<br>(47)<br>mbi boild           | 0 to (61) 0 mme vessers) ente | 0<br>sel                | 47)                                   | 0       | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51)                 |
| If instant (46)m= Water Storag If com Other Water a) If n Tempo Energ b) If n Hot wa If com Volum             | ataneous w  storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor | o loss: e (litres) eating a stored loss: urer's de actor fro m water urer's de age loss eating s from Tal                   | including nd no tale hot water leclared less storage eclared of factor free sections of the section of the sect | ong any so<br>ank in dw<br>er (this in<br>oss facto<br>2b<br>, kWh/ye<br>cylinder l<br>com Tabl           | oblar or Welling, encludes in or is known ear                     | 0 /WHRS nter 110 nstantar wn (kWh  | storage litres in neous con/day):                | o<br>within sa<br>(47)<br>mbi boild           | 0 to (61) 0 mme vessers) ente | 0<br>sel                | 47)                                   | 0       | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51)<br>(52)         |
| If instant (46)m= Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa If com Volum Tempe       | storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor erature fa  | oloss: e (litres) eating a o stored loss: urer's de actor fro m water urer's de age loss eating s from Tal                  | including nd no tale hot water leclared less storage eclared of factor free sections are mable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ong any so<br>ank in dw<br>er (this in<br>oss facto<br>2b<br>c, kWh/ye<br>cylinder l<br>om Tabl<br>on 4.3 | oblar or Welling, encludes in or is known ear oss factor e 2 (kW) | 0 /WHRS nter 110 nstantar wn (kWh  | storage litres in neous con/day):                | within sa<br>(47)<br>mbi boild<br>(48) x (49) | o to (61)  o me vessers) ente | o<br>sel<br>er 'O' in ( | 47)                                   | 0       | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51)<br>(52)<br>(53) |
| If instant (46)m= Water Storag If com Other Water a) If n Tempo Energ b) If n Hot wa If com Volum Tempo Energ | ataneous w  storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor | o loss: e (litres) eating a stored loss: urer's de actor fro m water urer's de age loss eating s from Tal actor fro m water | including and no tale to the colored of the colored | ong any so<br>ank in dw<br>er (this in<br>oss facto<br>2b<br>c, kWh/ye<br>cylinder l<br>om Tabl<br>on 4.3 | oblar or Welling, encludes in or is known ear oss factor e 2 (kW) | 0 /WHRS nter 110 nstantar wn (kWh  | storage litres in neous con/day):                | o<br>within sa<br>(47)<br>mbi boild           | o to (61)  o me vessers) ente | o<br>sel<br>er 'O' in ( | 47)                                   | 0       | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51)<br>(52)         |

| Water Storage                                                                                                                                           | loss cal                                                                                              | culated f                                                                                               | or each                                                                                            | month                                                                  |                                                                      |                                                                        | ((56)m = (                                                      | 55) × (41)ı                                                  | m                                                |                                                             |                                                    |               |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|---------------|--------------------------------------|
| (56)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (56)                                 |
| If cylinder contains                                                                                                                                    | dedicated                                                                                             | d solar sto                                                                                             | rage, (57)ı                                                                                        | m = (56)m                                                              | x [(50) – (                                                          | H11)] ÷ (5                                                             | 0), else (5                                                     | 7)m = (56)                                                   | m where (                                        | H11) is fro                                                 | m Append                                           | ix H          |                                      |
| (57)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (57)                                 |
| Primary circuit                                                                                                                                         | loss (an                                                                                              | nual) fro                                                                                               | om Table                                                                                           | 3                                                                      |                                                                      |                                                                        |                                                                 |                                                              |                                                  |                                                             | 0                                                  |               | (58)                                 |
| Primary circuit                                                                                                                                         | ,                                                                                                     | •                                                                                                       |                                                                                                    |                                                                        | 59)m = (                                                             | (58) ÷ 36                                                              | 5 × (41)                                                        | m                                                            |                                                  |                                                             |                                                    | •             |                                      |
| (modified by                                                                                                                                            | factor fr                                                                                             | om Tabl                                                                                                 | le H5 if t                                                                                         | here is s                                                              | solar wat                                                            | er heatir                                                              | ng and a                                                        | cylinde                                                      | r thermo                                         | stat)                                                       |                                                    |               |                                      |
| (59)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (59)                                 |
| Combi loss cal                                                                                                                                          | culated                                                                                               | for each                                                                                                | month (                                                                                            | 61)m =                                                                 | (60) ÷ 36                                                            | 65 × (41)                                                              | m                                                               |                                                              |                                                  |                                                             |                                                    |               |                                      |
| (61)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (61)                                 |
| Total heat requ                                                                                                                                         | ired for                                                                                              | water he                                                                                                | eating ca                                                                                          | alculated                                                              | for eacl                                                             | h month                                                                | (62)m =                                                         | 0.85 × (                                                     | (45)m +                                          | (46)m +                                                     | (57)m +                                            | (59)m + (61)m |                                      |
| (62)m= 137.5                                                                                                                                            | 120.26                                                                                                | 124.09                                                                                                  | 108.19                                                                                             | 103.81                                                                 | 89.58                                                                | 83.01                                                                  | 95.25                                                           | 96.39                                                        | 112.33                                           | 122.62                                                      | 133.16                                             |               | (62)                                 |
| Solar DHW input of                                                                                                                                      | alculated                                                                                             | using App                                                                                               | endix G or                                                                                         | Appendix                                                               | H (negati                                                            | ve quantity                                                            | ) (enter '0                                                     | if no sola                                                   | r contributi                                     | on to wate                                                  | er heating)                                        | •             |                                      |
| (add additional                                                                                                                                         | lines if                                                                                              | FGHRS                                                                                                   | and/or V                                                                                           | VWHRS                                                                  | applies                                                              | , see Ap                                                               | pendix (                                                        | 3)                                                           |                                                  |                                                             |                                                    |               |                                      |
| (63)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (63)                                 |
| Output from wa                                                                                                                                          | ater hea                                                                                              | ter                                                                                                     |                                                                                                    |                                                                        |                                                                      |                                                                        |                                                                 |                                                              |                                                  |                                                             |                                                    | •             |                                      |
| (64)m= 137.5                                                                                                                                            | 120.26                                                                                                | 124.09                                                                                                  | 108.19                                                                                             | 103.81                                                                 | 89.58                                                                | 83.01                                                                  | 95.25                                                           | 96.39                                                        | 112.33                                           | 122.62                                                      | 133.16                                             |               |                                      |
|                                                                                                                                                         |                                                                                                       |                                                                                                         |                                                                                                    |                                                                        |                                                                      |                                                                        | Outp                                                            | out from wa                                                  | ater heate                                       | · (annual)₁                                                 | 12                                                 | 1326.2        | (64)                                 |
| Heat gains fror                                                                                                                                         | n water                                                                                               | heating,                                                                                                | kWh/m                                                                                              | onth 0.2                                                               | 5 ´ [0.85                                                            | × (45)m                                                                | + (61)m                                                         | n] + 0.8 x                                                   | ((46)m                                           | + (57)m                                                     | + (59)m                                            | ]             | _                                    |
| (65)m= 34.37                                                                                                                                            | 30.06                                                                                                 | 31.02                                                                                                   | 27.05                                                                                              | 25.95                                                                  | 22.39                                                                | 20.75                                                                  | 23.81                                                           | 24.1                                                         | 28.08                                            | 30.66                                                       | 33.29                                              |               | (65)                                 |
| include (57)r                                                                                                                                           | n in calc                                                                                             | culation (                                                                                              | of (65)m                                                                                           | only if c                                                              | ylinder i                                                            | s in the o                                                             | dwelling                                                        | or hot w                                                     | ater is fr                                       | om com                                                      | munity h                                           | eating        |                                      |
| 5. Internal ga                                                                                                                                          |                                                                                                       |                                                                                                         |                                                                                                    | •                                                                      | •                                                                    |                                                                        |                                                                 |                                                              |                                                  |                                                             | •                                                  |               |                                      |
| Metabolic gain                                                                                                                                          | ·                                                                                                     |                                                                                                         |                                                                                                    |                                                                        |                                                                      |                                                                        |                                                                 |                                                              |                                                  |                                                             |                                                    |               |                                      |
| Jan                                                                                                                                                     | Feb                                                                                                   | Mar                                                                                                     |                                                                                                    |                                                                        |                                                                      |                                                                        |                                                                 |                                                              |                                                  |                                                             |                                                    |               |                                      |
| (66)m= 136.77                                                                                                                                           | 136.77                                                                                                | iviai                                                                                                   | Apr                                                                                                | May                                                                    | Jun                                                                  | Jul                                                                    | Aug                                                             | Sep                                                          | Oct                                              | Nov                                                         | Dec                                                |               |                                      |
| Lighting going                                                                                                                                          |                                                                                                       | 136.77                                                                                                  |                                                                                                    | May<br>136.77                                                          | Jun<br>136.77                                                        | Jul<br>136.77                                                          | Aug<br>136.77                                                   | Sep<br>136.77                                                | Oct                                              | Nov<br>136.77                                               | Dec<br>136.77                                      |               | (66)                                 |
| Lighting gains                                                                                                                                          |                                                                                                       | <b>-</b>                                                                                                | Apr<br>136.77                                                                                      | 136.77                                                                 | 136.77                                                               | 136.77                                                                 | 136.77                                                          | 136.77                                                       |                                                  |                                                             |                                                    |               | (66)                                 |
| (67)m= 22.79                                                                                                                                            |                                                                                                       | 136.77                                                                                                  | Apr<br>136.77                                                                                      | 136.77                                                                 | 136.77                                                               | 136.77                                                                 | 136.77                                                          | 136.77                                                       |                                                  |                                                             |                                                    |               | (66)<br>(67)                         |
| (67)m= 22.79                                                                                                                                            | (calculat                                                                                             | 136.77<br>ted in Ap<br>16.46                                                                            | Apr<br>136.77<br>opendix<br>12.46                                                                  | 136.77<br>L, equat                                                     | 136.77<br>ion L9 oi<br>7.86                                          | 136.77<br>r L9a), a<br>8.5                                             | 136.77<br>Iso see                                               | 136.77<br>Table 5                                            | 136.77                                           | 136.77                                                      | 136.77                                             |               | , ,                                  |
| , <u>, , , , , , , , , , , , , , , , , , </u>                                                                                                           | (calculat                                                                                             | 136.77<br>ted in Ap<br>16.46                                                                            | Apr<br>136.77<br>opendix<br>12.46                                                                  | 136.77<br>L, equat                                                     | 136.77<br>ion L9 oi<br>7.86                                          | 136.77<br>r L9a), a<br>8.5                                             | 136.77<br>Iso see                                               | 136.77<br>Table 5                                            | 136.77                                           | 136.77                                                      | 136.77                                             |               | , ,                                  |
| (67)m= 22.79 Appliances gai (68)m= 255.6                                                                                                                | (calculat<br>20.24<br>ns (calc<br>258.25                                                              | 136.77<br>ted in Ap<br>16.46<br>ulated in<br>251.57                                                     | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34                                              | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38                      | 136.77<br>ion L9 or<br>7.86<br>uation L<br>202.5                     | 136.77<br>r L9a), a<br>8.5<br>13 or L1<br>191.22                       | 136.77<br>Iso see 11.04<br>3a), also                            | 136.77<br>Table 5<br>14.82<br>see Tal<br>195.25              | 136.77<br>18.82<br>ole 5<br>209.48               | 136.77<br>21.97                                             | 136.77<br>23.42                                    |               | (67)                                 |
| (67)m= 22.79 Appliances gai                                                                                                                             | (calculat<br>20.24<br>ns (calc<br>258.25                                                              | 136.77<br>ted in Ap<br>16.46<br>ulated in<br>251.57                                                     | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34                                              | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38                      | 136.77<br>ion L9 or<br>7.86<br>uation L<br>202.5                     | 136.77<br>r L9a), a<br>8.5<br>13 or L1<br>191.22                       | 136.77<br>Iso see 11.04<br>3a), also                            | 136.77<br>Table 5<br>14.82<br>see Tal<br>195.25              | 136.77<br>18.82<br>ole 5<br>209.48               | 136.77<br>21.97                                             | 136.77<br>23.42                                    |               | (67)                                 |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68                                                                                   | (calculate 20.24 ns (calculate 258.25 (calculate 36.68                                                | 136.77<br>ted in Ap<br>16.46<br>ulated in<br>251.57<br>tted in Ap<br>36.68                              | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34<br>ppendix<br>36.68                          | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38<br>L, equat          | 136.77<br>ion L9 of<br>7.86<br>uation L<br>202.5<br>ion L15          | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)          | 136.77<br>Iso see 11.04<br>3a), also 188.57                     | 136.77  Table 5  14.82  see Tal  195.25  ee Table            | 136.77<br>18.82<br>ble 5<br>209.48               | 136.77<br>21.97<br>227.44                                   | 23.42<br>244.32                                    |               | (67)<br>(68)                         |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains                                                                                                | (calculate 20.24 ns (calculate 258.25 (calculate 36.68                                                | 136.77<br>ted in Ap<br>16.46<br>ulated in<br>251.57<br>tted in Ap<br>36.68                              | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34<br>ppendix<br>36.68                          | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38<br>L, equat          | 136.77<br>ion L9 of<br>7.86<br>uation L<br>202.5<br>ion L15          | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)          | 136.77<br>Iso see 11.04<br>3a), also 188.57                     | 136.77  Table 5  14.82  see Tal  195.25  ee Table            | 136.77<br>18.82<br>ble 5<br>209.48               | 136.77<br>21.97<br>227.44                                   | 23.42<br>244.32                                    |               | (67)<br>(68)                         |
| (67)m = 22.79 Appliances gai $(68)m = 255.6$ Cooking gains $(69)m = 36.68$ Pumps and far $(70)m = 0$                                                    | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0                                     | 136.77 ted in Ap 16.46 ulated in 251.57 ted in Ap 36.68 (Table 5                                        | Apr<br>136.77<br>opendix<br>12.46<br>n Append<br>237.34<br>opendix<br>36.68<br>5a)<br>0            | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38<br>L, equat<br>36.68 | 136.77<br>ion L9 or<br>7.86<br>uation L<br>202.5<br>ion L15<br>36.68 | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77<br>Iso see 11.04<br>3a), also 188.57<br>, also se 36.68  | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68           | 136.77<br>18.82<br>ble 5<br>209.48<br>5<br>36.68 | 136.77<br>21.97<br>227.44<br>36.68                          | 23.42<br>244.32<br>36.68                           |               | (67)<br>(68)<br>(69)                 |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far                                                                    | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio                            | 136.77 ted in Ap 16.46 ulated in 251.57 ted in Ap 36.68 (Table 5                                        | Apr<br>136.77<br>opendix<br>12.46<br>n Append<br>237.34<br>opendix<br>36.68<br>5a)<br>0            | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38<br>L, equat<br>36.68 | 136.77<br>ion L9 or<br>7.86<br>uation L<br>202.5<br>ion L15<br>36.68 | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77<br>Iso see 11.04<br>3a), also 188.57<br>, also se 36.68  | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68           | 136.77<br>18.82<br>ble 5<br>209.48<br>5<br>36.68 | 136.77<br>21.97<br>227.44<br>36.68                          | 23.42<br>244.32<br>36.68                           |               | (67)<br>(68)<br>(69)                 |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far (70)m= 0  Losses e.g. ev (71)m= -109.41                            | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio -109.41                    | 136.77  ted in Ap 16.46  ulated in 251.57  ted in Ap 36.68  (Table 5 0  on (negat                       | Apr<br>136.77<br>ppendix<br>12.46<br>Appendix<br>237.34<br>ppendix<br>36.68<br>5a)<br>0            | 136.77  L, equat 9.31  dix L, eq 219.38  L, equat 36.68  0  es) (Tab   | 136.77 ion L9 or 7.86 uation L 202.5 ion L15 36.68  0                | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77<br>Iso see 11.04<br>3a), also 188.57<br>, also se 36.68  | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68           | 136.77  18.82 ble 5 209.48 5 36.68               | 21.97<br>227.44<br>36.68                                    | 23.42<br>244.32<br>36.68                           |               | (67)<br>(68)<br>(69)<br>(70)         |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far (70)m= 0  Losses e.g. ev                                           | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio -109.41                    | 136.77  ted in Ap 16.46  ulated in 251.57  ted in Ap 36.68  (Table 5 0  on (negat                       | Apr<br>136.77<br>ppendix<br>12.46<br>Appendix<br>237.34<br>ppendix<br>36.68<br>5a)<br>0            | 136.77  L, equat 9.31  dix L, eq 219.38  L, equat 36.68  0  es) (Tab   | 136.77 ion L9 or 7.86 uation L 202.5 ion L15 36.68  0                | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77<br>Iso see 11.04<br>3a), also 188.57<br>, also se 36.68  | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68           | 136.77  18.82 ble 5 209.48 5 36.68               | 21.97<br>227.44<br>36.68                                    | 23.42<br>244.32<br>36.68                           |               | (67)<br>(68)<br>(69)<br>(70)         |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far (70)m= 0  Losses e.g. ev (71)m= -109.41  Water heating (72)m= 46.2 | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio -109.41 gains (Table 44.74 | 136.77  ted in Ap 16.46  ulated in 251.57  ted in Ap 36.68  (Table 5 0 on (negat -109.41  Table 5) 41.7 | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34<br>ppendix<br>36.68<br>5a)<br>0<br>tive valu | 136.77  L, equat 9.31  dix L, eq 219.38  L, equat 36.68  0  es) (Tab   | 136.77 ion L9 or 7.86 uation L 202.5 ion L15 36.68  0 lle 5) -109.41 | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77 Iso see 11.04 3a), also 188.57 , also se 36.68 0 -109.41 | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68 0 -109.41 | 136.77  18.82 ble 5 209.48 5 36.68 0 -109.41     | 136.77<br>21.97<br>227.44<br>36.68<br>0<br>-109.41<br>42.58 | 136.77<br>23.42<br>244.32<br>36.68<br>0<br>-109.41 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far (70)m= 0  Losses e.g. ev (71)m= -109.41  Water heating             | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio -109.41 gains (Table 44.74 | 136.77  ted in Ap 16.46  ulated in 251.57  ted in Ap 36.68  (Table 5 0 on (negat -109.41  Table 5) 41.7 | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34<br>ppendix<br>36.68<br>5a)<br>0<br>tive valu | 136.77  L, equat 9.31  dix L, eq 219.38  L, equat 36.68  0  es) (Tab   | 136.77 ion L9 or 7.86 uation L 202.5 ion L15 36.68  0 lle 5) -109.41 | 136.77 r L9a), a 8.5 13 or L1 191.22 or L15a) 36.68 0 -109.41          | 136.77 Iso see 11.04 3a), also 188.57 , also se 36.68 0 -109.41 | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68 0 -109.41 | 136.77  18.82 ble 5 209.48 5 36.68 0 -109.41     | 136.77<br>21.97<br>227.44<br>36.68<br>0<br>-109.41<br>42.58 | 136.77<br>23.42<br>244.32<br>36.68<br>0<br>-109.41 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Fac<br>Table 6d | ctor | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|-------------------------------------|------|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 11.28            | x | 0.63           | X | 0.7            | ] =      | 49.24        | (75) |
| Northeast 0.9x 0.77                 | х    | 14.28      | x | 22.97            | X | 0.63           | X | 0.7            | =        | 100.23       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 41.38            | x | 0.63           | X | 0.7            | =        | 180.58       | (75) |
| Northeast 0.9x 0.77                 | х    | 14.28      | x | 67.96            | X | 0.63           | X | 0.7            | =        | 296.57       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 91.35            | X | 0.63           | X | 0.7            | =        | 398.65       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 97.38            | x | 0.63           | X | 0.7            | =        | 425          | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 91.1             | x | 0.63           | X | 0.7            | =        | 397.58       | (75) |
| Northeast <sub>0.9x</sub> 0.77      | X    | 14.28      | x | 72.63            | x | 0.63           | X | 0.7            | =        | 316.95       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 50.42            | x | 0.63           | X | 0.7            | =        | 220.04       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 28.07            | x | 0.63           | X | 0.7            | =        | 122.49       | (75) |
| Northeast <sub>0.9x</sub> 0.77      | X    | 14.28      | x | 14.2             | x | 0.63           | X | 0.7            | =        | 61.96        | (75) |
| Northeast <sub>0.9x</sub> 0.77      | x    | 14.28      | x | 9.21             | x | 0.63           | X | 0.7            | =        | 40.21        | (75) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 36.79            | x | 0.63           | X | 0.7            | =        | 23.5         | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 62.67            | x | 0.63           | X | 0.7            | =        | 40.03        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 85.75            | x | 0.63           | X | 0.7            | =        | 54.77        | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 106.25           | x | 0.63           | X | 0.7            | =        | 67.87        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 119.01           | x | 0.63           | X | 0.7            | =        | 76.02        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 118.15           | x | 0.63           | X | 0.7            | =        | 75.47        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 113.91           | x | 0.63           | X | 0.7            | =        | 72.76        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 104.39           | X | 0.63           | X | 0.7            | =        | 66.68        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 92.85            | x | 0.63           | X | 0.7            | =        | 59.31        | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 69.27            | x | 0.63           | X | 0.7            | =        | 44.24        | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 44.07            | x | 0.63           | X | 0.7            | =        | 28.15        | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 31.49            | x | 0.63           | X | 0.7            | =        | 20.11        | (77) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 36.79            |   | 0.63           | X | 0.7            | =        | 66.23        | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 62.67            | ] | 0.63           | X | 0.7            | =        | 112.82       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 85.75            | ] | 0.63           | X | 0.7            | =        | 154.36       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 106.25           |   | 0.63           | X | 0.7            | =        | 191.26       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 119.01           | ] | 0.63           | X | 0.7            | =        | 214.23       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 118.15           | ] | 0.63           | X | 0.7            | =        | 212.68       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 113.91           |   | 0.63           | X | 0.7            | =        | 205.04       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 104.39           | ] | 0.63           | X | 0.7            | =        | 187.91       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 92.85            |   | 0.63           | X | 0.7            | =        | 167.14       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 69.27            | ] | 0.63           | X | 0.7            | =        | 124.69       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 44.07            | ] | 0.63           | X | 0.7            | =        | 79.33        | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 31.49            | ] | 0.63           | X | 0.7            | <b>=</b> | 56.68        | (79) |
| Northwest 0.9x 0.77                 | x    | 0.52       | x | 11.28            | x | 0.63           | X | 0.7            | <b>=</b> | 1.79         | (81) |
| Northwest 0.9x 0.77                 | x    | 0.52       | x | 22.97            | x | 0.63           | X | 0.7            | =        | 3.65         | (81) |
| Northwest <sub>0.9x</sub> 0.77      | X    | 0.52       | x | 41.38            | x | 0.63           | × | 0.7            | ] =      | 6.58         | (81) |

| Niamilana                 |            |                 |                 |             |                  |           | . —               |           |            |              |           |        | <b>—</b> , , |
|---------------------------|------------|-----------------|-----------------|-------------|------------------|-----------|-------------------|-----------|------------|--------------|-----------|--------|--------------|
| Northwest <sub>0.9x</sub> | 0.77       | X               | 0.5             | 52          | × 6              | 57.96     | X                 | 0.63      | _          | 0.7          | =         | 10.8   | (81)         |
| Northwest 0.9x            | 0.77       | X               | 0.5             | 52          | x 9              | 1.35      | X                 | 0.63      | x          | 0.7          | =         | 14.52  | (81)         |
| Northwest 0.9x            | 0.77       | X               | 0.5             | 52          | x g              | 7.38      | X                 | 0.63      | x          | 0.7          | =         | 15.48  | (81)         |
| Northwest 0.9x            | 0.77       | X               | 0.5             | 52          | x g              | 91.1      | X                 | 0.63      | X          | 0.7          | =         | 14.48  | (81)         |
| Northwest 0.9x            | 0.77       | x               | 0.5             | 52          | x 7              | 2.63      | х                 | 0.63      | x          | 0.7          | =         | 11.54  | (81)         |
| Northwest 0.9x            | 0.77       | X               | 0.5             | 52          | <b>X</b> 5       | 0.42      | x                 | 0.63      | x          | 0.7          | =         | 8.01   | (81)         |
| Northwest 0.9x            | 0.77       | X               | 0.5             | 52          | x 2              | 8.07      | x                 | 0.63      | x          | 0.7          | =         | 4.46   | (81)         |
| Northwest 0.9x            | 0.77       | Х               | 0.5             | 52          | X                | 14.2      | x                 | 0.63      | x          | 0.7          | =         | 2.26   | (81)         |
| Northwest 0.9x            | 0.77       | Х               | 0.5             | 52          | X g              | 9.21      | x                 | 0.63      | x          | 0.7          | =         | 1.46   | (81)         |
|                           |            |                 |                 |             |                  |           |                   |           |            |              |           |        |              |
| Solar gains in            | watts, ca  | alculated       | for eacl        | h month     |                  |           | (83)m = S         | um(74)m . | (82)m      |              |           |        |              |
| (83)m= 140.77             | 256.73     | 396.29          | 566.49          | 703.41      | 728.62           | 689.86    | 583.08            | 454.5     | 295.88     | 171.69       | 118.47    |        | (83)         |
| Total gains –             | internal a | nd solar        | (84)m =         | (73)m -     | + (83)m          | , watts   |                   | !         |            |              | !         | l      |              |
| (84)m= 529.38             | 643.99     | 770.05          | 917.89          | 1031.01     | 1034.11          | 981.5     | 878.73            | 762.08    | 625.96     | 527.71       | 494.98    |        | (84)         |
| 7. Mean inte              | rnal temr  | erature         | (heating        | season      | )                |           |                   |           |            | ,            |           |        |              |
| Temperature               |            |                 |                 |             | ,                | from Tak  | olo 0. Th         | 1 (°C)    |            |              |           | 21     | (85)         |
|                           | Ū          | ٠.              |                 |             | Ū                |           | ) <del>, 11</del> | 11 ( C)   |            |              |           | 21     | (00)         |
| Utilisation fa            |            |                 |                 |             | r                |           |                   |           | 0.1        | T            |           |        |              |
| Jan                       | Feb        | Mar             | Apr             | May         | Jun              | Jul       | Aug               | Sep       | Oct        | Nov          | Dec       |        | (00)         |
| (86)m= 1                  | 1          | 0.99            | 0.96            | 0.88        | 0.71             | 0.55      | 0.63              | 0.88      | 0.98       | 1            | 1         |        | (86)         |
| Mean interna              | al temper  | ature in        | living are      | ea T1 (fo   | ollow ste        | ps 3 to 7 | in Tabl           | e 9c)     |            |              |           |        |              |
| (87)m= 19.48              | 19.66      | 19.96           | 20.38           | 20.73       | 20.93            | 20.98     | 20.97             | 20.8      | 20.33      | 19.83        | 19.45     |        | (87)         |
| Temperature               | e during h | eating p        | eriods ir       | rest of     | dwelling         | from Ta   | ble 9, T          | h2 (°C)   |            |              |           |        |              |
| (88)m= 19.83              | 19.83      | 19.83           | 19.84           | 19.85       | 19.85            | 19.85     | 19.86             | 19.85     | 19.85      | 19.84        | 19.84     |        | (88)         |
| L Hiliantian fo           |            |                 |                 | ا بمالانم م | h O ma /a.a      | L Table   | 0-2               | ·         |            | 1            | l         |        |              |
| Utilisation fa            | ctor for g | 0.99            | 0.95            | 0.83        | n∠,m (se<br>0.61 | 0.42      | 9a)<br>0.49       | 0.81      | 0.97       | 1            | 1         |        | (89)         |
| (89)m= 1                  | '          | 0.99            | 0.93            | 0.83        | 0.01             | 0.42      | 0.49              | 0.61      | 0.97       | <u> </u>     | '         |        | (00)         |
| Mean interna              | al temper  | ature in        | the rest        | of dwelli   | ng T2 (f         | ollow ste | ps 3 to           | 7 in Tabl | e 9c)      | ,            |           | ı      |              |
| (90)m= 18.45              | 18.63      | 18.93           | 19.34           | 19.66       | 19.82            | 19.85     | 19.85             | 19.74     | 19.31      | 18.81        | 18.43     |        | (90)         |
|                           |            |                 |                 |             |                  |           |                   | f         | LA = Livir | ng area ÷ (4 | 4) =      | 0.3    | (91)         |
| Mean interna              | al temper  | ature (fo       | r the wh        | ole dwe     | llina) = fl      | LA × T1   | + (1 – fL         | A) × T2   |            |              |           |        |              |
| (92)m= 18.75              | 18.93      | 19.24           | 19.65           | 19.98       | 20.15            | 20.19     | 20.18             | 20.05     | 19.61      | 19.11        | 18.73     |        | (92)         |
| Apply adjust              | ment to t  | he mean         | internal        | temper      | ı<br>ature fro   | m Table   | 4e. whe           | ere appro | opriate    | !            | ļ         |        |              |
| (93)m= 18.75              | 18.93      | 19.24           | 19.65           | 19.98       | 20.15            | 20.19     | 20.18             | 20.05     | 19.61      | 19.11        | 18.73     |        | (93)         |
| 8. Space hea              | ating regu | uirement        |                 |             |                  |           |                   |           |            |              |           |        |              |
| Set Ti to the             |            |                 |                 | re obtain   | ed at ste        | en 11 of  | Table 9           | b so tha  | t Ti m=(   | 76)m an      | d re-calc | culate |              |
| the utilisation           |            |                 | •               |             |                  | - F       |                   | .,        | , (        | . 0,         |           |        |              |
| Jan                       | Feb        | Mar             | Apr             | May         | Jun              | Jul       | Aug               | Sep       | Oct        | Nov          | Dec       |        |              |
| Utilisation fa            | ctor for g | ains, hm        | :               |             | •                | •         |                   | •         |            | •            |           |        |              |
| (94)m= 1                  | 0.99       | 0.98            | 0.94            | 0.83        | 0.64             | 0.46      | 0.53              | 0.82      | 0.97       | 1            | 1         |        | (94)         |
| Useful gains              | , hmGm ,   | W = (94         | 1)m x (84       | 4)m         |                  |           |                   | !         |            |              |           | l      |              |
| (95)m= 528.18             | 640.31     | 757.22          | 865.68          | 860.34      | 664.06           | 450.31    | 467.58            | 626.19    | 608.35     | 525.18       | 494.15    |        | (95)         |
| (55)111=   520.10         |            |                 |                 |             |                  |           |                   |           |            |              |           | 1      |              |
| Monthly ave               |            | rnal tem        | perature        | from Ta     | able 8           |           |                   |           |            |              |           |        |              |
| ` '                       |            | rnal tem<br>6.5 | perature<br>8.9 | from Ta     | able 8<br>14.6   | 16.6      | 16.4              | 14.1      | 10.6       | 7.1          | 4.2       |        | (96)         |
| Monthly ave               | rage exte  | 6.5             | 8.9             | 11.7        | 14.6             | <u> </u>  | <u> </u>          |           |            | 7.1          | 4.2       |        | (96)         |
| Monthly aver              | rage exte  | 6.5             | 8.9<br>al tempe | 11.7        | 14.6             | <u> </u>  | <u> </u>          |           |            | 7.1          |           |        | (96)<br>(97) |

| Space he               | eating | g require | ement fo   | r each m  | nonth, k\ | Nh/mont   | h = 0.02 | 24 x [(97) | )m – (95   | )m] x (4  | 1)m                      |                        |         |       |
|------------------------|--------|-----------|------------|-----------|-----------|-----------|----------|------------|------------|-----------|--------------------------|------------------------|---------|-------|
| (98)m= 101             | 17.2   | 803.55    | 673.78     | 376.09    | 153.79    | 0         | 0        | 0          | 0          | 411.61    | 741.07                   | 1037.21                |         |       |
|                        | -      | -         | _          |           |           | -         |          | Tota       | l per year | (kWh/year | ) = Sum(9                | 8) <sub>15,912</sub> = | 5214.29 | (98)  |
| Space he               | eating | g require | ement in   | kWh/m²    | /year     |           |          |            |            |           |                          |                        | 52.38   | (99)  |
| 8c. Space              | e coc  | oling req | luiremen   | it        |           |           |          |            |            |           |                          |                        |         |       |
| Calculate              | d for  | June, J   | luly and   | August.   | See Tal   | ole 10b   |          |            |            | •         | •                        |                        | •       |       |
| Ja                     | an     | Feb       | Mar        | Apr       | May       | Jun       | Jul      | Aug        | Sep        | Oct       | Nov                      | Dec                    |         |       |
| Heat loss              | rate   | Lm (ca    | lculated   | using 25  | 5°C inter | nal temp  | erature  | and exte   | ernal ten  | nperatur  | e from T                 | able 10)               | •       |       |
| (100)m=                | 0      | 0         | 0          | 0         | 0         | 1199.97   | 944.66   | 968.47     | 0          | 0         | 0                        | 0                      |         | (100) |
| Utilisation            | n fact | or for lo | ss hm      |           |           |           |          |            |            |           |                          |                        |         |       |
| (101)m=                | 0      | 0         | 0          | 0         | 0         | 0.86      | 0.92     | 0.88       | 0          | 0         | 0                        | 0                      |         | (101) |
| Useful los             | ss, hi | mLm (W    | /atts) = ( | 100)m x   | (101)m    |           |          |            |            |           |                          | •                      | •       |       |
| (102)m=                | 0      | 0         | 0          | 0         | 0         | 1028.1    | 864.52   | 851.68     | 0          | 0         | 0                        | 0                      |         | (102) |
| Gains (so              | olar g | ains cal  | lculated   | for appli | cable we  | eather re | gion, se | e Table    | 10)        | •         | •                        |                        | •       |       |
| (103)m=                | 0      | 0         | 0          | 0         | 0         | 1313.48   | 1249.72  | 1131.44    | 0          | 0         | 0                        | 0                      |         | (103) |
| Space co               |        |           |            |           |           | lwelling, | continu  | ous ( kW   | h' = 0.0   | 24 x [(10 | 03)m – (                 | 102)m]:                | x (41)m |       |
| set (104)              |        | i         |            |           |           |           |          |            |            |           |                          |                        | 1       |       |
| (104)m=                | 0      | 0         | 0          | 0         | 0         | 205.48    | 286.58   | 208.14     | 0          | 0         | 0                        | 0                      |         | _     |
|                        |        |           |            |           |           |           |          |            |            | = Sum(    | ,                        | =                      | 700.2   | (104) |
| Cooled fra             |        |           | shla 10h   | `         |           |           |          |            | f C =      | cooled    | area ÷ (4                | 4) =                   | 1       | (105) |
| Intermitten<br>(106)m= | 0      | 0         | 0          | 0         | 0         | 0.25      | 0.25     | 0.25       | 0          | 0         | 0                        | 0                      |         |       |
| ( 11)                  |        |           |            |           | -         |           |          |            | Tota       | l = Sum(  | 104)                     | =                      | 0       | (106) |
| Space coo              | olina  | reauiren  | nent for   | month =   | (104)m    | × (105)   | × (106)r | n          | rota       | ı = Oam   | 16 <u>₩</u> 6 <b>Т</b> ) | _                      | 0       | (100) |
| · —                    | 0      | 0         | 0          | 0         | 0         | 51.37     | 71.65    | 52.04      | 0          | 0         | 0                        | 0                      |         |       |
| ` ′                    |        |           |            |           |           |           |          |            | Total      | l = Sum(  | 1 <u>0</u> 7)            | =                      | 175.05  | (107) |
| Space coo              | oling  | requiren  | nent in k  | :Wh/m²/y  | ear/      |           |          |            | (107)      | ) ÷ (4) = |                          |                        | 1.76    | (108) |
| 8f. Fabric I           | Ener   | gy Effici | ency (ca   | alculated | only un   | der spec  | ial cond | litions, s | ee sectio  | on 11)    |                          |                        |         |       |
| Fabric En              | nergy  | Efficier  | псу        |           |           |           |          |            | (99)       | + (108) = | =                        |                        | 54.14   | (109) |

**Target Fabric Energy Efficiency (TFEE)** 

(109)

62.26

|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | User Details:                   |                        |                       |              |      |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------|-----------------------|--------------|------|
| Assessor Name:                                            | Harry Hinchcliffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Stroma Nu                       | mber:                  | STRO                  | 034627       |      |
| Software Name:                                            | Stroma FSAP 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Software V                      | ersion:                | Versio                | n: 1.0.5.16  |      |
|                                                           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Property Address: 1559          | 2 - L1a Assessn        | nent                  |              |      |
| Address :                                                 | New Dwelling @, 34 Summ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ner House Way, Langle           | y, WD5 0DY             |                       |              |      |
| 1. Overall dwelling dime                                  | nsions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                        |                       |              |      |
| Ground floor                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Area(m²)  52.34 (1a) x          | Av. Height(n           | <b>n)</b><br>(2a) = [ | Volume(m³)   | (3a) |
| First floor                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                        | <b>-</b>              |              | Ⅎ    |
|                                                           | -) . (4 -) . (4 -) . (4 -) (4 -)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47.21 (1b) x                    | 2.65                   | (2b) =                | 125.11       | (3b) |
| ·                                                         | a)+(1b)+(1c)+(1d)+(1e)+(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                               |                        | _                     |              | _    |
| Dwelling volume                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3a)+(                          | 3b)+(3c)+(3d)+(3e)+    | +(3n) =               | 250.2        | (5)  |
| 2. Ventilation rate:                                      | main cocondo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m. othor                        | total                  |                       | m3 nor hou   |      |
|                                                           | main seconda<br>heating heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ry other                        | total                  | _                     | m³ per hou   | _    |
| Number of chimneys                                        | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 0 =                           | 0                      | x 40 =                | 0            | (6a) |
| Number of open flues                                      | 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 0 =                           | 0                      | x 20 =                | 0            | (6b) |
| Number of intermittent fa                                 | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | 3                      | x 10 =                | 30           | (7a) |
| Number of passive vents                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | 0                      | x 10 =                | 0            | (7b) |
| Number of flueless gas fi                                 | res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | 0                      | x 40 =                | 0            | (7c) |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |                        | A ! I                 |              |      |
| 1.66                                                      | (0-)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 -)-(0 | 7-1.77.1.4                      |                        | -                     | anges per ho | _    |
| •                                                         | ys, flues and fans = (6a)+(6b)+(<br>een carried out or is intended, proced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | 30 se from (9) to (16) | ÷ (5) =               | 0.12         | (8)  |
| Number of storeys in the                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ou to (11), outor mod continue  | 7 110111 (0) 10 (10)   | Γ                     | 0            | (9)  |
| Additional infiltration                                   | <b>5</b> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | [                      | (9)-1]x0.1 =          | 0            | (10) |
| Structural infiltration: 0                                | .25 for steel or timber frame o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | r 0.35 for masonry con          | struction              |                       | 0            | (11) |
| if both types of wall are pa<br>deducting areas of openia | resent, use the value corresponding t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | to the greater wall area (after |                        |                       |              |      |
|                                                           | loor, enter 0.2 (unsealed) or (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1 (sealed), else enter        | 0                      | Γ                     | 0            | (12) |
| If no draught lobby, en                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , ,                             |                        | <u> </u>              | 0            | (13) |
| • •                                                       | s and doors draught stripped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                        |                       | 0            | (14) |
| Window infiltration                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25 - [0.2 x (14)              | ÷ 100] =               |                       | 0            | (15) |
| Infiltration rate                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (8) + (10) + (11) +             | - (12) + (13) + (15) = | <u> </u>              | 0            | (16) |
| Air permeability value,                                   | q50, expressed in cubic metr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es per hour per square          | metre of envelo        | pe area               | 5            | (17) |
| If based on air permeabil                                 | ity value, then $(18) = [(17) \div 20] +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (8), otherwise (18) = (16)      |                        | · [                   | 0.37         | (18) |
| Air permeability value applie                             | s if a pressurisation test has been do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne or a degree air permeabil    | ity is being used      | -                     |              | _    |
| Number of sides sheltere                                  | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |                        |                       | 1            | (19) |
| Shelter factor                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (20) = 1 - [0.075)              |                        |                       | 0.92         | (20) |
| Infiltration rate incorporat                              | ing shelter factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(21) = (18) \times (20)$       | =                      | [                     | 0.34         | (21) |
| Infiltration rate modified f                              | or monthly wind speed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1                             |                        |                       |              |      |
| Jan Feb                                                   | Mar Apr May Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Jul Aug Se                      | o Oct No               | v Dec                 |              |      |
| Monthly average wind sp                                   | eed from Table 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                        |                       |              |      |

4.3

3.8

3.8

3.7

4

4.3

4.5

4.7

| Wind Factor (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22a)m =                                                                                                                        | (22)m ÷                                                                                                  | 4                                                                            |                                                       |                                                                                                               |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |          |                   |                         |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------|-------------------|-------------------------|-------------------------------------------------------------|
| (22a)m= 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.25                                                                                                                           | 1.23                                                                                                     | 1.1                                                                          | 1.08                                                  | 0.95                                                                                                          | 0.95                                                                                 | 0.92                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.08                                                                                          | 1.12     | 1.18              | ]                       |                                                             |
| Adjusted infilt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ration rat                                                                                                                     | e (allowi                                                                                                | ng for sh                                                                    | nelter an                                             | d wind s                                                                                                      | speed) =                                                                             | (21a) x                                                                                                               | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |          |                   |                         |                                                             |
| 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.43                                                                                                                           | 0.42                                                                                                     | 0.38                                                                         | 0.37                                                  | 0.33                                                                                                          | 0.33                                                                                 | 0.32                                                                                                                  | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.37                                                                                          | 0.38     | 0.4               |                         |                                                             |
| Calculate effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                | •                                                                                                        | rate for t                                                                   | he appli                                              | cable ca                                                                                                      | se                                                                                   |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |          |                   |                         | (23a)                                                       |
| If exhaust air h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |                                                                                                          | endix N. (2                                                                  | (23a) = (23a                                          | a) × Fmv (e                                                                                                   | eguation (N                                                                          | N5)) . othe                                                                                                           | rwise (23b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) = (23a)                                                                                     |          |                   | 0                       | (23a)                                                       |
| If balanced wit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                | 0                                                                                                        |                                                                              | , ,                                                   | ,                                                                                                             | . `                                                                                  | ,, .                                                                                                                  | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , (,                                                                                          |          |                   | 0                       | (23c)                                                       |
| a) If balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                | -                                                                                                        | -                                                                            | _                                                     |                                                                                                               |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2b)m + (                                                                                      | 23b) × [ | 1 – (23c)         |                         | (200)                                                       |
| (24a)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                              | 0                                                                                                        | 0                                                                            | 0                                                     | 0                                                                                                             | 0                                                                                    | 0                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             | 0        | 0                 | ]                       | (24a)                                                       |
| b) If balance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed mech                                                                                                                        | anical ve                                                                                                | entilation                                                                   | without                                               | heat red                                                                                                      | covery (N                                                                            | ЛV) (24t                                                                                                              | m = (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2b)m + (                                                                                      | 23b)     |                   | •                       |                                                             |
| (24b)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                              | 0                                                                                                        | 0                                                                            | 0                                                     | 0                                                                                                             | 0                                                                                    | 0                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             | 0        | 0                 |                         | (24b)                                                       |
| c) If whole I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                |                                                                                                          |                                                                              | •                                                     |                                                                                                               |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                             | -        |                   | -                       |                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m < 0.5 ×                                                                                                                      |                                                                                                          | · ·                                                                          | · · · · · ·                                           | ·                                                                                                             | · · · · · ·                                                                          | · · · · ·                                                                                                             | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                                                                                           | i        | 1                 | 1                       |                                                             |
| (24c)m= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                              | 0                                                                                                        | 0                                                                            | 0                                                     | 0                                                                                                             | 0                                                                                    | 0                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                             | 0        | 0                 |                         | (24c)                                                       |
| d) If natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ventilation $m = 1$ , the                                                                                                      |                                                                                                          |                                                                              | •                                                     | •                                                                                                             |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.51                                                                                          |          |                   |                         |                                                             |
| (24d)m = 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.59                                                                                                                           | 0.59                                                                                                     | 0.57                                                                         | 0.57                                                  | 0.55                                                                                                          | 0.55                                                                                 | 0.55                                                                                                                  | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57                                                                                          | 0.57     | 0.58              | 1                       | (24d)                                                       |
| Effective air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r change                                                                                                                       | rate - er                                                                                                | nter (24a                                                                    | ) or (24b                                             | o) or (24                                                                                                     | c) or (24                                                                            | d) in box                                                                                                             | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |          |                   | J                       |                                                             |
| (25)m= 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.59                                                                                                                           | 0.59                                                                                                     | 0.57                                                                         | 0.57                                                  | 0.55                                                                                                          | 0.55                                                                                 | 0.55                                                                                                                  | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.57                                                                                          | 0.57     | 0.58              | 1                       | (25)                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                              |                                                                                                          |                                                                              |                                                       |                                                                                                               | l                                                                                    | l                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                                                                                             | 1        |                   | 1                       |                                                             |
| 2 Hoot look                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | on and he                                                                                                                      | ot loco r                                                                                                | acromot                                                                      | or:                                                   |                                                                                                               |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |          |                   |                         |                                                             |
| 3. Heat losse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                | ·                                                                                                        |                                                                              |                                                       | Net Ar                                                                                                        | ea                                                                                   | U-valı                                                                                                                | IIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AXII                                                                                          |          | k-value           | <b>a</b>                | ΑΧk                                                         |
| 3. Heat losse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es and he<br>Gros<br>area                                                                                                      | SS                                                                                                       | oarameto<br>Openin<br>m                                                      | gs                                                    | Net Ar<br>A ,r                                                                                                |                                                                                      | U-valı<br>W/m2                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A X U<br>(W/                                                                                  |          | k-value<br>kJ/m²- |                         | A X k<br>kJ/K                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gros                                                                                                                           | SS                                                                                                       | Openin                                                                       | gs                                                    |                                                                                                               |                                                                                      |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |          |                   |                         |                                                             |
| ELEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Gros<br>area                                                                                                                   | SS                                                                                                       | Openin                                                                       | gs                                                    | A ,r                                                                                                          | m² x                                                                                 | W/m2                                                                                                                  | 2K =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/                                                                                           |          |                   |                         | kJ/K                                                        |
| <b>ELEMENT</b> Doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gros<br>area<br>e 1                                                                                                            | SS                                                                                                       | Openin                                                                       | gs                                                    | A ,r                                                                                                          | m <sup>2</sup> x x 1/2                                                               | W/m2<br>1.6                                                                                                           | 2K =  <br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (W/<br>3.36                                                                                   |          |                   |                         | kJ/K (26)                                                   |
| ELEMENT  Doors  Windows Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Gros<br>area<br>e 1<br>e 2                                                                                                     | SS                                                                                                       | Openin                                                                       | gs                                                    | A ,r<br>2.1<br>7.78                                                                                           | x x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/                                             | W/m2<br>1.6<br>/[1/( 1.4 )+                                                                                           | 2K =  <br>0.04] =  <br>0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.36<br>10.31                                                                                 |          |                   |                         | kJ/K (26) (27)                                              |
| ELEMENT  Doors  Windows Typ  Windows Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gros<br>area<br>e 1<br>e 2<br>e 3                                                                                              | SS                                                                                                       | Openin                                                                       | gs                                                    | A ,r 2.1 7.78 18.86                                                                                           | x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2 x1/2                                              | W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                           | eK = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>3.36<br>10.31<br>25                                                                    |          |                   |                         | kJ/K<br>(26)<br>(27)<br>(27)                                |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gros<br>area<br>e 1<br>e 2<br>e 3                                                                                              | SS                                                                                                       | Openin                                                                       | gs                                                    | A ,r 2.1 7.78 18.86 2.76                                                                                      | m <sup>2</sup>                                                                       | W/m2  1.6  /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+                                                                     | eK = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>3.36<br>10.31<br>25<br>3.66                                                            | K)       |                   |                         | kJ/K (26) (27) (27) (27)                                    |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gros<br>area<br>e 1<br>e 2<br>e 3                                                                                              | ss<br>(m²)                                                                                               | Openin                                                                       | gs<br><sub>1</sub> 2                                  | A ,r 2.1 7.78 18.86 2.76 0.69                                                                                 | m <sup>2</sup>                                                                       | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+                                                                      | eK = 0.04] = 0.04] = 0.04] = 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91                                                    | K)       |                   |                         | kJ/K (26) (27) (27) (27) (27)                               |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gros<br>area<br>e 1<br>e 2<br>e 3<br>e 4                                                                                       | ss (m²)                                                                                                  | Openin<br>m                                                                  | gs<br><sub>1</sub> 2                                  | A ,r 2.1 7.78 18.86 2.76 0.69 52.34                                                                           | m <sup>2</sup>                                                                       | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18                                                    | eK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0 | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120                                         | K)       |                   |                         | kJ/K (26) (27) (27) (27) (27) (27)                          |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor  Walls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gros<br>area<br>e 1<br>e 2<br>e 3<br>e 4                                                                                       | 05<br>7                                                                                                  | Openin m                                                                     | gs<br><sub>1</sub> 2                                  | A ,r 2.1 7.78 18.86 2.76 0.69 52.34 121.8                                                                     | x1/2 x1/2 x1/4 x x1/4 x x1/4 x x x1/4 x x x1/4 x x x x x x x x x x x x x x x x x x x | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24                                              | eK = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0 | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25                                | K)       |                   |                         | kJ/K (26) (27) (27) (27) (27) (28)                          |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor  Walls  Roof Type1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gros area e 1 e 2 e 3 e 4  154. 4.6                                                                                            | 05<br>7                                                                                                  | 32.19<br>0                                                                   | gs<br><sub>1</sub> 2                                  | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8                                                              | m <sup>2</sup>                                                                       | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14                                        | EK =   0.04] =   0.04] =   0.04] =   0.04] =   =   =   =   =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65                        | K)       |                   |                         | kJ/K (26) (27) (27) (27) (27) (28) (29)                     |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor  Walls  Roof Type1  Roof Type2  Total area of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Gros area e 1 e 2 e 3 e 4  154. 4.6 47. elements                                                                               | 05<br>7<br>5<br>5, m <sup>2</sup><br>ows, use e                                                          | Openin m  32.19 0 0 effective wi                                             | gs<br>1 <sup>2</sup><br>9<br>Indow U-va               | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcula                             | x1/2 x1/2 x1/4 x x1/4 x x x x x x x x x x x x x x x x x x x                          | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14                                        | EK =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   0.04] =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                | K)       | kJ/m²-            | K                       | kJ/K (26) (27) (27) (27) (27) (28) (29) (30)                |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor  Walls  Roof Type1  Roof Type2  Total area of of the for windows and the include the area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gros area  e 1 e 2 e 3 e 4  154. 4.6 47. elements d roof winders on both                                                       | 05<br>7<br>5<br>ows, use e                                                                               | 32.19 0 0 effective winternal wall                                           | gs<br>1 <sup>2</sup><br>9<br>Indow U-va               | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcula                             | x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4                                    | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11                                  | 2K =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                | K)       | kJ/m²-            | T                       | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)                |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor  Walls  Roof Type1  Roof Type2  Total area of of the difference  | Gros area e 1 e 2 e 3 e 4  154. 4.6 47. elements d roof winders on both                                                        | 05<br>7<br>5<br>5, m <sup>2</sup><br>ows, use e<br>sides of in                                           | 32.19 0 0 effective winternal wall                                           | gs<br>1 <sup>2</sup><br>9<br>Indow U-va               | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcula                             | x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4                                    | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14                                        | 2K =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                | K)       | kJ/m²•            | 1 3.2<br>87.8           | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)                |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor  Walls  Roof Type1  Roof Type2  Total area of of the area of the | Gros area e 1 e 2 e 3 e 4  154. 4.6 47.: elements d roof winderas on both ss, W/K: Cm = S(                                     | oss (m²)  7  5  ows, use e sides of int = S (A x (A x k)                                                 | 32.19 0 0 effective winternal walk                                           | gs<br>1 <sup>2</sup><br>9<br>Indow U-ve<br>Is and pan | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calculatitions                      | x1/2 x1/2 x1/4 x x1/4 x x x1/4 x x x1/4 x x x x x x x x x x x x x x x x x x x        | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11                                  | EK =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                | K)       | kJ/m²•            | 7 3.2<br>87.8<br>13538. | kJ/K (26) (27) (27) (27) (28) (29) (30) (31) (33) (53) (34) |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor  Walls  Roof Type1  Roof Type2  Total area of of the for windows and the include the area fabric heat loops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gros area  e 1  e 2  e 3  e 4  154.  4.6  47.: elements d roof winders on both sss, W/K: Cm = S(                               | 05<br>7<br>5<br>5<br>6, m <sup>2</sup><br>ows, use e<br>sides of in<br>= S (A x<br>(A x k )<br>eter (TMF | 32.19 0 0 effective winternal walk U) $P = Cm \div$                          | gs<br>9<br>Indow U-va<br>Is and pan                   | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calculatitions                      | x1/2 x1/2 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4 x1/4                                    | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11  formula 1 (26)(30) | 2K =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22<br>ue)+0.04] a | K)       | kJ/m²-            | 1 3.2<br>87.8           | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)                |
| ELEMENT  Doors  Windows Typ  Windows Typ  Windows Typ  Windows Typ  Floor  Walls  Roof Type1  Roof Type2  Total area of of the area of the | Gros area  e 1 e 2 e 3 e 4  154. 4.6  47.: elements d roof wind eas on both ss, W/K: Cm = S( s parame essments whe ead of a de | 05 7 5 ows, use e sides of int = S (A x k) eter (TMF) ere the de tailed calcular                         | 32.19 32.19 0 0 effective winternal walk U)  P = Cm - tails of the pulation. | gs  9  indow U-ve Is and pan  TFA) ir                 | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calculations  n kJ/m²K  ion are not | x1/x1/x1/xx/6 x x x 6 x x x 6 atted using                                            | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11  formula 1 (26)(30) | 2K =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22<br>ue)+0.04] a | K)       | kJ/m²-            | 7 3.2<br>87.8<br>13538. | kJ/K (26) (27) (27) (27) (28) (29) (30) (31) (33) (33)      |

| if details of therma             | al bridging  | are not kn  | own (36) =             | = 0.05 x (3 | 1)          |            |             |            |                        |                                       |          |         |          |
|----------------------------------|--------------|-------------|------------------------|-------------|-------------|------------|-------------|------------|------------------------|---------------------------------------|----------|---------|----------|
| Total fabric he                  |              |             |                        |             |             |            |             | (33) +     | (36) =                 |                                       |          | 107.07  | (37)     |
| Ventilation hea                  |              |             |                        |             |             |            |             | · ,        |                        | 25)m x (5)                            | _        |         |          |
| Jan                              | Feb          | Mar         | Apr                    | May         | Jun         | Jul        | Aug         | Sep        | Oct                    | Nov                                   | Dec      |         | (20)     |
| (38)m= 49.14                     | 48.83        | 48.54       | 47.13                  | 46.87       | 45.64       | 45.64      | 45.42       | 46.12      | 46.87                  | 47.4                                  | 47.96    |         | (38)     |
| Heat transfer of                 |              |             |                        |             |             |            |             |            | = (37) + (3            |                                       |          | 1       |          |
| (39)m= 156.21                    | 155.91       | 155.61      | 154.21                 | 153.94      | 152.72      | 152.72     | 152.49      | 153.19     | 153.94                 | 154.47                                | 155.03   |         | <b>–</b> |
| Heat loss para                   | meter (F     | HLP), W/    | m²K                    |             |             |            |             |            | Average =<br>= (39)m ÷ | Sum(39) <sub>1</sub> .                | 12 /12=  | 154.2   | (39)     |
| (40)m= 1.57                      | 1.57         | 1.56        | 1.55                   | 1.55        | 1.53        | 1.53       | 1.53        | 1.54       | 1.55                   | 1.55                                  | 1.56     |         |          |
| Number of de                     | o in mo      | oth (Tob    | lo 1o)                 |             |             |            |             |            | Average =              | Sum(40) <sub>1</sub>                  | 12 /12=  | 1.55    | (40)     |
| Number of day                    | Feb          | · ·         |                        | May         | lup         | Jul        | Δυα         | Son        | Oct                    | Nov                                   | Dec      |         |          |
| (41)m= 31                        | 28           | Mar<br>31   | Apr<br>30              | May<br>31   | Jun<br>30   | 31         | Aug<br>31   | Sep<br>30  | 31                     | Nov<br>30                             | 31       |         | (41)     |
| (41)m= 31                        | 20           | 31          | 30                     | 31          | 30          | 31         | 31          | 30         | 31                     | 30                                    | 31       |         | (41)     |
| 4 10/2/22/22                     |              |             |                        |             |             |            |             |            |                        |                                       | 1.10/1./ |         |          |
| 4. Water hea                     | ting ener    | rgy requi   | rement:                |             |             |            |             |            |                        |                                       | kWh/ye   | ear:    |          |
| Assumed occu                     |              |             |                        |             |             |            |             |            |                        |                                       | .74      |         | (42)     |
| if TFA > 13.<br>if TFA £ 13.     |              | + 1.76 x    | [1 - exp               | (-0.0003    | 849 x (TF   | FA -13.9   | )2)] + 0.0  | 0013 x (   | TFA -13.               | .9)                                   |          |         |          |
| Annual average                   | •            | ater usac   | ae in litre            | s per da    | av Vd.av    | erage =    | (25 x N)    | + 36       |                        | QC                                    | 0.16     |         | (43)     |
| Reduce the annua                 | al average   | hot water   | usage by               | 5% if the a | lwelling is | designed t |             |            | se target o            |                                       | 7.10     |         | (1.5)    |
| not more that 125                | litres per p | person per  | day (all w             | ater use, l | not and co  | ld)        |             |            |                        |                                       |          |         |          |
| Jan                              | Feb          | Mar         | Apr                    | May         | Jun         | Jul        | Aug         | Sep        | Oct                    | Nov                                   | Dec      |         |          |
| Hot water usage i                | n litres per | day for ea  | ach month              | Vd,m = fa   | ctor from T | Table 1c x | (43)        |            |                        |                                       |          |         |          |
| (44)m= 109.08                    | 105.11       | 101.15      | 97.18                  | 93.21       | 89.25       | 89.25      | 93.21       | 97.18      | 101.15                 | 105.11                                | 109.08   |         | _        |
| Energy content of                | hot water    | used - cal  | culated mo             | onthly = 4. | 190 x Vd,r  | n x nm x C | OTm / 3600  |            |                        | m(44) <sub>112</sub> =<br>ables 1b, 1 |          | 1189.97 | (44)     |
| (45)m= 161.76                    | 141.48       | 145.99      | 127.28                 | 122.13      | 105.39      | 97.66      | 112.06      | 113.4      | 132.16                 | 144.26                                | 156.66   |         |          |
| If instantaneous v               | votor booti  | na ot noint | of upo (no             | , bot water | · otorogo)  | antar O in | haves (46   |            | Total = Su             | m(45) <sub>112</sub> =                | =        | 1560.23 | (45)     |
| If instantaneous v               |              |             |                        |             |             |            |             | , ,        | ı                      | ı                                     | I        | ı       | (40)     |
| (46)m= 0<br>Water storage        | 0            | 0           | 0                      | 0           | 0           | 0          | 0           | 0          | 0                      | 0                                     | 0        |         | (46)     |
| Storage volum                    |              | includin    | a anv so               | olar or W   | /WHRS       | storage    | within sa   | ame ves    | sel                    |                                       | 0        |         | (47)     |
| If community h                   | , ,          |             | •                      |             |             | •          |             |            |                        |                                       | 0        |         | (,       |
| Otherwise if no                  | _            |             |                        | _           |             |            | , ,         | ers) ente  | er '0' in (            | 47)                                   |          |         |          |
| Water storage                    | loss:        |             | ,                      |             |             |            |             | ·          | ·                      | •                                     |          |         |          |
| a) If manufact                   | turer's de   | eclared l   | oss facto              | or is kno   | wn (kWh     | n/day):    |             |            |                        |                                       | 0        |         | (48)     |
| Temperature f                    | actor fro    | m Table     | 2b                     |             |             |            |             |            |                        |                                       | 0        |         | (49)     |
| Energy lost fro                  |              | -           | -                      |             |             |            | (48) x (49) | =          |                        |                                       | 0        |         | (50)     |
| b) If manufact                   |              |             | -                      |             |             |            |             |            |                        |                                       |          | ·<br>I  |          |
| Hot water stor<br>If community h | _            |             |                        | e∠(KVVI     | n/ntre/da   | ıy)        |             |            |                        |                                       | 0        |         | (51)     |
| Volume factor                    | _            |             | ن. <del>۱۱ -۱</del> .۵ |             |             |            |             |            |                        |                                       | 0        |         | (52)     |
| Temperature f                    |              |             | 2b                     |             |             |            |             |            |                        | -                                     | 0        |         | (52)     |
| Energy lost fro                  |              |             |                        | ear         |             |            | (47) x (51) | x (52) x ( | 53) =                  |                                       | 0        |         | (54)     |
| Enter (50) or                    |              | _           | , <b> y .</b>          |             |             |            | . / (= -)   | (- ) (     | ,                      |                                       | 0        |         | (55)     |
| . ,                              |              |             |                        |             |             |            |             |            |                        |                                       |          | ı       |          |

| Water Storage                                                                                                                                           | loss cal                                                                                              | culated f                                                                                               | or each                                                                                            | month                                                                  |                                                                      |                                                                        | ((56)m = (                                                      | 55) × (41)ı                                                  | m                                                |                                                             |                                                    |               |                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|---------------|--------------------------------------|
| (56)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (56)                                 |
| If cylinder contains                                                                                                                                    | dedicated                                                                                             | d solar sto                                                                                             | rage, (57)ı                                                                                        | m = (56)m                                                              | x [(50) – (                                                          | H11)] ÷ (5                                                             | 0), else (5                                                     | 7)m = (56)                                                   | m where (                                        | H11) is fro                                                 | m Append                                           | ix H          |                                      |
| (57)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (57)                                 |
| Primary circuit                                                                                                                                         | loss (an                                                                                              | nual) fro                                                                                               | om Table                                                                                           | 3                                                                      |                                                                      |                                                                        |                                                                 |                                                              |                                                  |                                                             | 0                                                  |               | (58)                                 |
| Primary circuit                                                                                                                                         | ,                                                                                                     | •                                                                                                       |                                                                                                    |                                                                        | 59)m = (                                                             | (58) ÷ 36                                                              | 5 × (41)                                                        | m                                                            |                                                  |                                                             |                                                    | •             |                                      |
| (modified by                                                                                                                                            | factor fr                                                                                             | om Tabl                                                                                                 | le H5 if t                                                                                         | here is s                                                              | solar wat                                                            | er heatir                                                              | ng and a                                                        | cylinde                                                      | r thermo                                         | stat)                                                       |                                                    |               |                                      |
| (59)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (59)                                 |
| Combi loss cal                                                                                                                                          | culated                                                                                               | for each                                                                                                | month (                                                                                            | 61)m =                                                                 | (60) ÷ 36                                                            | 65 × (41)                                                              | m                                                               |                                                              |                                                  |                                                             |                                                    |               |                                      |
| (61)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (61)                                 |
| Total heat requ                                                                                                                                         | ired for                                                                                              | water he                                                                                                | eating ca                                                                                          | alculated                                                              | for eacl                                                             | h month                                                                | (62)m =                                                         | 0.85 × (                                                     | (45)m +                                          | (46)m +                                                     | (57)m +                                            | (59)m + (61)m |                                      |
| (62)m= 137.5                                                                                                                                            | 120.26                                                                                                | 124.09                                                                                                  | 108.19                                                                                             | 103.81                                                                 | 89.58                                                                | 83.01                                                                  | 95.25                                                           | 96.39                                                        | 112.33                                           | 122.62                                                      | 133.16                                             |               | (62)                                 |
| Solar DHW input of                                                                                                                                      | alculated                                                                                             | using App                                                                                               | endix G or                                                                                         | Appendix                                                               | H (negati                                                            | ve quantity                                                            | ) (enter '0                                                     | if no sola                                                   | r contributi                                     | on to wate                                                  | er heating)                                        | 1             |                                      |
| (add additional                                                                                                                                         | lines if                                                                                              | FGHRS                                                                                                   | and/or V                                                                                           | VWHRS                                                                  | applies                                                              | , see Ap                                                               | pendix (                                                        | 3)                                                           |                                                  |                                                             |                                                    |               |                                      |
| (63)m= 0                                                                                                                                                | 0                                                                                                     | 0                                                                                                       | 0                                                                                                  | 0                                                                      | 0                                                                    | 0                                                                      | 0                                                               | 0                                                            | 0                                                | 0                                                           | 0                                                  |               | (63)                                 |
| Output from wa                                                                                                                                          | ater hea                                                                                              | ter                                                                                                     |                                                                                                    |                                                                        |                                                                      |                                                                        |                                                                 |                                                              |                                                  |                                                             |                                                    | •             |                                      |
| (64)m= 137.5                                                                                                                                            | 120.26                                                                                                | 124.09                                                                                                  | 108.19                                                                                             | 103.81                                                                 | 89.58                                                                | 83.01                                                                  | 95.25                                                           | 96.39                                                        | 112.33                                           | 122.62                                                      | 133.16                                             |               |                                      |
|                                                                                                                                                         |                                                                                                       |                                                                                                         |                                                                                                    |                                                                        |                                                                      |                                                                        | Outp                                                            | out from wa                                                  | ater heate                                       | · (annual)₁                                                 | 12                                                 | 1326.2        | (64)                                 |
| Heat gains fror                                                                                                                                         | n water                                                                                               | heating,                                                                                                | kWh/m                                                                                              | onth 0.2                                                               | 5 ´ [0.85                                                            | × (45)m                                                                | + (61)m                                                         | n] + 0.8 x                                                   | ((46)m                                           | + (57)m                                                     | + (59)m                                            | ]             | _                                    |
| (65)m= 34.37                                                                                                                                            | 30.06                                                                                                 | 31.02                                                                                                   | 27.05                                                                                              | 25.95                                                                  | 22.39                                                                | 20.75                                                                  | 23.81                                                           | 24.1                                                         | 28.08                                            | 30.66                                                       | 33.29                                              |               | (65)                                 |
| include (57)r                                                                                                                                           | n in calc                                                                                             | culation (                                                                                              | of (65)m                                                                                           | only if c                                                              | ylinder is                                                           | s in the o                                                             | dwelling                                                        | or hot w                                                     | ater is fr                                       | om com                                                      | munity h                                           | eating        |                                      |
| 5. Internal ga                                                                                                                                          |                                                                                                       |                                                                                                         |                                                                                                    | •                                                                      | •                                                                    |                                                                        |                                                                 |                                                              |                                                  |                                                             | •                                                  |               |                                      |
| Metabolic gain                                                                                                                                          | ·                                                                                                     |                                                                                                         |                                                                                                    |                                                                        |                                                                      |                                                                        |                                                                 |                                                              |                                                  |                                                             |                                                    |               |                                      |
| Jan                                                                                                                                                     | Feb                                                                                                   | Mar                                                                                                     |                                                                                                    |                                                                        |                                                                      |                                                                        |                                                                 |                                                              |                                                  |                                                             |                                                    |               |                                      |
| (66)m= 136.77                                                                                                                                           | 136.77                                                                                                | iviai                                                                                                   | Apr                                                                                                | May                                                                    | Jun                                                                  | Jul                                                                    | Aug                                                             | Sep                                                          | Oct                                              | Nov                                                         | Dec                                                |               |                                      |
| Lighting going                                                                                                                                          |                                                                                                       | 136.77                                                                                                  |                                                                                                    | May<br>136.77                                                          | Jun<br>136.77                                                        | Jul<br>136.77                                                          | Aug<br>136.77                                                   | Sep<br>136.77                                                | Oct                                              | Nov<br>136.77                                               | Dec<br>136.77                                      |               | (66)                                 |
| Lighting gains                                                                                                                                          |                                                                                                       | <b>-</b>                                                                                                | Apr<br>136.77                                                                                      | 136.77                                                                 | 136.77                                                               | 136.77                                                                 | 136.77                                                          | 136.77                                                       |                                                  |                                                             |                                                    |               | (66)                                 |
| (67)m= 22.79                                                                                                                                            |                                                                                                       | 136.77                                                                                                  | Apr<br>136.77                                                                                      | 136.77                                                                 | 136.77                                                               | 136.77                                                                 | 136.77                                                          | 136.77                                                       |                                                  |                                                             |                                                    |               | (66)<br>(67)                         |
| (67)m= 22.79                                                                                                                                            | (calculat                                                                                             | 136.77<br>ted in Ap<br>16.46                                                                            | Apr<br>136.77<br>opendix<br>12.46                                                                  | 136.77<br>L, equat                                                     | 136.77<br>ion L9 oi<br>7.86                                          | 136.77<br>r L9a), a<br>8.5                                             | 136.77<br>Iso see                                               | 136.77<br>Table 5                                            | 136.77                                           | 136.77                                                      | 136.77                                             |               | , ,                                  |
| , <u>, , , , , , , , , , , , , , , , , , </u>                                                                                                           | (calculat                                                                                             | 136.77<br>ted in Ap<br>16.46                                                                            | Apr<br>136.77<br>opendix<br>12.46                                                                  | 136.77<br>L, equat                                                     | 136.77<br>ion L9 oi<br>7.86                                          | 136.77<br>r L9a), a<br>8.5                                             | 136.77<br>Iso see                                               | 136.77<br>Table 5                                            | 136.77                                           | 136.77                                                      | 136.77                                             |               | , ,                                  |
| (67)m= 22.79 Appliances gai (68)m= 255.6                                                                                                                | (calculat<br>20.24<br>ns (calc<br>258.25                                                              | 136.77<br>ted in Ap<br>16.46<br>ulated in<br>251.57                                                     | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34                                              | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38                      | 136.77<br>ion L9 or<br>7.86<br>uation L<br>202.5                     | 136.77<br>r L9a), a<br>8.5<br>13 or L1<br>191.22                       | 136.77<br>Iso see 11.04<br>3a), also                            | 136.77<br>Table 5<br>14.82<br>see Tal<br>195.25              | 136.77<br>18.82<br>ole 5<br>209.48               | 136.77<br>21.97                                             | 136.77<br>23.42                                    |               | (67)                                 |
| (67)m= 22.79 Appliances gai                                                                                                                             | (calculat<br>20.24<br>ns (calc<br>258.25                                                              | 136.77<br>ted in Ap<br>16.46<br>ulated in<br>251.57                                                     | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34                                              | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38                      | 136.77<br>ion L9 or<br>7.86<br>uation L<br>202.5                     | 136.77<br>r L9a), a<br>8.5<br>13 or L1<br>191.22                       | 136.77<br>Iso see 11.04<br>3a), also                            | 136.77<br>Table 5<br>14.82<br>see Tal<br>195.25              | 136.77<br>18.82<br>ole 5<br>209.48               | 136.77<br>21.97                                             | 136.77<br>23.42                                    |               | (67)                                 |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68                                                                                   | (calculate 20.24 ns (calculate 258.25 (calculate 36.68                                                | 136.77<br>ted in Ap<br>16.46<br>ulated in<br>251.57<br>tted in Ap<br>36.68                              | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34<br>ppendix<br>36.68                          | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38<br>L, equat          | 136.77<br>ion L9 of<br>7.86<br>uation L<br>202.5<br>ion L15          | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)          | 136.77<br>Iso see 11.04<br>3a), also 188.57                     | 136.77  Table 5  14.82  see Tal  195.25  ee Table            | 136.77<br>18.82<br>ble 5<br>209.48               | 136.77<br>21.97<br>227.44                                   | 23.42<br>244.32                                    |               | (67)<br>(68)                         |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains                                                                                                | (calculate 20.24 ns (calculate 258.25 (calculate 36.68                                                | 136.77<br>ted in Ap<br>16.46<br>ulated in<br>251.57<br>tted in Ap<br>36.68                              | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34<br>ppendix<br>36.68                          | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38<br>L, equat          | 136.77<br>ion L9 of<br>7.86<br>uation L<br>202.5<br>ion L15          | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)          | 136.77<br>Iso see 11.04<br>3a), also 188.57                     | 136.77  Table 5  14.82  see Tal  195.25  ee Table            | 136.77<br>18.82<br>ble 5<br>209.48               | 136.77<br>21.97<br>227.44                                   | 23.42<br>244.32                                    |               | (67)<br>(68)                         |
| (67)m = 22.79 Appliances gai $(68)m = 255.6$ Cooking gains $(69)m = 36.68$ Pumps and far $(70)m = 0$                                                    | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0                                     | 136.77 ted in Ap 16.46 ulated in 251.57 ted in Ap 36.68 (Table 5                                        | Apr<br>136.77<br>opendix<br>12.46<br>n Append<br>237.34<br>opendix<br>36.68<br>5a)<br>0            | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38<br>L, equat<br>36.68 | 136.77<br>ion L9 or<br>7.86<br>uation L<br>202.5<br>ion L15<br>36.68 | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77<br>Iso see 11.04<br>3a), also 188.57<br>, also se 36.68  | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68           | 136.77<br>18.82<br>ble 5<br>209.48<br>5<br>36.68 | 136.77<br>21.97<br>227.44<br>36.68                          | 23.42<br>244.32<br>36.68                           |               | (67)<br>(68)<br>(69)                 |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far                                                                    | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio                            | 136.77 ted in Ap 16.46 ulated in 251.57 ted in Ap 36.68 (Table 5                                        | Apr<br>136.77<br>opendix<br>12.46<br>n Append<br>237.34<br>opendix<br>36.68<br>5a)<br>0            | 136.77<br>L, equat<br>9.31<br>dix L, eq<br>219.38<br>L, equat<br>36.68 | 136.77<br>ion L9 or<br>7.86<br>uation L<br>202.5<br>ion L15<br>36.68 | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77<br>Iso see 11.04<br>3a), also 188.57<br>, also se 36.68  | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68           | 136.77<br>18.82<br>ble 5<br>209.48<br>5<br>36.68 | 136.77<br>21.97<br>227.44<br>36.68                          | 23.42<br>244.32<br>36.68                           |               | (67)<br>(68)<br>(69)                 |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far (70)m= 0  Losses e.g. ev (71)m= -109.41                            | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio -109.41                    | 136.77  ted in Ap 16.46  ulated in 251.57  ted in Ap 36.68  (Table 5 0  on (negat                       | Apr<br>136.77<br>ppendix<br>12.46<br>Appendix<br>237.34<br>ppendix<br>36.68<br>5a)<br>0            | 136.77  L, equat 9.31  dix L, eq 219.38  L, equat 36.68  0  es) (Tab   | 136.77 ion L9 or 7.86 uation L 202.5 ion L15 36.68  0                | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77<br>Iso see 11.04<br>3a), also 188.57<br>, also se 36.68  | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68           | 136.77  18.82 ble 5 209.48 5 36.68               | 21.97<br>227.44<br>36.68                                    | 23.42<br>244.32<br>36.68                           |               | (67)<br>(68)<br>(69)<br>(70)         |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far (70)m= 0  Losses e.g. ev                                           | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio -109.41                    | 136.77  ted in Ap 16.46  ulated in 251.57  ted in Ap 36.68  (Table 5 0  on (negat                       | Apr<br>136.77<br>ppendix<br>12.46<br>Appendix<br>237.34<br>ppendix<br>36.68<br>5a)<br>0            | 136.77  L, equat 9.31  dix L, eq 219.38  L, equat 36.68  0  es) (Tab   | 136.77 ion L9 or 7.86 uation L 202.5 ion L15 36.68  0                | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77<br>Iso see 11.04<br>3a), also 188.57<br>, also se 36.68  | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68           | 136.77  18.82 ble 5 209.48 5 36.68               | 21.97<br>227.44<br>36.68                                    | 23.42<br>244.32<br>36.68                           |               | (67)<br>(68)<br>(69)<br>(70)         |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far (70)m= 0  Losses e.g. ev (71)m= -109.41  Water heating (72)m= 46.2 | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio -109.41 gains (Table 44.74 | 136.77  ted in Ap 16.46  ulated in 251.57  ted in Ap 36.68  (Table 5 0 on (negat -109.41  Table 5) 41.7 | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34<br>ppendix<br>36.68<br>5a)<br>0<br>tive valu | 136.77  L, equat 9.31  dix L, eq 219.38  L, equat 36.68  0  es) (Tab   | 136.77 ion L9 or 7.86 uation L 202.5 ion L15 36.68  0 lle 5) -109.41 | 136.77<br>r L9a), a<br>8.5<br>13 or L1:<br>191.22<br>or L15a)<br>36.68 | 136.77 Iso see 11.04 3a), also 188.57 , also se 36.68 0 -109.41 | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68 0 -109.41 | 136.77  18.82 ble 5 209.48 5 36.68  0 -109.41    | 136.77<br>21.97<br>227.44<br>36.68<br>0<br>-109.41<br>42.58 | 136.77<br>23.42<br>244.32<br>36.68<br>0<br>-109.41 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |
| (67)m= 22.79  Appliances gai (68)m= 255.6  Cooking gains (69)m= 36.68  Pumps and far (70)m= 0  Losses e.g. ev (71)m= -109.41  Water heating             | (calculate 20.24 ns (calculate 258.25 (calculate 36.68 ns gains 0 aporatio -109.41 gains (Table 44.74 | 136.77  ted in Ap 16.46  ulated in 251.57  ted in Ap 36.68  (Table 5 0 on (negat -109.41  Table 5) 41.7 | Apr<br>136.77<br>ppendix<br>12.46<br>Append<br>237.34<br>ppendix<br>36.68<br>5a)<br>0<br>tive valu | 136.77  L, equat 9.31  dix L, eq 219.38  L, equat 36.68  0  es) (Tab   | 136.77 ion L9 or 7.86 uation L 202.5 ion L15 36.68  0 lle 5) -109.41 | 136.77 r L9a), a 8.5 13 or L1 191.22 or L15a) 36.68 0 -109.41          | 136.77 Iso see 11.04 3a), also 188.57 , also se 36.68 0 -109.41 | 136.77 Table 5 14.82 see Tal 195.25 ee Table 36.68 0 -109.41 | 136.77  18.82 ble 5 209.48 5 36.68  0 -109.41    | 136.77<br>21.97<br>227.44<br>36.68<br>0<br>-109.41<br>42.58 | 136.77<br>23.42<br>244.32<br>36.68<br>0<br>-109.41 |               | (67)<br>(68)<br>(69)<br>(70)<br>(71) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Facto<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|---------------------------------------|---|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                   | x | 18.86      | x | 11.28            | x | 0.63           | x | 0.7            | <b>=</b> | 65.03        | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 22.97            | x | 0.63           | x | 0.7            | =        | 132.38       | (75) |
| Northeast 0.9x 0.77                   | x | 18.86      | x | 41.38            | x | 0.63           | x | 0.7            | =        | 238.5        | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 67.96            | x | 0.63           | x | 0.7            | =        | 391.69       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | X | 18.86      | x | 91.35            | X | 0.63           | x | 0.7            | =        | 526.51       | (75) |
| Northeast 0.9x 0.77                   | x | 18.86      | x | 97.38            | x | 0.63           | x | 0.7            | =        | 561.31       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 91.1             | x | 0.63           | x | 0.7            | =        | 525.09       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 72.63            | x | 0.63           | x | 0.7            | =        | 418.61       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 50.42            | x | 0.63           | x | 0.7            | =        | 290.62       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 28.07            | x | 0.63           | x | 0.7            | =        | 161.78       | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 14.2             | x | 0.63           | x | 0.7            | =        | 81.83        | (75) |
| Northeast <sub>0.9x</sub> 0.77        | x | 18.86      | x | 9.21             | x | 0.63           | x | 0.7            | =        | 53.11        | (75) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 36.79            | x | 0.63           | x | 0.7            | =        | 31.04        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 62.67            | x | 0.63           | x | 0.7            | =        | 52.86        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 85.75            | x | 0.63           | x | 0.7            | =        | 72.33        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 106.25           | x | 0.63           | x | 0.7            | =        | 89.62        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 119.01           | x | 0.63           | x | 0.7            | =        | 100.38       | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 118.15           | x | 0.63           | x | 0.7            | =        | 99.66        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 113.91           | x | 0.63           | x | 0.7            | =        | 96.08        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 104.39           | x | 0.63           | x | 0.7            | =        | 88.05        | (77) |
| Southeast 0.9x 0.77                   | X | 2.76       | x | 92.85            | x | 0.63           | x | 0.7            | =        | 78.32        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 69.27            | x | 0.63           | x | 0.7            | =        | 58.43        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 44.07            | x | 0.63           | x | 0.7            | =        | 37.17        | (77) |
| Southeast 0.9x 0.77                   | x | 2.76       | x | 31.49            | x | 0.63           | x | 0.7            | =        | 26.56        | (77) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 36.79            |   | 0.63           | X | 0.7            | =        | 87.48        | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 62.67            | ] | 0.63           | x | 0.7            | =        | 149.02       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 85.75            |   | 0.63           | X | 0.7            | =        | 203.89       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | X | 7.78       | X | 106.25           |   | 0.63           | X | 0.7            | =        | 252.63       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | X | 7.78       | x | 119.01           | ] | 0.63           | X | 0.7            | =        | 282.97       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | X | 7.78       | X | 118.15           |   | 0.63           | X | 0.7            | =        | 280.92       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | X | 7.78       | X | 113.91           |   | 0.63           | X | 0.7            | =        | 270.84       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 104.39           |   | 0.63           | X | 0.7            | =        | 248.21       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 92.85            |   | 0.63           | X | 0.7            | =        | 220.77       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 69.27            |   | 0.63           | X | 0.7            | =        | 164.7        | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 44.07            | ] | 0.63           | x | 0.7            | =        | 104.79       | (79) |
| Southwest <sub>0.9x</sub> 0.77        | x | 7.78       | x | 31.49            | ] | 0.63           | x | 0.7            | =        | 74.87        | (79) |
| Northwest 0.9x 0.77                   | x | 0.69       | x | 11.28            | x | 0.63           | x | 0.7            | =        | 2.38         | (81) |
| Northwest 0.9x 0.77                   | x | 0.69       | x | 22.97            | x | 0.63           | x | 0.7            | ] =      | 4.84         | (81) |
| Northwest 0.9x 0.77                   | x | 0.69       | x | 41.38            | x | 0.63           | X | 0.7            | =        | 8.73         | (81) |

| _                         |                  |            |            |             | _        |              |           |          |               |           |           |              |          |          |       | _    |
|---------------------------|------------------|------------|------------|-------------|----------|--------------|-----------|----------|---------------|-----------|-----------|--------------|----------|----------|-------|------|
| Northwest 0.9x            | 0.77             | Х          | 0.6        | 9           | x        | 6            | 7.96      | X        |               | 0.63      | X         | 0.7          |          | =        | 14.33 | (81) |
| Northwest 0.9x            | 0.77             | X          | 0.6        | 69          | x        | 9            | 1.35      | X        |               | 0.63      | X         | 0.7          |          | = [      | 19.26 | (81) |
| Northwest 0.9x            | 0.77             | X          | 0.6        | 69          | x        | 9            | 7.38      | X        |               | 0.63      | x         | 0.7          |          | = [      | 20.54 | (81) |
| Northwest <sub>0.9x</sub> | 0.77             | X          | 0.6        | 69          | x        | g            | 1.1       | X        |               | 0.63      | x         | 0.7          |          | = [      | 19.21 | (81) |
| Northwest 0.9x            | 0.77             | X          | 0.6        | 69          | x        | 7            | 2.63      | X        |               | 0.63      | x [       | 0.7          |          | = [      | 15.32 | (81) |
| Northwest 0.9x            | 0.77             | X          | 0.6        | 69          | x        | 5            | 0.42      | X        |               | 0.63      | x         | 0.7          |          | = [      | 10.63 | (81) |
| Northwest 0.9x            | 0.77             | X          | 0.6        | 69          | x        | 2            | 8.07      | x        |               | 0.63      | x         | 0.7          |          | = [      | 5.92  | (81) |
| Northwest 0.9x            | 0.77             | X          | 0.6        | 69          | x        | 1            | 4.2       | x        |               | 0.63      | x [       | 0.7          |          | = [      | 2.99  | (81) |
| Northwest 0.9x            | 0.77             | X          | 0.6        | 69          | x        | 9            | ).21      | x        |               | 0.63      | x [       | 0.7          |          | =        | 1.94  | (81) |
|                           |                  |            |            |             |          |              |           |          |               |           |           |              |          |          |       |      |
| Solar gains in            | watts, ca        | alculated  | for eac    | h month     |          |              |           | (83)m    | ı = Su        | ım(74)m . | (82)m     |              |          |          |       |      |
| (83)m= 185.93             | 339.1            | 523.45     | 748.27     | 929.12      | 96       | 32.43        | 911.23    | 770      | .18           | 600.34    | 390.82    | 226.78       | 156.4    | 18       |       | (83) |
| Total gains – ir          | nternal a        | nd solar   | (84)m =    | = (73)m ·   | + (8     | 33)m ,       | watts     |          |               |           |           | _            |          |          |       |      |
| (84)m= 574.55             | 726.36           | 897.2      | 1099.67    | 1256.72     | 126      | 67.92        | 1202.86   | 1065     | 5.83          | 907.91    | 720.89    | 582.8        | 532.9    | 9        |       | (84) |
| 7. Mean inter             | nal temp         | erature    | (heating   | season      | )        |              |           |          |               |           |           |              |          |          |       |      |
| Temperature               | during h         | eating p   | eriods ir  | n the livii | ng a     | area f       | rom Tab   | ole 9,   | , Th1         | 1 (°C)    |           |              |          |          | 21    | (85) |
| Utilisation fac           | tor for g        | ains for I | living are | ea, h1,m    | (se      | ee Ta        | ble 9a)   |          |               |           |           |              |          | ١        |       |      |
| Jan                       | Feb              | Mar        | Apr        | May         | Ť,       | Jun          | Jul       | Αι       | ug            | Sep       | Oct       | Nov          | De       | С        |       |      |
| (86)m= 0.97               | 0.95             | 0.92       | 0.84       | 0.73        | (        | 0.6          | 0.48      | 0.5      | 54            | 0.74      | 0.9       | 0.96         | 0.98     | 3        |       | (86) |
| Mean interna              | l temper         | ature in   | living an  | ea T1 (fo   | ירווטי   | w ster       | ns 3 to 7 | in T     | able          | , 9c)     |           | •            | •        |          |       |      |
| (87)m= 17.79              | 18.15            | 18.75      | 19.52      | 20.19       | _        | 0.65         | 20.85     | 20.      | $\overline{}$ | 20.39     | 19.49     | 18.5         | 17.7     | 2        |       | (87) |
| ` '                       |                  |            |            | l           | <u> </u> |              |           |          |               | .0 (00)   |           | 1            | <u> </u> |          |       |      |
| Temperature (88)m= 19.64  | 19.64            | 19.64      | 19.65      | 19.65       | _        | 9.66         | 19.66     | 19.0     |               | 19.66     | 19.65     | 19.65        | 19.6     | <u>л</u> |       | (88) |
| ` '                       |                  |            |            |             | <u> </u> |              |           |          | 00            | 10.00     | 10.00     | 10.00        | 10.0     |          |       | (00) |
| Utilisation fac           |                  |            |            |             | ·        | <del>`</del> |           | <u> </u> |               |           |           | T            |          | _        |       | (00) |
| (89)m= 0.97               | 0.94             | 0.9        | 0.81       | 0.68        | 0        | ).51         | 0.36      | 0.4      | 12            | 0.67      | 0.87      | 0.95         | 0.97     |          |       | (89) |
| Mean interna              | temper           | ature in   | the rest   | of dwelli   | ng       | T2 (fc       | ollow ste | ps 3     | to 7          | in Tabl   | e 9c)     | •            |          |          |       |      |
| (90)m= 16.75              | 17.11            | 17.7       | 18.45      | 19.07       | 19       | 9.46         | 19.6      | 19.      | 58            | 19.27     | 18.44     | 17.47        | 16.6     | 9        |       | (90) |
|                           |                  |            |            |             |          |              |           |          |               | f         | LA = Livi | ng area ÷ (4 | 4) =     |          | 0.3   | (91) |
| Mean interna              | l temper         | ature (fo  | r the wh   | ole dwe     | lling    | g) = fL      | _A × T1   | + (1     | – fL          | A) × T2   |           |              |          |          |       |      |
| (92)m= 17.06              | 17.42            | 18.01      | 18.76      | 19.4        | 19       | 9.81         | 19.97     | 19.9     | 94            | 19.6      | 18.75     | 17.77        | 17       |          |       | (92) |
| Apply adjustn             | nent to tl       | ne mean    | interna    | temper      | atuı     | re fro       | m Table   | 4e, '    | whe           | re appro  | priate    |              |          |          |       |      |
| (93)m= 17.06              | 17.42            | 18.01      | 18.76      | 19.4        | 19       | 9.81         | 19.97     | 19.9     | 94            | 19.6      | 18.75     | 17.77        | 17       |          |       | (93) |
| 8. Space hea              | ting requ        | uirement   |            |             |          |              |           |          |               |           |           |              |          |          |       |      |
| Set Ti to the r           |                  |            |            |             | ed       | at ste       | p 11 of   | Tabl     | e 9b          | , so tha  | t Ti,m=   | (76)m an     | d re-c   | alc      | ulate |      |
| the utilisation           |                  |            |            | I           |          | 1            | 11        | Λ.       |               | Can       | 0-4       | Nov          |          |          |       |      |
| Jan Utilisation fac       | Feb<br>tor for a | Mar        | Apr        | May         | <u> </u> | Jun          | Jul       | A        | ug            | Sep       | Oct       | Nov          | De       | C        |       |      |
| (94)m= 0.95               | 0.92             | 0.88       | 0.79       | 0.67        | 0        | ).52         | 0.39      | 0.4      | 14            | 0.66      | 0.85      | 0.93         | 0.96     | ;        |       | (94) |
| Useful gains,             |                  |            |            | l           |          |              | 0.00      | <u> </u> |               | 0.00      | 0.00      | 1 0.00       |          |          |       | (- / |
| (95)m= 546.85             | 671.23           | 785.98     | 868.07     | 838.07      | 65       | 9.15         | 466.33    | 472      | .81           | 600.77    | 611.64    | 542.84       | 510.7    | 72       |       | (95) |
| Monthly avera             | age exte         | rnal tem   | perature   | from Ta     | <u> </u> |              |           |          |               |           |           | 1            |          |          |       |      |
| (96)m= 4.3                | 4.9              | 6.5        | 8.9        | 11.7        |          | 4.6          | 16.6      | 16.      | .4            | 14.1      | 10.6      | 7.1          | 4.2      |          |       | (96) |
| Heat loss rate            | for mea          | an intern  | al tempe   | erature,    | Lm       | , W =        | :[(39)m   | x [(93   | 3)m-          | - (96)m   | ]         | 1            |          |          |       |      |
| (97)m= 1992.87            |                  |            | 1520.98    | r           |          | 5.86         | 514.74    | 539      | <del></del>   | 842.37    | 1255.36   | 1648.37      | 1983     | .9       |       | (97) |
|                           |                  |            |            |             |          |              |           |          |               |           |           |              |          | _        |       |      |

| Space he   | eating   | require  | ement fo   | r each n  | nonth, k\ | Wh/mont   | th = 0.02 | 24 x [(97) | )m – (95   | 5)m] x (4 | 1)m       |                        |         |       |
|------------|----------|----------|------------|-----------|-----------|-----------|-----------|------------|------------|-----------|-----------|------------------------|---------|-------|
| (98)m= 107 | 75.84 8  | 860.21   | 747.56     | 470.1     | 258.19    | 0         | 0         | 0          | 0          | 478.92    | 795.98    | 1096.05                |         |       |
|            |          | •        |            |           |           |           |           | Tota       | l per year | (kWh/yeaı | ) = Sum(9 | 8) <sub>15,912</sub> = | 5782.85 | (98)  |
| Space he   | eating   | require  | ement in   | kWh/m²    | /year     |           |           |            |            |           |           |                        | 58.09   | (99)  |
| 8c. Spac   | ce cooli | ing req  | uiremen    | it        |           |           |           |            |            |           |           |                        |         |       |
| Calculate  | ed for J | June, J  | uly and    | August.   | See Tal   | ole 10b   |           |            |            | -         |           |                        |         |       |
| J          | Jan      | Feb      | Mar        | Apr       | May       | Jun       | Jul       | Aug        | Sep        | Oct       | Nov       | Dec                    |         |       |
| Heat loss  | s rate L | _m (cal  | lculated   | using 2   | 5°C inter | nal temp  | erature   | and exte   | ernal ten  | nperatur  | e from T  | able 10)               |         |       |
| (100)m=    | 0        | 0        | 0          | 0         | 0         | 1435.56   | 1130.12   | 1158.95    | 0          | 0         | 0         | 0                      |         | (100) |
| Utilisatio | n facto  | r for lo | ss hm      |           |           |           |           |            |            |           |           |                        |         |       |
| (101)m=    | 0        | 0        | 0          | 0         | 0         | 0.72      | 0.78      | 0.74       | 0          | 0         | 0         | 0                      |         | (101) |
| Useful lo  | ss, hm   | nLm (W   | /atts) = ( | 100)m x   | (101)m    |           |           |            |            | •         |           |                        |         |       |
| (102)m=    | 0        | 0        | 0          | 0         | 0         | 1036.33   | 881.97    | 856.57     | 0          | 0         | 0         | 0                      |         | (102) |
| Gains (se  | olar ga  | ins cal  | culated    | for appli | cable we  | eather re | gion, se  | e Table    | 10)        |           |           |                        |         |       |
| (103)m=    | 0        | 0        | 0          | 0         | 0         | 1586.76   | 1508.46   | 1350.13    | 0          | 0         | 0         | 0                      |         | (103) |
| Space co   |          |          |            |           |           | lwelling, | continuo  | ous ( kW   | h' = 0.0   | 24 x [(10 | 03)m – (  | 102)m ] >              | c (41)m |       |
| (104)m=    | 0        | 0        | 0          | 0         | 0         | 396.31    | 466.1     | 367.21     | 0          | 0         | 0         | 0                      |         |       |
|            | <u> </u> | ·        |            |           |           |           |           |            | Total      | l = Sum(  | 104)      | =                      | 1229.63 | (104) |
| Cooled fra | action   |          |            |           |           |           |           |            | f C =      | cooled    | area ÷ (4 | 1) =                   | 1       | (105) |
| Intermitte | ncy fac  | tor (Ta  | ble 10b    | )         |           |           |           |            |            |           |           |                        |         | _     |
| (106)m=    | 0        | 0        | 0          | 0         | 0         | 0.25      | 0.25      | 0.25       | 0          | 0         | 0         | 0                      |         |       |
|            |          |          |            |           |           |           |           |            | Tota       | I = Sum(  | 104)      | = [                    | 0       | (106) |
| Space coo  | oling re | equiren  | nent for   | month =   | (104)m    | × (105)   | × (106)r  | n          |            |           |           |                        |         |       |
| (107)m=    | 0        | 0        | 0          | 0         | 0         | 99.08     | 116.53    | 91.8       | 0          | 0         | 0         | 0                      |         |       |
|            |          |          |            |           |           |           |           |            | Total      | I = Sum(  | 107)      | = [                    | 307.41  | (107) |
| Space cod  | oling re | equiren  | nent in k  | :Wh/m²/y  | /ear      |           |           |            | (107)      | ) ÷ (4) = |           | Ī                      | 3.09    | (108) |
| 8f. Fabric | Energy   | y Effici | ency (ca   | alculated | only un   | der spec  | cial cond | itions, se | ee sectio  | on 11)    |           |                        |         | -     |

(99) + (108) =

Fabric Energy Efficiency

(109)

61.18

|                                                          |                                                | User Details:                                            |                        |             |              |      |
|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------|-------------|--------------|------|
| Assessor Name:                                           | Harry Hinchcliffe                              | Stroma Nu                                                | mher·                  | STRO        | 034627       |      |
| Software Name:                                           | Stroma FSAP 2012                               | Software V                                               |                        |             | n: 1.0.5.16  |      |
|                                                          | Pi                                             | roperty Address: 1559                                    | 2 - L1a Assessm        | ent         |              |      |
| Address :                                                | New Dwelling @, 34 Summe                       | er House Way, Langle                                     | y, WD5 0DY             |             |              |      |
| 1. Overall dwelling dime                                 | ensions:                                       |                                                          |                        |             |              |      |
|                                                          |                                                | Area(m²)                                                 | Av. Height(m           | )           | Volume(m³    | )    |
| Ground floor                                             |                                                | 52.34 (1a) x                                             | 2.39                   | (2a) =      | 125.09       | (3a) |
| First floor                                              |                                                | 47.21 (1b) x                                             | 2.65                   | (2b) =      | 125.11       | (3b) |
| Total floor area TFA = (1                                | a)+(1b)+(1c)+(1d)+(1e)+(1n                     | 99.55 (4)                                                |                        |             |              |      |
| Dwelling volume                                          |                                                | (3a)+(                                                   | 3b)+(3c)+(3d)+(3e)+.   | (3n) =      | 250.2        | (5)  |
| 2. Ventilation rate:                                     |                                                |                                                          |                        | -           |              |      |
|                                                          | main secondary heating                         | y other                                                  | total                  |             | m³ per hou   | r    |
| Number of chimneys                                       | 0 + 0                                          | + 0 =                                                    | 0                      | x 40 =      | 0            | (6a) |
| Number of open flues                                     | 0 + 0                                          | + 0 =                                                    | 0                      | x 20 =      | 0            | (6b) |
| Number of intermittent fa                                | ns                                             | <del>-</del>                                             | 0                      | x 10 =      | 0            | (7a) |
| Number of passive vents                                  | ;                                              |                                                          | 0                      | x 10 =      | 0            | (7b) |
| Number of flueless gas fi                                | res                                            |                                                          | 0 ,                    | x 40 =      | 0            | (7c) |
|                                                          |                                                |                                                          |                        | Air ch      | anges per ho |      |
| Infiltration due to chimne                               | ys, flues and fans = (6a)+(6b)+(7a             | (a)+(7h)+(7c) -                                          |                        | -           |              | _    |
|                                                          | peen carried out or is intended, proceed       |                                                          | 0 e from (9) to (16)   | ÷ (5) =     | 0            | (8)  |
| Number of storeys in the                                 | he dwelling (ns)                               |                                                          | ,,,,,                  | ſ           | 0            | (9)  |
| Additional infiltration                                  |                                                |                                                          | [(9                    | 9)-1]x0.1 = | 0            | (10) |
| Structural infiltration: 0                               | .25 for steel or timber frame or               | 0.35 for masonry cons                                    | struction              |             | 0            | (11) |
| if both types of wall are p<br>deducting areas of openii | resent, use the value corresponding to         | the greater wall area (after                             |                        |             |              |      |
| •                                                        | floor, enter 0.2 (unsealed) or 0.              | 1 (sealed), else enter                                   | 0                      |             | 0            | (12) |
| If no draught lobby, en                                  | ter 0.05, else enter 0                         |                                                          |                        | Ī           | 0            | (13) |
| Percentage of windows                                    | s and doors draught stripped                   |                                                          |                        |             | 0            | (14) |
| Window infiltration                                      |                                                | 0.25 - [0.2 x (14)                                       | ÷ 100] =               |             | 0            | (15) |
| Infiltration rate                                        |                                                | (8) + (10) + (11) +                                      | - (12) + (13) + (15) = |             | 0            | (16) |
| Air permeability value,                                  | q50, expressed in cubic metre                  | s per hour per square                                    | metre of envelop       | e area      | 5            | (17) |
| ·                                                        | lity value, then $(18) = [(17) \div 20] + (8)$ |                                                          |                        |             | 0.25         | (18) |
|                                                          | es if a pressurisation test has been don       | e or a degree air permeabil                              | ity is being used      |             |              | _    |
| Number of sides sheltere<br>Shelter factor               | ed                                             | (20) = 1 - [0.075 ×                                      | v (10)] —              | -           | 1            | (19) |
|                                                          | ting chalter factor                            | $(20) = 1 - [0.073 \times 20]$ $(21) = (18) \times (20)$ |                        | l<br>r      | 0.92         | (20) |
| Infiltration rate incorporat                             | _                                              | (21) - (10) x (20)                                       | _                      | L           | 0.23         | (21) |
| Infiltration rate modified f                             | <del></del>                                    | Jul Aug Sei                                              | o Oct Nov              | Dec         |              |      |
|                                                          |                                                | Jui   Aug   Sel                                          | o   Oct   NOV          | Dec         |              |      |
| Monthly average wind sp                                  | peed from Table /                              |                                                          | · · · · ·              |             |              |      |

4.9

4.4

4.3

3.8

3.8

3.7

4.3

4.5

4.7

5

| Wind Factor (2                                                                                                                                                                                                           | 22a)m =                                                                                                                   | (22)m ÷                                                                                              | 4                                                                            |                                                              |                                                                                                  |                                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                  |                   |                     |                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|---------------------|-------------------------------------------------------------|
| (22a)m= 1.27                                                                                                                                                                                                             | 1.25                                                                                                                      | 1.23                                                                                                 | 1.1                                                                          | 1.08                                                         | 0.95                                                                                             | 0.95                                             | 0.92                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.08                                                                                                      | 1.12                                             | 1.18              | ]                   |                                                             |
| Adjusted infiltr                                                                                                                                                                                                         | ration rat                                                                                                                | e (allowi                                                                                            | na for sh                                                                    | nelter an                                                    | d wind s                                                                                         | speed) =                                         | (21a) x                                                                                                                | (22a)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                         |                                                  | -                 | •                   |                                                             |
| 0.29                                                                                                                                                                                                                     | 0.29                                                                                                                      | 0.28                                                                                                 | 0.25                                                                         | 0.25                                                         | 0.22                                                                                             | 0.22                                             | 0.21                                                                                                                   | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25                                                                                                      | 0.26                                             | 0.27              | 1                   |                                                             |
| Calculate effe                                                                                                                                                                                                           |                                                                                                                           | _                                                                                                    | rate for t                                                                   | he appli                                                     | cable ca                                                                                         | se                                               | !                                                                                                                      | ļ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ.                                                                                                        | !                                                |                   |                     |                                                             |
| If mechanic                                                                                                                                                                                                              |                                                                                                                           |                                                                                                      | l' N. (0                                                                     | al.) (aa                                                     | \ <b>-</b> /                                                                                     |                                                  | \\                                                                                                                     | . (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ) (00 )                                                                                                   |                                                  |                   | 0                   | (23a)                                                       |
| If exhaust air h                                                                                                                                                                                                         |                                                                                                                           | •                                                                                                    |                                                                              | , ,                                                          | ,                                                                                                |                                                  |                                                                                                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o) = (23a)                                                                                                |                                                  |                   | 0                   | (23b)                                                       |
| If balanced with                                                                                                                                                                                                         |                                                                                                                           |                                                                                                      | •                                                                            | _                                                            |                                                                                                  | ,                                                |                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           |                                                  |                   | 0                   | (23c)                                                       |
| a) If balance                                                                                                                                                                                                            | 1                                                                                                                         | 1                                                                                                    | ·                                                                            |                                                              |                                                                                                  | <del>,                                    </del> | <del>-                                    </del>                                                                       | <del>í `</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>,                                    </del>                                                          | <u> </u>                                         | · · · ·           | ) ÷ 100]<br>1       | (0.4-)                                                      |
| (24a)m= 0                                                                                                                                                                                                                | 0                                                                                                                         | 0                                                                                                    | 0                                                                            | 0                                                            | . 0                                                                                              | 0                                                | 0                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                         | 0                                                | 0                 | ]                   | (24a)                                                       |
| b) If balance                                                                                                                                                                                                            | _                                                                                                                         |                                                                                                      |                                                                              |                                                              |                                                                                                  | <del>,                                    </del> | <del></del>                                                                                                            | <del>í `</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <del>r ´     `</del>                                                                                      | <del>`                                    </del> | i                 | 1                   | (0.41.)                                                     |
| (24b)m= 0                                                                                                                                                                                                                | 0                                                                                                                         | 0                                                                                                    | 0                                                                            | 0                                                            | 0                                                                                                | 0                                                | 0                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                         | 0                                                | 0                 | ]                   | (24b)                                                       |
| c) If whole h<br>if (22b)r                                                                                                                                                                                               | nouse ex<br>m < 0.5 >                                                                                                     |                                                                                                      |                                                                              |                                                              | •                                                                                                |                                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .5 × (23k                                                                                                 | o)                                               |                   |                     |                                                             |
| (24c)m= 0                                                                                                                                                                                                                | 0                                                                                                                         | 0                                                                                                    | 0                                                                            | 0                                                            | 0                                                                                                | 0                                                | 0                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                         | 0                                                | 0                 | ]                   | (24c)                                                       |
| d) If natural                                                                                                                                                                                                            | ventilatio                                                                                                                | on or wh                                                                                             | ole hous                                                                     | e positiv                                                    | /e input                                                                                         | ventilatio                                       | on from                                                                                                                | loft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           | L                                                | Į.                | 1                   |                                                             |
| ,                                                                                                                                                                                                                        | m = 1, the                                                                                                                |                                                                                                      |                                                                              |                                                              | •                                                                                                |                                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5]                                                                                                      |                                                  |                   |                     |                                                             |
| (24d)m= 0.54                                                                                                                                                                                                             | 0.54                                                                                                                      | 0.54                                                                                                 | 0.53                                                                         | 0.53                                                         | 0.52                                                                                             | 0.52                                             | 0.52                                                                                                                   | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53                                                                                                      | 0.53                                             | 0.54              | ]                   | (24d)                                                       |
| Effective air                                                                                                                                                                                                            | change                                                                                                                    | rate - er                                                                                            | nter (24a                                                                    | ) or (24b                                                    | o) or (24                                                                                        | c) or (24                                        | d) in bo                                                                                                               | x (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                         | -                                                | -                 | _                   |                                                             |
| (25)m= 0.54                                                                                                                                                                                                              | 0.54                                                                                                                      | 0.54                                                                                                 | 0.53                                                                         | 0.53                                                         | 0.52                                                                                             | 0.52                                             | 0.52                                                                                                                   | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53                                                                                                      | 0.53                                             | 0.54              | ]                   | (25)                                                        |
| 2 Hoot losse                                                                                                                                                                                                             |                                                                                                                           |                                                                                                      |                                                                              |                                                              |                                                                                                  |                                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                  |                   | ='                  |                                                             |
|                                                                                                                                                                                                                          | es and ne                                                                                                                 | at loss r                                                                                            | paramete                                                                     | ∍r·                                                          |                                                                                                  |                                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                  |                   |                     |                                                             |
|                                                                                                                                                                                                                          | es and ne<br>Gros                                                                                                         | ·                                                                                                    | oaramete<br>Openin                                                           |                                                              | Net Ar                                                                                           | ea                                               | U-val                                                                                                                  | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A X U                                                                                                     |                                                  | k-value           | e                   | ΑΧk                                                         |
| ELEMENT                                                                                                                                                                                                                  |                                                                                                                           | SS                                                                                                   | oaramete<br>Openin<br>m                                                      | gs                                                           | Net Ar<br>A ,r                                                                                   |                                                  | U-val<br>W/m2                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A X U<br>(W/                                                                                              |                                                  | k-value<br>kJ/m²- |                     | A X k<br>kJ/K                                               |
|                                                                                                                                                                                                                          | Gros                                                                                                                      | SS                                                                                                   | Openin                                                                       | gs                                                           |                                                                                                  |                                                  |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |                                                  |                   |                     |                                                             |
| ELEMENT                                                                                                                                                                                                                  | Gros<br>area                                                                                                              | SS                                                                                                   | Openin                                                                       | gs                                                           | A ,r                                                                                             | m² x                                             | W/m2                                                                                                                   | 2K =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/                                                                                                       |                                                  |                   |                     | kJ/K                                                        |
| <b>ELEMENT</b> Doors                                                                                                                                                                                                     | Gros<br>area<br>e 1                                                                                                       | SS                                                                                                   | Openin                                                                       | gs                                                           | A ,r                                                                                             | m² x x1                                          | W/m2                                                                                                                   | 2K =   -0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (W/<br>3.36                                                                                               |                                                  |                   |                     | kJ/K<br>(26)                                                |
| ELEMENT  Doors  Windows Type                                                                                                                                                                                             | Gros<br>area<br>e 1<br>e 2                                                                                                | SS                                                                                                   | Openin                                                                       | gs                                                           | A ,r<br>2.1<br>7.78                                                                              | m <sup>2</sup> x x <sup>1</sup> s x <sup>1</sup> | W/m2<br>1.6<br>/[1/( 1.4 )+                                                                                            | 2K =  <br>- 0.04] =  <br>- 0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (W/<br>3.36<br>10.31                                                                                      |                                                  |                   |                     | kJ/K<br>(26)<br>(27)                                        |
| ELEMENT  Doors  Windows Type  Windows Type                                                                                                                                                                               | Gros<br>area<br>e 1<br>e 2<br>e 3                                                                                         | SS                                                                                                   | Openin                                                                       | gs                                                           | A ,r 2.1 7.78                                                                                    | m <sup>2</sup>                                   | W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                                            | 2K = 0.04] = -0.04] = -0.04] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (W/<br>3.36<br>10.31<br>25                                                                                |                                                  |                   |                     | kJ/K<br>(26)<br>(27)<br>(27)                                |
| ELEMENT  Doors  Windows Type Windows Type Windows Type                                                                                                                                                                   | Gros<br>area<br>e 1<br>e 2<br>e 3                                                                                         | SS                                                                                                   | Openin                                                                       | gs                                                           | A ,r 2.1 7.78 18.86 2.76                                                                         | m <sup>2</sup>                                   | W/m2<br>1.6<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+<br>/[1/( 1.4 )+                                                            | 2K =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.0 | (W/<br>3.36<br>10.31<br>25<br>3.66                                                                        | K)                                               |                   |                     | kJ/K (26) (27) (27) (27)                                    |
| Doors Windows Type Windows Type Windows Type Windows Type Windows Type                                                                                                                                                   | Gros<br>area<br>e 1<br>e 2<br>e 3<br>e 4                                                                                  | ss<br>(m²)                                                                                           | Openin                                                                       | gs<br><sub>2</sub>                                           | A ,r 2.1 7.78 18.86 2.76 0.69                                                                    | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+                                                          | 2K =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.04] =   -0.0 | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120                                                     | K)                                               |                   |                     | kJ/K (26) (27) (27) (27) (27) (27)                          |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls                                                                                                                                          | Gros<br>area<br>e 1<br>e 2<br>e 3<br>e 4                                                                                  | ss (m²)                                                                                              | Openin m                                                                     | gs<br><sub>2</sub>                                           | A ,r 2.1 7.78 18.86 2.76 0.69 52.34                                                              | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18                                                    | 2K = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0 | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25                                            | K)                                               |                   |                     | kJ/K (26) (27) (27) (27) (27) (28)                          |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1                                                                                                                               | Gros area e 1 e 2 e 3 e 4  154.                                                                                           | 05<br>7                                                                                              | 32.19<br>0                                                                   | gs<br><sub>2</sub>                                           | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67                                           | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.24  0.14                                        | 2K = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04]  | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65                                    | K)                                               |                   |                     | kJ/K (26) (27) (27) (27) (27) (28) (29)                     |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1 Roof Type2                                                                                                                    | Gros area e 1 e 2 e 3 e 4  154. 4.6                                                                                       | 05<br>7                                                                                              | Openin m                                                                     | gs<br><sub>2</sub>                                           | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5                                     | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18                                                    | 2K = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0.04] = 0 | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25                                            | K)                                               |                   |                     | kJ/K (26) (27) (27) (27) (27) (28) (29) (30)                |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1 Roof Type2 Total area of e                                                                                                    | Gros area e 1 e 2 e 3 e 4  154. 4.6 47.                                                                                   | 05<br>7<br>5<br>, m <sup>2</sup>                                                                     | 32.19<br>0                                                                   | gs<br><sub>2</sub>                                           | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5                                     | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.24  0.14                                        | 2K = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04]  | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                            | K)                                               | kJ/m²-            | K                   | kJ/K (26) (27) (27) (27) (27) (28) (29)                     |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1 Roof Type2                                                                                                                    | Gros area e 1 e 2 e 3 e 4  154. 4.6 47.                                                                                   | 05<br>7<br>5<br>5, m <sup>2</sup><br>ows, use e                                                      | Openin m  32.19  0  0  effective wi                                          | gs<br>p                                                      | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcul                 | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.24  0.14                                        | 2K = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04] = -0.04]  | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                            | K)                                               | kJ/m²-            | K                   | kJ/K (26) (27) (27) (27) (27) (28) (29) (30)                |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1 Roof Type2 Total area of e * for windows and                                                                                  | Gros area e 1 e 2 e 3 e 4  154. 4.6 47.: elements d roof winder                                                           | 05<br>7<br>5<br>ows, use e                                                                           | 32.19 0 0 offective winternal wall                                           | gs<br>p                                                      | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcul                 | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+  0.18  0.24  0.14                                        | 2K =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   =   =   =   =   =   =   =   =   =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                            | K)                                               | kJ/m²-            | K                   | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)                |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1 Roof Type2 Total area of e * for windows and ** include the area                                                              | Gros area e 1 e 2 e 3 e 4  154. 4.6  47. elements d roof windas on both ss, W/K :                                         | 05<br>7<br>5<br>5, m <sup>2</sup><br>ows, use e<br>sides of in                                       | 32.19 0 0 offective winternal wall                                           | gs<br>p                                                      | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calcul                 | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11                                   | 2K =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   =   -0.04  =   =   =   =   =   =   =   =   =   =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                            | K)                                               | kJ/m²-            | h 3.2               | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)                |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1 Roof Type2 Total area of e * for windows and ** include the area Fabric heat los                                              | Gros area e 1 e 2 e 3 e 4  154. 4.6 47.: elements d roof winde as on both ss, W/K: Cm = S(                                | oss (m²)  7  5  ows, use e sides of int = S (A x (A x k)                                             | 32.19 0 0 oriffective winternal walk                                         | gs<br>2<br>9<br>Indow U-ve                                   | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calculatitions         | x1 x         | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11                                   | 2K =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.0 | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22                            | K)                                               | kJ/m²-            | n 3.2               | kJ/K (26) (27) (27) (27) (28) (29) (30) (31)                |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1 Roof Type2 Total area of e * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design assess | Gros area e 1 e 2 e 3 e 4  154. 4.6 47.: elements d roof wind as on both ss, W/K: Cm = S(                                 | 05<br>7<br>5<br>5, m <sup>2</sup><br>ows, use e<br>sides of in<br>= S (A x<br>(A x k )<br>eter (TMF) | 32.19  32.19  0  offective with atternal walk U)  P = Cm : tails of the      | gs<br>p<br>ndow U-va<br>ls and pan                           | A ,r  2.1  7.78  18.86  2.76  0.69  52.34  121.8  4.67  47.5  258.5  alue calculatitions         | m <sup>2</sup>                                   | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11  g formula 1 (26)(30 | 2K =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   =   -0.04  =   =   -0.04  =   =   -0.04  =   =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22<br>ue)+0.04] & ative Value | K)                                               | kJ/m²-            | h 3.2  87.8  13538. | kJ/K (26) (27) (27) (27) (28) (29) (30) (31) (33) (53) (34) |
| ELEMENT  Doors  Windows Type Windows Type Windows Type Windows Type Floor Walls Roof Type1 Roof Type2 Total area of e * for windows and ** include the are. Fabric heat los Heat capacity Thermal mass                   | Gros area e 1 e 2 e 3 e 4  154. 4.6 47.: elements d roof wind as on both ss, W/K: Cm = S( s parame sments whe ead of a de | 05 7 5 ows, use e sides of int = S (A x k) eter (TMF) ere the de tailed calculations                 | 32.19 32.19 0 0 offective winternal walk U)  P = Cm - tails of the culation. | gs<br>2<br>Indow U-valls and part<br>- TFA) ir<br>constructi | A ,r  2.1  7.78  18.86  2.76  0.69  52.32  121.8  4.67  47.5  258.5  alue calculations  n kJ/m²K | x1 xx xx xx x         | W/m2  1.6 /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ /[1/( 1.4 )+ 0.18  0.24  0.14  0.11  g formula 1 (26)(30 | 2K =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   =   -0.04  =   =   -0.04  =   =   -0.04  =   =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   -0.04  =   | (W/<br>3.36<br>10.31<br>25<br>3.66<br>0.91<br>9.42120<br>29.25<br>0.65<br>5.22<br>ue)+0.04] & ative Value | K)                                               | kJ/m²-            | h 3.2  87.8  13538. | kJ/K (26) (27) (27) (27) (28) (29) (30) (31) (33) (53) (34) |

|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 0                                                                                                                         | are not kn                                                                                                            | own (36) =                                                                             | = 0.05 x (3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1)                                      |                                                       |                                                         |                                     |                             |                                       |         |         | _                                            |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------|---------------------------------------------------------|-------------------------------------|-----------------------------|---------------------------------------|---------|---------|----------------------------------------------|
|                                                                                                                           | abric he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         | . ,                                 | (36) =                      |                                       |         | 107.07  | (37)                                         |
| Ventila                                                                                                                   | ation hea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                       | i                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       |                                                       |                                                         | ` ,                                 | `                           | 25)m x (5)                            |         |         |                                              |
|                                                                                                                           | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                   | Apr                                                                                    | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                     | Jul                                                   | Aug                                                     | Sep                                 | Oct                         | Nov                                   | Dec     |         | (00)                                         |
| (38)m=                                                                                                                    | 44.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.73                                                                                                                       | 44.6                                                                                                                  | 43.95                                                                                  | 43.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.28                                   | 43.28                                                 | 43.17                                                   | 43.49                               | 43.83                       | 44.08                                 | 44.33   |         | (38)                                         |
| Heat t                                                                                                                    | ransfer c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oefficier                                                                                                                   | nt, W/K                                                                                                               |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         | (39)m                               | = (37) + (3                 | 38)m                                  |         |         |                                              |
| (39)m=                                                                                                                    | 151.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 151.81                                                                                                                      | 151.67                                                                                                                | 151.03                                                                                 | 150.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 150.35                                  | 150.35                                                | 150.25                                                  | 150.57                              | 150.91                      | 151.15                                | 151.41  |         | _                                            |
| Heat le                                                                                                                   | oss para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | meter (H                                                                                                                    | HLP), W/                                                                                                              | ′m²K                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         |                                     | Average =<br>= (39)m ÷      | Sum(39) <sub>1.</sub>                 | 12 /12= | 151.03  | (39)                                         |
| (40)m=                                                                                                                    | 1.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.52                                                                                                                        | 1.52                                                                                                                  | 1.52                                                                                   | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.51                                    | 1.51                                                  | 1.51                                                    | 1.51                                | 1.52                        | 1.52                                  | 1.52    |         |                                              |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         | ,                                   | Average =                   | Sum(40) <sub>1</sub> .                | 12 /12= | 1.52    | (40)                                         |
| Numb                                                                                                                      | er of day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s in mor                                                                                                                    | nth (Tab                                                                                                              | le 1a)                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         |                                     |                             | Ι                                     |         |         |                                              |
|                                                                                                                           | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                   | Apr                                                                                    | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                     | Jul                                                   | Aug                                                     | Sep                                 | Oct                         | Nov                                   | Dec     |         |                                              |
| (41)m=                                                                                                                    | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28                                                                                                                          | 31                                                                                                                    | 30                                                                                     | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30                                      | 31                                                    | 31                                                      | 30                                  | 31                          | 30                                    | 31      |         | (41)                                         |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         |                                     |                             |                                       |         |         |                                              |
| 4. Wa                                                                                                                     | ater heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ing ener                                                                                                                    | gy requi                                                                                                              | irement:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         |                                     |                             |                                       | kWh/ye  | ear:    |                                              |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         |                                     |                             |                                       |         |         |                                              |
|                                                                                                                           | ned occu<br>FA > 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                             |                                                                                                                       | [1 - AVD                                                                               | ( <u>-</u> 0 0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 v (TE                                | -13 Q                                                 | )2)] <b>+</b> 0 (                                       | 1013 v /                            | Γ <b>Γ</b> Δ -13            |                                       | 74      |         | (42)                                         |
|                                                                                                                           | FA £ 13.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             | + 1.70 X                                                                                                              | [ı - exp                                                                               | (-0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49 X (11                                | A - 13.9                                              | )2)] + 0.C                                              | ) X C 1 O                           | IFA - 13.                   | 9)                                    |         |         |                                              |
|                                                                                                                           | al averag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                           | ater usaç                                                                                                             | ge in litre                                                                            | s per da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y Vd,av                                 | erage =                                               | (25 x N)                                                | + 36                                |                             | 99                                    | .16     |         | (43)                                         |
|                                                                                                                           | the annua                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                           |                                                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                       | _                                                     | to achieve                                              | a water us                          | se target o                 |                                       |         |         | , ,                                          |
| not mor                                                                                                                   | e that 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | litres per p                                                                                                                | person per                                                                                                            | day (all w                                                                             | ater use, h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | not and co                              | ld)                                                   |                                                         |                                     |                             |                                       |         |         |                                              |
|                                                                                                                           | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                         | Mar                                                                                                                   | Apr                                                                                    | May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jun                                     | Jul                                                   | Aug                                                     | Sep                                 | Oct                         | Nov                                   | Dec     |         |                                              |
| Hot wat                                                                                                                   | er usage in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n litres per                                                                                                                | day for ea                                                                                                            | ach month                                                                              | Vd,m = fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctor from T                             | Table 1c x                                            | (43)                                                    |                                     |                             |                                       |         |         |                                              |
| (44)m=                                                                                                                    | 109.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.11                                                                                                                      | 101.15                                                                                                                | 97.18                                                                                  | 93.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89.25                                   | 89.25                                                 | 93.21                                                   | 97.18                               | 101.15                      | 105.11                                | 109.08  |         |                                              |
| Energy                                                                                                                    | content of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hot water                                                                                                                   | used - cal                                                                                                            | culated mo                                                                             | onthly = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190 x Vd,n                              | n x nm x D                                            | OTm / 3600                                              |                                     |                             | m(44) <sub>112</sub> =<br>ables 1b, 1 |         | 1189.97 | (44)                                         |
| (45)m=                                                                                                                    | 161.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 141.48                                                                                                                      | 145.99                                                                                                                | 127.28                                                                                 | 122.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 105.39                                  | 97.66                                                 | 112.06                                                  | 113.4                               | 132.16                      | 144.26                                | 156.66  |         |                                              |
|                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |                                                                                                                       | <u>.                                    </u>                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         |                                     |                             | <u> </u>                              |         |         | _                                            |
| If instan                                                                                                                 | taneous w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                             |                                                                                                                       |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                       |                                                         | -                                   | Fotal = Su                  | m(45) <sub>112</sub> =                |         | 1560.23 | (45)                                         |
|                                                                                                                           | nanoodo w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ater heatir                                                                                                                 | ng at point                                                                                                           | of use (no                                                                             | hot water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | storage),                               | enter 0 in                                            | boxes (46,                                              |                                     | Γotal = Su                  | m(45) <sub>112</sub> =                |         | 1560.23 | (45)                                         |
|                                                                                                                           | 24.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.22                                                                                                                       | ng at point<br>21.9                                                                                                   | of use (no                                                                             | hot water<br>18.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | storage),                               | enter 0 in<br>14.65                                   | boxes (46,                                              |                                     | Total = Su<br>19.82         | m(45) <sub>112</sub> =                | 23.5    | 1560.23 | (45)<br>(46)                                 |
| Water                                                                                                                     | 24.26<br>storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.22<br>loss:                                                                                                              | 21.9                                                                                                                  | 19.09                                                                                  | 18.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.81                                   | 14.65                                                 | 16.81                                                   | 17.01                               | 19.82                       | · ·                                   |         | 1560.23 |                                              |
| Water                                                                                                                     | 24.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.22<br>loss:                                                                                                              | 21.9                                                                                                                  | 19.09                                                                                  | 18.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.81                                   | 14.65                                                 | 16.81                                                   | 17.01                               | 19.82                       | 21.64                                 |         | 1560.23 |                                              |
| Water<br>Storag                                                                                                           | 24.26<br>storage<br>ge volum<br>munity h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.22<br>loss:<br>e (litres)<br>eating a                                                                                    | 21.9<br>includin                                                                                                      | 19.09  ng any so                                                                       | 18.32<br>Dlar or W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.81<br>/WHRS :                        | 14.65<br>storage                                      | 16.81<br>within sa<br>(47)                              | 17.01<br>ame ves                    | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)                                         |
| Storag<br>If com<br>Other                                                                                                 | 24.26<br>storage<br>ge volum<br>munity h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.22<br>loss:<br>e (litres)<br>eating a                                                                                    | 21.9<br>includin                                                                                                      | 19.09  ng any so                                                                       | 18.32<br>Dlar or W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15.81<br>/WHRS :                        | 14.65<br>storage                                      | 16.81<br>within sa<br>(47)                              | 17.01<br>ame ves                    | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)                                         |
| Water<br>Storag<br>If com<br>Other<br>Water                                                                               | 24.26<br>storage<br>ge volum<br>munity h<br>wise if no<br>storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.22<br>loss:<br>e (litres)<br>eating a<br>o stored<br>loss:                                                               | 21.9<br>including<br>and no tath                                                                                      | 19.09  ng any so ank in dwer (this in                                                  | 18.32<br>blar or W<br>relling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.81 /WHRS : nter 110                  | storage<br>litres in<br>neous co                      | 16.81<br>within sa<br>(47)                              | 17.01<br>ame ves                    | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)                                 |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n                                                                    | 24.26<br>storage<br>ge volum<br>munity h<br>wise if no<br>storage<br>nanufact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.22<br>loss:<br>e (litres)<br>eating a<br>o stored<br>loss:<br>urer's de                                                  | 21.9 including nd no tale hot water                                                                                   | 19.09  Ing any so ank in dwer (this in oss factor)                                     | 18.32<br>Dlar or W<br>relling, e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.81 /WHRS : nter 110                  | storage<br>litres in<br>neous co                      | 16.81<br>within sa<br>(47)                              | 17.01<br>ame ves                    | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)                         |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n                                                                    | 24.26<br>storage<br>ge volum<br>munity h<br>wise if no<br>storage<br>nanufact<br>erature fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.22 loss: e (litres) eating a stored loss: urer's de                                                                      | 21.9 including nd no tale hot water eclared lome.                                                                     | 19.09  Ing any so ank in dwer (this in oss factor 2b                                   | 18.32<br>plar or W<br>relling, e<br>includes in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.81 /WHRS : nter 110                  | storage<br>litres in<br>neous co<br>n/day):           | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)                                 |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n<br>Tempo<br>Energ                                                  | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from                                                         | 21.9 including no tale hot water eclared lem Table storage                                                            | 19.09  Ing any so ank in dwer (this in oss factor 2b                                   | 18.32  plar or Warelling, eacludes in the control of the control o | 15.81 /WHRS : nter 110 nstantan         | storage<br>litres in<br>neous co<br>n/day):           | 16.81<br>within sa<br>(47)                              | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)                         |
| Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa                                                        | 24.26 storage ge volum munity havise if no storage manufact erature fay lost fromanufact ater storage that is to a storage manufact ater storage that is to a storage that is to a storage at the storage | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from m water urer's de                                       | 21.9 including not a hot water eclared least storage eclared of factor fr                                             | 19.09  Ing any so ank in dwer (this in oss factor 2b explinder left)                   | 18.32  Dlar or Warelling, eacludes in the control of the control o | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage litres in neous con/day):                     | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)                 |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n<br>Tempo<br>Energ<br>b) If n<br>Hot wa<br>If com                   | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from m water urer's de age loss eating s                     | 21.9 including not not a hot water eclared leastorage eclared of factor free sections.                                | 19.09  Ing any so ank in dwer (this in oss factor 2b explinder left)                   | 18.32  Dlar or Warelling, eacludes in the control of the control o | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage litres in neous con/day):                     | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51) |
| Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa If com Volum                                           | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from water urer's de age loss eating s from Tal              | including and no tale hot water leclared least storage eclared of factor free sections and the sections are sections. | 19.09  Ing any so ank in dwer (this in oss factors, kWh/ye cylinder I from Tablon 4.3  | 18.32  Dlar or Warelling, eacludes in the control of the control o | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage litres in neous con/day):                     | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>nme vessers) ente | 19.82<br>Sel                | 47)                                   | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51) |
| Water Storag If com Other Water a) If n Tempe Energ b) If n Hot wa If com Volum Tempe                                     | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor erature fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.22 loss: e (litres) eating a o stored loss: urer's de actor from urer's de age loss eating s from Tal actor from         | including and no tale hot water eclared leastorage eclared of factor free sections ble 2a m Table                     | 19.09  Ing any so ank in dwer (this in oss factors, kWh/ye cylinder I from Tabloon 4.3 | olar or Welling, encludes in the property of t | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage<br>litres in<br>neous co<br>n/day):<br>known: | 16.81<br>within sa<br>(47)<br>ombi boild<br>(48) x (49) | 17.01<br>17.01<br>ame vessers) ente | 19.82<br>sel<br>er 'O' in ( | 47)                                   | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51) |
| Water<br>Storag<br>If com<br>Other<br>Water<br>a) If n<br>Tempe<br>b) If n<br>Hot wa<br>If com<br>Volum<br>Tempe<br>Energ | 24.26 storage ge volum munity h wise if no storage nanufact erature fa y lost fro nanufact ater stora munity h ne factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21.22 loss: e (litres) eating a o stored loss: urer's de actor froi urer's de age loss eating s from Tal actor froi m water | including and no tale hot water leclared least orage eclared of factor free sections le 2a m Table storage            | 19.09  Ing any so ank in dwer (this in oss factors, kWh/ye cylinder I from Tabloon 4.3 | olar or Welling, encludes in the property of t | 15.81 /WHRS : nter 110 nstantan wn (kWh | storage<br>litres in<br>neous co<br>n/day):<br>known: | 16.81<br>within sa<br>(47)<br>ombi boild                | 17.01<br>17.01<br>ame vessers) ente | 19.82<br>sel<br>er 'O' in ( | 21.64                                 | 23.5    | 1560.23 | (46)<br>(47)<br>(48)<br>(49)<br>(50)<br>(51) |

| Water             | storage     | loss cal        | culated f   | for each    | month      |                                                  |             | ((56)m = (          | 55) × (41) | m           |             |            |               |      |
|-------------------|-------------|-----------------|-------------|-------------|------------|--------------------------------------------------|-------------|---------------------|------------|-------------|-------------|------------|---------------|------|
| (56)m=            | 0           | 0               | 0           | 0           | 0          | 0                                                | 0           | 0                   | 0          | 0           | 0           | 0          |               | (56) |
| If cylinde        | er contains | s dedicated     | d solar sto | rage, (57)ı | m = (56)m  | x [(50) – (                                      | [H11)] ÷ (5 | 0), else (5         | 7)m = (56) | m where (   | H11) is fro | m Append   | ix H          |      |
| (57)m=            | 0           | 0               | 0           | 0           | 0          | 0                                                | 0           | 0                   | 0          | 0           | 0           | 0          |               | (57) |
| Primar            | v circuit   | loss (an        | nual) fro   | m Table     | 3          |                                                  |             |                     |            |             |             | 0          |               | (58) |
|                   | •           | •               | •           |             |            | 59)m = (                                         | (58) ÷ 36   | 65 × (41)           | m          |             |             |            | •             |      |
| (mod              | dified by   | factor fr       | om Tab      | le H5 if t  | here is s  | solar wat                                        | ter heatii  | ng and a            | cylinde    | r thermo    | stat)       |            |               |      |
| (59)m=            | 0           | 0               | 0           | 0           | 0          | 0                                                | 0           | 0                   | 0          | 0           | 0           | 0          |               | (59) |
| Combi             | i loss ca   | lculated        | for each    | month (     | (61)m =    | (60) ÷ 30                                        | 65 × (41)   | )m                  |            |             |             |            |               |      |
| (61)m=            | 14.14       | 12.76           | 14.11       | 13.61       | 14.03      | 13.54                                            | 13.97       | 14.01               | 13.58      | 14.07       | 13.66       | 14.13      |               | (61) |
| Total h           | neat requ   | uired for       | water he    | eating ca   | alculated  | for eac                                          | h month     | (62)m =             | 0.85 ×     | (45)m +     | (46)m +     | (57)m +    | (59)m + (61)m |      |
| (62)m=            | 175.91      | 154.24          | 160.1       | 140.89      | 136.16     | 118.93                                           | 111.62      | 126.07              | 126.98     | 146.23      | 157.92      | 170.79     |               | (62) |
| Solar DI          | HW input of | calculated      | using App   | endix G oı  | · Appendix | ι<br>κ Η (negati                                 | ve quantity | /) (enter '0        | if no sola | r contribut | ion to wate | r heating) | l             |      |
| (add a            | dditiona    | l lines if      | FGHRS       | and/or \    | vwhrs      | applies                                          | , see Ap    | pendix (            | €)         |             |             |            |               |      |
| (63)m=            | 0           | 0               | 0           | 0           | 0          | 0                                                | 0           | 0                   | 0          | 0           | 0           | 0          |               | (63) |
| Output            | t from w    | ater hea        | ter         | •           |            | •                                                | •           | •                   |            | •           | •           | •          | •             |      |
| (64)m=            | 175.91      | 154.24          | 160.1       | 140.89      | 136.16     | 118.93                                           | 111.62      | 126.07              | 126.98     | 146.23      | 157.92      | 170.79     |               |      |
|                   |             |                 |             |             |            |                                                  |             | Outp                | out from w | ater heate  | r (annual)₁ | 12         | 1725.84       | (64) |
| Heat g            | ains fro    | m water         | heating,    | kWh/m       | onth 0.2   | 5 ´ [0.85                                        | × (45)m     | + (61)m             | n] + 0.8 x | k [(46)m    | + (57)m     | + (59)m    | 1             | -    |
| (65)m=            | 57.32       | 50.23           | 52.07       | 45.72       | 44.12      | 38.43                                            | 35.96       | 40.76               | 41.1       | 47.46       | 51.38       | 55.62      | 1             | (65) |
| inclu             | ude (57)    | m in calc       | culation o  | of (65)m    | only if c  | vlinder i                                        | s in the ເ  | dwellina            | or hot w   | ater is fr  | om com      | munity h   | ı<br>ıeating  |      |
|                   | . ,         | ains (see       |             |             | •          | ,                                                |             | - 3                 |            |             |             | • •        | 3             |      |
|                   | Ĭ           | ·               |             |             | ,·         |                                                  |             |                     |            |             |             |            |               |      |
| wetab             | Jan         | s (Table<br>Feb | Mar         | Apr         | May        | Jun                                              | Jul         | Aug                 | Sep        | Oct         | Nov         | Dec        |               |      |
| (66)m=            | 136.77      | 136.77          | 136.77      | 136.77      | 136.77     | 136.77                                           | 136.77      | 136.77              | 136.77     | 136.77      | 136.77      | 136.77     |               | (66) |
| ` ,               |             |                 |             | <u> </u>    |            | ion L9 o                                         |             | <u> </u>            |            | 100         | 100         | 100        | l             | ,    |
| ւյցուու<br>(67)m= | 22.79       | 20.24           | 16.46       | 12.46       | 9.31       | 7.86                                             | 8.5         | 11.04               | 14.82      | 18.82       | 21.97       | 23.42      | 1             | (67) |
|                   |             |                 |             |             |            | L                                                |             | l                   |            |             | 21.07       | 20.42      |               | (0.) |
| Appiiai<br>(68)m= | 255.6       | 258.25          | 251.57      | 237.34      | 219.38     | uation L<br>202.5                                | 191.22      | 3a), aisc<br>188.57 | 195.25     | 209.48      | 227.44      | 244.32     | I             | (68) |
|                   |             |                 |             | !           |            | <u> </u>                                         | <u> </u>    | !                   |            | <u> </u>    | 221.44      | 244.32     |               | (00) |
|                   |             |                 |             |             |            | tion L15                                         |             | ı —                 |            |             | 20.00       | 1 20 00    | 1             | (69) |
| (69)m=            | 36.68       | 36.68           | 36.68       | 36.68       | 36.68      | 36.68                                            | 36.68       | 36.68               | 36.68      | 36.68       | 36.68       | 36.68      |               | (69) |
| •                 |             | ns gains        | <u> </u>    |             |            |                                                  |             |                     |            | Γ.          |             | Γ.         | Ī             | (70) |
| (70)m=            | 3           | 3               | 3           | 3           | 3          | 3                                                | 3           | 3                   | 3          | 3           | 3           | 3          |               | (70) |
|                   |             | aporatio        |             |             |            | <del>-                                    </del> |             | i                   |            |             | <del></del> | 1          | 1             |      |
| ` '               | -109.41     | -109.41         | -109.41     | -109.41     | -109.41    | -109.41                                          | -109.41     | -109.41             | -109.41    | -109.41     | -109.41     | -109.41    |               | (71) |
| Water             |             | gains (T        | able 5)     | T           |            | 1                                                | 1           | T                   |            | 1           |             | 1          | 1             |      |
| (72)m=            | 77.05       | 74.75           | 69.99       | 63.5        | 59.29      | 53.37                                            | 48.34       | 54.79               | 57.08      | 63.79       | 71.36       | 74.76      |               | (72) |
| Total i           | internal    | gains =         |             |             |            | (66)                                             | )m + (67)m  | n + (68)m -         | + (69)m +  | (70)m + (7  | 1)m + (72)  | )m         | •             |      |
|                   | 1           |                 |             |             | 055.00     | 220.70                                           | 245.00      | 204.42              | 00440      |             |             | 1          | l             | (\)  |
| (73)m=            | 422.46      | 420.27          | 405.04      | 380.33      | 355.02     | 330.76                                           | 315.08      | 321.43              | 334.19     | 359.12      | 387.8       | 409.53     |               | (73) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Factor<br>Table 6d | r | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |     | Gains<br>(W) |      |
|---------------------------|---------------------------|---|------------|---|------------------|---|----------------|---|----------------|-----|--------------|------|
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 11.28            | x | 0.63           | x | 0.7            | =   | 65.03        | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 22.97            | x | 0.63           | x | 0.7            | =   | 132.38       | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 41.38            | x | 0.63           | x | 0.7            | =   | 238.5        | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 67.96            | x | 0.63           | x | 0.7            | =   | 391.69       | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 91.35            | x | 0.63           | x | 0.7            | =   | 526.51       | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 97.38            | x | 0.63           | x | 0.7            | =   | 561.31       | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 91.1             | x | 0.63           | x | 0.7            | =   | 525.09       | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 72.63            | x | 0.63           | x | 0.7            | =   | 418.61       | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 50.42            | x | 0.63           | x | 0.7            | =   | 290.62       | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 28.07            | x | 0.63           | x | 0.7            | =   | 161.78       | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 14.2             | x | 0.63           | x | 0.7            | =   | 81.83        | (75) |
| Northeast 0.9x            | 0.77                      | x | 18.86      | x | 9.21             | x | 0.63           | x | 0.7            | =   | 53.11        | (75) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 36.79            | x | 0.63           | x | 0.7            | =   | 31.04        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 62.67            | x | 0.63           | x | 0.7            | =   | 52.86        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 85.75            | x | 0.63           | x | 0.7            | =   | 72.33        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 106.25           | х | 0.63           | x | 0.7            | =   | 89.62        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 119.01           | x | 0.63           | x | 0.7            | =   | 100.38       | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 118.15           | x | 0.63           | x | 0.7            | =   | 99.66        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 113.91           | X | 0.63           | x | 0.7            | =   | 96.08        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 104.39           | x | 0.63           | x | 0.7            | =   | 88.05        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 92.85            | x | 0.63           | x | 0.7            | =   | 78.32        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 69.27            | х | 0.63           | x | 0.7            | =   | 58.43        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 44.07            | x | 0.63           | x | 0.7            | =   | 37.17        | (77) |
| Southeast 0.9x            | 0.77                      | x | 2.76       | x | 31.49            | x | 0.63           | x | 0.7            | =   | 26.56        | (77) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 36.79            | ] | 0.63           | x | 0.7            | =   | 87.48        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 62.67            |   | 0.63           | x | 0.7            | =   | 149.02       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 85.75            | ] | 0.63           | x | 0.7            | =   | 203.89       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 106.25           |   | 0.63           | x | 0.7            | =   | 252.63       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 119.01           | ] | 0.63           | x | 0.7            | =   | 282.97       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 118.15           | ] | 0.63           | x | 0.7            | =   | 280.92       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 113.91           | ] | 0.63           | x | 0.7            | =   | 270.84       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 104.39           | ] | 0.63           | x | 0.7            | =   | 248.21       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 92.85            |   | 0.63           | x | 0.7            | =   | 220.77       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 69.27            |   | 0.63           | x | 0.7            | =   | 164.7        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | x | 7.78       | x | 44.07            | ] | 0.63           | x | 0.7            | =   | 104.79       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                      | X | 7.78       | x | 31.49            | ] | 0.63           | x | 0.7            | =   | 74.87        | (79) |
| Northwest 0.9x            | 0.77                      | X | 0.69       | x | 11.28            | x | 0.63           | x | 0.7            | ] = | 2.38         | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.69       | x | 22.97            | x | 0.63           | х | 0.7            | ] = | 4.84         | (81) |
| Northwest 0.9x            | 0.77                      | X | 0.69       | x | 41.38            | x | 0.63           | х | 0.7            | ] = | 8.73         | (81) |
|                           |                           |   |            | - |                  | - |                | • |                | -   |              | _    |

| Northwest 0.9x            | 0.77        | ×              | 0.6       | 69        | x            | 67.96        | X                                                 |                | 0.63       | x          | 0.7         | =        | 14.33  | (81) |
|---------------------------|-------------|----------------|-----------|-----------|--------------|--------------|---------------------------------------------------|----------------|------------|------------|-------------|----------|--------|------|
| Northwest <sub>0.9x</sub> | 0.77        | x              | 0.6       | 69        | x            | 91.35        | X                                                 |                | 0.63       | x          | 0.7         | =        | 19.26  | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | x              | 0.6       | 69        | x            | 97.38        | X                                                 |                | 0.63       | x          | 0.7         | =        | 20.54  | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | x              | 0.6       | 69        | x            | 91.1         | X                                                 |                | 0.63       | x          | 0.7         | =        | 19.21  | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | X              | 0.6       | 69        | x            | 72.63        | X                                                 |                | 0.63       | x          | 0.7         | =        | 15.32  | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | X              | 0.6       | 69        | x            | 50.42        | X                                                 |                | 0.63       | x          | 0.7         | =        | 10.63  | (81) |
| Northwest 0.9x            | 0.77        | X              | 0.6       | 69        | x            | 28.07        | X                                                 |                | 0.63       | x          | 0.7         |          | 5.92   | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | x              | 0.6       | 69        | x            | 14.2         | x                                                 |                | 0.63       | x          | 0.7         | =        | 2.99   | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | X              | 0.6       | 69        | x            | 9.21         | X                                                 |                | 0.63       | x          | 0.7         | =        | 1.94   | (81) |
| _                         |             |                |           |           |              |              | _                                                 |                |            |            |             |          |        |      |
| Solar gains in            | watts, c    | alculated      | I for eac | h month   |              |              | (83)m                                             | n = Su         | ım(74)m .  | (82)m      |             |          |        |      |
| (83)m= 185.93             | 339.1       | 523.45         | 748.27    | 929.12    | 962.4        | 3 911.23     | 770                                               | ).18           | 600.34     | 390.82     | 226.78      | 156.48   |        | (83) |
| Total gains – i           | nternal a   | and solar      | (84)m =   | = (73)m · | + (83)       | m , watts    |                                                   |                |            |            |             | ļ.       | ı      |      |
| (84)m= 608.39             | 759.37      | 928.49         | 1128.6    | 1284.14   | 1293.        | 19 1226.31   | 109                                               | 1.61           | 934.53     | 749.94     | 614.58      | 566.01   |        | (84) |
| 7. Mean inter             | nal tami    | ocratura       | (hooting  | coscon    | ١            |              |                                                   |                |            |            |             |          |        |      |
|                           |             |                | `         |           | <i>'</i>     | o from To    | bla O                                             | Th/            | L (0C)     |            |             |          | 0.4    | (85) |
| Temperature               | •           | ٠.             |           |           | _            |              | DIE 9                                             | , 1111         | i ( C)     |            |             |          | 21     | (65) |
| Utilisation fac           |             | 1              |           | 1         | <u> </u>     | <u> </u>     | Τ,                                                |                |            | 0 /        | T           |          | 1      |      |
| Jan                       | Feb         | Mar            | Apr       | May       | Ju           | +            | +                                                 | ug             | Sep        | Oct        | Nov         | Dec      |        | (00) |
| (86)m= 0.97               | 0.95        | 0.91           | 0.83      | 0.72      | 0.58         | 0.47         | 0.5                                               | 52             | 0.73       | 0.89       | 0.95        | 0.97     |        | (86) |
| Mean interna              | l temper    | ature in       | living ar | ea T1 (fo | llow         | steps 3 to   | 7 in T                                            | Table          | 9c)        |            |             |          | ,      |      |
| (87)m= 17.91              | 18.26       | 18.85          | 19.59     | 20.24     | 20.6         | 7 20.86      | 20.                                               | .81            | 20.42      | 19.56      | 18.59       | 17.83    |        | (87) |
| Temperature               | during h    | neating p      | eriods ii | n rest of | dwell        | ng from Ta   | able 9                                            | 9, Th          | 12 (°C)    |            |             |          |        |      |
| (88)m= 19.67              | 19.67       | 19.67          | 19.67     | 19.68     | 19.6         | 8 19.68      | 19.                                               | .68            | 19.68      | 19.68      | 19.67       | 19.67    |        | (88) |
| Utilisation fac           | tor for a   | ains for       | rest of d | welling   | h2 m         | (see Table   | 02)                                               |                |            |            | •           |          | •      |      |
| (89)m= 0.96               | 0.94        | 0.89           | 0.8       | 0.67      | 0.5          | 0.35         | 0.4                                               | 41             | 0.65       | 0.86       | 0.94        | 0.97     | ]      | (89) |
| , ,                       |             |                |           | l i       | l            |              |                                                   |                |            |            | 1 3.3       |          |        | ` ,  |
| Mean interna              | <del></del> | 1              |           | 1         | <del>-</del> | <del>`</del> | <del>i                                     </del> |                |            |            | 1           |          | 1      | (00) |
| (90)m= 15.6               | 16.12       | 16.95          | 18        | 18.87     | 19.4         | 19.6         | 19.                                               | .56            | 19.14      | 17.99      | 16.6        | 15.5     |        | (90) |
|                           |             |                |           |           |              |              |                                                   |                | ı          | LA = LIVII | ng area ÷ ( | 4) =     | 0.3    | (91) |
| Mean interna              | l temper    | ature (fo      | r the wh  | ole dwe   | lling) :     | = fLA × T1   | + (1                                              | – fL           | A) × T2    |            |             |          |        |      |
| (92)m= 16.28              | 16.75       | 17.51          | 18.47     | 19.27     | 19.7         | 8 19.97      | 19.                                               | .93            | 19.52      | 18.45      | 17.19       | 16.19    |        | (92) |
| Apply adjustn             | nent to t   | he mean        | interna   | l temper  | ature        | from Table   | e 4e,                                             | whe            | re appro   | priate     |             |          | •      |      |
| (93)m= 16.13              | 16.6        | 17.36          | 18.32     | 19.12     | 19.6         | 3 19.82      | 19.                                               | .78            | 19.37      | 18.3       | 17.04       | 16.04    |        | (93) |
| 8. Space hea              | ting req    | uirement       |           |           |              |              |                                                   |                |            |            |             |          |        |      |
| Set Ti to the i           | mean in     | ternal ter     | mperatu   | re obtair | ed at        | step 11 of   | Tab                                               | le 9b          | , so tha   | t Ti,m=(   | (76)m an    | d re-cal | culate |      |
| the utilisation           | factor fo   | or gains       | using Ta  | able 9a   |              |              |                                                   |                |            |            |             |          | 1      |      |
| Jan                       | Feb         | Mar            | Apr       | May       | Ju           | า Jul        | Α                                                 | ug             | Sep        | Oct        | Nov         | Dec      |        |      |
| Utilisation fac           |             | ains, hm       | :         |           |              |              | _                                                 |                |            |            |             |          | 1      |      |
| (94)m= 0.94               | 0.91        | 0.85           | 0.76      | 0.64      | 0.5          | 0.36         | 0.4                                               | 42             | 0.63       | 0.82       | 0.91        | 0.95     |        | (94) |
| Useful gains,             |             | <del>- `</del> | <u> </u>  | ·         | · · ·        |              |                                                   | -              | 1          |            | 1           | 1        | 1      |      |
| (95)m= 570.66             | 688.52      | 793.39         | 863.12    | 823.52    | 640.4        |              | 454                                               | .14            | 590.5      | 617.08     | 561.64      | 535.19   |        | (95) |
| Monthly avera             |             | 1              | i –       | I         | ı            |              |                                                   | -              | 1          |            | 1           | ı        | 1      |      |
| (96)m= 4.3                | 4.9         | 6.5            | 8.9       | 11.7      | 14.6         |              | 16                                                |                | 14.1       | 10.6       | 7.1         | 4.2      |        | (96) |
| Heat loss rate            | r           | r              |           |           | r —          | <del></del>  | T                                                 | <del>-</del> - | · <i>′</i> |            | 1           |          | 1      |      |
| (97)m= 1798.25            | 1776.02     | 1647.67        | 1422.3    | 1120.01   | 755.8        | 484.32       | 508                                               | 3.22           | 793.55     | 1162.65    | 1501.98     | 1792.04  |        | (97) |
|                           |             |                |           |           |              |              |                                                   |                |            |            |             |          |        |      |

| Total per year (kWh/year) = Sum(8b), so. II =   492.094   (98)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Space heating     | g require | ement fo   | r each n  | nonth, k\          | Wh/mon   | th = 0.02            | 24 x [(97) | )m – (95          | )m] x (4              | 1)m                          |                        |          |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|------------|-----------|--------------------|----------|----------------------|------------|-------------------|-----------------------|------------------------------|------------------------|----------|--------------|
| Space heating requirement in kWh/m²/year   Space heating requirements – Individual heating systems including micro-CHP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (98)m= 913.32     | 730.8     | 635.58     | 402.61    | 220.59             | 0        | 0                    | 0          | 0                 | 405.9                 | 677.04                       | 935.1                  |          | _            |
| Space heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |           |            |           |                    |          |                      | Tota       | l per year        | (kWh/year             | r) = Sum(9                   | 8) <sub>15,912</sub> = | 4920.94  | (98)         |
| Space   Note     | Space heating     | g require | ement in   | kWh/m²    | <sup>2</sup> /year |          |                      |            |                   |                       |                              |                        | 49.43    | (99)         |
| Fraction of space heat from secondary/supplementary system Fraction of space heat from main system (s)  Fraction of total heating from main system 1  Efficiency of main space heating system 1  Efficiency of secondary/supplementary heating system, 9  Efficiency of secondary/supplementary heating system, 9  Ban Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Space heating requirement (calculated above)  [131,32] 730,8 [335,58] 402,61 [220,58] 0 0 0 0 0 405,9 [677,04] 335,1  211)m = ([(88)m x (204)]) x 100 ÷ (206)  [375,81] 781,6 [679,77] 430,6 [235,33] 0 0 0 0 0 405,9 [677,04] 335,1  2121)m = ([(88)m x (204)]) x 100 ÷ (206)  [375,81] 781,6 [679,77] 430,6 [235,33] 0 0 0 0 0 405,9 [677,04] 335,1  Space heating fuel (secondary), kWh/month  [((198)m x (201)]) x 100 ÷ (208)  215)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9a. Energy rec    | quiremer  | nts – Indi | ividual h | eating sy          | ystems i | ncluding             | micro-C    | HP)               |                       |                              |                        |          |              |
| Fraction of space heat from main system (s)  Fraction of space heating from main system 1  Efficiency of main space heating system 1  Efficiency of main space heating system 1  Efficiency of secondary/supplementary heating system, %  Space heating requirement (calculated above)  913.32  730.8  Space heating requirement (calculated above)  913.32  730.8  Space heating from main system 1  Efficiency of water heating (secondary), kWh/hmonth  = {{([98]m x (204)] } x 100 ÷ (206)  Space heating fuel (secondary), kWh/month  = {{([98]m x (201)] } x 100 ÷ (208)  215]me  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                 | _         |            |           | , .                |          |                      |            |                   |                       |                              | ſ                      |          | <b>7</b> ,   |
| Fraction of total heating from main system 1  (204] = (202) × [1 - (203)] =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ·                 |           |            |           |                    | mentary  | •                    |            | (004)             |                       |                              |                        |          | ╡` ′         |
| Efficiency of main space heating system 1  Efficiency of secondary/supplementary heating system, %  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Space heating requirement (calculated above)  913.32 730.8 635.8 02.61 220.59 0 0 0 0 0 405.9 677.04 935.1  211)m = [[(98)m x (204)]] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                 |           |            | -         | , ,                |          |                      | ` ,        | ,                 | (000)1                |                              | ļ                      |          | վ՝ ՝         |
| Efficiency of secondary/supplementary heating system, %  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec  Space heating requirement (calculated above)  913.32 730.8 635.8 402.61 220.59 0 0 0 0 0 405.9 677.04 936.1  211)m = {([(98)m x (204)] } x 100 + (206)  Space heating fuel (secondary), kWh/month  = {(((98)m x (201)] } x 100 + (208)  215)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  Total (kWh/year) = Sum(211), _a, _a, _e  0 215  Nater heating  Dutput from water heater (calculated above)  175.91 154.24 160.1 140.89 136.16 118.93 111.62 126.07 126.98 146.23 157.92 170.79  Efficiency of water heater heating, kWh/month  219)m = (84)m x 100 + (217)m  219)m = (84)m x 10 |                   |           | •          | -         |                    |          |                      | (204) = (2 | 02) <b>x</b> [1 – | (203)] =              |                              | ļ                      |          | ╡            |
| Jan   Feb   Mar   Apr   May   Jun   Jul   Aug   Sep   Oct   Nov   Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                 | •         |            | • .       |                    |          | 0.4                  |            |                   |                       |                              |                        |          | ╡゛゙          |
| Space heating requirement (calculated above)   913.32   730.8   635.68   402.61   220.59   0   0   0   0   406.9   677.04   935.1   (211)   976.81   781.6   673.77   430.6   235.93   0   0   0   434.12   724.11   1000.1   (211)   (198)m x (204)] }   1 100 + (206)   (211)   (198)m x (201)] }   1 100 + (208)   (211)   (198)m x (201)] }   1 100 + (208)   (211)   (198)m x (201)] }   1 100 + (208)   (215)m   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Efficiency of s   |           |            |           |                    | g systen | า, %<br><del>เ</del> |            |                   |                       |                              |                        |          | (208)        |
| 913.32   730.8   635.58   402.61   220.59   0   0   0   0   405.9   677.04   935.1     211   m = {[(98)m × (204)] } × 100 + (206)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |           |            | <u> </u>  |                    |          | Jul                  | Aug        | Sep               | Oct                   | Nov                          | Dec                    | kWh/ye   | ar           |
| 211)m = {[[98]m x (204]] } x 100 ÷ (206)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | ·         |            | i         | ·                  | 1        | n                    | 0          | 0                 | 405.9                 | 677.04                       | 935.1                  |          |              |
| 976.81 781.6 679.77 430.6 235.93 0 0 0 0 434.12 724.11 1000.1  Total (kWhtyear) = Sum(211)_{1, \pm 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |           |            | <u> </u>  |                    |          |                      | Ŭ          |                   | 400.0                 | 077.04                       | 000.1                  |          | (211)        |
| Space heating fuel (secondary), kWh/month = {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |           |            |           |                    | 0        | 0                    | 0          | 0                 | 434.12                | 724.11                       | 1000.1                 |          | (211)        |
| ## Company of the proof of all uses (211)(221) + (231) + (232)(237b) = \$ (230)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |            |           |                    |          |                      | Tota       | l (kWh/yea        | ar) =Sum(2            | L<br>211) <sub>15,1012</sub> | <u> </u>               | 5263.04  | (211)        |
| Companies   Comp   | Space heating     | g fuel (s | econdar    | y), kWh/  | month              |          |                      |            |                   |                       |                              | L                      |          | _            |
| Total (kWh/year) = Sum(215) <sub>1.5,19.3</sub>   0   (215)   Mater heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = {[(98)m x (20   | )1)]} x 1 | 00 ÷ (20   | 8)        |                    |          |                      |            |                   | _                     | ,                            |                        |          |              |
| Nater heating   Dutput from water heater   (calculated above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (215)m= 0         | 0         | 0          | 0         | 0                  | 0        | 0                    | _          |                   |                       |                              |                        |          | ٦            |
| Cutput from water heater (calculated above)    175.91   154.24   160.1   140.89   136.16   118.93   111.62   126.07   126.98   146.23   157.92   170.79     217   217   217   217   217   219   219   217   219   219   217   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219   219    |                   |           |            |           |                    |          |                      | lota       | I (kWh/yea        | ar) =Sum(2            | 215) <sub>15,1012</sub>      | -                      | 0        | (215)        |
| 175.91   154.24   160.1   140.89   136.16   118.93   111.62   126.07   126.98   146.23   157.92   170.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                 |           | ter (calc  | ulated a  | hove)              |          |                      |            |                   |                       |                              |                        |          |              |
| 217)m= 89.97 89.93 89.84 89.65 89.25 87.3 87.3 87.3 87.3 89.63 89.88 89.99 (217)m= (64)m x 100 ÷ (217)m= (195.52 171.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79 (219)m= 195.52 171.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79 (219)m= 195.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79 (219)m= 195.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79 (219)m= 195.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79 (219)m= 195.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79 (219)m= 195.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79 (219)m= 195.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79 (219)m= 195.52 178.21 189.75 (219)m= 195.52 178.21 189.21 189.21 (219)m= 195.52 178.21 189.21 (219)m= 195.52 178.21 189.21 (219)m= 195.52 178.21 189.21 (219)m= 195.52 178.21 189.21  |                   |           |            |           |                    | 118.93   | 111.62               | 126.07     | 126.98            | 146.23                | 157.92                       | 170.79                 |          |              |
| Fuel for water heating, kWh/month 219)m = (64)m x 100 ÷ (217)m 219)m = 195.52 171.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79  Total = Sum(219a) <sub>1-12</sub> = 1937.57 (219)  Annual totals Space heating fuel used, main system 1  Water heating fuel used  Fuel ctricity for pumps, fans and electric keep-hot  central heating pump:  billectricity for the above, kWh/year  Sum of (230a)(230g) = 75 (231)  Fuel ctricity for lighting  Fuel delivered energy for all uses (211)(221) + (231) + (232)(237b) = 7678.03 (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Efficiency of w   | ater hea  | iter       |           |                    |          |                      |            |                   |                       |                              |                        | 87.3     | (216)        |
| 219)m = (64)m x 100 ÷ (217)m 219)m = 195.52 171.52 178.21 157.16 152.56 136.23 127.86 144.41 145.45 163.15 175.71 189.79  Total = Sum(219a) <sub>12</sub> = 1937.57 (219)  Annual totals Space heating fuel used, main system 1  Water heating fuel used Electricity for pumps, fans and electric keep-hot central heating pump:  5263.04  Cotal electricity for the above, kWh/year  Sum of (230a)(230g) = 75 (231g)  Fotal delivered energy for all uses (211)(221) + (231) + (232)(237b) = 7678.03 (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (217)m= 89.97     | 89.93     | 89.84      | 89.65     | 89.25              | 87.3     | 87.3                 | 87.3       | 87.3              | 89.63                 | 89.88                        | 89.99                  |          | (217)        |
| 195.52   171.52   178.21   157.16   152.56   136.23   127.86   144.41   145.45   163.15   175.71   189.79   1937.57   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)   (219)    |                   | 0,        |            |           |                    |          |                      |            |                   |                       |                              |                        |          |              |
| Annual totals Space heating fuel used, main system 1  Water heating fuel used  Electricity for pumps, fans and electric keep-hot  central heating pump:  boiler with a fan-assisted flue  Total electricity for the above, kWh/year  Electricity for lighting  Fotal delivered energy for all uses (211)(221) + (231) + (232)(237b) =  kWh/year  5263.04  1937.57  230  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)  (230)         | ` ' —             |           |            |           | 152.56             | 136.23   | 127.86               | 144.41     | 145.45            | 163.15                | 175.71                       | 189.79                 |          |              |
| Space heating fuel used, main system 1  Water heating fuel used  Electricity for pumps, fans and electric keep-hot  central heating pump:  boiler with a fan-assisted flue  Total electricity for the above, kWh/year  Electricity for lighting  Total delivered energy for all uses (211)(221) + (231) + (232)(237b) =  5263.04  1937.57  30  (230  45  (231)  45  (231)  402.42  (232)  (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           | !          |           |                    |          | ļ                    | Tota       | I = Sum(2         | 19a) <sub>112</sub> = | ļ.                           |                        | 1937.57  | (219)        |
| Water heating fuel used  Electricity for pumps, fans and electric keep-hot  central heating pump:  boiler with a fan-assisted flue  Fotal electricity for the above, kWh/year  Electricity for lighting  Fotal delivered energy for all uses (211)(221) + (231) + (232)(237b) =  1937.57  30 (230) 45 (230) 45 (231) (232) (232) (232) (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Annual totals     |           |            |           |                    |          |                      |            |                   | k'                    | Wh/year                      |                        | kWh/year | <b>_</b><br> |
| Electricity for pumps, fans and electric keep-hot  central heating pump:  boiler with a fan-assisted flue  Total electricity for the above, kWh/year  Electricity for lighting  Total delivered energy for all uses (211)(221) + (231) + (232)(237b) =  (230)  (230)  (230)  (230)  (230)  (231)  (231)  (232)  (232)  (232)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (233)  (234)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Space heating     | fuel use  | ed, main   | system    | 1                  |          |                      |            |                   |                       |                              |                        | 5263.04  |              |
| central heating pump:       30       (230)         boiler with a fan-assisted flue       45       (230)         Total electricity for the above, kWh/year       sum of (230a)(230g) =       75       (231)         Electricity for lighting       402.42       (232)         Total delivered energy for all uses (211)(221) + (231) + (232)(237b) =       7678.03       (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Water heating     | fuel use  | ed         |           |                    |          |                      |            |                   |                       |                              |                        | 1937.57  |              |
| boiler with a fan-assisted flue  Total electricity for the above, kWh/year  Electricity for lighting  Total delivered energy for all uses (211)(221) + (231) + (232)(237b) =  (230)  (231)  (231)  (232)  (232)  (233)  (233)  (233)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Electricity for p | umps, f   | ans and    | electric  | keep-ho            | t        |                      |            |                   |                       |                              |                        |          |              |
| Fotal electricity for the above, kWh/year sum of (230a)(230g) = 75 (231) Electricity for lighting Fotal delivered energy for all uses (211)(221) + (231) + (232)(237b) = 7678.03 (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | central heatin    | g pump    | :          |           |                    |          |                      |            |                   |                       |                              | 30                     |          | (2300        |
| Electricity for lighting    402.42   (232)   (231) + (231) + (232)(237b) =   7678.03   (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | boiler with a f   | an-assis  | sted flue  |           |                    |          |                      |            |                   |                       |                              | 45                     |          | (230         |
| Electricity for lighting  Total delivered energy for all uses (211)(221) + (231) + (232)(237b) =   7678.03 (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total electricity | for the   | above, k   | kWh/yea   | r                  |          |                      | sum        | of (230a).        | (230g) =              |                              | <br>                   | 75       | (231)        |
| Total delivered energy for all uses (211)(221) + (231) + (232)(237b) = 7678.03 (338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                 |           | ,          | ,         |                    |          |                      |            |                   |                       |                              | ا<br>[                 |          | (232)        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                 |           | for all us | ses (211  | )(221)             | + (231)  | + (232).             | (237b)     | =                 |                       |                              | [<br>[                 |          | ]<br>(338)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |           |            | `         | , , ,              | ` '      | ` ′                  | ` ′        |                   |                       |                              |                        |          | `            |

|                                                   | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh | Emissions<br>kg CO2/year |
|---------------------------------------------------|---------------------------------|-------------------------------|--------------------------|
| Space heating (main system 1)                     | (211) x                         | 0.216 =                       | 1136.82 (261)            |
| Space heating (secondary)                         | (215) x                         | 0.519 =                       | 0 (263)                  |
| Water heating                                     | (219) x                         | 0.216 =                       | 418.52 (264)             |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                               | 1555.33 (265)            |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =                       | 38.93 (267)              |
| Electricity for lighting                          | (232) x                         | 0.519 =                       | 208.86 (268)             |
| Total CO2, kg/year                                | sum                             | of (265)(271) =               | 1803.11 (272)            |
| Dwelling CO2 Emission Rate                        | (272                            | (a) ÷ (4) =                   | 18.11 (273)              |
| El rating (section 14)                            |                                 |                               | 83 (274)                 |

|                                                           |                                             | User Details:                  |                      |              |              |      |
|-----------------------------------------------------------|---------------------------------------------|--------------------------------|----------------------|--------------|--------------|------|
| Assessor Name:                                            | Harry Hinchcliffe                           | Stroma Nu                      | mber:                | STRO         | 034627       |      |
| Software Name:                                            | Stroma FSAP 2012                            | Software V                     | ersion:              | Versio       | n: 1.0.5.16  |      |
|                                                           | P                                           | roperty Address: 1559          | 2 - L1a Assessm      | nent         |              |      |
| Address:                                                  | New Dwelling @, 34 Summ                     | er House Way, Langle           | y, WD5 0DY           |              |              |      |
| 1. Overall dwelling dime                                  | nsions:                                     |                                |                      |              |              |      |
|                                                           |                                             | Area(m²)                       | Av. Height(m         | 1)           | Volume(m³)   | )    |
| Ground floor                                              |                                             | 52.34 (1a) x                   | 2.39                 | (2a) =       | 125.09       | (3a) |
| First floor                                               |                                             | 47.21 (1b) x                   | 2.65                 | (2b) =       | 125.11       | (3b) |
| Total floor area TFA = (1a                                | a)+(1b)+(1c)+(1d)+(1e)+(1                   | 99.55 (4)                      |                      |              |              | _    |
| Dwelling volume                                           |                                             | (3a)+(                         | 3b)+(3c)+(3d)+(3e)+  | (3n) =       | 250.2        | (5)  |
| 2. Ventilation rate:                                      |                                             |                                |                      |              |              |      |
|                                                           | main secondal<br>heating heating            | ry other                       | total                |              | m³ per hou   | r    |
| Number of chimneys                                        | 0 + 0                                       | + 0 =                          | 0                    | x 40 =       | 0            | (6a) |
| Number of open flues                                      | 0 + 0                                       | + 0 =                          | 0                    | x 20 =       | 0            | (6b) |
| Number of intermittent fa                                 | ns                                          |                                | 3                    | x 10 =       | 30           | (7a) |
| Number of passive vents                                   |                                             |                                | 0                    | x 10 =       | 0            | (7b) |
| Number of flueless gas fi                                 | res                                         |                                | 0                    | x 40 =       | 0            | (7c) |
|                                                           |                                             |                                |                      | Air ch       | anges per ho | ur   |
| Infiltration due to chimne                                | ys, flues and fans = $(6a)+(6b)+(7a)$       | 7a)+(7b)+(7c) =                | 30                   | ÷ (5) =      | 0.12         | (8)  |
| •                                                         | een carried out or is intended, procee      |                                |                      | . (6)        | 0.12         |      |
| Number of storeys in the                                  | ne dwelling (ns)                            |                                |                      |              | 0            | (9)  |
| Additional infiltration                                   |                                             |                                | [0                   | (9)-1]x0.1 = | 0            | (10) |
| Structural infiltration: 0                                | .25 for steel or timber frame or            | 0.35 for masonry cons          | struction            | Ī            | 0            | (11) |
| if both types of wall are po<br>deducting areas of openio | resent, use the value corresponding to      | o the greater wall area (after |                      | •            |              | _    |
|                                                           | loor, enter 0.2 (unsealed) or 0             | .1 (sealed), else enter        | 0                    | [            | 0            | (12) |
| If no draught lobby, en                                   | ter 0.05, else enter 0                      |                                |                      | İ            | 0            | (13) |
| Percentage of windows                                     | s and doors draught stripped                |                                |                      | İ            | 0            | (14) |
| Window infiltration                                       |                                             | 0.25 - [0.2 x (14)             | ÷ 100] =             | İ            | 0            | (15) |
| Infiltration rate                                         |                                             | (8) + (10) + (11) +            | (12) + (13) + (15) = | İ            | 0            | (16) |
| Air permeability value,                                   | q50, expressed in cubic metre               | es per hour per square         | metre of envelop     | oe area      | 5            | (17) |
| If based on air permeabil                                 | ity value, then $(18) = [(17) \div 20] + ($ | 8), otherwise (18) = (16)      |                      | Ì            | 0.37         | (18) |
| Air permeability value applie                             | s if a pressurisation test has been do      | ne or a degree air permeabil   | ity is being used    | ı            |              | _    |
| Number of sides sheltere                                  | d                                           |                                |                      |              | 1            | (19) |
| Shelter factor                                            |                                             | (20) = 1 - [0.075)             | (19)] =              |              | 0.92         | (20) |
| Infiltration rate incorporat                              | ing shelter factor                          | $(21) = (18) \times (20)$      | =                    |              | 0.34         | (21) |
| Infiltration rate modified f                              | or monthly wind speed                       |                                |                      |              |              |      |
| Jan Feb                                                   | Mar Apr May Jun                             | Jul Aug Se <sub>l</sub>        | Oct No               | v Dec        |              |      |
|                                                           |                                             |                                |                      |              |              |      |

4.9

4.4

4.3

3.8

3.8

3.7

4.3

4.5

4.7

5

|                                                                                                         | 1.25                                                                        | 1.23                                                   | 1.1                                | 1.08           | 0.95                                            | 0.95                                              | 0.92                                      | 1                                            | 1.08                            | 1.12                      | 1.18        | ]        |                                                    |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------|----------------|-------------------------------------------------|---------------------------------------------------|-------------------------------------------|----------------------------------------------|---------------------------------|---------------------------|-------------|----------|----------------------------------------------------|
| A .P                                                                                                    |                                                                             | - /-!!- '                                              | (                                  | -11            | 1 '- 1 -                                        |                                                   | (04 -)                                    | (00-)                                        | !                               | !                         |             | •        |                                                    |
| Adjusted infiltra                                                                                       | ation rate                                                                  | e (allowi                                              | ng for sr<br>0.38                  | o.37           | a wina s                                        | 0.33 =                                            | (21a) X<br>0.32                           | (22a)m<br>0.34                               | 0.37                            | 0.38                      | 0.4         | 1        |                                                    |
| Calculate effect                                                                                        |                                                                             |                                                        |                                    |                |                                                 | l                                                 | 0.52                                      | 0.54                                         | 0.57                            | 0.30                      | 0.4         | J        |                                                    |
| If mechanica                                                                                            | al ventila                                                                  | tion:                                                  |                                    |                |                                                 |                                                   |                                           |                                              |                                 |                           |             | 0        | (23a                                               |
| If exhaust air he                                                                                       | eat pump (                                                                  | using Appe                                             | endix N, (2                        | 3b) = (23a     | a) × Fmv (e                                     | equation (N                                       | N5)) , othe                               | rwise (23b                                   | ) = (23a)                       |                           |             | 0        | (23b                                               |
| If balanced with                                                                                        | heat reco                                                                   | very: effici                                           | iency in %                         | allowing f     | or in-use f                                     | actor (from                                       | Table 4h                                  | ) =                                          |                                 |                           |             | 0        | (230                                               |
| a) If balance                                                                                           |                                                                             |                                                        |                                    |                |                                                 | <del>- ` `                                 </del> | HR) (24a                                  | <del>i `</del>                               | 2b)m + (                        | 23b) × [                  | 1 – (23c)   | ) ÷ 100] |                                                    |
| (24a)m= 0                                                                                               | 0                                                                           | 0                                                      | 0                                  | 0              | 0                                               | 0                                                 | 0                                         | 0                                            | 0                               | 0                         | 0           |          | (24a                                               |
| b) If balance                                                                                           |                                                                             |                                                        |                                    |                |                                                 | <del></del>                                       | <u> </u>                                  | ŕ                                            | <del>r Ó - Ò</del>              | <u> </u>                  | 1           | 1        |                                                    |
| (24b)m= 0                                                                                               | 0                                                                           | 0                                                      | 0                                  | 0              | 0                                               | 0                                                 | 0                                         | 0                                            | 0                               | 0                         | 0           |          | (24b                                               |
| c) If whole h<br>if (22b)n                                                                              |                                                                             |                                                        |                                    | •              |                                                 |                                                   |                                           |                                              | 5 v (22h                        | <b>,</b> )                |             |          |                                                    |
| (24c)m = 0                                                                                              | 0.5 x                                                                       | 0                                                      | nen (240                           | (230) = (230)  | o), other                                       | 0 0 NISE                                          | 0 = (221)                                 | 0                                            | 5 × (23L                        | 0                         | 0           | 1        | (240                                               |
| d) If natural                                                                                           |                                                                             |                                                        |                                    |                |                                                 |                                                   |                                           |                                              |                                 |                           | <u> </u>    | J        | · ·                                                |
| if (22b)n                                                                                               |                                                                             |                                                        |                                    | •              | •                                               |                                                   |                                           |                                              | 0.5]                            |                           |             |          |                                                    |
| (24d)m= 0.6                                                                                             | 0.59                                                                        | 0.59                                                   | 0.57                               | 0.57           | 0.55                                            | 0.55                                              | 0.55                                      | 0.56                                         | 0.57                            | 0.57                      | 0.58        | ]        | (240                                               |
| Effective air                                                                                           | change                                                                      | rate - er                                              | nter (24a                          | ) or (24b      | o) or (24                                       | c) or (24                                         | d) in box                                 | (25)                                         |                                 |                           |             | _        |                                                    |
| (25)m= 0.6                                                                                              | 0.59                                                                        | 0.59                                                   | 0.57                               | 0.57           | 0.55                                            | 0.55                                              | 0.55                                      | 0.56                                         | 0.57                            | 0.57                      | 0.58        |          | (25)                                               |
| 3. Heat losse                                                                                           | s and he                                                                    | eat loss r                                             | paramet                            | er:            |                                                 |                                                   |                                           |                                              |                                 |                           |             |          |                                                    |
| ELEMENT                                                                                                 | Gros                                                                        |                                                        | Openin                             |                | Net Ar                                          | ea                                                | U-valı                                    | ıe                                           | AXU                             |                           | k-value     | e        | ΑΧk                                                |
| _                                                                                                       | area                                                                        | (m²)                                                   | m                                  | l <sup>2</sup> | A ,r                                            | m²                                                | W/m2                                      | K ,                                          | (W/I                            | K)                        | kJ/m²•      | K        | kJ/K                                               |
| Doors                                                                                                   |                                                                             |                                                        |                                    |                | 2.1                                             | X                                                 | 1                                         | = [                                          | 2.1                             | _                         |             |          | (26)                                               |
| Windows Type                                                                                            |                                                                             |                                                        |                                    |                | 5.89                                            | x1,                                               | /[1/( 1.4 )+                              | 0.04] =                                      | 7.81                            |                           |             |          | (27)                                               |
| Windows Type                                                                                            |                                                                             |                                                        |                                    |                | 14.28                                           | x1,                                               | /[1/( 1.4 )+                              | 0.04] =                                      | 18.93                           |                           |             |          | (27)                                               |
| Windows Type                                                                                            | 3                                                                           |                                                        |                                    |                | 2.09                                            | х1,                                               | /[1/( 1.4 )+                              | 0.04] =                                      | 2.77                            |                           |             |          | (27)                                               |
|                                                                                                         | 4                                                                           |                                                        |                                    |                | 0.52                                            | <sub>X</sub> 1,                                   | [1/( 1.4 )+                               | 0.04] =                                      | 0.69                            |                           |             |          | (27)                                               |
| Windows Type                                                                                            |                                                                             |                                                        |                                    |                |                                                 |                                                   | ,                                         |                                              |                                 |                           |             |          |                                                    |
| Windows Type<br>Floor                                                                                   |                                                                             |                                                        |                                    |                | 52.34                                           | ×                                                 | 0.13                                      | =                                            | 6.8042                          |                           |             |          | (28)                                               |
| • •                                                                                                     | 154.0                                                                       | )5                                                     | 24.88                              | 8              |                                                 |                                                   |                                           | — ;                                          |                                 |                           |             |          | (28)                                               |
| Floor                                                                                                   | 154.0                                                                       |                                                        | 24.8                               | В              | 52.34                                           |                                                   | 0.13                                      | = [                                          | 6.8042                          |                           |             |          |                                                    |
| Floor<br>Walls                                                                                          |                                                                             | 7                                                      |                                    | 8              | 52.34<br>129.1                                  | 7 ×                                               | 0.13                                      | = [                                          | 6.8042                          |                           |             |          | (29)                                               |
| Floor<br>Walls<br>Roof Type1                                                                            | 4.67                                                                        | 7                                                      | 0                                  | 8              | 52.34<br>129.1<br>4.67                          | 7 x x x x                                         | 0.13<br>0.18<br>0.13                      | = [<br>= [<br>= [                            | 6.8042<br>23.25<br>0.61         |                           |             |          | (29)                                               |
| Floor<br>Walls<br>Roof Type1<br>Roof Type2                                                              | 4.67<br>47.5<br>lements                                                     | 7<br>5<br>, m <sup>2</sup><br>ows, use e               | 0 0                                | ndow U-va      | 52.34 129.1 4.67 47.5 258.5                     | 7 x x x x x 6                                     | 0.13<br>0.18<br>0.13<br>0.13              | = [<br>= [<br>= [<br>= [                     | 6.8042<br>23.25<br>0.61<br>6.17 |                           | n paragrapi | h 3.2    | (29)                                               |
| Floor Walls Roof Type1 Roof Type2 Total area of e * for windows and                                     | 4.67<br>47.5<br>lements<br>roof windo                                       | 7<br>5<br>, m²<br>ows, use e<br>sides of in            | 0 0 effective winternal wall       | ndow U-va      | 52.34 129.1 4.67 47.5 258.5                     | 7 x x x 6                                         | 0.13<br>0.18<br>0.13<br>0.13              | = [<br>= [<br>= [<br>/[(1/U-value            | 6.8042<br>23.25<br>0.61<br>6.17 |                           | n paragrapl | h 3.2    | (29)<br>(30)<br>(30)<br>(31)                       |
| Floor Walls Roof Type1 Roof Type2 Total area of e * for windows and ** include the area Fabric heat los | 4.67.5 llements roof winders on both                                        | 7  5  , m <sup>2</sup> ows, use e sides of in = S (A x | 0 0 effective winternal wall       | ndow U-va      | 52.34 129.1 4.67 47.5 258.5                     | 7 x x x 6                                         | 0.13<br>0.18<br>0.13<br>0.13<br>formula 1 | = [<br>= [<br>= [<br>- [(1/U-value) + (32) = | 6.8042<br>23.25<br>0.61<br>6.17 | as given ir               |             |          | (29)<br>(30)<br>(30)<br>(31)<br>4 (33)             |
| Floor Walls Roof Type1 Roof Type2 Total area of e * for windows and ** include the area                 | 4.67<br>47.8<br>elements<br>roof winders on both<br>as on both<br>as, W/K = | , m <sup>2</sup> ows, use e sides of in = S (A x K)    | 0<br>0<br>effective winternal walk | ndow U-va      | 52.34 129.1 4.67 47.5 258.5 alue calculatitions | 7 x<br>x<br>x<br>6 ated using                     | 0.13<br>0.18<br>0.13<br>0.13<br>formula 1 | = [<br>= [<br>= [<br>                        | 6.8042<br>23.25<br>0.61<br>6.17 | as given ir<br>2) + (32a) |             | 69.1     | (29)<br>(30)<br>(30)<br>(31)<br>4 (33)<br>.13 (34) |

| if details of therma               | al bridging         | are not kn                                       | own (36) =       | = 0.05 x (3      | 1)               |                   |             |              |                    |                        |         |          |              |
|------------------------------------|---------------------|--------------------------------------------------|------------------|------------------|------------------|-------------------|-------------|--------------|--------------------|------------------------|---------|----------|--------------|
| Total fabric he                    |                     |                                                  |                  |                  |                  |                   |             | (33) +       | (36) =             |                        |         | 82.01    | (37)         |
| Ventilation hea                    | at loss ca          | alculated                                        | l monthl         | У                | 1                |                   |             | (38)m        | = 0.33 × (         | 25)m x (5)             | •       | Ī        |              |
| Jan                                | Feb                 | Mar                                              | Apr              | May              | Jun              | Jul               | Aug         | Sep          | Oct                | Nov                    | Dec     |          |              |
| (38)m= 49.14                       | 48.83               | 48.54                                            | 47.13            | 46.87            | 45.64            | 45.64             | 45.42       | 46.12        | 46.87              | 47.4                   | 47.96   |          | (38)         |
| Heat transfer of                   | coefficier          | nt, W/K                                          |                  |                  |                  |                   |             | (39)m        | = (37) + (3        | 38)m                   |         |          |              |
| (39)m= 131.15                      | 130.85              | 130.55                                           | 129.14           | 128.88           | 127.66           | 127.66            | 127.43      | 128.13       | 128.88             | 129.41                 | 129.97  |          |              |
|                                    |                     |                                                  |                  |                  |                  |                   |             |              | Average =          |                        | 12 /12= | 129.14   | (39)         |
| Heat loss para                     |                     | <del>-                                    </del> |                  |                  |                  |                   |             | · · ·        | = (39)m ÷          | <del>`</del>           |         | Ī        |              |
| (40)m= 1.32                        | 1.31                | 1.31                                             | 1.3              | 1.29             | 1.28             | 1.28              | 1.28        | 1.29         | 1.29               | 1.3                    | 1.31    |          | 7(40)        |
| Number of day                      | s in moi            | nth (Tab                                         | le 1a)           |                  |                  |                   |             |              | Average =          | Sum(40) <sub>1.</sub>  | 12 /12= | 1.3      | (40)         |
| Jan                                | Feb                 | Mar                                              | Apr              | May              | Jun              | Jul               | Aug         | Sep          | Oct                | Nov                    | Dec     |          |              |
| (41)m= 31                          | 28                  | 31                                               | 30               | 31               | 30               | 31                | 31          | 30           | 31                 | 30                     | 31      |          | (41)         |
|                                    |                     |                                                  |                  |                  |                  |                   |             |              |                    |                        |         |          |              |
| 4. Water heat                      | ting ener           | rgy requi                                        | irement:         |                  |                  |                   |             |              |                    |                        | kWh/ye  | ear:     |              |
| Assumed assu                       | inanay l            | NI                                               |                  |                  |                  |                   |             |              |                    |                        | 7.4     | 1        | (40)         |
| Assumed occu<br>if TFA > 13.9      |                     |                                                  | [1 - exp         | (-0.0003         | 349 x (TF        | FA -13.9          | )2)] + 0.(  | 0013 x (     | ΓFA -13.           |                        | 74      |          | (42)         |
| if TFA £ 13.9                      |                     |                                                  |                  | (                | - (              |                   | , ,,        |              |                    | -,                     |         |          |              |
| Annual averag                      |                     |                                                  |                  |                  |                  |                   |             |              |                    |                        | ).16    |          | (43)         |
| Reduce the annua not more that 125 | _                   |                                                  |                  |                  | _                | -                 | o acnieve   | a water us   | se target o        | Ī                      |         |          |              |
|                                    |                     | ·                                                | · ·              |                  | i .              | •                 | Λ           | Can          | 0-4                | Nav                    | Daa     |          |              |
| Jan Hot water usage is             | Feb<br>n litres per | Mar<br>dav for ea                                | Apr<br>ach month | May<br>Vd.m = fa | Jun<br>ctor from | Jul<br>Table 1c x | Aug<br>(43) | Sep          | Oct                | Nov                    | Dec     |          |              |
| (44)m= 109.08                      | 105.11              | 101.15                                           | 97.18            | 93.21            | 89.25            | 89.25             | 93.21       | 97.18        | 101.15             | 105.11                 | 109.08  |          |              |
| (44)111= 109.08                    | 103.11              | 101.13                                           | 97.10            | 93.21            | 09.23            | 09.23             | 93.21       | l            | Total = Su         |                        |         | 1189.97  | (44)         |
| Energy content of                  | hot water           | used - cal                                       | culated m        | onthly $= 4$ .   | 190 x Vd,r       | m x nm x C        | OTm / 3600  |              |                    | . ,                    |         | 1103.31  | (\.,         |
| (45)m= 161.76                      | 141.48              | 145.99                                           | 127.28           | 122.13           | 105.39           | 97.66             | 112.06      | 113.4        | 132.16             | 144.26                 | 156.66  |          |              |
|                                    |                     |                                                  |                  |                  | , ,              | . 0:              |             |              | Total = Su         | m(45) <sub>112</sub> = | =       | 1560.23  | (45)         |
| If instantaneous w                 |                     |                                                  | ,                |                  | r storage),      | enter 0 in        | boxes (46)  | ) to (61)    |                    |                        |         | Ī        |              |
| (46)m= 24.26                       | 21.22               | 21.9                                             | 19.09            | 18.32            | 15.81            | 14.65             | 16.81       | 17.01        | 19.82              | 21.64                  | 23.5    |          | (46)         |
| Water storage Storage volum        |                     | includir                                         | na anv sa        | olar or M        | /WHRS            | etorana           | within sa   | ame ves      | امء                |                        | 0       |          | (47)         |
| If community h                     | , ,                 |                                                  | •                |                  |                  | •                 |             | arric ves    | 301                |                        | U       |          | (47)         |
| Otherwise if no                    | _                   |                                                  |                  | _                |                  |                   | , ,         | ers) ente    | er 'O' in <i>(</i> | 47)                    |         |          |              |
| Water storage                      |                     | not wate                                         | , (uo            | .0.4400 .        | - rotal ital     | 10000             |             | 010, 0111    | ». • (             | •••                    |         |          |              |
| a) If manufact                     | urer's de           | eclared I                                        | oss facto        | or is kno        | wn (kWł          | n/day):           |             |              |                    |                        | 0       |          | (48)         |
| Temperature f                      | actor fro           | m Table                                          | 2b               |                  |                  |                   |             |              |                    |                        | 0       |          | (49)         |
| Energy lost fro                    | m water             | storage                                          | , kWh/ye         | ear              |                  |                   | (48) x (49) | ) =          |                    |                        | 0       |          | (50)         |
| b) If manufact                     |                     |                                                  | -                |                  |                  |                   |             |              |                    |                        |         | •        |              |
| Hot water stor                     | -                   |                                                  |                  | le 2 (kW         | h/litre/da       | ay)               |             |              |                    |                        | 0       |          | (51)         |
| If community he Volume factor      | •                   |                                                  | on 4.3           |                  |                  |                   |             |              |                    |                        | 0       | l        | (50)         |
| Temperature f                      |                     |                                                  | 2h               |                  |                  |                   |             |              |                    |                        | 0       |          | (52)<br>(53) |
| ·                                  |                     |                                                  |                  | aar              |                  |                   | (A7) v (E4) | \ v (E2\ v / | 53) –              |                        |         | <u> </u> |              |
| Energy lost fro<br>Enter (50) or ( |                     | _                                                | , NVII/Y         | -ai              |                  |                   | (47) x (51) | , A (OZ) X ( | 00 <i>j</i> =      | -                      | 0       |          | (54)<br>(55) |
|                                    | ( / (               | · - /                                            |                  |                  |                  |                   |             |              |                    |                        |         |          | (30)         |

| Water      | storage          | loss cal              | culated t   | for each    | month         |                |                     | ((56)m = (           | 55) × (41)   | m                    |                      |             |               |      |
|------------|------------------|-----------------------|-------------|-------------|---------------|----------------|---------------------|----------------------|--------------|----------------------|----------------------|-------------|---------------|------|
| (56)m=     | 0                | 0                     | 0           | 0           | 0             | 0              | 0                   | 0                    | 0            | 0                    | 0                    | 0           |               | (56) |
| If cylinde | er contains      | s dedicate            | d solar sto | rage, (57)ı | m = (56)m     | x [(50) – (    | H11)] ÷ (5          | 0), else (5          | 7)m = (56)   | m where (            | H11) is fro          | m Append    | ix H          |      |
| (57)m=     | 0                | 0                     | 0           | 0           | 0             | 0              | 0                   | 0                    | 0            | 0                    | 0                    | 0           |               | (57) |
| Primar     | ry circuit       | loss (an              | nual) fro   | m Table     | 3             |                |                     |                      |              |                      |                      | 0           |               | (58) |
|            | •                | ,                     | ,           |             |               | 59)m = (       | (58) ÷ 36           | 55 × (41)            | m            |                      |                      |             | •             |      |
| (mo        | dified by        | factor fi             | rom Tab     | le H5 if t  | here is s     | solar wat      | er heatii           | ng and a             | cylinde      | r thermo             | stat)                |             |               |      |
| (59)m=     | 0                | 0                     | 0           | 0           | 0             | 0              | 0                   | 0                    | 0            | 0                    | 0                    | 0           |               | (59) |
| Combi      | i loss ca        | lculated              | for each    | month (     | (61)m =       | (60) ÷ 36      | 65 × (41)           | )m                   |              | -                    |                      |             | •             |      |
| (61)m=     | 50.96            | 46.03                 | 50.96       | 47.92       | 47.5          | 44.01          | 45.48               | 47.5                 | 47.92        | 50.96                | 49.32                | 50.96       |               | (61) |
| Total h    | neat requ        | uired for             | water h     | eating ca   | alculated     | for eacl       | h month             | (62)m =              | 0.85 × (     | (45)m +              | (46)m +              | (57)m +     | (59)m + (61)m |      |
| (62)m=     | 212.72           | 187.51                | 196.95      | 175.21      | 169.63        | 149.4          | 143.14              | 159.56               | 161.33       | 183.12               | 193.58               | 207.62      |               | (62) |
| Solar DI   | HW input of      | calculated            | using App   | endix G oı  | · Appendix    | H (negati      | ve quantity         | /) (enter '0         | ' if no sola | r contribut          | ion to wate          | r heating)  | ı             |      |
| (add a     | dditiona         | l lines if            | FGHRS       | and/or \    | VWHRS         | applies        | , see Ap            | pendix (             | <b>3</b> )   |                      |                      |             |               |      |
| (63)m=     | 0                | 0                     | 0           | 0           | 0             | 0              | 0                   | 0                    | 0            | 0                    | 0                    | 0           |               | (63) |
| Output     | t from w         | ater hea              | ter         |             |               | !              |                     |                      |              | !                    | !                    | !           |               |      |
| (64)m=     | 212.72           | 187.51                | 196.95      | 175.21      | 169.63        | 149.4          | 143.14              | 159.56               | 161.33       | 183.12               | 193.58               | 207.62      |               |      |
|            |                  |                       | <u> </u>    | <u> </u>    |               | <u> </u>       | <u> </u>            | Outp                 | out from w   | ater heate           | ı<br>r (annual)₁     | 12          | 2139.75       | (64) |
| Heat o     | ains fro         | m water               | heating.    | kWh/me      | onth 0.2      | 5 ′ [0.85      | × (45)m             | + (61)m              | n] + 0.8 x   | x [(46)m             | + (57)m              | + (59)m     | 1             | -    |
| (65)m=     | 66.53            | 58.55                 | 61.28       | 54.3        | 52.48         | 46.04          | 43.84               | 49.14                | 49.69        | 56.68                | 60.3                 | 64.83       | ĺ             | (65) |
| inclu      | ıde (57)         | m in cald             | culation o  | of (65)m    | only if c     | vlinder i      | s in the $lpha$     | lwellina<br>Jwellina | or hot w     | ıater is fr          | om com               | munity h    | ı<br>Jeating  |      |
|            | ternal ga        |                       |             |             | •             | ,              |                     |                      |              |                      |                      |             | g             |      |
|            | Ĭ                | ·                     |             |             | ) •           |                |                     |                      |              |                      |                      |             |               |      |
| ivietab    | olic gain<br>Jan | s (Table<br>Feb       | Mar         | ts<br>Apr   | May           | Jun            | Jul                 | Aug                  | Sep          | Oct                  | Nov                  | Dec         |               |      |
| (66)m=     | 136.77           | 136.77                | 136.77      | 136.77      | 136.77        | 136.77         | 136.77              | 136.77               | 136.77       | 136.77               | 136.77               | 136.77      |               | (66) |
| ` '        |                  |                       | <u> </u>    | ļ           |               | <u> </u>       | ļ                   |                      | ļ            | 100.77               | 100.77               | 100.77      |               | ()   |
| (67)m=     | 22.79            | 20.24                 | 16.46       | 12.46       | equat<br>9.31 | ion L9 o       | 8.5                 | 11.04                | 14.82        | 18.82                | 21.97                | 23.42       | l             | (67) |
|            |                  |                       |             |             |               | <u> </u>       |                     |                      | l            |                      | 21.97                | 25.42       |               | (01) |
|            |                  | · ` ·                 | 251.57      |             |               | uation L       | 13 OF L1            |                      |              | 1                    | 227.44               | 244 22      | 1             | (68) |
| (68)m=     | 255.6            | 258.25                | l .         | 237.34      | 219.38        | <u> </u>       | !                   | 188.57               | 195.25       | 209.48               | 227.44               | 244.32      |               | (00) |
|            |                  | ·                     | ·           |             |               | tion L15       |                     |                      | ı —          | 1                    | 1 20 00              | 1 20 00     | 1             | (60) |
| (69)m=     | 36.68            | 36.68                 | 36.68       | 36.68       | 36.68         | 36.68          | 36.68               | 36.68                | 36.68        | 36.68                | 36.68                | 36.68       |               | (69) |
| -          | s and fai        |                       | <u> </u>    |             |               |                |                     |                      |              |                      | Γ.                   | Γ.          | I             | (70) |
| (70)m=     | 3                | 3                     | 3           | 3           | 3             | 3              | 3                   | 3                    | 3            | 3                    | 3                    | 3           |               | (70) |
|            | s e.g. ev        |                       | <u> </u>    |             |               | <del></del>    | -                   |                      | ·            | 1                    | 1                    | 1           | •             |      |
| ` '        | -109.41          | -109.41               | -109.41     | -109.41     | -109.41       | -109.41        | -109.41             | -109.41              | -109.41      | -109.41              | -109.41              | -109.41     |               | (71) |
| Water      | heating          | · `                   | able 5)     | r           |               | ı              | ı                   |                      | ı            | •                    | ,                    | ,           | •             |      |
| (72)m=     | 89.42            | 87.13                 | 82.37       | 75.42       | 70.54         | 63.95          | 58.93               | 66.04                | 69.01        | 76.19                | 83.74                | 87.14       |               | (72) |
| (12)111-   |                  |                       | -           |             |               |                |                     |                      |              |                      |                      |             |               |      |
| ` '        | internal         | gains =               |             |             |               | (66)           | m + (67)m           | + (68)m +            | + (69)m +    | (70)m + (7           | 1)m + (72)           | )m          |               |      |
| ` '        |                  | <b>gains =</b> 432.65 | 417.43      | 392.25      | 366.26        | (66)<br>341.34 | m + (67)m<br>325.67 | 332.68               | 346.11       | (70)m + (7<br>371.52 | 1)m + (72)<br>400.18 | m<br>421.91 |               | (73) |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation: Access Fac<br>Table 6d | ctor | Area<br>m² |   | Flux<br>Table 6a |   | g_<br>Table 6b |   | FF<br>Table 6c |          | Gains<br>(W) |      |
|-------------------------------------|------|------------|---|------------------|---|----------------|---|----------------|----------|--------------|------|
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 11.28            | x | 0.63           | X | 0.7            | ] =      | 49.24        | (75) |
| Northeast 0.9x 0.77                 | х    | 14.28      | x | 22.97            | X | 0.63           | X | 0.7            | =        | 100.23       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 41.38            | x | 0.63           | X | 0.7            | =        | 180.58       | (75) |
| Northeast 0.9x 0.77                 | х    | 14.28      | x | 67.96            | X | 0.63           | X | 0.7            | =        | 296.57       | (75) |
| Northeast 0.9x 0.77                 | х    | 14.28      | x | 91.35            | X | 0.63           | X | 0.7            | =        | 398.65       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 97.38            | x | 0.63           | X | 0.7            | =        | 425          | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 91.1             | x | 0.63           | X | 0.7            | =        | 397.58       | (75) |
| Northeast <sub>0.9x</sub> 0.77      | X    | 14.28      | x | 72.63            | x | 0.63           | X | 0.7            | =        | 316.95       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 50.42            | x | 0.63           | X | 0.7            | =        | 220.04       | (75) |
| Northeast 0.9x 0.77                 | x    | 14.28      | x | 28.07            | x | 0.63           | X | 0.7            | =        | 122.49       | (75) |
| Northeast <sub>0.9x</sub> 0.77      | X    | 14.28      | x | 14.2             | x | 0.63           | X | 0.7            | =        | 61.96        | (75) |
| Northeast <sub>0.9x</sub> 0.77      | x    | 14.28      | x | 9.21             | x | 0.63           | X | 0.7            | =        | 40.21        | (75) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 36.79            | x | 0.63           | X | 0.7            | =        | 23.5         | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 62.67            | x | 0.63           | X | 0.7            | =        | 40.03        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 85.75            | x | 0.63           | X | 0.7            | =        | 54.77        | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 106.25           | x | 0.63           | X | 0.7            | =        | 67.87        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 119.01           | x | 0.63           | X | 0.7            | =        | 76.02        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 118.15           | x | 0.63           | X | 0.7            | =        | 75.47        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 113.91           | x | 0.63           | X | 0.7            | =        | 72.76        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 104.39           | X | 0.63           | X | 0.7            | =        | 66.68        | (77) |
| Southeast 0.9x 0.77                 | x    | 2.09       | x | 92.85            | x | 0.63           | X | 0.7            | =        | 59.31        | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 69.27            | x | 0.63           | X | 0.7            | =        | 44.24        | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 44.07            | x | 0.63           | X | 0.7            | =        | 28.15        | (77) |
| Southeast 0.9x 0.77                 | X    | 2.09       | x | 31.49            | x | 0.63           | X | 0.7            | =        | 20.11        | (77) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 36.79            |   | 0.63           | X | 0.7            | =        | 66.23        | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 62.67            | ] | 0.63           | X | 0.7            | =        | 112.82       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 85.75            | ] | 0.63           | X | 0.7            | =        | 154.36       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 106.25           |   | 0.63           | X | 0.7            | =        | 191.26       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 119.01           | ] | 0.63           | X | 0.7            | =        | 214.23       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 118.15           | ] | 0.63           | X | 0.7            | =        | 212.68       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 113.91           |   | 0.63           | X | 0.7            | =        | 205.04       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 104.39           | ] | 0.63           | X | 0.7            | =        | 187.91       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | X    | 5.89       | x | 92.85            |   | 0.63           | X | 0.7            | =        | 167.14       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 69.27            | ] | 0.63           | X | 0.7            | =        | 124.69       | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 44.07            | ] | 0.63           | X | 0.7            | =        | 79.33        | (79) |
| Southwest <sub>0.9x</sub> 0.77      | x    | 5.89       | x | 31.49            | ] | 0.63           | X | 0.7            | <b>=</b> | 56.68        | (79) |
| Northwest 0.9x 0.77                 | x    | 0.52       | x | 11.28            | x | 0.63           | X | 0.7            | <b>=</b> | 1.79         | (81) |
| Northwest 0.9x 0.77                 | x    | 0.52       | x | 22.97            | x | 0.63           | X | 0.7            | =        | 3.65         | (81) |
| Northwest <sub>0.9x</sub> 0.77      | X    | 0.52       | x | 41.38            | x | 0.63           | × | 0.7            | ] =      | 6.58         | (81) |

| Northwest 0.9x            | 0.77        | X         | 0.5        | 52          | x          | 67           | 7.96      | X                                                 |               | 0.63      | x          | 0.7          | =           | 10.8     | (81) |
|---------------------------|-------------|-----------|------------|-------------|------------|--------------|-----------|---------------------------------------------------|---------------|-----------|------------|--------------|-------------|----------|------|
| Northwest <sub>0.9x</sub> | 0.77        | X         | 9.0        | 52          | x          | 91           | 1.35      | x                                                 |               | 0.63      | x          | 0.7          | =           | 14.52    | (81) |
| Northwest 0.9x            | 0.77        | X         | 0.5        | 52          | x          | 97           | 7.38      | x                                                 |               | 0.63      | x          | 0.7          | =           | 15.48    | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | X         | 0.5        | 52          | x          | 9            | 1.1       | x                                                 |               | 0.63      | x          | 0.7          | =           | 14.48    | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | X         | 0.5        | 52          | x          | 72           | 2.63      | X                                                 |               | 0.63      | x [        | 0.7          | =           | 11.54    | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | X         | 0.5        | 52          | x          | 50           | 0.42      | X                                                 |               | 0.63      | x          | 0.7          | =           | 8.01     | (81) |
| Northwest 0.9x            | 0.77        | x         | 0.5        | 52          | x          | 28           | 3.07      | x                                                 |               | 0.63      | x          | 0.7          | =           | 4.46     | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | x         | 0.5        | 52          | x $\lceil$ | 1            | 4.2       | x                                                 |               | 0.63      | _ x _      | 0.7          | =           | 2.26     | (81) |
| Northwest <sub>0.9x</sub> | 0.77        | x         | 0.5        | 52          | x $\lceil$ | 9            | .21       | x                                                 |               | 0.63      | _ x [      | 0.7          | =           | 1.46     | (81) |
| _                         |             |           |            |             | _          |              |           |                                                   |               |           |            |              | <del></del> |          | _    |
| Solar gains in            | watts, ca   | alculated | for eac    | h month     |            |              |           | (83)m                                             | ı = Sı        | um(74)m . | (82)m      |              |             | _        |      |
| (83)m= 140.77             | 256.73      | 396.29    | 566.49     | 703.41      | 728        | 3.62         | 689.86    | 583                                               | .08           | 454.5     | 295.88     | 171.69       | 118.47      |          | (83) |
| Total gains – i           | nternal a   | and solar | (84)m =    | = (73)m ·   | + (83      | 3)m ,        | watts     | _                                                 |               |           |            |              |             | _        |      |
| (84)m= 575.6              | 689.37      | 813.72    | 958.74     | 1069.67     | 106        | 9.96         | 1015.53   | 915                                               | .77           | 800.62    | 667.4      | 571.87       | 540.37      |          | (84) |
| 7. Mean inter             | nal temp    | perature  | (heating   | season      | )          |              |           |                                                   |               |           |            |              |             |          |      |
| Temperature               | during h    | neating p | eriods i   | n the livii | ng a       | rea fi       | rom Tab   | ole 9,                                            | , Th          | 1 (°C)    |            |              |             | 21       | (85) |
| Utilisation fac           | tor for g   | ains for  | living are | ea, h1,m    | (se        | e Tal        | ole 9a)   |                                                   |               |           |            |              |             |          |      |
| Jan                       | Feb         | Mar       | Apr        | May         | J          | un           | Jul       | A                                                 | ug            | Sep       | Oct        | Nov          | Dec         |          |      |
| (86)m= 1                  | 1           | 0.99      | 0.96       | 0.86        | 0.         | .7           | 0.54      | 0.6                                               | §1            | 0.86      | 0.98       | 1            | 1           |          | (86) |
| Mean interna              | l temper    | ature in  | living ar  | ea T1 (fo   | ollow      | , ster       | os 3 to 7 | in T                                              | able          | e 9c)     |            | •            | •           | _        |      |
| (87)m= 19.52              | 19.7        | 20        | 20.41      | 20.75       | _          | .93          | 20.98     | 20.                                               | _             | 20.82     | 20.37      | 19.87        | 19.49       |          | (87) |
| Temperature               | during k    | L         | oriodo i   | root of     | طس         | اممنال       | from To   | hla (                                             |               | 2 (°C)    |            | 1            | l           |          |      |
| (88)m= 19.83              | 19.83       | 19.83     | 19.84      | 19.85       |            | .85          | 19.85     | 19.                                               | $\overline{}$ | 19.85     | 19.85      | 19.84        | 19.84       | 1        | (88) |
| ` ′                       |             |           | <u> </u>   | <u> </u>    | l          | I            |           | L                                                 |               |           | .0.00      | 1            | 1           | <u> </u> | (==) |
| Utilisation fac           |             |           |            |             |            |              |           | r –                                               | [             | 0.70      | 0.07       | T 0 00       |             | 7        | (00) |
| (89)m= 1                  | 0.99        | 0.98      | 0.94       | 0.81        | 0.         | ٥.           | 0.41      | 0.4                                               | +/            | 0.79      | 0.97       | 0.99         | 1           |          | (89) |
| Mean interna              | <del></del> | †         | 1          | 1           | <u> </u>   | <del>`</del> |           | <del>i                                     </del> | $\overline{}$ |           |            | ,            |             | 7        |      |
| (90)m= 17.87              | 18.13       | 18.57     | 19.15      | 19.6        | 19         | .81          | 19.85     | 19.                                               | 85            | 19.71     | 19.11      | 18.39        | 17.83       |          | (90) |
|                           |             |           |            |             |            |              |           |                                                   |               | f         | LA = Livir | ng area ÷ (4 | 4) =        | 0.3      | (91) |
| Mean interna              | l temper    | ature (fo | r the wh   | ole dwe     | lling)     | ) = fL       | A × T1    | + (1                                              | – fL          | A) × T2   |            |              |             | _        |      |
| (92)m= 18.36              | 18.59       | 18.99     | 19.52      | 19.94       | 20         | .14          | 20.18     | 20.                                               | 18            | 20.03     | 19.48      | 18.83        | 18.32       |          | (92) |
| Apply adjustn             | nent to t   | he mear   | interna    | l temper    | ature      | e fror       | m Table   | 4e,                                               | whe           | re appro  | priate     |              |             | -        |      |
| (93)m= 18.36              | 18.59       | 18.99     | 19.52      | 19.94       | 20         | .14          | 20.18     | 20.                                               | 18            | 20.03     | 19.48      | 18.83        | 18.32       |          | (93) |
| 8. Space hea              |             |           |            |             |            |              |           |                                                   |               |           |            |              |             |          |      |
| Set Ti to the i           |             |           | •          |             | ed a       | at ste       | p 11 of   | Tabl                                              | e 9b          | , so tha  | t Ti,m=(   | 76)m an      | d re-cal    | culate   |      |
| the utilisation  Jan      | Feb         | Mar       | Apr        | May         | Ι,         | un           | Jul       | Ι                                                 | ug            | Sep       | Oct        | Nov          | Dec         | 1        |      |
| Utilisation fac           |             |           | <u> </u>   | Iviay       |            | uii          | Jui       |                                                   | ug į          | Sep       | OCI        | 1407         | Dec         |          |      |
| (94)m= 1                  | 0.99        | 0.98      | 0.93       | 0.82        | 0.0        | 62           | 0.44      | 0.5                                               | 51            | 0.8       | 0.96       | 0.99         | 1           |          | (94) |
| Useful gains,             | hmGm        |           |            | L<br>4)m    | <u> </u>   |              |           | <u> </u>                                          |               |           |            | <u> </u>     | <u> </u>    |          |      |
| (95)m= 573.53             | 683.7       | 795.86    | 893.72     | 874.71      | 66         | 8.2          | 451.18    | 469                                               | .49           | 640.14    | 642.61     | 567.7        | 538.9       |          | (95) |
| Monthly avera             | age exte    | ernal tem | perature   | from Ta     | able       | 8            |           |                                                   |               |           | I          | 1            | 1           | _        |      |
| (96)m= 4.3                | 4.9         | 6.5       | 8.9        | 11.7        |            | 1.6          | 16.6      | 16.                                               | .4            | 14.1      | 10.6       | 7.1          | 4.2         |          | (96) |
| Heat loss rate            | e for me    | an intern | al temp    | erature,    | Lm ,       | W =          | [(39)m    | x [(9                                             | 3)m-          | - (96)m   | ]          |              |             | _        |      |
| (97)m= 1843.42            | 1791.63     | 1630.87   | 1371.83    | 1062.1      | 707        | 7.73         | 457.63    | 481                                               | .56           | 760.43    | 1144.76    | 1517.58      | 1835.37     |          | (97) |
|                           |             |           |            |             |            |              |           |                                                   |               |           |            |              |             | _        |      |

| Space heating                  | ng require                                       | ement fo   | r each m  | nonth, k\ | Wh/mon   | th = 0.02 | 24 x [(97)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )m – (95          | )m] x (4              | 1)m                     |                |         |          |
|--------------------------------|--------------------------------------------------|------------|-----------|-----------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-------------------------|----------------|---------|----------|
| (98)m= 944.8                   | 744.53                                           | 621.25     | 344.23    | 139.42    | 0        | 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                 | 373.6                 | 683.91                  | 964.57         |         | _        |
|                                |                                                  |            |           |           |          |           | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l per year        | (kWh/yeaı             | r) = Sum(9              | 8)15,912 =     | 4816.31 | (98)     |
| Space heating                  | ng require                                       | ement in   | kWh/m²    | /year     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         |                | 48.38   | (99)     |
| 9a. Energy re                  | quiremer                                         | nts – Indi | vidual h  | eating sy | ystems i | ncluding  | micro-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HP)               |                       |                         |                |         |          |
| Space heati                    | _                                                |            |           | /I-       |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         | Г              |         | 7(004)   |
| Fraction of s                  |                                                  |            | -         |           | mentary  | -         | (202) = 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (201) -           |                       |                         | Ĺ              | 0       | (201)    |
| Fraction of s                  |                                                  |            | •         | • ,       |          |           | (202) = 1 - (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = (204) = | ,                 | (202)] _              |                         | L              | 1       | (202)    |
| Fraction of to                 |                                                  | _          | •         |           |          |           | (204) = (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 02) * [1 -        | (203)] =              |                         | Ļ              | 1       | (204)    |
| Efficiency of                  | •                                                |            |           |           |          | . 0/      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         | Ļ              | 93.4    | (206)    |
| Efficiency of                  | _                                                |            |           |           | · ·      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         | <u> </u>       | 0       | (208)    |
| Jan<br>Space heatir            | Feb                                              | Mar        | Apr       | May       | Jun      | Jul       | Aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sep               | Oct                   | Nov                     | Dec            | kWh/ye  | ar       |
| 944.8                          | 744.53                                           | 621.25     | 344.23    | 139.42    | 0        | 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                 | 373.6                 | 683.91                  | 964.57         |         |          |
| (211)m = {[(98                 | I<br>3)m x (20                                   | 4)1 } x 1  | 00 ÷ (20  | )6)       | <u> </u> |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | <u> </u>              |                         |                |         | (211)    |
| 1011.56                        | <del>i                                    </del> | 665.15     | 368.56    | 149.27    | 0        | 0         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                 | 400                   | 732.24                  | 1032.73        |         | (= : : ) |
|                                |                                                  |            |           |           |          |           | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l (kWh/yea        | ar) =Sum(2            | 211) <sub>15,1012</sub> | <sub>2</sub> = | 5156.65 | (211)    |
| Space heatir                   | ng fuel (s                                       | econdar    | y), kWh/  | month     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         | _              |         |          |
| $= \{[(98)m \times (2)]\}$     | 1                                                | 1          |           | -         | 1        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 1                     | 1                       |                |         |          |
| (215)m= 0                      | 0                                                | 0          | 0         | 0         | 0        | 0         | 0<br>Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>L (k\\/b/voc | 0<br>ar) =Sum(2       | 0                       | 0              |         | 7(245)   |
| Water heating                  | ~                                                |            |           |           |          |           | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i (KVVII/yea      | ar) =50111(2          | 213) <sub>15,1012</sub> |                | 0       | (215)    |
| Output from w                  | _                                                | ter (calc  | ulated al | oove)     |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         |                |         |          |
| 212.72                         | 187.51                                           | 196.95     | 175.21    | 169.63    | 149.4    | 143.14    | 159.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 161.33            | 183.12                | 193.58                  | 207.62         |         |          |
| Efficiency of w                | vater hea                                        | ter        |           |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         |                | 80.3    | (216)    |
| (217)m= 88.36                  | 88.17                                            | 87.74      | 86.72     | 84.56     | 80.3     | 80.3      | 80.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.3              | 86.81                 | 87.96                   | 88.43          |         | (217)    |
| Fuel for water $(219)m = (64)$ | •                                                |            |           |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         |                |         |          |
| (219)m = 240.75                |                                                  | 224.46     | 202.03    | 200.6     | 186.05   | 178.25    | 198.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200.9             | 210.94                | 220.08                  | 234.78         |         |          |
|                                |                                                  |            |           |           |          |           | Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I = Sum(2         | 19a) <sub>112</sub> = |                         |                | 2510.23 | (219)    |
| Annual totals                  |                                                  |            |           |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | k'                    | Wh/year                 | · -            | kWh/yea |          |
| Space heating                  | g fuel use                                       | ed, main   | system    | 1         |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         | Ĺ              | 5156.65 | ╛        |
| Water heating                  | fuel use                                         | d          |           |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         |                | 2510.23 |          |
| Electricity for                | pumps, f                                         | ans and    | electric  | keep-ho   | t        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         |                |         |          |
| central heati                  | ng pump                                          | :          |           |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         | 30             |         | (2300    |
| boiler with a                  | fan-assis                                        | sted flue  |           |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         | 45             |         | (230     |
| Total electricit               | y for the                                        | above, k   | «Wh/yea   | r         |          |           | sum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of (230a).        | (230g) =              |                         |                | 75      | (231)    |
| Electricity for                | •                                                | •          | -         |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         | L<br>[         | 402.42  | (232)    |
| ,                              | 5                                                |            |           |           |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                       |                         |                |         | ` ′      |
| Total delivere                 | d energy                                         | for all u  | ses (211  | ) (221)   | + (231)  | + (232)   | (237h)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                 |                       |                         | Ī              | 8144.3  | (338)    |

|                                                   | <b>Energy</b><br>kWh/year       | Emission factor<br>kg CO2/kWh | <b>Emissions</b><br>kg CO2/year |
|---------------------------------------------------|---------------------------------|-------------------------------|---------------------------------|
| Space heating (main system 1)                     | (211) x                         | 0.216 =                       | 1113.84 (261)                   |
| Space heating (secondary)                         | (215) x                         | 0.519 =                       | 0 (263)                         |
| Water heating                                     | (219) x                         | 0.216 =                       | 542.21 (264)                    |
| Space and water heating                           | (261) + (262) + (263) + (264) = |                               | 1656.05 (265)                   |
| Electricity for pumps, fans and electric keep-hot | (231) x                         | 0.519 =                       | 38.93 (267)                     |
| Electricity for lighting                          | (232) x                         | 0.519 =                       | 208.86 (268)                    |
| Total CO2, kg/year                                | sum                             | of (265)(271) =               | 1903.83 (272)                   |
|                                                   |                                 |                               |                                 |
| TER =                                             |                                 |                               | 19.12 (273)                     |

#### **SAP 2012 Overheating Assessment**

Calculated by Stroma FSAP 2012 program, produced and printed on 14 February 2023

#### Property Details: 15592 - L1a Assessment

**Dwelling type: Located in:**Detached House
England

**Region:** Thames valley

Cross ventilation possible:YesNumber of storeys:2Front of dwelling faces:North

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Indicative Value Low

**Night ventilation:** False

Blinds, curtains, shutters:

**Ventilation rate during hot weather (ach):** 4 ( Windows open half the time)

#### Overheating Details:

Summer ventilation heat loss coefficient: 330.26 (P1)

Transmission heat loss coefficient: 107.1

Summer heat loss coefficient: 437.34 (P2)

#### Overhangs:

South West (Front Windows) 1
North East (Rear Windows) 1
South East (SE Windows) 1
North West (NW Windows) 1

#### Solar shading:

| Orientation:           | Z blinds: | Solar access: | Overhangs: | Z summer: |      |
|------------------------|-----------|---------------|------------|-----------|------|
| South West (Front Win  | dows)     | 0.9           | 1          | 0.9       | (P8) |
| North East (Rear Windo | ows)      | 0.9           | 1          | 0.9       | (P8) |
| South East (SE Windov  | vs)1      | 0.9           | 1          | 0.9       | (P8) |
| North West (NW Windo   | ow)       | 0.9           | 1          | 0.9       | (P8) |

#### Solar gains

| Orientation                  | Area  | Flux   | $g_{-}$ | FF  | Shading | Gains                  |
|------------------------------|-------|--------|---------|-----|---------|------------------------|
| South West (Front Windows)x  | 7.78  | 119.92 | 0.63    | 0.7 | 0.9     | 333.28                 |
| North East (Rear Windows)9 x | 18.86 | 98.85  | 0.63    | 0.7 | 0.9     | 665.92                 |
| South East (SE Windows)0.9 x | 2.76  | 119.92 | 0.63    | 0.7 | 0.9     | 118.23                 |
| North West (NW Window)).9 x  | 0.69  | 98.85  | 0.63    | 0.7 | 0.9     | 24.36                  |
|                              |       |        |         |     | Total   | 1141.79 <b>(P3/P4)</b> |

#### Internal gains:

|                                                  | June    | July    | August              |
|--------------------------------------------------|---------|---------|---------------------|
| Internal gains                                   | 484.11  | 463.83  | 472.7               |
| Total summer gains                               | 1703.28 | 1605.62 | 1458.63 <b>(P5)</b> |
| Summer gain/loss ratio                           | 3.89    | 3.67    | 3.34 <b>(P6)</b>    |
| Mean summer external temperature (Thames valley) | 16      | 17.9    | 17.8                |
| Thermal mass temperature increment               | 1.3     | 1.3     | 1.3                 |
| Threshold temperature                            | 21.19   | 22.87   | 22.44 <b>(P7)</b>   |
| Likelihood of high internal temperature          | Slight  | Medium  | Medium              |

# **SAP 2012 Overheating Assessment**

| Assessment of likelihood of high internal temperature: | Medium |
|--------------------------------------------------------|--------|
|--------------------------------------------------------|--------|