

WE LISTEN, WE PLAN, WE DELIVER Geotechnical Engineering and Environmental Services across the UK.

# FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY

20 Watford Rd, Radlett

JOMAS ASSOCIATES LTD

Unit 24 Sarum Complex, Salisbury Road, Uxbridge, UB8 2RZ www.jomasassociates.com info@jomasassociates.com



Г

Geotechnical Engineering and Environmental Services across the UK.

| Report Title: FLOOD RISK ASSESSMENT AND DRAINAGE STRATEGY |                    |                           |                      |
|-----------------------------------------------------------|--------------------|---------------------------|----------------------|
| Report Status: Final v1.0                                 |                    |                           |                      |
| Job No:                                                   | P4735J2775         |                           |                      |
| Date:                                                     | 23 May 2023        |                           |                      |
| Control: Previ                                            | ous Release        |                           |                      |
| Version                                                   |                    | Date                      | Issued By            |
| V1.0                                                      |                    | 23.05.23                  | A Wallace            |
|                                                           |                    |                           |                      |
|                                                           |                    |                           |                      |
|                                                           |                    |                           |                      |
|                                                           | Prepared by: JOMAS | ASSOCIATES LTD For Roundb | ush Services Limited |

Should you have any queries relating to this report, please contact

# JOMAS ASSOCIATES LTD

www.jomasassociates.com

#### 0333 305 9054

info@jomasassociates.com



# TABLE OF CONTENTS

| 1   | EXECUTIVE SUMMARY                              |
|-----|------------------------------------------------|
| 2   | INTRODUCTION7                                  |
| 3   | SITE DESCRIPTION                               |
| 3.2 | Topography8                                    |
| 4   | DESIGN PRINCIPLES AND POLICY REQUIREMENTS      |
| 4.2 | General Principles for Flooding9               |
| 4.3 | General Principles for Surface Water Drainage9 |
| 5   | FLOODING INFORMATION11                         |
| 5.1 | Flood Risk from Rivers (Fluvial)11             |
| 5.2 | Coastal and Tidal Flood Risk11                 |
| 5.3 | Geology and Hydrogeology11                     |
| 5.4 | Surface Water Flood Risk (Overland Flows)11    |
| 5.5 | Sewer/Drainage Flood Risk13                    |
| 5.6 | Reservoir Flood Risk13                         |
| 5.7 | Summary of risk levels13                       |
| 6   | SITE DRAINAGE INFORMATION                      |
| 6.2 | Sustainable Drainage Systems (SuDS)15          |
| 7   | SURFACE WATER DRAINAGE DESIGN 17               |
| 7.1 | Site Areas17                                   |
| 7.2 | Design Considerations17                        |
| 7.3 | Greenfield Rates17                             |
| 7.4 | Existing Site Runoff Rates18                   |
| 7.5 | Drainage Design19                              |
| 7.6 | Exceedance Flooding and Overland Flow20        |

# 

Geotechnical Engineering and Environmental Services across the UK.

| 7.7                                            | Consents, Offsite Works and Diversions20                        |  |  |
|------------------------------------------------|-----------------------------------------------------------------|--|--|
| 7.8                                            | Maintenance                                                     |  |  |
| 8                                              | FOUL DISCHARGE                                                  |  |  |
| 8.1                                            | Discharge to Public Sewer Network21                             |  |  |
| 9                                              | DRAINAGE DURING CONSTRUCTION                                    |  |  |
| 9.1                                            | Construction Run-off Management22                               |  |  |
| 9.2                                            | Management of Construction (Including Drainage)22               |  |  |
| 9.3                                            | Temporary Drainage During Construction22                        |  |  |
| 9.4                                            | Protection of Drainage Infrastructure during Construction23     |  |  |
| List                                           | of Figures<br>Figure 1: EA Flood Risk from Surface Water Map 13 |  |  |
| List                                           | of Tables                                                       |  |  |
|                                                | Table 1: EA Surface Water Flood Risk Categories                 |  |  |
|                                                | Table 2: Flood Risk Categories                                  |  |  |
|                                                | Table 3: SuDS Selection Based on the SuDS Hierarchy 15          |  |  |
|                                                | Table 4: Site Areas 17                                          |  |  |
|                                                | Table 5: Rural Run-off Calculator Parameters 18                 |  |  |
|                                                | Table 6: Existing Greenfield Run-off Rates                      |  |  |
|                                                | Table 7: Existing and Proposed Run-off Rates 19                 |  |  |
| List of Appendices                             |                                                                 |  |  |
| APPENDIX A: PROPOSED DEVELOPMENT DETAILS       |                                                                 |  |  |
| APPENDIX B: TOPOGRAPHIC SURVEY                 |                                                                 |  |  |
| APPENDIX C: DRAINAGE DRAWINGS AND CALCULATIONS |                                                                 |  |  |
| APF                                            | APPENDIX D: SUDS MAINTENANCE REPORT                             |  |  |



#### Limitations

JOMAS ASSOCIATES Ltd ("JA") has prepared this report for the sole use of the client in accordance with the agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by JA.

The conclusions and recommendations contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate.

The methodology adopted and the sources of information used by JA in providing its services are outlined in this report. The work described in this report was undertaken in **May 2023** and is based on the conditions encountered and the information available during the said period of time. The scope of this report and the services are accordingly factually limited by these circumstances.

Where assessments of works or costs identified in this report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

JA disclaim any undertaking or obligation to advise any person of any change in any matter affecting the report, which may come or be brought to JA's attention after the date of the report.

Certain statements made in the report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. JA specifically does not guarantee or warrant any estimate or projections contained in this report.

Costs may vary outside the ranges quoted. Whilst cost estimates are provided for individual issues in this report these are based upon information at the time which can be incomplete. Cost estimates for such issues may therefore vary from those provided. Where costs are supplied, these estimates should be considered in aggregate only. No reliance should be made in relation to any division of aggregate costs, including in relation to any issue, site or other subdivision.

No allowance has been made for changes in prices or exchange rates or changes in any other conditions which may result in price fluctuations in the future. Where assessments of works or costs necessary to achieve compliance have been made, these are based upon measures which, in JA's experience, could normally be negotiated with the relevant authorities under present legislation and enforcement practice, assuming a proactive and reasonable approach by site management.

Forecast cost estimates do not include such costs associated with any negotiations, appeals or other nontechnical actions associated with the agreement on measures to meet the requirements of the authorities, nor are potential business loss and interruption costs considered that may be incurred as part of any technical measures.

#### Copyright

© This report is the copyright of JA. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.



# **1** EXECUTIVE SUMMARY

This Drainage Assessment reviews the existing drainage arrangement at the application site and proposes a Flood Risk Assessment in accordance with the National Planning Policy Framework (NPPF) and surface water drainage strategy in line with Local Authority and Lead Local Flood Authority (LLFA) guidance.

The site is located at 20 Watford Rd, Radlett. The site currently comprises an occupied residential building fronting directly onto Watford Road. The building is associated with a large driveway area, a rear patio area, a grass lawn area, tennis courts, and a pond.

The proposed development is to comprise the demolition of the existing buildings, and construction of a 3-storey building with an associated basement, parking areas, driveway, and terracing.

# **Flooding**

The site is located within flood zone 1, so no flood risk assessment is required. An overview of flooding has been completed with the sources of flooding assessed and proposed mitigation measures listed in the table below.

| Source                      | Risk Category<br>(after<br>mitigation) | Comments                                                                                                         |
|-----------------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Fluvial (Rivers and<br>Sea) | Very Low                               | Site within flood zone 1                                                                                         |
| Coastal and tidal           | Negligible                             | Not near coast or tidal waterbody                                                                                |
| Groundwater                 | Medium                                 | Proposed finished floor levels are 150mm above<br>external ground levels and natural topography<br>reduces risk. |
| Surface water               | Low                                    | Low due to natural topography and presence of surface water drainage and falls away from the site                |
| Sewers                      | Low                                    | Low due to natural topography and sewer location                                                                 |
| Reservoirs                  | Very Low                               | Reservoir at low danger of failure                                                                               |

Surface Water Drainage

Two options for the drainage are proposed.

Option 1 is to infiltrate surface water via permeable paving. Storage is provided in the subbase of the paving and an infiltration rate of 5x10-4m/s has been assumed for the sandy gravel.

Option 2 is to discharge surface water to the TW sewer in the street. Discharge will be restricted to less than 50% of the existing 1 year discharge rate for each site. Attenuation will be provided in the



paving subbase, a below ground tank and a pond. Total storage volume is designed to ensure there is no flow off site in all storms up to the 100 year +40% storm event.

Overall, the 2 options are very similar with the only difference being the requirement for tanking to the permeable paving and an additional tank and pumped outlet should attenuation be required.

Maintenance/management of all onsite drainage infrastructure has been considered within a separate maintenance plan appended to this report. This will be updated through the development process.

The proposed drainage strategy is entirely based on-site and therefore the only off-site works will be the connections to the Thames Water sewers in the street.

Overall, the proposed development has an acceptable flood risk within the terms and requirements of the NPPF. The proposals provide a high level of water treatment, runoff reduction and flooding protection for the proposed development and are in accordance with all requirements of the Lead Local Flood Authority (LLFA).

#### Foul Drainage

It is proposed to discharge the foul drainage from the site into the existing TW foul sewer in the street.



# 2 INTRODUCTION

- 2.1.1 Jomas was commissioned to undertake a Flood Risk Assessment and Drainage Assessment for the proposed development of land located at 20 Watford Rd, Radlett
- 2.1.2 This Drainage Assessment has been produced in support of a planning application and should be read in conjunction with the other planning documents.
- 2.1.3 The site currently comprises an existing building and associated external works. The proposed development comprises the demolition of the existing building and construction of a new dwelling and associated external works. Proposed development details are provided in Appendix A.



# **3** SITE DESCRIPTION

- 3.1.1 The total site is approximately 2663 square metres in size.
- 3.1.2 The site location information is as follows:
  - Nearest Postcode: WD7 8LE

# 3.2 Topography

Site Topography

- 3.2.1 An onsite topographic survey has been carried out and is provided in Appendix B.
- 3.2.2 The site is rectangular in shape and falls gently from south to north (front to rear).



# 4 DESIGN PRINCIPLES AND POLICY REQUIREMENTS

- 4.1.1 Since April 2015, Lead Local Flood Authorities (LLFA's) have become a statutory consultee on surface water drainage for many planning applications. For this site, the following is considered to be the required level of detail required for planning approval:
  - A Flood Risk Assessment in accordance with the National Planning Policy Framework (NPPF) and National Planning Guidance (NPG)
  - SuDS: Designs, Maintenance Plans & Calculations for SuDS proposed, the LLFA require product specifications or design drawings, <u>all supporting calculations and a maintenance plan</u>. This needs to include details of any attenuation structures and in accordance with the CIRIA C753 SuDS Manual.

# 4.2 General Principles for Flooding

4.2.1 The National Planning Policy Framework (NPPF) states that when determining planning applications, local planning authorities should ensure flood risk is not increased elsewhere and only consider development appropriate in areas at risk of flooding where informed by a site-specific FRA. This assessment is required for:

"Proposals of 1 hectare (ha) or greater in Flood Zone 1, all new development (including minor development and change of use) in Flood Zones 2 and 3 and an area within Flood Zone 1, which has critical drainage problems as notified to the local planning authority by the Environment Agency (EA)."

- 4.2.2 In accordance with the March 2014 Planning Practice Guidance (PPG), which supports the NPPF, the objectives of this FRA are to establish:
  - Whether a proposed development is likely to be affected by current or future flooding from any source;
  - Whether it will increase flood risk elsewhere;
  - Whether the measures proposed to deal with these effects and risks are appropriate.

# 4.3 General Principles for Surface Water Drainage

- 4.3.1 The DEFRA Sustainable Drainage Systems Non-Statutory Technical Standards for Sustainable Drainage Systems (March, 2015) and LLFA Policy DM25.3 requires sustainable drainage systems in all development to reduce surface water runoff and provide water treatment on site. This includes but is not limited to addressing the following issues in order of preference:
  - store rainwater for later use
  - use infiltration techniques, such as porous surfaces in non-clay areas
  - attenuate rainwater in ponds or open water features for gradual release
  - attenuate rainwater by storing in tanks or sealed water features for gradual release
  - discharge rainwater direct to a watercourse
  - discharge rainwater to a surface water sewer/drain



• discharge rainwater to the combined sewer.

Consideration must be given to the direction of water flow across the site and where this may be dispersed and incorporating any features that will help reduce surface water run-off. All developments should infiltrate surface water or achieve greenfield runoff rates where possible and this needs to be demonstrated as part of the planning submission.

# 5 FLOODING INFORMATION

# 5.1 Flood Risk from Rivers (Fluvial)

- 5.1.1 As the site is within Flood Zone 1, there is a low risk of fluvial flooding to the site.
- 5.1.2 Based on the above, the risk of flooding from rivers is considered very low.

## 5.2 Coastal and Tidal Flood Risk

5.2.1 The site is located inland and is not near any tidally influenced watercourses; therefore, there is negligible risk of flooding from this source.

# 5.3 Geology and Hydrogeology

- 5.3.1 Groundwater flooding occurs when the water table rises to the surface and is most likely to occur in low-lying areas underlain by permeable rocks.
- 5.3.2 The British Geological Survey (BGS) and Aquifer Maps on the MAGIC map identifies the area as follows:

**Bedrock** – Lambeth Group - Clay, silt and sand. Sedimentary bedrock formed between 59.2 and 47.8 million years ago during the Palaeogene period.

**Superficial Drift** – Gerrards Cross Gravel - Sand and gravel. Sedimentary superficial deposit formed between 860 and 423 thousand years ago during the Quaternary period.

#### Source Protection – Zone III total catchment

Other – Zone II outer protection zone and drinking water safeguard zone.

- 5.3.3 While the existing superficial geology is generally permeable sands, the bedrock is predominantly clay and impermeable which restricts the risk of groundwater flooding.
- 5.3.4 As the ground is partly permeable, the site is considered to be at Medium risk of groundwater flooding. This will be mitigated by raising the floor level of the building and maintaining overland flow paths around the site.

### 5.4 Surface Water Flood Risk (Overland Flows)

- 5.4.1 Surface water flooding occurs when the rainwater does not drain away through the normal drainage system or infiltrate the ground, but instead lies on or flows over the ground.
- 5.4.2 The EA produced a Risk of Flooding from Surface Water Map in December 2013. The maps were produced using 'direct rainfall' modelling. Although they consider local drainage capacity, non-surface water influences such as rivers, seas or groundwater are not considered. The map is based on LIDAR topographic data which is not suitable for site specific

3

assessment and therefore, where available, topographic survey data should be used to provide a more accurate understanding of potential flow paths.

5.4.3 The map shows the entire country within four different risk categories, defined below in Table 1.

| Risk Category | Definition                                                                             |
|---------------|----------------------------------------------------------------------------------------|
| High          | Each year, there is a chance of flooding of greater than 1 in 30 (3.3%)                |
| Medium        | Each year, there is a chance of flooding of between 1 in 30 (3.3%) and 1 in 100 (1%)   |
| Low           | Each year, there is a chance of flooding of between 1 in 100 (1%) and 1 in 1000 (0.1%) |
| Very Low      | Each year, there is a chance of flooding of less than 1 in 1000 (0.1%)                 |

5.4.4 An extract of the map, provided below, shows that the site is generally at low risk of surface water flooding.





#### Figure 1: EA Flood Risk from Surface Water Map

- 5.4.5 Proposed floor levels will be raised above the existing ground to ensure the risk of flooding is minimised, and overland flow paths are maintained through the site to ensure free flow of water.
- 5.4.6 Based on the EA's mapping, historical data and local topography, risk of surface water flooding to the site is considered to be Low.

#### 5.5 Sewer/Drainage Flood Risk

- 5.5.1 Sewer flooding is often caused by excess surface water entering the drainage system when there is insufficient sewer capacity to cope with this excess water, but also due to 'one off' events such as blockages.
- 5.5.2 Thames Water is the statutory undertaker for the local public sewer network. The nearest sewers to the site are located in the street frontage.
- 5.5.3 As these sewers are at a lower level than the site, the risk of flooding is low. A review of the local PFRA does not identify any flooding incidents at or near to the site.
- 5.5.4 On the basis there is considered to be a Low risk of sewer flooding to the site.

#### 5.6 Reservoir Flood Risk

- 5.6.1 The EA has produced a Reservoir Flood Map that shows that the site is at low risk from reservoir flooding. This map indicates very low risk of reservoir flooding at this site.
- 5.6.2 It should be emphasised that the risk of flooding from reservoir breach is very small since the EA is the enforcement authority for the Reservoirs Act (1975) and all large raised reservoirs are inspected and supervised by reservoir panel engineers.
- 5.6.3 On the basis there is considered to be a very low risk of reservoir flooding to the site.

#### 5.7 Summary of risk levels

5.7.1 Post-development, the risk of flooding is summarised below.

#### Table 2: Flood Risk Categories

| Source                   | Risk Category |
|--------------------------|---------------|
| Fluvial (Rivers and Sea) | Very low      |
| Coastal and tidal        | Negligible    |
| Groundwater              | Medium        |



| Surface water | Low      |
|---------------|----------|
| Sewers        | Low      |
| Reservoirs    | Very low |



# 6 SITE DRAINAGE INFORMATION

- 6.1.1 The DEFRA Sustainable Drainage Systems Non-Statutory Technical Standards for Sustainable Drainage Systems (March, 2015) states that the following options must be considered for disposal of surface water runoff in order of preference:
  - Discharge to ground
  - Discharge to a surface water body
  - Discharge to a surface water sewer
  - Discharge to a combined sewer

# Discharge to Ground

- 6.1.2 The potential for surface water to discharge to ground has been assessed through a review of the likely ground conditions and possible infiltration structures.
- 6.1.3 The surface geology of this site is likely to be permeable, and infiltration is possible. This is to be confirmed via testing prior to construction.
- 6.1.4 It is noted that infiltration testing carried out by Jomas in 2016 at a neighbouring property concluded that soakaways were not suitable. Therefore, both infiltration and discharge to sewer have been considered as part of this design.

# Discharge to Surface Water Body

6.1.5 There are no water bodies near the site.

# Discharge to Surface Water Sewer/Combined Sewer

6.1.6 Discharge to the public sewer network should only be considered once all other options for draining surface water from the site have been exhausted. As there is assumed to be a surface water sewer in the street, this will be considered for a backup option should infiltration not be possible.

# 6.2 Sustainable Drainage Systems (SuDS)

6.2.1 To maximise the potential use of SuDS at the site, a review has been undertaken as shown in Table 3 in accordance with the SuDS Hierarchy. This review highlights the components referenced in the SuDS Hierarchy and provides recommendations on whether the components could be incorporated into the development.

#### Table 3: SuDS Selection Based on the SuDS Hierarchy

| Component                    | Recommendation                                                                                                                                                                                                                                                                               |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Green/Blue V<br>roofs s<br>r | Whilst the use of green and blue roofs provides additional environmental benefits<br>such as enhanced aesthetics and ecology, its exposure to wind and orientation<br>must be considered. Access to undertake the construction and maintenance easily<br>and safely is also a high priority. |



| Component                   | Recommendation                                                                                                                                                                                                                                                                                                                              |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             | If feasible, depending on the roof design, a green/blue roof will provide water                                                                                                                                                                                                                                                             |  |  |
|                             | quality, biodiversity and aesthetic benefits to the site. Additionally, the green/blue                                                                                                                                                                                                                                                      |  |  |
|                             | roof/s will offer some attenuation for run-off, reducing volumes of run-off and in                                                                                                                                                                                                                                                          |  |  |
|                             | higher frequency events (i.e. 1in2 year storms) will result in no run-off for the building.                                                                                                                                                                                                                                                 |  |  |
|                             | There are areas of flat roof that can be considered for green roofs.                                                                                                                                                                                                                                                                        |  |  |
| Basins and<br>Ponds         | Ponds and attenuation basins can provide overland storage of surface water whilst also providing additional biodiversity and aesthetic/amenity value.                                                                                                                                                                                       |  |  |
|                             | There is an existing basin/pond which is to be reused.                                                                                                                                                                                                                                                                                      |  |  |
| Filter Strips<br>and Swales | Swales are linear vegetated drainage features, which provide overland conveyance<br>and storage of surface water whilst trapping sediments and hydrocarbons within<br>run-off. They also create biodiverse areas for planting and habitat.                                                                                                  |  |  |
|                             | Swales are not suitable for this site.                                                                                                                                                                                                                                                                                                      |  |  |
| Infiltration<br>Devices     | Infiltration devices are likely to be suitable for the main drainage system due to the permeable nature of the existing ground.                                                                                                                                                                                                             |  |  |
|                             | Infiltration is proposed for this site.                                                                                                                                                                                                                                                                                                     |  |  |
| Permeable<br>Paving         | Whilst incorporating attenuation storage, permeable paving also provides treatment through filtration of silt (and attached pollutants), settlement and retention of solids, adsorption of pollutants and biodegradation of organic pollutants, including petrol and diesel.<br>Permeable paving is proposed for the driveway/parking area. |  |  |
| Tanked<br>Systems           | This is the least sustainable option in terms of the SuDS Hierarchy. However, the use of tanked systems would still be of benefit compared to traditional drainage systems as it does allow run-off to be slowed down to an acceptable discharge rate.                                                                                      |  |  |
|                             | There are no tanks proposed for the site for infiltration and a single tank for attenuation.                                                                                                                                                                                                                                                |  |  |



# 7 SURFACE WATER DRAINAGE DESIGN

## 7.1 Site Areas

7.1.1 The site currently comprises an existing building and associated external works. The proposed development comprises the demolition of the existing building and construction of a new dwelling with associated external works. The existing and proposed areas are summarised below.

Table 4: Site Areas

| Parameter        | Existing<br>(m2) | Existing<br>(%) | Proposed<br>(m2) | Proposed<br>(%) |
|------------------|------------------|-----------------|------------------|-----------------|
| Impermeable area | 1390             | 52              | 1947             | 73              |
| Permeable area   | 1273             | 47              | 716              | 23              |
| Total area       | 2663             | 100             | 2663             | 100             |

7.1.2 It is assumed that the surface water runoff from the site is currently picked up in the site drainage system and discharges to the sewer or soakaway.

#### 7.2 Design Considerations

- 7.2.1 Consideration has been given to the following when calculating the proposed impermeable areas.
  - The 2013 EA 'Rainfall Run-off Management for Developments' Report (SC030219) states that urban creep, the process of gradually increasing impermeable area within an urban area (through paving soft landscaped surfaces and constructed outbuildings etc), is an acknowledged issue. To include an allowance for urban creep, the impermeable area used in the drainage calculations has been increased by 10% in accordance with the recommendation made in SC030219.
- 7.2.2 It is proposed to drain the site to the ground via infiltration or discharge to the sewer (2 options designed).
- 7.2.3 The climate change allowance used in the Drainage Strategy is in line with updated EA guidance values published in February 2016 for increased rainfall intensities by 2115.

#### 7.3 Greenfield Rates

- 7.3.1 The existing run-off rates for a variety of return periods have been calculated using the Wallingford method.
- 7.3.2 The greenfield run-off rates are based on the parameters provided below in Table5.



#### Table 5: Rural Run-off Calculator Parameters

| Parameter | Value  |
|-----------|--------|
| Area (ha) | 0.2663 |
| SAAR (mm) | 678    |
| Soil Type | 2      |

7.3.3 The calculations are presented in Appendix C and summarised below in table 6.

#### Table 6: Existing Greenfield Run-off Rates

| Parameter | Value for site<br>(I/s) |
|-----------|-------------------------|
| QBAR      | 0.46                    |
| Q1        | 0.39                    |
| Q30       | 1.06                    |
| Q100      | 1.47                    |

# 7.4 Existing Site Runoff Rates

7.4.1 The total site area is 2663 square metres and is 52% impermeable resulting in an impermeable area of 1390m2. Taking conservative peak 1 year, 30 year and 100 year rainfall rates of 50mm/hr, 125mm/hr and 185mm/hr respectively, the maximum existing peak discharge rates have been calculated as follows.

Contributing Area (ha) x 1 yr Rainfall (mm/hr) x 2.78 1390/10000 x 50 x 2.78 = **19.3 I/s** Contributing Area (ha) x 30 yr Rainfall (mm/hr) x 2.78 1390/10000 x 125 x 2.78 = **48.3 I/s** Contributing Area (ha) x 100yr Rainfall (mm/hr) x 2.78 1390/10000 x 185 x 2.78 = **71.5 I/s** 

7.4.2 The greenfield, existing and proposed site calculations are summarised below in table 7. Note that the proposed discharge rates apply only in infiltration is not possible.



| Parameter | Greenfield Value for site<br>(l/s) | Existing for site (I/s) | Proposed Discharge for site (I/s) |
|-----------|------------------------------------|-------------------------|-----------------------------------|
| QBAR      | 0.46                               | NA                      | NA                                |
| Q1        | 0.39                               | 19.3                    | 9.6                               |
| Q30       | 1.06                               | 48.3                    | 9.6                               |
| Q100      | 1.47                               | 71.5                    | 9.6                               |
| Q100+40%  | NA                                 | NA                      | 9.6                               |

Table 7: Existing and Proposed Run-off Rates

#### 7.5 Drainage Design

- 7.5.1 It is proposed to discharge surface water via infiltration into the sandy ground. An infiltration rate of 5x10-4m/s has been assumed for the ground conditions. This will be confirmed via testing prior to construction.
- 7.5.2 Total storage volume of 50 cubic metres storage is proposed for the system within the permeable paving subbase and 12 cubic metres in the pond. This caters for the 100 year +40% storm event.
- 7.5.3 Should testing prove that infiltration is not possible, the permeable paving will be tanked and an attenuation tank added as well as a new connection constructed to the Thames Water sewer in the street.

#### Attenuation

- 7.5.4 Should attenuation be required, discharge will be restricted to less than 50% of the existing 1 year discharge rate. Total storage volume will be increased slightly by adding a 16 cubic metre attenuation tank. This caters for the 100 year +40% storm event.
- 7.5.5 Calculations and design drawings for both options are provided in Appendix C.

#### **Basement Drainage**

- 7.5.6 As the site extensive basement areas, these will require a dewatering system to be designed by a specialist.
- 7.5.7 The carpark will need a surface water pump for the access ramp and the rear basement will need a foul pump for any internal foul drainage. This foul pump will require 24 hours of storage.
- 7.5.8 A number of other pumps may be required depending on the final level and drainage design.



# 7.6 Exceedance Flooding and Overland Flow

- 7.6.1 The area is not subject to overland flow routes or surface water flooding as discussed in sections 5.3 and 5.4 above.
- 7.6.2 The drainage system has been designed to cater for the 1 in 100 year + 40% climate change storm. ie in this storm event all surface water will be collected on site and slowly released. Thus, the overland flow route will only be in use in the event of drainage network failure, storms in excess of the 1 in 100 year + 40% climate change storm or flows from offsite flowing through the site. See overland flow plan in Appendix C.

# 7.7 Consents, Offsite Works and Diversions

7.7.1 The proposed surface water drainage strategy is accommodated on-site, with the only requirement for consent being the confirmation of flows into the existing TW sewer should this be required.

# 7.8 Maintenance

7.8.1 A SuDS maintenance plan has been prepared to outline the management of the potential SuDS features. The maintenance plan is provided in Appendix D.



# 8 FOUL DISCHARGE

- 8.1 Discharge to Public Sewer Network
- 8.1.1 Thames Water are the foul sewerage suppliers for the area.
- 8.1.2 The identified point of connection from the site is into the foul sewer in the street.



# 9 DRAINAGE DURING CONSTRUCTION

# 9.1 Construction Run-off Management

- 9.1.1 Installing the surface water and foul drainage system, whilst managing temporary run-off, are key aspects of the construction works involved in any development. The information provided below is in accordance with the 'C698 Site handbook for the construction of SUDS' (CIRIA, 2007).
- 9.1.2 Please note that the measures recommended below are recommendations only and need to be confirmed at the construction stage by the client and the contractor.

# 9.2 Management of Construction (Including Drainage)

- 9.2.1 Drainage is typically an early activity in the construction stage of a development, taking form during the earthworks phase. However, final construction i.e. piped drainage system connections to the SuDS devices, should not take place until the end of site development work, unless a robust strategy for silt-removal is implemented prior to occupation of the site.
- 9.2.2 A plan for the management of construction (including phasing of works, details of any offsite works etc.) cannot be provided at this early stage, as construction work plans are not yet known. However, the following key points are general construction issues associated with SuDS which will be addressed when these plans are complete:
  - Silt-laden waters from construction sites represent a common form of waterborne pollution;
  - These silt-laden waters cannot enter SUDS drainage systems unless specifically designed to accept this as it can clog the systems and pollute receiving waters. Therefore, piped drainage systems should not be connected to the attenuation SuDS devices until the late stages of construction.
  - Any gullies and piped systems should be capped off during construction and fully jetted and cleaned prior to connection to the attenuation SuDS devices.

# 9.3 Temporary Drainage During Construction

- 9.3.1 The three principal aspects of drainage control during construction are trapping sediment, conveying run-off, and controlling run-off.
- 9.3.2 Sediment traps and barriers can include basin traps and sediment fences (with any necessary boundary controls). The principal basins are to be installed after the construction site is accessed. Sediment fences and barriers will then be installed as needed during grading.
- 9.3.3 Conveyance of run-off can be achieved through small ditches/stream, storm drains, channels and sloped drains with sufficient inlet/outlet protection.
- 9.3.4 Slope stability needs to be considered when using any channels to convey run-off across the site into any basins etc.
- 9.3.5 Run-off control measures will need to be implemented in order not overwhelm the temporary system and cause flooding issues. Run-off rates from the site will be managed so they are no greater than pre-development or in keeping with the best practice guidance to minimise risk of blockage. Any additional conveyance measures are to be installed as needed during grading.

Geotechnical Engineering and Environmental Services across the UK.

- 9.3.6 Run-off control to include provision of perimeter ditches or appropriate levels grading to direct any water from the construction site to remain on site.
- 9.3.7 Any necessary surface stabilisation measures are to be applied immediately on all disturbed areas where construction work is either delayed or incomplete.
- 9.3.8 Maintenance inspections are to be performed weekly, and maintenance repairs to be made immediately after periods of rainfall.

# 9.4 Protection of Drainage Infrastructure during Construction

9.4.1 All drainage infrastructure should be protected from damage by construction traffic and heavy machinery through the implementation of measures such as protective barriers, and storing construction materials away from the drainage infrastructure.



# Appendix A: Proposed Development Details





# **Appendix B: Topographic Survey**





# Appendix C: Drainage Drawings and Calculations

# Asset location search



andrew wallace 22Park Rise HARPENDEN AL5 3AL

Search address supplied

20 Watford Road Radlett WD7 8LE

Your reference

Radlett

**Our reference** 

ALS/ALS Standard/2023\_4830543

Search date

22 May 2023

#### **Notification of Price Changes**

From 1<sup>st</sup> April 2023 Thames water Property Searches will be increasing the prices of its CON29DW, CommercialDW Drainage & Water Enquiries and Asset Location Searches. Historically costs would rise in line with RPI but as this currently sits at 14.2%, we are capping it at 10%.

Customers will be emailed with the new prices by January 1<sup>st</sup> 2023.

Any orders received with a higher payment prior to the 1<sup>st</sup> April 2023 will be non-refundable. For further details on the price increase please visit our website at <u>www.thameswater-propertysearches.co.uk</u>



Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW



searches@thameswater.co.uk www.thameswater-propertysearches.co.uk



0800 009 4540





Search address supplied: 20, Watford Road, Radlett, WD7 8LE

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

#### **Contact Us**

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0800 009 4540, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: <u>searches@thameswater.co.uk</u> Web: <u>www.thameswater-propertysearches.co.uk</u>





#### Waste Water Services

#### Please provide a copy extract from the public sewer map.

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts or highway drains. If any of these are shown on the copy extract they are shown for information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

#### **Clean Water Services**

#### Please provide a copy extract from the public water main map.

With regard to the fresh water supply, this site falls within the boundary of another water company. For more information, please redirect your enquiry to the following address:

Affinity Water Ltd Tamblin Way Hatfield AL10 9EZ Tel: 0345 3572401

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4WW T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk





For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public water mains in the vicinity of the property. It should be possible to estimate the likely length and route of any private water supply pipe connecting the property to the public water network.

#### Payment for this Search

A charge will be added to your suppliers account.





#### **Further contacts:**

#### Waste Water queries

Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk

#### Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921 Email: developer.services@thameswater.co.uk



The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

| Manhole Reference | Manhole Cover Level | Manhole Invert Level |
|-------------------|---------------------|----------------------|
| 981A              | n/a                 | n/a                  |
| 981E              | 95.1                | 93.8                 |
| 981D              | 95.75               | 92.75                |
| 981F              | 95.7                | 93.3                 |
| 981B              | 94.89               | 92.64                |
| 981C              | 94.9                | 93.24                |
| 661P              | n/a                 | n/a                  |
| 8801              | 101.04              | 94.31                |
| 001A<br>0902      | n/a<br>05.00        | 1/a<br>02.97         |
| 9002              | 93.09               | 92.07<br>80.23       |
| 9101              | 92                  | n/a                  |
| 9851              | 91.47               | 90.24                |
| 9001              | n/a                 | n/a                  |
| 861B              | n/a                 | n/a                  |
| 7651              | 102.38              | 101.01               |
| 861D              | n/a                 | n/a                  |
| 661G              | n/a                 | n/a                  |
| 861F              | n/a                 | n/a                  |
| 861E              | n/a                 | n/a                  |
| 671A              | n/a                 | n/a                  |
| 8/1B<br>674D      | n/a                 | n/a                  |
| 0/1B<br>971 A     | n/a<br>402 225      | n/a<br>100 7         |
| 6702              | 102.323             | 100.7                |
| 8702              | 103.30              | 50.23<br>97 /8       |
| 8703              | 102.32              | 99.52                |
| 8751              | 102 51              | 101 25               |
| 7751              | 103.18              | 101.92               |
| 8701              | 102.05              | 95.89                |
| 8752              | 102.43              | 100.47               |
| 7701              | n/a                 | n/a                  |
| 8753              | 101.83              | 100.99               |
| 7752              | 102.99              | 101.61               |
| 7801              | 102.53              | 95.48                |
| 8851              | 101.41              | 100.23               |
| 7851              | 102.37              | 101.18               |
| 781B              | n/a                 | n/a                  |
| /81A              | 102.35              | 99.03                |
| 001L<br>5601      | n/a<br>102.45       | n/a<br>07.66         |
| 6651              | 102.45              | 97.00<br>102.48      |
| 6605              | 103.05              | 96 92                |
| 5603              | 100.15              | 98.9                 |
| 5602              | 101.47              | 98.34                |
| 6610              | n/a                 | n/a                  |
| 661C              | n/a                 | n/a                  |
| 5605              | 100.25              | 98.77                |
| 5604              | 100.67              | 98.51                |
| 6652              | 103.9               | 102.84               |
| 661K              | n/a                 | n/a                  |
| 6602              | 103.69              | 97.29                |
| 661N              | n/a                 | n/a                  |
| 001A<br>661M      | n/a                 | 11/d<br>p/o          |
| 661 F             | 11/a<br>n/a         | n/a                  |
| 6604              | 103 77              | 96 52                |
| 6601              | 103.77              | 97 48                |
| 661B              | n/a                 | n/a                  |
| 6701              | 101.57              | 98.04                |
| 571A              | n/a                 | n/a                  |
| 5701              | 100.76              | 98.22                |
| 571B              | n/a                 | n/a                  |
| 761A              | n/a                 | n/a                  |
| 7652              | 105.08              | 103.1                |
| 661D              | n/a                 | n/a                  |
| 7601              | 102.04              | 100.93               |
| 861A              | n/a                 | n/a                  |
| 661I              | n/a                 | n/a                  |
| 1/602             | 102.38              | 100.53               |

| 661H<br>861C                                                                                                                                                                                                                                                                                                                                                                                                           | n/a<br>n/a | n/a<br>n/a |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--|--|
| 661F                                                                                                                                                                                                                                                                                                                                                                                                                   | n/a        | n/a        |  |  |
| The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken. |            |            |  |  |


## Asset Location Search - Sewer Key



1) All levels associated with the plans are to Ordnance Datum Newlyn. 2) All measurements on the plan are metric.

3) Arrows (on gravity fed sewers) or flecks (on rising mains) indicate the direction of flow. 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded. 5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in millimeters. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

#### **Payment Terms and Conditions**

All sales are made in accordance with Thames Water Utilities Limited (TWUL) standard terms and conditions unless previously agreed in writing.

- 1. All goods remain in the property of Thames Water Utilities Ltd until full payment is received.
- 2. Provision of service will be in accordance with all legal requirements and published TWUL policies.
- 3. All invoices are strictly due for payment within 14 days of the date of the invoice. Any other terms must be accepted/agreed in writing prior to provision of goods or service or will be held to be invalid.
- 4. Penalty interest may be invoked by TWUL in the event of unjustifiable payment delay. Interest charges will be in line with UK Statute Law 'The Late Payment of Commercial Debts (Interest) Act 1998'.
- 5. Interest will be charged in line with current Court Interest Charges, if legal action is taken.
- 6. A charge may be made at the discretion of the company for increased administration costs.

A copy of Thames Water's standard terms and conditions are available from the Commercial Billing Team (cashoperations@thameswater.co.uk).

We publish several Codes of Practice including a guaranteed standards scheme. You can obtain copies of these leaflets by calling us on 0800 316 9800.

If you are unhappy with our service, you can speak to your original goods or customer service provider. If you are still not satisfied with the outcome provided, we will refer the matter to a Senior Manager for resolution who will provide you with a response.

If you are still dissatisfied with our final response, and in certain circumstances such as you are buying a residential property or commercial property within certain parameters, The Property Ombudsman will investigate your case and give an independent view. The Ombudsman can award compensation of up to  $\pounds 25,000$  to you if he finds that you have suffered actual financial loss and/or aggravation, distress, or inconvenience because of your search not keeping to the Code. Further information can be obtained by visiting www.tpos.co.uk or by sending an email to admin@tpos.co.uk.

If the Goods or Services covered by this invoice falls under the regulation of the 1991 Water Industry Act, and you remain dissatisfied you can refer your complaint to Consumer Council for Water on 0300 034 2222 or write to them at Consumer Council for Water, 1st Floor, Victoria Square House, Victoria Square, Birmingham, B2 4AJ.

#### Ways to pay your bill

| Credit Card                                                                            | BACS Payment                                                                                                                                                                                                                         | Telephone Banking                                                                                                              |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Please Call <b>0800 009 4540</b><br>quoting your invoice number<br>starting CBA or ADS | Account number <b>90478703</b><br>Sort code <b>60-00-01</b><br>A remittance advice must be sent to:<br><b>Thames Water Utilities Ltd., PO Box</b><br><b>3189, Slough SL1 4WW.</b><br>or email<br><b>ps.billing@thameswater.co.uk</b> | By calling your bank and<br>quoting:<br>Account number <b>90478703</b><br>Sort code <b>60-00-01</b><br>and your invoice number |

Thames Water Utilities Ltd Registered in England & Wales No. 2366661 Registered Office Clearwater Court, Vastern Rd, Reading, Berks, RG1 8DB.



# Greenfield runoff estimation for s

|                                                                                                                                                                                                                |                                                                                                       |                                                                                                               | www.uksuds                                                                                                              | s.com   Greenfield runc     |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|
| Calculated by:                                                                                                                                                                                                 | andrew wal                                                                                            | lace                                                                                                          | Site Details                                                                                                            |                             |  |  |  |  |  |  |
| Site name:                                                                                                                                                                                                     | Watford Rd                                                                                            |                                                                                                               | Latitude:                                                                                                               | 51.68546                    |  |  |  |  |  |  |
| Site location:                                                                                                                                                                                                 | Radlett                                                                                               |                                                                                                               | Longitude:                                                                                                              | 0.32526°                    |  |  |  |  |  |  |
| This is an estimation of the greenfie<br>practice criteria in line with Environr<br>for developments", SC030219 (2013)<br>statutory standards for SuDS (Defra<br>may be the basis for setting conser<br>sites. | eld runoff rates t<br>nent Agency gui<br>, the SuDS Manua<br>, 2015). This infor<br>ts for the draina | hat are used to mo<br>dance "Rainfall rur<br>al C753 (Ciria, 2015)<br>mation on greenfi<br>age of surface wat | eet normal best<br>noff management <b>Reference:</b><br>and the non-<br>eld runoff rates<br>er runoff from <b>Date:</b> | 14741630<br>May 23 2023 11: |  |  |  |  |  |  |
| Runoff estimation a                                                                                                                                                                                            | pproach                                                                                               | IH124                                                                                                         |                                                                                                                         |                             |  |  |  |  |  |  |
| Site characteristics                                                                                                                                                                                           |                                                                                                       |                                                                                                               | Notes                                                                                                                   |                             |  |  |  |  |  |  |
| Total site area (ha):                                                                                                                                                                                          | .2633                                                                                                 |                                                                                                               | (1) Is O <sub>BAB</sub> < 2.0 l/s/ha?                                                                                   |                             |  |  |  |  |  |  |
| Methodology                                                                                                                                                                                                    |                                                                                                       |                                                                                                               |                                                                                                                         |                             |  |  |  |  |  |  |
| Q <sub>BAR</sub> estimation method:                                                                                                                                                                            | Calculate fi<br>SAAR                                                                                  | rom SPR and                                                                                                   | When Q <sub>BAR</sub> is < 2.0 l/s/ha then limiting discharge<br>rates are set at 2.0 l/s/ha.                           |                             |  |  |  |  |  |  |
| SPR estimation method:                                                                                                                                                                                         | Calculate fi                                                                                          | rom SOIL type                                                                                                 |                                                                                                                         |                             |  |  |  |  |  |  |
| Soil characteristics                                                                                                                                                                                           | Default                                                                                               | Edited                                                                                                        | (2) Are flow rates < 5.0 l/s?                                                                                           |                             |  |  |  |  |  |  |
| SOIL type:                                                                                                                                                                                                     | 2                                                                                                     | 2                                                                                                             | Where flow rates are less than 5.0 l/s                                                                                  | sconsent                    |  |  |  |  |  |  |
| HOST class:                                                                                                                                                                                                    | N/A                                                                                                   | N/A                                                                                                           | for discharge is usually set at 5.0 l/s                                                                                 | if blockage                 |  |  |  |  |  |  |
| SPR/SPRHOST:                                                                                                                                                                                                   | 0.3                                                                                                   | 0.3                                                                                                           | Lower consent flow rates may be set                                                                                     | is possible.<br>t where the |  |  |  |  |  |  |
| Hydrological<br>characteristics                                                                                                                                                                                | Default                                                                                               | Edited                                                                                                        | blockage risk is addressed by using a drainage elements.                                                                | appropriate                 |  |  |  |  |  |  |
| SAAR (mm):                                                                                                                                                                                                     | 678                                                                                                   | 678                                                                                                           |                                                                                                                         |                             |  |  |  |  |  |  |
| Hydrological region:                                                                                                                                                                                           | 6                                                                                                     | 6                                                                                                             | (3) Is SPR/SPRHOST ≤ 0.3?                                                                                               |                             |  |  |  |  |  |  |
| Growth curve factor 1 year:                                                                                                                                                                                    | 0.85                                                                                                  | 0.85                                                                                                          | Where groundwater levels are low er                                                                                     | ough the                    |  |  |  |  |  |  |
| Growth curve factor 30<br>years:                                                                                                                                                                               | 2.3                                                                                                   | 2.3                                                                                                           | use of soakaways to avoid discharge<br>would normally be preferred for disp                                             | offsite<br>osal of          |  |  |  |  |  |  |
| Growth curve factor 100<br>years:                                                                                                                                                                              | 3.19                                                                                                  | 3.19                                                                                                          | surface water runoff.                                                                                                   |                             |  |  |  |  |  |  |
| Growth curve factor 200                                                                                                                                                                                        | 3.74                                                                                                  | 3.74                                                                                                          |                                                                                                                         |                             |  |  |  |  |  |  |

| Greenfield | runoff rates |
|------------|--------------|
| GIEEIIIEIG |              |

| Greenfield runoff rates | Default | Edited |
|-------------------------|---------|--------|
| Q <sub>BAR</sub> (I/s): | 0.46    | 0.46   |
| 1 in 1 year (l/s):      | 0.39    | 0.39   |
| 1 in 30 years (l/s):    | 1.06    | 1.06   |
| 1 in 100 year (l/s):    | 1.47    | 1.47   |
| 1 in 200 years (l/s):   | 1.73    | 1.73   |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.



1. THIS DRAWING IS FOR PLANNING ONLY AND IS NOT FOR CONSTRUCTION. IT IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT SERIES DESIGN DRAWINGS, SPECIFICATIONS AND DOCUMENTATION. 2. CONSTRUCTION TO BE IN ACCORDANCE WITH ALL BRITISH AND EUROPEAN STANDARDS AND BUILDING REGULATIONS. 3. ALL DIMENSIONS ARE IN MILLIMETRES AND LEVELS IN METRES ABOVE LOCAL DATUM. ANY DISCREPANCIES IN THE DETAILS SHOWN ARE TO BE REPORTED TO THE EMPLOYER'S REPRESENTATIVE/ENGINEER PRIOR TO CONSTRUCTION. 5. ALL EXISTING SERVICES ARE TO BE LOCATED PRIOR TO THE COMMENCEMENT OF ANY WORKS. THE CONTRACTOR MUST NOTIFY THE ENGINEER IMMEDIATELY OF ANY CONFLICT WITH THE PROPOSED WORKS. 6. THE GENERAL SPECIFICATION OF MATERIALS AND WORKMANSHIPS FOR THE CONSTRUCTION OF THE ACCESS ROAD, FOOTPATHS AND OTHER AREAS OF HARDSTANDING SHALL BE THE MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY WORKS, VOLUME 1. SPECIFICATION OF HIGHWAY WORKS (SHW) PUBLISHED BY THE STATIONARY OFFICE. 7. NODE NUMBERS REFER TO CALCULATIONS WITHIN DRAINAGE REPORT ALL DRAINAGE INCLUDING RWP AND FO SHOWN ARE INDICATIVE ONLY AND SUBJECT TO DETAILED DESIGN AND COUNCIL APPROVAL. 9. NOTE THE PRESENCE OF NUMEROUS TREES. DRAINAGE DESIGN TO BE REVISED AS NECESSARY TO ACCOMMODATE TREE PROTECTION AND HAND DIGGING MAY BE REQUIRED FOR DRAINAGE INSTALLATION. 10.UNLESS NOTED OTHERWISE, PIPES TO BE: FOUL PIPES UNDER BUILDING Ø100@1:40, FOUL PIPES EXTERNAL Ø100@1:80, SURFACE WATER PIPES Ø150@1:100

## Notes.

Copyright of this plan is held by Jomas Associates Ltd. No responsibility is taken for amendments by others. Do not scale from copies or PDF's.

Key dimensions to be checked by engineer before major structural works commence on site.

1. This survey has been computed and drawn about O S National Grid.

2. All levels are in metres and relate to O S National Datum by GPS instruments.

3. This survey was measured for a scale of 1:100, any subsequent enlargements should be verified on site.

# Amendments

| Rev | Date | By | Chkd |
|-----|------|----|------|
|     |      |    |      |
|     |      |    |      |
|     |      |    |      |
|     |      |    |      |
|     |      |    |      |

![](_page_40_Picture_26.jpeg)

Project 20 WATFORD RD, RADLETT

| Drawing    |              |              |              |         |      |      |  |  |  |  |
|------------|--------------|--------------|--------------|---------|------|------|--|--|--|--|
| Pro<br>AT  | pose<br>TENI | ed Dr<br>UAT | ainag<br>ION | ge Pla  | n    |      |  |  |  |  |
| Dwg no     |              | Check        | ed           | Survey  | ′or  |      |  |  |  |  |
| C01        |              | AW           |              | -       |      |      |  |  |  |  |
| Date       | 23.0         | 5.23         | Scale        | 1:200 @ | ) A1 |      |  |  |  |  |
| Job No.    |              |              |              |         |      | Rev. |  |  |  |  |
| P4735J2775 |              |              |              |         |      |      |  |  |  |  |

Contours Level Datum Grid

| $\left( \right) $ + | - \              |  |
|---------------------|------------------|--|
|                     |                  |  |
|                     |                  |  |
|                     |                  |  |
|                     |                  |  |
|                     |                  |  |
|                     | $\left  \right $ |  |
|                     | • {              |  |
|                     |                  |  |

DRAINAGE NOTES

Job. No.

P4735J2775

Rev.

|            |         | IOMAS     |            |              | File: W                | atford Way   | Attenuation.  | Page         | 1                      |
|------------|---------|-----------|------------|--------------|------------------------|--------------|---------------|--------------|------------------------|
|            | -       |           |            |              | Netwo                  | rk: Storm N  | etwork        | WATI         | –<br>FORD WAY RADI FTT |
| CAUSEWAY   | 6.2     |           |            |              | Andrew                 | v Wallaco    | etwork        |              |                        |
|            | -       |           |            |              |                        |              |               |              | NOAHON DESIGN          |
|            |         |           |            |              | 25/05/                 | 2025         |               |              |                        |
|            |         |           |            | Doci         | an Sottings            |              |               |              |                        |
|            |         |           |            | Desi         | gii settings           |              |               |              |                        |
|            | R       | ainfall M | ethodolo   | ogy FFH-1    | 3                      | Minim        | um Velocity ( | m/s)         | 1 00                   |
|            | R       | Return Pe | riod (vea  | rs) 10       |                        |              | Connection    | Tyne         | Level Soffits          |
|            |         |           | nal Flow ( | %) 0         | NA                     | inimum Ra    | kdron Heigh   | t (m)        | 0 200                  |
|            |         | Auunioi   |            |              |                        | Droforroc    | Cover Depth   | (III)<br>(m) | 0.200                  |
|            |         |           |            | (0.750)      | ·                      | Preterret    |               | 1 (111)<br>  | 0.000                  |
|            |         | Time of i | intry (mii | ns) 2.00     |                        | nciude inte  | rmediate Gro  | Juna         | X                      |
| Maximum II | me of C | oncentra  | ation (mii | ns) 30.00    | Enfor                  | rce best pra | ctice design  | rules        | X                      |
|            | Maxim   | um Rainf  | all (mm/l  | hr) 50.0     |                        |              |               |              |                        |
|            |         |           |            | Adoptabl     | e Manhole <sup>-</sup> | <u>Гуре</u>  |               |              |                        |
|            |         | lidth (m  |            | notor (mm    |                        | Nidth (mm    | ) Diamatar    | (mm)         |                        |
|            | wax w   |           | n) Diar    | neter (mm    | ) Iviax v              | viath (mm    | ) Diameter    | (mm)         |                        |
|            |         | 3         | 74         | 1200         | 5                      | /4           | 9             | 1500         |                        |
|            |         | 4         | 99         | 1350         | 0                      | 900          | )             | 1800         |                        |
|            |         |           |            | >900 I       | Link+900 mr            | n            |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            | Max     | Depth (I  | n) Diar    | neter (mm    | ) Max E                | Depth (m)    | Diameter (r   | nm)          |                        |
|            |         | 1.5       | 00         | 1050         | D                      | 99.999       | 1             | .200         |                        |
|            |         |           |            | Circul       | ar Link Type           |              |               |              |                        |
|            |         |           |            | <u>circu</u> |                        | 2            |               |              |                        |
|            |         | S<br>D    | Shape C    | Circular     | Auto Incre             | ment (mm)    | 75<br>X       |              |                        |
|            |         | В         | arreis 1   | <u> </u>     | FUII                   | ow Ground    | X             |              |                        |
|            |         |           |            | Available    | Diameters (            | mm)          |               |              |                        |
|            |         |           |            | 10           | 5   150                |              |               |              |                        |
|            |         |           |            |              | <u>Nodes</u>           |              |               |              |                        |
|            | Name    | Area      | T of E     | Cover        | Diameter               | Easting      | Northing      | Depth        |                        |
|            |         | (ha)      | (mins)     | Level        | (mm)                   | (m)          | (m)           | (m)          |                        |
|            |         |           |            | (m)          |                        |              |               |              |                        |
|            | 1       |           |            | 102.700      | 1200                   | 100.000      | 100.000       | 2.200        |                        |
|            | 2       |           |            | 102.700      | 450                    | 98.000       | 105.000       | 2.100        |                        |
|            | 3       | 0.040     | 2.00       | 102.600      | 1200                   | 97.000       | 108.000       | 1.900        |                        |
|            | 4       | 0.040     | 2.00       | 102.000      | 450                    | 80.000       | 113.000       | 1.100        |                        |
|            | 5       | 0.020     | 2.00       | 102.000      | 450                    | 75.000       | 125.000       | 0.750        |                        |
|            | 6       | 0.050     | 2.00       | 98.533       | 1200                   | 75.000       | 140.000       | 1.533        |                        |
|            | 7       | 0.030     | 2.00       | 102.000      | 450                    | 99.000       | 110.000       | 1.200        |                        |
|            | 8       | 0.030     | 2.00       | 102.000      | 450                    | 102.000      | 125.000       | 1.000        |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |
|            |         |           |            |              |                        |              |               |              |                        |

| CAUSEWAY 🚱 |        |            |            |              |           | File<br>Net<br>And<br>23/ | : Watfo<br>work: S<br>drew W<br>05/202 | rd Way /<br>Storm Ne<br>allace<br>3 | ion.       | Page 2<br>WATFORD WAY RADLETT<br>ATTENUATION DESIGN |                |             |                    |                 |
|------------|--------|------------|------------|--------------|-----------|---------------------------|----------------------------------------|-------------------------------------|------------|-----------------------------------------------------|----------------|-------------|--------------------|-----------------|
|            |        |            |            |              |           |                           |                                        | <u>Links</u>                        |            |                                                     |                |             |                    |                 |
| Nam        | e<br>N | US<br>lode | DS<br>Node | Lenį<br>e (m | gth<br>I) | ks (mm) /<br>n            | US I<br>(m)                            | L D                                 | S IL<br>m) | Fall<br>(m)                                         | Slope<br>(1:X) | Dia<br>(mm  | T of C<br>) (mins) | Rain<br>(mm/hr) |
| 1.004      | 2      |            | 1          | 5.3          | 85        | 0.600                     | 100.6                                  | 00 10                               | 0.500      | 0.100                                               | 53.9           | 100         | 2.67               | 50.0            |
| 1.003      | 3      |            | 2          | 3.1          | .62       | 0.600                     | 100.7                                  | 00 10                               | 0.600      | 0.100                                               | 31.6           | 225         | 5 2.59             | 50.0            |
| 1.002      | 4      |            | 3          | 17.7         | 20        | 0.600                     | 100.9                                  | 00 10                               | 0.700      | 0.200                                               | 88.6           | 225         | 5 2.56             | 50.0            |
| 1.001      | 5      |            | 4          | 13.0         | 000       | 0.600                     | 101.2                                  | 50 10                               | 0.900      | 0.350                                               | 37.1           | 225         | 5 2.35             | 50.0            |
| 1.000      | 6      |            | 5          | 15.0         | 000       | 0.600                     | 97.0                                   | 00 10                               | 1.450      | -4.450                                              | -3.4           | 150         | 0 2.25             | 50.0            |
| 2.001      | . 7    | ,          | 3          | 2.8          | 828       | 0.600                     | 100.8                                  | 00 10                               | 0.700      | 0.100                                               | 28.3           | 150         | 0 2.25             | 50.0            |
| 2.000      | 8      |            | 7          | 15.2         | 97        | 0.600                     | 101.0                                  | 00 10                               | 0.800      | 0.200                                               | 76.5           | 150         | 0 2.22             | 50.0            |
|            |        | N          | ame        | Vel          | Сар       | Flow                      | US                                     | DS                                  | ΣAre       | α ΣΑ                                                | dd P           | ro          | Pro                |                 |
|            |        |            |            | (m/s)        | (I/s      | ) (l/s)                   | Depth<br>(m)                           | Depth<br>(m)                        | (ha)       | ) Inflo<br>(1/:                                     | ow De<br>s) (m | pth \<br>m) | Velocity<br>(m/s)  |                 |
|            |        | 1.         | 004        | 1.052        | 8.3       | 8 28.5                    | 2.000                                  | 2.100                               | 0.21       | .0 (                                                | 0.0            | 100         | 1.080              |                 |
|            |        | 1.         | 003        | 2.334        | 92.8      | 3 28.5                    | 1.675                                  | 1.875                               | 0.21       | 0 0                                                 | 0.0            | 86          | 2.064              |                 |
|            |        | 1.         | 002        | 1.389        | 55.2      | 2 14.9                    | 0.875                                  | 1.675                               | 0.11       | 0 0                                                 | 0.0            | 80          | 1.183              |                 |
|            |        | 1.         | 001        | 2.153        | 85.6      | 5 9.5                     | 0.525                                  | 0.875                               | 0.07       | 0 0                                                 | 0.0            | 51          | 1.433              |                 |
|            |        | 1.         | 000        | 1.000        | 17.7      | 7 6.8                     | 1.383                                  | 0.400                               | 0.05       | 50 (                                                | 0.0            | 150         | 0.000              |                 |
|            |        | 2.         | 001        | 1.900        | 33.6      | 5 8.1                     | 1.050                                  | 1.750                               | 0.06       | 50 (                                                | 0.0            | 50          | 1.568              |                 |
|            |        | 2.         | 000        | 1.150        | 20.3      | 3 4.1                     | 0.850                                  | 1.050                               | 0.03       | 80 (                                                | 0.0            | 45          | 0.900              |                 |
|            |        |            |            |              |           |                           | <b>.</b>                               |                                     |            |                                                     |                |             |                    |                 |

## Pipeline Schedule

| Link  | Length | Slope | Dia  | Link     | US CL   | US IL   | US Depth | DS CL   | DS IL   | DS Depth |
|-------|--------|-------|------|----------|---------|---------|----------|---------|---------|----------|
|       | (m)    | (1:X) | (mm) | Туре     | (m)     | (m)     | (m)      | (m)     | (m)     | (m)      |
| 1.004 | 5.385  | 53.9  | 100  | Circular | 102.700 | 100.600 | 2.000    | 102.700 | 100.500 | 2.100    |
| 1.003 | 3.162  | 31.6  | 225  | Circular | 102.600 | 100.700 | 1.675    | 102.700 | 100.600 | 1.875    |
| 1.002 | 17.720 | 88.6  | 225  | Circular | 102.000 | 100.900 | 0.875    | 102.600 | 100.700 | 1.675    |
| 1.001 | 13.000 | 37.1  | 225  | Circular | 102.000 | 101.250 | 0.525    | 102.000 | 100.900 | 0.875    |
| 1.000 | 15.000 | -3.4  | 150  | Circular | 98.533  | 97.000  | 1.383    | 102.000 | 101.450 | 0.400    |
| 2.001 | 2.828  | 28.3  | 150  | Circular | 102.000 | 100.800 | 1.050    | 102.600 | 100.700 | 1.750    |
| 2.000 | 15.297 | 76.5  | 150  | Circular | 102.000 | 101.000 | 0.850    | 102.000 | 100.800 | 1.050    |

| Link  | US   | Dia  | Node    | МН        | DS   | Dia  | Node    | MH        |
|-------|------|------|---------|-----------|------|------|---------|-----------|
|       | Node | (mm) | Туре    | Туре      | Node | (mm) | Туре    | Туре      |
| 1.004 | 2    | 450  | Manhole | Adoptable | 1    | 1200 | Manhole | Adoptable |
| 1.003 | 3    | 1200 | Manhole | Adoptable | 2    | 450  | Manhole | Adoptable |
| 1.002 | 4    | 450  | Manhole | Adoptable | 3    | 1200 | Manhole | Adoptable |
| 1.001 | 5    | 450  | Manhole | Adoptable | 4    | 450  | Manhole | Adoptable |
| 1.000 | 6    | 1200 | Manhole | Adoptable | 5    | 450  | Manhole | Adoptable |
| 2.001 | 7    | 450  | Manhole | Adoptable | 3    | 1200 | Manhole | Adoptable |
| 2.000 | 8    | 450  | Manhole | Adoptable | 7    | 450  | Manhole | Adoptable |

#### Manhole Schedule

| Node | Easting<br>(m) | Northing<br>(m) | CL<br>(m) | Depth<br>(m) | Dia<br>(mm) | Connections | Link  | IL<br>(m) | Dia<br>(mm) |
|------|----------------|-----------------|-----------|--------------|-------------|-------------|-------|-----------|-------------|
| 1    | 100.000        | 100.000         | 102.700   | 2.200        | 1200        |             | 1.004 | 100.500   | 100         |
| 2    | 98.000         | 105.000         | 102.700   | 2.100        | 450         |             | 1.003 | 100.600   | 225         |
|      |                |                 |           |              |             | ° 0         | 1.004 | 100.600   | 100         |

![](_page_43_Picture_0.jpeg)

| File: Watford Way Attenuation. | Page 3              |
|--------------------------------|---------------------|
| Network: Storm Network         | WATFORD WAY RADLETT |
| Andrew Wallace                 | ATTENUATION DESIGN  |
| 23/05/2023                     |                     |

| Manhole | Schedule |  |
|---------|----------|--|

| Node | e Easting                                                        | Northing                                                                     | CL                                                                                                    | Depth           | Dia         | Connectio                                                              | ons                                                     | Link                                                            | IL                                  | Dia  |
|------|------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------|-------------|------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------|------|
|      | (m)                                                              | (m)                                                                          | (m)                                                                                                   | (m)             | (mm)        |                                                                        |                                                         |                                                                 | (m)                                 | (mm) |
| 3    | 97.000                                                           | 108.000                                                                      | 102.600                                                                                               | 1.900           | 1200        | 1                                                                      | 1                                                       | 2.001                                                           | 100.700                             | 150  |
|      |                                                                  |                                                                              |                                                                                                       |                 |             | 2                                                                      | 2                                                       | 1.002                                                           | 100.700                             | 225  |
|      |                                                                  |                                                                              |                                                                                                       |                 |             | 0                                                                      | 0                                                       | 1.003                                                           | 100.700                             | 225  |
| 4    | 80.000                                                           | 113.000                                                                      | 102.000                                                                                               | 1.100           | 450         | 1                                                                      | 1                                                       | 1.001                                                           | 100.900                             | 225  |
|      |                                                                  |                                                                              |                                                                                                       |                 |             |                                                                        | 0                                                       | 1.002                                                           | 100.900                             | 225  |
| 5    | 75.000                                                           | 125.000                                                                      | 102.000                                                                                               | 0.750           | 450         |                                                                        | 1                                                       | 1.000                                                           | 101.450                             | 150  |
|      |                                                                  |                                                                              |                                                                                                       |                 |             | 0                                                                      | 0                                                       | 1.001                                                           | 101.250                             | 225  |
| 6    | 75.000                                                           | 140.000                                                                      | 98.533                                                                                                | 1.533           | 1200        | Q                                                                      |                                                         |                                                                 |                                     |      |
|      |                                                                  |                                                                              |                                                                                                       |                 |             | Ő                                                                      | 0                                                       | 1.000                                                           | 97.000                              | 150  |
| 7    | 99.000                                                           | 110.000                                                                      | 102.000                                                                                               | 1.200           | 450         |                                                                        | 1                                                       | 2.000                                                           | 100.800                             | 150  |
|      |                                                                  |                                                                              |                                                                                                       |                 |             |                                                                        | 0                                                       | 2.001                                                           | 100.800                             | 150  |
| 8    | 102.000                                                          | 125.000                                                                      | 102.000                                                                                               | 1.000           | 450         | ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓                                  | 0                                                       | 2.000                                                           | 101.000                             | 150  |
|      |                                                                  |                                                                              |                                                                                                       | <u>Simulat</u>  | ion Set     | <u>tings</u>                                                           |                                                         |                                                                 |                                     |      |
|      |                                                                  |                                                                              | 56.0                                                                                                  |                 | I           |                                                                        |                                                         | с I                                                             |                                     |      |
|      | Raintall M                                                       | Methodology<br>FSR Regior<br>M5-60 (mm)<br>Ratio-R<br>Summer CV<br>Winter CV | <ul> <li>FSR</li> <li>England</li> <li>19.000</li> <li>0.400</li> <li>0.750</li> <li>0.840</li> </ul> | d and Wa        | les         | A<br>Skip<br>Drain Down<br>Additional Sto<br>Check Disc<br>Check Disch | nalysis<br>Stead<br>n Time<br>orage<br>harge<br>narge V | s Speed<br>ly State<br>e (mins)<br>(m³/ha)<br>Rate(s)<br>Volume | Normal<br>x<br>240<br>0.0<br>x<br>x |      |
|      |                                                                  |                                                                              |                                                                                                       | Storm           | Durati      | - n-c                                                                  |                                                         |                                                                 |                                     |      |
|      | 15 60<br>30 120                                                  | 180<br>240                                                                   | 360<br>480                                                                                            | 600<br>720      | 960<br>1440 | 2160<br>2880                                                           | 4320<br>5760                                            | 7200<br>8640                                                    | ) 1008<br>)                         | 0    |
|      | R                                                                | eturn Period                                                                 | l Climate                                                                                             | e Change        | Addi        | tional Area                                                            | Additi                                                  | onal Flo                                                        | w                                   |      |
|      |                                                                  | (years)                                                                      | (C                                                                                                    | C %)            |             | (A %)                                                                  | (                                                       | Q %)                                                            | _                                   |      |
|      |                                                                  | 1                                                                            |                                                                                                       | 0               |             | 0                                                                      |                                                         |                                                                 | 0                                   |      |
|      |                                                                  | 10                                                                           | )                                                                                                     | 0               |             | 0                                                                      |                                                         |                                                                 | 0                                   |      |
|      |                                                                  | 3U<br>100                                                                    | )                                                                                                     | 0               |             | 0                                                                      |                                                         |                                                                 | 0                                   |      |
|      |                                                                  | 100                                                                          | )                                                                                                     | 40              |             | 0                                                                      |                                                         |                                                                 | 0                                   |      |
|      |                                                                  | 100                                                                          | ,<br>No da (                                                                                          | 40<br>Douline 1 | Danath //   |                                                                        |                                                         |                                                                 | 0                                   |      |
|      |                                                                  |                                                                              | Node                                                                                                  | s Unline l      | vepth/      | riow Control                                                           |                                                         |                                                                 |                                     |      |
|      | Flap Valve x Replaces Downstream Link √ Invert Level (m) 100.700 |                                                                              |                                                                                                       |                 |             |                                                                        |                                                         |                                                                 |                                     |      |

| CAUSEWAY 😜                                                                                                                                         | JOMAS                                                                                                                                                    | File: Watford Way Attenuation.Page 4Network: Storm NetworkWATFORD WAY RADLETTAndrew WallaceATTENUATION DESIGN23/05/2023                              |                                     |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|--|--|--|
|                                                                                                                                                    | DepthFlow(m)(l/s)0.0109.600                                                                                                                              | DepthFlow(m)(l/s)2.0009.600                                                                                                                          |                                     |  |  |  |  |  |  |  |  |  |  |
| Node 6 Online Depth/Flow Control                                                                                                                   |                                                                                                                                                          |                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
| Flap Valve x Replaces Downstream Link √ Invert Level (m) 97.000                                                                                    |                                                                                                                                                          |                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
| Denth Flow Denth Flow                                                                                                                              |                                                                                                                                                          |                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
| Depth Flow Depth Flow<br>(m) (l/s) (m) (l/s)                                                                                                       |                                                                                                                                                          |                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 0.001 50.000 50.000                                                                                                                                      |                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
| Node 3 Depth/Area Storage Structure                                                                                                                |                                                                                                                                                          |                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
| Base Inf Coefficient (m/hr)0.00000Safety Factor1.5Invert Level (m)100.800Side Inf Coefficient (m/hr)0.00000Porosity0.30Time to half empty (mins)37 |                                                                                                                                                          |                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
| Depth                                                                                                                                              | Area Inf Area Depth Ar                                                                                                                                   | ea Inf Area Depth Area                                                                                                                               | Inf Area                            |  |  |  |  |  |  |  |  |  |  |
| (m)<br>0.000 1                                                                                                                                     | (m²) (m²) (m) (m<br>130.0 0.0 1.300 130                                                                                                                  | 1 <sup>4</sup> ) (m <sup>2</sup> ) (m) (m <sup>2</sup> )<br>0.0 0.0 1.301 1.0                                                                        | (m²)<br>0.0                         |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | Node 3 Depth/Are                                                                                                                                         | a Storage Structure                                                                                                                                  |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    |                                                                                                                                                          |                                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
| Side Inf Coefficient                                                                                                                               | t (m/hr) 0.00000 Safety Fac<br>t (m/hr) 0.00000 Poro                                                                                                     | sity 0.95 Time to half emp                                                                                                                           | Level (m) 100.800<br>ty (mins) 65   |  |  |  |  |  |  |  |  |  |  |
| <b>Depth</b><br>(m)<br>0.000                                                                                                                       | Area         Inf Area         Depth         Area           (m²)         (m²)         (m)         (m)           20.0         0.0         0.800         20 | ea         Inf Area         Depth         Area           2)         (m²)         (m)         (m²)           .0         0.0         0.801         0.1 | Inf Area<br>(m²)<br>0.0             |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | <u>Other (</u>                                                                                                                                           | defaults)                                                                                                                                            |                                     |  |  |  |  |  |  |  |  |  |  |
| Entry Loss (manhole<br>Exit Loss (manhole                                                                                                          | e) 0.250 Entry Loss (junctio<br>e) 0.250 Exit Loss (junctio                                                                                              | on) 0.000 Apply Recommen<br>on) 0.000 Flo                                                                                                            | nded Losses x<br>ood Risk (m) 0.300 |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | Rai                                                                                                                                                      | <u>nfall</u>                                                                                                                                         |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | Event                                                                                                                                                    | Peak Average<br>Intensity Intensity                                                                                                                  |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    |                                                                                                                                                          | (mm/hr) (mm/hr)                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 15 minute summe<br>1 year 15 minute winter                                                                                                        | r 103.832 29.381<br>72.865 29.381                                                                                                                    |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 30 minute summe                                                                                                                                   | r 67.515 19.105                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 30 minute winter                                                                                                                                  | 47.379 19.105                                                                                                                                        |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 60 minute summe                                                                                                                                   | r 45.726 12.084                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 60 minute winter                                                                                                                                  | 30.379 12.084<br>er 28.340 7.489                                                                                                                     |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 120 minute summ                                                                                                                                   | 18.828 7.489                                                                                                                                         |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 180 minute summ                                                                                                                                   | er 21.894 5.634                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 180 minute winter                                                                                                                                 | 14.231 5.634                                                                                                                                         |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 240 minute summ                                                                                                                                   | er 17.401 4.599                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 240 minute winter<br>1 year 360 minute summ                                                                                                       | er 13 397 3 <i>4</i> .599                                                                                                                            |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 360 minute winter                                                                                                                                 | 8.709 3.448                                                                                                                                          |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 480 minute summ                                                                                                                                   | er 10.573 2.794                                                                                                                                      |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 480 minute winter                                                                                                                                 | 7.024 2.794                                                                                                                                          |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | 1 year 600 minute summ                                                                                                                                   | er 8.677 2.373                                                                                                                                       |                                     |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                    | Flow+ v10.4 Copyright © 1988-3                                                                                                                           | 2023 Causeway Technologies Ltd                                                                                                                       |                                     |  |  |  |  |  |  |  |  |  |  |

![](_page_45_Picture_0.jpeg)

| Event                      | Peak<br>Intensity | Average<br>Intensity |  |
|----------------------------|-------------------|----------------------|--|
|                            | (mm/nr)           | (mm/nr)              |  |
| 1 year 600 minute winter   | 5.929             | 2.373                |  |
| 1 year 720 minute summer   | 7.750             | 2.077                |  |
| 1 year 720 minute winter   | 5.209             | 2.077                |  |
| 1 year 960 minute summer   | 6.393             | 1.683                |  |
| 1 year 960 minute winter   | 4.235             | 1.683                |  |
| 1 year 1440 minute summer  | 4.6/1             | 1.252                |  |
| 1 year 1440 minute winter  | 3.140             | 1.252                |  |
| 1 year 2160 minute summer  | 3.372             | 0.932                |  |
| 1 year 2160 minute winter  | 2.323             | 0.932                |  |
| 1 year 2880 minute summer  | 2.820             | 0.756                |  |
| 1 year 2880 minute winter  | 1.895             | 0.756                |  |
| 1 year 4320 minute summer  | 2.149             | 0.562                |  |
| 1 year 4320 minute winter  | 1.415             | 0.562                |  |
| 1 year 5760 minute summer  | 1.779             | 0.455                |  |
| 1 year 5760 minute winter  | 1.151             | 0.455                |  |
| 1 year 7200 minute summer  | 1.517             | 0.387                |  |
| 1 year 7200 minute winter  | 0.979             | 0.387                |  |
| 1 year 8640 minute summer  | 1.329             | 0.339                |  |
| 1 year 8640 minute winter  | 0.858             | 0.339                |  |
| 1 year 10080 minute summer | 1.188             | 0.303                |  |
| 1 year 10080 minute winter | 0.767             | 0.303                |  |
| 10 year 15 minute summer   | 200.971           | 56.868               |  |
| 10 year 15 minute winter   | 141.032           | 56.868               |  |
| 10 year 30 minute summer   | 129.855           | 36.744               |  |
| 10 year 30 minute winter   | 91.126            | 36.744               |  |
| 10 year 60 minute summer   | 86.243            | 22.792               |  |
| 10 year 60 minute winter   | 57.298            | 22.792               |  |
| 10 year 120 minute summer  | 52.179            | 13.789               |  |
| 10 year 120 minute winter  | 34.667            | 13.789               |  |
| 10 year 180 minute summer  | 39.634            | 10.199               |  |
| 10 year 180 minute winter  | 25.763            | 10.199               |  |
| 10 year 240 minute summer  | 31.075            | 8.212                |  |
| 10 year 240 minute winter  | 20.646            | 8.212                |  |
| 10 year 360 minute summer  | 23.443            | 6.033                |  |
| 10 year 360 minute winter  | 15.239            | 6.033                |  |
| 10 year 480 minute summer  | 18.333            | 4.845                |  |
| 10 year 480 minute winter  | 12.180            | 4.845                |  |
| 10 year 600 minute summer  | 14.935            | 4.085                |  |
| 10 year 600 minute winter  | 10.205            | 4.085                |  |
| 10 year 720 minute summer  | 13.257            | 3.553                |  |
| 10 year 720 minute winter  | 8.909             | 3.553                |  |
| 10 year 960 minute summer  | 10.821            | 2.849                |  |
| 10 year 960 minute winter  | 7.168             | 2.849                |  |
| 10 year 1440 minute summer | 7.784             | 2.086                |  |
| 10 year 1440 minute winter | 5.231             | 2.086                |  |
| 10 year 2160 minute summer | 5.523             | 1.526                |  |
| 10 year 2160 minute winter | 3.806             | 1.526                |  |
| 10 year 2880 minute summer | 4.561             | 1.223                |  |
| 10 year 2880 minute winter | 3.066             | 1.223                |  |
| 10 year 4320 minute summer | 3.418             | 0.894                |  |
| 10 year 4320 minute winter | 2.251             | 0.894                |  |
| 10 year 5760 minute summer | 2.794             | 0.715                |  |
|                            |                   |                      |  |

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

| Event                          | Peak       | Average        |
|--------------------------------|------------|----------------|
|                                | (mage /br) | (mage /bg)     |
|                                | (mm/nr)    | (mm/nr)        |
| 10 year 5760 minute winter     | 1.808      | 0.715          |
| 10 year 7200 minute summer     | 2.359      | 0.602          |
| 10 year 7200 minute winter     | 1.522      | 0.602          |
| 10 year 8640 minute summer     | 2.048      | 0.522          |
| 10 year 8640 minute winter     | 1.322      | 0.522          |
| 10 year 10080 minute summer    | 1.817      | 0.463          |
| 10 year 10080 minute winter    | 1.173      | 0.463          |
| 30 year 15 minute summer       | 254.498    | 72.014         |
| 30 year 15 minute winter       | 178.595    | 72.014         |
| 30 year 30 minute summer       | 165.775    | 46.909         |
| 30 year 30 minute winter       | 116.334    | 46.909         |
| 30 year 60 minute summer       | 110.635    | 29.238         |
| 30 year 60 minute winter       | 73.503     | 29.238         |
| 30 year 120 minute summer      | 66.994     | 17.704         |
| 30 year 120 minute winter      | 44.509     | 17.704         |
| 30 year 180 minute summer      | 50.789     | 13.070         |
| 30 year 180 minute winter      | 33.014     | 13.070         |
| ,<br>30 year 240 minute summer | 39.713     | 10.495         |
| ,<br>30 year 240 minute winter | 26.384     | 10.495         |
| 30 year 360 minute summer      | 29,789     | 7.666          |
| 30 year 360 minute winter      | 19 364     | 7 666          |
| 30 year 480 minute summer      | 23 214     | 6 1 3 5        |
| 30 year 480 minute winter      | 15 / 23    | 6 1 3 5        |
| 30 year 600 minute summer      | 18 850     | 5 159          |
| 30 year 600 minute winter      | 10.005     | 5.150          |
| 20 year 720 minute summer      | 16 609     | J.130<br>A A7E |
| 20 year 720 minute summer      | 11 222     | 4.475          |
| 30 year 720 minute willter     | 12.222     | 4.475          |
| 30 year 960 minute summer      | 13.576     | 3.5/5          |
| 30 year 960 minute winter      | 8.993      | 3.5/5          |
| 30 year 1440 minute summer     | 9.708      | 2.602          |
| 30 year 1440 minute winter     | 6.524      | 2.602          |
| 30 year 2160 minute summer     | 6.844      | 1.892          |
| 30 year 2160 minute winter     | 4.716      | 1.892          |
| 30 year 2880 minute summer     | 5.625      | 1.508          |
| 30 year 2880 minute winter     | 3.780      | 1.508          |
| 30 year 4320 minute summer     | 4.184      | 1.094          |
| 30 year 4320 minute winter     | 2.755      | 1.094          |
| 30 year 5760 minute summer     | 3.402      | 0.871          |
| 30 year 5760 minute winter     | 2.202      | 0.871          |
| 30 year 7200 minute summer     | 2.859      | 0.729          |
| 30 year 7200 minute winter     | 1.845      | 0.729          |
| 30 year 8640 minute summer     | 2.473      | 0.631          |
| 30 year 8640 minute winter     | 1.596      | 0.631          |
| 30 year 10080 minute summer    | 2.187      | 0.558          |
| 30 year 10080 minute winter    | 1.411      | 0.558          |
| 100 year 15 minute summer      | 329.664    | 93.284         |
| 100 year 15 minute winter      | 231.343    | 93.284         |
| 100 year 30 minute summer      | 216.648    | 61.304         |
| 100 year 30 minute winter      | 152.034    | 61.304         |
| 100 year 60 minute summer      | 145.356    | 38.413         |
| 100 year 60 minute winter      | 96 571     | 38 413         |
| 100 year 120 minute summer     | 88 100     | 22 282         |
| 100 year 120 minute summer     | 50.100     | 23.202         |

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

File: Watford Way Attenuation. Network: Storm Network Andrew Wallace 23/05/2023

| Event                              | Peak      | Average   |
|------------------------------------|-----------|-----------|
|                                    | Intensity | Intensity |
|                                    | (mm/hr)   | (mm/hr)   |
| 100 year 120 minute winter         | 58.532    | 23.282    |
| 100 year 180 minute summer         | 66.650    | 17.151    |
| 100 year 180 minute winter         | 43.325    | 17.151    |
| ,<br>100 year 240 minute summer    | 51.959    | 13.731    |
| ,<br>100 vear 240 minute winter    | 34.521    | 13.731    |
| ,<br>100 year 360 minute summer    | 38.732    | 9.967     |
| ,<br>100 year 360 minute winter    | 25.177    | 9.967     |
| 100 year 480 minute summer         | 30.068    | 7.946     |
| ,<br>100 year 480 minute winter    | 19.977    | 7.946     |
| ,<br>100 year 600 minute summer    | 24.351    | 6.660     |
| ,<br>100 year 600 minute winter    | 16.638    | 6.660     |
| 100 year 720 minute summer         | 21.505    | 5.763     |
| 100 year 720 minute winter         | 14.452    | 5.763     |
| 100 year 960 minute summer         | 17.408    | 4.584     |
| 100 year 960 minute winter         | 11.531    | 4.584     |
| 100 year 1440 minute summer        | 12.367    | 3.314     |
| 100 year 1440 minute winter        | 8.311     | 3 314     |
| 100 year 2160 minute summer        | 8 657     | 2 393     |
| 100 year 2160 minute winter        | 5.965     | 2 393     |
| 100 year 2880 minute summer        | 7 077     | 1 897     |
| 100 year 2880 minute winter        | 4 756     | 1 897     |
| 100 year 4320 minute summer        | 5 223     | 1 365     |
| 100 year 4320 minute winter        | 3 4 3 9   | 1 365     |
| 100 year 5760 minute summer        | 4.221     | 1 080     |
| 100 year 5760 minute winter        | 2.732     | 1.080     |
| 100 year 7200 minute summer        | 3.530     | 0.900     |
| 100 year 7200 minute winter        | 2.278     | 0.900     |
| 100 year 8640 minute summer        | 3.041     | 0.776     |
| 100 year 8640 minute winter        | 1.962     | 0.776     |
| 100 year 10080 minute summer       | 2.680     | 0.684     |
| 100 year 10080 minute winter       | 1.729     | 0.684     |
| 100 year +40% CC 15 minute summer  | 461.530   | 130.597   |
| 100 year +40% CC 15 minute winter  | 323.881   | 130.597   |
| 100 year +40% CC 30 minute summer  | 303.307   | 85.825    |
| 100 year +40% CC 30 minute winter  | 212.847   | 85.825    |
| 100 year +40% CC 60 minute summer  | 203.498   | 53.779    |
| 100 year +40% CC 60 minute winter  | 135.199   | 53.779    |
| 100 year +40% CC 120 minute summer | 123.340   | 32.595    |
| 100 year +40% CC 120 minute winter | 81.944    | 32.595    |
| 100 year +40% CC 180 minute summer | 93.311    | 24.012    |
| 100 year +40% CC 180 minute winter | 60.654    | 24.012    |
| 100 year +40% CC 240 minute summer | 72,743    | 19.224    |
| 100 year +40% CC 240 minute winter | 48.329    | 19.224    |
| 100 year +40% CC 360 minute summer | 54.225    | 13.954    |
| 100 year +40% CC 360 minute winter | 35.248    | 13.954    |
| 100 year +40% CC 480 minute summer | 42.096    | 11.125    |
| 100 year +40% CC 480 minute winter | 27.967    | 11.125    |
| 100 year +40% CC 600 minute summer | 34.091    | 9.325     |
| 100 year +40% CC 600 minute winter | 23.293    | 9.325     |
| 100 year +40% CC 720 minute summer | 30.106    | 8.069     |
| 100 year +40% CC 720 minute winter | 20.233    | 8.069     |
| 100 year +40% CC 960 minute summer | 24.371    | 6.417     |
| ,                                  |           |           |

![](_page_48_Picture_0.jpeg)

![](_page_48_Picture_1.jpeg)

| Event                                | Peak<br>Intensity<br>(mm/hr) | Average<br>Intensity<br>(mm/hr) |
|--------------------------------------|------------------------------|---------------------------------|
| 100 year +40% CC 960 minute winter   | 16.144                       | 6.417                           |
| 100 year +40% CC 1440 minute summer  | 17.314                       | 4.640                           |
| 100 year +40% CC 1440 minute winter  | 11.636                       | 4.640                           |
| 100 year +40% CC 2160 minute summer  | 12.120                       | 3.350                           |
| 100 year +40% CC 2160 minute winter  | 8.351                        | 3.350                           |
| 100 year +40% CC 2880 minute summer  | 9.908                        | 2.656                           |
| 100 year +40% CC 2880 minute winter  | 6.659                        | 2.656                           |
| 100 year +40% CC 4320 minute summer  | 7.312                        | 1.912                           |
| 100 year +40% CC 4320 minute winter  | 4.815                        | 1.912                           |
| 100 year +40% CC 5760 minute summer  | 5.909                        | 1.513                           |
| 100 year +40% CC 5760 minute winter  | 3.824                        | 1.513                           |
| 100 year +40% CC 7200 minute summer  | 4.942                        | 1.261                           |
| 100 year +40% CC 7200 minute winter  | 3.189                        | 1.261                           |
| 100 year +40% CC 8640 minute summer  | 4.257                        | 1.086                           |
| 100 year +40% CC 8640 minute winter  | 2.747                        | 1.086                           |
| 100 year +40% CC 10080 minute summer | 3.751                        | 0.957                           |
| 100 year +40% CC 10080 minute winter | 2.421                        | 0.957                           |

![](_page_49_Picture_0.jpeg)

#### Results for 1 year Critical Storm Duration. Lowest mass balance: 98.49%

| Node Event       | US<br>Node | Peak<br>e (mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | S        | tatus                 |
|------------------|------------|------------------|--------------|--------------|-----------------|------------------|---------------|----------|-----------------------|
| 15 minute summe  | r 1        | 15               | 100.594      | 0.094        | 9.6             | 0.0000           | 0.0000        | ) OK     |                       |
| 15 minute summe  | r 2        | 16               | 100.774      | 0.174        | 9.6             | 0.0277           | 0.0000        | ) SURC   | HARGED                |
| 15 minute winter | 3          | 13               | 100.890      | 0.190        | 33.3            | 5.4403           | 0.0000        | ) OK     |                       |
| 15 minute summe  | r 4        | 9                | 100.996      | 0.096        | 19.6            | 0.0153           | 0.0000        | ) OK     |                       |
| 15 minute summe  | r 5        | 9                | 101.308      | 0.058        | 13.3            | 0.0092           | 0.0000        | ) OK     |                       |
| 60 minute summe  | r 6        | 35               | 97.005       | 0.005        | 4.8             | 0.0058           | 0.0000        | ОК       |                       |
| 30 minute winter | 7          | 21               | 100.891      | 0.091        | 6.6             | 0.0145           | 0.0000        | ) OK     |                       |
| 15 minute summe  | r 8        | 9                | 101.052      | 0.052        | 5.3             | 0.0083           | 0.0000        | ) OK     |                       |
| Link Event       | US         | Link             | DS           | Outflow      | Veloc           | ity Flow/        | 'Cap          | Link     | Discharge             |
| (Upstream Depth) | Node       |                  | Node         | (I/s)        | (m/s            | 5)               | · \           | /ol (m³) | Vol (m <sup>3</sup> ) |
| 15 minute summer | 2          | 1.004            | 1            | 9.6          | 1.2             | 27 1             | .162          | 0.0416   | 11.4                  |
| 15 minute winter | 3          | Depth/Flow       | v 2          | 9.6          | i               |                  |               |          |                       |
| 15 minute summer | 4          | 1.002            | 3            | 20.0         | 1.3             | 46 0             | .361          | 0.3823   |                       |
| 15 minute summer | 5          | 1.001            | 4            | 12.5         | 1.0             | 49 0             | .146          | 0.1580   |                       |
| 60 minute summer | 6          | Depth/Flow       | v 5          | 6.1          |                 |                  |               |          |                       |
| 30 minute winter | 7          | 2.001            | 3            | 8.3          | 1.4             | 92 0             | .247          | 0.0408   |                       |
| 15 minute summer | 8          | 2.000            | 7            | 5.3          | 0.7             | 86 0             | .261          | 0.1033   |                       |

![](_page_50_Picture_0.jpeg)

## Results for 10 year Critical Storm Duration. Lowest mass balance: 98.49%

| Node Event       | US<br>Node | Peak<br>e (mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | l St                | tatus     |
|------------------|------------|------------------|--------------|--------------|-----------------|------------------|---------------|---------------------|-----------|
| 15 minute summer | 1          | 12               | 100.594      | 0.094        | 9.6             | 0.0000           | 0.000         | 0 OK                |           |
| 15 minute summer | 2          | 13               | 100.774      | 0.174        | 9.6             | 0.0277           | 0.000         | 0 <mark>SURC</mark> | HARGED    |
| 30 minute winter | 3          | 25               | 101.065      | 0.365        | 43.2            | 15.8175          | 0.000         | 0 <mark>SURC</mark> | HARGED    |
| 30 minute winter | 4          | 24               | 101.066      | 0.166        | 23.4            | 0.0264           | 0.000         | 0 ОК                |           |
| 15 minute summer | 5          | 9                | 101.334      | 0.084        | 24.5            | 0.0134           | 0.000         | 0 OK                |           |
| 15 minute winter | 6          | 10               | 97.030       | 0.030        | 15.3            | 0.0341           | 0.000         | 0 ОК                |           |
| 30 minute winter | 7          | 24               | 101.066      | 0.266        | 12.7            | 0.0423           | 0.000         | 0 <mark>SURC</mark> | HARGED    |
| 15 minute summer | 8          | 9                | 101.075      | 0.075        | 10.3            | 0.0120           | 0.000         | 0 OK                |           |
| Link Event       | US         | Link             | DS           | Outflow      | Veloc           | ity Flow/        | ′Сар          | Link                | Discharge |
| (Upstream Depth) | Node       |                  | Node         | (I/s)        | (m/s            | 5)               | ,             | Vol (m³)            | Vol (m³)  |
| 15 minute summer | 2          | 1.004            | 1            | 9.6          | 1.2             | 27 1.            | .162          | 0.0416              | 22.2      |
| 30 minute winter | 3          | Depth/Flow       | / 2          | 9.6          |                 |                  |               |                     |           |
| 30 minute winter | 4          | 1.002            | 3            | 23.1         | 1.3             | 58 0.            | .419          | 0.6309              |           |
| 15 minute summer | 5          | 1.001            | 4            | 24.1         | 1.1             | 89 0.            | .281          | 0.2633              |           |
| 15 minute winter | 6          | Depth/Flow       | / 5          | 16.2         |                 |                  |               |                     |           |
| 30 minute winter | 7          | 2.001            | 3            | 11.5         | 1.5             | 13 0.            | .343          | 0.0498              |           |
| 15 minute summer | 8          | 2.000            | 7            | 10.3         | 0.8             | 36 0.            | .506          | 0.2024              |           |

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_2.jpeg)

## Results for 30 year Critical Storm Duration. Lowest mass balance: 98.49%

| Node Event       | US<br>Node | Peak<br>e (mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | l St                | tatus     |
|------------------|------------|------------------|--------------|--------------|-----------------|------------------|---------------|---------------------|-----------|
| 15 minute summer | r 1        | 11               | 100.594      | 0.094        | 9.6             | 0.0000           | 0.000         | 0 OK                |           |
| 15 minute summer | 2          | 12               | 100.774      | 0.174        | 9.6             | 0.0277           | 0.000         | 0 <mark>SURC</mark> | HARGED    |
| 30 minute winter | 3          | 28               | 101.188      | 0.488        | 53.8            | 23.1069          | 0.000         | 0 <mark>SURC</mark> | HARGED    |
| 30 minute winter | 4          | 28               | 101.191      | 0.291        | 30.3            | 0.0462           | 0.000         | 0 SURC              | HARGED    |
| 15 minute summer | r 5        | 8                | 101.352      | 0.102        | 33.3            | 0.0162           | 0.000         | 0 OK                |           |
| 30 minute winter | 6          | 16               | 97.024       | 0.024        | 13.6            | 0.0269           | 0.000         | 0 ОК                |           |
| 30 minute winter | 7          | 28               | 101.190      | 0.390        | 16.1            | 0.0620           | 0.000         | 0 SURC              | HARGED    |
| 30 minute winter | 8          | 28               | 101.191      | 0.191        | 8.1             | 0.0303           | 0.000         | 0 SURC              | HARGED    |
| Link Event       | US         | Link             | DS           | Outflow      | Veloc           | ity Flow/        | 'Cap          | Link                | Discharge |
| (Upstream Depth) | Node       |                  | Node         | (I/s)        | (m/s            | 5)               | •             | Vol (m³)            | Vol (m³)  |
| 15 minute summer | 2          | 1.004            | 1            | 9.6          | 5 1.2           | 27 1             | .162          | 0.0416              | 28.5      |
| 30 minute winter | 3          | Depth/Flov       | v 2          | 9.6          | i               |                  |               |                     |           |
| 30 minute winter | 4          | 1.002            | 3            | 28.0         | 1.3             | 54 0             | .508          | 0.7047              |           |
| 15 minute summer | 5          | 1.001            | 4            | 31.1         | . 1.1           | 96 0             | .364          | 0.3502              |           |
| 30 minute winter | 6          | Depth/Flov       | v 5          | 16.4         | ŀ               |                  |               |                     |           |
| 30 minute winter | 7          | 2.001            | 3            | 15.0         | 1.5             | 05 0             | .446          | 0.0498              |           |
| 30 minute winter | 8          | 2.000            | 7            | 8.1          | 0.8             | 17 0             | .396          | 0.2693              |           |

![](_page_52_Picture_0.jpeg)

## Results for 100 year Critical Storm Duration. Lowest mass balance: 98.49%

| Node Event       | US<br>Node | Peak<br>e (mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | d Si                | tatus     |
|------------------|------------|------------------|--------------|--------------|-----------------|------------------|---------------|---------------------|-----------|
| 15 minute summer | · 1        | 11               | 100.594      | 0.094        | 9.6             | 0.0000           | 0.000         | 0 OK                |           |
| 15 minute summer | · 2        | 12               | 100.774      | 0.174        | 9.6             | 0.0277           | 0.000         | 0 SURC              | HARGED    |
| 30 minute winter | 3          | 29               | 101.381      | 0.681        | 70.3            | 34.4975          | 0.000         | 0 SURC              | HARGED    |
| 30 minute winter | 4          | 29               | 101.383      | 0.483        | 36.9            | 0.0768           | 0.000         | 0 SURC              | HARGED    |
| 15 minute summer | · 5        | 9                | 101.392      | 0.142        | 45.2            | 0.0225           | 0.000         | 0 OK                |           |
| 15 minute summer | 6          | 8                | 97.047       | 0.047        | 28.2            | 0.0531           | 0.000         | 0 OK                |           |
| 30 minute winter | 7          | 29               | 101.383      | 0.583        | 19.8            | 0.0926           | 0.000         | 0 <mark>SURC</mark> | HARGED    |
| 30 minute winter | 8          | 29               | 101.384      | 0.384        | 10.6            | 0.0610           | 0.000         | 0 SURC              | HARGED    |
| Link Event       | US         | Link             | DS           | Outflow      | Veloc           | ity Flow/        | Сар           | Link                | Discharge |
| (Upstream Depth) | Node       |                  | Node         | (I/s)        | (m/s            | 5)               |               | Vol (m³)            | Vol (m³)  |
| 15 minute summer | 2          | 1.004            | 1            | 9.6          | 1.2             | 27 1             | 162           | 0.0416              | 36.8      |
| 30 minute winter | 3          | Depth/Flow       | v 2          | 9.6          | ;               |                  |               |                     |           |
| 30 minute winter | 4          | 1.002            | 3            | 37.7         | 1.3             | 38 0             | 682           | 0.7047              |           |
| 15 minute summer | 5          | 1.001            | 4            | 37.7         | 1.1             | 87 0             | 441           | 0.4324              |           |
| 15 minute summer | 6          | Depth/Flow       | v 5          | 33.9         | 1               |                  |               |                     |           |
| 30 minute winter | 7          | 2.001            | 3            | 18.6         | 1.4             | 92 0             | 555           | 0.0498              |           |
| 30 minute winter | 8          | 2.000            | 7            | 9.3          | 0.8             | 13 0             | 460           | 0.2693              |           |

![](_page_53_Picture_0.jpeg)

![](_page_53_Picture_2.jpeg)

#### Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.49%

| Node Event       | US<br>Node | Peak<br>e (mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | d S <sup>r</sup> | tatus                 |
|------------------|------------|------------------|--------------|--------------|-----------------|------------------|---------------|------------------|-----------------------|
| 15 minute summe  | r 1        | 11               | 100.594      | 0.094        | 9.6             | 0.0000           | 0.000         | 0 OK             |                       |
| 15 minute summe  | 2          | 12               | 100.774      | 0.174        | 9.6             | 0.0277           | 0.000         | 0 SURC           | HARGED                |
| 60 minute winter | 3          | 58               | 101.841      | 1.141        | 61.6            | 57.1519          | 0.000         | 0 SURC           | HARGED                |
| 60 minute winter | 4          | 57               | 101.843      | 0.943        | 34.0            | 0.1499           | 0.000         | 0 FLOO           | D RISK                |
| 15 minute summe  | r 5        | 9                | 101.911      | 0.661        | 56.0            | 0.1051           | 0.000         | 0 FLOO           | D RISK                |
| 60 minute summe  | 6          | 27               | 97.029       | 0.029        | 21.2            | 0.0333           | 0.000         | 0 OK             |                       |
| 60 minute winter | 7          | 57               | 101.842      | 1.042        | 18.1            | 0.1657           | 0.000         | 0 FLOO           | D RISK                |
| 60 minute winter | 8          | 57               | 101.844      | 0.843        | 9.5             | 0.1341           | 0.000         | 0 FLOO           | D RISK                |
| Link Event       | US         | Link             | DS           | Outflow      | Veloc           | ity Flow/        | <b>′Сар</b>   | Link             | Discharge             |
| (Upstream Depth) | Node       |                  | Node         | (I/s)        | (m/s            | s)               |               | Vol (m³)         | Vol (m <sup>3</sup> ) |
| 15 minute summer | 2          | 1.004            | 1            | 9.6          | 1.2             | 27 1.            | .162          | 0.0416           | 51.3                  |
| 60 minute winter | 3          | Depth/Flov       | v 2          | 9.6          | i               |                  |               |                  |                       |
| 60 minute winter | 4          | 1.002            | 3            | 32.5         | 1.3             | 60 0.            | .587          | 0.7047           |                       |
| 15 minute summer | 5          | 1.001            | 4            | 52.6         | 5 1.3           | 23 0.            | .614          | 0.5170           |                       |
| 60 minute summer | 6          | Depth/Flov       | v 5          | 21.5         | i               |                  |               |                  |                       |
| 60 minute winter | 7          | 2.001            | 3            | 17.1         | . 1.5           | 11 0.            | .511          | 0.0498           |                       |
| 60 minute winter | 8          | 2.000            | 7            | 8.6          | 0.7             | 74 0.            | .421          | 0.2693           |                       |

![](_page_54_Figure_0.jpeg)

NOTE: Details for private drainage only.

SCALE 1:20

|                                                                                        | Jc             | P4735J2775                                                                                                                                                                                                                                                                                                                                      | Rev                                     |
|----------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|                                                                                        | NOT            | ES                                                                                                                                                                                                                                                                                                                                              |                                         |
|                                                                                        | 1.             | THIS DRAWING IS TO BE READ IN CONJUNCTION WITH AL<br>RELEVANT SERIES DESIGN DRAWINGS, SPECIFICATIONS AN<br>DOCUMENTATION.                                                                                                                                                                                                                       | L<br>ND                                 |
|                                                                                        | 2.             | CONSTRUCTION TO BE IN ACCORDANCE WITH ALL BRITISH<br>EUROPEAN STANDARDS AND BUILDING REGULATIONS.                                                                                                                                                                                                                                               | h and                                   |
|                                                                                        | 3.             | ANY DISCREPANCIES IN THE DETAILS SHOWN ARE TO BE<br>REPORTED TO THE EMPLOYER'S REPRESENTATIVE/ENGINE<br>PRIOR TO CONSTRUCTION                                                                                                                                                                                                                   | ER                                      |
|                                                                                        | 4.             | ALL EXISTING SERVICES ARE TO BE LOCATED PRIOR TO<br>COMMENCEMENT OF ANY WORKS. THE CONTRACTOR MUS<br>NOTIFY THE ENGINEER IMMEDIATELY OF ANY CONFLICT W<br>PROPOSED WORKS.                                                                                                                                                                       | THE<br>ST<br>/ITH THI                   |
|                                                                                        | 5.             | FOR GRAVITY SEWERS, ALL DRAINAGE AND FITTINGS ARE<br>FLEXIBLY JOINTED UPVC TO BS EN 1401-1 OR CLAYWAR<br>BS EN295 OR CONCRETE TO BS5911 PART 100                                                                                                                                                                                                | e to be<br>Re to                        |
|                                                                                        | 6.             | CHAMBER WALLS 225 THICK TO BE CONSTRUCTED IN CL<br>ENGINEERING BRICKS TO SHW SERIES 2400 IN DESIGNAT<br>MORTAR OR IN-SITU STRENGTH CLASS C16/20 CONCRET<br>CLAUSE 2602                                                                                                                                                                          | .ASS B<br>ION (i)<br>TE TO              |
|                                                                                        | 7.             | CHAMBER WALLS AND COVER SLAB TO BE CONSTRUCTED<br>PRECAST CONCRETE TO BS EN 1917 AND BS 5911-3.                                                                                                                                                                                                                                                 | D IN                                    |
|                                                                                        | 8.             | CONCRETE MIXES INDICATED ON THIS DRAWING ARE DESI<br>MIXES IN ACCORDANCE WITH BS8500-1:2006. ALL<br>CONCRETE TO BE SULPHATE RESISTANT                                                                                                                                                                                                           | IGNATEI                                 |
|                                                                                        | 9.             | BACKFILL TO ALL TRENCHES UNDER CARRIAGEWAYS TO<br>1 SUB-BASE MATERIAL, ELSEWHERE BACKFILL TO BE IN<br>ACCORDANCE WITH THE SPECIFICATION, FREE DRAINING F<br>COMPACTIBLE MATERIAL, FREE FROM RUBBISH AND ORG/<br>MATTER, FROZEN SOIL CLAY LUMPS AND LARGE STONES<br>COMPACTED IN LAYERS NOT EXCEEDING 150mm THICK.                               | BE TYP<br>READILY<br>ANIC<br>5. TO BI   |
|                                                                                        | 10.            | A FLEXIBLE JOINT SHALL BE PROVIDED AS CLOSE AS IS<br>FEASIBLE TO OUTSIDE FACE OF ANY STRUCTURE INTO W<br>PIPE IS BUILT, IN ACCORDANCE WITH THE DETAIL.                                                                                                                                                                                          | /НІСН А                                 |
|                                                                                        | 11.            | THE GENERAL SPECIFICATION OF MATERIALS AND<br>WORKMANSHIPS FOR THE CONSTRUCTION OF THE ACCES<br>FOOTPATHS AND OTHER AREAS OF HARDSTANDING SHAL<br>THE MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY V<br>VOLUME 1. SPECIFICATION OF HIGHWAY WORKS (SHW)<br>PUBLISHED BY THE STATIONARY OFFICE.                                                       | S ROAE<br>LL BE<br>WORKS,               |
|                                                                                        | 12.            | ALL PIPES TO BE LAID SOFFIT TO SOFFIT UNLESS NOTED OTHERWISE.                                                                                                                                                                                                                                                                                   | C                                       |
|                                                                                        | 13.            | MANHOLE COVERS AND FRAMES SHALL COMPLY WITH BS<br>AND SHALL BE OF A NON-ROCKING DESIGN WHICH DOES<br>RELY ON THE USE OF CUSHION INSERTS. CLASS D COV<br>SHALL BE USED IN CARRIAGEWAYS, HARD SHOULDERS A<br>PARKING AREAS USED BY ALL TYPE OF ROAD VEHICLES<br>CLASS C SHALL BE USED IN FOOTWAYS, PEDESTRIAN AF<br>AND ALL COMPARABLE LOCATIONS. | S EN124<br>S NOT<br>/ERS<br>.ND<br>REAS |
| _                                                                                      | Ν              | otes.                                                                                                                                                                                                                                                                                                                                           |                                         |
| GEN3_CONCRETE_PLINTH                                                                   | -              |                                                                                                                                                                                                                                                                                                                                                 |                                         |
| OSMA 4500 UNIVERSAL                                                                    | Co<br>No<br>Do | opyright of this plan is held by Jomas Associates<br>o responsibility is taken for amendments by others<br>o not scale from copies or PDF's.                                                                                                                                                                                                    | Ltd.<br>s.                              |
| (OR SIMILAR APPROVED)<br>APPROPRIATE LENGTH ROCKER<br>——PIPES TO BE PROVIDED WHERE     | Ke<br>sti      | ey dimensions to be checked by engineer before r<br>ructural works commence on site.                                                                                                                                                                                                                                                            | major                                   |
| PIPES ENTER/EXIT CONCRETE<br>SURROUND                                                  | 1.<br>N        | This survey has been computed and drawn about O S<br>ational Grid.                                                                                                                                                                                                                                                                              |                                         |
| THE CHAMBER IS TO BE PLACED<br>IN POSITION WHILST THE                                  | 2.<br>D        | All levels are in metres and relate to O S National atum by GPS instruments.                                                                                                                                                                                                                                                                    |                                         |
| CONCRETE IS WET IN ORDER<br>— THAT THE CONCRETE TAKES THE<br>SHAPE OF THE CHAMBER BASE | 3.<br>sı       | This survey was measured for a scale of 1:100, any<br>ubsequent enlargements should be verified on site.                                                                                                                                                                                                                                        |                                         |
| <u>J CHAMBER (PPIC)</u><br>im (3000mm FOR REDUCED                                      |                |                                                                                                                                                                                                                                                                                                                                                 |                                         |

CUT TO INTERMEDIATE SIZES <u>SCALE 1:20</u>

450mm

OVER 1200mm)

ACCESS)

MINIMUM WHERE DEPTH

\_\_\_\_\_ A

# Amendments

| Rev | Date | Ву | Chkd |
|-----|------|----|------|
|     |      |    |      |
|     |      |    |      |
|     |      |    |      |
|     |      |    |      |
|     |      |    |      |

| ICIMAS                                                                                                                                                |                                   |                        |       |          |           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|-------|----------|-----------|--|--|--|--|--|
| <b>LIMAS</b><br><b>ENGINEERING</b><br><b>ENVIRONMENTAL</b><br>Jomas Associates Ltd.<br>Unit 24 Sarum Complex,<br>Salisbury Road,<br>Uxbridge, UB8 2RZ |                                   |                        |       |          |           |  |  |  |  |  |
| Project<br>20 V                                                                                                                                       | Project<br>20 WATFORD RD, RADLETT |                        |       |          |           |  |  |  |  |  |
| Drawing                                                                                                                                               |                                   |                        |       |          |           |  |  |  |  |  |
| Proposed Drainage Details                                                                                                                             |                                   |                        |       |          |           |  |  |  |  |  |
| Dwg no                                                                                                                                                |                                   | Checke                 | d     | Surveyor |           |  |  |  |  |  |
| C02                                                                                                                                                   | 2                                 | AW                     |       | -        |           |  |  |  |  |  |
| Date<br>Job No.                                                                                                                                       | 23.05<br><b>P473</b> !            | 5.23<br>5 <b>J2775</b> | Scale | AS SHOWN | Rev.<br>- |  |  |  |  |  |
| Grid                                                                                                                                                  | Contours                          | Level                  | Datum |          | 1         |  |  |  |  |  |
|                                                                                                                                                       |                                   |                        |       |          |           |  |  |  |  |  |

![](_page_55_Figure_0.jpeg)

NOTE: Details for private drainage only.

ACCESS COVER DETAIL

# SEPARATE ACCESS COVER

|                                                                                                     |                                                                                                     |                                                 | SILT TRAP INSPE                                                                                                           |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                     | MIN 10                                                                                              | 00mm COARSE SAND OR<br>GRAVEL SURROUND          |                                                                                                                           |
|                                                                                                     |                                                                                                     |                                                 |                                                                                                                           |
|                                                                                                     |                                                                                                     |                                                 | 150mmØ DISTRIBUTION PIPE L<br>AT 1 IN 150 F<br>PIPE FIXED TO AQUACELL UNI<br>AND SEALED WITH WELD<br>IMPERMEABLE MEMBRANE |
| TANK TO BE SUF<br>WITH 2000 GAUC<br>MEMBRANE PRO<br>NON WOVEN PE<br>GEOTEXTILE FIE<br>SIMILAR APPRO | ROUNDED WITH<br>E IMPERMEABLE<br>TECTED WITH<br>RMEABLE<br>RETEX F32 OR<br>/ED ON TOP,<br>E OF TANK | 0.8m DEEP CELLULAR UNI<br>STRICTLY IN ACCORDANC | PIPE FIXED TO AQUACELL UN<br>AND SEALED WITH WELI<br>IMPERMEABLE MEMBRANE<br>BOTH EN<br>BOTH EN                           |

ATTENUATION TANK SCALE 1:20

| Jo                                                                                                       | 5.110.                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · +/ J.                                                                                                                                                                                                                |                                                                                                                             | <u> </u>                                                                                                                                |                                                                   |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| NOT<br>1.                                                                                                | ES<br>THIS DRA                                                                                                                                                                        | WING IS T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O BE REAL                                                                                                                                                                                                              | ) IN CON                                                                                                                    |                                                                                                                                         | WITH A                                                            |
| 2                                                                                                        |                                                                                                                                                                                       | T SERIES [<br>ITATION.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DESIGN DRA                                                                                                                                                                                                             | AWINGS, S                                                                                                                   | WITH AL                                                                                                                                 | IONS A                                                            |
| 3.                                                                                                       | EUROPEA                                                                                                                                                                               | N STANDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RDS AND I                                                                                                                                                                                                              | BUILDING                                                                                                                    | REGULATI                                                                                                                                | ONS.<br>E TO B                                                    |
|                                                                                                          | REPORTEI<br>PRIOR TO                                                                                                                                                                  | D TO THE<br>CONSTRU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EMPLOYER                                                                                                                                                                                                               | 'S REPRE                                                                                                                    | SENTATIVE                                                                                                                               | E/ENGIN                                                           |
| 4.                                                                                                       | ALL EXIS<br>COMMENC<br>NOTIFY T<br>PROPOSE                                                                                                                                            | TING SERVI<br>CEMENT OF<br>HE ENGINE<br>D WORKS.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ices are<br>Any wor<br>Er immedi                                                                                                                                                                                       | IO BE LC<br>KS. THE<br>ATELY OF                                                                                             | CATED PE<br>CONTRACT<br>ANY COL                                                                                                         | RIOR TO<br>FOR MU                                                 |
| 5.                                                                                                       | FOR GRA<br>FLEXIBLY<br>BS EN29                                                                                                                                                        | VITY SEWE<br>JOINTED U<br>5 OR CONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS, ALL DI<br>JPVC TO E<br>CRETE TO                                                                                                                                                                                    | RAINAGE<br>S EN 140<br>BS5911 F                                                                                             | AND FITTI<br>01—1 OR 0<br>ART 100                                                                                                       | NGS AR<br>Claywa                                                  |
| 6.                                                                                                       | CHAMBER<br>ENGINEER<br>MORTAR<br>CLAUSE                                                                                                                                               | R WALLS 2:<br>RING BRICK<br>OR IN-SIT<br>2602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25 THICK<br>S TO SHW<br>U STRENG                                                                                                                                                                                       | TO BE CO<br>SERIES 2<br>TH CLASS                                                                                            | NSTRUCTE<br>2400 IN D<br>C16/20                                                                                                         | ED IN C<br>ESIGNA<br>CONCRE                                       |
| 7.                                                                                                       | CHAMBER<br>PRECAST                                                                                                                                                                    | WALLS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND COVER<br>E TO BS E                                                                                                                                                                                                  | SLAB TO<br>N 1917 A                                                                                                         | BE CONS                                                                                                                                 | STRUCTE<br>911–3.                                                 |
| 8.                                                                                                       | CONCRET<br>MIXES IN<br>CONCRET                                                                                                                                                        | E MIXES IN<br>ACCORDAI<br>E TO BE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NDICATED (<br>NCE WITH<br>SULPHATE                                                                                                                                                                                     | DN THIS [<br>BS8500—<br>RESISTAN                                                                                            | DRAWING 7<br>1:2006.<br>T                                                                                                               | ARE DES<br>ALL                                                    |
| 9.                                                                                                       | BACKFILL<br>1 SUB-B<br>ACCORDA<br>COMPACT<br>MATTER,<br>COMPACT                                                                                                                       | TO ALL T<br>ASE MATEI<br>NCE WITH<br>IBLE MATE<br>FROZEN S<br>ED IN LAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RENCHES<br>RIAL, ELSE<br>THE SPEC<br>RIAL, FREE<br>OIL CLAY I<br>ÆRS NOT I                                                                                                                                             | UNDER C<br>WHERE B<br>IFICATION<br>FROM R<br>UMPS AN<br>EXCEEDING                                                           | ARRIAGEW<br>ACKFILL T<br>, FREE DF<br>UBBISH A<br>ND LARGE<br>G 150mm                                                                   | AYS TO<br>O BE IN<br>AINING<br>ND ORC<br>STONE<br>THICK.          |
| 10.                                                                                                      | A FLEXIB<br>FEASIBLE<br>PIPE IS E                                                                                                                                                     | LE JOINT S<br>TO OUTSI<br>BUILT, IN A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SHALL BE<br>DE FACE (<br>ACCORDAN(                                                                                                                                                                                     | PROVIDED<br>OF ANY S<br>CE WITH 1                                                                                           | AS CLOS<br>TRUCTURE<br>THE DETAI                                                                                                        | SE AS IS<br>INTO V                                                |
| 11.                                                                                                      | THE GENI<br>WORKMAN<br>FOOTPATI<br>THE MAN<br>VOLUME                                                                                                                                  | ERAL SPEC<br>NSHIPS FOR<br>HS AND O<br>UAL OF CO<br>1. SPECIFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CIFICATION<br>R THE CON<br>THER AREA<br>ONTRACT E<br>CATION OF                                                                                                                                                         | OF MATE<br>ISTRUCTIC<br>S OF HA<br>OCUMENT<br>HIGHWAY                                                                       | RIALS ANI<br>NOF THE<br>RDSTANDI<br>S FOR HI<br>WORKS (                                                                                 | )<br>E ACCE:<br>NG SHA<br>GHWAY<br>(SHW)                          |
| 12.                                                                                                      | ALL PIPE                                                                                                                                                                              | S TO BE L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AID SOFFI                                                                                                                                                                                                              | TO SOF                                                                                                                      | FIT UNLES                                                                                                                               | s note                                                            |
| 13.                                                                                                      | MANHOLE<br>AND SHA<br>RELY ON<br>SHALL BE<br>PARKING<br>CLASS C<br>AND ALL                                                                                                            | COVERS<br>ILL BE OF<br>THE USE<br>USED IN<br>AREAS US<br>SHALL BE<br>COMPARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AND FRAM<br>A NON-RO<br>OF CUSHIO<br>CARRIAGE<br>SED BY AL<br>USED IN<br>BLE LOCAT                                                                                                                                     | ES SHALL<br>DCKING D<br>DN INSER<br>WAYS, HA<br>_ TYPE O<br>FOOTWAY<br>10NS.                                                | COMPLY<br>ESIGN WH<br>IS. CLAS<br>ND SHOU<br>F ROAD N<br>S, PEDES                                                                       | WITH E<br>ICH DOF<br>S D CC<br>LDERS<br>/EHICLE<br>TRIAN <i>F</i> |
| 1.<br>No<br>2.<br>Do<br>3.<br>su                                                                         | not sca<br>y dimen<br>uctural v<br>tional Gri<br>All levels<br>tum by (<br>This surv<br>bsequent                                                                                      | le from c<br>sions to l<br>works cor<br>ey has bed<br>id.<br>are in me<br>GPS instrur<br>rey was me<br>enlargeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments and<br>fo<br>ents should                                                                                                                             | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>l be verif                                          | n <b>gineer l</b><br>rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                     | onal<br>, any<br>e.                                               |
| 1. No<br>2. Do<br>3. su                                                                                  | not sca<br>y dimen<br>uctural v<br>This surv<br>tional Gri<br>All levels<br>tum by (<br>This surv<br>bsequent                                                                         | le from c<br>sions to l<br>vorks cor<br>ey has be<br>d<br>are in me<br>GPS instrur<br>enlargeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments.<br>easured fo<br>ents should                                                                                                                        | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>l be verif                                          | ngineer l<br>rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                             | onal<br>, any<br>e.                                               |
| 1. No<br>2. Do<br>3. su                                                                                  | not sca<br>y dimen<br>uctural v<br>This surv<br>tional Gri<br>All levels<br>tum by (<br>This surv<br>bsequent                                                                         | Ie from c<br>sions to l<br>vorks cor<br>ey has bed<br>d.<br>are in me<br>GPS instru-<br>rey was me<br>enlargeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments and<br>nents should                                                                                                                                  | PDF's.<br>ed by en<br>on site.<br>ed and d<br>relate to<br>r a scale<br>be verif                                            | ngineer l<br>rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                             | onal<br>, any<br>e.                                               |
| 1. No<br>2. Do<br>3. su<br>Rev                                                                           | not sca<br>y dimen<br>uctural v<br>This surv<br>tional Gri<br>All levels<br>tum by (<br>This surv<br>bsequent                                                                         | Ie from c<br>sions to l<br>works cor<br>ey has bed<br>are in me<br>GPS instru-<br>rey was me<br>enlargeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments and<br>nents should                                                                                                                                  | PDF's.<br>ed by en<br>on site.<br>ed and d<br>relate to<br>r a scale<br>l be verif                                          | ngineer l<br>rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                             | onal<br>, any<br>e.                                               |
| 1. No<br>2. Do<br>3. su                                                                                  | not sca<br>y dimen<br>uctural v<br>This surv<br>tional Gri<br>All levels<br>tum by (<br>This surv<br>bsequent                                                                         | ile from c<br>sions to l<br>works cor<br>ey has bed<br>are in me<br>GPS instrur<br>rey was me<br>enlargeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments and<br>nents should                                                                                                                                  | PDF's.<br>ed by en<br>on site.<br>ed and d<br>relate to<br>r a scale<br>l be verif                                          | ngineer l<br>rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                             | onal<br>, any<br>e.                                               |
| A<br>Rev                                                                                                 | menuctural v<br>This surv<br>tional Gri<br>All levels<br>tum by (<br>This surv<br>bsequent                                                                                            | Ide from c<br>sions to l<br>works cor<br>ey has bed<br>d.<br>are in me<br>or Sinstrur<br>rey was me<br>enlargeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments.<br>easured fo<br>ents should<br>nts                                                                                                                 | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>be verif                                            | ngineer l<br>rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                             | before<br>ut 0 S<br>onal<br>, any<br>e.                           |
| <b>A</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b> | men<br>metural v<br>This surv<br>tional Gri<br>All levels<br>This surv<br>bsequent                                                                                                    | ATFC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments.<br>easured fo<br>ents should<br>nts<br>formas Ass<br>Joint 24 Sa<br>Salisbury F<br>Jxbridge,<br>DRD                                                 | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>be verif                                            | rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                                          | By                                                                |
| Do<br>Ke<br>str<br>1. Nc<br>2. Dc<br>3. su<br>A<br>Rev                                                   | men<br>metural v<br>This surv<br>tional Gri<br>All levels<br>This surv<br>bsequent                                                                                                    | er from c<br>sions to l<br>vorks cor<br>ey has bed<br>are in me<br>cPS instru-<br>rey was me<br>enlargeme<br>addme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments.<br>easured fo<br>ents should<br>nts<br>Jint<br>Gine<br>Ron<br>Janis Ass<br>Jalisbury F<br>Jabridge,                                                 | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>be verif                                            | rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                                          | before<br>ut 0 S<br>onal<br>, any<br>e.<br>By                     |
| A<br>Do<br>Ke<br>str<br>1. No<br>2. Do<br>3. su<br>Pro<br>Dra                                            | men<br>mespon<br>not sca<br>y dimen<br>uctural v<br>This surv<br>tional Gri<br>All levels<br>This surv<br>bsequent<br>Date<br>Date                                                    | er from c<br>sions to l<br>vorks cor<br>ey has bed<br>are in me<br>cPS instru-<br>rey was me<br>enlargeme<br>d<br>d<br>me<br>enlargeme<br>d<br>are in me<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correction<br>correct                                                                                                                                                                                                                                                                                                                                                                                                                                                       | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments.<br>easured fo<br>ents should<br>nts<br>formation<br>gine<br>borns Ass<br>Jait 24 Sa<br>Salisbury F<br>Jabridge,<br>DRD                              | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>be verif                                            | rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                                          | before<br>ut 0 S<br>onal<br>, any<br>By<br>DLE                    |
| A<br>Pro<br>Do<br>Dra                                                                                    | men<br>men<br>men<br>men<br>men<br>men<br>men<br>men                                                                                                                                  | In the from c<br>sions to I<br>works cor<br>ey has bee<br>are in me<br>cPS instru-<br>rey was me<br>enlargeme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>adddme<br>addme<br>adddme<br>adddme<br>adddme<br>adddme<br>adddme<br>a       | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments.<br>easured fo<br>ents should<br>nts<br>nts<br>for<br>Salisbury F<br>Jabridge,<br>DRD<br>d Dra<br>Checke                                             | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>be verif                                            | rawn abo<br>O S Nati<br>of 1:100<br>ied on sit                                                                                          | before<br>ut 0 S<br>onal<br>, any<br>e.<br>By<br>DLE              |
| A Rev                                                                                                    | men<br>mespon<br>not sca<br>y dimen<br>uctural v<br>This surv<br>tional Gri<br>All levels<br>tum by (<br>This surv<br>bsequent<br>men<br>Date<br>Date<br>Date<br>Co3<br>e             | er from c<br>sions to l<br>works cor<br>ey has bee<br>are in me<br>enlargeme<br>addme<br>enlargeme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>adddme<br>addme<br>adddme<br>addme<br>addme<br>adddme<br>add | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments.<br>easured fo<br>ents should<br>nts<br>nts<br>Jil<br>Comes Ass<br>Jalisbury F<br>Jabridge,<br>DRD<br>d Dra<br>Checke<br>AW<br>23                    | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>be verif<br>Sociates<br>rum Con<br>Road,<br>UB8 2RZ | rawn abo<br>O S Nati<br>of 1:100<br>ied on sit<br>USS<br>Ltd.<br>plex,<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | By<br>By<br>DLE                                                   |
| A Rev<br>Do Ke str<br>1. No<br>2. Do<br>3. su<br>A Rev<br>Dora                                           | men<br>v dimen<br>uctural v<br>This surv<br>tional Gri<br>All levels<br>tum by (<br>This surv<br>bsequent<br>Date<br>Date<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co<br>Co | Ide from c<br>sions to l<br>works cor<br>ey has bee<br>are in me<br>cPS instrue<br>rey was me<br>enlargeme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>adddme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>addme<br>adddme<br>adddme<br>adddme<br>adddme<br>adddme<br>adddme<br>adddme<br>ad       | opies or<br>be check<br>mmence<br>en comput<br>etres and<br>ments.<br>easured fo<br>ents should<br>nts<br>nts<br>formation<br>omas Ass<br>Jait 24 Sa<br>Salisbury F<br>Jabridge,<br>or<br>Checke<br>AW<br>23<br>5J2775 | PDF's.<br>ed by er<br>on site.<br>ed and d<br>relate to<br>r a scale<br>be verif                                            | rawn abo<br>O S Nati<br>of 1:100<br>ied on sit<br>Con Sit<br>Con Sit<br>Con Sit<br>Con Sit<br>Con Sit<br>Con Sit<br>Con Sit<br>Con Sit  | before<br>ut 0 S<br>onal<br>, any<br>e.<br>By<br>DLE              |

![](_page_55_Figure_18.jpeg)

![](_page_55_Figure_19.jpeg)

![](_page_55_Figure_20.jpeg)

LL UNITS WELDED RANE AT

![](_page_56_Figure_0.jpeg)

|                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| +                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Job. No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D47051077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rev.                                                                                                                                                                                                                                                                                                                                                                            |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P4735J277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /5                                                                                                                                                                                                                                                                                                                                                                              |
|                                | <ol> <li>THIS DRAWING<br/>CONJUNCTION<br/>SPECIFICATION<br/>EUROPEAN S<sup>-</sup></li> <li>CONSTRUCTIO<br/>EUROPEAN S<sup>-</sup></li> <li>ALL DIMENSIC<br/>ABOVE LOCAL</li> <li>ANY DISCREP<br/>REPORTED TO<br/>PRIOR TO CO</li> <li>ALL EXISTING<br/>COMMENCEME<br/>NOTIFY THE E<br/>THE PROPOSE</li> <li>THE GENERAL<br/>WORKMANSHIF<br/>ROAD, FOOTP<br/>SHALL BE TH<br/>HIGHWAY WOF<br/>WORKS (SHW)</li> <li>ALL RWP AND<br/>TO APPROVAL</li> <li>UNLESS NOTE<br/>FOUL PIPE<br/>FOUL PIPE<br/>FOUL PIPE</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G IS FOR PLANNING ONLY<br>WITH ALL RELEVANT SERI<br>NS AND DOCUMENTATION.<br>N TO BE IN ACCORDANCE<br>FANDARDS AND BUILDING F<br>NS ARE IN MILLIMETRES A<br>DATUM.<br>ANCIES IN THE DETAILS SH<br>D THE EMPLOYER'S REPRES<br>NSTRUCTION.<br>SERVICES ARE TO BE LOO<br>NT OF ANY WORKS. THE CONSTRUCTION.<br>SERVICES ARE TO BE LOO<br>NT OF ANY WORKS. THE CONSTRUCTION.<br>SERVICES ARE TO BE LOO<br>NT OF ANY WORKS. THE CONSTRUCTION.<br>SERVICES ARE TO BE LOO<br>NT OF ANY WORKS. THE CONSTRUCTION<br>SERVICES ARE TO BE LOO<br>NT OF ANY WORKS. THE CONSTRUCTION<br>SERVICES ARE TO BE LOO<br>NT OF ANY WORKS. THE CONSTRUCTION<br>ATHS AND OTHER AREAS<br>MANUAL OF CONTRACT<br>SE YOLUME 1. SPECIFICATI<br>O PUBLISHED BY THE STAT<br>O FO SHOWN ARE INDICATI<br>AND SETTING OUT BY THE<br>SE UNDER BUILDING Ø100@1 | AND IS TO BE READ IN<br>ES DESIGN DRAWINGS,<br>WITH ALL BRITISH AND<br>REGULATIONS.<br>ND LEVELS IN METRES<br>HOWN ARE TO BE<br>ENTATIVE/ENGINEER<br>CATED PRIOR TO THE<br>CONTRACTOR MUST<br>ANY CONFLICT WITH<br>HALS AND<br>N OF THE ACCESS<br>OF HARDSTANDING<br>DOCUMENTS FOR<br>TION OF HIGHWAY<br>IONARY OFFICE.<br>VE ONLY AND SUBJECT<br>TE ARCHITECT.<br>BE:<br>1:40, |
|                                | SURFACE SURFACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ORMWATER CO<br>GEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NCEPT                                                                                                                                                                                                                                                                                                                                                                           |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | 18.30x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Proposed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level                                                                                                                                                                                                                                                                                                                                                                           |
|                                | FFL 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .90 Finished i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overland                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TIOW                                                                                                                                                                                                                                                                                                                                                                            |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Notes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Copyright of the No responsibility of the No r | nis plan is held by Jom<br>ity is taken for amendr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | as Associates Ltd.<br>nents by others.                                                                                                                                                                                                                                                                                                                                          |
|                                | Do not scale fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rom copies or PDF's.<br>ns to be checked by en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | igineer before major                                                                                                                                                                                                                                                                                                                                                            |
|                                | structural work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ks commence on site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 ,                                                                                                                                                                                                                                                                                                                                                                             |
|                                | 1. This survey h<br>National Grid.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | as been computed and dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | awn about O S                                                                                                                                                                                                                                                                                                                                                                   |
|                                | 2. All levels are<br>Datum by GPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in metres and relate to instruments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O S National                                                                                                                                                                                                                                                                                                                                                                    |
|                                | 3. This survey w<br>subsequent enlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vas measured for a scale<br>orgements should be verifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of 1:100, any<br>ed on site.                                                                                                                                                                                                                                                                                                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Amendi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Rev Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | By Chkd                                                                                                                                                                                                                                                                                                                                                                         |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
| PAPETTINE AND IN THE REPORT OF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ΠΜΔ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENGINEERIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 115                                                                                                                                                                                                                                                                                                                                                                             |
|                                | EN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | VIRONMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TAL                                                                                                                                                                                                                                                                                                                                                                             |
|                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jomas Associates L<br>Unit 24 Sarum Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .td.<br>plex,                                                                                                                                                                                                                                                                                                                                                                   |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Salisbury Road,<br>Uxbridge, UB8 2RZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | 20 WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TFORD RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RADLETT                                                                                                                                                                                                                                                                                                                                                                         |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
| +                              | Drawing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Propo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sed Overlar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd Flow                                                                                                                                                                                                                                                                                                                                                                         |
| -                              | Dwg no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Surveyor                                                                                                                                                                                                                                                                                                                                                                        |
|                                | Date 2<br>Job No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.05.23 Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:100<br>Rev                                                                                                                                                                                                                                                                                                                                                                    |
| -                              | P4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 735J2775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                               |
|                                | Grid Conto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ours Level Datum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |

![](_page_57_Figure_0.jpeg)

|                                   |                                                                             | P4735J2775                                                                                                                                                                                                        |                                             | Re            |
|-----------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|
| DRAI                              | NAGE NOTE                                                                   | S                                                                                                                                                                                                                 |                                             | •             |
| 1. TH<br>CH<br>RI<br>DI           | HIS DRAWIN<br>ONSTRUCTIO<br>ELEVANT SI<br>OCUMENTAT                         | IG IS FOR PLANNING ONLY AND IS NO<br>DN. IT IS TO BE READ IN CONJUNCTIO<br>ERIES DESIGN DRAWINGS, SPECIFICATI<br>FION.                                                                                            | DT FOR<br>DN WITI<br>ONS AN                 | H ALL<br>ND   |
| 2. C<br>El                        | ONSTRUCTIO                                                                  | ON TO BE IN ACCORDANCE WITH ALL<br>TANDARDS AND BUILDING REGULATIO                                                                                                                                                | BRITIS<br>NS.                               | H ANE         |
| 4. A                              | BOVE LOCA                                                                   | DNS ARE IN MILLIMETRES AND LEVELS<br>IL DATUM.<br>PANCIES IN THE DETAILS SHOWN ARE                                                                                                                                | TO BE                                       |               |
| RI<br>PI<br>5. Al                 | EPORTED T<br>RIOR TO CO<br>LL EXISTINO                                      | O THE EMPLOYER'S REPRESENTATIVE,<br>DNSTRUCTION.<br>G SERVICES ARE TO BE LOCATED PRI                                                                                                                              | /ENGINE<br>OR TO                            | EER<br>THE    |
| C<br>N<br>Tł                      | OMMENCEMI<br>OTIFY THE<br>HE PROPOS                                         | ENT OF ANY WORKS. THE CONTRACTO<br>ENGINEER IMMEDIATELY OF ANY CONF<br>ED WORKS.                                                                                                                                  | OR MUS<br>FLICT V                           | st<br>Vith    |
| 6. TH<br>W<br>RI<br>SI<br>HI<br>W | HE GENERA<br>ORKMANSH<br>OAD, FOOTH<br>HALL BE TH<br>IGHWAY WO<br>ORKS (SHW | L SPECIFICATION OF MATERIALS AND<br>IPS FOR THE CONSTRUCTION OF THE<br>PATHS AND OTHER AREAS OF HARDS<br>HE MANUAL OF CONTRACT DOCUMENT<br>RKS, VOLUME 1. SPECIFICATION OF H<br>I) PUBLISHED BY THE STATIONARY OI | ACCES<br>TANDIN<br>S FOR<br>IGHWA<br>FFICE. | is<br>Ig<br>Y |
| 7. N<br>RI                        | ODE NUMBE<br>EPORT                                                          | ERS REFER TO CALCULATIONS WITHIN                                                                                                                                                                                  | DRAIN                                       | AGE           |
| 8. A<br>O<br>A                    | LL DRAINA(<br>NLY AND S<br>PPROVAL.                                         | GE INCLUDING RWP AND FO SHOWN A<br>UBJECT TO DETAILED DESIGN AND CO                                                                                                                                               | RE IND<br>DUNCIL                            | ICATI         |
| 9. N<br>T(<br>PI<br>DI            | OTE THE P<br>D BE REVIS<br>ROTECTION<br>RAINAGE IN                          | RESENCE OF NUMEROUS TREES. DRAI<br>ED AS NECESSARY TO ACCOMMODAT<br>AND HAND DIGGING MAY BE REQUIRE<br>ISTALLATION.                                                                                               | NAGE [<br>E TREE<br>ED FOR                  | DESIGN        |
| 10.U                              | NLESS NOT<br>FOUL PIPE<br>FOUL PIPE<br>SURFACE                              | ED OTHERWISE, PIPES TO BE:<br>ES UNDER BUILDING Ø100@1:40,<br>ES EXTERNAL Ø100@1:80,<br>WATER PIPES Ø150@1:100                                                                                                    |                                             |               |
|                                   |                                                                             |                                                                                                                                                                                                                   |                                             |               |
|                                   |                                                                             |                                                                                                                                                                                                                   |                                             |               |
|                                   |                                                                             |                                                                                                                                                                                                                   |                                             |               |
|                                   |                                                                             |                                                                                                                                                                                                                   |                                             |               |
| Not                               | es.                                                                         |                                                                                                                                                                                                                   |                                             |               |
| 1. Ti<br>Nati                     | nis survey<br>onal Grid.                                                    | has been computed and drawn abou                                                                                                                                                                                  | tos                                         |               |
| 2. A<br>Datı                      | II levels ar<br>ım by GPS                                                   | e in metres and relate to 0 S Natio<br>instruments.                                                                                                                                                               | nal                                         |               |
| SUD                               | sequent en                                                                  | argements should be vermed on site                                                                                                                                                                                |                                             |               |
|                                   |                                                                             |                                                                                                                                                                                                                   |                                             |               |
| Ar                                | nend                                                                        | ments                                                                                                                                                                                                             | _                                           |               |
| Ar<br><sub>Rev</sub>              | nend                                                                        | ments                                                                                                                                                                                                             | By                                          | Chk           |
|                                   |                                                                             |                                                                                                                                                                                                                   |                                             |               |
| <b>r</b><br>,<br>                 | Date                                                                        |                                                                                                                                                                                                                   | By                                          | Cr            |
| Ar<br>Rev                         |                                                                             | ments                                                                                                                                                                                                             | By                                          |               |
| Ar                                |                                                                             | ments                                                                                                                                                                                                             | By                                          | Chl           |
| Ar<br>Rev                         | nend                                                                        | ments                                                                                                                                                                                                             | By                                          |               |
| Ar<br>Rev<br>Proje                | nend                                                                        | ments                                                                                                                                                                                                             | By                                          | Chi           |

| Dwg no  |            | Checke | d     | Surveyor   |      |  |  |  |  |  |
|---------|------------|--------|-------|------------|------|--|--|--|--|--|
| C05     | 5          | AW     |       | -          |      |  |  |  |  |  |
| Date    | 23.0       | 5.23   | Scale | 1:100 @ A1 |      |  |  |  |  |  |
| Job No. |            |        |       |            | Rev. |  |  |  |  |  |
|         | P4735J2775 |        |       |            |      |  |  |  |  |  |
| Grid    | Contours   | Level  | Datum |            | -    |  |  |  |  |  |
|         |            |        |       |            |      |  |  |  |  |  |

|                   | JOMAS      |           |                   | File: Wa          | atford Way  | Infiltration.p | Page 1              |
|-------------------|------------|-----------|-------------------|-------------------|-------------|----------------|---------------------|
| CALICELANY C      |            |           |                   | Networ            | k: Storm N  | etwork         | WATFORD WAY RADLETT |
| CAUSEWAT 😡        |            |           |                   | Andrew            | Wallace     |                | INFILTRATION DESIGN |
|                   |            |           |                   | 23/05/            | 0023        |                |                     |
|                   |            |           |                   | 23/03/2           | 2023        |                |                     |
|                   |            |           | Desig             | n Settings        |             |                |                     |
|                   |            |           | <u></u>           | <u>n settings</u> |             |                |                     |
|                   | Rainfall M | ethodolo  | gv FEH-13         | 3                 | Minim       | um Velocity (  | m/s) 1.00           |
|                   | Return Pe  | riod (vea | rs) 10            |                   |             | Connection     | Type Level Soffits  |
|                   | Addition   | al Flow ( | %) 0              | Mi                | nimum Bar   | kdron Height   | t (m) 0 200         |
|                   | / laurelon |           | /0, 0<br>CV 0.750 |                   | Droforroc   | l Cover Denth  | (m) = 0.200         |
|                   | Time of F  | ntry (mir | (200, 200)        |                   | nclude Inte | rmediate Gro   | aund x              |
| Maximum Time of   | Concentra  | tion (mir | (3) 2.00          | Enfor             | nciuue inte | ctico docign   |                     |
| Iviaximum mile of |            | nii (mm/l | 15) 50.00         | EIIIOI            | ce best pra | ctice design   | Tules x             |
| IVIAXII           | num Kainia |           | 11) 50.0          |                   |             |                |                     |
|                   |            |           | <u>Adoptable</u>  | Manhole 1         | <u>Type</u> |                |                     |
| Мах               | Width (mn  | n) Diar   | neter (mm)        | Max V             | Vidth (mm   | ) Diameter     | (mm)                |
|                   | 37         | 74<br>74  | 1200              |                   | 749         | )              | 1500                |
|                   | 49         | 9         | 1350              |                   | 900         | )              | 1800                |
|                   |            |           | 2000              | I                 |             |                |                     |
|                   |            |           | >900 L            | ink+900 mn        | า           |                |                     |
| <b>N</b> 4-       | v Dowth /w |           |                   |                   | anth (m)    | Diamatar /     |                     |
| IVIa              |            | n) Diar   | neter (mm)        | IVIAX L           |             | Diameter (r    | nm)                 |
|                   | 1.50       | 0         | 1050              |                   | 99.999      | T              | .200                |
|                   |            |           | <u>Circula</u>    | ar Link Type      | <u>!</u>    |                |                     |
|                   | S          | hane (    | ircular           | Auto Increi       | ment (mm)   | 75             |                     |
|                   | Ba         | arrels 1  | -                 | Folle             | ow Ground   | x              |                     |
|                   |            |           | Available I       | Diameters (       | mm)         |                |                     |
|                   |            |           | 100               | 150               | -           |                |                     |
|                   |            |           | <u>I</u>          | <u>Nodes</u>      |             |                |                     |
| Name              | Area       | T of E    | Cover             | Diameter          | Easting     | Northing       | Depth               |
|                   | (ha)       | (mins)    | Level             | (mm)              | (m)         | (m)            | (m)                 |
|                   | • •        |           | (m)               |                   |             |                |                     |
| 1                 |            |           | 102.700           | 1200              | 100.000     | 100.000        | 0.300               |
| 2                 |            |           | 102.700           | 450               | 98.000      | 105.000        | 0.300               |
| 3                 | 0.040      | 2.00      | 102.600           | 1200              | 97.000      | 108.000        | 1.900               |
| 4                 | 0.040      | 2 00      | 102 000           | 450               | 80,000      | 113 000        | 1 100               |
| 5                 | 0.040      | 2.00      | 102.000           | 450               | 75 000      | 125.000        | 0.750               |
| 5                 | 0.020      | 2.00      | 98 533            | 1200              | 75.000      | 1/0 000        | 1 533               |
| 7                 | 0.010      | 2.00      | 102 000           | 450               | 000 000     | 110.000        | 1 200               |
| /<br>Q            | 0.030      | 2.00      | 102.000           | 450               | 102 000     | 125 000        | 1.200               |
| 8                 | 0.050      | 2.00      | 102.000           | 450               | 102.000     | 125.000        | 0.850               |
| 9                 | 0.000      | 2.00      | 98.800            | 450               | 95.000      | 160.000        | 0.850               |
| 10                | 0.050      | 2.00      | 98.800            | 450               | 95.000      | 150.000        | 0.750               |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |
|                   |            |           |                   |                   |             |                |                     |

| CAUSEWAY 🜍 |       |      |      | JOM   | 4S    |           |              | File<br>Net<br>And<br>23/0 | Watfo<br>work: S<br>rew W<br>05/202 | ord Way  <br>Storm Ne<br>allace<br>3 | on.p           | Page 2<br>WATFORD WAY RADLETT<br>INFILTRATION DESIGN |                   |         |
|------------|-------|------|------|-------|-------|-----------|--------------|----------------------------|-------------------------------------|--------------------------------------|----------------|------------------------------------------------------|-------------------|---------|
|            |       |      |      |       |       |           |              | <u>Links</u>               |                                     |                                      |                |                                                      |                   |         |
|            | Name  | US   | DS   | Leng  | gth   | ks (mm) / | US I         | L D                        | SIL                                 | Fall                                 | Slope          | Dia                                                  | T of C            | Rain    |
|            |       | Node | Node | e (m  | )     | n         | (m)          | (                          | m)                                  | (m)                                  | (1:X)          | (mn                                                  | n) (mins)         | (mm/hr) |
|            | 1.004 | 2    | 1    | 5.3   | 85    | 0.600     | 102.5        | 00 102                     | .400                                | 0.100                                | 53.9           | 10                                                   | 0 2.70            | 50.0    |
|            | 1.003 | 3    | 2    | 3.1   | .62   | 0.600     | 100.7        | 100 102                    | 2.400                               | -1.700                               | -1.9           | 22                                                   | 25 2.62           | 50.0    |
|            | 1.002 | 4    | 3    | 17.7  | 20    | 0.600     | 100.9        |                            | 0.700                               | 0.200                                | 88.6           | 22                                                   | 25 2.56           | 50.0    |
|            | 1.001 | 5    | 4    | 13.0  | 000   | 0.600     | 101.2        | 50 100                     | 0.900                               | 0.350                                | 37.1           | 22                                                   | 25 2.35           | 50.0    |
|            | 1.000 | 6    | 5    | 15.0  | 000   | 0.600     | 97.0         |                            | 450                                 | -4.450                               | -3.4           | 15                                                   | 0 2.25            | 50.0    |
|            | 2.001 | /    | 3    | 2.8   | 28    | 0.600     | 100.8        |                            | 0.700                               | 0.100                                | 28.3           | 15                                                   | 0 2.25            | 50.0    |
|            | 2.000 | 8    | /    | 15.2  | .97   | 0.600     | 101.0        |                            | 0.800                               | 0.200                                | /6.5           | 15                                                   | 0 2.22            | 50.0    |
|            | 3.000 | 10   | 9    | 10.0  | 000   | 0.600     | 98.0         | 50 97                      | .950                                | 0.100                                | 100.0          | 15                                                   | 50 2.17           | 50.0    |
|            |       | N    | lame | Vel   | Сар   | Flow      | US           | DS                         | ΣAre                                | ea ΣA                                | dd F           | Pro                                                  | Pro               |         |
|            |       |      |      | (m/s) | (I/s) | (I/s)     | Depth<br>(m) | Depth<br>(m)               | (ha                                 | ) Infle<br>(I/:                      | ow De<br>s) (n | epth<br>nm)                                          | Velocity<br>(m/s) |         |
|            |       | 1    | .004 | 1.052 | 8.3   | 23.0      | 0.100        | 0.200                      | 0.17                                | 70 (                                 | D.O            | 100                                                  | 1.080             |         |
|            |       | 1    | .003 | 1.000 | 39.8  | 23.0      | 1.675        | 0.075                      | 0.17                                | 70 (                                 | 0.0            | 225                                                  | 0.000             |         |
|            |       | 1    | .002 | 1.389 | 55.2  | 9.5       | 0.875        | 1.675                      | 0.07                                | 70 (                                 | 0.0            | 63                                                   | 1.044             |         |
|            |       | 1    | .001 | 2.153 | 85.6  | 4.1       | 0.525        | 0.875                      | 0.03                                | 30 (                                 | 0.0            | 33                                                   | 1.110             |         |
|            |       | 1    | .000 | 1.000 | 17.7  | 1.4       | 1.383        | 0.400                      | 0.01                                | LO (                                 | 0.0            | 150                                                  | 0.000             |         |
|            |       | 2    | .001 | 1.900 | 33.6  | 8.1       | 1.050        | 1.750                      | 0.06                                | 50 (                                 | 0.0            | 50                                                   | 1.568             |         |
|            |       | 2    | .000 | 1.150 | 20.3  | 4.1       | 0.850        | 1.050                      | 0.03                                | 30 (                                 | 0.0            | 45                                                   | 0.900             |         |
|            |       | 2    | 000  | 1 005 | 170   | 69        | 0 600        | 0 700                      | 0.01                                | 0                                    | <u>م</u> د     | 61                                                   | 0 0 2 7           |         |

#### **Pipeline Schedule**

| Link  | Length<br>(m) | Slope<br>(1:X) | Dia<br>(mm) | Link<br>Type | US CL<br>(m) | US IL<br>(m) | US Depth<br>(m) | DS CL<br>(m) | DS IL<br>(m) | DS Depth<br>(m) |
|-------|---------------|----------------|-------------|--------------|--------------|--------------|-----------------|--------------|--------------|-----------------|
| 1.004 | 5.385         | 53.9           | 100         | Circular     | 102.700      | 102.500      | 0.100           | 102.700      | 102.400      | 0.200           |
| 1.003 | 3.162         | -1.9           | 225         | Circular     | 102.600      | 100.700      | 1.675           | 102.700      | 102.400      | 0.075           |
| 1.002 | 17.720        | 88.6           | 225         | Circular     | 102.000      | 100.900      | 0.875           | 102.600      | 100.700      | 1.675           |
| 1.001 | 13.000        | 37.1           | 225         | Circular     | 102.000      | 101.250      | 0.525           | 102.000      | 100.900      | 0.875           |
| 1.000 | 15.000        | -3.4           | 150         | Circular     | 98.533       | 97.000       | 1.383           | 102.000      | 101.450      | 0.400           |
| 2.001 | 2.828         | 28.3           | 150         | Circular     | 102.000      | 100.800      | 1.050           | 102.600      | 100.700      | 1.750           |
| 2.000 | 15.297        | 76.5           | 150         | Circular     | 102.000      | 101.000      | 0.850           | 102.000      | 100.800      | 1.050           |
| 3.000 | 10.000        | 100.0          | 150         | Circular     | 98.800       | 98.050       | 0.600           | 98.800       | 97.950       | 0.700           |

| Link  | US   | Dia  | Node    | МН        | DS   | Dia  | Node    | MH        |
|-------|------|------|---------|-----------|------|------|---------|-----------|
|       | Node | (mm) | Туре    | Туре      | Node | (mm) | Туре    | Туре      |
| 1.004 | 2    | 450  | Manhole | Adoptable | 1    | 1200 | Manhole | Adoptable |
| 1.003 | 3    | 1200 | Manhole | Adoptable | 2    | 450  | Manhole | Adoptable |
| 1.002 | 4    | 450  | Manhole | Adoptable | 3    | 1200 | Manhole | Adoptable |
| 1.001 | 5    | 450  | Manhole | Adoptable | 4    | 450  | Manhole | Adoptable |
| 1.000 | 6    | 1200 | Manhole | Adoptable | 5    | 450  | Manhole | Adoptable |
| 2.001 | 7    | 450  | Manhole | Adoptable | 3    | 1200 | Manhole | Adoptable |
| 2.000 | 8    | 450  | Manhole | Adoptable | 7    | 450  | Manhole | Adoptable |
| 3.000 | 10   | 450  | Manhole | Adoptable | 9    | 450  | Manhole | Adoptable |

![](_page_60_Picture_0.jpeg)

| File: Watford Way Infiltration.p | Page 3              |
|----------------------------------|---------------------|
| Network: Storm Network           | WATFORD WAY RADLETT |
| Andrew Wallace                   | INFILTRATION DESIGN |
| 23/05/2023                       |                     |

| Node     | Easting      | Northing     | CL<br>(m)      | Depth          | Dia<br>(mm)  | Connectio                                                  | ns     | Link    | IL<br>(m)      | Dia<br>(mm) |
|----------|--------------|--------------|----------------|----------------|--------------|------------------------------------------------------------|--------|---------|----------------|-------------|
| 1        | ( <b>m</b> ) | ( <b>m</b> ) | (m)<br>102 700 | (m)            | (mm)<br>1200 | 1                                                          | 1      | 1 004   | (m)<br>102.400 | (mm)<br>100 |
| Ŧ        | 100.000      | 100.000      | 102.700        | 0.500          | 1200         |                                                            | 1      | 1.004   | 102.400        | 100         |
| 2        | 98.000       | 105.000      | 102.700        | 0.300          | 450          | 1                                                          | 1      | 1.003   | 102.400        | 225         |
|          |              |              |                |                |              | $Q$                                                        | 0      | 1 004   | 102 500        | 100         |
| 2        | 97 000       | 108 000      | 102 600        | 1 900          | 1200         | 0                                                          | 1      | 2 001   | 102.300        | 150         |
| 5        | 57.000       | 100.000      | 102.000        | 1.500          | 1200         | 2                                                          | 2      | 1.002   | 100.700        | 225         |
|          |              |              |                |                |              |                                                            | 0      | 1.003   | 100.700        | 225         |
| 4        | 80.000       | 113.000      | 102.000        | 1.100          | 450          |                                                            | 1      | 1.001   | 100.900        | 225         |
|          |              |              |                |                |              |                                                            | 0      | 1.002   | 100.900        | 225         |
| 5        | 75.000       | 125.000      | 102.000        | 0.750          | 450          |                                                            | 1      | 1.000   | 101.450        | 150         |
| <u> </u> | 75.000       | 140.000      | 00 522         | 1 5 2 2        | 1200         | 0                                                          | 0      | 1.001   | 101.250        | 225         |
| 0        | 75.000       | 140.000      | 96.555         | 1.555          | 1200         | $\square$                                                  |        |         |                |             |
|          |              |              |                |                |              | 0<br>0                                                     | 0      | 1.000   | 97.000         | 150         |
| 7        | 99.000       | 110.000      | 102.000        | 1.200          | 450          | $\int$                                                     | 1      | 2.000   | 100.800        | 150         |
|          |              |              |                |                |              | 0 2                                                        | 0      | 2.001   | 100.800        | 150         |
| 8        | 102.000      | 125.000      | 102.000        | 1.000          | 450          | $\bigcirc$                                                 |        |         |                |             |
|          |              |              |                |                |              | o v                                                        | 0      | 2.000   | 101.000        | 150         |
| 9        | 95.000       | 160.000      | 98.800         | 0.850          | 450          | $\left  \begin{array}{c} \phi \\ \phi \end{array} \right $ | 1      | 3.000   | 97.950         | 150         |
| 10       | 95.000       | 150.000      | 98.800         | 0.750          | 450          |                                                            |        |         |                |             |
|          |              |              |                |                |              |                                                            | 0      | 3.000   | 98.050         | 150         |
|          |              |              |                | <u>Simulat</u> | ion Set      | <u>tings</u>                                               |        |         |                |             |
|          | Rainfall N   | Methodolog   | y FSR          |                |              | An                                                         | alysis | Speed   | Normal         |             |
|          |              | M5-60 (mm    | 1 England      | u anu vva      | les          | SKIP<br>Drain Down                                         | Time   | (mins)  | x<br>2/10      |             |
|          |              | Ratio-I      | R 0.400        |                |              | Additional Sto                                             | rage   | (m³/ha) | 0.0            |             |
|          |              | Summer C     | V 0.750        |                |              | Check Disch                                                | arge   | Rate(s) | X              |             |
|          |              | Winter C     | V 0.840        |                |              | Check Disch                                                | arge   | /olume  | x              |             |

Flow+ v10.4 Copyright © 1988-2023 Causeway Technologies Ltd

2880

5760

8640

480 720 1440

120 240

30

| JOMAS                                           | File: Watford Way Infiltration.p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Page 4                 |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|--|--|--|--|--|--|--|
| CALICEVAAY C                                    | Network: Storm Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WATFORD WAY RADLETT    |  |  |  |  |  |  |  |  |  |  |
| CAUSEVVAI 🥑                                     | Andrew Wallace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INFILTRATION DESIGN    |  |  |  |  |  |  |  |  |  |  |
|                                                 | 23/05/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |  |  |  |  |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| Return Period Climate Change                    | Additional Area Additional Flo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W                      |  |  |  |  |  |  |  |  |  |  |
| (years) (CC %)                                  | (A %) (Q %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                      |  |  |  |  |  |  |  |  |  |  |
| 1 0                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                      |  |  |  |  |  |  |  |  |  |  |
| 20 0<br>10 0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                      |  |  |  |  |  |  |  |  |  |  |
| 100 0                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                      |  |  |  |  |  |  |  |  |  |  |
| 100 0                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                      |  |  |  |  |  |  |  |  |  |  |
| 100 40                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                      |  |  |  |  |  |  |  |  |  |  |
| Node 6 Online De                                | Node 6 Online Depth/Flow Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |  |  |  |  |  |  |  |  |  |  |
| Flap Valve x Replaces Downstrear                | n Link   ✓            Invert Level (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97.000                 |  |  |  |  |  |  |  |  |  |  |
| Depth Flow                                      | Depth Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |  |  |  |  |  |  |  |  |  |  |
| (m) (I/s)                                       | (m) (I/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |  |  |  |  |  |  |  |  |  |  |
| 0.001 50.000                                    | 5.000 50.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |  |  |  |  |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| Node 3 Depth/Are                                | a Storage Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |  |  |  |  |  |  |  |  |  |
| Base Inf Coefficient (m/br) 1 80000 Safety Fac  | ctor 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | evel (m) 100 800       |  |  |  |  |  |  |  |  |  |  |
| Side Inf Coefficient (m/hr) 1.80000 Poro        | sity 0.30 Time to half empt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ty (mins) 0            |  |  |  |  |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| Depth Area Inf Area Depth Ar                    | ea Inf Area Depth Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inf Area               |  |  |  |  |  |  |  |  |  |  |
| (m) (m²) (m²) (m) (m                            | 1 <sup>2</sup> ) (m <sup>2</sup> ) (m) (m <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (m²)                   |  |  |  |  |  |  |  |  |  |  |
| 0.000 130.0 130.0 1.300 130                     | 0.0 130.0 1.301 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130.0                  |  |  |  |  |  |  |  |  |  |  |
|                                                 | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |  |  |  |  |  |  |  |  |  |  |
| Node 9 Depth/Are                                | a Storage Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |  |  |  |  |  |  |  |  |  |
| Base Inf Coefficient (m/hr) 1.80000 Safety Fa   | ictor 2.0 Invert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Level (m) 97.800       |  |  |  |  |  |  |  |  |  |  |
| Side Inf Coefficient (m/hr) 1.80000 Pore        | osity 1.00 Time to half emp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ty (mins) 23           |  |  |  |  |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| Depth Area Inf Area Depth Are                   | ea Inf Area Depth Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Inf Area               |  |  |  |  |  |  |  |  |  |  |
| (m) (m²) (m²) (m) (m                            | ²) (m²) (m) (m²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (m²)                   |  |  |  |  |  |  |  |  |  |  |
| 0.000 20.0 20.0 0.600 20                        | .0 20.0 0.601 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.0                   |  |  |  |  |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| <u>Other (</u>                                  | <u>defaults)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |  |  |  |  |  |  |  |  |  |  |
| Entry Loss (manhole) 0.250 Entry Loss (junctiv  | an) 0.000 Apply Recommer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |  |  |  |  |  |  |  |  |  |  |
| Entry Loss (manhole) 0.250 Entry Loss (junction | (200) $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200)$ $(200$ | and Risk $(m) = 0.300$ |  |  |  |  |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| Rai                                             | nfall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |  |  |  |  |  |  |  |  |  |  |
| Event                                           | Dook Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |  |  |  |  |  |  |  |  |  |  |
| Event                                           | Peak Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |  |  |  |  |  |  |  |  |  |  |
|                                                 | (mm/br) (mm/br)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 15 minute summe                          | (11111/117) (11111/117)<br>r 102.922 20.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 15 minute summe                          | 72 865 20 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 30 minute summe                          | r 67 515 10 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 30 minute winter                         | 47 379 19 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 60 minute summe                          | r 45.726 12.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 60 minute summe                          | 30.379 12.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 120 minute summ                          | er 28.340 7.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 120 minute winter                        | 18.828 7.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 180 minute summ                          | er 21.894 5.634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 180 minute winter                        | 14.231 5.634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 240 minute summ                          | er 17.401 4.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 240 minute winter                        | r 11.561 4.599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |  |  |  |  |  |  |  |  |  |  |
| 1 year 360 minute summ                          | er 13.397 3.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |  |  |  |  |  |  |  |  |  |  |
| Flow+ v10.4 Copyright © 1988-                   | 2023 Causeway Technologies Ltd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |  |  |  |  |  |  |  |  |  |  |

![](_page_62_Picture_0.jpeg)

| Event                          | Peak<br>Intensity<br>(mm/hr) | Average<br>Intensity<br>(mm/br) |
|--------------------------------|------------------------------|---------------------------------|
| 1 year 360 minute winter       | 8 709                        | 3 448                           |
| 1 year 480 minute summer       | 10 573                       | 2.79 <i>1</i>                   |
| 1 year 480 minute winter       | 7 02/                        | 2.754                           |
| 1 year 600 minute summer       | 7.024<br>9.677               | 2.734                           |
| 1 year 600 minute winter       | 0.0//<br>E 020               | 2.373                           |
| 1 year 720 minute summer       | 5.929<br>7.750               | 2.373                           |
| 1 year 720 minute summer       | 7.750                        | 2.077                           |
| 1 year 720 minute winter       | 5.209                        | 2.077                           |
| 1 year 960 minute summer       | 6.393                        | 1.683                           |
| 1 year 960 minute winter       | 4.235                        | 1.683                           |
| 1 year 1440 minute summer      | 4.6/1                        | 1.252                           |
| 1 year 1440 minute winter      | 3.140                        | 1.252                           |
| 1 year 2160 minute summer      | 3.372                        | 0.932                           |
| 1 year 2160 minute winter      | 2.323                        | 0.932                           |
| 1 year 2880 minute summer      | 2.820                        | 0.756                           |
| 1 year 2880 minute winter      | 1.895                        | 0.756                           |
| 1 year 4320 minute summer      | 2.149                        | 0.562                           |
| 1 year 4320 minute winter      | 1.415                        | 0.562                           |
| 1 year 5760 minute summer      | 1.779                        | 0.455                           |
| 1 year 5760 minute winter      | 1.151                        | 0.455                           |
| 1 year 7200 minute summer      | 1.517                        | 0.387                           |
| 1 year 7200 minute winter      | 0.979                        | 0.387                           |
| 1 year 8640 minute summer      | 1.329                        | 0.339                           |
| 1 year 8640 minute winter      | 0.858                        | 0.339                           |
| 1 year 10080 minute summer     | 1.188                        | 0.303                           |
| 1 year 10080 minute winter     | 0.767                        | 0.303                           |
| 10 year 15 minute summer       | 200.971                      | 56.868                          |
| 10 year 15 minute winter       | 141.032                      | 56.868                          |
| 10 year 30 minute summer       | 129.855                      | 36.744                          |
| 10 year 30 minute winter       | 91.126                       | 36.744                          |
| 10 year 60 minute summer       | 86.243                       | 22.792                          |
| 10 year 60 minute winter       | 57.298                       | 22.792                          |
| 10 year 120 minute summer      | 52.179                       | 13.789                          |
| 10 year 120 minute winter      | 34.667                       | 13.789                          |
| 10 year 180 minute summer      | 39.634                       | 10.199                          |
| 10 year 180 minute winter      | 25.763                       | 10.199                          |
| 10 year 240 minute summer      | 31.075                       | 8.212                           |
| 10 year 240 minute winter      | 20.646                       | 8.212                           |
| 10 year 360 minute summer      | 23.443                       | 6.033                           |
| 10 year 360 minute winter      | 15.239                       | 6.033                           |
| 10 year 480 minute summer      | 18.333                       | 4.845                           |
| 10 year 480 minute winter      | 12.180                       | 4.845                           |
| ,<br>10 year 600 minute summer | 14.935                       | 4.085                           |
| ,<br>10 year 600 minute winter | 10.205                       | 4.085                           |
| ,<br>10 year 720 minute summer | 13.257                       | 3.553                           |
| ,<br>10 year 720 minute winter | 8.909                        | 3.553                           |
| 10 year 960 minute summer      | 10.821                       | 2.849                           |
| 10 year 960 minute winter      | 7.168                        | 2.849                           |
| 10 year 1440 minute summer     | 7.784                        | 2.086                           |
| 10 year 1440 minute winter     | 5.231                        | 2.086                           |
| 10 year 2160 minute summer     | 5.523                        | 1.526                           |
| 10 year 2160 minute winter     | 3,806                        | 1.526                           |
| 10 year 2880 minute summer     | 4.561                        | 1.223                           |
|                                |                              |                                 |

![](_page_63_Picture_0.jpeg)

![](_page_63_Picture_1.jpeg)

| Event                       | Peak               | Average        |
|-----------------------------|--------------------|----------------|
|                             | Intensity          | Intensity      |
|                             | (mm/hr)            | (mm/hr)        |
| 10 year 2880 minute winter  | 3.066              | 1.223          |
| 10 year 4320 minute summer  | 3.418              | 0.894          |
| 10 year 4320 minute winter  | 2.251              | 0.894          |
| 10 year 5760 minute summer  | 2.794              | 0.715          |
| 10 year 5760 minute winter  | 1.808              | 0./15          |
| 10 year /200 minute summer  | 2.359              | 0.602          |
| 10 year 7200 minute winter  | 1.522              | 0.602          |
| 10 year 8640 minute summer  | 2.048              | 0.522          |
| 10 year 8640 minute winter  | 1.322              | 0.522          |
| 10 year 10080 minute summer | 1.817              | 0.463          |
| 10 year 10080 minute winter | 1.1/3              | 0.463          |
| 30 year 15 minute summer    | 254.498            | 72.014         |
| 30 year 15 minute winter    | 1/8.595            | /2.014         |
| 30 year 30 minute summer    | 165./75            | 46.909         |
| 30 year 30 minute winter    | 110.334            | 46.909         |
| 30 year 60 minute summer    | 110.635            | 29.238         |
| 30 year 60 minute winter    | /3.503             | 29.238         |
| 30 year 120 minute summer   | 66.994             | 17.704         |
| 30 year 120 minute winter   | 44.509             | 17.704         |
| 30 year 180 minute summer   | 50.789             | 13.070         |
| 30 year 180 minute winter   | 33.014             | 13.070         |
| 30 year 240 minute summer   | 39.713             | 10.495         |
| 30 year 240 minute winter   | 26.384             | 10.495         |
| 30 year 360 minute summer   | 29.789             | 7.666          |
| 30 year 360 minute winter   | 19.364             | 7.666          |
| 30 year 480 minute summer   | 23.214             | 6.135<br>C 125 |
| 30 year 480 minute winter   | 15.423             | 0.135          |
| 30 year 600 minute summer   | 12.005             | 5.158          |
| 30 year 600 minute winter   | 12.885             | 5.158          |
| 30 year 720 minute summer   | 11 222             | 4.475          |
| 30 year 720 minute winter   | 11.222             | 4.475          |
| 30 year 960 minute summer   | 13.570             | 3.5/5          |
| SU year 900 minute winter   | 0.773              | 3.5/5          |
| SU year 1440 minute summer  | 9.708<br>6 5 7 4   | 2.002          |
| SU year 1440 minute winter  | 0.524<br>6 011     | 2.002          |
| SU year 2100 minute summer  | 0.844              | 1 000          |
| SU year 200 minute summer   | 4./10              | 1 500          |
| SU year 2000 minute summer  | 5.025<br>0 700 C   | 1.5U8<br>1.500 |
| 30 year 2880 minute winter  | 3.780<br>1 101     | 1.508          |
| 30 year 4320 minute summer  | 4.184              | 1.094          |
| 20 year 5760 minute summer  | 2.755              | 1.094          |
| 20 year 5760 minute summer  | 3.40Z              | 0.871          |
| 20 year 7200 minute summer  | 2.202              | 0.871          |
| 20 year 7200 minute summer  | 2.039<br>1.04E     | 0.729          |
| 30 year 26/0 minute summer  | 1.045<br>2 /72     | 0.729          |
| 30 year 8640 minute winter  | 2.475              | 0.051          |
| 30 year 10080 minute summer | 1.550<br>7 1 2 7   | 0.031          |
| 30 year 10080 minute winter | 2.10/<br>1 /11     | 0.330          |
| 100 year 15 minute summer   | 320 661            | 0.000          |
| 100 year 15 minute winter   | 229.004<br>221 212 | 93.204         |
| 100 year 30 minute summer   | 231.343            | 61 204         |
|                             | 210.040            | 01.304         |

![](_page_64_Picture_0.jpeg)

![](_page_64_Picture_1.jpeg)

File: Watford Way Infiltration.p Network: Storm Network Andrew Wallace 23/05/2023

| Event                              | Peak      | Average   |
|------------------------------------|-----------|-----------|
|                                    | Intensity | Intensity |
|                                    | (mm/hr)   | (mm/hr)   |
| 100 year 30 minute winter          | 152.034   | 61.304    |
| 100 year 60 minute summer          | 145.356   | 38.413    |
| 100 year 60 minute winter          | 96.571    | 38.413    |
| 100 year 120 minute summer         | 88.100    | 23.282    |
| 100 year 120 minute winter         | 58.532    | 23.282    |
| 100 year 180 minute summer         | 66.650    | 17.151    |
| 100 year 180 minute winter         | 43.325    | 17.151    |
| 100 year 240 minute summer         | 51.959    | 13.731    |
| 100 year 240 minute winter         | 34.521    | 13.731    |
| 100 year 360 minute summer         | 38.732    | 9.967     |
| 100 year 360 minute winter         | 25.177    | 9.967     |
| 100 year 480 minute summer         | 30.068    | 7.946     |
| 100 year 480 minute winter         | 19.977    | 7.946     |
| 100 year 600 minute summer         | 24.351    | 6.660     |
| 100 year 600 minute winter         | 16.638    | 6.660     |
| 100 year 720 minute summer         | 21.505    | 5.763     |
| 100 year 720 minute winter         | 14.452    | 5.763     |
| 100 year 960 minute summer         | 17.408    | 4.584     |
| 100 year 960 minute winter         | 11.531    | 4.584     |
| 100 year 1440 minute summer        | 12.367    | 3.314     |
| 100 year 1440 minute winter        | 8.311     | 3.314     |
| 100 year 2160 minute summer        | 8.657     | 2.393     |
| 100 year 2160 minute winter        | 5.965     | 2.393     |
| 100 year 2880 minute summer        | 7.077     | 1.897     |
| 100 year 2880 minute winter        | 4.756     | 1.897     |
| 100 year 4320 minute summer        | 5.223     | 1.365     |
| 100 year 4320 minute winter        | 3.439     | 1.365     |
| 100 year 5760 minute summer        | 4.221     | 1.080     |
| 100 year 5760 minute winter        | 2.732     | 1.080     |
| 100 year 7200 minute summer        | 3.530     | 0.900     |
| 100 year 7200 minute winter        | 2.278     | 0.900     |
| 100 year 8640 minute summer        | 3.041     | 0.776     |
| 100 year 8640 minute winter        | 1.962     | 0.776     |
| 100 year 10080 minute summer       | 2.680     | 0.684     |
| 100 year 10080 minute winter       | 1.729     | 0.684     |
| 100 year +40% CC 15 minute summer  | 461.530   | 130.597   |
| 100 year +40% CC 15 minute winter  | 323.881   | 130.597   |
| 100 year +40% CC 30 minute summer  | 303.307   | 85.825    |
| 100 year +40% CC 30 minute winter  | 212.847   | 85.825    |
| 100 year +40% CC 60 minute summer  | 203.498   | 53.779    |
| 100 year +40% CC 60 minute winter  | 135.199   | 53.779    |
| 100 year +40% CC 120 minute summer | 123.340   | 32.595    |
| 100 year +40% CC 120 minute winter | 81.944    | 32.595    |
| 100 year +40% CC 180 minute summer | 93.311    | 24.012    |
| 100 year +40% CC 180 minute winter | 60.654    | 24.012    |
| 100 year +40% CC 240 minute summer | 72.743    | 19.224    |
| 100 year +40% CC 240 minute winter | 48.329    | 19.224    |
| 100 year +40% CC 360 minute summer | 54.225    | 13.954    |
| 100 year +40% CC 360 minute winter | 35.248    | 13.954    |
| 100 year +40% CC 480 minute summer | 42.096    | 11.125    |
| 100 year +40% CC 480 minute winter | 27.967    | 11.125    |
| 100 year +40% CC 600 minute summer | 34.091    | 9.325     |
|                                    |           |           |

![](_page_65_Picture_0.jpeg)

![](_page_65_Picture_1.jpeg)

| Event                                | Peak    | Average |
|--------------------------------------|---------|---------|
|                                      | (mm/hr) | (mm/hr) |
| 100 year +40% CC 600 minute winter   | 23.293  | 9.325   |
| 100 year +40% CC 720 minute summer   | 30.106  | 8.069   |
| 100 year +40% CC 720 minute winter   | 20.233  | 8.069   |
| 100 year +40% CC 960 minute summer   | 24.371  | 6.417   |
| 100 year +40% CC 960 minute winter   | 16.144  | 6.417   |
| 100 year +40% CC 1440 minute summer  | 17.314  | 4.640   |
| 100 year +40% CC 1440 minute winter  | 11.636  | 4.640   |
| 100 year +40% CC 2160 minute summer  | 12.120  | 3.350   |
| 100 year +40% CC 2160 minute winter  | 8.351   | 3.350   |
| 100 year +40% CC 2880 minute summer  | 9.908   | 2.656   |
| 100 year +40% CC 2880 minute winter  | 6.659   | 2.656   |
| 100 year +40% CC 4320 minute summer  | 7.312   | 1.912   |
| 100 year +40% CC 4320 minute winter  | 4.815   | 1.912   |
| 100 year +40% CC 5760 minute summer  | 5.909   | 1.513   |
| 100 year +40% CC 5760 minute winter  | 3.824   | 1.513   |
| 100 year +40% CC 7200 minute summer  | 4.942   | 1.261   |
| 100 year +40% CC 7200 minute winter  | 3.189   | 1.261   |
| 100 year +40% CC 8640 minute summer  | 4.257   | 1.086   |
| 100 year +40% CC 8640 minute winter  | 2.747   | 1.086   |
| 100 year +40% CC 10080 minute summer | 3.751   | 0.957   |
| 100 year +40% CC 10080 minute winter | 2.421   | 0.957   |

![](_page_66_Picture_0.jpeg)

![](_page_66_Picture_1.jpeg)

## Results for 1 year Critical Storm Duration. Lowest mass balance: 99.65%

| Node Event       | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status |
|------------------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|--------|
| 15 minute summer | 1          | 1              | 102.400      | 0.000        | 0.0             | 0.0000           | 0.0000        | ОК     |
| 15 minute summer | 2          | 1              | 102.400      | 0.000        | 0.0             | 0.0000           | 0.0000        | ОК     |
| 15 minute summer | 3          | 9              | 100.831      | 0.131        | 30.3            | 1.3658           | 0.0000        | ОК     |
|                  |            |                |              |              |                 |                  |               |        |
| 15 minute summer | 4          | 9              | 100.973      | 0.072        | 12.5            | 0.0115           | 0.0000        | ОК     |
| 15 minute summer | 5          | 9              | 101.288      | 0.038        | 6.0             | 0.0061           | 0.0000        | ОК     |
| 15 minute summer | 6          | 9              | 97.001       | 0.001        | 1.8             | 0.0011           | 0.0000        | ОК     |
| 15 minute summer | 7          | 9              | 100.872      | 0.072        | 10.6            | 0.0114           | 0.0000        | ОК     |
| 15 minute summer | 8          | 9              | 101.052      | 0.052        | 5.3             | 0.0083           | 0.0000        | ОК     |
| 15 minute winter | 9          | 11             | 97.856       | -0.094       | 7.9             | 1.1105           | 0.0000        | ОК     |
| 15 minute summer | 10         | 9              | 98.130       | 0.080        | 8.9             | 0.0128           | 0.0000        | ОК     |

| Link Event<br>(Upstream Depth) | US<br>Node | Link         | DS<br>Node | Outflow<br>(I/s) | Velocity<br>(m/s) | Flow/Cap | Link<br>Vol (m³) | Discharge<br>Vol (m <sup>3</sup> ) |
|--------------------------------|------------|--------------|------------|------------------|-------------------|----------|------------------|------------------------------------|
| 15 minute summer               | 2          | 1.004        | 1          | 0.0              | 0.000             | 0.000    | 0.0000           | 0.0                                |
| 15 minute summer               | 3          | 1.003        | 2          | 0.0              | 0.000             | 0.000    | 0.0378           |                                    |
| 15 minute summer               | 3          | Infiltration |            | 26.6             |                   |          |                  |                                    |
| 15 minute summer               | 4          | 1.002        | 3          | 12.5             | 0.722             | 0.227    | 0.3096           |                                    |
| 15 minute summer               | 5          | 1.001        | 4          | 5.4              | 0.728             | 0.063    | 0.1006           |                                    |
| 15 minute summer               | 6          | Depth/Flow   | 5          | 2.4              |                   |          |                  |                                    |
| 15 minute summer               | 7          | 2.001        | 3          | 10.6             | 0.841             | 0.317    | 0.0348           |                                    |
| 15 minute summer               | 8          | 2.000        | 7          | 5.3              | 0.787             | 0.261    | 0.1054           |                                    |
| 15 minute winter               | 9          | Infiltration |            | 5.0              |                   |          |                  |                                    |
| 15 minute summer               | 10         | 3.000        | 9          | 8.9              | 0.968             | 0.501    | 0.0919           |                                    |

![](_page_67_Picture_0.jpeg)

![](_page_67_Picture_1.jpeg)

#### Results for 10 year Critical Storm Duration. Lowest mass balance: 99.65%

| Node Event       | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status |
|------------------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|--------|
| 15 minute summer | 1          | 1              | 102.400      | 0.000        | 0.0             | 0.0000           | 0.0000        | ОК     |
| 15 minute summer | 2          | 1              | 102.400      | 0.000        | 0.0             | 0.0000           | 0.0000        | ОК     |
| 15 minute summer | 3          | 10             | 100.875      | 0.175        | 58.8            | 3.1279           | 0.0000        | ОК     |
| 15 minute summer | 4          | 9              | 101.009      | 0.109        | 24.2            | 0.0173           | 0.0000        | ОК     |
| 15 minute summer | 5          | 9              | 101.303      | 0.053        | 11.4            | 0.0084           | 0.0000        | ОК     |
| 15 minute winter | 6          | 9              | 97.001       | 0.001        | 3.1             | 0.0014           | 0.0000        | ОК     |
| 15 minute summer | 7          | 9              | 100.924      | 0.124        | 20.6            | 0.0197           | 0.0000        | ОК     |
| 15 minute summer | 8          | 9              | 101.075      | 0.075        | 10.3            | 0.0120           | 0.0000        | ОК     |
| 15 minute winter | 9          | 12             | 97.954       | 0.004        | 15.3            | 3.0710           | 0.0000        | ОК     |
| 15 minute summer | 10         | 9              | 98.185       | 0.135        | 17.2            | 0.0215           | 0.0000        | ОК     |

| Link Event        | US<br>Nodo | Link         | DS<br>Nodo | Outflow | Velocity | Flow/Cap | Link       | Discharge  |
|-------------------|------------|--------------|------------|---------|----------|----------|------------|------------|
| (Opstream Deptin) | Noue       |              | Noue       | (1/5)   | (11/5)   |          | voi (iii ) | voi (iii ) |
| 15 minute summer  | 2          | 1.004        | 1          | 0.0     | 0.000    | 0.000    | 0.0000     | 0.0        |
| 15 minute summer  | 3          | 1.003        | 2          | 0.0     | 0.000    | 0.000    | 0.0523     |            |
| 15 minute summer  | 3          | Infiltration |            | 43.3    |          |          |            |            |
| 15 minute summer  | 4          | 1.002        | 3          | 24.6    | 0.976    | 0.446    | 0.4440     |            |
| 15 minute summer  | 5          | 1.001        | 4          | 10.4    | 0.819    | 0.121    | 0.1689     |            |
| 15 minute winter  | 6          | Depth/Flow   | 5          | 3.9     |          |          |            |            |
| 15 minute summer  | 7          | 2.001        | 3          | 20.4    | 1.173    | 0.608    | 0.0469     |            |
| 15 minute summer  | 8          | 2.000        | 7          | 10.3    | 0.837    | 0.507    | 0.1869     |            |
| 15 minute winter  | 9          | Infiltration |            | 5.0     |          |          |            |            |
| 15 minute summer  | 10         | 3.000        | 9          | 17.1    | 1.073    | 0.965    | 0.1591     |            |

![](_page_68_Picture_0.jpeg)

![](_page_68_Picture_2.jpeg)

## Results for 30 year Critical Storm Duration. Lowest mass balance: 99.65%

| Node Event       | US<br>Nod | Peak<br>e (mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m <sup>3</sup> ) | Flood<br>(m³) | S       | tatus     |
|------------------|-----------|------------------|--------------|--------------|-----------------|-------------------------------|---------------|---------|-----------|
| 15 minute summe  | r 1       | 1                | 102.400      | 0.000        | 0.0             | 0.0000                        | 0.0000        | ОК      |           |
| 15 minute summe  | r 2       | 1                | 102.400      | 0.000        | 0.0             | 0.0000                        | 0.0000        | OK      |           |
| 15 minute summe  | r 3       | 10               | 100.925      | 0.225        | 73.5            | 5.1327                        | 0.0000        | OK      |           |
| 15 minute summe  | r 4       | 9                | 101.025      | 0.125        | 30.5            | 0.0199                        | 0.0000        | ОК      |           |
| 15 minute summe  | r 5       | 9                | 101.309      | 0.059        | 13.3            | 0.0094                        | 0.0000        | OK      |           |
| 15 minute winter | 6         | 7                | 97.001       | 0.001        | 3.9             | 0.0014                        | 0.0000        | OK      |           |
| 15 minute summe  | r 7       | 9                | 101.007      | 0.207        | 25.8            | 0.0329                        | 0.0000        | SURC    | CHARGED   |
| 15 minute summe  | r 8       | 9                | 101.090      | 0.090        | 13.1            | 0.0143                        | 0.0000        | ОК      |           |
| 15 minute winter | 9         | 13               | 98.016       | 0.066        | 19.3            | 4.3361                        | 0.0000        | OK      |           |
| 15 minute summe  | r 10      | 9                | 98.271       | 0.221        | 21.8            | 0.0351                        | 0.0000        | SURC    | CHARGED   |
| Link Event       | US        | Link             | DS           | Outflow      | Veloci          | ity Flow,                     | /Cap          | Link    | Discharge |
| (Upstream Depth) | Node      |                  | Node         | (I/s)        | (m/s            | 5)                            | Vo            | ol (m³) | Vol (m³)  |
| 15 minute summer | 2         | 1.004            | 1            | 0.0          | 0.0             | 00 0                          | .000 0        | .0000   | 0.0       |
| 15 minute summer | 3         | 1.003            | 2            | 0.0          | 0.0             | 00 0                          | .000 0        | .0628   |           |
| 15 minute summer | 3         | Infiltration     |              | 43.3         | 1               |                               |               |         |           |
| 15 minute summer | 4         | 1.002            | 3            | 31.3         | 1.0             | 55 0                          | .566 C        | .5268   |           |
| 15 minute summer | 5         | 1.001            | 4            | 13.1         | 0.8             | 56 0                          | .153 C        | .2021   |           |
| 15 minute winter | 6         | Depth/Flow       | v 5          | 4.1          |                 |                               |               |         |           |
| 15 minute summer | 7         | 2.001            | 3            | 24.9         | 1.4             | 17 0                          | .743 C        | .0498   |           |
| 15 minute summer | 8         | 2.000            | 7            | 12.7         | 0.8             | 80 0                          | .625 C        | .2190   |           |
| 15 minute winter | 9         | Infiltration     |              | 5.0          | )               |                               |               |         |           |
| 15 minute summer | 10        | 3.000            | 9            | 21.7         | 1.2             | 32 1                          | .220 C        | .1706   |           |

![](_page_69_Picture_0.jpeg)

## Results for 100 year Critical Storm Duration. Lowest mass balance: 99.65%

| Node Event       | US<br>Node | Peak<br>e (mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | St      | tatus     |
|------------------|------------|------------------|--------------|--------------|-----------------|------------------|---------------|---------|-----------|
| 15 minute summe  | r 1        | 1                | 102.400      | 0.000        | 0.0             | 0.0000           | 0.0000        | ОК      |           |
| 15 minute summe  | r 2        | 1                | 102.400      | 0.000        | 0.0             | 0.0000           | 0.0000        | ОК      |           |
| 15 minute winter | 3          | 11               | 101.022      | 0.322        | 82.5            | 9.0333           | 0.0000        | SURC    | HARGED    |
| 15 minute summe  | r 4        | 9                | 101.052      | 0.152        | 39.5            | 0.0241           | 0.0000        | ОК      |           |
| 15 minute summe  | r 5        | 9                | 101.318      | 0.068        | 17.4            | 0.0108           | 0.0000        | OK      |           |
| 15 minute winter | 6          | 11               | 97.004       | 0.004        | 5.0             | 0.0041           | 0.0000        | OK      |           |
| 15 minute summe  | r 7        | 9                | 101.114      | 0.314        | 31.9            | 0.0499           | 0.0000        | SURC    | HARGED    |
| 15 minute summe  | r 8        | 9                | 101.254      | 0.254        | 16.9            | 0.0403           | 0.0000        | SURC    | HARGED    |
| 30 minute winter | 9          | 23               | 98.118       | 0.168        | 17.3            | 6.3878           | 0.0000        | OK      |           |
| 15 minute summe  | r 10       | 9                | 98.414       | 0.364        | 28.2            | 0.0578           | 0.0000        | SURC    | HARGED    |
| Link Event       | US         | Link             | DS           | Outflow      | Veloci          | ty Flow/         | 'Cap          | Link    | Discharge |
| (Upstream Depth) | Node       |                  | Node         | (I/s)        | (m/s            | )                | Vo            | ol (m³) | Vol (m³)  |
| 15 minute summer | 2          | 1.004            | 1            | 0.0          | 0.00            | 0 00             | .000 (        | 0.0000  | 0.0       |
| 15 minute winter | 3          | 1.003            | 2            | 0.0          | 0.00            | 0 00             | .000 0        | 0.0629  |           |
| 15 minute winter | 3          | Infiltration     |              | 43.3         |                 |                  |               |         |           |
| 15 minute summer | 4          | 1.002            | 3            | 40.0         | 1.1             | 57 0             | .724 (        | ).6053  |           |
| 15 minute summer | 5          | 1.001            | 4            | 17.1         | 0.88            | 86 0             | .199 (        | ).2508  |           |
| 15 minute winter | 6          | Depth/Flov       | v 5          | 6.4          |                 |                  |               |         |           |
| 15 minute summer | 7          | 2.001            | 3            | 30.5         | 1.73            | 32 0             | .908 (        | 0.0498  |           |
| 15 minute summer | 8          | 2.000            | 7            | 15.1         | 0.8             | 59 0             | .744 (        | ).2693  |           |
| 30 minute winter | 9          | Infiltration     |              | 5.0          | )               |                  |               |         |           |
| 15 minute summer | 10         | 3.000            | 9            | 28.0         | 1.59            | 91 1             | .577 (        | 0.1742  |           |

![](_page_70_Picture_0.jpeg)

![](_page_70_Picture_2.jpeg)

## Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.65%

| Node Event       | US    | Peak         | Level   | Depth   | Inflow | Node      | Flood  | S      | tatus                 |
|------------------|-------|--------------|---------|---------|--------|-----------|--------|--------|-----------------------|
| 15 minute summe  | er 1  | 1 (111115)   | 102.400 | 0.000   | 0.0    | 0.0000    | 0.0000 | ОК     |                       |
| 15 minute summe  | er 2  | 1            | 102.400 | 0.000   | 0.0    | 0.0000    | 0.0000 | ОК     |                       |
| 15 minute winter | 3     | 12           | 101.232 | 0.532   | 112.7  | 17.4811   | 0.0000 | SURC   | HARGED                |
| 15 minute winter | 4     | 10           | 101.277 | 0.376   | 50.5   | 0.0599    | 0.0000 | SURC   | HARGED                |
| 15 minute summe  | er 5  | 9            | 101.331 | 0.081   | 24.1   | 0.0129    | 0.0000 | ОК     |                       |
| 30 minute winter | 6     | 25           | 97.003  | 0.003   | 5.0    | 0.0030    | 0.0000 | ОК     |                       |
| 15 minute winter | 7     | 10           | 101.367 | 0.566   | 39.9   | 0.0901    | 0.0000 | SURC   | HARGED                |
| 15 minute summe  | er 8  | 9            | 101.612 | 0.612   | 23.6   | 0.0973    | 0.0000 | SURC   | HARGED                |
| 30 minute winter | 9     | 25           | 98.315  | 0.365   | 24.4   | 10.3660   | 0.0000 | ОК     |                       |
| 15 minute summe  | er 10 | 9            | 98.710  | 0.660   | 39.3   | 0.1050    | 0.0000 | FLOO   | D RISK                |
| Link Event       | US    | Link         | DS      | Outflow | Veloc  | ity Flow/ | 'Cap I | Link   | Discharge             |
| (Upstream Depth) | Node  |              | Node    | (I/s)   | (m/s   | 5)        | Vo     | l (m³) | Vol (m <sup>3</sup> ) |
| 15 minute summer | 2     | 1.004        | 1       | 0.0     | 0.0    | 00 0      | .000 0 | .0000  | 0.0                   |
| 15 minute winter | 3     | 1.003        | 2       | 0.0     | 0.0    | 00 0      | .000 0 | .0629  |                       |
| 15 minute winter | 3     | Infiltration |         | 43.3    |        |           |        |        |                       |
| 15 minute winter | 4     | 1.002        | 3       | 46.6    | i 1.1  | 73 0      | .844 0 | .7047  |                       |
| 15 minute summer | 5     | 1.001        | 4       | 23.9    | 0.8    | 92 0      | .280 0 | .3422  |                       |
| 30 minute winter | 6     | Depth/Flov   | v 5     | 8.1     |        |           |        |        |                       |
| 15 minute winter | 7     | 2.001        | 3       | 38.0    | 2.1    | 59 1      | .132 0 | .0498  |                       |
| 15 minute summer | 8     | 2.000        | 7       | 20.5    | 1.1    | 66 1      | .010 0 | .2693  |                       |
| 30 minute winter | 9     | Infiltration |         | 5.0     | )      |           |        |        |                       |
| 15 minute summer | 10    | 3.000        | 9       | 38.8    | 2.2    | 04 2      | .185 0 | .1760  |                       |

![](_page_71_Picture_1.jpeg)

# **Appendix D: SuDS Maintenance Report**






WE LISTEN, WE PLAN, WE DELIVER Geotechnical Engineering and Environmental Services across the UK.

# **DRAINAGE MAINTENANCE PLAN**

20 WATFORD ROAD, RADLETT

JOMAS ASSOCIATES LTD Unit 24 Sarum Complex, Salisbury Road, Uxbridge, UB8 2RZ www.jomasassociates.com info@jomasassociates.com



Geotechnical Engineering and Environmental Services across the UK.

| Report Title:       DRAINAGE AND SUDS MAINTENANCE PLAN         Report Status:       Final v1.0 |              |          |           |  |  |  |
|------------------------------------------------------------------------------------------------|--------------|----------|-----------|--|--|--|
| Job No:                                                                                        | P4735J2775   |          |           |  |  |  |
| Date:                                                                                          | 23 May 2023  |          |           |  |  |  |
| Control: Previ                                                                                 | ious Release | _        |           |  |  |  |
| Version                                                                                        |              | Date     | Issued By |  |  |  |
| V1.0                                                                                           |              | 23.03.23 |           |  |  |  |
|                                                                                                |              |          |           |  |  |  |
|                                                                                                |              |          |           |  |  |  |
| Prepared by: JOMAS ASSOCIATES LTD For Roundbush Services Limited                               |              |          |           |  |  |  |
|                                                                                                |              |          |           |  |  |  |

Should you have any queries relating to this report, please contact

#### JOMAS ASSOCIATES LTD

www.jomasassociates.com

info@jomasassociates.com



## 1.0 GENERAL

- **1.1** Sustainable Drainage Systems (SuDS) are an environmentally friendly approach to managing rainfall. SuDS techniques use landscape features to deal with surface water with the aim to:
  - 1.1.1 Control the flow, volume and frequency of water leaving a development.
  - 1.1.2 Prevent pollution by intercepting silt and cleaning runoff from hard surfaces.
  - 1.1.3 Provide attractive surroundings for the community.
- **1.2** The surface water drainage strategy for this development utilises permeable paving as the main SUDS feature along with a tank and a pond. The following sections provides a brief description of these features and outlines the maintenance programme that should be adopted.

# 2.0 CLEANING OF THE DRAINAGE SYSTEM

- **2.1** Drainage systems should be inspected at regular intervals and where necessary, thoroughly cleaned out at the same time. Any defects discovered should be made good.
- **2.2** The following operations should be carried out during the periodic cleaning of a drainage system:-

| Product<br>Type                                 | Period                                         | Responsibility                   | Maintenance Methods                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silt Trap                                       | As<br>necessary<br>and before<br>wet<br>season | Owner/<br>Maintenance<br>Company | <ul> <li>Sediment and debris that accumulated during summer needs to be removed before the wet season.</li> <li>Inspect and clean out routinely prior to inlet pipework to minimise debris reaching the tank.</li> <li>Conduct inspections more frequently during the wet season for the area where sediment or trash accumulates more often. Clean and repair as needed.</li> </ul> |
| Standard<br>Manholes/<br>Inspection<br>Chambers | As<br>necessary                                | Owner/<br>Maintenance<br>Company | • Remove and clean any soil and vegetation that covers the manhole cover to prevent blockage of the drainage system at the manhole.                                                                                                                                                                                                                                                  |





Geotechnical Engineering and Environmental Services across the UK.

| Product<br>Type     | Period                                                                                                         | Responsibility                   | Maintenance Methods                                                                                                                                                                                                                             |
|---------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                                |                                  | • Renew/replace any damaged/missing bolts and damaged/missing manhole covers.                                                                                                                                                                   |
| Drainage<br>Pipes   | Six<br>monthly<br>interval                                                                                     | Owner/<br>Maintenance<br>Company | <ul> <li>Inspect underground drainage pipes to<br/>ensure that the distribution pipework<br/>arrangement is operational and free<br/>from blockages. If required, take<br/>remedial action.</li> </ul>                                          |
| Permeable<br>Paving | As<br>required                                                                                                 | Owner/<br>Maintenance<br>Company | <ul> <li>Inspect the paving after any<br/>precipitation to ensure no displacement<br/>of any organic matter onto the surface<br/>of the pavement.</li> </ul>                                                                                    |
|                     | Six<br>monthly<br>(Ideally,<br>this<br>activity to<br>be carried<br>out in<br>spring and<br>autumn<br>seasons) | Owner/<br>Maintenance<br>Company | • Agitate (e.g. brush, vacuum, etc.) the<br>block paving to ensure no vegetation of<br>any sort is allowed to grow and develop<br>in the joints (where may affect<br>performance).                                                              |
|                     | Winter<br>season                                                                                               | Owner/<br>Maintenance<br>Company | • De-icing may be used without causing significant detrimental effects towards the permeable pavement's performance. When used carefully, the use of these chlorides will not result in an increase in the chloride levels in the local ground. |
|                     | Annually<br>and after<br>large<br>storms                                                                       | Owner/<br>Maintenance<br>Company | <ul> <li>Inspection/check of all inlets to ensure<br/>that they are in good condition and<br/>operating as designed.</li> </ul>                                                                                                                 |
| Pump                | Monthly<br>for 3<br>months                                                                                     | Owner/<br>Maintenance<br>Company | • Inspect and identify any areas that are not operating correctly. If required, take remedial action.                                                                                                                                           |
|                     | Monthly                                                                                                        | Owner/<br>Maintenance<br>Company | Debris removal from catchment surface<br>(where may cause risks to<br>performance).                                                                                                                                                             |
|                     | Annually                                                                                                       | Owner/<br>Maintenance<br>Company | Remove sediment from pre-treatment structures.                                                                                                                                                                                                  |



Ĩ.

Geotechnical Engineering and Environmental Services across the UK.

| Product<br>Type     | Period                                   | Responsibility                   | Maintenance Methods                                                                                                                      |
|---------------------|------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Annually<br>and after<br>large<br>storms | Owner/<br>Maintenance<br>Company | <ul> <li>Inspection/check all inlets and outlets to<br/>ensure that they are in good condition<br/>and operating as designed.</li> </ul> |
| Pond                | Monthly<br>for 3<br>months               | Owner/<br>Maintenance<br>Company | • Inspect and identify any areas that are not operating correctly. If required, take remedial action.                                    |
|                     | Monthly                                  | Owner/<br>Maintenance<br>Company | • Debris removal from catchment surface<br>(where may cause risks to<br>performance).                                                    |
|                     | Annually                                 | Owner/<br>Maintenance<br>Company | Remove sediment from pre-treatment structures.                                                                                           |
| Attenuation<br>Tank | Monthly<br>for 3<br>months               | Owner/<br>Maintenance<br>Company | • Inspect and identify any areas that are not operating correctly. If required, take remedial action.                                    |
|                     | Monthly                                  | Owner/<br>Maintenance<br>Company | • Debris removal from catchment surface (where may cause risks to performance).                                                          |
|                     | Annually                                 | Owner/<br>Maintenance<br>Company | Remove sediment from pre-treatment structures.                                                                                           |

# 3.0 SKETCHES AND PLANS

**3.1** The locations of the above features can be found by examining Drawing P4735J2775-C01

# JUMAS ENGINEERING ENVIRONMENTAL

# WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.





#### JOMAS ASSOCIATES LTD

Unit 24 Sarum Complex Salisbury Rd Uxbridge UB8 2RZ

### **CONTACT US**

Website: www.jomasassociates.com

Tel: 0333 305 9054

Email: info@jomasassociates.com