Code for Sustainable Homes Report

For use with Nov 2010 addendum 2014 England

Assessor and House Details					
Assessor Name: Property Address:	Behdad Yazdani 469 Gander Green Lane Cheam SUTTON SM3 9RA	Assessor Number:	STRO002254		

Buiding regulation assessment

	kg/m²/year
TER	14.88
DER	29.04
ENE 1 Assessment - Dwelling Emission Rate	

Total Energy Type CO₂ Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2012 DER Worksheet		29.04	(ZC1)
TER		14.88	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		29.04	
% improvement DER/TER	0		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	29.04	(ZC1)
CO2 emissions from appliances, equation (L14)	14.62	(ZC2)
CO2 emissions from cooking, equation (L16)	1.71	(ZC3)
Net CO2 emissions	45.7	(ZC8)

Result:

Credits awarded for ENE 1 = 0

Code Level = 0

ENE 2 - Fabric energy Efficiency

Fabric energy Efficiency: 92.89

Credits awarded for ENE 2 = 0

ENE 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	
Standard Case CO2 emissions		45.67	
Standard DER		29.34	
Actual Case CO2 emissions		45.67	
Actual DER		29.34	
Reduction in CO2 emissions	0		

Reduction in CO2 emissions

Credits awarded for ENE 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.

Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.

Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.

· All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPOA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

SAP Input

Property Details: NOTIONAL

Address:	469 Gander Green Lane, Cheam, SUTTON, SM3 9RA
Located in:	England
Region:	Thames valley
UPRN:	UPRN-005870024458
Date of assessment:	25 March 2022
Date of certificate:	25 March 2022
Assessment type:	New extension to existing dwelling
Transaction type:	Non marketed sale
Tenure type:	Unknown
Related party disclosure:	No related party
Thermal Mass Parameter:	Indicative Value Medium
Water use <= 125 litres/person/d	ay: False
PCDF Version:	492

Property description:

Dwelling type: Detachment: Year Completed:	House Mid-terrace 2022	
Floor Location:	Floor area:	
		Storey height:
Floor 0	49.16 m ²	2.41 m
Floor 1	36.2 m ²	2.6 m
Floor 2	23.7 m ²	2 m
Living area: Front of dwelling faces:	12.21 m ² (fraction 0.112) North East	

0.7

0.7

Opening types:

RF

RF

Name:	Source:	Туре:	Glazing:		Argon:	Frame:
			Glazing.		Algon.	PVC-U
DR	Manufacturer	Solid				
new	SAP 2012	Windows		0.05, soft coat	Yes	PVC-U
old	SAP 2012	Windows		0.05, soft coat	Yes	PVC-U
SE	SAP 2012	Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
E	SAP 2012	Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
Ν	SAP 2012	Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
S	SAP 2012	Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
W	SAP 2012	Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
SW	SAP 2012	Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
SW	SAP 2012	Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
RF	Manufacturer	Roof Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
RF	Manufacturer	Roof Windows	low-E, En =	0.05, soft coat	Yes	PVC-U
Name:	Gap:	Frame Fact	tor: g-value:	U-value:	Area:	No. of Openings
DR	mm	0.7	0	1	2	1
new	16mm or more	0.7	0.63	1.6	12.68	1
old	16mm or more	0.7	0.63	1.7	7.87	1
SE	16mm or more	0.7	0.63	1.7	0.64	1
E	16mm or more	0.7	0.63	1.7	0.92	1
Ν	16mm or more	0.7	0.63	1.7	0.92	1
S	16mm or more	0.7	0.63	1.7	0.69	1
W	16mm or more	0.7	0.63	1.7	0.69	1
SW	16mm or more	0.7	0.63	1.7	4.88	1
SW	16mm or more	0.7	0.63	1.6	1.98	1

0.63

0.63

1.6

1.6

1.7

1.7

1

1

16mm or more

16mm or more

SAP Input

Name:	Type-Name:	Location:	Orient:	Width:	Height:
DR		OLD WALL	North East	0	0
new		NEW WALL	South West	0	0
old		OLD WALL	North East	0	0
SE		OLD WALL	South East	0	0
E		OLD WALL	East	0	0
Ν		OLD WALL	North	0	0
S		OLD WALL	South	0	0
W		OLD WALL	West	0	0
SW		OLD WALL	South West	0	0
SW		DORM	South West	0	0
RF		new ROOF	South West	0.001	0
RF		new ROOF	South West	0.001	0

Overshading:

Average or unknown

Opaque Elemen	15:						
Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elemer		10 (1	o () (7	1.07	0	- ·	
OLD WALL	45.283	18.61	26.67	1.96	0	False	N/A
NEW WALL	18.991	12.68	6.31	0.28	0	False	N/A
STUDS	10.571	0	10.57	0.28	0.5	False	N/A
DORM	10.32	1.98	8.34	0.28	0	False	N/A
old ROOF	13.5	0	13.5	0.13	0.5		N/A
new ROOF	13	3.4	9.6	0.18	0		N/A
ТОР	8.272	0	8.27	0.16	0		N/A
SLOP	16.73	0	16.73	0.16	0		N/A
old FLOOR	35.27			0.6			N/A
new floor	14.1			0.22			N/A
Internal Elemer	nts						
Party Elements							
MID	92.137						N/A

Thermal bridges:

Thermal bridges:	No information on thermal bridging $(y=0.15)$ $(y=0.15)$	
Ventilation:		
Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of fans:	No (Assumed) Natural ventilation (extract fans) 0 0 4	
Number of passive stacks: Number of sides sheltered: Pressure test:	0 2 15	
Main heating system:		
Main heating system:	Boiler systems with radiators or underfloor heating Gas boilers and oil boilers Fuel: mains gas Info Source: Manufacturer Declaration Manufacturer's data Efficiency: 89.0% (SEDBUK2009) Condensing combi with automatic ignition	

Systems with radiators Central heating pump : 2013 or later Design flow temperature: Unknown

Fuel Burning Type: Modulation

SAP Input

	Room-sealed Boiler interlock: Yes
Main heating Control:	
Main heating Control:	Programmer, room thermostat and TRVs Control code: 2106
Secondary heating system:	
Secondary heating system:	None
Water heating:	
Water heating:	From main heating system Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False
Others:	
Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home:	Standard Tariff Yes No conservatory 100% Low rise urban / suburban English No None No

				User D	etails:						
Assessor Name:	Behdad Ya	azdani			Strom	a Num	ber:		STRO	002254	
Software Name:	Stroma FS	AP 201	2		Softwa	are Ver	rsion:		Versio	n: 1.0.5.51	
			Р	roperty <i>i</i>	Address	NOTIO	NAL				
Address :	469 Gander	Green I	_ane, Cł	neam, S	UTTON,	SM3 9F	RA				
1. Overall dwelling dime	nsions:										
					a(m²)		Av. Hei	ght(m)	1	Volume(m ³)	1
Ground floor				4	9.16	(1a) x	2.	41	(2a) =	118.48	(3a)
First floor					36.2	(1b) x	2	.6	(2b) =	94.12	(3b)
Second floor				2	23.7	(1c) x		2	(2c) =	47.4	(3c)
Total floor area TFA = (1a	a)+(1b)+(1c)+	(1d)+(1e)+(1r	n) 10	09.06	(4)					
Dwelling volume						(3a)+(3b))+(3c)+(3d))+(3e)+	.(3n) =	260	(5)
2. Ventilation rate:											
	main heating		econdar eating	У	other		total			m ³ per hour	
Number of chimneys	0	+	0	+	0] = [0	X 4	40 =	0	(6a)
Number of open flues	0	+	0	+	0] = [0	× 2	20 =	0	(6b)
Number of intermittent far	าร					- Γ	4	x ^	0 =	40	(7a)
Number of passive vents						Γ	0	x ^	0 =	0	(7b)
Number of flueless gas fir	es					Ē	0	x 4	40 =	0	(7c)
									A : a la		-
		(0	-).(0).).(7	· · · · · · · · · · · · · · · · · · ·	7 -)	-			1	anges per hou	-
Infiltration due to chimney If a pressurisation test has be						ontinuo fr	40		÷ (5) =	0.15	(8)
Number of storeys in th			a, procee	<i>u i</i> 0 (<i>17)</i> , (Juliei wise (onunue m	0111 (9) 10 (10)		0	(9)
Additional infiltration	lo anoning (n	-)						[(9)-	1]x0.1 =	0	(10)
Structural infiltration: 0.	25 for steel or	r timber f	rame or	0.35 foi	r masoni	y constr	uction			0	(11)
if both types of wall are pro	-		ponding to	the great	er wall are	a (after				-], ,
deducting areas of openin If suspended wooden fl			ed) or 0	1 (seale	ed) else	enter 0				0	(12)
If no draught lobby, ent					, cioc					0	(13)
Percentage of windows			ripped							0	(14)
Window infiltration		J	11		0.25 - [0.2	x (14) ÷ 1	00] =			0	(15)
Infiltration rate					(8) + (10)	+ (11) + (1	2) + (13) +	- (15) =		0	(16)
Air permeability value,	q50, expresse	ed in cub	ic metre	s per ho	our per s	quare m	etre of e	nvelope	area	15	(17)
If based on air permeabili	ty value, then	(18) = [(1	7) ÷ 20]+(8	3), otherwi	se (18) = (16)				0.9	(18)
Air permeability value applies	s if a pressurisatio	on test has	s been dor	ne or a deg	gree air pe	rmeability	is being us	sed			1
Number of sides sheltered	d									2	(19)
Shelter factor					(20) = 1 -		9)] =			0.85	(20)
Infiltration rate incorporati	-				(21) = (18) x (20) =				0.77	(21)
Infiltration rate modified fo		· ·				_			_		
	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe										l	
(22)m= 5.1 5	4.9 4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		

(22a)m=	acioi (2	2a)m =	(ZZ)III ÷	4										
()	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18]	
Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
· [0.98	0.96	0.94	0.85	0.83	0.73	0.73	0.71	0.77	0.83	0.86	0.9]	
			change i	ate for t	he appli	cable ca	se						ı r	
	chanica												0	(23a)
			using Appe							o) = (23a)			0	(23b)
			overy: effici	-	-								0	(23c)
, i	I		1				<u> </u>	r / ``	, ,	2b)m + (2	<u> </u>	i ,) ÷ 100] 1	
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0	J	(24a)
ŕ			i 1				r		, ,	2b)m + (2 1	, I		1	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0	J	(24b)
,			tract ven		•					.5 × (23b				
(24c)m=	0	0.0	0	0	0		0	(22) = (22)	0		0	0	1	(24c)
			on or wh		_			-		Ů	Ŭ	Ŭ	J	()
			en (24d)							0.5]				
(24d)m=	0.98	0.96	0.94	0.86	0.84	0.77	0.77	0.75	0.8	0.84	0.87	0.91		(24d)
Effec	tive air	change	rate - en	ter (24a) or (24t	o) or (24	c) or (24	d) in boy	(25)					
(25)m=	0.98	0.96	0.94	0.86	0.84	0.77	0.77	0.75	0.8	0.84	0.87	0.91]	(25)
3 Hos	at losso	e and he	eat loss p	aramet	ar.								-	
ELEN		Gros		Openin		Net Ar	ea	U-valı	le	AXU		k-value	<u>,</u>	AXk
		area		m	-	A ,r		W/m2		(W/I	<)	kJ/m²·l		kJ/K
Doors						2	x	1		0				(26)
Window	ws Type	1							=	2				
Window	NS TYDA					12.68	3 x1,	/[1/(1.6)+		2 19.07				(27)
\A/? I .	NS Type	2				12.68			0.04] =					(27) (27)
vvindov	ws Type						x1/	/[1/(1.6)+	0.04] = 0.04] =	19.07				
		3				7.87	x1/	/[1/(1.6)+ /[1/(1.7)+	0.04] = 0.04] = 0.04] =	19.07 12.53				(27)
Window	ws Type	3				7.87	x1, x1, x1,	/[1/(1.6)+ /[1/(1.7)+ /[1/(1.7)+	0.04] = [0.04] = [0.04] = [0.04] = [19.07 12.53 1.02 1.46				(27) (27) (27)
Windov Windov	ws Type ws Type	3 4 5				7.87 0.64 0.92 0.92	x1/ x1/ x1/ x1/ x1/ x1/	/[1/(1.6)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+	$\begin{array}{l} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	19.07 12.53 1.02 1.46 1.46				(27) (27) (27) (27)
Windov Windov Windov	ws Type ws Type ws Type ws Type	3 4 5 6				7.87 0.64 0.92 0.92 0.69	x1, x1, x1, x1, x1, x1, x1, x1,	/[1/(1.6)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	19.07 12.53 1.02 1.46 1.46 1.1				(27) (27) (27) (27) (27)
Windov Windov Windov Windov	ws Type ws Type ws Type ws Type ws Type	3 4 5 6 7				7.87 0.64 0.92 0.92 0.69 0.69	x1, x1, x1, x1, x1, x1, x1, x1, x1,	<pre>/[1/(1.6)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+ /[1/(1.7)+</pre>	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	19.07 12.53 1.02 1.46 1.46 1.1 1.1				 (27) (27) (27) (27) (27) (27) (27)
Windov Windov Windov Windov Windov	ws Type ws Type ws Type ws Type ws Type ws Type	3 4 5 6 7 8				7.87 0.64 0.92 0.92 0.69 0.69 4.88	x1, x1, x1, x1, x1, x1, x1, x1, x1, x1,	<pre>[1/(1.6)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+</pre>	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	19.07 12.53 1.02 1.46 1.46 1.1 1.1 7.77				 (27) (27) (27) (27) (27) (27) (27) (27)
Windov Windov Windov Windov Windov	ws Type ws Type ws Type ws Type ws Type ws Type ws Type	3 4 5 6 7 8 9				7.87 0.64 0.92 0.92 0.69 0.69 4.88 1.98	x1, x1, x1, x1, x1, x1, x1, x1, x1, x1,	<pre>[1/(1.6)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+</pre>	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	19.07 12.53 1.02 1.46 1.46 1.1 1.1 7.77 2.98				 (27) (27) (27) (27) (27) (27) (27) (27) (27)
Windov Windov Windov Windov Windov Rooflig	ws Type ws Type ws Type ws Type ws Type ws Type hts Type	3 4 5 6 7 8 9 e 1				7.87 0.64 0.92 0.92 0.69 0.69 4.88 1.98 1.7	x1, x1, x1, x1, x1, x1, x1, x1, x1, x1,	<pre>[1/(1.6)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.6)+ [1/(1.6) + [1/(1.6) +</pre>	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	19.07 12.53 1.02 1.46 1.46 1.1 1.1 1.1 7.77 2.98 2.72				 (27)
Windov Windov Windov Windov Windov Rooflig Rooflig	ws Type ws Type ws Type ws Type ws Type ws Type hts Type hts Type	3 4 5 6 7 8 9 e 1				7.87 0.64 0.92 0.92 0.69 4.88 1.98 1.7	x1, x1, x1, x1, x1, x1, x1, x1, x1, x1,	<pre>[1/(1.6)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.7)+ [1/(1.6)+ [1/(1.6)+ [1/(1.6) +</pre>	$\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \end{array}$	19.07 12.53 1.02 1.46 1.46 1.1 1.1 7.77 2.98 2.72 2.72				(27) (27) (27) (27) (27) (27) (27) (27)
Windov Windov Windov Windov Windov Rooflig Rooflig Floor T	ws Type ws Type ws Type ws Type ws Type ws Type hts Type hts Type	3 4 5 6 7 8 9 e 1				7.87 0.64 0.92 0.92 0.69 0.69 4.88 1.98 1.7 35.27	x1, x1, x1, x1, x1, x1, x1, x1, x1, x1,	<pre>/[1/(1.6)+ /[1/(1.7)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6) + /[1/(1.6) +</pre>	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \end{array}$	19.07 12.53 1.02 1.46 1.46 1.1 1.1 7.77 2.98 2.72 2.72 2.72 21.162				(27) (27) (27) (27) (27) (27) (27) (27b) (27b) (27b)
Windov Windov Windov Windov Windov Rooflig Rooflig Floor T Floor T	ws Type ws Type ws Type ws Type ws Type ws Type hts Type hts Type ype 1	3 4 5 6 7 8 9 e 1 e 2	18	18.6	1	7.87 0.64 0.92 0.92 0.69 4.88 1.98 1.7 35.27 14.1	x1, x1, x1, x1, x1, x1, x1, x1, x1, x1,	$ \frac{[1/(1.6)+}{[1/(1.7)+} \frac{[1/(1.7)+}{[1/(1.7)+} \frac{[1/(1.7)+}{[1/(1.7)+} \frac{[1/(1.7)+}{[1/(1.7)+} \frac{[1/(1.7)+}{[1/(1.6)+} \frac{[1/(1.6)+}{[1/(1.6)+} \frac{[1/(1.6)+}{[0.6]} \frac{0.22}{0.22} $	$\begin{array}{c} 0.04] = \\$	19.07 12.53 1.02 1.46 1.46 1.1 1.1 7.77 2.98 2.72 2.72 2.72 21.162 3.102				(27) (27) (27) (27) (27) (27) (27) (27b) (27b) (27b) (27b) (27b) (27b)
Windov Windov Windov Windov Windov Rooflig Rooflig Floor T	ws Type ws Type ws Type ws Type ws Type ws Type hts Type hts Type fype 1 Type 2 Type1	3 4 5 6 7 8 9 e 1		18.6		7.87 0.64 0.92 0.92 0.69 0.69 4.88 1.98 1.7 35.27	x1, x1, x1, x1, x1, x1, x1, x1, x1, x1,	<pre>/[1/(1.6)+ /[1/(1.7)+ /[1/(1.6)+ /[1/(1.6)+ /[1/(1.6) + /[1/(1.6) +</pre>	$\begin{array}{c} 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ 0.04] = \\ \\ \end{array}$	19.07 12.53 1.02 1.46 1.46 1.1 1.1 7.77 2.98 2.72 2.72 2.72 21.162				(27) (27) (27) (27) (27) (27) (27) (27b) (27b) (27b)

Walls	Type4	10.3	32	1.98	3	8.34	x	0.28	=	2.34				(29)
Roof ⁻	Гуре1	13.	5	0		13.5	x	0.12	=	1.65			\exists	(30)
Roof -	Гуре2	13	;	3.4		9.6	x	0.18	=	1.73			\neg	(30)
Roof ⁻	ГуреЗ	8.2	7	0		8.27	×	0.16	=	1.32	ה ה		┓ ┌──	(30)
Roof -	Гуре4	16.7	'3	0		16.73	3 X	0.16	=	2.68	ז ר		╕	(30)
Total a	rea of el	lements	, m²			186.0	4							(31)
Party v	vall					92.14	t X	0	=	0				(32)
	dows and le the area						ated usin	ng formula 1	1/[(1/U-valu	ıe)+0.04] a	as given in	paragrapl	h 3.2	
Fabric	heat los	s, W/K :	= S (A x	U)				(26)(30) + (32) =				146.21	(33)
Heat c	apacity (Cm = S((Axk)						((28).	(30) + (32	2) + (32a).	(32e) =	23300.3	(34)
Therm	al mass	parame	ter (TMF	^o = Cm -	÷ TFA) ir	א kJ/m²K			Indica	tive Value	: Medium		250	(35)
	ign assess Ised instea				construct	ion are no	t known p	precisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	x Y) cal	culated	using Ap	opendix I	<						27.91	(36)
	of therma		are not kn	own (36) =	= 0.05 x (3	81)				(0.0)				- , .
	abric hea		- - 4	l						· (36) =			174.12	(37)
ventila	tion hea		· · · · · ·		, 			A	1	$= 0.33 \times ($		1	1	
(38)m=	Jan 84.06	Feb 82.46	Mar 80.9	Apr 73.54	May 72.16	Jun 65.75	Jul 65.75	Aug 64.56	Sep 68.22	Oct 72.16	Nov 74.95	Dec 77.86	1	(38)
				75.54	72.10	00.75	00.75	04.00				11.00]	(00)
	ansfer c		· ·	0.47.00	0.40.00	000.07	000.07			= (37) + (37)		054.00	1	
(39)m=	258.18	256.58	255.02	247.66	246.28	239.87	239.87	238.69	242.34	246.28 Average =	249.07	251.98	247.65	(39)
Heat lo	oss para	meter (H	HLP), W/	/m²K						i = (39)m ÷		12 / 12-	247.03	
(40)m=	2.37	2.35	2.34	2.27	2.26	2.2	2.2	2.19	2.22	2.26	2.28	2.31]	
Numbe	er of day	s in mo	nth (Tab	le 1a)	•	•	•	-		Average =	Sum(40)₁	12 /12=	2.27	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31]	(41)
4. Wa	ater heat	ing ene	rgy requi	irement:								kWh/y	ear:	
	ied occu A > 13.9			[1 - exp	(-0.0003	349 x (TF		9)2)] + 0.4	0013 x (TFA -13		.81]	(42)
	A £ 13.9	-						(7	
Reduce	the annua	l average	hot water	usage by	5% if the c		designed	= (25 x N) I to achieve		se target o		6.23]	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
Hot wate						ctor from		U U				Dec]	
(44)m=	116.85	112.6	108.35	104.1	99.85	95.6	95.6	99.85	104.1	108.35	112.6	116.85	1	
										Total = Su			1274.72	(44)
Energy	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x	DTm / 360	0 kWh/moi	nth (see Ta	ables 1b, 1	c, 1d)		
(45)m=	173.28	151.56	156.39	136.35	130.83	112.89	104.61	120.04	121.48	141.57	154.54	167.82]	
If inat-	toncours	otor haar'		ofunction		r oforosis l	ontor 0 '	n hover (41		Total = Su	m(45) ₁₁₂ =	=	1671.36	(45)
	i		· ·	· ·				n boxes (46	, , , 		-		1	
(46)m=	25.99	22.73	23.46	20.45	19.62	16.93	15.69	18.01	18.22	21.24	23.18	25.17		(46)

Water	storage	loss:											
Storag	e volum	e (litres)) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0	(47)
If comr	munity h	eating a	and no ta	ank in dw	velling, e	nter 110	litres in	(47)					
			hot wate	er (this ir	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)		
	storage				!		· / - · ·) ·						(10)
,				oss facto	or is kno	wn (kvvr	1/day):					0	(48)
			m Table									0	(49)
			-	e, kWh/ye cylinder l		or is not		(48) x (49) =			0	(50)
				rom Tabl								0	(51)
		-	ee secti		- (<i>.</i> ,					•	(-)
Volum	e factor	from Ta	ble 2a									0	(52)
Tempe	erature f	actor fro	m Table	2b								0	(53)
Energy	/ lost fro	m water	⁻ storage	e, kWh/ye	ear			(47) x (51) x (52) x (53) =		0	(54)
Enter	(50) or ((54) in (5	55)									0	(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m			
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0	(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	ix H
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0	(57)
Primar	v circuit	loss (ar	nual) fro	om Table	.3							0	(58)
		•	,	for each		59)m = ((58) ÷ 36	65 × (41)	m				
				le H5 if t			. ,	, ,		r thermo	stat)		
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0	(59)
Combi	loss ca	culated	for each	, month ((61)m =	(60) ÷ 36	65 x (41))m	•				
(61)m=	50.96	46.03	50.96	49.32	50.88	47.15	48.72	50.88	49.32	50.96	49.32	50.96	(61)
	eat regi					l for eacl	L	(62)m -	0.85 x ((45)m +	[(46)m +	(57)m +	(59)m + (61)m
(62)m=	224.24	197.58	207.35	185.66	181.71	160.04	153.33	170.93	170.79	192.53	203.85	218.78	(62)
· · ·				endix G or									
			• • •	and/or \				, ,		- contribut		, nouting,	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0	(63)
Output	from w	ater hea	ı ter										
(64)m=	224.24	197.58	207.35	185.66	181.71	160.04	153.33	170.93	170.79	192.53	203.85	218.78	
				I					L out from wa				2266.8 (64)
Heat o	ains fro	m water	heating	kWh/m	onth 0.2	5 ´ [0 85	x (45)m				· · · ·	+ (59)m	
(65)m=	70.36	61.9	64.74	57.66	56.22	49.32	46.96	52.64	52.72	59.81	63.71	68.54	(65)
												munity h	
	, ,			、 ,	•	Synnuer K	5 111 110 0	uwennig	of not w			manity n	eating
				5 and 5a).								
Metabo			<u>e 5), Wat</u>		Max	lun	11	A	Con	Ort	Nev		
(66)m-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(66)
(66)m=	140.45	140.45	140.45	140.45	140.45	140.45	140.45	140.45	140.45	140.45	140.45	140.45	(66)
-				opendix	· · ·		, 	· · · · · ·	i				
(67)m=	24.09	21.4	17.4	13.17	9.85	8.31	8.98	11.68	15.67	19.9	23.22	24.76	(67)
		•	r	n Append				<u>,</u>	r	-	-	,	
(68)m=	270.2	273	265.94	250.9	231.91	214.06	202.14	199.34	206.4	221.44	240.43	258.28	(68)

(69)m= 37.05 <t< th=""><th>(69)</th></t<>	(69)
Pumps and fans gains (Table 5a)	
(70)m= 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(70)
Losses e.g. evaporation (negative values) (Table 5)	
(71)m= -112.36 -112.36 -112.36 -112.36 -112.36 -112.36 -112.36 -112.36 -112.36 -112.36 -112.36 -112.36 -112.36 -112.36	(71)
Water heating gains (Table 5)	
(72)m= 94.57 92.11 87.02 80.09 75.57 68.51 63.12 70.75 73.22 80.39 88.49 92.12	(72)
Total internal gains = $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$	
(73)m= 456.99 454.65 438.49 412.29 385.46 359.02 342.38 349.9 363.43 389.87 420.28 443.29	(73)

6. Solar gains:

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North 0.9x	0.77	x	0.92	x	10.63	x	0.63	x	0.7	=	2.99	(74)
North 0.9x	0.77	x	0.92	x	20.32	x	0.63	x	0.7	=	5.71	(74)
North 0.9x	0.77	x	0.92	x	34.53	x	0.63	x	0.7	=	9.71	(74)
North 0.9x	0.77	x	0.92	x	55.46	x	0.63	x	0.7	=	15.59	(74)
North 0.9x	0.77	x	0.92	x	74.72	x	0.63	x	0.7	=	21.01	(74)
North 0.9x	0.77	x	0.92	x	79.99	x	0.63	x	0.7	=	22.49	(74)
North 0.9x	0.77	x	0.92	x	74.68	x	0.63	x	0.7	=	21	(74)
North 0.9x	0.77	x	0.92	x	59.25	x	0.63	x	0.7	=	16.66	(74)
North 0.9x	0.77	x	0.92	x	41.52	x	0.63	x	0.7	=	11.67	(74)
North 0.9x	0.77	x	0.92	x	24.19	x	0.63	x	0.7	=	6.8	(74)
North 0.9x	0.77	x	0.92	x	13.12	x	0.63	x	0.7	=	3.69	(74)
North 0.9x	0.77	x	0.92	x	8.86	x	0.63	x	0.7	=	2.49	(74)
Northeast 0.9x	0.77	x	7.87	x	11.28	x	0.63	x	0.7	=	27.14	(75)
Northeast 0.9x	0.77	x	7.87	x	22.97	x	0.63	x	0.7	=	55.24	(75)
Northeast 0.9x	0.77	x	7.87	x	41.38	x	0.63	x	0.7	=	99.52	(75)
Northeast 0.9x	0.77	x	7.87	x	67.96	x	0.63	x	0.7	=	163.45	(75)
Northeast 0.9x	0.77	x	7.87	x	91.35	x	0.63	x	0.7	=	219.7	(75)
Northeast 0.9x	0.77	x	7.87	x	97.38	x	0.63	x	0.7	=	234.23	(75)
Northeast 0.9x	0.77	x	7.87	x	91.1	x	0.63	x	0.7	=	219.11	(75)
Northeast 0.9x	0.77	x	7.87	×	72.63	x	0.63	x	0.7	=	174.68	(75)
Northeast 0.9x	0.77	x	7.87	x	50.42	x	0.63	x	0.7	=	121.27	(75)
Northeast 0.9x	0.77	x	7.87	x	28.07	x	0.63	x	0.7	=	67.51	(75)
Northeast 0.9x	0.77	x	7.87	x	14.2	x	0.63	x	0.7	=	34.15	(75)
Northeast 0.9x	0.77	x	7.87	x	9.21	x	0.63	x	0.7	=	22.16	(75)
East 0.9x	0.77	x	0.92	×	19.64	x	0.63	x	0.7	=	5.52	(76)
East 0.9x	0.77	x	0.92	×	38.42	x	0.63	x	0.7	=	10.8	(76)

East 0.9x	0.77	Ι.,	0.00	۱.	00.07	Ι.,	0.00		0.7	1	47.70	
_	0.77	X	0.92	×	63.27	x	0.63	x	0.7	=	17.79	(76)
_ L	0.77	X	0.92	X	92.28	X	0.63	x	0.7	=	25.95	(76)
East 0.9x	0.77	X	0.92	X	113.09	X	0.63	x	0.7	=	31.8	(76)
East 0.9x	0.77	Х	0.92	X	115.77	X	0.63	X	0.7	=	32.55	(76)
East 0.9x	0.77	x	0.92	x	110.22	X	0.63	x	0.7	=	30.99	(76)
East 0.9x	0.77	x	0.92	x	94.68	x	0.63	x	0.7	=	26.62	(76)
East 0.9x	0.77	x	0.92	×	73.59	x	0.63	x	0.7	=	20.69	(76)
East 0.9x	0.77	x	0.92	x	45.59	x	0.63	x	0.7	=	12.82	(76)
East 0.9x	0.77	x	0.92	x	24.49	x	0.63	x	0.7	=	6.89	(76)
East 0.9x	0.77	x	0.92	x	16.15	x	0.63	x	0.7	=	4.54	(76)
Southeast 0.9x	0.77	x	0.64	x	36.79	x	0.63	x	0.7	=	7.2	(77)
Southeast 0.9x	0.77	x	0.64	x	62.67	x	0.63	x	0.7	=	12.26	(77)
Southeast 0.9x	0.77	x	0.64	x	85.75	x	0.63	x	0.7	=	16.77	(77)
Southeast 0.9x	0.77	x	0.64	x	106.25	x	0.63	x	0.7	=	20.78	(77)
Southeast 0.9x	0.77	x	0.64	x	119.01	x	0.63	x	0.7	=	23.28	(77)
Southeast 0.9x	0.77	x	0.64	x	118.15	x	0.63	x	0.7	=	23.11	(77)
Southeast 0.9x	0.77	x	0.64	x	113.91	x	0.63	x	0.7	=	22.28	(77)
Southeast 0.9x	0.77	x	0.64	x	104.39	x	0.63	x	0.7	=	20.42	(77)
Southeast 0.9x	0.77	x	0.64	x	92.85	x	0.63	x	0.7	=	18.16	(77)
Southeast 0.9x	0.77	x	0.64	x	69.27	x	0.63	x	0.7	=	13.55	(77)
Southeast 0.9x	0.77	x	0.64	x	44.07	x	0.63	x	0.7	=	8.62	(77)
Southeast 0.9x	0.77	x	0.64	x	31.49	x	0.63	x	0.7	=	6.16	(77)
South 0.9x	0.77	x	0.69	x	46.75	x	0.63	x	0.7	=	9.86	(78)
South 0.9x	0.77	x	0.69	x	76.57	x	0.63	x	0.7	=	16.15	(78)
South 0.9x	0.77	x	0.69	x	97.53	x	0.63	x	0.7	=	20.57	(78)
South 0.9x	0.77	x	0.69	x	110.23	x	0.63	x	0.7	=	23.25	(78)
South 0.9x	0.77	x	0.69	x	114.87	x	0.63	x	0.7	=	24.22	(78)
South 0.9x	0.77	x	0.69	x	110.55	x	0.63	x	0.7	=	23.31	(78)
South 0.9x	0.77	x	0.69	x	108.01	x	0.63	x	0.7	=	22.78	(78)
South 0.9x	0.77	x	0.69	x	104.89	x	0.63	x	0.7	=	22.12	(78)
South 0.9x	0.77	x	0.69	x	101.89	x	0.63	x	0.7	=	21.48	(78)
South 0.9x	0.77	x	0.69	x	82.59	x	0.63	x	0.7	=	17.42	(78)
South 0.9x	0.77	x	0.69	x	55.42	x	0.63	x	0.7	=	11.69	(78)
South 0.9x	0.77	x	0.69	×	40.4	x	0.63	x	0.7	=	8.52	(78)
Southwest _{0.9x}	0.77	x	12.68	x	36.79		0.63	x	0.7	=	142.58	(79)
Southwest _{0.9x}	0.77	x	4.88	x	36.79	İ	0.63	x	0.7	=	54.87	(79)
Southwest _{0.9x}	0.77	x	1.98	x	36.79	İ	0.63	x	0.7	=	22.26	(79)
Southwest _{0.9x}	0.77	x	12.68	x	62.67		0.63	x	0.7	=	242.87	(79)
Southwest _{0.9x}	0.77	x	4.88	×	62.67		0.63	x	0.7	=	93.47	(79)
Southwest _{0.9x}	0.77	x	1.98	x	62.67		0.63	x	0.7	=	37.92	(79)
Southwest _{0.9x}	0.77	x	12.68	x	85.75		0.63	x	0.7	=	332.31	(79)
L			_	1				I		1		<u> </u>

Southwest0.9x	0.77] x	4.88	×	85.75		0.63	x	0.7	=	127.89	(79)
Southwest _{0.9x}	0.77	」 】 ×	1.98	x	85.75		0.63	x	0.7	=	51.89	(79)
Southwest _{0.9x}	0.77	x	12.68	x	106.25		0.63	x	0.7	=	411.74	(79)
Southwest _{0.9x}	0.77	x	4.88	x	106.25		0.63	x	0.7	=	158.46	(79)
Southwest _{0.9x}	0.77) x	1.98	x	106.25		0.63	x	0.7	=	64.29	(79)
Southwest _{0.9x}	0.77	x	12.68	x	119.01		0.63	x	0.7	=	461.19	(79)
Southwest0.9x	0.77	x	4.88	x	119.01		0.63	x	0.7	=	177.49	(79)
Southwest _{0.9x}	0.77	x	1.98	x	119.01		0.63	x	0.7	=	72.01	(79)
Southwest _{0.9x}	0.77	x	12.68	x	118.15	İ	0.63	x	0.7	=	457.85	(79)
Southwest0.9x	0.77	x	4.88	×	118.15		0.63	x	0.7	=	176.21	(79)
Southwest _{0.9x}	0.77	x	1.98	x	118.15		0.63	x	0.7	=	71.49	(79)
Southwest0.9x	0.77	x	12.68	×	113.91		0.63	x	0.7	=	441.42	(79)
Southwest0.9x	0.77	x	4.88	x	113.91		0.63	x	0.7	=	169.88	(79)
Southwest _{0.9x}	0.77	x	1.98	x	113.91		0.63	x	0.7	=	68.93	(79)
Southwest _{0.9x}	0.77	x	12.68	x	104.39		0.63	x	0.7	=	404.53	(79)
Southwest _{0.9x}	0.77	x	4.88	×	104.39		0.63	x	0.7	=	155.69	(79)
Southwest _{0.9x}	0.77	x	1.98	x	104.39		0.63	x	0.7	=	63.17	(79)
Southwest _{0.9x}	0.77	x	12.68	x	92.85		0.63	x	0.7	=	359.82	(79)
Southwest _{0.9x}	0.77	x	4.88	x	92.85		0.63	x	0.7	=	138.48	(79)
Southwest _{0.9x}	0.77	x	1.98	×	92.85		0.63	x	0.7	=	56.19	(79)
Southwest _{0.9x}	0.77	x	12.68	x	69.27		0.63	x	0.7	=	268.42	(79)
Southwest _{0.9x}	0.77	x	4.88	x	69.27		0.63	x	0.7	=	103.31	(79)
Southwest _{0.9x}	0.77	x	1.98	x	69.27		0.63	x	0.7	=	41.91	(79)
Southwest _{0.9x}	0.77	x	12.68	x	44.07		0.63	x	0.7	=	170.78	(79)
Southwest _{0.9x}	0.77	x	4.88	x	44.07		0.63	X	0.7	=	65.73	(79)
Southwest _{0.9x}	0.77	x	1.98	x	44.07		0.63	x	0.7	=	26.67	(79)
Southwest _{0.9x}	0.77	×	12.68	x	31.49		0.63	x	0.7	=	122.02	(79)
Southwest _{0.9x}	0.77	×	4.88	x	31.49		0.63	x	0.7	=	46.96	(79)
Southwest _{0.9x}	0.77	X	1.98	X	31.49		0.63	x	0.7	=	19.05	(79)
West 0.9x	0.77	X	0.69	X	19.64	X	0.63	X	0.7	=	4.14	(80)
West 0.9x	0.77	X	0.69	X	38.42	X	0.63	X	0.7	=	8.1	(80)
West 0.9x	0.77	X	0.69	X	63.27	X	0.63	X	0.7	=	13.34	(80)
West 0.9x	0.77	×	0.69	X	92.28	X	0.63	X	0.7	=	19.46	(80)
West 0.9x	0.77	×	0.69	X	113.09	x	0.63	X	0.7	=	23.85	(80)
West 0.9x	0.77	X	0.69	X	115.77	X	0.63	X	0.7	=	24.41	(80)
West 0.9x	0.77	×	0.69	×	110.22	X	0.63	x	0.7	=	23.24	(80)
West 0.9x	0.77	×	0.69	X	94.68	X	0.63	x	0.7	=	19.96	(80)
West 0.9x	0.77	×	0.69	X	73.59	x	0.63	x	0.7	=	15.52	(80)
West 0.9x	0.77	×	0.69	×	45.59	x	0.63	x	0.7	=	9.61	(80)
West 0.9x West 0.9x	0.77	×	0.69	X	24.49	x	0.63	x	0.7	=	5.16	(80)
West 0.9x	0.77	×	0.69	×	16.15	x	0.63	x	0.7	=	3.41	(80)

Doofligh	sto o o T				r					1			-			1		
Roofligh	Ľ	1		x	1.7		x		26	X		0.63	×	0.7		=	17.54	(82)
Roofligh	Ľ	1		x	1.7		х	3	8.23	X X		0.63	×	0.7		=	25.8	(82)
Roofligh	L	1		x	1.7		х		54	X X		0.63		0.7		=	36.44	(82)
Roofligh	Ľ	1		x	1.7		х	7	1.75	X		0.63		0.7		=	48.41	(82)
Roofligh	Ľ	1		x	1.7		x		96	X		0.63	_ ×	0.7		=	64.77	(82)
Roofligh	L	1		x	1.7		x		12.53	X		0.63	×	0.7		=	75.93	(82)
Roofligh	L	1		x	1.7	7	X		150	×		0.63	×	0.7		=	101.21	(82)
Roofligh		1		x	1.7	7	x	1	58.21	×		0.63	×	0.7		=	106.75	(82)
Roofligh	L	1		x	1.7	7	x		192	×		0.63	×	0.7		=	129.55	(82)
Roofligh	L	1		x	1.7	7	x	1	90.52	×		0.63	×	0.7		=	128.55	(82)
Roofligh	L	1		x	1.7	7	x		200	x		0.63	×	0.7		=	134.95	(82)
Roofligh	L	1		x	1.7	7	x	1	93.98	×		0.63	×	0.7		=	130.88	(82)
Roofligh	L	1		x	1.7	7	x		189	x		0.63	×	0.7		=	127.52	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x	1	85.08	×		0.63	x	0.7		=	124.88	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x		157	x		0.63	x	0.7		=	105.93	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x	1	60.91	x		0.63	×	0.7		=	108.57	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x		115	x		0.63	×	0.7		=	77.59	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x	1:	28.69	x		0.63	×	0.7		=	86.83	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x		66	x		0.63	x	0.7		=	44.53	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x	8	3.48	x		0.63	x	0.7		=	56.33	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x		33	x		0.63	×	0.7		=	22.27	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x	4	7.08	×		0.63	×	0.7		=	31.77	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x		21	×		0.63	×	0.7		=	14.17	(82)
Roofligh	nts <mark>0.9x</mark>	1		x	1.7	7	x	3	1.85	x		0.63	×	0.7		=	21.49	(82)
	-									•								_
Solar g	ains in	watts, ca	alculat	ted	for each	n month	<u>1</u>			(83)r	n = S	um(74)m .	(82)m					
(83)m=	319.91	567.37							1272.03	111	8.35	927.71	642.2	1 387.4	270.9	97		(83)
Total g	ains – i	nternal a	ind so	lar	(84)m =	: (73)m	+ (83)m	, watts									
(84)m=	776.9	1022.02	1268.	98	1523.22	1698.1	1	690.5	1614.41	146	8.24	1291.14	1032.0	8 807.68	714.2	26		(84)
7. Me	an inter	nal temp	eratu	re ((heating	seaso	n)											
Temp	erature	during h	eating	g pe	eriods ir	the liv	ing	area	from Tab	ole S	, Th	1 (°C)					21	(85)
Utilisa	ation fac	ctor for g	ains fo	or li	ving are	a, h1,n	n (s	ee Ta	ble 9a)	_					-			_
	Jan	Feb	Ма	ır	Apr	May		Jun	Jul	A	ug	Sep	Oct	Nov	De	C		
(86)m=	0.99	0.99	0.97	,	0.93	0.85		0.72	0.58	0.	64	0.84	0.96	0.99	1			(86)
Mean	interna	l temper	ature	in l	iving are	ea T1 (f	follo	ow ste	ps 3 to 7	7 in ⁻	Table	e 9c)						
(87)m=	18.51	18.8	19.2	-	19.87	20.4	-	20.77	20.91	<u> </u>	.88	20.58	19.88	19.1	18.5	5		(87)
Temp	erature	during h	eatin		eriods in	rest of	f dw	velling	from Ta	able	9 Т	ևւ h2 (°Ը)						
(88)m=	19.1	19.11	19.1	<u> </u>	19.16	19.17	-	19.2	19.2	<u> </u>	.21	19.19	19.17	19.15	19.1	3		(88)
										I		II			I			
(89)m=	0.99	otor for ga	0.96	-		veiling, 0.78	-	,m (se 0.58	0.37	r Ó	43	0.74	0.94	0.99	0.99	,		(89)
							_					II		0.00	0.00	•		()

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

(90)m=	16.95	17.24	17.7	18.33	18.8	19.11	19.19	19.19	18.99	18.35	17.58	16.96		(90)
									f	LA = Livin	g area ÷ (4	4) =	0.11	(91)
Moon	intorno	Itompor	oturo (fo	r tho wh	olo dwol	lling) – fl		. (1 fl	A) v T2			L		
(92)m=	17.12	17.42	17.88	18.5	18.98	19.3	19.38	+ (1 – fL 19.38	19.17	18.52	17.75	17.14		(92)
									ere appro					()
(93)m=	17.12	17.42	17.88	18.5	18.98	19.3	19.38	19.38	19.17	18.52	17.75	17.14		(93)
. ,			uirement											· · ·
					re obtain	ned at ste	ep 11 of	Table 9	o so tha	t Ti m=()	76)m an	d re-calc	ulate	
				using Ta					o, oo ma		rojin an		ulato	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	1:										
(94)m=	0.99	0.98	0.95	0.89	0.77	0.59	0.4	0.46	0.74	0.93	0.98	0.99		(94)
Usefu	ul gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	768.68	998.47	1205.89	1353.63	1312.86	995.6	641.45	670.24	949.89	956.62	792.18	708.41		(95)
Montl	hly avera	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m	x [(93)m	– (96)m]				
(97)m=	3310.99	3211.65	2901.29	2377.26	1792.79	1127.29	667.34	710.48	1227.49	1950.62	2651.96	3259.53		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k\	Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m			
(98)m=	1891.48	1487.26	1261.37	737.01	357.07	0	0	0	0	739.53	1339.04	1898.03		
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	9710.79	(98)
Space	e heatin	g require	ement in	kWh/m ²	/year							ĺ	89.04	(99)
9a En	erav rec	wiremer	nts – Indi	ividual h	eating s	vstems i	ncludina	micro-C	HP)			L		
	e heatir				oaang o	y otornio i	lioidanig		/ / /					
•		-	at from s	econdar	y/supple	mentary	system]	0	(201)
Fracti	ion of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =			l	1	(202)
				main sys	. ,			(204) = (2)	02) × [1 – ((203)] =		l	1	(204)
			•	-					, .			l		(206)
	-	-		ing syste								l	89	
Efficie	ency of s	seconda	ry/supple	ementar	y heating	g systen	ז, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space		<u> </u>	· · · · ·	alculate	d above))								
	1891.48	1487.26	1261.37	737.01	357.07	0	0	0	0	739.53	1339.04	1898.03		
(211)m	า = {[(98)m x (20	4)] } x 1	00 ÷ (20)6)									(211)
	2125.26	1671.07	1417.27	828.1	401.2	0	0	0	0	830.93	1504.54	2132.62		
								Tota	l (kWh/yea	ar) =Sum(2	2 11) _{15,1012}	=	10911	(211)
Space	e heatin	g fuel (s	econdar	y), kWh/	month							L		
•		•	00 ÷ (20	• •										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
					-	•								
								Tota	l (kWh/yea	ar = Sum(2)	(15) _{15,1012}	=	0	(215)
Water	heating	I						Tota	il (kWh/yea	ar) =Sum(2	(15) _{15,10} 12	=	0	(215)
	-		<u>ter (cal</u> c	ulated al	bove)			Tota	l (kWh/yea	ar) =Sum(2	(15) _{15,10} 12	=	0	_(215)
	-		ter (calc 207.35	ulated al 185.66	bove) 181.71	160.04	153.33	Tota 170.93	1 (kWh/yea 170.79	192.53	203.85	218.78	0	_(215)

	00	00	00	80		80	80	1	(217)
(217)m= 89 89 89 89 89 89	89	89	89	89	89	89	89		(217)
Fuel for water heating, kWh/month (219)m = $(64)m \times 100 \div (217)m$									
(219)m= 251.96 222 232.98 208.61 204.17	7 179.82	172.28	192.05	191.9	216.33	229.05	245.81		
		-	Tota	I = Sum(2	19a) ₁₁₂ =	-		2546.97	(219)
Annual totals					k	Wh/year	•	kWh/year	-
Space heating fuel used, main system 1								10911	
Water heating fuel used								2546.97	
Electricity for pumps, fans and electric keep-h	ot								
central heating pump:							30		(230c)
boiler with a fan-assisted flue							45		(230e)
Total electricity for the above, kWh/year			sum	of (230a).	(230g) =			75	(231)
								425.41	(232)
Electricity for lighting									
Electricity for lighting Total delivered energy for all uses (211)(22	1) + (231)	+ (232).	(237b)	=				13958.37	(338)
								13958.37	(338)
Total delivered energy for all uses (211)(22	tems incl	uding mi			Emiss	ion fac	tor		7.
Total delivered energy for all uses (211)(22	tems inclu En				Emiss kg CO	ion fac 2/kWh	tor	13958.37 Emissions kg CO2/yea	
Total delivered energy for all uses (211)(22	tems incl En kW	uding mi nergy				2/kWh	tor =	Emissions	
Total delivered energy for all uses (211)(22 12a. CO2 emissions – Individual heating sys	tems inclu En kV (21	uding mi nergy Vh/year			kg CO	2/kWh		Emissions kg CO2/yea	ar
Total delivered energy for all uses (211)(22 12a. CO2 emissions – Individual heating sys Space heating (main system 1)	tems incl En kW (21	uding mi hergy Vh/year 1) x			kg CO	2/kWh 16 19	=	Emissions kg CO2/yea 2356.78	ar](261)
Total delivered energy for all uses (211)(22 12a. CO2 emissions – Individual heating sys Space heating (main system 1) Space heating (secondary)	tems incl En kW (21 (21) (21)	uding mi hergy Vh/year 1) x 5) x 9) x)	kg CO	2/kWh 16 19	=	Emissions kg CO2/yea 2356.78	ar](261)](263)
Total delivered energy for all uses (211)(22 12a. CO2 emissions – Individual heating sys Space heating (main system 1) Space heating (secondary) Water heating	tems incl En kW (21 (21) (21) (26)	uding mi hergy Vh/year 1) x 5) x 9) x	cro-CHF)	kg CO	2/kWh 16 19 16	=	Emissions kg CO2/yea 2356.78 0 550.14	ar](261)](263)](264)
Total delivered energy for all uses (211)(22 12a. CO2 emissions – Individual heating sys Space heating (main system 1) Space heating (secondary) Water heating Space and water heating	tems incl En kW (21 (21) (21) (26 ot (23)	uding mi hergy Vh/year 1) x 5) x 9) x 1) + (262)	cro-CHF)	kg CO	2/kWh 16 19 16	= =	Emissions kg CO2/yea 2356.78 0 550.14 2906.92	ar](261)](263)](264)](265)
Total delivered energy for all uses (211)(22 12a. CO2 emissions – Individual heating sys Space heating (main system 1) Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-h	tems incl En kW (21 (21) (21) (26 ot (23)	uding mi hergy /h/year 1) x 5) x 9) x 1) + (262) 1) x	cro-CHF	264) =	kg CO. 0.2 0.5 0.2	2/kWh 16 19 16 19 19	= = =	Emissions kg CO2/yea 2356.78 0 550.14 2906.92 38.93	ar (261) (263) (264) (265) (265) (267)
Total delivered energy for all uses (211)(22 12a. CO2 emissions – Individual heating sys Space heating (main system 1) Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-h Electricity for lighting	tems incl En kW (21 (21) (21) (26 ot (23)	uding mi hergy /h/year 1) x 5) x 9) x 1) + (262) 1) x	cro-CHF) (264) = sum o	kg CO. 0.2 0.5 0.2	2/kWh 16 19 16 19 19	= = =	Emissions kg CO2/yea 2356.78 0 550.14 2906.92 38.93 220.79	ar] (261)] (263)] (264)] (265)] (267)] (268)