Scottish Opera New Rotterdam Wharf
Daylight and Sunlight Report J7374-MXF-XX-XX-RP-Y-28000 P03
19th February 2024

Max Fordham LP
42/43 Gloucester Crescent
London
NW1 7 PE
T 02072675161
maxfordham.com
Max Fordham LLP is a Limited Liability
Registered in England and Wales
Number OC300026.
Registered office
Registered ofirce:
$42-43$ Gloucester Crescent
London NW1 7PE
This report is for the private and
confidential use of the clients for
confidential use of the clients for
whom the report is undertaken
whom the report is undertataken and
should not ber reproduceed din whole or
in part or relied upon
in part or relied upon by third parties
for any use whatsoever with out the
fordham LLP
© Max Fordham LLP

ISSUE HISTORY		
Issue	Date	Description
P01	$22 / 01 / 2024$	Initial Draft
P02	$16 / 02 / 2024$	For comment
P03	$19 / 02 / 2024$	For Planning

1.0 Overview and Summary 4
1.2 Introduction
1.2.1 Performance of Proposed Development
1.2.2 Impact on Surroundings
2.0 Performance of Proposed Development

1 Internal Daylight
2.1.1 Summary of Internal Daylighting
2.1.2 Standards and Definitions
2.1.3 Areas Examined
2.1.4 Simulation
2.1.5 Results
2.2 Sunlight on Windows
2.2.1 Sunlight on Windows - Results
2.2.1 Amenity spaces
2.3.1 Amenity Spaces - Results
3.0 Impact on Surroundings - Methodology and Criteria 3.1 Daylight Impact Analysis 8
.1.1 Obstruction Angle
8
3.1.2 Vertical Sky Component (VSC)
3.1.3 No-Sky Line (NSL
3.1.4 Daylight Impact Analysis - Proposed Developments
3.2 Sunlight Impact Analysis
3.1 Annual and Winter Probable Sunlight Hours (APSH a WPSH) 9
3.2.2 Sunlight to Surrounding Amenity Areas 9

BRE Impact Assessment Classification
5.0 Modelling
5.1 Site and Surroundings Overview
5.1.1 Amenity Space
5.1.2 Canal
5.2 Geometry
5.2.1 Speirs Wharf - Window Generation
5.2.2 Canal Boat Windows
5.3 Procedure
5.3.1 Software Used
5.3.2 Model Parameters
6.0 Impact on surroundings - Results 2
6.1 Speirs Wharf
6.2 Non-Residential Buildings
6.2.1 A) Royal Conservatoire of Scotland - Wallace Studios
6.2.2 B) 230-260 Garscube Road (Matthew's Foods Glasgow)
6.2.3 C) 12 Burns St (Harvest Foods)
6.2.4 D) 22 Farnell St
6.2.5 E) Civic House and neighbouring warehouse
6.3 Sunlight on Existing Amenity Space
6.4 Impact on the Canal and M oorings
6.4.1 Canal Boat Windows
6.4.2 Sunlight on Canal

1.0 OVERVIEW AND SUMMARY

1.1 Introduction

Daylight and Sunlight analysis of a building can be split into two categories: performance of the proposed design and impact on the surroundings. Daylight analysis refers to a calculation of the general illuminance of a space whereas sunlight access is an analysis of the hours of direct sunlight on a window or amenity space
The Scottish Government has recently released National Planning Framework 4 (NPF4) as its national spatial strategy for Scotland. It sets out the principles for future developments as part of its national planning policy. NPF4 does no directly address daylight and sunlight. Daylight and Sunlight however can be linked to many Sustainable Development Goals referenced in the document such as SDG3 and SDG11

The guidance for assessing both the performance of the proposed development and the impact of the new development in this report is from BRE Guide 209: Site Layout Planning for Daylight and Sunlight. This is in reference to Glasgow City Council - Part 3: Development Policies and Design Guidance, which recommends using the tests given in the guide for assessing the impact of a new development. The advice given in the guide is advisory only and can be interpreted based on the context of the project. However, daylight in a building is crucial for occupant wellbeing, as well as helping reduce energy usage through lighting. Depending on location and time of year, occupants will have a certain expectation of daylighting. Furthermore, a proposed development that will have a significantly adverse effect on its neighbours will encounter opposition during the planning process.

The tests conducted and shown in this report show that the design does not significantly decrease access to daylight or sunlight to its neighbours and allows a healthy amount of daylight to its inhabitants.

1.2 Summary

The figures below show an overview of the proposed development and surroundings. The first is a render produced by the architects Page and Park $(P \backslash P)$ and the second is a render of a model used by M ax Fordham for daylighting analysis.

1.2.1 Performance of Proposed Development

The interior daylighting for studio flats was examined and compared agains BS EN 17037:2018+A1:2021 - Daylight in Buildings. Simulations were carried out via Radiance, which is a validated daylighting tool. Rhino and Grasshoppe ere utilised to facilitate simulations. Focusing on worst-case scenarios, mom in potentially unsuitable locations were studied. The results wer ighly positive in terms of interior daylighting The daylighting study wa onducted on a model received from the architects and fed into the fin design. The architect has placed great care in locating studios of differen izes. Larger studios with kitchens, which benefit from higher light levels, are laced on southern facades. This coupled with the placing of smaller studios n northern facades allow them to reach the recommended daylight Illuminances. Based on our analysis we expect the majority of studios to reach and surpass the illuminance recommendations found in BS EN 17037:2018+A1:2021 No room studied received a suggested that further overheating analysis may be required.

1.2.2 Impact on Surroundings

The external impact on the surroundings of the proposed development was assessed using guidance in BRE Guide 209: Site Layout Planning for Daylight and Sunlight. Simulations were carried out using Radiance. Impacted windows and areas were identified and the applicable tests were carried out. Overall, the impact of the new development was minorly adverse. The results of the studies are summarised below.

Speirs Wharf

The impact of the new development on Speirs Wharf has been classed as negligible. All windows in Speirs Wharf passed the VSC and APSH tests specified by BRE 209. This means that neither the daylight nor the sunligh access to Speirs Wharf will be greatly affected. This is likely due to the access to Speirs Wharf will be greatly affected. This is likely due to the ensures that the total impact on any of the windows is minimal. The lowered sections to the East also help with retaining light to Speirs Wharf; this minimises the obstruction angle of the development given its height and thus ensures more of the sky and sun is visible from the windows of Speirs Wharf

Houseboats and Moorings

Overall, there was a negligible adverse impact on the daylighting and sunlight access to the moorings at Speirs Wharf. All tested houseboat window locations passed these the VSC and APSH tests as specified in BRE 209. The mooring area itself still receives an adequate amount of sunlight.

Non-residential

Overall, it was judged that the impact of the new development on the surrounding non-residential buildings was minorly adverse.

Royal Conservatoire of Scotland - Wallace Studios
No windows in this building were adversely affected by the new development

230-260 Garscube Road
One window here failed both the tests applied here, however this window is unlikely to have a high expectation of daylight due to the nature of the building.

12 Burns St
One window failed on this building; however, we believe that the expectation for daylight from this window is low due to the storage nature of the building and the lack of other windows.

22 Farnell St
All analysed windows on this building passed.
Civic House
There were no windows that faced the proposed development on this building

2.0 PERFORM ANCE OF PROPOSED DEVELOPMENT

2.1 Internal Daylight

2.1.1 Summary of Internal Daylighting

The internal daylighting of the PBSA studios is likely to be very good. Sample floors and rooms were analysed using validated daylighting tools and tested against the relevant standards. Based on our findings we summarise expect the majority of studios to meet and surpass the target illuminance as per BS EN 17037:2018+A1:2021.

2.1.2 Standards and Definitions

BRE Guide 209-Site Layout Planning for Daylight and Sunlight offers two methods for assessing interior daylight in new buildings: Daylight Factor (DF) or Daylight Autonomy (DA)/Target Illuminance. The latter method falls under the category of climate-based daylight modelling, which accounts for orientation and direct sunlight. This assessment uses the Target Illuminance method.

Daylight Autonomy is the percentage of the occupied time when the target illuminance is met at a point in space. For this internal analysis we have considered all the daylight hours in the year.

The guide references BSEN 17037:2018+A1:2021, which has targets for minimum amounts of daylight for rooms, as well as a British National Annex that gives targets for "hard to light dwellings." The table below shows median that gives targets for "hard to light dwellings." The table below shows median for these levels to be achieved over half of the working plane for half of the daylight hours in a year. In practical terms, this means that for an analysis point to pass it should be phove this illuminance target for at least 50% of the point to pass it should be above this illuminance target for at least 50% of the daylight hours. If over 50% of the test points in the test plane of a room achiots set , hut in the nation por whe the targets set out in the national annex as dw. towers are likely to be considered hard to light.

Room Type	Illuminance (lux)
Kitchens	200
Living Rooms	150
Bedrooms	100

Kitchen-Diners or Kitchen-Living-Diners are required to achieve the level of the kitchen as this room has the higher/highest requirement of the combined
room types. Studios without kitchens require only to pass the 1001x illuminance level.

BS EN 17037:2018 National Annex suggests that where a dwelling exceeds $5001 x$ on 50% of the grid points for more than half of the daylight hours, that it is checked for overheating risk.

2.1.3 Areas Examined

It was important to look at worst-case scenarios for both types of studios. As he floor plans are similar from L04 and higher it was deemed not necessary to conduct simulations on each individual room

All studios on L02 for both towers were decided to be most at risk from orientation issues and blockage from nearby buildings. The north facing studios on L04 south tower were looked at as worst-case scenarios for the smaller studios without kitchens.

2.1.4 Simulation

The geometry was provided by the architect dated 30/10/2023. The indoor daylight analysis was carried out via a purpose-built script in Grasshopper within Rhino. This script uses Radiance which is a validated daylighting tool. A weather file for Glasgow was used the same weather file was used for all relevant tests on New Rotterdam Wharf.

The results for interior daylighting fed into the final design but are not an nalysis of the final design

The optical properties chosen for the simulation can be found in the table below.

Optical Property	Value
Interior Ceiling Reflectance	0.7
Interior Ceiling Specularity	0.1
Interior Wall Reflectance	0.5
Interior Wall Specularity	0.1
Interior Floor Reflectance	0.2
Interior Floor Specularity	0.1
Exterior Window Transmittance	0.7
Exterior Window Refraction	1.52

2.1.5 Results

Studios with kitchens on southern facades pass the 2001x requirement for kitchens. On northern facades, if the studio is modelled with a bathroom, then it will pass the 2001x requirement. Below is an image showing daylight autonomy for studios inside the north tower 502 A representative bathroom is modelled in two passing studios on each facade. This shows that when bathrooms are included in the simulations at least half of the space reaches at least 50% Daylight Autonomy on the northern façade. Reaching 50% DA in at least half of a studio signifies a passing result. No north facing studios face any obstructions that would cause them to fail.

The smaller studios which lack kitchens pass the lower 1001x requirement in all areas tested and likely pass on every floor in both PBSA towers. The smaller depth of these studios means that they average a higher lux level than the studios with kitchens. This coupled with the lower illuminance requirement allows placement in less optimal locations within PBSA without compromising the expected daylight illuminance for a room of its type.

The north façade on the southern tower appears to be slightly impacted by the new developments on the rehearsal building. However, the architect has
avoided placing studios on the lower floors on the eastern side of the
southern tower. This minimises impact on any potential impact to the studios, On a similar note, the southern PBSA tower does not present an issue to the internal daylighting of the studios within the northern PBSA tower

No studios analysed exceeded 5001x on 50\% of the grid points for more than half of the daylight hours. Therefore, the interior daylighting analysis conducted does not indicate any rooms at particular risk of overheating.

2.2 Sunlight on Windows

The BRE guide suggests that for a building that has a particular requirement for sunlight to appear reasonably sunlit, it should fulfil the following criteria. Firstly, it should have at least one window wall within 90° of due south. Secondly, it should have a habitable room served by at least one window that can receive a total of at least 1.5 hours of sunlight on the $21^{\text {st }}$ of M arch. This is assessed at the centre of the window(s); sunlight received by different windows can be added provided they occur at different times and sunlight hours are not double counted

In multi-residential buildings, it is not always possible to ensure every dwelling has a window that meets these criteria. In this case it is best practice to minimise the number of dwellings that fail this test.

2.2.1 Sunlight on Windows - Results

As the figures below demonstrate, there are large portions of the north faces of both the towers that fail to receive more than 1.5 hours of sunlight on the $21^{\text {st }}$ of March. This means that any dwellings that only have rooms on these facades will not pass this test. Based on current layouts we estimate this to be 20% of dwellings.

Therefore, studio dwellings are better served on the south facade Accommodation can be put on the north façade providing that each room has access to an amenity space that has a window that faces within 90° of due south and is not overly shaded by the rest of the tower. This has been incorporated into the current design; most of the studios are on the south façade. The apartment style accommodation has been placed on the north façade but with kitchens that have East or West facing windows. This should ensure adequate access to sunlight.

2.3 Amenity spaces

It is recommended that at least half an amenity space should receive at least two hours of direct sunlight on March $21^{\text {st }}$. Amenity spaces were determined from plans issued by P\P as well as areas that are likely to be used by occupants and visitors.

2.3.1 Amenity Spaces - Results

The figure below shows the hours of sunlight received at test points around the site on the $21^{\text {st }}$ of M arch with the proposed development in place. These points are grouped into twenty-seven amenity areas

Of the twenty-seven areas tested, 25 had more than 2 hours of sunlight on the $21^{\text {st }}$ of M arch and hence passed the test. The two that failed were located to the north of the northern tower on the steps. This means that this area may not be suitable to designate as an amenity space for sitting. See appendix A for a summary of the results.

3.0 IM PACT ON SURROUNDINGS METHODOLOGY AND CRITERIA

There are several elements to this assessment, which in general can be broken down into two categories: daylight impact and sunlight impact. Further information about these is provided in the following sections.

3.1 Daylight Impact Analysis

In designing a new development, it is important to safeguard the daylight to nearby buildings. The BRE guide provides a decision process for this analysis which is summarised in the flowchart below.

The guide identifies which surrounding windows and areas should be analysed. Unless stated otherwise, these are locations that are within three times the distance of the difference between the height of the proposed development and the centre of the window or area in question (as measured from the edge of the new development closest to the window or area).

Furthermore, the guidance only applies to windows where there is an expectation of daylight or sunlight. In residential buildings this include windows of kitchens, living rooms and bedrooms. For non-residential buildings, the guidance would also apply for buildings where the occupants have a reasonable expectation of daylight. This includes schools, hospitals hotels and hostels, small workshops, and some offices.

3.1.1 Obstruction Angle

If the existing window is within the distance limit, then, as an initial test, the bstruction angle can be calculated. This is the angle to the horizonta subtended by the new development at the level of the centre of the lowest window, as measured in a plane perpendicular to the existing window. If any part of the new development exceeds an angle of 25° along the entire window wall, then there is a potential risk of loss of skylight. In this cas further analysis is required to accurately assess the loss of skylight.

3.1.2 Vertical Sky Component (VSC)

If the obstruction angle is greater than the recommended 25°, then to further assess the loss of skylight, the BRE Guide recommends using the Vertical Sky Component (VSC) as a metric, comparing existing values for nearby windows with proposed values with the proposed building in place.

The VSC indicates the degree of daylight availability on a vertical surface and is expressed as a percentage, with 40% being the maximum for a vertical surface. It represents the extent to which light from an overcast sky can reach a window as a proportion of the whole sky hemisphere. In suburban areas, the recommended minimum is 27%, any change below this should be limited to 0.8 of the existing value

As the site around New Rotterdam Wharf is quite open and sparsely populated, it should be possible to maintain the daylight access to the surrounding windows such that the 27% target is achieved for residential and most commercial buildings.

3.1.3 No-Sky Line (NSL)

The second measure recommended by the guide in order to assess the daylight impact is the No-Sky Line test. This metric measures the daylight distribution in the rooms of surrounding buildings. The NSL divides the area of the working plane that has a direct view of the sky to that that does not. The working plane is defined as a plane parallel to the floor with a vertical offset of 850 mm .

The guide states that the NSL should only be calculated where accurate room layouts and window locations are known, otherwise significant inaccuracies are likely to arise. To pass the test, the area of the room that has a direct view of the sky should not be reduced to less than 0.8 times its original value with the proposed development in place

3.1.4 Daylight Impact Analysis - Proposed Developments

It is also important to consider the impact of a new building on proposed development sites. The BRE guide states that in general, "a development site next to a proposed new building will retain the potential for good diffuse daylighting provided that on each common boundary:
a. no new building, measured in a vertical section perpendicular to the boundary, from a point 1.6 m above ground level, subtends an angle of more than 43° to the horizontal.
b. or, if (a) is not satisfied, then all points 1.6 metres above the bound ary line are within 4 m (measured along the boundary) of a point which has a VSC (looking towards the new building(s)) of 17% or more."

However, the guide is clear that there are exceptions to this quidance. A key exception occurs when the proposed new building is significantly larger than the likely future development. In this case, a better approach is to make a rough prediction of where the nearest window wall of the future
development will be and then carry out the analysis as if the window were in a new building.

3.2 Sunlight Impact Analysis

3.2.1 Annual and Winter Probable Sunlight Hours (APSH and WPSH)

APSH and WPSH (Annual and Winter Probable Sunlight Hours) measure the percentage of sunlight hours a window is likely to receive for a year or for the winter months between 21st September and 21st M arch. The
recommendation for a room to appear adequately sunlit is for it to receive 25% of annual probable sunlight hours, including at least 5% of winter probable sunlight hours. It is recommended that reduction in sunlight access below these levels be kept to a minimum; if the available sunlight hours are both less than the percentages stated above and less than 0.80 times their former value in either period, and the overall annual loss is greater than 4% of APSH, then the reduction in sunlight may be noticeable.

The guide suggests that the recommendation be applied to main living rooms of dwellings with a window facing within 90° of due south. Kitchens and bedrooms are considered less important and need not be analysed, although it is recommended not to block too much sun. In this study, room uses are mostly unknown, so all rooms tested for daylight and facing within 90° of due south have been analysed.

3.2.2 Sunlight to Surrounding Amenity Areas

It is recommended that at least half an amenity space should receive at least two hours of direct sunlight on March 21st, and any change to this area that may be caused by a new development not result in this area being less than 0.8 times its existing value.

3.3 BRE Impact Assessment Classification

In AppendixH, the BRE Guide states the following:
"The assessment of impact will depend on a combination of factors, and there is no simple rule of thumb that can be applied.

Where the loss of skylight or sunlight fully meets the guidelines in this document, the impact is assessed as [either] negligible or minor adverse Where the loss of light is well within the guidelines, or only a small number of windows or a limited area of open space lose light (within the guidelines), a classification of negligible impact is more appropriate. Where the loss of light is only just within the guidelines, and a larger number of windows or open space area are affected, a minor adverse impact would be more appropriate, especially if there is a particularly strong requirements for daylight and sunlight in the affected building or open space.

Where the loss of skylight or sunlight does not meet the guidelines in this document, the impact is assessed as minor, moderate or major adverse. Factors tending towards a minor adverse impact include:

- Only a small number of windows or limited area of open space are affected.
- The loss of light is only marginally outside the guidelines.
- An affected room has other sources of skylight or sunlight.
- The affected building or open space only has a low-level requirement for skylight or sunlight.
- There are particular reasons why an alternative, less stringent guideline should be applied, for example an overhang above the window or a window standing unusually close to the boundary.

Factors tending towards a major adverse impact include:

- A large number of windows or large area of open space are affected
- The loss of light is substantially outside the guidelines.
- All the windows in a particular property are affected.
- The affected indoor or outdoor spaces have a particularly strong requirement for skylight or sunlight, e.g. a living room in a dwelling or a children's playground."

Beneficial impacts from the development are classified as follows:
Beneficial impacts occur when there is a significant increase in the amount of skylight and sunlight reaching an existing building where it is required, or in the amount of sunlight reaching an open space. Beneficial impacts should be worked out using the same principles as adverse impacts. Thus a tiny increase in light would be classified as a negligible impact, not a minor beneficia impact.

An adverse impact on one property cannot be balanced against negligible or beneficial impacts on other properties. In these situations it is more appropriate to quote a range of impacts.

The provision of new dwellings, or commercial or industrial buildings, or private gardens that meet the skylight or sunlight guidance in this document should not be classified as a beneficial daylight or sunlight impact on the local environment. However, the provision of community buildings or public open spaces with good skylight and/ or sunlight could be classed as a beneficial impact."

4.0 REFERENCED DOCUM ENTS

The Sustainable Urban Housing: Design Standards for New Apartments Guidelines for Planning Authorities (December 2020):

Planning authorities should have regard to quantitative performance approaches to daylight provision outlined in guides like the BRE guide 'Site Layout Planning for Daylight and Sunlight' (2nd Edition) or BS 8206-2:2008'Lighting for Buildings - Part 2: Code of Practice for Daylighting' when undertaken by development proposers which offer the capability to satisfy minimum standards of daylight provision."
"where an applicant cannot fully meet all of the requirements of the dayligh provisions above, this must be clearly identified and a rationale for any alternative, compensatory design solutions must be set out, which planning authorities should apply their discretion in accepting taking account of its with the site or location and the balancing of that assessment against the desirability of achieving wider planning objectives.

Such objectives might include securing comprehensive urban regeneration and or an effective urban design and streetscape solution."

Glasgow City Council - Part 3: Development Policies and Design Guidance "In order to ensure that a proposal does not reduce daylighting excessively on an adjacent site, a daylighting assessment, where appropriate, will be carried Layout Planning for Daylight and Sunlight, a guide to good practice' - P.J. Littlefair".

The Urban Development and Building Heights - Guidelines for Planning Authorities (March 2018)
"At the scale of the site/building:

- The form, massing and height of proposed developments should be carefully modulated so as to maximise access to natural daylight, ventilation and views and minimise overshadowing and loss of light.
- Appropriate and reasonable regard should be taken of quantitative performance approaches to daylight provision outlined in quides like the Building Research Establishment's 'Site Layout Planning for Daylight and Sunlight' (2nd edition) or BS 8206-2: 2008 - 'Lighting for Buildings - Part 2 Code of Practice for Daylighting'.

BR 209 (2022) - Site Layout Planning for Daylight and Sunlight, A Guide to

 Good Practice (Third Edition)This document is widely used as a methodology for daylight and sunlight assessments, both for the impact of a new development on its surroundings and for assessment of natural light within proposed buildings. The third edition incorporates BSEN 17037.

BS EN 17037:2018 - Daylight in Buildings

A new, European-wide standard for daylight in buildings was introduced in 018. The UKNational Annex A of BS EN 17037 also gives minimum values for ousing, in living rooms, kitchens, and bedrooms. These are minimum
recommended values for locations where a predominantly daylit appearance not achievable; "for example in basement rooms or with significant external obstructions (perhaps in a dense urban area...)"

The national annex contains minimum daylight targets for kitchens, living rooms and bedrooms.

Geater London Authority, representation hearing report D\&P/3067/ 03 -

 Appendix 1, 18/ 11/ 2013.Comments by Greater London Authority (GLA) in the context of a planning appeal have been used as guidance on urban sites in the UK:
"It should, nevertheless, be noted that the 27% VSC target value is derived from a low-density suburban housing model. The independent daylight and sunlight review states that in an inner-city urban environment, VSC values more than 20\% should be considered as reasonably good and that VSC in the mid-teens should be acceptable. However, where the VSC value falls below 0\% (to be in single figures), the availability of direct light from the sky will be poor."

4.1 Impact on Canal and Canal Boats

Although these are not in Scotland, they are evidence that this impact is something that will likely be raised in planning.

City of Westminster, Planning Applications Sub Committee Report

9/09638/FULL 12/05/2020

This document refers to the daylight and sunlight available to canal boats, taking them into consideration when making a judgement about the impact of the building.

5.0 MODELING

5.1 Site and Surroundings Overview

As the site and its surroundings is open, with mostly low-rise developments, it is likely that the daylight impacts of the proposed buildings will be minor. This is because although the proposed buildings will block some of the sky and sunlight, there is likely to be enough of the sky dome still visible to ensure good access to light. The greatest impact is most likely to occur in areas close to the north of the proposed development. The tests carried out as part of this report ascertain the extent of the impact.

5.1.1 Amenity Space

Areas were identified that counted as amenity space, including those already existing and that proposed by P\P in drawings NRW-PPA-O-DR-A-100(1, 3, 7).

5.1.2 Canal

In line with planning decisions in London - see the referenced documents, daylight impact on the canal, moorings and any canal boats moored there was also considered. This is because these areas will have an expectation of both daylight and sunlight, both for natural reasons (effect on animal and plant populations) and human habitation.

5.2 Geometry

The geometry for the proposed development was derived from the Revit model of the project issued by Page and Park on 17/10/2023. The geometry or the surrounding area was taken from two sources: A VU.City model provided by Page and Park and outlines for further buildings from CadM apper. We simplified the surrounding geometry such that only key features were remaining. Trees and bushes were omitted as per the guidance given in BRE 209. In line with the guide, all surrounding buildings that sit within three times the w ight of the proposed development have been included in the assessmet. We also extended the scope of the assessment slightly further away to test for any potential overshadowing during winter.

Reasonable approximations of neighbouring window locations and geometries have been used, derived from either the VU.City model or online data.

5.2.1 Speirs Wharf - Window Generation

For Speirs Wharf, where there were a large number of windows to analyse, an initial study was carried out. This was because there was a lack of information about window sizes and locations. A uniform grid of windows was created on the façade and results were determined for these windows. If there were any areas that were significantly impacted (failing or a marginal pass) then these would be analysed further

5.2.2 Canal Boat Windows

As there are many potential mooring locations, window locations were generated that ran along the length of the mooring at 1 m above the height of the canal and 2 m from the edge of the jetty. The windows were spaced at 1 m intervals. These window locations were tested as if they were windows in an existing building.

5.3 Procedure

To determine which windows needed to be included in the assessment, several aspects were considered. Firstly, focus was applied to all the windows
in Speirs Wharf that faced the proposed development as these buildings are the closest residential buildings. The obstruction angle was then calculated for the walls of the surrounding buildings and areas where it was greater than 25° were identified. Windows incident on these walls were further analysed by applying the VSC and APSH tests where applicable. Buildings that were likely to be overshadowed due to their location were also included

5.3.1 Software Used

To carry out the modelling, several pieces of software were used. Geometry was imported into, simplified, and created in Rhino. Grasshopper scripts using the Ladybug and Honeybee plugins were created for the analysis. In general, these plugins use Radiance as a backend to carry out the calculations. Radiance is a validated daylighting tool.

Images were either captured from Rhino or Google Maps where appropriate to visualise the site.

5.3.2 Model Parameters

The weather file used for this analysis was
GBR_SCT_Glasgow.Wea.Center.031450_TM Yx. As all the calculations done were direct point of view calculations no further radiance parameters needed to be established and were therefore left as default.

6.0 IM PACT ON SURROUNDINGS - RESULTS

6.1 Speirs Wharf

In the initial study, a total of 436 window locations at Speirs Wharf were tested. These corresponded to all the windows where the proposed development was in view of the window. Twenty-four of the windows had an obstruction angle greater than 25° All the windows locations comfortably passed both the VSC and APSH tests. No internal plans for dwellings in the affected buildings in Speirs Wharf (34 and 36 Speirs Wharf) were available on the Glasgow Council planning portal and therefore the no-sky line could not be calculated for the rooms served by the potentially obstructed windows. Although due to the high obstruction angle it was not necessary to carry out the VSC and APSH for all the dwellings, due to concerns raised by residents it was deemed a sensible precautionary measure.

Speirs Wharf - Obstruction Angle
The obstruction angle was calculated for the centre points of all the windows. Twenty-four of the windows had an obstruction angle greater than 25°. These windows are shown in the figure below (highlighted in red). They are located directly facing the north tower (the new development has been hidden for clarity). All the potentially affected windows are part of either 34 or 36 Speirs Wharf. It was unclear as to exactly which apartments these windows belonged to. For reassurance, all windows locations on Speirs Wharf were further analysed.

Speirs Wharf - VSC Results

All the window locations comfortably passed, with no windows dropping below the 27% threshold. A full list of the results and window identifiers can be found in appendix D. This means that the portion of the sky dome seen from each window is not overly obstructed, and hence the daylighting in the room is very unlikely to be significantly affected. We would classify this as a negligible impact.

Speirs Wharf - APSH and WPSH Results
All the window locations passed the test with a comfortable margin. This means that the number of hours of sunlight incident on the window is suitably high such that the sunlight access in the room will not be adversely affected. As before, a full list of the results can be found in appendix D. Again we would classify this as a negligible impact.

6.2 Non-Residential Buildings

To assess which areas needed further analysis, the obstruction angle was assessed for the surrounding building facades. This analysis identified several
 buildings that needed further investigation. The figures below show these idden A preliminary sunlight study was also carried out to ascertain areas idden. A preliminary sunlight study was also carried out to ascertain areas
 marised in the following sections, which have been labelled to correspond to the figures.

6.2.1 A) Royal Conservatoire of Scotland - Wallace Studios

This building is a rehearsal, design, and storage space for the Royal Conservatoire of Scotland. As such it is likely that there will be an expectation of daylight and sunlight to some of the rooms. As can be seen in the figures below, there is an east facing wall which has an obstruction angle of greater than 25°. This is marked in red.

-

A total of nineteen windows were analysed. The VSC test was carried out on the windows on this wall. All windows passed this test - see appendixE for detailed results. The APSH test was also carried out - all windows also passed this test. This suggests that the impact to the daylighting and sunlight access should be minor
6.2.2 B) 230-260 Garscube Road (Matthew's Foods Glasgow)

There were two windows on this building that were on a window wall which had an obstruction angle of greater than 25°. These are shown in the figure below and are labelled windows 0 and 1. It is unknown as to what type(s) of room these windows serve. One likely option is that they are offices.

Window 0 passes both the VSC and APSH tests, but window 1 fails both. See appendix F for more details. Window 1 is a highly shaded window already (effectively equivalent to having a balcony) and hence it is expected that the daylighting and sunlight access will already be poor. We would class this as minor to moderate impact, as even though half of the windows are affected the expectation for daylight to this window is likely to be low.

6.2.3 C) 12 Burns St (Harvest Foods)

There is one window directly facing the proposed development, which is shown in the figure below. As the building is a supermarket/storage facility with very few windows it is likely that the expectation for daylight and sunlight is low.

This window fails the VSC test. However, it passes the APSH test, although it is predicted that the expectation for sunlight to this window will be low. See appendix G for detailed results

6.2.4 D) 22 Farnell St

There are five windows on the wall which has an obstruction angle greater than 25°.

All five windows passed both the VSC and APSH tests, see appendix H.
6.2.5 E) Civic House and neighbouring warehouse

There are no windows on the walls that faces the new development, and hence no further analysis was needed for this area.

6.3 Sunlight on Existing Amenity Space

The figure below shows a top view of the surroundings and the hours of sunlight received by each test point on the $21^{\text {st }}$ of M arch in selected amenity areas

All existing amenity areas tested had over 50% of the area receiving more than 2 hours of sunlight on $21^{\text {st }}$ of M arch and hence passed the test. See Appendix B for a breakdown of the results.

6.4 Impact on the Canal and M oorings

6.4.1 Canal Boat Windows

Twenty-two of the tested window locations have an obstruction angle greater than 25°. However, all the tested canal boat window locations passed the VSC and APSH tests. This means that it is unlikely that the daylighting will be adversely impacted. See AppendixJ for a breakdown of the results.

6.4.2 Sunlight on Canal

The number of sunlight hours that the canal itself would receive was also tested. 91% of the canal area tested still received over 2 hours of sunlight, with most of the canal receiving over 5 hours of sunlight on $21^{\text {st }}$ of M arch Therefore, the sunlight impact on the canal will be negligible. The figure below demonstrates the number of hours of sunlight received, see appendix c.

14) Scottish Opera New Rotterdam Wharf

Daylight and Sunlight Report

7.0 APPENDICES

In the tables of data for VSC, APSH and WPSH results, subscript "e" refers to the existing scenario, whereas the subscript " p " is with the proposed development in place. Subscript "rf" stands for reduction factor and "ar" stands for the absolute reduction (proposed minus existing).

7.1 Appendix A: New Amenity Space

Area Locations
Green colour denotes a pass, red areas fail the test.

7.2 Appendix B: Existing Amenity Space

Table 			8 0 0 $\frac{1}{6}$ 0 0 0		K K 8 8 8 8	
0	8.9	100.0	8.4	100.0	1.00	Pass
1	6.5	91.7	2.6	74.3	0.81	Pass
2	8.3	100.0	5.3	98.6	0.99	Pass
3	7.0	99.4	6.1	99.4	1.00	Pass
4	10.2	100.0	10.1	100.0	1.00	Pass
5	9.7	100.0	8.1	100.0	1.00	Pass
6	8.3	100.0	7.1	100.0	1.00	Pass
7	8.9	100.0	8.3	100.0	1.00	Pass

7.3 Appendix C: Sunlight access to Canal

Area Location

3 8 \times 0 0 0 0 $\frac{1}{1}$ 3

7.4 Appendix D: Speirs Wharf Results

Speirs Wharf Window Location References Window Location References

Figure 5: 40-48 Speirs Whar

VSC - Table of Results

W_ref: VSC E: VSC P: P/E: Pass/Fai

ref:	VSC_E:	VSC_P:	P/E:	Pass/Fail
0	38.8	35.8	0.92	Pass
1	38.4	35.2	0.92	Pass
2	38.9	35.8	0.92	Pass
3	38.6	35.3	0.92	Pass
4	38.8	35.8	0.92	Pass
5	36.8	33.6	0.91	Pass
6	38.7	35.7	0.92	Pass
7	38.7	35.7	0.92	Pass
8	36.5	33.5	0.92	Pass
9	37.9	35.3	0.93	Pass
10	38.5	35.7	0.93	Pass
11	38.5	35.6	0.93	Pass
12	38.6	35.9	0.93	Pass
13	38.4	35.4	0.92	Pass
14	38.5	35.6	0.92	Pass
15	38.6	35.7	0.93	Pass

16) Scottish Opera New Rotterdam Wharf

Daylight and Sunlight Report

16	38.4	35.5	0.92	Pass
17	38.2	35.4	0.92	Pass
18	38.7	35.8	0.93	Pass
19	38.3	35.5	0.93	Pass
20	38.2	34.9	0.91	Pass
21	38.7	35.6	0.92	Pass
22	38.5	35.4	0.92	Pass
23	38.6	35.5	0.92	Pass
24	38.5	35.2	0.91	Pass
25	38.2	34.8	0.91	Pass
26	38	34.4	0.91	Pass
27	38.4	35.2	0.91	Pass
28	38.6	35.4	0.92	Pass
29	38.6	35.2	0.91	Pass
30	38.5	35.2	0.91	Pass
31	38.3	34.9	0.91	Pass
32	38	34.6	0.91	Pass
33	38.2	34.9	0.91	Pass
34	37.2	34	0.91	Pass
35	38.6	35.2	0.91	Pass
36	38.6	35.2	0.91	Pass
37	38.4	35	0.91	Pass
38	38.2	35	0.92	Pass
39	38.5	35.5	0.92	Pass
40	38.7	35.4	0.91	Pass
41	38.5	35.4	0.92	Pass
42	38.5	35.5	0.92	Pass
43	38.6	35.5	0.92	Pass
44	38.5	34.9	0.91	Pass
45	38.5	35.1	0.91	Pass
46	37.8	34	0.9	Pass
47	38.5	34.6	0.9	Pass
48	38.3	34.5	0.9	Pass
49	38.4	35.3	0.92	Pass
50	38.5	35.2	0.92	Pass
51	38.5	34.9	0.91	Pass
52	38.5	34.9	0.91	Pass
53	38.5	34.6	0.9	Pass
54	38.6	34.7	0.9	Pass
55	38.5	34.5	0.89	Pass
56	38.5	34.6	0.9	Pass
57	38.3	34.8	0.91	Pass
58	38.4	34.5	0.9	Pass
59	38.5	34.6	0.9	Pass
60	37.3	33.8	0.9	Pass
61	38.5	34.9	0.91	Pass
62	38.3	34.9	0.91	Pass

63	38.3	35.4	0.93	Pass
64	38.4	35.5	0.93	Pass
65	38.4	35.4	0.92	Pass
66	38.5	35.7	0.93	Pass
67	38.4	36	0.94	Pass
68	38.4	35.8	0.93	Pass
69	38.3	36.1	0.94	Pass
70	38.4	36.1	0.94	Pass
71	38.4	36.2	0.94	Pass
72	38.5	36.1	0.94	Pass
73	38.5	36.5	0.95	Pass
74	38.4	36.5	0.95	Pass
75	38.6	36.9	0.96	Pass
76	38.7	36.9	0.95	Pass
77	38.8	37.3	0.96	Pass
78	39	37.4	0.96	Pass
79	38.9	37.7	0.97	Pass
80	38.9	37.7	0.97	Pass
81	39	38.1	0.98	Pass
82	39	38	0.98	Pass
83	38.9	37.7	0.97	Pass
84	38.8	37.7	0.97	Pass
85	38.8	37.5	0.97	Pass
86	38.8	37	0.95	Pass
87	38.7	36.8	0.95	Pass
88	38.6	36.8	0.95	Pass
89	38.8	36.9	0.95	Pass
90	38.6	36.5	0.94	Pass
91	38.6	36.1	0.94	Pass
92	38.6	35.7	0.92	Pass
107	38.6	38.8	36.7	0.95

110	38.8	37.1	0.95	Pass
111	38.7	36.6	0.95	Pass
112	38.8	36.2	0.93	Pass
113	38.9	37.3	0.96	Pass
114	39	36.9	0.95	Pass
115	38.7	36.6	0.95	Pass
116	38.8	36.1	0.93	Pass
117	39.1	37.3	0.95	Pass
118	39	37	0.95	Pass
119	38.6	36.3	0.94	Pass
120	38.5	36	0.93	Pass
121	39.1	36.8	0.94	Pass
122	39	36.7	0.94	Pass
123	38.5	36.3	0.94	Pass
124	38.2	35.8	0.94	Pass
125	39	36.9	0.95	Pass
126	38.9	36.6	0.94	Pass
127	38.8	36.2	0.93	Pass
128	38.7	35.8	0.92	Pass
129	38.7	36	0.93	Pass
130	38.7	36	0.93	Pass
131	38.7	36	0.93	Pass
132	38.8	36	0.93	Pass
133	38.9	36.9	0.95	Pass
134	38.8	36.8	0.95	Pass
135	38.8	36.4	0.94	Pass
136	38.9	37	0.95	Pass
137	38.8	36.7	0.95	Pass
138	38.8	36.5	0.94	Pass
139	38.6	36	0.93	Pass
140	38.8	36.9	0.95	Pass
141	38.9	36.8	0.95	Pass
142	38.7	36.4	0.94	Pass
143	38.7	35.9	0.93	Pass
144	38.9	36.9	0.95	Pass
145	38.7	37	0.95	Pass
146	38.7	36.3	0.94	Pass
147	38.5	35.8	0.93	Pass
148	38.4	36.7	0.96	Pass
149	38.3	36.3	0.95	Pass
150	38.2	35.9	0.94	Pass
151	38.1	35.5	0.93	Pass
152	38.9	37.3	0.96	Pass
153	38.9	37	0.95	Pass
154	38.8	36.7	0.94	Pass
155	38.8	36.4	0.94	Pass
156	38.6	35.8	0.93	Pass

157	38.9	37.3	0.96	Pass
158	38.9	36.9	0.95	Pass
159	38.8	36.6	0.94	Pass
160	38.6	36.4	0.94	Pass
161	38.7	35.8	0.93	Pass
162	38.9	37	0.95	Pass
163	38.4	36.7	0.96	Pass
164	38.4	36.5	0.95	Pass
165	38.4	36.3	0.95	Pass
166	38.5	35.4	0.92	Pass
167	38.5	36.9	0.96	Pass
168	38.1	36.5	0.96	Pass
169	38.2	36.2	0.95	Pass
170	38.1	36.2	0.95	Pass
171	38.2	35.3	0.93	Pass
172	38.9	37.5	0.96	Pass
173	38.8	37.2	0.96	Pass
174	38.8	36.6	0.94	Pass
175	38.5	36.3	0.94	Pass
176	38.4	35.8	0.93	Pass
177	39	37.5	0.96	Pass
178	38.9	37	0.95	Pass
179	38.7	36.7	0.95	Pass
180	38.6	36.3	0.94	Pass
181	38.6	35.8	0.93	Pass
182	38.6	37	0.96	Pass
183	38.6	36.8	0.95	Pass
184	38.3	36.4	0.95	Pass
185	38.4	35.7	0.93	Pass
186	39	37.2	0.95	Pass
187	38.8	36.7	0.95	Pass
188	38.8	36.4	0.94	Pass
189	38.5	36.1	0.94	Pass
190	38.8	37.1	0.96	Pass
191	38.9	36.9	0.95	Pass
192	38.8	36.7	0.95	Pass
193	38.5	36.4	0.94	Pass
194	38.9	37.2	0.96	Pass
195	38.8	36.8	0.95	Pass
196	38.7	36.6	0.95	Pass
197	38.8	36.3	0.94	Pass
198	38.6	36.9	0.95	Pass
199	38.5	36.4	0.95	Pass
200	38.5	36.3	0.94	Pass
201	38.4	36.2	0.94	Pass
202	38.5	36.5	0.95	Pass
203	38.3	36.4	0.95	Pass

204	37.9	35.9	0.95	Pass
205	38.7	37	0.96	Pass
206	38.8	36.6	0.94	Pass
207	38.4	36.4	0.95	Pass
208	38.4	36	0.94	Pass
209	38.9	36.7	0.94	Pass
210	38.3	36.4	0.95	Pass
211	38.2	36.2	0.95	Pass
212	38	35.7	0.94	Pass
213	38.9	37.6	0.97	Pass
214	38.7	37.6	0.97	Pass
215	38.7	37.1	0.96	Pass
216	38.7	37	0.96	Pass
217	38.5	36.8	0.96	Pass
218	38.4	36.3	0.95	Pass
219	39.1	37.8	0.97	Pass
220	38.9	37.6	0.97	Pass
221	38.7	37.3	0.96	Pass
222	38.9	37.2	0.96	Pass
223	38.8	36.8	0.95	Pass
224	38.5	36.6	0.95	Pass
225	39.1	37.7	0.96	Pass
226	38.9	37.5	0.96	Pass
227	38.9	37.5	0.96	Pass
228	38.8	37.2	0.96	Pass
229	38.8	36.8	0.95	Pass
230	38.6	36.5	0.95	Pass
231	39	37.7	0.97	Pass
232	38.9	37.4	0.96	Pass
233	38.9	37.3	0.96	Pass
234	38.8	37	0.95	Pass
235	38.8	36.8	0.95	Pass
236	38.7	36.6	0.95	Pass
237	38.9	37.4	0.96	Pass
238	39	37.1	0.95	Pass
239	38.8	36.9	0.95	Pass
240	38.8	36.7	0.95	Pass
241	38.6	36.4	0.94	Pass
242	38.6	35.9	0.93	Pass
243	39	37.3	0.96	Pass
244	38.9	37.1	0.95	Pass
245	38.8	36.8	0.95	Pass
246	38.7	36.4	0.94	Pass
247	38.7	36.1	0.93	Pass
248	38.5	36	0.93	Pass
249	39	37.3	0.96	Pass
250	38.9	37.1	0.95	Pass

251	38.8	36.8	0.95	Pass
253	38.8	36.5	0.94	Pass
254	38.7	36.1	0.93	Pass
255	35.8	0.93	Pass	
256	38.9	36.1	0.95	Pass
257	38.8	36.6	0.95	Pass
258	38.9	36.3	0.94	Pass
259	38.8	36	0.93	Pass
260	38.6	35.7	0.93	Pass
261	39	37	0.95	Pass
262	38.9	36.7	0.94	Pass
263	38.6	36.5	0.94	Pass
264	38.6	36.2	0.94	Pass
265	38.8	35.7	0.92	Pass
266	38.3	35.2	0.92	Pass
267	38.3	36.4	0.95	Pass
268	37.9	35.9	0.95	Pass
269	38.1	35.7	0.94	Pass
270	37.8	35	0.93	Pass
271	37.7	34.7	0.92	Pass
272	37.3	34.4	0.92	Pass
273	38.9	36.6	0.94	Pass
274	38.8	36.2	0.93	Pass
275	38.8	36	0.93	Pass
276	38.7	35.7	0.92	Pass
277	38.7	35.5	0.92	Pass
278	39	37	0.95	Pass
279	38.9	36.6	0.94	Pass
280	38.9	36.4	0.94	Pass
281	38.8	35.9	0.93	Pass
282	38.7	35.7	0.92	Pass
283	38.6	36	0.93	Pass
285	387	38.6	35.3	0.91

Scottish Opera New Rotterdam Wharf
Daylight and Sunlight Report

298	38.7	35.4	0.91	Pass	345	39.1	37.9	0.97	Pass
299	38.8	36.1	0.93	Pass	346	39.1	38	0.97	Pass
300	38.9	36.2	0.93	Pass	347	36.1	35.4	0.98	Pass
301	38.9	36.4	0.94	Pass	348	37.5	36.1	0.96	Pass
302	38.6	35.2	0.91	Pass	349	37.5	36.3	0.97	Pass
303	38.7	35.4	0.92	Pass	350	82.3	81.2	0.99	Pass
304	38.8	35.9	0.93	Pass	351	87.7	86.7	0.99	Pass
305	38.8	36.2	0.93	Pass	352	88.4	87.4	0.99	Pass
306	38.9	36.6	0.94	Pass	353	88.3	87.3	0.99	Pass
307	38.7	35.1	0.91	Pass	354	89.5	88.4	0.99	Pass
308	38.7	35.4	0.91	Pass	355	85.1	84.2	0.99	Pass
309	38.9	35.9	0.92	Pass	356	89.5	88.3	0.99	Pass
310	39	36.2	0.93	Pass	357	86.1	85.1	0.99	Pass
311	38.9	36.6	0.94	Pass	358	88.8	87.7	0.99	Pass
312	38.7	35.1	0.91	Pass	359	88	86.8	0.99	Pass
313	38.7	35.5	0.92	Pass	360	90.9	90.1	0.99	Pass
314	38.9	36	0.92	Pass	361	92	91.4	0.99	Pass
315	39	36.3	0.93	Pass	362	90.7	89.8	0.99	Pass
316	39	36.6	0.94	Pass	363	91.8	90.4	0.99	Pass
317	38.6	35.1	0.91	Pass	364	89.5	88.6	0.99	Pass
318	38.8	35.4	0.91	Pass	365	89.3	88.4	0.99	Pass
319	38.8	35.9	0.93	Pass	366	91.5	90.6	0.99	Pass
320	38.9	36	0.93	Pass	367	90.4	89.6	0.99	Pass
321	39	36.5	0.94	Pass	368	93.4	92.9	0.99	Pass
322	38.7	35.9	0.93	Pass	369	88.2	87.4	0.99	Pass
323	38.9	36.5	0.94	Pass	370	88	86.9	0.99	Pass
324	38.8	36.9	0.95	Pass	371	88.8	87.5	0.99	Pass
325	39	37.1	0.95	Pass	372	89.1	87.8	0.99	Pass
326	38.8	36.1	0.93	Pass	373	89	87.8	0.99	Pass
327	38.9	36.7	0.95	Pass	374	92.5	91.3	0.99	Pass
328	39	36.8	0.94	Pass	375	39	36.5	0.94	Pass
329	38.9	37.2	0.96	Pass	376	38.9	36.1	0.93	Pass
330	39.1	37.4	0.96	Pass	377	38.8	35.7	0.92	Pass
331	38.7	36.2	0.93	Pass	378	38.8	35.2	0.91	Pass
332	38.9	36.7	0.94	Pass	379	38.5	34.9	0.91	Pass
333	39	37	0.95	Pass	380	38.8	36.6	0.94	Pass
334	39.1	37.4	0.96	Pass	381	38.8	36.3	0.94	Pass
335	38.7	36.4	0.94	Pass	382	38.8	36	0.93	Pass
336	38.8	37	0.95	Pass	383	38.7	35.6	0.92	Pass
337	39	36.9	0.95	Pass	384	38.7	34.9	0.9	Pass
338	39	37.3	0.96	Pass	385	37.8	34.4	0.91	Pass
339	38.8	36.3	0.94	Pass	386	38.7	34.5	0.89	Pass
340	39	36.9	0.95	Pass	387	38	35	0.92	Pass
341	39.1	36.9	0.95	Pass	388	38.1	35.6	0.93	Pass
342	39	37.2	0.95	Pass	389	38.5	36.2	0.94	Pass
343	39	38	0.97	Pass	390	38.7	35.4	0.92	Pass
344	39.1	38	0.97	Pass	391	38.6	35.7	0.92	Pass

392	38.8	36	0.93	Pass
393	38.9	36.4	0.94	Pass
394	38.9	36.5	0.94	Pass
395	38.5	35.1	0.91	Pass
396	38.5	35.5	0.92	Pass
397	38.9	35.9	0.92	Pass
398	38.9	36.3	0.93	Pass
399	39	36.6	0.94	Pass
400	38.7	35.7	0.92	Pass
401	38.9	36	0.93	Pass
402	39.1	36.5	0.93	Pass
403	39	36.8	0.95	Pass
404	39.1	37	0.95	Pass
405	38.7	35.5	0.92	Pass
406	38.8	36.2	0.93	Pass
407	38.9	36.4	0.94	Pass
408	39	36.8	0.94	Pass

APSH - Table of Results

In the table, subscript "e" refers to the existing scenario, whereas the
subscript " p " is with the proposed development in place. Subscript " ff " stands for reduction factor and "ar" stands for the absolute reduction (proposed minus existing).

38	
39	

$39 \begin{array}{llllllll}53.20 & 43.35 & 0.81 & -8.77 & 15.97 & 10.52 & 0.66 & \text { Pas }\end{array}$ $\begin{array}{llllllll}53.20 & 43.35 & 0.81 & -9.85 & 19.55 & 14.07 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}40 & 53.19 & 44.05 & 0.83 & -9.14 & 19.55 & 14.75 & 0.75 & \text { Pass }\end{array}$ $41 \begin{array}{lllllllll} & 53.13 & 44.07 & 0.83 & -9.07 & 19.55 & 14.54 & 0.74 & \text { Pass }\end{array}$ $42 \begin{array}{lllllllll}53.15 & 44.09 & 0.83 & -9.07 & 19.55 & 14.44 & 0.74 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}43 & 53.17 & 43.89 & 0.83 & -9.28 & 19.55 & 14.37 & 0.74 & \text { Pass }\end{array}$ $44 \begin{array}{llllllll}52.51 & 44.82 & 0.85 & -7.69 & 19.55 & 15.67 & 0.80 & \text { Pass }\end{array}$ $45 \begin{array}{lllllllll}52.82 & 44.22 & 0.84 & -8.60 & 19.55 & 15.88 & 0.81 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}46 & 52.59 & 43.87 & 0.83 & -8.72 & 19.55 & 14.92 & 0.76 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}47 & 52.47 & 43.55 & 0.83 & -8.92 & 19.55 & 14.66 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}48 & 52.62 & 43.83 & 0.83 & -8.79 & 19.55 & 14.77 & 0.76 & \text { Pass }\end{array}$ $49 \begin{array}{lllllllll} & 53.11 & 44.41 & 0.84 & -8.70 & 19.55 & 15.58 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}50 & 52.96 & 43.89 & 0.83 & -9.07 & 19.55 & 15.72 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{llllllllll}51 & 52.68 & 44.06 & 0.84 & -8.63 & 19.55 & 15.97 & 0.82 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}52 & 52.67 & 44.14 & 0.84 & -8.53 & 19.55 & 15.77 & 0.81 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}53 & 52.69 & 44.14 & 0.84 & -8.55 & 19.55 & 14.18 & 0.73 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}54 & 52.67 & 43.76 & 0.83 & -8.91 & 19.55 & 14.52 & 0.74 & \text { Pass }\end{array}$ $55 \quad 53.09 \quad 44.86$ $\begin{array}{lllllllll}56 & 53.10 & 45.19 & 0.85 & -7.92 & 19.55 & 13.31 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}57 & 53.12 & 45.43 & 0.86 & -7.69 & 19.55 & 13.34 & 0.68 & \text { Pass }\end{array}$ | 58 | 51.82 | 43.96 | 0.85 | -7.86 | 18.56 | 13.46 | 0.73 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 59 | 52.87 | 44.61 | 0.84 | -8.26 | 19.55 | 13.74 | 0.70 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}60 & 53.07 & 46.31 & 0.87 & -6.76 & 19.55 & 13.74 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}61 & 53.19 & 45.10 & 0.85 & -8.09 & 19.55 & 12.45 & 0.64 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}62 & 49.24 & 41.17 & 0.84 & -8.07 & 17.69 & 10.61 & 0.60 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}63 & 53.05 & 45.32 & 0.85 & -7.73 & 19.55 & 12.63 & 0.65 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}64 & 53.11 & 45.13 & 0.85 & -7.99 & 19.55 & 12.39 & 0.63 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}65 & 53.17 & 45.19 & 0.85 & -7.98 & 19.55 & 12.44 & 0.64 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}66 & 53.28 & 45.63 & 0.86 & -7.65 & 19.55 & 12.59 & 0.64 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}67 & 53.45 & 46.44 & 0.87 & -7.01 & 19.55 & 12.73 & 0.65 & \text { Pass }\end{array}$ $68 \quad 53.35$ $\begin{array}{lllllllll}69 & 53.42 & 46.37 & 0.87 & -7.05 & 19.47 & 12.42 & 0.64 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}70 & 53.43 & 46.15 & 0.86 & -7.28 & 19.55 & 12.27 & 0.63 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}71 & 53.41 & 45.69 & 0.86 & -7.72 & 19.55 & 11.88 & 0.61 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}72 & 53.50 & 46.16 & 0.86 & -7.33 & 19.55 & 12.33 & 0.63 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}73 & 52.39 & 45.44 & 0.87 & -6.94 & 18.38 & 11.44 & 0.62 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}74 & 53.37 & 46.46 & 0.87 & -6.91 & 19.43 & 12.52 & 0.64 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}75 & 53.53 & 46.99 & 0.88 & -6.54 & 19.46 & 12.92 & 0.66 & \text { Pass }\end{array}$ $76 \begin{array}{lllllllll}76.72 & 47.48 & 0.88 & -6.24 & 19.51 & 13.26 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}77 & 53.82 & 47.81 & 0.89 & -6.02 & 19.55 & 13.53 & 0.69 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}78 & 53.84 & 48.14 & 0.89 & -5.70 & 19.55 & 13.85 & 0.71 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}79 & 53.84 & 48.61 & 0.90 & -5.23 & 19.55 & 14.32 & 0.73 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}80 & 53.85 & 49.16 & 0.91 & -4.69 & 19.55 & 14.86 & 0.76 & \text { Pass }\end{array}$ | 81 | 53.85 | 50.07 | 0.93 | -3.78 | 19.55 | 15.77 | 0.81 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $8252.8548 .91 \quad 0.93$ $\begin{array}{lllllllll}83 & 52.85 & 48.16 & 0.91 & -4.70 & 18.56 & 13.87 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}84 & 52.85 & 47.59 & 0.90 & -5.27 & 18.56 & 13.29 & 0.72 & \text { Pass }\end{array}$

85	52.85	47.16	0.89					
:---	:---	:---	:---	$\begin{array}{lllll}86 & 52.84 & 46.87 & 0.89\end{array}$	87	52.75	46.51	0.88
:---	:---	:---	:---		88	52.62	46.12	0.88
:---	:---	:---	:---	$\begin{array}{llll}53.86 & 46.70 & 0.87\end{array}$ $\begin{array}{llll}53.86 & 45.78 & 0.85\end{array}$ $\begin{array}{llll}1 & 53.85 & 44.94 & 0.83\end{array}$ $\begin{array}{llll}92 & 53.77 & 43.95 & 0.82\end{array}$	93	53.82	45.13	0.84
:---	:---	:---	:---	$\begin{array}{lllll}94 & 53.90 & 46.84 & 0.87\end{array}$ $\begin{array}{lllll}95 & 53.91 & 47.43 & 0.88\end{array}$ $\begin{array}{llll}96 & 53.91 & 47.98 & 0.89\end{array}$	97	52.83	50.58	0.96
:---	:---	:---	:---	$\begin{array}{lllll}98 & 52.83 & 49.93 & 0.95\end{array}$ $99 \quad 52.76 \quad 49.59 \quad 0.94$ $\begin{array}{llll}100 & 52.61 & 48.85 & 0.93\end{array}$ $\begin{array}{lllll}101 & 52.98 & 50.81 & 0.96\end{array}$ $\begin{array}{lllll}102 & 52.98 & 50.44 & 0.95\end{array}$ $\begin{array}{lllll}103 & 52.91 & 50.02 & 0.95\end{array}$ $\begin{array}{lllll}104 & 52.76 & 49.42 & 0.94\end{array}$	105	53.03	50.99	0.96
:---	:---	:---	:---		106	53.03	50.82	0.96
:---	:---	:---	:---	$\begin{array}{lllll}107 & 52.96 & 50.29 & 0.95\end{array}$ $\begin{array}{llll}108 & 52.81 & 49.60 & 0.94\end{array}$ $\begin{array}{llll}109 & 53.11 & 48.41 & 0.91\end{array}$ $\begin{array}{lllll}110 & 53.09 & 47.91 & 0.90\end{array}$ $\begin{array}{lllll}111 & 52.50 & 47.10 & 0.90\end{array}$ $\begin{array}{lllll}112 & 52.19 & 46.26 & 0.89\end{array}$ $\begin{array}{llll}113 & 53.10 & 48.11 & 0.91\end{array}$ $\begin{array}{llll}114 & 52.49 & 46.99 & 0.90\end{array}$ $\begin{array}{lllll}115 & 51.82 & 46.06 & 0.89\end{array}$ $116 \quad 51.67 \quad 45.29 \quad 0.88$ $\begin{array}{llll}117 & 52.05 & 47.23 & 0.91\end{array}$ $\begin{array}{lllll}118 & 51.36 & 45.84 & 0.89\end{array}$	119	51.04	44.97	0.88
:---	:---	:---	:---	$\begin{array}{llll}120 & 50.44 & 43.95 & 0.87\end{array}$ $\begin{array}{llll}121 & 49.11 & 44.22 & 0.90\end{array}$ $\begin{array}{llll}122 & 45.38 & 39.93 & 0.88\end{array}$	123	45.16	39.31	0.87
:---	:---	:---	:---	$\begin{array}{lllll}124 & 45.04 & 38.54 & 0.86\end{array}$ $\begin{array}{lllll}125 & 53.87 & 47.71 & 0.89\end{array}$ $\begin{array}{llll}126 & 53.83 & 47.33 & 0.88\end{array}$	127	53.72	47.00	0.87
| :--- | :--- | :--- | :--- | $\begin{array}{lllll}128 & 53.49 & 46.13 & 0.86\end{array}$ $129 \quad 53.44 \quad 46.00 \quad 0.86$ $\begin{array}{llll}130 & 53.53 & 45.89 & 0.86\end{array}$ | 131 | 53.62 | 45.83 | 0.85 |
| :--- | :--- | :--- | :--- |

$\begin{array}{lllll}-5.70 & 18.56 & 12.86 & 0.69 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.97 & 18.56 & 12.59 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.24 & 18.52 & 12.29 & 0.66 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.49 & 18.48 & 11.98 & 0.65 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.16 & 19.55 & 17.09 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllll}-8.08 & 19.55 & 16.17 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{lllll}-8.91 & 19.55 & 15.76 & 0.81 & \text { Pass }\end{array}$ $\begin{array}{lllll}-9.82 & 19.55 & 15.02 & 0.77 & \text { Pass }\end{array}$ $\begin{array}{lllll}-8.69 & 19.55 & 14.95 & 0.76 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.06 & 19.55 & 16.13 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.47 & 19.55 & 16.52 & 0.85 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.93 & 19.55 & 17.07 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.25 & 19.55 & 17.99 & 0.92 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.90 & 19.55 & 17.99 & 0.92 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.17 & 19.55 & 17.99 & 0.92 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.76 & 19.55 & 17.99 & 0.92 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.17 & 19.55 & 18.28 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.54 & 19.55 & 18.28 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.89 & 19.55 & 18.28 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.34 & 19.55 & 18.28 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{llll}-2.04 & 19.55 & 18.28 & 0.94 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-2.21 & 19.55 & 18.28 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.67 & 19.55 & 18.28 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.20 & 19.55 & 18.28 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.70 & 19.55 & 16.35 & 0.84 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.18 & 19.55 & 15.99 & 0.82 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.40 & 19.02 & 15.24 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.93 & 18.78 & 14.44 & 0.77 & \text { Pass }\end{array}$ $\begin{array}{llll}-4.99 & 19.55 & 16.05 & 0.82 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-5.50 & 18.95 & 15.08 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.77 & 18.35 & 14.21 & 0.77 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.38 & 18.27 & 13.56 & 0.74 & \text { Pass }\end{array}$ $\begin{array}{llll}-4.82 & 18.52 & 15.12 & 0.82 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-5.52 & 17.85 & 13.89 & 0.78 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.06 & 17.85 & 13.34 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.49 & 17.85 & 12.86 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.89 & 16.64 & 13.14 & 0.79 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.45 & 15.97 & 11.91 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.84 & 15.97 & 11.55 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{llll}-6.50 & 15.97 & 10.93 & 0.68 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-6.16 & 19.55 & 17.83 & 0.91 & \text { Pass }\end{array}$ $\begin{array}{llll}-6.50 & 19.55 & 17.49 & 0.89 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-6.72 & 19.55 & 17.18 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.35 & 19.55 & 16.54 & 0.85 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.44 & 19.55 & 16.17 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{lllll}7.64 & 19.55 & 15.93 & 0.82 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.79 & 19.55 & 15.88 & 0.81 & \text { Pass }\end{array}$

Scottish Opera New Rotterdam Wharf
Daylight and Sunlight Report

$\begin{array}{llll}132 & 53.68 & 45.74 & 0.85\end{array}$ $\begin{array}{llll}133 & 54.18 & 48.41 & 0.89\end{array}$ $\begin{array}{llll}134 & 54.18 & 47.83 & 0.88\end{array}$ $\begin{array}{lllll}135 & 54.08 & 47.01 & 0.87\end{array}$ | 136 | 54.18 | 47.95 | 0.88 |
:---	:---	:---	:---	$\begin{array}{llll}137 & 54.18 & 47.40 & 0.87\end{array}$ $\begin{array}{llll}138 & 54.17 & 47.14 & 0.87\end{array}$	139	53.86	45.08	0.84
:---	:---	:---	:---		140	54.18	48.39	0.89
:---	:---	:---	:---	$\begin{array}{llll}141 & 53.32 & 47.29 & 0.89\end{array}$ $\begin{array}{llll}142 & 52.88 & 46.64 & 0.88\end{array}$	143	52.57	44.49	0.85
:---	:---	:---	:---	$\begin{array}{llll}144 & 52.89 & 48.34 & 0.91\end{array}$ $\begin{array}{llll}145 & 52.40 & 47.59 & 0.91\end{array}$ $\begin{array}{llll}146 & 51.91 & 46.94 & 0.90\end{array}$ $\begin{array}{llll}147 & 50.99 & 44.51 & 0.87\end{array}$	148	48.63	43.44	0.89
:---	:---	:---	:---	$\begin{array}{llll}149 & 46.32 & 40.98 & 0.88\end{array}$ $\begin{array}{llll}150 & 46.16 & 40.37 & 0.87\end{array}$ $\begin{array}{llll}151 & 46.06 & 38.70 & 0.84\end{array}$	152	53.70	47.16	0.88
:---	:---	:---	:---		153	53.07	45.84	0.86
:---	:---	:---	:---	$\begin{array}{llll}154 & 52.72 & 44.69 & 0.85\end{array}$ $\begin{array}{llll}155 & 52.71 & 43.98 & 0.83\end{array}$ $\begin{array}{llll}156 & 52.64 & 43.26 & 0.82\end{array}$ $\begin{array}{llll}157 & 52.70 & 46.64 & 0.88\end{array}$ $\begin{array}{llll}158 & 52.25 & 45.37 & 0.87\end{array}$ $\begin{array}{llll}159 & 51.92 & 44.19 & 0.85\end{array}$ $\begin{array}{llll}160 & 51.71 & 43.12 & 0.83\end{array}$ $\begin{array}{llll}161 & 51.03 & 41.83 & 0.82\end{array}$ $\begin{array}{llll}162 & 49.84 & 44.17 & 0.89\end{array}$ $\begin{array}{llll}163 & 46.56 & 40.08 & 0.86\end{array}$ $\begin{array}{llll}164 & 46.06 & 38.84 & 0.84\end{array}$ $\begin{array}{lllll}165 & 45.82 & 37.94 & 0.83\end{array}$ $\begin{array}{llll}166 & 45.69 & 37.12 & 0.81\end{array}$ $\begin{array}{llll}167 & 53.50 & 48.98 & 0.92\end{array}$ $\begin{array}{llll}168 & 53.49 & 48.68 & 0.91\end{array}$	169	53.47	48.44	0.91
:---	:---	:---	:---	$\begin{array}{llll}170 & 53.40 & 47.99 & 0.90\end{array}$ $\begin{array}{llll}171 & 53.39 & 47.57 & 0.89\end{array}$ $\begin{array}{llll}172 & 53.45 & 48.69 & 0.91\end{array}$	173	53.43	48.55	0.91
| :--- | :--- | :--- | :--- | | 174 | 53.41 | 48.24 | 0.90 |
| :--- | :--- | :--- | :--- |
| 175 | 53.34 | 47.88 | 0.90 | $\begin{array}{lllll}176 & 53.33 & 47.37 & 0.89\end{array}$ $\begin{array}{llll}177 & 53.29 & 48.58 & 0.91\end{array}$ $\begin{array}{lllllllll}178 & 53.28 & 48.43 & 0.91 & & 4.71 & 19.55 & 16.54 & 0.85 \\ \text { Pass }\end{array}$

$\begin{array}{lllll}-7.94 & 19.55 & 15.68 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.78 & 19.55 & 17.73 & 0.91 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.35 & 19.55 & 17.39 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.07 & 19.55 & 16.91 & 0.86 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.24 & 19.55 & 17.73 & 0.91 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.78 & 19.55 & 17.20 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.04 & 19.55 & 16.95 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllll}-8.78 & 19.55 & 15.54 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.80 & 19.55 & 17.69 & 0.91 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.03 & 18.69 & 16.59 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.24 & 18.26 & 15.95 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{llll}-8.08 & 18.26 & 14.42 & 0.79 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-4.55 & 18.32 & 16.96 & 0.93 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.81 & 17.83 & 16.21 & 0.91 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.97 & 17.83 & 16.05 & 0.90 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.48 & 17.83 & 14.54 & 0.82 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.19 & 15.97 & 13.89 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.35 & 15.97 & 13.74 & 0.86 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.80 & 15.97 & 13.29 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.36 & 15.97 & 11.92 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.54 & 19.55 & 17.08 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.24 & 18.93 & 15.76 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{lllll}-8.03 & 18.57 & 14.91 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{lllll}8.73 & 18.57 & 14.49 & 0.78 & \text { Pass }\end{array}$ $\begin{array}{lllll}-9.38 & 18.57 & 13.92 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.06 & 18.60 & 16.17 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.89 & 18.15 & 14.90 & 0.82 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.73 & 18.09 & 14.26 & 0.79 & \text { Pass }\end{array}$ $\begin{array}{llll}8.59 & 18.09 & 13.82 & 0.76 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-9.20 & 18.09 & 13.28 & 0.73 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.67 & 16.81 & 14.44 & 0.86 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.48 & 15.97 & 12.79 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.23 & 15.97 & 12.18 & 0.76 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.88 & 15.97 & 11.70 & 0.73 & \text { Pass }\end{array}$ $\begin{array}{lllll}-8.57 & 15.97 & 11.12 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.52 & 19.55 & 16.80 & 0.86 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.81 & 19.55 & 16.52 & 0.84 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.03 & 19.55 & 16.30 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.41 & 19.55 & 15.91 & 0.81 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-5.82 & 19.55 & 15.56 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{llll}-4.75 & 19.55 & 16.57 & 0.85 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-4.88 & 19.55 & 16.45 & 0.84 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.17 & 19.55 & 16.15 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.46 & 19.55 & 15.86 & 0.81 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.96 & 19.55 & 15.41 & 0.79 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}4.71 & 19.55 & 16.54 & 0.85 & \text { Pass } \\ 4.85 & 19.55 & 16.41 & 0.84 & \text { Pass }\end{array}$

$\begin{array}{llll}179 & 53.26 & 48.03 & 0.90\end{array}$ $\begin{array}{llll}180 & 53.19 & 47.60 & 0.90\end{array}$ $\begin{array}{llll}181 & 53.18 & 46.85 & 0.88\end{array}$ $\begin{array}{llll}182 & 52.21 & 50.23 & 0.96\end{array}$ | 183 | 52.13 | 50.08 | 0.96 |
:---	:---	:---	:---	$\begin{array}{llll}184 & 52.00 & 49.87 & 0.96\end{array}$ $\begin{array}{llll}185 & 51.83 & 49.48 & 0.95\end{array}$ $\begin{array}{llll}186 & 52.41 & 50.22 & 0.96\end{array}$	187	52.32	49.76	0.95
:---	:---	:---	:---	$\begin{array}{llll}188 & 52.11 & 49.27 & 0.95\end{array}$ $\begin{array}{llll}189 & 51.94 & 48.88 & 0.94\end{array}$ $\begin{array}{llll}190 & 52.30 & 49.76 & 0.95\end{array}$	191	51.79	48.80	0.94
:---	:---	:---	:---	$\begin{array}{llll}192 & 51.38 & 48.34 & 0.94\end{array}$ $193 \quad 51.21 \quad 47.98 \quad 0.94$ $\begin{array}{llll}194 & 51.37 & 48.88 & 0.95\end{array}$ $\begin{array}{llll}195 & 51.18 & 48.23 & 0.94\end{array}$ $\begin{array}{llll}196 & 50.82 & 47.72 & 0.94\end{array}$ $\begin{array}{llll}197 & 50.56 & 47.30 & 0.94\end{array}$ $\begin{array}{llll}198 & 47.68 & 45.24 & 0.95\end{array}$	199	44.94	42.07	0.94
:---	:---	:---	:---	$\begin{array}{llll}200 & 44.73 & 41.67 & 0.93\end{array}$ $\begin{array}{llll}201 & 44.62 & 41.29 & 0.93\end{array}$ $\begin{array}{llll}202 & 52.99 & 49.40 & 0.93\end{array}$	203	52.38	48.66	0.93
:---	:---	:---	:---	$\begin{array}{llll}204 & 51.77 & 47.93 & 0.93\end{array}$ $\begin{array}{llll}205 & 51.91 & 48.40 & 0.93\end{array}$ $\begin{array}{llll}206 & 51.50 & 47.74 & 0.93\end{array}$ $\begin{array}{llll}207 & 50.98 & 47.10 & 0.92\end{array}$ $\begin{array}{llll}208 & 50.47 & 46.47 & 0.92\end{array}$ $209 \quad 47.96 \quad 44.74 \quad 0.93$ $\begin{array}{lllll}210 & 45.33 & 41.74 & 0.92\end{array}$ $\begin{array}{llll}211 & 45.12 & 41.26 & 0.91\end{array}$ $\begin{array}{lllll}212 & 44.95 & 40.62 & 0.90\end{array}$ $\begin{array}{llll}213 & 53.71 & 49.35 & 0.92\end{array}$ $\begin{array}{llll}214 & 53.71 & 48.60 & 0.90\end{array}$ $\begin{array}{llll}215 & 53.71 & 48.00 & 0.89\end{array}$ $\begin{array}{llll}216 & 53.71 & 47.69 & 0.89\end{array}$ $\begin{array}{llll}217 & 53.70 & 47.39 & 0.88\end{array}$ $\begin{array}{llll}218 & 53.60 & 46.89 & 0.87\end{array}$ $\begin{array}{llll}219 & 53.63 & 49.08 & 0.92\end{array}$ $\begin{array}{llll}220 & 53.63 & 48.30 & 0.90\end{array}$ $\begin{array}{lllll}221 & 53.63 & 47.72 & 0.89\end{array}$ $\begin{array}{llll}222 & 53.63 & 47.44 & 0.88\end{array}$ $\begin{array}{llll}223 & 53.63 & 47.13 & 0.88\end{array}$ $\begin{array}{llll}224 & 53.58 & 46.62 & 0.87\end{array}$ $\begin{array}{llll}225 & 53.56 & 48.58 & 0.91\end{array}$				

$\begin{array}{lllll}-5.22 & 19.55 & 16.04 & 0.82 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.58 & 19.55 & 15.67 & 0.80 \\ \text { Pass }\end{array}$ $\begin{array}{llll}-6.33 & 19.55 & 14.99 & 0.77 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-1.98 & 19.55 & 17.61 & 0.90 & \text { Pass }\end{array}$ $\begin{array}{llll}-2.05 & 19.55 & 17.56 & 0.90 \\ \text { Pass }\end{array}$ $\begin{array}{llll}-2.13 & 19.55 & 17.56 & 0.90\end{array}$ $\begin{array}{llll}-2.35 & 19.55 & 17.56 & 0.90 \\ \text { Pass }\end{array}$ $\begin{array}{llll}-2.18 & 19.55 & 17.42 & 0.89 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-2.56 & 19.55 & 17.42 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.84 & 19.46 & 17.34 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.06 & 19.46 & 17.34 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{llll}-2.54 & 19.31 & 17.14 & 0.89 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-2.99 & 18.89 & 16.72 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.04 & 18.60 & 16.43 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.23 & 18.60 & 16.43 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.50 & 18.27 & 16.31 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.95 & 18.12 & 16.17 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.10 & 18.12 & 16.17 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.26 & 18.12 & 16.17 & 0.89 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.44 & 15.97 & 14.09 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllll}-2.87 & 15.97 & 14.00 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.06 & 15.97 & 14.00 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.33 & 15.97 & 14.00 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.59 & 19.37 & 16.95 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.72 & 18.80 & 16.24 & 0.86 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.84 & 18.42 & 15.73 & 0.85 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.51 & 18.33 & 15.93 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.76 & 17.93 & 15.28 & 0.85 & \text { Pass }\end{array}$ $\begin{array}{llll}-3.88 & 17.93 & 15.16 & 0.85 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-4.01 & 17.93 & 15.12 & 0.84 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.22 & 15.97 & 13.78 & 0.86 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.59 & 15.97 & 13.42 & 0.84 & \text { Pass }\end{array}$ $\begin{array}{lllll}-3.85 & 15.97 & 13.24 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.32 & 15.97 & 13.12 & 0.82 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.35 & 19.55 & 15.20 & 0.78 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.11 & 19.55 & 14.44 & 0.74\end{array}$ $\begin{array}{lllll}-5.71 & 19.55 & 13.84 & 0.71 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.02 & 19.55 & 13.53 & 0.69 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.30 & 19.55 & 13.24 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.71 & 19.50 & 12.79 & 0.66 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.55 & 19.55 & 14.99 & 0.77 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.33 & 19.55 & 14.22 & 0.73 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-5.91 & 19.55 & 13.64 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.19 & 19.55 & 13.36 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.50 & 19.55 & 13.04 & 0.67 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.96 & 19.55 & 12.58 & 0.64 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.98 & 19.55 & 14.56 & 0.75 & \text { Pass }\end{array}$

226	53.56	47.88	0.89					
:---	:---	:---	:---	$227 \quad 53.56 \quad 47.33 \quad 0.88$ $\begin{array}{lllll}228 & 53.56 & 46.96 & 0.88\end{array}$ $\begin{array}{lllll}229 & 53.56 & 46.61 & 0.87\end{array}$ $\begin{array}{llll}230 & 53.56 & 46.26 & 0.86\end{array}$ $\begin{array}{lllll}231 & 53.50 & 48.42 & 0.91\end{array}$ $\begin{array}{llll}232 & 53.50 & 47.70 & 0.89\end{array}$ $\begin{array}{lllll}233 & 53.50 & 47.44 & 0.89\end{array}$ $\begin{array}{lllll}234 & 53.50 & 47.27 & 0.88\end{array}$ $\begin{array}{lllll}235 & 53.50 & 46.97 & 0.88\end{array}$ $\begin{array}{lllll}236 & 53.50 & 46.55 & 0.87\end{array}$ $\begin{array}{llll}237 & 53.47 & 49.07 & 0.92\end{array}$ $\begin{array}{lllll}238 & 53.45 & 48.59 & 0.91\end{array}$ $\begin{array}{lllll}239 & 53.45 & 48.41 & 0.91\end{array}$ $\begin{array}{lllll}240 & 53.44 & 47.92 & 0.90\end{array}$ $\begin{array}{llll}241 & 53.30 & 47.46 & 0.89\end{array}$	242	53.28	46.72	0.88
:---	:---	:---	:---	$\begin{array}{lllll}243 & 53.55 & 48.71 & 0.91\end{array}$ $\begin{array}{llll}244 & 53.53 & 48.42 & 0.90\end{array}$ $\begin{array}{llll}245 & 53.53 & 48.28 & 0.90\end{array}$ $\begin{array}{llll}246 & 53.52 & 47.87 & 0.89\end{array}$ $\begin{array}{lllll}247 & 53.39 & 47.18 & 0.88\end{array}$ $\begin{array}{lllll}248 & 53.30 & 46.38 & 0.87\end{array}$ $\begin{array}{lllll}249 & 53.66 & 48.77 & 0.91\end{array}$ $\begin{array}{llll}250 & 53.64 & 48.25 & 0.90\end{array}$ $\begin{array}{lllll}251 & 53.64 & 48.06 & 0.90\end{array}$ $\begin{array}{lllll}252 & 53.63 & 47.77 & 0.89\end{array}$ $\begin{array}{lllll}253 & 53.50 & 47.18 & 0.88\end{array}$ $\begin{array}{llll}254 & 53.41 & 46.45 & 0.87\end{array}$ $\begin{array}{lllll}255 & 53.66 & 48.94 & 0.91\end{array}$ $\begin{array}{lllll}256 & 53.64 & 48.41 & 0.90\end{array}$ $\begin{array}{lllll}257 & 53.64 & 47.99 & 0.89\end{array}$ $\begin{array}{llll}258 & 53.63 & 47.45 & 0.88\end{array}$ $\begin{array}{llll}259 & 53.50 & 46.85 & 0.88\end{array}$	260	53.43	46.16	0.86
:---	:---	:---	:---	$\begin{array}{lllll}261 & 51.19 & 46.36 & 0.91\end{array}$ $\begin{array}{llll}262 & 49.68 & 44.21 & 0.89\end{array}$ $\begin{array}{llll}263 & 49.68 & 43.78 & 0.88\end{array}$ $\begin{array}{llll}264 & 49.67 & 43.45 & 0.87\end{array}$ $265 \quad 49.54 \quad 42.73 \quad 0.86$ $\begin{array}{llll}266 & 49.46 & 42.09 & 0.85\end{array}$ $\begin{array}{llll}267 & 53.60 & 49.42 & 0.92\end{array}$	268	53.60	49.00	0.91
:---	:---	:---	:---	$\begin{array}{lllll}269 & 53.59 & 48.78 & 0.91\end{array}$ $\begin{array}{lllll}270 & 53.50 & 48.30 & 0.90\end{array}$	271	53.45	47.71	0.89
| :--- | :--- | :--- | :--- | | 271 | 53.45 | 47.71 | 0.89 | -5.74 | 19.55 | 14.74 | 0.75 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 272 | 53.29 | 46.89 | 0.88 | -6.41 | 19.55 | 14.10 | 0.72 | Pass |

$\begin{array}{lllll}-5.68 & 19.55 & 13.87 & 0.71 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.24 & 19.55 & 13.31 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{llll}-6.60 & 19.55 & 12.95 & 0.66\end{array}$ Pass $\begin{array}{lllll}-6.95 & 19.55 & 12.59 & 0.64 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.31 & 19.55 & 12.24 & 0.63 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.08 & 19.55 & 14.47 & 0.74 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.80 & 19.55 & 13.75 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.05 & 19.55 & 13.49 & 0.69 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.23 & 19.55 & 13.32 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.52 & 19.55 & 13.02 & 0.67 & \text { Pass }\end{array}$ $\begin{array}{llll}-6.94 & 19.55 & 12.60 & 0.64 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-4.40 & 19.55 & 15.15 & 0.77 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.86 & 19.55 & 14.69 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.04 & 19.55 & 14.52 & 0.74 \\ \text { Pass }\end{array}$ $\begin{array}{llll}-5.52 & 19.55 & 14.22 & 0.73\end{array}$ Pass $\begin{array}{lllll}5.84 & 19.55 & 14.01 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.57 & 19.55 & 13.59 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.84 & 19.55 & 14.71 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.12 & 19.55 & 14.43 & 0.74 \\ \text { Pass }\end{array}$ $\begin{array}{llll}-5.25 & 19.55 & 14.37 & 0.74 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-5.65 & 19.55 & 14.09 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.21 & 19.55 & 13.77 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllll}-6.92 & 19.55 & 13.35 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.89 & 19.55 & 14.66 & 0.75 & \text { Pass }\end{array}$ $\begin{array}{llll}5.39 & 19.55 & 14.18 & 0.73 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-5.58 & 19.55 & 14.09 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.86 & 19.55 & 14.01 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{lllll}6.31 & 19.55 & 13.76 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{llll}6.96 & 19.55 & 13.36 & 0.68 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-4.71 & 19.55 & 14.88 & 0.76 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.23 & 19.55 & 14.36 & 0.73 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-5.65 & 19.55 & 14.17 & 0.73 & \text { Pass }\end{array}$ $\begin{array}{llll}-6.18 & 19.55 & 13.95 & 0.71\end{array}$ Pass $\begin{array}{lllll}-6.65 & 19.55 & 13.58 & 0.69 & \text { Pass }\end{array}$ $\begin{array}{lllll}-7.27 & 19.55 & 13.14 & 0.67 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.83 & 17.69 & 13.01 & 0.74 & \text { Pass }\end{array}$ $\begin{array}{lllll}-5.47 & 17.69 & 12.59 & 0.71 & \text { Pass }\end{array}$ $\begin{array}{llll}-5.90 & 17.69 & 12.36 & 0.70 \\ \text { Pass }\end{array}$ $\begin{array}{llll}-6.22 & 17.69 & 12.17 & 0.69 \\ \text { Pass }\end{array}$ $\begin{array}{llll}-6.81 & 17.69 & 11.69 & 0.66 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-7.37 & 17.69 & 11.18 & 0.63 & \text { Pass }\end{array}$ $\begin{array}{llll}-4.18 & 19.55 & 15.90 & 0.81 \\ \text { Pass }\end{array}$ $\begin{array}{lllll}-4.60 & 19.55 & 15.70 & 0.80 & \text { Pass }\end{array}$ $\begin{array}{lllll}-4.81 & 19.55 & 15.52 & 0.79 & \text { Pass }\end{array}$ $\begin{array}{lllll}5.20 & 19.55 & 15.18 & 0.78 & \text { Pass }\end{array}$ $\begin{array}{lllll}6.41 & 19.55 & 14.10 & 0.72 & \text { Pass }\end{array}$

273	53.16	48.34	0.91	-4.82	19.55	17.91	92	ss
274	53.01	47.96	0.90	-5.05	19.55	17.77	0.91	Pass
275	52.90	46.82	0.89	-6.08	19.55	16.90	0.86	Pass
276	52.77	46.23	0.88	-6.54	19.55	16.44	0.84	Pass
277	52.64	45.78	0.87	-6.87	19.55	16.11	0.82	Pass
278	53.57	49.09	0.92	-4.49	19.55	18.23	0.93	Pass
279	53.45	47.26	0.88	-6.19	19.55	17.91	0.92	Pass
280	53.30	46.81	0.88	-6.49	19.55	17.80	0.91	Pass
281	53.15	46.05	0.87	-7.11	19.55	17.40	0.89	Pass
282	52.97	45.62	0.86	-7.34	19.55	17.15	0.88	Pass
283	53.29	46.63	0.87	-6.67	19.55	13.29	0.68	Pass
284	53.30	47.10	0.88	-6.21	19.55	13.53	0.69	Pass
285	53.35	47.38	0.89	-5.97	19.55	13.70	0.70	Pass
286	53.44	47.84	0.90	-5.59	19.55	13.95	0.71	Pass
287	53.45	48.03	0.90	-5.42	19.55	14.12	0.72	Pass
288	53.45	48.42	0.91	-5.03	19.55	14.52	0.74	Pass
289	53.47	48.90	0.91	-4.57	19.55	14.98	0.77	Pass
290	53.45	46.83	0.88	-6.62	19.55	13.1	0.67	Pass
291	53.45	47.11	0.88	-6.34	19.55	13.25	0.68	Pass
292	53.45	47.33	0.89	-6.12	19.55	13.43	0.69	Pass
293	53.45	47.53	0.89	-5.92	19.55	13.63	0.70	Pass
294	53.45	47.76	0.89	-5.69	19.55	13.86	0.71	Pass
295	53.45	48.18	0.90	-5.27	19.55	14.28	0.73	Pass
296	53.47	48.64	0.91	-4.83	19.55	14.72	0.75	Pass
297	53.23	46.36	0.87	-6.87	19.55	14.33	0.73	Pass
298	53.33	47.74	0.90	-5.59	19.55	15.55	0.80	Pass
299	53.35	47.96	0.90	-5.39	19.55	15.67	0.80	Pass
300	53.49	48.36	0.90	-5.13	19.55	15.84	0.81	Pass
301	53.50	48.61	0.91	-4.89	19.55	15.99	0.82	Pass
302	53.24	46.49	0.87	-6.75	19.55	14.27	0.73	Pass
303	53.34	47.71	0.89	-5.63	19.55	15.32	0.78	Pass
304	53.36	48.06	0.90	-5.30	19.55	15.58	0.80	Pass
305	53.50	48.53	0.91	-4.96	19.55	15.70	0.80	Pass
306	53.50	48.70	0.91	-4.80	19.55	15.81	0.81	Pass
307	53.27	46.58	0.87	-6.68	19.55	14.09	0.72	Pass
308	53.37	47.55	0.89	-5.82	19.55	14.81	0.76	Pass
309	53.39	47.93	0.90	-5.46	19.55	15.06	0.77	Pass
310	53.52	48.65	0.91	-4.88	19.55	15.63	0.80	Pass
311	53.53	48.82	0.91	-4.71	19.55	15.76	0.81	Pass
312	52.72	45.03	0.85	-7.69	19.55	15.01	0.77	Pass
313	52.82	46.04	0.87	-6.78	19.55	15.52	0.79	Pass
314	52.96	47.14	0.89	-5.82	19.55	16.10	0.82	Pass
315	53.02	48.66	0.92	-4.36	19.55	16.90	0.86	Pass
316	53.06	49.33	0.93	-3.73	19.55	17.06	0.87	Pass
317	52.75	45.42	0.86	-7.33	19.55	15.03	0.77	Pass
318	52.98	46.47	0.88	-6.51	19.55	15.60	0.80	Pass
319	53.00	47.31	0.89	-5.69	19.55	16.05	0.82	Pass

$\begin{array}{lllllllll}320 & 53.05 & 48.44 & 0.91 & -4.61 & 19.55 & 16.52 & 0.84 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}321 & 53.10 & 48.85 & 0.92 & -4.26 & 19.55 & 16.57 & 0.85 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}322 & 53.91 & 45.59 & 0.85 & -8.32 & 19.55 & 15.12 & 0.77 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}323 & 53.98 & 47.56 & 0.88 & -6.43 & 19.55 & 16.52 & 0.85 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}324 & 53.98 & 48.04 & 0.89 & -5.94 & 19.55 & 16.93 & 0.87 & \text { Pass }\end{array}$ $325 \quad 53.9848 .29 \quad 0.89 \quad-5.69 \quad 19.55 \quad 17.18 \quad 0.88$ Pass $\begin{array}{lllllllll}326 & 53.45 & 47.24 & 0.88 & -6.21 & 19.55 & 15.17 & 0.78 & \text { Pass }\end{array}$ | 327 | 53.46 | 47.74 | 0.89 | -5.72 | 19.55 | 15.61 | 0.80 | Pass |
:---	:---	:---	:---	:---	:---	:---	:---	:---		328	53.52	48.13	0.90	-5.39	19.55	15.93	0.82	Pass
:---	:---	:---	:---	:---	:---	:---	:---	:---	$329 \quad 53.54 \quad 48.42 \quad 0.90 \quad-5.13 \quad 19.55 \quad 16.20 \quad 0.83$ Pass $\begin{array}{lllllllll}330 & 53.56 & 49.35 & 0.92 & -4.21 & 19.55 & 17.12 & 0.88 & \text { Pass }\end{array}$ $331 \quad 52.74$		47.58	0.90	-5.16	19.55	15.60	0.80	Pass	
:---	:---	:---	:---	:---	:---	:---	:---		332	52.94	48.22	0.91	-4.72	19.55	16.04	0.82	Pass	
:---	:---	:---	:---	:---	:---	:---	:---	:---	333 53.09 48.72		0.92	-4.37	19.55	16.39	0.84	Pass		
:---	:---	:---	:---	:---	:---	:---	:---	$334 \quad 53.1148 .99 \quad 0.92 \quad-4.12 \quad 19.55 \quad 16.64 \quad 0.85$ Pass $335 \begin{array}{lllllllll}32.09 & 48.75 & 0.94 & -3.34 & 19.55 & 16.94 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}336 & 52.26 & 49.64 & 0.95 & -2.62 & 19.55 & 17.20 & 0.88 & \text { Pass }\end{array}$ $337 \quad 52.41 \quad 50.40 \begin{array}{llllllll} & 0.96 & -2.01 & 19.55 & 17.54 & 0.90 & \text { Pass }\end{array}$ 338 52.41 $50.61 \quad 0.97 \quad-1.80 \quad 19.55 \quad 17.75 \quad 0.91$ Pass $339 \quad 52.50 \quad 48.73$	340	52.80	49.55	0.94	-3.25	19.55	17.44	0.89	Pass	
:---	:---	:---	:---	:---	:---	:---	:---	:---	$341 \quad 52.80$ $\begin{array}{lllllllll}342 & 52.80 & 50.26 & 0.95 & -2.53 & 19.55 & 17.44 & 0.89 & \text { Pass }\end{array}$ $343 \begin{array}{lllllllll}33.50 & 50.03 & 0.94 & -3.46 & 19.55 & 16.08 & 0.82 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}344 & 53.50 & 50.05 & 0.94 & -3.44 & 19.55 & 16.10 & 0.82 & \text { Pass }\end{array}$ $345 \begin{array}{lllllllll}33.58 & 50.20 & 0.94 & -3.39 & 19.55 & 16.16 & 0.83 & \text { Pass }\end{array}$ $34653.69 \quad 50.22 \quad 0.94$ $34742.81 \quad 40.84$ $\begin{array}{lllllllll}348 & 50.72 & 46.80 & 0.92 & -3.92 & 18.56 & 14.64 & 0.79 & \text { Pass }\end{array}$	349	46.84	42.90	0.92	-3.94	12.90	8.96	0.69	Pass
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllll}350 & 73.94 & 69.66 & 0.94 & -4.28 & 25.57 & 22.17 & 0.87 & \text { Pass }\end{array}$ $351 \quad 72.73 \quad 68.85$ $\begin{array}{lllllllll}352 & 72.19 & 68.32 & 0.95 & -3.87 & 25.31 & 21.44 & 0.85 & \text { Pass }\end{array}$	353	72.33	68.50	0.95	-3.83	25.31	21.48	0.85	Pass
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllll}354 & 72.03 & 68.16 & 0.95 & -3.87 & 25.05 & 21.18 & 0.85 & \text { Pass }\end{array}$ $355 \quad 70.51 \quad 66.60$ $\begin{array}{lllllllll}356 & 75.52 & 71.29 & 0.94 & -4.23 & 25.95 & 22.68 & 0.87 & \text { Pass }\end{array}$	357	71.89	67.88	0.94	-4.02	24.60	21.54	0.88	Pass
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllll}358 & 72.65 & 68.82 & 0.95 & -3.83 & 24.42 & 21.55 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}359 & 70.94 & 67.29 & 0.95 & -3.65 & 23.09 & 20.39 & 0.88 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}360 & 68.46 & 64.74 & 0.95 & -3.72 & 18.13 & 15.36 & 0.85 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}361 & 69.21 & 65.91 & 0.95 & -3.30 & 19.35 & 16.80 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}362 & 75.54 & 72.37 & 0.96 & -3.17 & 26.20 & 24.42 & 0.93 & \text { Pass }\end{array}$ $363 \quad 75.70 \quad 72.27 \quad 0.95$ $\begin{array}{lllllllll}364 & 72.93 & 71.66 & 0.98 & -1.26 & 25.49 & 24.25 & 0.95 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}365 & 72.29 & 70.35 & 0.97 & -1.93 & 25.49 & 23.55 & 0.92 & \text { Pass }\end{array}$ | 366 | 75.30 | 72.55 | 0.96 | -2.74 | 26.12 | 24.45 | 0.94 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllll}367 & 74.04 & 71.99 & 0.97 & -2.05 & 25.94 & 24.21 & 0.93 & \text { Pass }\end{array}$ | 368 | 76.87 | 75.26 | 0.98 | -1.61 | 26.67 | 25.14 | 0.94 | Pass |
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllll}369 & 72.21 & 70.64 & 0.98 & -1.57 & 25.31 & 23.74 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{llllllllll}370 & 72.49 & 68.53 & 0.95 & -3.96 & 25.16 & 23.90 & 0.95 & \text { Pass }\end{array}$ $371 \quad 73.04 \quad 68.91$ $\begin{array}{lllllllll}372 & 73.44 & 69.87 & 0.95 & -3.58 & 25.39 & 24.62 & 0.97 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}373 & 73.54 & 69.51 & 0.95 & -4.03 & 25.27 & 24.14 & 0.95 & \text { Pass }\end{array}$ $374 \begin{array}{llllllll}76.64 & 73.74 & 0.96 & -2.90 & 26.30 & 25.49 & 0.97 & \text { Pass }\end{array}$	375	53.23	48.89	0.92	-4.34	19.55	16.51	0.84	Pass
:---	:---	:---	:---	:---	:---	:---	:---	:---	$\begin{array}{lllllllll}376 & 52.56 & 47.82 & 0.91 & -4.73 & 18.93 & 15.78 & 0.83 & \text { Pass }\end{array}$ $\begin{array}{lllll}377 & 52.14 & 46.76 & 0.90\end{array}$	378	52.11	45.98	0.88					
:---	:---	:---	:---	$\begin{array}{llll}379 & 51.96 & 45.09 & 0.87\end{array}$ $\begin{array}{lllll}380 & 53.33 & 48.99 & 0.92\end{array}$ $\begin{array}{lllll}381 & 53.30 & 48.41 & 0.91\end{array}$ $\begin{array}{llll}382 & 53.13 & 47.80 & 0.90\end{array}$	383	53.11	46.98	0.88										
:---	:---	:---	:---		384	53.01	45.86	0.87										
:---	:---	:---	:---	385 386 $\begin{array}{lllll}387 & 52.87 & 47.36 & 0.88\end{array}$	388	52.93	48.82	0.92										
:---	:---	:---	:---	$\begin{array}{llll}389 & 52.97 & 49.51 & 0.93\end{array}$ $\begin{array}{llll}390 & 52.53 & 44.98 & 0.86\end{array}$ $\begin{array}{llll}391 & 52.63 & 46.31 & 0.88\end{array}$	392	52.82	47.38	0.90										
:---	:---	:---	:---	$\begin{array}{llll}393 & 52.94 & 48.28 & 0.91\end{array}$ $\begin{array}{lllll}396 & 52.76 & 45.19 & 0.86\end{array}$	397	52.90	47.80	0.90										
:---	:---	:---	:---	398 $\begin{array}{llll}399 & 52.96 & 48.81 & 0.92\end{array}$ $\begin{array}{lllll}401 & 53.45 & 46.28 & 0.87\end{array}$ $402 \begin{array}{llll}53.71 & 48.19 & 0.90\end{array}$ $\begin{array}{llll}403 & 53.74 & 48.76 & 0.91\end{array}$ $\begin{array}{llll}404 & 53.86 & 49.00 & 0.91\end{array}$	405	53.27	45.66	0.86										
:---	:---	:---	:---	$\begin{array}{llll}406 & 53.44 & 46.58 & 0.87\end{array}$ $\begin{array}{lllll}407 & 53.60 & 47.29 & 0.88\end{array}$ $\begin{array}{lllll}408 & 53.65 & 47.94 & 0.89\end{array}$	409	53.76	48.98	0.91										
:---	:---	:---	:---	$\begin{array}{lllll}410 & 52.84 & 45.28 & 0.86\end{array}$ $\begin{array}{lllll}411 & 52.93 & 45.90 & 0.87\end{array}$ $\begin{array}{lllllllll}12 & 53.16 & 46.37 & 0.87 & -6.79 & 19.55 & 17.91 & 0.92 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}413 & 53.27 & 47.25 & 0.89 & -6.02 & 19.55 & 18.15 & 0.93 & \text { Pass }\end{array}$														

Scottish Opera New Rotterdam Wharf
Daylight and Sunlight Report

$414 \begin{array}{llllllll}53.42 & 48.13 & 0.90 & -5.29 & 19.55 & 18.40 & 0.94 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}415 & 52.74 & 45.17 & 0.86 & -7.57 & 19.55 & 16.74 & 0.86 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}416 & 52.84 & 45.55 & 0.86 & -7.29 & 19.55 & 17.03 & 0.87 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}417 & 53.06 & 46.30 & 0.87 & -6.76 & 19.55 & 17.64 & 0.90 & \text { Pass }\end{array}$ 418 53.17 $47.370 .89 \quad-5.80$ $419 \quad 53.32 \quad 47.98 \quad 0.90 \quad-5.35 \quad 19.55 \quad 18.10 \quad 0.93$ Pass $\begin{array}{lllllllll}420 & 53.90 & 47.22 & 0.88 & -6.67 & 19.55 & 16.90 & 0.86 & \text { Pass }\end{array}$ $421 \quad 54.00$ 422 54.09 48.26 0.89 $\quad-5.82 \quad 19.55 \quad 17.75$ 423 53.94 $47.41 \quad 0.88$ $\begin{array}{lllllllll}424 & 54.03 & 47.94 & 0.89 & -6.09 & 19.55 & 17.49 & 0.89 & \text { Pass }\end{array}$ | 425 | 54.12 | 48.21 | 0.89 | -5.91 | 19.55 | 17.67 | 0.90 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 426 53.75 $47.20 \quad 0.88$ $427 \quad 53.86$ $428 \quad 53.90 \quad 47.99 \quad 0.89 \quad-5.91 \quad 19.55 \quad 17.75 \quad 0.91$ Pass $429 \quad 53.35 \quad 46.69 \quad 0.88$ $430 ~ 533.35 ~ 46.85 ~ 0.88 ~-6.50 ~ 19.55 ~ 13.23 ~ 0.68 ~ P a s s ~$ 431 53.44 $47.29 \quad 0.88$ $432 \quad 53.44 \begin{array}{llllllll} & 47.60 & 0.89 & -5.83 & 19.55 & 13.71 & 0.70 & \text { Pass }\end{array}$ 433 53.45 $47.71 \begin{array}{llllllll} & 0.89 & -5.74 & 19.55 & 13.81 & 0.71 & \text { Pass }\end{array}$ $434 \begin{array}{lllllllll} & 53.45 & 48.10 & 0.90 & -5.35 & 19.55 & 14.20 & 0.73 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}435 & 53.47 & 48.58 & 0.91 & -4.89 & 19.55 & 14.66 & 0.75 & \text { Pass }\end{array}$

7.5 Appendix E: Royal Conservatoire of Scotland - Wallace Studios

RCS Window Locations
A total of nineteen window locations were analysed, these are shown in the figure below.

Figure 6: Royal Conservatoire of Scotland - Windows
Figure 6: Royal Conse
RCS VSC Results

WCS_ref:	VSC_E:	VSC_P:	P/E:	Pass/Fail

7.8 Appendix H: 22 Farnell Street

Five window locations were analysed, these are shown in the figure below.

W ref: VSC E: VSC P: P/E: Pass/Fail W_ref: VSC_

1	30.1	26.1	0.86	Pass
1	30.2	28.6	0.95	Pass

2	35.7	31.3	0.88	Pass

3	35.8	31.6	0.88	Pass

APSH R	$\begin{gathered} \text { sults } \\ \hline \end{gathered}$	$\begin{aligned} & 7 \\ & 0 \\ & \hline 10 \end{aligned}$	$\begin{gathered} 8 \\ 4 \\ 4 \\ 4 \end{gathered}$	$\begin{aligned} & 7 \\ & 0 \\ & 4 \\ & \hline 10 \end{aligned}$	$\begin{gathered} 3 \\ \mathbf{S} \\ \hline \mathbf{D} \end{gathered}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \frac{5}{8} \\ & \frac{1}{4} \\ & 7 \end{aligned}$	\%
0	46.62	41.80	0.90	-4.82	13.99	9.33	0.67	Pass
1	53.78	51.60	0.96	-2.18	14.34	12.78	0.89	Pass
2	64.41	57.21	0.89	-7.20	23.62	16.67	0.71	Pass
3	63.89	57.96	0.91	-5.93	22.97	17.30	0.75	Pass
4	60.49	55.35	0.92	-5.14	20.02	15.07	0.75	Pass

7.9 Appendix J: Canal Boat Window Test

Test Locations

Window 0 is the most southernly window, window 198 is the most northernly.

VSC results W_ref:	VSC_E:	VSC_P:	P/E:	Pass/Fail
0	38.6	33.6	0.87	Pass
1	38.6	33.6	0.87	Pass
2	38.6	33.6	0.87	Pass
3	38.5	33.7	0.87	Pass
4	38.5	33.6	0.87	Pass
5	38.5	33.6	0.87	Pass
6	38.5	33.7	0.87	Pass
7	38.5	33.7	0.87	Pass
8	38.6	33.9	0.88	Pass
9	38.6	33.8	0.88	Pass
10	38.6	33.7	0.87	Pass
11	38.6	33.6	0.87	Pass
12	38.6	33.6	0.87	Pass
13	38.6	33.6	0.87	Pass
14	38.6	33.5	0.87	Pass
15	38.6	33.5	0.87	Pass
16	38.6	33.3	0.86	Pass
17	38.6	33.3	0.86	Pass
18	38.6	33.6	0.87	Pass

Scottish Opera New Rotterdam Wharf
Daylight and Sunlight Report

19	38.7	33.5	0.87	Pass
20	38.7	33.5	0.87	Pass
21	38.6	33.5	0.87	Pass
22	38.6	33.3	0.86	Pass
23	38.5	33.3	0.86	Pass
24	38.5	33.2	0.86	Pass
25	38.5	33.2	0.86	Pass
26	38.5	33.1	0.86	Pass
27	38.5	33.1	0.86	Pass
28	38.6	33.4	0.87	Pass
29	38.6	33.4	0.86	Pass
30	38.6	33.4	0.87	Pass
31	38.6	33.4	0.87	Pass
32	38.4	33.6	0.87	Pass
33	38.4	33.6	0.87	Pass
34	38.4	33.4	0.87	Pass
35	38.6	33.4	0.86	Pass
36	38.6	33.2	0.86	Pass
37	38.4	33.2	0.86	Pass
38	38.4	33.4	0.87	Pass
39	38.4	33.4	0.87	Pass
40	38.5	33.1	0.86	Pass
41	38.5	33.1	0.86	Pass
42	38.5	33.3	0.87	Pass
43	38.5	33.3	0.86	Pass
44	38.5	33.3	0.87	Pass
45	38.5	33.3	0.87	Pass
46	38.4	33.1	0.86	Pass
47	38.4	33.1	0.86	Pass
48	38.5	33.2	0.86	Pass
49	38.5	33.2	0.86	Pass
50	38.4	32.8	0.85	Pass
51	38.4	32.8	0.85	Pass
52	38.5	33	0.86	Pass
53	38.5	33	0.86	Pass
54	38.5	33.1	0.86	Pass
55	38.5	33.1	0.86	Pass
56	38.6	32.9	0.85	Pass
57	38.6	32.9	0.85	Pass
58	38.5	32.9	0.86	Pass
59	38.5	32.9	0.86	Pass
60	38.5	32.9	0.85	Pass
61	38.5	32.9	0.85	Pass
62	38.4	33	0.86	Pass
63	38.4	33	0.86	Pass
64	38.4	32.9	0.86	Pass
65	38.4	32.9	0.86	Pass

66	38.6	32.9	0.85	Pass
67	38.6	32.9	0.85	Pass
68	38.4	32.9	0.86	Pass
69	38.4	32.9	0.86	Pass
70	38.4	32.6	0.85	Pass
71	38.4	32.6	0.85	Pass
72	38.6	32.9	0.85	Pass
73	38.6	32.9	0.85	Pass
74	38.5	33	0.86	Pass
75	38.5	33.1	0.86	Pass
76	38.5	32.8	0.85	Pass
77	38.5	32.8	0.85	Pass
78	38.5	32.6	0.85	Pass
79	38.5	32.6	0.85	Pass
80	38.5	32.8	0.85	Pass
81	38.5	32.8	0.85	Pass
82	38.5	32.7	0.85	Pass
83	38.5	32.7	0.85	Pass
84	38.5	32.7	0.85	Pass
85	38.5	32.7	0.85	Pass
86	38.5	32.7	0.85	Pass
87	38.5	32.7	0.85	Pass
88	38.3	32.9	0.86	Pass
89	38.3	32.9	0.86	Pass
90	38.4	32.6	0.85	Pass
91	38.4	32.6	0.85	Pass
92	38.4	32.7	0.85	Pass
93	38.4	32.8	0.85	Pass
94	38.4	32.8	0.85	Pass
95	38.4	32.8	0.85	Pass
96	38.5	33	0.86	Pass
97	38.5	33	0.86	Pass
98	38.4	32.8	0.85	Pass
99	38.4	32.8	0.85	Pass
100	38.5	33	0.86	Pass
101	38.5	33.1	0.86	Pass
102	38.4	33.1	0.86	Pass
103	38.4	33.2	0.86	Pass
104	38.4	33.1	0.86	Pass
105	38.4	33.2	0.86	Pass
106	38.4	33.1	0.86	Pass
107	38.4	33.2	0.86	Pass
108	38.4	33.2	0.86	Pass
109	38.4	33.2	0.86	Pass
110	38.3	33.2	0.87	Pass
111	38.3	33	0.86	Pass
112	38.3	33.1	0.86	Pass

113	38.3	33	0.86	Pass
114	38.3	32.9	0.86	Pass
115	38.3	32.6	0.85	Pass
116	38.4	32.5	0.85	Pass
117	38.4	32.7	0.85	Pass
118	38.3	32.6	0.85	Pass
119	38.3	32.4	0.84	Pass
120	38.2	32.2	0.84	Pass
121	38.2	32.1	0.84	Pass
122	38.3	31.8	0.83	Pass
123	38.3	31.7	0.83	Pass
124	38.3	31.6	0.83	Pass
125	38.3	31.5	0.82	Pass
126	38.2	31.5	0.82	Pass
127	38.2	31.4	0.82	Pass
128	38.3	31.4	0.82	Pass
129	38.3	31.3	0.82	Pass
130	38.2	31.2	0.82	Pass
131	38.2	31.2	0.82	Pass
132	38.3	31.4	0.82	Pass
133	38.3	31.4	0.82	Pass
134	38.1	31.3	0.82	Pass
135	38.1	31.3	0.82	Pass
136	38.1	31.2	0.82	Pass
137	38.1	31.2	0.82	Pass
138	38.2	31.2	0.82	Pass
139	38.2	31.3	0.82	Pass
140	38.3	31.4	0.82	Pass
141	38.3	31.4	0.82	Pass
142	38.1	31.2	0.82	Pass
143	38.1	31.2	0.82	Pass
144	38.2	31.2	0.82	Pass
145	38.2	31.3	0.82	Pass
146	38.1	31.2	0.82	Pass
147	38.2	31.3	0.82	Pass
148	38.2	31.4	0.82	Pass
149	38	31.4	0.83	Pass
150	38	31.5	0.83	Pass
151	38	31.5	0.83	Pass
152	38	31.7	0.83	Pass
153	38	31.8	0.83	Pass
154	38	31.9	0.84	Pass
155	38	31.9	0.84	Pass
156	38	31.8	0.84	Pass
157	38	31.9	0.84	Pass
158	38	31.9	0.84	Pass
159	38	32.2	0.85	Pass
13				

4	52.9	44.1	0.83	-8.9	19.55	15.66	0.80	Pass
5	52.8	44.0	0.83	-8.8	19.55	15.54	0.80	Pass
6	52.6	43.6	0.83	-9.0	19.55	15.64	0.80	Pass
7	52.4	43.4	0.83	-9.0	19.55	15.65	0.80	Pass
8	52.4	43.3	0.83	-9.2	19.55	15.53	0.79	Pass
9	52.4	42.6	0.81	-9.8	19.55	15.33	0.78	Pass
10	52.3	42.0	0.80	-10.3	19.55	15.13	0.77	Pass
11	52.3	42.2	0.81	-10.1	19.55	14.78	0.76	Pass
12	52.2	42.7	0.82	-9.5	19.55	14.50	0.74	Pass
13	52.2	42.7	0.82	-9.6	19.55	14.35	0.73	Pass
14	52.1	42.4	0.81	-9.7	19.55	14.13	0.72	Pass
15	52.0	42.4	0.82	-9.5	19.55	13.81	0.71	Pass
16	52.0	42.2	0.81	-9.7	19.55	13.48	0.69	Pass
17	51.9	42.3	0.81	-9.6	19.55	13.50	0.69	Pass
18	51.9	42.3	0.82	-9.6	19.55	13.56	0.69	Pass
19	52.0	42.3	0.81	-9.7	19.55	13.44	0.69	Pass
20	52.0	42.2	0.81	-9.8	19.55	13.37	0.68	Pass
21	52.0	41.9	0.81	-10.1	19.55	13.05	0.67	Pass
22	52.0	42.0	0.81	-10.1	19.55	13.19	0.67	Pass
23	51.9	41.9	0.81	-10.1	19.55	12.93	0.66	Pass
24	51.9	41.9	0.81	-10.0	19.55	12.69	0.65	Pass
25	51.9	41.8	0.81	-10.1	19.55	12.50	0.64	Pass
26	51.8	41.9	0.81	-9.9	19.55	12.21	0.62	Pass
27	51.7	42.1	0.81	-9.6	19.55	12.12	0.62	Pass
28	51.7	42.1	0.82	-9.5	19.55	12.14	0.62	Pass
29	51.7	42.2	0.82	-9.4	19.55	12.11	0.62	Pass
30	51.6	42.0	0.81	-9.6	19.55	11.92	0.61	Pass
31	51.5	41.9	0.81	-9.6	19.55	11.86	0.61	Pass
32	51.4	41.3	0.80	-10.1	19.55	11.46	0.59	Pass
33	51.3	41.1	0.80	-10.2	19.55	11.29	0.58	Pass
34	51.3	41.0	0.80	-10.3	19.55	11.10	0.57	Pass
35	51.3	40.8	0.79	-10.5	19.55	10.89	0.56	Pass
36	51.2	40.7	0.79	-10.6	19.55	10.62	0.54	Pass
37	51.5	40.2	0.78	-11.3	19.55	9.89	0.51	Pass
38	51.7	40.0	0.77	-11.7	19.55	9.63	0.49	Pass
39	51.9	39.8	0.77	-12.1	19.55	9.71	0.50	Pass
40	52.1	39.8	0.76	-12.3	19.55	9.85	0.50	Pass
40	52.3	52.5	39.3	0.75	-13.2	19.55	10.42	0.53

$\begin{array}{llllllll}52.5 & 39.2 & 0.75 & -13.4 & 19.55 & 10.29 & 0.53 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.5 & 39.0 & 0.74 & -13.5 & 19.55 & 10.14 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.6 & 39.1 & 0.74 & -13.6 & 19.55 & 10.21 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.6 & 39.1 & 0.74 & -13.6 & 19.55 & 10.18 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.6 & 39.0 & 0.74 & -13.6 & 19.55 & 10.15 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.7 & 39.3 & 0.75 & -13.3 & 19.55 & 10.45 & 0.53 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.7 & 39.5 & 0.75 & -13.2 & 19.55 & 10.62 & 0.54 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.7 & 39.4 & 0.75 & -13.4 & 19.55 & 10.49 & 0.54 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.8 & 39.2 & 0.74 & -13.6 & 19.55 & 10.46 & 0.54 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.8 & 39.0 & 0.74 & -13.8 & 19.55 & 10.51 & 0.54 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.8 & 38.9 & 0.74 & -13.9 & 19.55 & 10.60 & 0.54 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.9 & 38.6 & 0.73 & -14.2 & 19.55 & 10.72 & 0.55 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.0 & 37.8 & 0.71 & -15.2 & 19.55 & 10.68 & 0.55 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.0 & 37.5 & 0.71 & -15.5 & 19.55 & 10.76 & 0.55 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.1 & 37.7 & 0.71 & -15.4 & 19.55 & 10.87 & 0.56 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.2 & 38.3 & 0.72 & -14.9 & 19.55 & 10.96 & 0.56 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.3 & 39.1 & 0.73 & -14.1 & 19.55 & 10.92 & 0.56 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.4 & 39.7 & 0.74 & -13.7 & 19.55 & 10.82 & 0.55 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.4 & 40.3 & 0.75 & -13.1 & 19.55 & 10.93 & 0.56 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.5 & 40.8 & 0.76 & -12.7 & 19.55 & 11.00 & 0.56 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.5 & 40.6 & 0.76 & -12.9 & 19.55 & 11.13 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.5 & 40.2 & 0.75 & -13.3 & 19.55 & 11.23 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.5 & 40.3 & 0.75 & -13.3 & 19.55 & 11.35 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.6 & 39.9 & 0.74 & -13.7 & 19.55 & 11.26 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.6 & 39.7 & 0.74 & -13.9 & 19.55 & 11.24 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.6 & 39.7 & 0.74 & -14.0 & 19.55 & 11.24 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.4 & 39.3 & 0.74 & -14.1 & 19.55 & 11.17 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.2 & 38.9 & 0.73 & -14.3 & 19.55 & 11.30 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.2 & 38.6 & 0.72 & -14.6 & 19.55 & 11.27 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.2 & 38.4 & 0.72 & -14.9 & 19.55 & 11.24 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.2 & 38.5 & 0.72 & -14.8 & 19.55 & 11.27 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.2 & 39.1 & 0.73 & -14.2 & 19.55 & 11.17 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.3 & 39.2 & 0.74 & -14.1 & 19.55 & 11.18 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.3 & 39.5 & 0.74 & -13.8 & 19.55 & 11.38 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.3 & 39.6 & 0.74 & -13.7 & 19.55 & 11.43 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}53.4 & 39.7 & 0.74 & -13.7 & 19.55 & 11.48 & 0.59 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.4 & 39.8 & 0.74 & -13.7 & 19.55 & 11.57 & 0.59 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.4 & 39.8 & 0.74 & -13.6 & 19.55 & 11.66 & 0.60 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}53.4 & 40.2 & 0.75 & -13.2 & 19.55 & 11.57 & 0.59 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.3 & 40.2 & 0.75 & -13.1 & 19.55 & 11.26 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.2 & 39.4 & 0.74 & -13.8 & 19.55 & 11.16 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.1 & 39.4 & 0.74 & -13.7 & 19.55 & 11.42 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}53.0 & 39.5 & 0.75 & -13.5 & 19.55 & 11.40 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}53.0 & 39.8 & 0.75 & -13.3 & 19.55 & 11.43 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}52.9 & 39.4 & 0.74 & -13.5 & 19.55 & 11.38 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.9 & 39.0 & 0.74 & -13.9 & 19.51 & 11.30 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{llllllll}52.9 & 38.8 & 0.73 & -14.1 & 19.55 & 11.35 & 0.58 & \text { Pass }\end{array}$

Scottish Opera New Rotterdam Wharf
Daylight and Sunlight Report

$\begin{array}{lllllllll}52.9 & 38.7 & 0.73 & -14.2 & 19.55 & 11.78 & 0.60 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}100 & 52.8 & 38.7 & 0.73 & -14.1 & 19.55 & 11.88 & 0.61 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}101 & 52.7 & 38.5 & 0.73 & -14.2 & 19.55 & 11.97 & 0.61 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}102 & 52.6 & 38.8 & 0.74 & -13.8 & 19.55 & 11.84 & 0.61 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}103 & 52.5 & 39.1 & 0.74 & -13.4 & 19.55 & 11.81 & 0.60 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}104 & 52.6 & 39.4 & 0.75 & -13.2 & 19.55 & 11.80 & 0.60 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}105 & 52.6 & 39.8 & 0.76 & -12.8 & 19.55 & 11.96 & 0.61 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}106 & 52.5 & 40.3 & 0.77 & -12.3 & 19.55 & 12.10 & 0.62 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}107 & 52.5 & 39.4 & 0.75 & -13.1 & 19.55 & 12.27 & 0.63 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}108 & 52.5 & 39.6 & 0.76 & -12.9 & 19.55 & 12.51 & 0.64 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}109 & 52.5 & 39.7 & 0.76 & -12.8 & 19.55 & 12.71 & 0.65 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}110 & 52.3 & 39.6 & 0.76 & -12.7 & 19.55 & 12.94 & 0.66 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}111 & 52.2 & 39.4 & 0.75 & -12.8 & 19.55 & 13.18 & 0.67 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}112 & 52.1 & 38.9 & 0.75 & -13.2 & 19.55 & 13.11 & 0.67 & \text { Pass }\end{array}$ | 113 | 52.2 | 38.5 | 0.74 | -13.7 | 19.55 | 12.92 | 0.66 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 114 | 52.1 | 38.6 | 0.74 | -13.6 | 19.55 | 13.24 | 0.68 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}115 & 52.0 & 38.4 & 0.74 & -13.6 & 19.51 & 13.28 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}116 & 52.0 & 39.1 & 0.75 & -12.9 & 19.55 & 13.35 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}117 & 52.0 & 39.5 & 0.76 & -12.5 & 19.55 & 13.47 & 0.69 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}118 & 52.0 & 39.5 & 0.76 & -12.4 & 19.55 & 13.63 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}119 & 51.9 & 38.9 & 0.75 & -12.9 & 19.55 & 13.73 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}120 & 51.8 & 38.1 & 0.74 & -13.7 & 19.55 & 13.77 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}121 & 51.7 & 38.2 & 0.74 & -13.5 & 19.55 & 14.15 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}122 & 51.6 & 38.2 & 0.74 & -13.4 & 19.55 & 14.08 & 0.72 & \text { Pass }\end{array}$ $\begin{array}{llllllllll}123 & 51.6 & 37.9 & 0.74 & -13.7 & 19.55 & 14.06 & 0.72 & \text { Pass }\end{array}$ $1 \begin{array}{lllllllll}24 & 51.5 & 37.5 & 0.73 & -14.0 & 19.55 & 13.86 & 0.71 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}51.4 & 37.5 & 0.73 & -13.9 & 19.55 & 13.94 & 0.71 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}126 & 51.3 & 37.2 & 0.72 & -14.1 & 19.55 & 13.90 & 0.71 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}127 & 51.0 & 36.9 & 0.72 & -14.1 & 19.55 & 13.93 & 0.71 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}28 & 50.8 & 36.2 & 0.71 & -14.6 & 19.55 & 13.62 & 0.70 & \text { Pass }\end{array}$ $\begin{array}{llllllll}50.7 & 36.1 & 0.71 & -14.5 & 19.55 & 13.24 & 0.68 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}130 & 50.7 & 36.0 & 0.71 & -14.7 & 19.55 & 12.73 & 0.65 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}131 & 50.6 & 35.5 & 0.70 & -15.2 & 19.55 & 12.26 & 0.63 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}132 & 50.7 & 35.6 & 0.70 & -15.2 & 19.55 & 12.14 & 0.62 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}133 & 50.7 & 35.7 & 0.70 & -15.0 & 19.55 & 12.27 & 0.63 & \text { Pass }\end{array}$ $134 \begin{array}{lllllllll}50.6 & 35.2 & 0.70 & -15.4 & 19.55 & 11.73 & 0.60 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}135 & 50.6 & 34.6 & 0.68 & -15.9 & 19.55 & 11.20 & 0.57 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}136 & 50.4 & 34.4 & 0.68 & -16.0 & 19.55 & 11.29 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}137 & 50.5 & 34.7 & 0.69 & -15.8 & 19.55 & 11.54 & 0.59 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}138 & 50.6 & 34.8 & 0.69 & -15.8 & 19.55 & 11.37 & 0.58 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}139 & 50.5 & 34.7 & 0.69 & -15.9 & 19.55 & 11.12 & 0.57 & \text { Pass }\end{array}$ $140 \begin{array}{lllllllll}50.4 & 34.5 & 0.68 & -16.0 & 19.55 & 10.84 & 0.55 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}141 & 50.4 & 34.4 & 0.68 & -16.1 & 19.55 & 10.64 & 0.54 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}142 & 50.4 & 34.4 & 0.68 & -16.0 & 19.55 & 10.43 & 0.53 & \text { Pass }\end{array}$ $143 \begin{array}{lllllllll}50.5 & 35.0 & 0.69 & -15.5 & 19.55 & 10.18 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}144 & 50.6 & 35.9 & 0.71 & -14.7 & 19.55 & 10.35 & 0.53 & \text { Pass }\end{array}$

145
$\begin{array}{llllllll}50.6 & 36.2 & 0.72 & -14.3 & 19.55 & 10.18 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}146 & 50.5 & 36.0 & 0.71 & -14.5 & 19.55 & 9.89 & 0.51 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}147 & 50.5 & 36.2 & 0.72 & -14.4 & 19.55 & 9.79 & 0.50 & \text { Pass }\end{array}$ $148 \begin{array}{lllllllll}50.6 & 36.6 & 0.72 & -14.0 & 19.55 & 10.04 & 0.51 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}149 & 50.2 & 36.9 & 0.74 & -13.3 & 19.20 & 10.19 & 0.53 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}150 & 50.2 & 36.6 & 0.73 & -13.6 & 19.20 & 9.86 & 0.51 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}151 & 50.1 & 36.6 & 0.73 & -13.5 & 19.20 & 10.01 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}152 & 50.7 & 37.2 & 0.73 & -13.5 & 19.18 & 10.00 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}153 & 50.7 & 36.9 & 0.73 & -13.8 & 19.04 & 9.44 & 0.50 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}154 & 50.5 & 36.9 & 0.73 & -13.6 & 18.70 & 9.26 & 0.50 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}55 & 50.7 & 36.9 & 0.73 & -13.8 & 18.70 & 9.15 & 0.49 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}156 & 50.8 & 36.9 & 0.73 & -13.9 & 18.70 & 9.00 & 0.48 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}157 & 50.8 & 36.9 & 0.73 & -13.9 & 18.70 & 8.99 & 0.48 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}158 & 50.8 & 37.0 & 0.73 & -13.8 & 18.70 & 8.91 & 0.48 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}159 & 50.7 & 37.4 & 0.74 & -13.4 & 18.56 & 8.81 & 0.47 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}160 & 50.6 & 37.7 & 0.74 & -12.9 & 18.40 & 8.77 & 0.48 & \text { Pass }\end{array}$ $\begin{array}{llllllllll}161 & 50.6 & 37.8 & 0.75 & -12.9 & 18.40 & 8.76 & 0.48 & \text { Pass }\end{array}$ $162 \begin{array}{lllllllll}50.7 & 37.8 & 0.75 & -12.8 & 18.40 & 8.66 & 0.47 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}163 & 50.8 & 38.2 & 0.75 & -12.6 & 18.40 & 8.69 & 0.47 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}164 & 50.9 & 38.4 & 0.75 & -12.6 & 18.40 & 8.51 & 0.46 & \text { Pass }\end{array}$
$\begin{array}{llllllllll}165 & 51.1 & 38.5 & 0.75 & -12.5 & 18.40 & 8.24 & 0.45 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}166 & 50.8 & 38.9 & 0.77 & -11.9 & 18.03 & 8.26 & 0.46 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}167 & 50.8 & 39.2 & 0.77 & -11.6 & 18.03 & 8.25 & 0.46 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}168 & 50.9 & 39.4 & 0.77 & -11.5 & 18.03 & 8.34 & 0.46 & \text { Pass }\end{array}$

$\begin{array}{lllllllll}169 & 50.9 & 39.3 & 0.77 & -11.6 & 18.03 & 8.15 & 0.45 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}170 & 50.9 & 38.8 & 0.76 & -12.1 & 18.03 & 7.51 & 0.42 & \text { Pass }\end{array}$ | 171 | 50.9 | 39.0 | 0.77 | -11.9 | 18.03 | 7.66 | 0.42 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}172 & 50.9 & 39.3 & 0.77 & -11.6 & 18.03 & 7.83 & 0.43 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}173 & 50.9 & 39.5 & 0.78 & -11.4 & 18.01 & 7.98 & 0.44 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}174 & 50.8 & 39.7 & 0.78 & -11.1 & 17.87 & 8.12 & 0.45 & \text { Pass }\end{array}$ | 175 | 50.7 | 39.9 | 0.79 | -10.8 | 17.78 | 8.21 | 0.46 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}176 & 50.4 & 40.0 & 0.79 & -10.4 & 17.52 & 8.25 & 0.47 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}77 & 50.3 & 40.2 & 0.80 & -10.1 & 17.36 & 8.34 & 0.48 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}178 & 50.0 & 40.5 & 0.81 & -9.5 & 17.06 & 8.45 & 0.50 & \text { Pass }\end{array}$

$\begin{array}{lllllllll}179 & 49.8 & 40.5 & 0.81 & -9.3 & 16.83 & 8.47 & 0.50 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}180 & 49.8 & 40.6 & 0.82 & -9.2 & 16.83 & 8.55 & 0.51 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}181 & 49.8 & 40.7 & 0.82 & -9.0 & 16.76 & 8.61 & 0.51 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}182 & 49.8 & 41.1 & 0.82 & -8.7 & 16.76 & 8.87 & 0.53 & \text { Pass }\end{array}$

183	49.9	41.4	0.83	-8.5	16.76	9.08	0.54	Pass

$\begin{array}{lllllllll}184 & 49.9 & 41.1 & 0.82 & -8.8 & 16.74 & 8.86 & 0.53 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}85 & 50.0 & 41.1 & 0.82 & -8.9 & 16.76 & 8.77 & 0.52 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}186 & 50.4 & 41.4 & 0.82 & -9.0 & 17.11 & 9.05 & 0.53 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}187 & 50.4 & 41.4 & 0.82 & -9.0 & 17.11 & 9.03 & 0.53 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}188 & 50.4 & 41.4 & 0.82 & -9.0 & 17.11 & 9.00 & 0.53 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}189 & 50.6 & 41.6 & 0.82 & -8.9 & 17.18 & 9.03 & 0.53 & \text { Pass }\end{array}$
$\begin{array}{lllllllll}190 & 51.0 & 42.2 & 0.83 & -8.7 & 17.46 & 9.41 & 0.54 & \text { Pass }\end{array}$
$191 \quad 51.2 \begin{array}{lllllllll} & 52.6 & 0.83 & -8.5 & 17.61 & 9.65 & 0.55 & \text { Pass }\end{array}$

$192 \quad 51.2 \quad 43.0$ $193 \quad 51.3 \quad 43.0$ $\begin{array}{lllllllll}194 & 51.3 & 43.2 & 0.84 & -8.1 & 17.62 & 9.90 & 0.56 & \text { Pass }\end{array}$ | 195 | 51.4 | 43.4 | 0.85 | -8.0 | 17.64 | 10.05 | 0.57 | Pass |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | 196 | 51.6 | 43.8 | 0.85 | -7.8 | 17.90 | 10.47 | 0.58 | Pass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllll}197 & 51.6 & 43.9 & 0.85 & -7.7 & 17.90 & 10.48 & 0.59 & \text { Pass }\end{array}$ $\begin{array}{lllllllll}198 & 51.6 & 44.0 & 0.85 & -7.6 & 17.92 & 10.57 & 0.59 & \text { Pass }\end{array}$

