Scottish Opera New Rotterdam Wharf

Daylight and Sunlight Report J7374-MXF-XX-XX-RP-Y-28000 P03

19th February 2024

MAX FORDHAM

Max Fordham LLP 42/43 Gloucester Crescent London NW1 7PE

T 020 7267 5161

maxfordham.com

Max Fordham LLP is a Limited Liability Partnership.

Registered in England and Wales Number OC300026.

Registered office: 42–43 Gloucester Crescent London NW1 7PE

This report is for the private and confidential use of the clients for whom the report is undertaken and should not be reproduced in whole or in part or relied upon by third parties for any use whatsoever without the express written authority of Max Fordham LLP

© Max Fordham LLP

ISSUE HISTORY

Issue	Date	Description
P01	22/01/2024	Initial Draft
P02	16/02/2024	For comment
P03	19/02/2024	For Planning

J7374-MXF-XX-XX-RP-Y-28000

CONTENTS

10		rview and Summary	Л
1.0		Introduction	т 4
	1.1	Summary	4
	1.2	Derformance of Pronosed Development	4
	1.2.1	Impact on Surroundings	4
	1.2.2	impact on our our our ings	4
2.0	Perf	ormance of Proposed Development	6
	2.1	Internal Davlight	6
	2.1.1	Summary of Internal Daylighting	6
	2.1.2	Standards and Definitions	6
	2.1.3	Areas Examined	6
	2.1.4	Simulation	6
	2.1.5	Results	6
	2.2	Sunlight on Windows	7
	2.2.1	Sunlight on Windows – Results	7
	2.3	Amenity spaces	7
	2.3.1	Amenity Spaces – Results	7
3.0	Impa	act on Surroundings – Methodology and Crit	eria 8
0.0	3.1	Davlight Impact Analysis	8
	311	Obstruction Angle	8
	312	Vertical Sky Component (VSC)	8
	313	No-Sky Line (NSL)	8
	3.1.4	Davlight Impact Analysis – Proposed Developments	8
	3.2	Sunlight Impact Analysis	9
	3.2.1	Annual and Winter Probable Sunlight Hours (APSH and WPSH)	9
	3.2.2	Sunlight to Surrounding Amenity Areas	9
	3.3	BRE Impact Assessment Classification	9
10	Dofe	proposed Documents	10
4.0	Reit		10
	4.1	Impact on Canal and Canal Boats	10

5.0 Modelling

- 5.1 Site and Surroundings Overview
- 5.1.1 Amenity Space
- 5.1.2 Canal
- 5.2 Geometry
- 5.2.1 Speirs Wharf Window Generation
- 5.2.2 Canal Boat Windows
- 5.3 Procedure
- 5.3.1 Software Used
- 5.3.2 Model Parameters

6.0 Impact on surroundings - Results

- 6.1 Speirs Wharf
- 6.2 Non-Residential Buildings
- 6.2.1 A) Royal Conservatoire of Scotland Wallace Studios
- 6.2.2 B) 230-260 Garscube Road (Matthew's Foods Glasgow)
- 6.2.3 C) 12 Burns St (Harvest Foods)
- 6.2.4 D) 22 Farnell St
- 6.2.5 E) Civic House and neighbouring warehouse
- 6.3 Sunlight on Existing Amenity Space
- 6.4 Impact on the Canal and Moorings
- 6.4.1 Canal Boat Windows
- 6.4.2 Sunlight on Canal

7.0 Appendices

- 7.1 Appendix A: New Amenity Space
- 7.2 Appendix B: Existing Amenity Space
- 7.3 Appendix C: Sunlight access to Canal
- 7.4 Appendix D: Speirs Wharf Results
- 7.5 Appendix E: Royal Conservatoire of Scotland Wallace
- 7.6 Appendix F: Garscube Road
- 7.7 Appendix G: 12 Burns Street
- 7.8 Appendix H: 22 Farnell Street
- 7.9 Appendix J: Canal Boat Window Test

$\overline{\langle}$
$\overline{>}$
\leq
\leq
\mathcal{L}
\bigcup
Ţ
\triangleright
\leq

	11 11 11 11 11 11 11 11 11
)	12 12 12 12 13 13 13 13 13 13 13
e Studios	15 15 15 16 23 23 23 24 24

11

1.0 OVERVIEW AND SUMMARY

1.1 Introduction

Daylight and Sunlight analysis of a building can be split into two categories: performance of the proposed design and impact on the surroundings. Daylight analysis refers to a calculation of the general illuminance of a space, whereas sunlight access is an analysis of the hours of direct sunlight on a window or amenity space.

The Scottish Government has recently released National Planning Framework 4 (NPF4) as its national spatial strategy for Scotland. It sets out the principles for future developments as part of its national planning policy. NPF4 does not directly address daylight and sunlight. Daylight and Sunlight however can be linked to many Sustainable Development Goals referenced in the document such as SDG3 and SDG11.

The guidance for assessing both the performance of the proposed development and the impact of the new development in this report is from BRE Guide 209: Site Layout Planning for Daylight and Sunlight. This is in reference to Glasgow City Council – Part 3: Development Policies and Design Guidance, which recommends using the tests given in the guide for assessing the impact of a new development. The advice given in the guide is advisory only and can be interpreted based on the context of the project. However, daylight in a building is crucial for occupant wellbeing, as well as helping reduce energy usage through lighting. Depending on location and time of year, occupants will have a certain expectation of daylighting. Furthermore, a proposed development that will have a significantly adverse effect on its neighbours will encounter opposition during the planning process.

The tests conducted and shown in this report show that the design does not significantly decrease access to daylight or sunlight to its neighbours and allows a healthy amount of daylight to its inhabitants.

Summary 1.2

The figures below show an overview of the proposed development and surroundings. The first is a render produced by the architects Page and Park (P\P) and the second is a render of a model used by Max Fordham for daylighting analysis.

1.2.1 Performance of Proposed Development

The interior daylighting for studio flats was examined and compared against BS EN 17037:2018+A1:2021 - Daylight in Buildings. Simulations were carried out via Radiance, which is a validated daylighting tool. Rhino and Grasshopper were utilised to facilitate simulations. Focusing on worst-case scenarios, rooms in potentially unsuitable locations were studied. The results were highly positive in terms of interior daylighting. The daylighting study was conducted on a model received from the architects and fed into the final design. The architect has placed great care in locating studios of different sizes. Larger studios with kitchens, which benefit from higher light levels, are placed on southern façades. This coupled with the placing of smaller studios on northern facades allow them to reach the recommended daylight illuminances. Based on our analysis we expect the majority of studios to reach and surpass the illuminance recommendations found in BS EN 17037:2018+A1:2021. No room studied received a level of daylight that suggested that further overheating analysis may be required.

1.2.2 Impact on Surroundings

The external impact on the surroundings of the proposed development was assessed using guidance in BRE Guide 209: Site Layout Planning for Daylight and Sunlight. Simulations were carried out using Radiance. Impacted windows and areas were identified and the applicable tests were carried out. Overall, the impact of the new development was minorly adverse. The results of the studies are summarised below.

Speirs Wharf

The impact of the new development on Speirs Wharf has been classed as negligible. All windows in Speirs Wharf passed the VSC and APSH tests specified by BRE 209. This means that neither the daylight nor the sunlight access to Speirs Wharf will be greatly affected. This is likely due to the orientation of the towers; their perpendicular direction to Speirs Wharf ensures that the total impact on any of the windows is minimal. The lowered sections to the East also help with retaining light to Speirs Wharf; this minimises the obstruction angle of the development given its height and thus ensures more of the sky and sun is visible from the windows of Speirs Wharf.

Houseboats and Moorings Overall, there was a negligible adverse impact on the daylighting and sunlight access to the moorings at Speirs Wharf. All tested houseboat window locations passed these the VSC and APSH tests as specified in BRE 209. The mooring area itself still receives an adequate amount of sunlight.

Non-residential Overall, it was judged that the impact of the new development on the surrounding non-residential buildings was minorly adverse.

Royal Conservatoire of Scotland – Wallace Studios

No windows in this building were adversely affected by the new development.

230-260 Garscube Road

building.

12 Burns St

One window failed on this building; however, we believe that the expectation for daylight from this window is low due to the storage nature of the building and the lack of other windows.

22 Farnell St

All analysed windows on this building passed.

Civic House

building

One window here failed both the tests applied here, however this window is unlikely to have a high expectation of daylight due to the nature of the

There were no windows that faced the proposed development on this

Amenity Spaces and Canal

All the tested amenity spaces still receive enough hours of sunlight to appear adequately sunlit with the proposed development in place. The canal also still receives an adequate amount of sunlight.

MAX FORDHAM

2.0 PERFORMANCE OF **PROPOSED DEVELOPMENT**

Internal Daylight 2.1

2.1.1 Summary of Internal Daylighting

The internal daylighting of the PBSA studios is likely to be very good. Sample floors and rooms were analysed using validated daylighting tools and tested against the relevant standards. Based on our findings we summarise expect the majority of studios to meet and surpass the target illuminance as per BS EN 17037:2018+A1:2021.

2.1.2 Standards and Definitions

BRE Guide 209 - Site Layout Planning for Daylight and Sunlight offers two methods for assessing interior daylight in new buildings: Daylight Factor (DF) or Daylight Autonomy (DA)/Target Illuminance. The latter method falls under the category of climate-based daylight modelling, which accounts for orientation and direct sunlight. This assessment uses the Target Illuminance method.

Daylight Autonomy is the percentage of the occupied time when the target illuminance is met at a point in space. For this internal analysis we have considered all the daylight hours in the year.

The guide references BS EN 17037:2018+A1:2021, which has targets for minimum amounts of daylight for rooms, as well as a British National Annex that gives targets for "hard to light dwellings." The table below shows median illuminance levels from the national annex of BS EN 17037:2018. The target is for these levels to be achieved over half of the working plane for half of the daylight hours in a year. In practical terms, this means that for an analysis point to pass it should be above this illuminance target for at least 50% of the daylight hours. If over 50% of the test points in the test plane of a room achieve this, then the room passes the test. We have chosen to follow the targets set out in the national annex as dwellings on the north face on the towers are likely to be considered hard to light.

Room Type	Illuminance (lux)
Kitchens	200
Living Rooms	150
Bedrooms	100

Kitchen-Diners or Kitchen-Living-Diners are required to achieve the level of the kitchen as this room has the higher/highest requirement of the combined room types. Studios without kitchens require only to pass the 100lx illuminance level.

BS EN 17037:2018 National Annex suggests that where a dwelling exceeds 500lx on 50% of the grid points for more than half of the daylight hours, that it is checked for overheating risk.

2.1.3 Areas Examined

It was important to look at worst-case scenarios for both types of studios. As the floor plans are similar from LO4 and higher it was deemed not necessary to conduct simulations on each individual room.

All studios on L02 for both towers were decided to be most at risk from orientation issues and blockage from nearby buildings. The north facing studios on L04 south tower were looked at as worst-case scenarios for the smaller studios without kitchens.

2.1.4 Simulation

The geometry was provided by the architect dated 30/10/2023. The indoor daylight analysis was carried out via a purpose-built script in Grasshopper within Rhino. This script uses Radiance which is a validated daylighting tool. A weather file for Glasgow was used, the same weather file was used for all relevant tests on New Rotterdam Wharf.

The results for interior daylighting fed into the final design but are not an analysis of the final design.

The optical properties chosen for the simulation can be found in the table below.

Optical Property

2.1.5 Results

Studios with kitchens on southern facades pass the 200lx requirement for kitchens. On northern facades, if the studio is modelled with a bathroom, then it will pass the 200lx requirement. Below is an image showing daylight autonomy for studios inside the north tower LO2. A representative bathroom is modelled in two passing studios on each façade. This shows that when bathrooms are included in the simulations at least half of the space reaches at least 50% Daylight Autonomy on the northern façade. Reaching 50% DA in at least half of a studio signifies a passing result. No north facing studios face any obstructions that would cause them to fail.

The smaller studios which lack kitchens pass the lower 100lx requirement in all areas tested and likely pass on every floor in both PBSA towers. The smaller depth of these studios means that they average a higher lux level than the studios with kitchens. This coupled with the lower illuminance requirement allows placement in less optimal locations within PBSA without compromising the expected daylight illuminance for a room of its type.

The north façade on the southern tower appears to be slightly impacted by the new developments on the rehearsal building. However, the architect has

Optical Property	Value
Interior Ceiling Reflectance	0.7
Interior Ceiling Specularity	0.1
Interior Wall Reflectance	0.5
Interior Wall Specularity	0.1
Interior Floor Reflectance	0.2
Interior Floor Specularity	0.1
Exterior Window Transmittance	0.7
Exterior Window Refraction	1.52

avoided placing studios on the lower floors on the eastern side of the southern tower. This minimises impact on any potential impact to the studios. On a similar note, the southern PBSA tower does not present an issue to the internal daylighting of the studios within the northern PBSA tower.

No studios analysed exceeded 500lx on 50% of the grid points for more than half of the daylight hours. Therefore, the interior daylighting analysis conducted does not indicate any rooms at particular risk of overheating.

Sunlight on Windows 2.2

The BRE guide suggests that for a building that has a particular requirement for sunlight to appear reasonably sunlit, it should fulfil the following criteria. Firstly, it should have at least one window wall within 90° of due south. Secondly, it should have a habitable room served by at least one window that can receive a total of at least 1.5 hours of sunlight on the 21st of March. This is assessed at the centre of the window(s); sunlight received by different windows can be added provided they occur at different times and sunlight hours are not double counted.

In multi-residential buildings, it is not always possible to ensure every dwelling has a window that meets these criteria. In this case it is best practice to minimise the number of dwellings that fail this test.

2.2.1 Sunlight on Windows – Results

As the figures below demonstrate, there are large portions of the north faces of both the towers that fail to receive more than 1.5 hours of sunlight on the 21st of March. This means that any dwellings that only have rooms on these facades will not pass this test. Based on current layouts we estimate this to be 20 % of dwellings.

Therefore, studio dwellings are better served on the south facade. Accommodation can be put on the north façade providing that each room has access to an amenity space that has a window that faces within 90° of due south and is not overly shaded by the rest of the tower. This has been incorporated into the current design; most of the studios are on the south façade. The apartment style accommodation has been placed on the north façade but with kitchens that have East or West facing windows. This should ensure adequate access to sunlight.

Amenity spaces 2.3

It is recommended that at least half an amenity space should receive at least two hours of direct sunlight on March 21st. Amenity spaces were determined from plans issued by P\P as well as areas that are likely to be used by occupants and visitors.

2.3.1 Amenity Spaces – Results

The figure below shows the hours of sunlight received at test points around the site on the 21st of March with the proposed development in place. These points are grouped into twenty-seven amenity areas.

Of the twenty-seven areas tested, 25 had more than 2 hours of sunlight on the 21st of March and hence passed the test. The two that failed were located to the north of the northern tower on the steps. This means that this area may not be suitable to designate as an amenity space for sitting. See appendix A for a summary of the results.

FORDHAM

3.0 IMPACT ON SURROUNDINGS -METHODOLOGY AND **CRITERIA**

There are several elements to this assessment, which in general can be broken down into two categories: daylight impact and sunlight impact. Further information about these is provided in the following sections.

3.1 Daylight Impact Analysis

In designing a new development, it is important to safeguard the daylight to nearby buildings. The BRE guide provides a decision process for this analysis which is summarised in the flowchart below.

The guide identifies which surrounding windows and areas should be analysed. Unless stated otherwise, these are locations that are within three times the distance of the difference between the height of the proposed development and the centre of the window or area in question (as measured from the edge of the new development closest to the window or area).

Furthermore, the guidance only applies to windows where there is an expectation of daylight or sunlight. In residential buildings this includes windows of kitchens, living rooms and bedrooms. For non-residential buildings, the guidance would also apply for buildings where the occupants have a reasonable expectation of daylight. This includes schools, hospitals, hotels and hostels, small workshops, and some offices.

3.1.1 Obstruction Angle

If the existing window is within the distance limit, then, as an initial test, the obstruction angle can be calculated. This is the angle to the horizontal subtended by the new development at the level of the centre of the lowest window, as measured in a plane perpendicular to the existing window. If any part of the new development exceeds an angle of 25° along the entire window wall, then there is a potential risk of loss of skylight. In this case further analysis is required to accurately assess the loss of skylight.

3.1.2 Vertical Sky Component (VSC)

If the obstruction angle is greater than the recommended 25°, then to further assess the loss of skylight, the BRE Guide recommends using the Vertical Sky Component (VSC) as a metric, comparing existing values for nearby windows with proposed values with the proposed building in place.

The VSC indicates the degree of daylight availability on a vertical surface and is expressed as a percentage, with 40% being the maximum for a vertical surface. It represents the extent to which light from an overcast sky can reach a window as a proportion of the whole sky hemisphere. In suburban areas, the recommended minimum is 27%, any change below this should be limited to 0.8 of the existing value.

As the site around New Rotterdam Wharf is guite open and sparsely populated, it should be possible to maintain the daylight access to the surrounding windows such that the 27% target is achieved for residential and most commercial buildings.

3.1.3 No-Sky Line (NSL)

of 850 mm.

The guide states that the NSL should only be calculated where accurate room layouts and window locations are known, otherwise significant inaccuracies are likely to arise. To pass the test, the area of the room that has a direct view of the sky should not be reduced to less than 0.8 times its original value with the proposed development in place.

3.1.4 Daylight Impact Analysis – Proposed Developments

It is also important to consider the impact of a new building on proposed development sites. The BRE guide states that in general, "a development site next to a proposed new building will retain the potential for good diffuse daylighting provided that on each common boundary:

a. no new building, measured in a vertical section perpendicular to the boundary, from a point 1.6 m above ground level, subtends an angle of more than 43° to the horizontal.

b. or, if (a) is not satisfied, then all points 1.6 metres above the boundary line are within 4 m (measured along the boundary) of a point which has a VSC (looking towards the new building(s)) of 17% or more."

However, the guide is clear that there are exceptions to this guidance. A key exception occurs when the proposed new building is significantly larger than the likely future development. In this case, a better approach is to make a rough prediction of where the nearest window wall of the future development will be and then carry out the analysis as if the window were in a new building.

The second measure recommended by the guide in order to assess the daylight impact is the No-Sky Line test. This metric measures the daylight distribution in the rooms of surrounding buildings. The NSL divides the area of the working plane that has a direct view of the sky to that that does not. The working plane is defined as a plane parallel to the floor with a vertical offset

3.2 Sunlight Impact Analysis

3.2.1 Annual and Winter Probable Sunlight Hours (APSH and WPSH)

APSH and WPSH (Annual and Winter Probable Sunlight Hours) measure the percentage of sunlight hours a window is likely to receive for a year or for the winter months between 21st September and 21st March. The recommendation for a room to appear adequately sunlit is for it to receive 25% of annual probable sunlight hours, including at least 5% of winter probable sunlight hours. It is recommended that reduction in sunlight access below these levels be kept to a minimum; if the available sunlight hours are both less than the percentages stated above and less than 0.80 times their former value in either period, and the overall annual loss is greater than 4% of APSH, then the reduction in sunlight may be noticeable.

The guide suggests that the recommendation be applied to main living rooms of dwellings with a window facing within 90° of due south. Kitchens and bedrooms are considered less important and need not be analysed, although it is recommended not to block too much sun. In this study, room uses are mostly unknown, so all rooms tested for daylight and facing within 90° of due south have been analysed.

3.2.2 Sunlight to Surrounding Amenity Areas

It is recommended that at least half an amenity space should receive at least two hours of direct sunlight on March 21st, and any change to this area that may be caused by a new development not result in this area being less than 0.8 times its existing value.

BRE Impact Assessment Classification 3.3

In Appendix H, the BRE Guide states the following:

"The assessment of impact will depend on a combination of factors, and there is no simple rule of thumb that can be applied.

Where the loss of skylight or sunlight fully meets the guidelines in this document, the impact is assessed as [either] negligible or minor adverse. Where the loss of light is well within the guidelines, or only a small number of windows or a limited area of open space lose light (within the guidelines), a classification of negligible impact is more appropriate. Where the loss of light is only just within the guidelines, and a larger number of windows or open space area are affected, a minor adverse impact would be more appropriate, especially if there is a particularly strong requirements for daylight and sunlight in the affected building or open space.

Where the loss of skylight or sunlight does not meet the guidelines in this document, the impact is assessed as minor, moderate or major adverse. Factors tending towards a minor adverse impact include:

Only a small number of windows or limited area of open space are • affected.

- The loss of light is only marginally outside the guidelines.
- An affected room has other sources of skylight or sunlight.
- The affected building or open space only has a low-level requirement for skylight or sunlight.
- There are particular reasons why an alternative, less stringent guideline should be applied, for example an overhang above the window or a window standing unusually close to the boundary.

Factors tending towards a major adverse impact include:

- A large number of windows or large area of open space are affected.
- The loss of light is substantially outside the guidelines.
- All the windows in a particular property are affected.
- The affected indoor or outdoor spaces have a particularly strong requirement for skylight or sunlight, e.g. a living room in a dwelling or a children's playground."

Beneficial impacts from the development are classified as follows:

"Beneficial impacts occur when there is a significant increase in the amount of skylight and sunlight reaching an existing building where it is required, or in the amount of sunlight reaching an open space. Beneficial impacts should be worked out using the same principles as adverse impacts. Thus a tiny increase in light would be classified as a negligible impact, not a minor beneficial impact.

An adverse impact on one property cannot be balanced against negligible or beneficial impacts on other properties. In these situations it is more appropriate to quote a range of impacts.

The provision of new dwellings, or commercial or industrial buildings, or private gardens that meet the skylight or sunlight guidance in this document should not be classified as a beneficial daylight or sunlight impact on the local environment. However, the provision of community buildings or public open spaces with good skylight and/or sunlight could be classed as a beneficial impact."

FORDHAN

4.0 REFERENCED DOCUMENTS

The Sustainable Urban Housing: Design Standards for New Apartments – Guidelines for Planning Authorities (December 2020):

"Planning authorities should have regard to quantitative performance approaches to daylight provision outlined in guides like the BRE guide 'Site Layout Planning for Daylight and Sunlight' (2nd Edition) or BS 8206-2:2008 – 'Lighting for Buildings – Part 2: Code of Practice for Daylighting' when undertaken by development proposers which offer the capability to satisfy minimum standards of daylight provision."

"where an applicant cannot fully meet all of the requirements of the daylight provisions above, this must be clearly identified and a rationale for any alternative, compensatory design solutions must be set out, which planning authorities should apply their discretion in accepting taking account of its assessment of specific. This may arise due to a design constraint associated with the site or location and the balancing of that assessment against the desirability of achieving wider planning objectives.

Such objectives might include securing comprehensive urban regeneration and or an effective urban design and streetscape solution."

Glasgow City Council – Part 3: Development Policies and Design Guidance "In order to ensure that a proposal does not reduce daylighting excessively on an adjacent site, a daylighting assessment, where appropriate, will be carried out in accordance with the British Research Establishment publication – 'Site Layout Planning for Daylight and Sunlight, a guide to good practice' – P.J. Littlefair".

The Urban Development and Building Heights – Guidelines for Planning Authorities (March 2018)

"At the scale of the site/building:

• The form, massing and height of proposed developments should be carefully modulated so as to maximise access to natural daylight, ventilation and views and minimise overshadowing and loss of light.

• Appropriate and reasonable regard should be taken of quantitative performance approaches to daylight provision outlined in guides like the Building Research Establishment's 'Site Layout Planning for Daylight and Sunlight' (2nd edition) or BS 8206-2: 2008 – 'Lighting for Buildings – Part 2: Code of Practice for Daylighting'.

BR 209 (2022) – Site Layout Planning for Daylight and Sunlight, A Guide to Good Practice (Third Edition)

This document is widely used as a methodology for daylight and sunlight assessments, both for the impact of a new development on its surroundings and for assessment of natural light within proposed buildings. The third edition incorporates BS EN 17037.

BS EN 17037:2018 – Daylight in Buildings

A new, European-wide standard for daylight in buildings was introduced in 2018. The UK National Annex A of BS EN 17037 also gives minimum values for housing, in living rooms, kitchens, and bedrooms. These are minimum recommended values for locations where a predominantly daylit appearance is not achievable; *"for example in basement rooms or with significant external obstructions (perhaps in a dense urban area...)"*

The national annex contains minimum daylight targets for kitchens, living rooms and bedrooms.

Greater London Authority, representation hearing report D&P/3067/03 – Appendix 1, 18/11/2013.

Comments by Greater London Authority (GLA) in the context of a planning appeal have been used as guidance on urban sites in the UK:

"It should, nevertheless, be noted that the 27% VSC target value is derived from a low-density suburban housing model. The independent daylight and sunlight review states that in an inner-city urban environment, VSC values more than 20% should be considered as reasonably good and that VSC in the mid-teens should be acceptable. However, where the VSC value falls below 10% (to be in single figures), the availability of direct light from the sky will be poor."

4.1 Impact on Canal and Canal Boats

Although these are not in Scotland, they are evidence that this impact is something that will likely be raised in planning.

City of Westminster, Planning Applications Sub Committee Report 19/09638/FULL 12/05/2020

This document refers to the daylight and sunlight available to canal boats, taking them into consideration when making a judgement about the impact of the building.

5.0 MODELLING

5.1 Site and Surroundings Overview

As the site and its surroundings is open, with mostly low-rise developments, it is likely that the daylight impacts of the proposed buildings will be minor. This is because although the proposed buildings will block some of the sky and sunlight, there is likely to be enough of the sky dome still visible to ensure good access to light. The greatest impact is most likely to occur in areas close to the north of the proposed development. The tests carried out as part of this report ascertain the extent of the impact.

5.1.1 Amenity Space

Areas were identified that counted as amenity space, including those already existing and that proposed by P\P in drawings NRW-PPA-0-DR-A-100(1, 3, 7).

5.1.2 Canal

In line with planning decisions in London – see the referenced documents, daylight impact on the canal, moorings and any canal boats moored there was also considered. This is because these areas will have an expectation of both daylight and sunlight, both for natural reasons (effect on animal and plant populations) and human habitation.

5.2 Geometry

The geometry for the proposed development was derived from the Revit model of the project issued by Page and Park on 17/10/2023. The geometry for the surrounding area was taken from two sources: A VU.City model provided by Page and Park and outlines for further buildings from CadMapper. We simplified the surrounding geometry such that only key features were remaining. Trees and bushes were omitted as per the guidance given in BRE 209. In line with the guide, all surrounding buildings that sit within three times the height of the proposed development have been included in the assessment. We also extended the scope of the assessment slightly further away to test for any potential overshadowing during winter.

Reasonable approximations of neighbouring window locations and geometries have been used, derived from either the VU.City model or online data.

5.2.1 Speirs Wharf – Window Generation

For Speirs Wharf, where there were a large number of windows to analyse, an initial study was carried out. This was because there was a lack of information about window sizes and locations. A uniform grid of windows was created on the façade and results were determined for these windows. If there were any areas that were significantly impacted (failing or a marginal pass) then these would be analysed further.

5.2.2 Canal Boat Windows

As there are many potential mooring locations, window locations were generated that ran along the length of the mooring at 1 m above the height of the canal and 2m from the edge of the jetty. The windows were spaced at 1 m intervals. These window locations were tested as if they were windows in an existing building.

5.3 Procedure

To determine which windows needed to be included in the assessment, several aspects were considered. Firstly, focus was applied to all the windows in Speirs Wharf that faced the proposed development as these buildings are the closest residential buildings. The obstruction angle was then calculated for the walls of the surrounding buildings and areas where it was greater than 25° were identified. Windows incident on these walls were further analysed by applying the VSC and APSH tests where applicable. Buildings that were likely to be overshadowed due to their location were also included.

5.3.1 Software Used

To carry out the modelling, several pieces of software were used. Geometry was imported into, simplified, and created in Rhino. Grasshopper scripts using the Ladybug and Honeybee plugins were created for the analysis. In general, these plugins use Radiance as a backend to carry out the calculations. Radiance is a validated daylighting tool.

Images were either captured from Rhino or Google Maps where appropriate to visualise the site.

5.3.2 Model Parameters

The weather file used for this analysis was GBR_SCT_Glasgow.Wea.Center.031450_TMYx. As all the calculations done were direct point of view calculations no further radiance parameters needed to be established and were therefore left as default.

MAX FORDHAM

6.0 IMPACT ON **SURROUNDINGS - RESULTS**

Speirs Wharf 6.1

In the initial study, a total of 436 window locations at Speirs Wharf were tested. These corresponded to all the windows where the proposed development was in view of the window. Twenty-four of the windows had an obstruction angle greater than 25° All the windows locations comfortably passed both the VSC and APSH tests. No internal plans for dwellings in the affected buildings in Speirs Wharf (34 and 36 Speirs Wharf) were available on the Glasgow Council planning portal and therefore the no-sky line could not be calculated for the rooms served by the potentially obstructed windows. Although due to the high obstruction angle it was not necessary to carry out the VSC and APSH for all the dwellings, due to concerns raised by residents it was deemed a sensible precautionary measure.

Speirs Wharf – Obstruction Angle

The obstruction angle was calculated for the centre points of all the windows. Twenty-four of the windows had an obstruction angle greater than 25°. These windows are shown in the figure below (highlighted in red). They are located directly facing the north tower (the new development has been hidden for clarity). All the potentially affected windows are part of either 34 or 36 Speirs Wharf. It was unclear as to exactly which apartments these windows belonged to. For reassurance, all windows locations on Speirs Wharf were further analysed.

Speirs Wharf - VSC Results

All the window locations comfortably passed, with no windows dropping below the 27% threshold. A full list of the results and window identifiers can be found in appendix D. This means that the portion of the sky dome seen from each window is not overly obstructed, and hence the daylighting in the room is very unlikely to be significantly affected. We would classify this as a negligible impact.

Speirs Wharf - APSH and WPSH Results

All the window locations passed the test with a comfortable margin. This means that the number of hours of sunlight incident on the window is suitably high such that the sunlight access in the room will not be adversely affected. As before, a full list of the results can be found in appendix D. Again, we would classify this as a negligible impact.

6.2 Non-Residential Buildings

To assess which areas needed further analysis, the obstruction angle was assessed for the surrounding building facades. This analysis identified several buildings that needed further investigation. The figures below show these areas highlighted in red. Again, for clarity the new development has been hidden. A preliminary sunlight study was also carried out to ascertain areas where there may be potential impact from overshadowing. The preliminary study used slightly simplified geometry for speed of calculation. These are summarised in the following sections, which have been labelled to correspond to the figures.

6.2.1 A) Royal Conservatoire of Scotland – Wallace Studios

This building is a rehearsal, design, and storage space for the Royal Conservatoire of Scotland. As such it is likely that there will be an expectation of daylight and sunlight to some of the rooms. As can be seen in the figures below, there is an east facing wall which has an obstruction angle of greater than 25°. This is marked in red.

should be minor.

6.2.2 B) 230-260 Garscube Road (Matthew's Foods Glasgow)

There were two windows on this building that were on a window wall which had an obstruction angle of greater than 25°. These are shown in the figure below and are labelled windows 0 and 1. It is unknown as to what type(s) of room these windows serve. One likely option is that they are offices.

A total of nineteen windows were analysed. The VSC test was carried out on the windows on this wall. All windows passed this test - see appendix E for detailed results. The APSH test was also carried out - all windows also passed this test. This suggests that the impact to the daylighting and sunlight access

Window 0 passes both the VSC and APSH tests, but window 1 fails both. See appendix F for more details. Window 1 is a highly shaded window already (effectively equivalent to having a balcony) and hence it is expected that the daylighting and sunlight access will already be poor. We would class this as a minor to moderate impact, as even though half of the windows are affected the expectation for daylight to this window is likely to be low.

6.2.3 C) 12 Burns St (Harvest Foods)

There is one window directly facing the proposed development, which is shown in the figure below. As the building is a supermarket/storage facility with very few windows it is likely that the expectation for daylight and sunlight is low.

This window fails the VSC test. However, it passes the APSH test, although it is predicted that the expectation for sunlight to this window will be low. See appendix G for detailed results.

6.2.4 D) 22 Farnell St

There are five windows on the wall which has an obstruction angle greater than 25°.

All five windows passed both the VSC and APSH tests, see appendix H.

6.2.5 E) Civic House and neighbouring warehouse

There are no windows on the walls that faces the new development, and hence no further analysis was needed for this area.

Sunlight on Existing Amenity Space 6.3

The figure below shows a top view of the surroundings and the hours of sunlight received by each test point on the 21st of March in selected amenity areas.

All existing amenity areas tested had over 50% of the area receiving more than 2 hours of sunlight on 21st of March and hence passed the test. See Appendix B for a breakdown of the results.

Impact on the Canal and Moorings 6.4

6.4.1 Canal Boat Windows

Twenty-two of the tested window locations have an obstruction angle greater than 25°. However, all the tested canal boat window locations passed the VSC and APSH tests. This means that it is unlikely that the daylighting will be adversely impacted. See Appendix J for a breakdown of the results.

6.4.2 Sunlight on Canal

The number of sunlight hours that the canal itself would receive was also tested. 91% of the canal area tested still received over 2 hours of sunlight, with most of the canal receiving over 5 hours of sunlight on 21st of March. Therefore, the sunlight impact on the canal will be negligible. The figure below demonstrates the number of hours of sunlight received, see appendix C.

MAX FORDHAM

7.0 APPENDICES

In the tables of data for VSC, APSH and WPSH results, subscript "e" refers to the existing scenario, whereas the subscript "p" is with the proposed development in place. Subscript "rf" stands for reduction factor and "ar" stands for the absolute reduction (proposed minus existing).

7.1 Appendix A: New Amenity Space

Area Locations Green colour denotes a pass, red areas fail the test.

Table of AreaRef	f Results AvSunHours_p	%AreaOver2Hours_p	Pass/Fail
0	7.65	100.00	Pass
1	6.92	95.67	Pass
2	2.52	72.06	Pass
3	4.66	95.64	Pass
4	3.64	69.17	Pass
5	4.25	65.12	Pass
6	3.45	57.24	Pass
7	3.49	58.16	Pass
8	7.72	95.82	Pass
9	2.84	84.71	Pass
10	1.79	56.71	Pass
11	2.00	63.05	Pass
12	1.01	21.17	Fail
13	1.21	32.39	Fail
14	0.72	2.39	Fail
15	2.97	90.04	Pass
16	6.65	95.77	Pass
17	6.98	95.12	Pass
18	6.84	94.91	Pass
19	6.96	96.54	Pass
20	7.20	96.21	Pass
21	7.16	93.66	Pass
22	6.34	86.72	Pass
23	7.16	83.46	Pass
24	7.23	96.07	Pass
25	11.32	100.00	Pass
26	6.43	84.14	Pass

7.2 Appendix B: Existing Amenity Space

Area Locations

AreaRef	AvSunHours_e	%AreaOver2Hours_e	AvSunHours_p	%AreaOver2Hours_p	AreaRedFact	Pass/Fail
0	8.9	100.0	8.4	100.0	1.00	Pass
1	6.5	91.7	2.6	74.3	0.81	Pass
2	8.3	100.0	5.3	98.6	0.99	Pass
3	7.0	99.4	6.1	99.4	1.00	Pass
4	10.2	100.0	10.1	100.0	1.00	Pass
5	9.7	100.0	8.1	100.0	1.00	Pass
6	8.3	100.0	7.1	100.0	1.00	Pass
7	8.9	100.0	8.3	100.0	1.00	Pass

7.3

Area Location

MAX FORDHAM

Appendix C: Sunlight access to Canal

Scottish Opera New Rotterdam Wharf Daylight and Sunlight Report

7.4 Appendix D: Speirs Wharf Results

Speirs Wharf Window Location References Window Location References

Figure 2: 4-18 Speirs Wharf

Figure 3: 20-32 Speirs Wharf

Figure 4: 34-38 Speirs Wharf

Figure 5: 40-48 Speirs Wharf

VSC - Table of Results								
W_ref:	VSC_E:	VSC_P:	P/E:	Pass/Fail				
0	38.8	35.8	0.92	Pass				
1	38.4	35.2	0.92	Pass				
2	38.9	35.8	0.92	Pass				
3	38.6	35.3	0.92	Pass				
4	38.8	35.8	0.92	Pass				
5	36.8	33.6	0.91	Pass				
6	38.7	35.7	0.92	Pass				
7	38.7	35.7	0.92	Pass				
8	36.5	33.5	0.92	Pass				
9	37.9	35.3	0.93	Pass				
10	38.5	35.7	0.93	Pass				
11	38.5	35.6	0.93	Pass				
12	38.6	35.9	0.93	Pass				
13	38.4	35.4	0.92	Pass				
14	38.5	35.6	0.92	Pass				
15	38.6	35.7	0.93	Pass				

16	38.4	35.5	0.92	Pass	63	38.3	35.4	0.93	Pass	110	38.8	
17	38.2	35.4	0.92	Pass	64	38.4	35.5	0.93	Pass	111	38.7	
18	38.7	35.8	0.93	Pass	65	38.4	35.4	0.92	Pass	112	38.8	;
19	38.3	35.5	0.93	Pass	66	38.5	35.7	0.93	Pass	113	38.9)
20	38.2	34.9	0.91	Pass	67	38.4	36	0.94	Pass	114	39)
21	38.7	35.6	0.92	Pass	68	38.4	35.8	0.93	Pass	115	38.7	
22	38.5	35.4	0.92	Pass	69	38.3	36.1	0.94	Pass	116	38.8	;
23	38.6	35.5	0.92	Pass	70	38.4	36.1	0.94	Pass	117	39.1	
24	38.5	35.2	0.91	Pass	71	38.4	36.2	0.94	Pass	118	39)
25	38.2	34.8	0.91	Pass	72	38.5	36.1	0.94	Pass	119	38.6	,
26	38	34.4	0.91	Pass	73	38.5	36.5	0.95	Pass	120	38.5	,
27	38.4	35.2	0.91	Pass	74	38.4	36.5	0.95	Pass	121	39.1	
28	38.6	35.4	0.92	Pass	75	38.6	36.9	0.96	Pass	122	39)
29	38.6	35.2	0.91	Pass	76	38.7	36.9	0.95	Pass	123	38.5	
30	38.5	35.2	0.91	Pass	77	38.8	37.3	0.96	Pass	124	38.2	1
31	38.3	34.9	0.91	Pass	78	39	37.4	0.96	Pass	125	39	
32	38	34.6	0.91	Pass	79	38.9	37.7	0.97	Pass	120	38.9	
33	38.2	34.9	0.91	Pass	80	38.9	37.7	0.97	Pass	120	38.8	
34	37.2	34	0.91	Pass	81	39	38.1	0.98	Pass	128	38.7	
35	38.6	35.2	0.91	Pass	82	39	38	0.98	Pass	129	38.7	
36	38.6	35.2	0.91	Pass	83	38.9	37.7	0.97	Pass	1.30	38.7	
37	38.4	35	0.91	Pass	84	38.8	37.7	0.97	Pass	131	38.7	
38	38.2	35	0.92	Pass	85	38.8	37.5	0.97	Pass	132	38.8	
39	38.5	35.5	0.92	Pass	86	38.8	37	0.95	Pass	133	38.9	
40	38.7	35.4	0.91	Pass	87	38.7	36.8	0.95	Pass	1.34	38.8	
41	38.5	35.4	0.92	Pass	88	38.6	36.8	0.95	Pass	135	38.8	
42	38.5	35.5	0.92	Pass	89	38.8	36.9	0.95	Pass	136	38.9	1
43	38.6	35.5	0.92	Pass	90	38.6	36.5	0.94	Pass	137	38.8	
44	38.5	34.9	0.91	Pass	91	38.6	36.1	0.94	Pass	138	38.8	
45	38.5	35.1	0.91	Pass	92	38.6	35.7	0.92	Pass	139	38.6	
46	37.8	34	0.9	Pass	93	37.6	34.6	0.92	Pass	140	38.8	
47	38.5	34.6	0.9	Pass	94	37.6	35.3	0.94	Pass	141	38.9	
48	38.3	34.5	0.9	Pass	95	37.5	35.6	0.95	Pass	142	38.7	
49	38.4	35.3	0.92	Pass	96	37.9	36	0.95	Pass	14.3	38.7	
50	38.5	35.2	0.92	Pass	97	38.8	37	0.95	Pass	144	38.9	
51	38.5	34.9	0.91	Pass	98	38.8	36.5	0.94	Pass	145	38.7	
52	38.5	34.9	0.91	Pass	99	38.6	36.2	0.94	Pass	146	38.7	
53	38.5	34.6	0.9	Pass	100	38.4	35.8	0.93	Pass	147	38.5	
54	38.6	34.7	0.9	Pass	101	38.9	37.1	0.95	Pass	148	38.4	
55	38.5	34.5	0.89	Pass	102	38.9	36.9	0.95	Pass	149	38.3	
56	38.5	34.6	0.9	Pass	102	38 7	36.7	0.95	Pass	150	38.2	
57	38.3	34.8	0.91	Pass	103	38.6	36.2	0.94	Pass	151	38.1	
58	38.4	34.5	0.9	Pass	104	39	37	0.95	Pass	157	38.9	
59	38.5	34.6	0.9	Pass	105	38.9	36.9	0.95	Pass	152	38.9	
60	37.3	33.8	0.9	Pass	100	38.8	36.7	0.95	Pass	153	38.8	
61	38.5	34.9	0.91	Pass	107	38.7	36.3	0.94	Pass	154	38.8	
62	38.3	34.9	0.91	Pass	100	38.0	30.3	0.74	Pass	155	30.0	,
02	30.5	JT.7	0.71	1 435	109	50.7	51.2	0.75	1 433	150	30.0	2

0.95	Pass
0.95	Pass
0.93	Pass
0.96	Pass
0.95	Pass
0.95	Pass
0.93	Pass
0.95	Pass
0.95	Pass
0.94	Pass
0.93	Pass
0.94	Pass
0.95	Pass
0.94	Pass
0.93	Pass
0.92	Pass
0.93	Pass
0.95	Pass
0.95	Pass
0.94	Pass
0.95	Pass
0.95	Pass
0.94	Pass
0.93	Pass
0.95	Pass
0.95	Pass
0.94	Pass
0.93	Pass
0.95	Pass
0.95	Pass
0.94	Pass
0.93	Pass
0.96	Pass
0.95	Pass
0.94	Pass
0.93	Pass
0.96	Pass
0.95	Pass
0.94	Pass
0.94	Pass
0.93	Pass

MAX FORDHAM

157	38.9	37.3	0.96	Pass
158	38.9	36.9	0.95	Pass
159	38.8	36.6	0.94	Pass
160	38.6	36.4	0.94	Pass
161	38.7	35.8	0.93	Pass
162	38.9	37	0.95	Pass
163	38.4	36.7	0.96	Pass
164	38.4	36.5	0.95	Pass
165	38.4	36.3	0.95	Pass
166	38.5	35.4	0.92	Pass
167	38.5	36.9	0.96	Pass
168	38.1	36.5	0.96	Pass
169	38.2	36.2	0.95	Pass
170	38.1	36.2	0.95	Pass
171	38.2	35.3	0.93	Pass
172	38.9	37.5	0.96	Pass
173	38.8	37.2	0.96	Pass
174	38.8	36.6	0.94	Pass
175	38.5	36.3	0.94	Pass
176	38.4	35.8	0.93	Pass
177	39	37.5	0.96	Pass
178	38.9	37	0.95	Pass
179	38.7	36.7	0.95	Pass
180	38.6	36.3	0.94	Pass
181	38.6	35.8	0.93	Pass
182	38.6	37	0.96	Pass
183	38.6	36.8	0.95	Pass
184	38.3	36.4	0.95	Pass
185	38.4	35.7	0.93	Pass
186	39	37.2	0.95	Pass
10/ 100	38.8	30.7	0.95	Pass
100	38.8 20 E	30.4	0.94	Pass
109	38.3 20.0	30. I 27. 1	0.94	PdSS
190 101	30.0 20.0	26.0	0.90	PdSS Docc
191	20.9	26.7	0.95	F d S S
172	30.0	36.4	0.95	F doo
195 10Л	30.5	30.4	0.94	Pass
105	30.7	36.8	0.70	Pass
196	30.0	36.6	0.75	Pass
197	38.8	36.3	0.75	Pass
198	38.6	36.9	0.95	Pass
199	38.5	36.4	0.95	Pass
200	38.5	36.3	0.94	Pass
201	38.4	36.2	0.94	Pass
202	38.5	36.5	0.95	Pass
20.3	38.3	36.4	0.95	Pass
		•		

001	07.0	05.0	0.05	D	
204	37.9	35.9	0.95	Pass	251
205	38.7	37	0.96	Pass	252
206	38.8	36.6	0.94	Pass	253
207	38.4	36.4	0.95	Pass	254
208	38.4	36	0.94	Pass	255
209	38.9	36.7	0.94	Pass	256
210	38.3	36.4	0.95	Pass	257
211	38.2	36.2	0.95	Pass	258
212	38	35.7	0.94	Pass	259
213	38.9	37.6	0.97	Pass	260
214	38.7	37.6	0.97	Pass	261
215	38.7	37.1	0.96	Pass	262
216	38.7	37	0.96	Pass	263
217	38.5	36.8	0.96	Pass	264
218	38.4	36.3	0.95	Pass	265
219	39.1	37.8	0.97	Pass	266
220	38.9	37.6	0.97	Pass	267
221	38.7	37.3	0.96	Pass	268
222	38.9	37.2	0.96	Pass	269
223	38.8	36.8	0.95	Pass	270
224	38.5	36.6	0.95	Pass	271
225	39.1	37.7	0.96	Pass	272
226	38.9	37.5	0.96	Pass	273
227	38.9	37.5	0.96	Pass	274
228	38.8	37.2	0.96	Pass	275
229	38.8	36.8	0.95	Pass	276
230	38.6	36.5	0.95	Pass	277
231	39	37.7	0.97	Pass	278
232	38.9	37.4	0.96	Pass	279
233	38.9	37.3	0.96	Pass	280
234	38.8	37	0.95	Pass	281
235	38.8	36.8	0.95	Pass	282
236	38.7	36.6	0.95	Pass	283
237	38.9	37.4	0.96	Pass	284
238	39	37.1	0.95	Pass	285
239	38.8	36.9	0.95	Pass	286
240	38.8	36.7	0.95	Pass	287
241	38.6	36.4	0.94	Pass	288
242	38.6	35.9	0.93	Pass	289
243	39	37.3	0.96	Pass	290
244	38.9	37.1	0.95	Pass	291
245	38.8	36.8	0.95	Pass	292
246	38.7	36.4	0.94	Pass	293
247	38.7	36.1	0.93	Pass	294
248	38.5	36	0.93	Pass	295
249	39	37.3	0.96	Pass	296
250	38.9	37.1	0.95	Pass	297

36.8	0.95	Pass
36.5	0.94	Pass
36.1	0.93	Pass
35.8	0.93	Pass
37.1	0.95	Pass
36.8	0.95	Pass
36.6	0.94	Pass
36.3	0.94	Pass
36	0.93	Pass
35.7	0.93	Pass
37	0.95	Pass
36.7	0.94	Pass
36.5	0.94	Pass
36.2	0.94	Pass
35.7	0.92	Pass
35.2	0.92	Pass
36.4	0.95	Pass
35.9	0.95	Pass
35.7	0.94	Pass
35	0.93	Pass
34.7	0.92	Pass
34.4	0.92	Pass
36.6	0.94	Pass
36.2	0.93	Pass
36	0.93	Pass
35.7	0.92	Pass
35.5	0.92	Pass
37	0.95	Pass
36.6	0.94	Pass
36.4	0.94	Pass
35.9	0.93	Pass
35.7	0.92	Pass
30	0.93	Pass
30.3	0.94	Pass
30.0	0.95	Pass
30.9 27.2	0.95	Pass
31.Z	0.90	Pass
37.3 27.6	0.90	Pass
37.0 26 5	0.90	Pass
36.6	0.95	r ass Dass
36.8	0.95	Lass Dace
36.0	0.95	Pass
37.3	0.96	Pass
37.5	0.96	Pass
37.8	0.97	Pass
35.3	0.91	Pass
20.0	2.71	. 400

	38.7	35.4	0.91	Pass	345	39.1	37.9	0.97	Pass	3	392	392 38.8
	38.8	36.1	0.93	Pass	346	39.1	38	0.97	Pass	3	393	393 38.9
	38.9	36.2	0.93	Pass	347	36.1	35.4	0.98	Pass	3	394	394 38.9
	38.9	36.4	0.94	Pass	348	37.5	36.1	0.96	Pass	3	395	<i>39</i> 5 38.5
?	38.6	35.2	0.91	Pass	349	37.5	36.3	0.97	Pass	3	396	396 38.5
3	38.7	35.4	0.92	Pass	350	82.3	81.2	0.99	Pass	3	397	397 38.9
!	38.8	35.9	0.93	Pass	351	87.7	86.7	0.99	Pass	3	398	398 38.9
5	38.8	36.2	0.93	Pass	352	88.4	87.4	0.99	Pass	3	399	399 39
6	38.9	36.6	0.94	Pass	353	88.3	87.3	0.99	Pass	40	400	400 38.7
)7	38.7	35.1	0.91	Pass	354	89.5	88.4	0.99	Pass	40	401	401 38.9
8	38.7	35.4	0.91	Pass	355	85.1	84.2	0.99	Pass	4	402	402 39.1
9	38.9	35.9	0.92	Pass	356	89.5	88.3	0.99	Pass	40	403	403 39
0	39	36.2	0.93	Pass	357	86.1	85.1	0.99	Pass	40	404	404 39.1
1	38.9	36.6	0.94	Pass	358	88.8	87.7	0.99	Pass	40	405	405 38.7
2	38.7	35.1	0.91	Pass	359	88	86.8	0.99	Pass	4	406	406 38.8
3	38.7	35.5	0.92	Pass	360	90.9	90.1	0.99	Pass	4	407	407 38.9
14	38.9	36	0.92	Pass	361	92	91.4	0.99	Pass	4	408	408 39
15	39	36.3	0.93	Pass	362	90.7	89.8	0.99	Pass	4	409	409 39
10	39	36.6	0.94	Pass	363	91.8	90.4	0.99	Pass	4	410	410 38.6
1/	38.0	35. I 25. 4	0.91	Pass	304 24 E	89.5	88.0	0.99	Pass	4	411	411 38.8
10	38.8 20.0	30.4 25.0	0.91	Pass	303	09.3 01 5	00.4	0.99	PdSS	4	412	412 38.9
19 20	30.0 20.0	30.9	0.93	PdSS Dass	300	91.0	90.0 80.6	0.99	PdSS Dass	4	413	415 59
20	30.7	36.5	0.93	Pass	368	90.4	07.0	0.99	Pass	4 1	414	414 37 115 38 7
27	38.7	35.9	0.74	Pass	369	88.2	87.4	0.77	Pass	4 4	415	416 38.8
323	38.9	36.5	0.75	Pass	370	88	86.9	0.99	Pass	4	417	417 38.8
324	38.8	36.9	0.95	Pass	371	88.8	87.5	0.99	Pass	4	418	418 38.8
325	39	37.1	0.95	Pass	372	89.1	87.8	0.99	Pass	4	419	419 38.9
326	38.8	36.1	0.93	Pass	373	89	87.8	0.99	Pass	4.	420	420 38.8
327	38.9	36.7	0.95	Pass	374	92.5	91.3	0.99	Pass	4.	421	421 38.8
328	39	36.8	0.94	Pass	375	39	36.5	0.94	Pass	4.	422	422 38.9
329	38.9	37.2	0.96	Pass	376	38.9	36.1	0.93	Pass	4.	423	423 38.8
330	39.1	37.4	0.96	Pass	377	38.8	35.7	0.92	Pass	4.	424	424 38.8
331	38.7	36.2	0.93	Pass	378	38.8	35.2	0.91	Pass	4.	425	425 38.9
332	38.9	36.7	0.94	Pass	379	38.5	34.9	0.91	Pass	4.	426	426 38.8
333	39	37	0.95	Pass	380	38.8	36.6	0.94	Pass	4.	427	427 38.8
334	39.1	37.4	0.96	Pass	381	38.8	36.3	0.94	Pass	4.	428	428 38.9
335	38.7	36.4	0.94	Pass	382	38.8	36	0.93	Pass	4.	429	429 38.6
336	38.8	37	0.95	Pass	383	38.7	35.6	0.92	Pass	4.	430	430 38.7
337	39	36.9	0.95	Pass	384	38.7	34.9	0.9	Pass	4.	431	431 38.7
338	39	37.3	0.96	Pass	385	37.8	34.4	0.91	Pass	4.	432	432 38.8
339	38.8	36.3	0.94	Pass	386	38.7	34.5	0.89	Pass	4.	433	433 38.9
340	39	36.9	0.95	Pass	387	38	35	0.92	Pass	4.	434	434 39
341	39.1	36.9	0.95	Pass	388	38.1	35.6	0.93	Pass	4.	435	435 39
342	39	37.2	0.95	Pass	389	38.5	36.2	0.94	Pass			
343	39	38	0.97	Pass	390	38.7	35.4	0.92	Pass			
344	39.1	38	0.97	Pass	391	38.6	35.7	0.92	Pass			

0.93	Pass
0.94	Pass
0.94	Pass
0.91	Pass
0.92	Pass
0.92	Pass
0.93	Pass
0.94	Pass
0.92	Pass
0.93	Pass
0.93	Pass
0.95	Pass
0.95	Pass
0.92	Pass
0.93	Pass
0.94	Pass
0.94	Pass
0.95	Pass
0.92	Pass
0.93	Pass
0.94	Pass
0.94	Pass
0.95	Pass
0.92	Pass
0.93	Pass
0.93	Pass
0.94	Pass
0.95	Pass
0.94	Pass
0.94	Pass
0.95	Pass
0.93	Pass
0.95	Pass
0.95	Pass
0.94	Pass
0.94	Pass
0.95	Pass
0.94	Pass
0.94	Pass
0.95	Pass
0.95	Pass
0.96	Pass
0.96	Pass
0.97	Pass

MAX FORDHAM

APSH – Table of Results

In the table, subscript "e" refers to the existing scenario, whereas the subscript "p" is with the proposed development in place. Subscript "rf" stands for reduction factor and "ar" stands for the absolute reduction (proposed minus existing).

Nin_ref	APSH_e	APSH_p	APSH_rf	APSH_ar	NPSH_e	NPSH_p	NPSH_rf	^D ass/Fail
0	49.44	43.90	0.89	-5.54	16.79	16.79	1.00	Pass
1	47.15	39.17	0.83	-7.98	16.54	16.54	1.00	Pass
2	52.49	44.43	0.85	-8.06	17.98	17.98	1.00	Pass
3	52.00	43.19	0.83	-8.82	17.81	17.81	1.00	Pass
4	52.57	47.10	0.90	-5.47	18.05	18.05	1.00	Pass
5	40.67	32.63	0.80	-8.04	10.34	10.34	1.00	Pass
6	52.57	45.64	0.87	-6.92	18.05	18.05	1.00	Pass
7	52.56	45.61	0.87	-6.95	18.05	18.05	1.00	Pass
8	52.07	43.66	0.84	-8.41	17.87	17.87	1.00	Pass
9	52.38	47.63	0.91	-4.74	19.55	17.99	0.92	Pass
10	52.53	48.05	0.91	-4.48	19.55	18.28	0.94	Pass
11	52.58	48.22	0.92	-4.36	19.55	18.28	0.94	Pass
12	52.26	47.72	0.91	-4.54	19.55	17.44	0.89	Pass
13	51.76	48.51	0.94	-3.25	19.55	17.55	0.90	Pass
14	51.87	48.08	0.93	-3.79	19.46	17.34	0.89	Pass
15	51.14	47.48	0.93	-3.66	18.60	16.43	0.88	Pass
16	49.97	46.50	0.93	-3.46	18.12	16.17	0.89	Pass
17	44.49	40.83	0.92	-3.65	15.97	14.00	0.88	Pass
18	51.96	47.97	0.92	-3.99	19.55	16.79	0.86	Pass
19	49.64	45.04	0.91	-4.60	17.93	15.06	0.84	Pass
20	44.81	40.11	0.90	-4.70	15.97	13.02	0.82	Pass
21	52.54	46.33	0.88	-6.21	19.55	15.16	0.78	Pass
22	52.07	44.17	0.85	-7.90	18.78	13.48	0.72	Pass
23	51.55	43.65	0.85	-7.90	18.27	13.09	0.72	Pass
24	49.50	41.43	0.84	-8.07	17.85	12.22	0.68	Pass
25	44.94	36.99	0.82	-7.95	15.97	10.10	0.63	Pass
26	53.32	45.25	0.85	-8.07	19.55	14.01	0.72	Pass
27	53.27	45.59	0.86	-7.68	19.55	14.40	0.74	Pass
28	53.11	45.46	0.86	-7.65	19.55	14.35	0.73	Pass
29	53.45	45.04	0.84	-8.41	19.55	13.72	0.70	Pass
30	52.39	41.25	0.79	-11.13	18.57	12.32	0.66	Pass
31	50.85	40.03	0.79	-10.82	18.09	11.83	0.65	Pass
32	45.51	35.21	0.77	-10.30	15.97	9.93	0.62	Pass
33	53.41	42.15	0.79	-11.26	19.55	13.39	0.68	Pass
34	53.46	43.20	0.81	-10.26	19.55	13.47	0.69	Pass
35	53.25	43.73	0.82	-9.52	19.55	13.77	0.70	Pass
36	52.02	42.12	0.81	-9.90	18.26	12.52	0.69	Pass
37	49.84	41.52	0.83	-8.32	17.83	12.69	0.71	Pass

38	45.61	36.84	0.81	-8.77	15.97	10.52	0.66	Pass	85	52.85	47.16	0.89	-5.70	18.56	12.86	0.69	Pass
39	53.20	43.35	0.81	-9.85	19.55	14.07	0.72	Pass	86	52.84	46.87	0.89	-5.97	18.56	12.59	0.68	Pass
40	53.19	44.05	0.83	-9.14	19.55	14.75	0.75	Pass	87	52.75	46.51	0.88	-6.24	18.52	12.29	0.66	Pass
41	53.13	44.07	0.83	-9.07	19.55	14.54	0.74	Pass	88	52.62	46.12	0.88	-6.49	18.48	11.98	0.65	Pass
42	53.15	44.09	0.83	-9.07	19.55	14.44	0.74	Pass	89	53.86	46.70	0.87	-7.16	19.55	17.09	0.87	Pass
43	53.17	43.89	0.83	-9.28	19.55	14.37	0.74	Pass	90	53.86	45.78	0.85	-8.08	19.55	16.17	0.83	Pass
44	52.51	44.82	0.85	-7.69	19.55	15.67	0.80	Pass	91	53.85	44.94	0.83	-8.91	19.55	15.76	0.81	Pass
45	52.82	44.22	0.84	-8.60	19.55	15.88	0.81	Pass	92	53.77	43.95	0.82	-9.82	19.55	15.02	0.77	Pass
46	52.59	43.87	0.83	-8.72	19.55	14.92	0.76	Pass	93	53.82	45.13	0.84	-8.69	19.55	14.95	0.76	Pass
47	52.47	43.55	0.83	-8.92	19.55	14.66	0.75	Pass	94	53.90	46.84	0.87	-7.06	19.55	16.13	0.83	Pass
48	52.62	43.83	0.83	-8.79	19.55	14.77	0.76	Pass	95	53.91	47.43	0.88	-6.47	19.55	16.52	0.85	Pass
49	53.11	44.41	0.84	-8.70	19.55	15.58	0.80	Pass	96	53.91	47.98	0.89	-5.93	19.55	17.07	0.87	Pass
50	52.96	43.89	0.83	-9.07	19.55	15.72	0.80	Pass	97	52.83	50.58	0.96	-2.25	19.55	17.99	0.92	Pass
51	52.68	44.06	0.84	-8.63	19.55	15.97	0.82	Pass	98	52.83	49.93	0.95	-2.90	19.55	17.99	0.92	Pass
52	52.67	44.14	0.84	-8.53	19.55	15.77	0.81	Pass	99	52.76	49.59	0.94	-3.17	19.55	17.99	0.92	Pass
53	52.69	44.14	0.84	-8.55	19.55	14.18	0.73	Pass	100	52.61	48.85	0.93	-3.76	19.55	17.99	0.92	Pass
54	52.67	43.76	0.83	-8.91	19.55	14.52	0.74	Pass	101	52.98	50.81	0.96	-2.17	19.55	18.28	0.94	Pass
55	53.09	44.86	0.84	-8.23	19.55	13.43	0.69	Pass	102	52.98	50.44	0.95	-2.54	19.55	18.28	0.94	Pass
56	53.10	45.19	0.85	-7.92	19.55	13.31	0.68	Pass	103	52.91	50.02	0.95	-2.89	19.55	18.28	0.94	Pass
57	53.12	45.43	0.86	-7.69	19.55	13.34	0.68	Pass	104	52.76	49.42	0.94	-3.34	19.55	18.28	0.94	Pass
58	51.82	43.96	0.85	-7.86	18.56	13.46	0.73	Pass	105	53.03	50.99	0.96	-2.04	19.55	18.28	0.94	Pass
59	52.87	44.61	0.84	-8.26	19.55	13.74	0.70	Pass	106	53.03	50.82	0.96	-2.21	19.55	18.28	0.94	Pass
60	53.07	46.31	0.87	-6.76	19.55	13.74	0.70	Pass	107	52.96	50.29	0.95	-2.67	19.55	18.28	0.94	Pass
61	53.19	45.10	0.85	-8.09	19.55	12.45	0.64	Pass	108	52.81	49.60	0.94	-3.20	19.55	18.28	0.94	Pass
62	49.24	41.17	0.84	-8.07	17.69	10.61	0.60	Pass	109	53.11	48.41	0.91	-4.70	19.55	16.35	0.84	Pass
63	53.05	45.32	0.85	-7.73	19.55	12.63	0.65	Pass	110	53.09	47.91	0.90	-5.18	19.55	15.99	0.82	Pass
64	53.11	45.13	0.85	-7.99	19.55	12.39	0.63	Pass	111	52.50	47.10	0.90	-5.40	19.02	15.24	0.80	Pass
65	53.17	45.19	0.85	-7.98	19.55	12.44	0.64	Pass	112	52.19	46.26	0.89	-5.93	18.78	14.44	0.77	Pass
66	53.28	45.63	0.86	-7.65	19.55	12.59	0.64	Pass	113	53.10	48.11	0.91	-4.99	19.55	16.05	0.82	Pass
67	53.45	46.44	0.87	-7.01	19.55	12.73	0.65	Pass	114	52.49	46.99	0.90	-5.50	18.95	15.08	0.80	Pass
68	53.35	45.90	0.86	-7.45	19.55	12.60	0.64	Pass	115	51.82	46.06	0.89	-5.77	18.35	14.21	0.77	Pass
69	53.42	46.37	0.87	-7.05	19.47	12.42	0.64	Pass	116	51.67	45.29	0.88	-6.38	18.27	13.56	0.74	Pass
70	53.43	46.15	0.86	-7.28	19.55	12.27	0.63	Pass	117	52.05	47.23	0.91	-4.82	18.52	15.12	0.82	Pass
71	53.41	45.69	0.86	-7.72	19.55	11.88	0.61	Pass	118	51.36	45.84	0.89	-5.52	17.85	13.89	0.78	Pass
72	53.50	46.16	0.86	-7.33	19.55	12.33	0.63	Pass	119	51.04	44.97	0.88	-6.06	17.85	13.34	0.75	Pass
73	52.39	45.44	0.87	-6.94	18.38	11.44	0.62	Pass	120	50.44	43.95	0.87	-6.49	17.85	12.86	0.72	Pass
74	53.37	46.46	0.87	-6.91	19.43	12.52	0.64	Pass	121	49.11	44.22	0.90	-4.89	16.64	13.14	0.79	Pass
75	53.53	46.99	0.88	-6.54	19.46	12.92	0.66	Pass	122	45.38	39.93	0.88	-5.45	15.97	11.91	0.75	Pass
76	53.72	47.48	0.88	-6.24	19.51	13.26	0.68	Pass	123	45.16	39.31	0.87	-5.84	15.97	11.55	0.72	Pass
77	53.82	47.81	0.89	-6.02	19.55	13.53	0.69	Pass	124	45.04	38.54	0.86	-6.50	15.97	10.93	0.68	Pass
78	53.84	48.14	0.89	-5.70	19.55	13.85	0.71	Pass	125	53.87	47.71	0.89	-6.16	19.55	17.83	0.91	Pass
79	53.84	48.61	0.90	-5.23	19.55	14.32	0.73	Pass	126	53.83	47.33	0.88	-6.50	19.55	17.49	0.89	Pass
80	53.85	49.16	0.91	-4.69	19.55	14.86	0.76	Pass	127	53.72	47.00	0.87	-6.72	19.55	17.18	0.88	Pass
81	53.85	50.07	0.93	-3.78	19.55	15.77	0.81	Pass	128	53.49	46.13	0.86	-7.35	19.55	16.54	0.85	Pass
82	52.85	48.91	0.93	-3.94	18.56	14.62	0.79	Pass	129	53.44	46.00	0.86	-7.44	19.55	16.17	0.83	Pass
83	52.85	48.16	0.91	-4.70	18.56	13.87	0.75	Pass	130	53.53	45.89	0.86	-7.64	19.55	15.93	0.82	Pass
84	52.85	47.59	0.90	-5.27	18.56	13.29	0.72	Pass	131	53.62	45.83	0.85	-7.79	19.55	15.88	0.81	Pass

132	53.68	45.74	0.85	-7.94	19.55	15.68	0.80	Pass	179	53.26	48.03	0.90	-5.22	19.55	16.04	0.82	Pass	226	53.56	47.88	0.89
133	54.18	48.41	0.89	-5.78	19.55	17.73	0.91	Pass	180	53.19	47.60	0.90	-5.58	19.55	15.67	0.80	Pass	227	53.56	47.33	0.88
134	54.18	47.83	0.88	-6.35	19.55	17.39	0.89	Pass	181	53.18	46.85	0.88	-6.33	19.55	14.99	0.77	Pass	228	53.56	46.96	0.88
135	54.08	47.01	0.87	-7.07	19.55	16.91	0.86	Pass	182	52.21	50.23	0.96	-1.98	19.55	17.61	0.90	Pass	229	53.56	46.61	0.87
136	54.18	47.95	0.88	-6.24	19.55	17.73	0.91	Pass	183	52.13	50.08	0.96	-2.05	19.55	17.56	0.90	Pass	230	53.56	46.26	0.86
137	54.18	47.40	0.87	-6.78	19.55	17.20	0.88	Pass	184	52.00	49.87	0.96	-2.13	19.55	17.56	0.90	Pass	231	53.50	48.42	0.91
138	54.17	47.14	0.87	-7.04	19.55	16.95	0.87	Pass	185	51.83	49.48	0.95	-2.35	19.55	17.56	0.90	Pass	232	53.50	47.70	0.89
139	53.86	45.08	0.84	-8.78	19.55	15.54	0.80	Pass	186	52.41	50.22	0.96	-2.18	19.55	17.42	0.89	Pass	233	53.50	47.44	0.89
140	54.18	48.39	0.89	-5.80	19.55	17.69	0.91	Pass	187	52.32	49.76	0.95	-2.56	19.55	17.42	0.89	Pass	234	53.50	47.27	0.88
141	53.32	47.29	0.89	-6.03	18.69	16.59	0.89	Pass	188	52.11	49.27	0.95	-2.84	19.46	17.34	0.89	Pass	235	53.50	46.97	0.88
142	52.88	46.64	0.88	-6.24	18.26	15.95	0.87	Pass	189	51.94	48.88	0.94	-3.06	19.46	17.34	0.89	Pass	236	53.50	46.55	0.87
143	52.57	44.49	0.85	-8.08	18.26	14.42	0.79	Pass	190	52.30	49.76	0.95	-2.54	19.31	17.14	0.89	Pass	237	53.47	49.07	0.92
144	52.89	48.34	0.91	-4.55	18.32	16.96	0.93	Pass	191	51.79	48.80	0.94	-2.99	18.89	16.72	0.89	Pass	238	53.45	48.59	0.91
145	52.40	47.59	0.91	-4.81	17.83	16.21	0.91	Pass	192	51.38	48.34	0.94	-3.04	18.60	16.43	0.88	Pass	239	53.45	48.41	0.91
146	51.91	46.94	0.90	-4.97	17.83	16.05	0.90	Pass	193	51.21	47.98	0.94	-3.23	18.60	16.43	0.88	Pass	240	53.44	47.92	0.90
147	50.99	44.51	0.87	-6.48	17.83	14.54	0.82	Pass	194	51.37	48.88	0.95	-2.50	18.27	16.31	0.89	Pass	241	53.30	47.46	0.89
148	48.63	43.44	0.89	-5.19	15.97	13.89	0.87	Pass	195	51.18	48.23	0.94	-2.95	18.12	16.17	0.89	Pass	242	53.28	46.72	0.88
149	46.32	40.98	0.88	-5.35	15.97	13.74	0.86	Pass	196	50.82	47.72	0.94	-3.10	18.12	16.17	0.89	Pass	243	53.55	48.71	0.91
150	46.16	40.37	0.87	-5.80	15.97	13.29	0.83	Pass	197	50.56	47.30	0.94	-3.26	18.12	16.17	0.89	Pass	244	53.53	48.42	0.90
151	46.06	38.70	0.84	-7.36	15.97	11.92	0.75	Pass	198	47.68	45.24	0.95	-2.44	15.97	14.09	0.88	Pass	245	53.53	48.28	0.90
152	53.70	47.16	0.88	-6.54	19.55	17.08	0.87	Pass	199	44.94	42.07	0.94	-2.87	15.97	14.00	0.88	Pass	246	53.52	47.87	0.89
153	53.07	45.84	0.86	-7.24	18.93	15.76	0.83	Pass	200	44.73	41.67	0.93	-3.06	15.97	14.00	0.88	Pass	247	53.39	47.18	0.88
154	52.72	44.69	0.85	-8.03	18.57	14.91	0.80	Pass	201	44.62	41.29	0.93	-3.33	15.97	14.00	0.88	Pass	248	53.30	46.38	0.87
155	52.71	43.98	0.83	-8.73	18.57	14.49	0.78	Pass	202	52.99	49.40	0.93	-3.59	19.37	16.95	0.87	Pass	249	53.66	48.77	0.91
156	52.64	43.26	0.82	-9.38	18.57	13.92	0.75	Pass	203	52.38	48.66	0.93	-3.72	18.80	16.24	0.86	Pass	250	53.64	48.25	0.90
157	52.70	46.64	0.88	-6.06	18.60	10.17	0.87	Pass	204	51.//	47.93	0.93	-3.84	18.42	15.73	0.85	Pass	251	53.64	48.06	0.90
158	52.25	45.37	0.87	-0.89 כב ב	18.15	14.90	0.82	Pass	205	51.91	48.40	0.93	-3.51	18.33	15.93	0.87	Pass	252	53.03	47.77	0.89
109	51.92	44.19	0.00	-7.73	10.09	14.20	0.79	Pass	200	51.50	47.74	0.93	-3.70	17.93	15.20	0.00	Pass	200	53.50	47.10	0.00
161	51.71	43.12	0.03	-0.09	10.09	13.02	0.70	Pass	207	50.90	47.10	0.92	-3.00	17.93	15.10	0.05	Pass	204	53.41	40.45	0.07
167	10 81	41.05	0.02	- 5.67	16.07	11.20	0.75	Pass	200	17.96	40.47	0.72	-4.01	17.75	13.12	0.04	Pass	255	53.60	40.74	0.71
163	46 56	40.08	0.86	-6.48	15.01	12 79	0.00	Pass	207	45.33	41.74	0.75	-3 59	15.77	13.70	0.84	Pass	250	53.64	47.99	0.70
164	46.06	38.84	0.84	-7.23	15.97	12.77	0.00	Pass	210	45 12	41.26	0.72	-3.85	15.77	13.12	0.83	Pass	258	53.63	47.45	0.88
165	45.82	37.94	0.83	-7.88	15.97	11.70	0.73	Pass	212	44.95	40.62	0.90	-4.32	15.97	13.12	0.82	Pass	259	53.50	46.85	0.88
166	45.69	37.12	0.81	-8.57	15.97	11.12	0.70	Pass	213	53.71	49.35	0.92	-4.35	19.55	15.20	0.78	Pass	260	53.43	46.16	0.86
167	53.50	48.98	0.92	-4.52	19.55	16.80	0.86	Pass	214	53.71	48.60	0.90	-5.11	19.55	14.44	0.74	Pass	261	51.19	46.36	0.91
168	53.49	48.68	0.91	-4.81	19.55	16.52	0.84	Pass	215	53.71	48.00	0.89	-5.71	19.55	13.84	0.71	Pass	262	49.68	44.21	0.89
169	53.47	48.44	0.91	-5.03	19.55	16.30	0.83	Pass	216	53.71	47.69	0.89	-6.02	19.55	13.53	0.69	Pass	263	49.68	43.78	0.88
170	53.40	47.99	0.90	-5.41	19.55	15.91	0.81	Pass	217	53.70	47.39	0.88	-6.30	19.55	13.24	0.68	Pass	264	49.67	43.45	0.87
171	53.39	47.57	0.89	-5.82	19.55	15.56	0.80	Pass	218	53.60	46.89	0.87	-6.71	19.50	12.79	0.66	Pass	265	49.54	42.73	0.86
172	53.45	48.69	0.91	-4.75	19.55	16.57	0.85	Pass	219	53.63	49.08	0.92	-4.55	19.55	14.99	0.77	Pass	266	49.46	42.09	0.85
173	53.43	48.55	0.91	-4.88	19.55	16.45	0.84	Pass	220	53.63	48.30	0.90	-5.33	19.55	14.22	0.73	Pass	267	53.60	49.42	0.92
174	53.41	48.24	0.90	-5.17	19.55	16.15	0.83	Pass	221	53.63	47.72	0.89	-5.91	19.55	13.64	0.70	Pass	268	53.60	49.00	0.91
175	53.34	47.88	0.90	-5.46	19.55	15.86	0.81	Pass	222	53.63	47.44	0.88	-6.19	19.55	13.36	0.68	Pass	269	53.59	48.78	0.91
176	53.33	47.37	0.89	-5.96	19.55	15.41	0.79	Pass	223	53.63	47.13	0.88	-6.50	19.55	13.04	0.67	Pass	270	53.50	48.30	0.90
177	53.29	48.58	0.91	-4.71	19.55	16.54	0.85	Pass	224	53.58	46.62	0.87	-6.96	19.55	12.58	0.64	Pass	271	53.45	47.71	0.89
178	53.28	48.43	0.91	-4.85	19.55	16.41	0.84	Pass	225	53.56	48.58	0.91	-4.98	19.55	14.56	0.75	Pass	272	53.29	46.89	0.88

-5.68	19.55	13.87	0.71	Pass
-6.24	19.55	13.31	0.68	Pass
-6.60	19.55	12.95	0.66	Pass
-6.95	19.55	12.59	0.64	Pass
-7.31	19.55	12.24	0.63	Pass
-5.08	19.55	14.47	0.74	Pass
-5.80	19.55	13.75	0.70	Pass
-6.05	19.55	13.49	0.69	Pass
-6.23	19.55	13.32	0.68	Pass
-6.52	19.55	13.02	0.67	Pass
-6.94	19.55	12.60	0.64	Pass
-4.40	19.55	15.15	0.77	Pass
-4.86	19.55	14.69	0.75	Pass
-5.04	19.55	14.52	0.74	Pass
-5.52	19.55	14.22	0.73	Pass
-5.84	19.55	14.01	0.72	Pass
-6.57	19.55	13.59	0.70	Pass
-4.84	19.55	14.71	0.75	Pass
-5.12	19.55	14.43	0.74	Pass
-5.25	19.55	14.37	0.74	Pass
-5.65	19.55	14.09	0.72	Pass
-6.21	19.55	13.77	0.70	Pass
-6.92	19.55	13.35	0.68	Pass
-4.89	19.55	14.66	0.75	Pass
-5.39	19.55	14.18	0.73	Pass
-5.58	19.55	14.09	0.72	Pass
-5.86	19.55	14.01	0.72	Pass
-6.31	19.55	13.76	0.70	Pass
-6.96	19.55	13.36	0.68	Pass
-4.71	19.55	14.88	0.76	Pass
-5.23	19.55	14.36	0.73	Pass
-5.65	19.55	14.17	0.73	Pass
-6.18	19.55	13.95	0.71	Pass
-6.65	19.55	13.58	0.69	Pass
-7.27	19.55	13.14	0.67	Pass
-4.83	17.69	13.01	0.74	Pass
-5.47	17.69	12.59	0.71	Pass
-5.90	17.69	12.36	0.70	Pass
-6.22	17.69	12.17	0.69	Pass
-6.81	17.69	11.69	0.66	Pass
-7.37	17.69	11.18	0.63	Pass
-4.18	19.55	15.90	0.81	Pass
-4.60	19.55	15.70	0.80	Pass
-4.81	19.55	15.52	0.79	Pass
-5.20	19.55	15.18	0.78	Pass
-5.74	19.55	14.74	0.75	Pass
-6.41	19.55	14.10	0.72	Pass

MAX FORDHAM

273	53.16	48.34	0.91	-4.82	19.55	17.91	0.92	Pass	320	53.05	48.44	0.91	-4.61	19.55	16.52	0.84	Pass	367	74.04	71.99	0.97	-2.05	25.94	24.21	0.93	Pass
274	53.01	47.96	0.90	-5.05	19.55	17.77	0.91	Pass	321	53.10	48.85	0.92	-4.26	19.55	16.57	0.85	Pass	368	76.87	75.26	0.98	-1.61	26.67	25.14	0.94	Pass
275	52.90	46.82	0.89	-6.08	19.55	16.90	0.86	Pass	322	53.91	45.59	0.85	-8.32	19.55	15.12	0.77	Pass	369	72.21	70.64	0.98	-1.57	25.31	23.74	0.94	Pass
276	52.77	46.23	0.88	-6.54	19.55	16.44	0.84	Pass	323	53.98	47.56	0.88	-6.43	19.55	16.52	0.85	Pass	370	72.49	68.53	0.95	-3.96	25.16	23.90	0.95	Pass
277	52.64	45.78	0.87	-6.87	19.55	16.11	0.82	Pass	324	53.98	48.04	0.89	-5.94	19.55	16.93	0.87	Pass	371	73.04	68.91	0.94	-4.13	25.33	24.20	0.96	Pass
278	53.57	49.09	0.92	-4.49	19.55	18.23	0.93	Pass	325	53.98	48.29	0.89	-5.69	19.55	17.18	0.88	Pass	372	73.44	69.87	0.95	-3.58	25.39	24.62	0.97	Pass
279	53.45	47.26	0.88	-6.19	19.55	17.91	0.92	Pass	326	53.45	47.24	0.88	-6.21	19.55	15.17	0.78	Pass	373	73.54	69.51	0.95	-4.03	25.27	24.14	0.95	Pass
280	53.30	46.81	0.88	-6.49	19.55	17.80	0.91	Pass	327	53.46	47.74	0.89	-5.72	19.55	15.61	0.80	Pass	374	76.64	73.74	0.96	-2.90	26.30	25.49	0.97	Pass
281	53.15	46.05	0.87	-7.11	19.55	17.40	0.89	Pass	328	53.52	48.13	0.90	-5.39	19.55	15.93	0.82	Pass	375	53.23	48.89	0.92	-4.34	19.55	16.51	0.84	Pass
282	52.97	45.62	0.86	-7.34	19.55	17.15	0.88	Pass	329	53.54	48.42	0.90	-5.13	19.55	16.20	0.83	Pass	376	52.56	47.82	0.91	-4.73	18.93	15.78	0.83	Pass
283	53.2 9	46.63	0.87	-6.67	19.55	13.29	0.68	Pass	330	53.56	49.35	0.92	-4.21	19.55	17.12	0.88	Pass	377	52.14	46.76	0.90	-5.37	18.56	15.12	0.81	Pass
284	53.30	47.10	0.88	-6.21	19.55	13.53	0.69	Pass	331	52.74	47.58	0.90	-5.16	19.55	15.60	0.80	Pass	378	52.11	45.98	0.88	-6.13	18.56	14.57	0.79	Pass
285	53.35	47.38	0.89	-5.97	19.55	13.70	0.70	Pass	332	52.94	48.22	0.91	-4.72	19.55	16.04	0.82	Pass	379	51.96	45.09	0.87	-6.87	18.56	14.06	0.76	Pass
286	53.44	47.84	0.90	-5.59	19.55	13.95	0.71	Pass	333	53.09	48.72	0.92	-4.37	19.55	16.39	0.84	Pass	380	53.33	48.99	0.92	-4.34	19.55	16.60	0.85	Pass
287	53.45	48.03	0.90	-5.42	19.55	14.12	0.72	Pass	334	53.11	48.99	0.92	-4.12	19.55	16.64	0.85	Pass	381	53.30	48.41	0.91	-4.90	19.55	16.34	0.84	Pass
288	53.45	48.42	0.91	-5.03	19.55	14.52	0.74	Pass	335	52.09	48.75	0.94	-3.34	19.55	16.94	0.87	Pass	382	53.13	47.80	0.90	-5.34	19.55	16.07	0.82	Pass
289	53.47	48.90	0.91	-4.57	19.55	14.98	0.77	Pass	336	52.26	49.64	0.95	-2.62	19.55	17.20	0.88	Pass	383	53.11	46.98	0.88	-6.13	19.55	15.39	0.79	Pass
290	53.45	46.83	0.88	-6.62	19.55	13.11	0.67	Pass	337	52.41	50.40	0.96	-2.01	19.55	17.54	0.90	Pass	384	53.01	45.86	0.87	-7.14	19.55	14.57	0.75	Pass
291	53.45	47.11	0.88	-6.34	19.55	13.25	0.68	Pass	338	52.41	50.61	0.97	-1.80	19.55	17.75	0.91	Pass	385	52.63	45.06	0.86	-7.57	19.55	15.27	0.78	Pass
292	53.45	47.33	0.89	-6.12	19.55	13.43	0.69	Pass	339	52.50	48.73	0.93	-3.77	19.55	17.44	0.89	Pass	386	52.73	46.36	0.88	-6.37	19.55	15.87	0.81	Pass
293	53.45	47.53	0.89	-5.92	19.55	13.63	0.70	Pass	340	52.80	49.55	0.94	-3.25	19.55	17.44	0.89	Pass	387	52.87	47.36	0.90	-5.52	19.55	16.50	0.84	Pass
294	53.45	47.76	0.89	-5.69	19.55	13.86	0.71	Pass	341	52.80	49.92	0.95	-2.88	19.55	17.44	0.89	Pass	388	52.93	48.82	0.92	-4.11	19.55	17.31	0.89	Pass
295	53.45	48.18	0.90	-5.27	19.55	14.28	0.73	Pass	342	52.80	50.26	0.95	-2.53	19.55	17.44	0.89	Pass	389	52.97	49.51	0.93	-3.46	19.55	17.57	0.90	Pass
296	53.47	48.64	0.91	-4.83	19.55	14.72	0.75	Pass	343	53.50	50.03	0.94	-3.46	19.55	16.08	0.82	Pass	390	52.53	44.98	0.86	-7.55	19.55	15.25	0.78	Pass
297	53.23	46.36	0.87	-6.87	19.55	14.33	0.73	Pass	344	53.50	50.05	0.94	-3.44	19.55	16.10	0.82	Pass	391	52.63	46.31	0.88	-6.32	19.55	16.08	0.82	Pass
298	53.33	47.74	0.90	-5.59	19.55	15.55	0.80	Pass	345	53.58	50.20	0.94	-3.39	19.55	16.16	0.83	Pass	392	52.82	47.38	0.90	-5.43	19.55	16.80	0.86	Pass
299	53.35	47.96	0.90	-5.39	19.55	15.67	0.80	Pass	346	53.69	50.22	0.94	-3.47	19.55	16.08	0.82	Pass	393	52.94	48.28	0.91	-4.66	19.55	17.58	0.90	Pass
300	53.49	48.36	0.90	-5.13	19.55	15.84	0.81	Pass	347	42.81	40.84	0.95	-1.97	10.08	8.19	0.81	Pass	394	53.03	48.54	0.92	-4.49	19.55	17.75	0.91	Pass
301	53.50	48.61	0.91	-4.89	19.55	15.99	0.82	Pass	348	50.72	46.80	0.92	-3.92	18.56	14.64	0.79	Pass	395	52.65	45.19	0.86	-7.46	19.55	15.39	0.79	Pass
302	53.24	46.49	0.87	-6.75	19.55	14.27	0.73	Pass	349	46.84	42.90	0.92	-3.94	12.90	8.96	0.69	Pass	396	52.76	46.73	0.89	-6.02	19.55	16.21	0.83	Pass
303	53.34	47.71	0.89	-5.63	19.55	15.32	0.78	Pass	350	73.94	69.66	0.94	-4.28	25.57	22.17	0.87	Pass	397	52.90	47.80	0.90	-5.11	19.55	16.84	0.86	Pass
304	53.36	48.06	0.90	-5.30	19.55	15.58	0.80	Pass	351	72.73	68.85	0.95	-3.87	25.02	21.14	0.85	Pass	398	52.96	48.81	0.92	-4.15	19.55	17.69	0.91	Pass
305	53.50	48.53	0.91	-4.96	19.55	15.70	0.80	Pass	352	72.19	68.32	0.95	-3.87	25.31	21.44	0.85	Pass	399	53.00	49.26	0.93	-3.74	19.55	17.84	0.91	Pass
306	53.50	48.70	0.91	-4.80	19.55	15.81	0.81	Pass	353	72.33	68.50	0.95	-3.83	25.31	21.48	0.85	Pass	400	53.45	46.28	0.87	-7.16	19.55	16.77	0.86	Pass
307	53.27	46.58	0.87	-6.68	19.55	14.09	0.72	Pass	354	72.03	68.16	0.95	-3.87	25.05	21.18	0.85	Pass	401	53.60	46.90	0.87	-6.70	19.55	16.99	0.87	Pass
308	53.37	47.55	0.89	-5.82	19.55	14.81	0.76	Pass	355	70.51	66.60	0.94	-3.91	24.56	20.65	0.84	Pass	402	53.71	48.19	0.90	-5.52	19.55	17.52	0.90	Pass
309	53.39	47.93	0.90	-5.46	19.55	15.06	0.77	Pass	356	75.52	71.29	0.94	-4.23	25.95	22.68	0.87	Pass	403	53.74	48.76	0.91	-4.98	19.55	17.87	0.91	Pass
310	53.52	48.65	0.91	-4.88	19.55	15.63	0.80	Pass	357	71.89	67.88	0.94	-4.02	24.60	21.54	0.88	Pass	404	53.86	49.00	0.91	-4.86	19.55	18.00	0.92	Pass
311	53.53	48.82	0.91	-4.71	19.55	15.76	0.81	Pass	358	72.65	68.82	0.95	-3.83	24.42	21.55	0.88	Pass	405	53.27	45.66	0.86	-7.60	19.55	16.96	0.87	Pass
312	52.72	45.03	0.85	-7.69	19.55	15.01	0.77	Pass	359	70.94	67.29	0.95	-3.65	23.09	20.39	0.88	Pass	406	53.44	46.58	0.87	-6.86	19.55	17.19	0.88	Pass
313	52.82	46.04	0.87	-6.78	19.55	15.52	0.79	Pass	360	68.46	64.74	0.95	-3.72	18.13	15.36	0.85	Pass	407	53.60	47.29	0.88	-6.31	19.55	17.66	0.90	Pass
314	52.96	47.14	0.89	-5.82	19.55	16.10	0.82	Pass	361	69.21	65.91	0.95	-3.30	19.35	16.80	0.87	Pass	408	53.65	47.94	0.89	-5.71	19.55	17.89	0.92	Pass
315	53.02	48.66	0.92	-4.36	19.55	16.90	0.86	Pass	362	75.54	72.37	0.96	-3.17	26.20	24.42	0.93	Pass	409	53.76	48.98	0.91	-4.78	19.55	18.08	0.93	Pass
316	53.06	49.33	0.93	-3.73	19.55	17.06	0.87	Pass	363	75.70	72.27	0.95	-3.43	26.20	24.94	0.95	Pass	410	52.84	45.28	0.86	-7.55	19.55	17.05	0.87	Pass
317	52.75	45.42	0.86	-7.33	19.55	15.03	0.77	Pass	364	72.93	71.66	0.98	-1.26	25.49	24.25	0.95	Pass	411	52.93	45.90	0.87	-7.03	19.55	17.59	0.90	Pass
318	52.98	46.47	0.88	-6.51	19.55	15.60	0.80	Pass	365	72.29	70.35	0.97	-1.93	25.49	23.55	0.92	Pass	412	53.16	46.37	0.87	-6.79	19.55	17.91	0.92	Pass
319	53.00	47.31	0.89	-5.69	19.55	16.05	0.82	Pass	366	75.30	72.55	0.96	-2.74	26.12	24.45	0.94	Pass	413	53.27	47.25	0.89	-6.02	19.55	18.15	0.93	Pass
																			-							

414	53.42	48.13	0.90	-5.29	19.55	18.40	0.94	Pass
415	52.74	45.17	0.86	-7.57	19.55	16.74	0.86	Pass
416	52.84	45.55	0.86	-7.29	19.55	17.03	0.87	Pass
417	53.06	46.30	0.87	-6.76	19.55	17.64	0.90	Pass
418	53.17	47.37	0.89	-5.80	19.55	17.92	0.92	Pass
419	53.32	47.98	0.90	-5.35	19.55	18.10	0.93	Pass
420	53.90	47.22	0.88	-6.67	19.55	16.90	0.86	Pass
421	54.00	47.89	0.89	-6.11	19.55	17.46	0.89	Pass
422	54.09	48.26	0.89	-5.82	19.55	17.75	0.91	Pass
423	53.94	47.41	0.88	-6.52	19.55	17.06	0.87	Pass
424	54.03	47.94	0.89	-6.09	19.55	17.49	0.89	Pass
425	54.12	48.21	0.89	-5.91	19.55	17.67	0.90	Pass
426	53.75	47.20	0.88	-6.55	19.55	17.02	0.87	Pass
427	53.86	47.66	0.88	-6.20	19.55	17.46	0.89	Pass
428	53.90	47.99	0.89	-5.91	19.55	17.75	0.91	Pass
429	53.35	46.69	0.88	-6.67	19.55	13.07	0.67	Pass
430	53.35	46.85	0.88	-6.50	19.55	13.23	0.68	Pass
431	53.44	47.29	0.88	-6.15	19.55	13.40	0.69	Pass
432	53.44	47.60	0.89	-5.83	19.55	13.71	0.70	Pass
433	53.45	47.71	0.89	-5.74	19.55	13.81	0.71	Pass
434	53.45	48.10	0.90	-5.35	19.55	14.20	0.73	Pass
435	53.47	48.58	0.91	-4.89	19.55	14.66	0.75	Pass

7.5 Appendix E: Royal Conservatoire of Scotland – Wallace Studios

RCS Window Locations

A total of nineteen window locations were analysed, these are shown in the figure below.

Figure 6: Royal Conservatoire of Scotland - Windows **RCS VSC Results**

W_ref:	VSC_E:	VSC_P:	Ρ/Ε:	Pass/Fail
0	35.2	29.8	0.85	Pass

	1		35.2	30.2	0.	.86 I	Pass	
	2		35.2	30.2	0.	86	Pass	
	3		35.4	30.7	0.	87 I	Pass	
	4		35.3	30.6	0.	.87 I	Pass	
	5		35.3	31	0.	88 I	Pass	
	6		35.3	31	0.	88 I	Pass	
	7		35.2	31.1	0.	88 I	Pass	
	8		35.3	29.4	0.	83 I	Pass	
	9		35.4	29.7	0.	84 I	Pass	
	10		34.3	29.1	0.	85 I	Pass	
	11		34.4	30.1	0.	88 I	Pass	
	12		34.3	29.9	0.	87 I	Pass	
	13		34.6	29.8	0.	86 I	Pass	
	14		34.4	29.9	0.	87 I	Pass	
	15		34.7	29.4	0.	85 I	Pass	
	16		34.4	29.2	0.	85 I	Pass	
	17		34.5	29.1	0.	84 I	Pass	
	18		34.4	28.8	0.	84 I	Pass	
ዋርና ልቦ	SH Re		\$					
Win_ref		APSH e	APSH_p	APSH_rf	APSH_ar	WPSH_e	WPSH_p	WPSH_rf
0	33.	60	26.47	0.79	-7.13	9.57	9.57	1.00
1	33.	48	26.76	0.80	-6.72	9.46	9.46	1.00
2	33.	06	27.75	0.84	-5.31	9.27	9.27	1.00
3	32.	89	28.33	0.86	-4.56	9.11	9.11	1.00
4	32.	64	29.38	0.90	-3.26	9.01	9.01	1.00
5	32	66	29.36	0.90	-3 30	9.01	9.01	1 00

5

6

7

8

9

11

17

32.67 29.61

29.97

26.40 0.78

25.52 0.79

27.12 0.86

33.79 25.97 0.77

28.13

28.23

28.38

13 31.56 28.37 0.90

16 32.10 26.56 0.83

18 32.53 25.49 0.78

32.17 25.49

32.41

33.69

30.47

10 32.44

12 31.25

14 31.79

15 31.68

0.91

0.92

0.92

0.90

0.89

0.79

-3.06 8.98

-2.44 8.67

-7.81 9.61

-2.33 6.87

-3.40 8.08

-6.68

-7.29 9.60 9.60

-6.91 8.78 8.78

-3.02 7.56 7.56

-3.18 7.97 7.97

-4.56 8.16 8.16

-5.55 8.31 8.31

8.42

VSC Resul	lts									
W	_ref	VSC_E	١	/SC_P	'SC_P P/E			Pass/Fail		
	0	33.8	2	9.0	0	.86	P	ass		
	1	22.3	1	7.4	0	.78	F	ail		
APSH Res	ults									
≦ii	AP	AP	AP	AP	₹₽	₹₽	₹₽	Pas		
	-F	Ę	Ë	ĽĽ	HS	HS	HS	ss/F		
ef	'e	<u> </u>	' ' ,	ar	l P	م ا	۲. ا	all		
0	27.34	23.25	0.85	-4.09	5.02	4.52	0.90	Pass		
1	6.21	1.62	0.26	-4.59	1.36	0.15	0.11	Fail		
APSH Res Win_ref 0 1	1 ults APSH -® 27.34 6.21	22.3 APSH_p 23.25 1.62	1 APSH_rf 0.85 0.26	7.4 APSH_ar -4.09 -4.59	0 WPSH_0 5.02 1.36	.78 WPSH_p 4.52 0.15	F WPSH_rf 0.90 0.11	ail Pass/Fail Pass Fail		

7.7 Appendix G: 12 Burns Street

Window Reference

Pass/Fail

Pass

Pass

Pass

Pass Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

8.98 1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

8.67

6.87

8.08

8.42

-7.05 8.77 8.77 1.00 Pass

9.57

7.6 Appendix F: Garscube Road

Two window locations were analysed, these are shown in the figure below.

APSH Re Win_ref	esults APSH_e	APSH_p	APSH_rf	APSH_ar	WPSH_e	WPSH_p	WPSH_rf	Pass/Fail
0	62.9	47.7	0.76	-15.2	24.2	13.5	0.56	Pass

Appendix H: 22 Farnell Street 7.8

Five window locations were analysed, these are shown in the figure below.

VSC Res	sults								
W_r	ef:	VSC_E:	VSC_	<u>_</u> P:	P/E	:	Pass/F	ail	
	0	30.2	1 2	26.1		0.86	Pass		
	1	30.2	2 2	28.6		0.95	Pass		
	2	35.	7 3	31.3		0.88	Pass		
	3	35.8	3	31.6		0.88	Pass		
	4	3!	5	30.9		0.88	Pass		
APSH R	esult	s	_		_	_	_		_
Nir	:	APS	APS		APS	NP	N P.	NP	Das
l_Le	l			I	Ì	_HS	HS	_HS	s/F
<u>.</u>	(, ,		ar I	'e	<u>q'</u>	<u>_ل</u>	ail
0	46.	62 41.8	0 0.90) -4.	82	13.99	9.33	0.67	Pass
1	53.	78 51.6	0 0.96	5 -2.	18	14.34	12.78	0.89	Pass
2	64.4	41 57.2	1 0.89	9 -7.	20	23.62	16.67	0.71	Pass
3	63.	89 57.9	6 0.91	I -5.	93	22.97	17.30	0.75	5 Pass
4	60.4	49 55.3	5 0.92	2 -5.	14	20.02	15.07	0.75	i Pass
_									

7.9 Appendix J: Canal Boat Window Test

Test Locations

Window 0 is the most southernly window, window 198 is the most northernly.

VSC results	
W_ref:	VSC_E:
0	38.6
1	38.6
2	38.6
3	38.5
4	38.5
5	38.5
6	38.5
7	38.5
8	38.6
9	38.6
10	38.6
11	38.6
12	38.6
13	38.6
14	38.6
15	38.6
16	38.6
17	38.6
18	38.6

VSC_P:	P/E:	Pass/Fail
33.6	0.87	Pass
33.6	0.87	Pass
33.6	0.87	Pass
33.7	0.87	Pass
33.6	0.87	Pass
33.6	0.87	Pass
33.7	0.87	Pass
33.7	0.87	Pass
33.9	0.88	Pass
33.8	0.88	Pass
33.7	0.87	Pass
33.6	0.87	Pass
33.6	0.87	Pass
33.6	0.87	Pass
33.5	0.87	Pass
33.5	0.87	Pass
33.3	0.86	Pass
33.3	0.86	Pass
33.6	0.87	Pass

19	38.7	33.5	0.87	Pass
20	38.7	33.5	0.87	Pass
21	38.6	33.5	0.87	Pass
22	38.6	33.3	0.86	Pass
23	38.5	33.3	0.86	Pass
24	38.5	33.2	0.86	Pass
25	38.5	33.2	0.86	Pass
26	38.5	33.1	0.86	Pass
27	38.5	33.1	0.86	Pass
28	38.6	33.4	0.87	Pass
29	38.6	33.4	0.86	Pass
30	38.6	33.4	0.87	Pass
31	38.6	33.4	0.87	Pass
32	38.4	33.6	0.87	Pass
33	38.4	33.6	0.87	Pass
34	38.4	33.4	0.87	Pass
35	38.6	33.4	0.86	Pass
36	38.6	33.2	0.86	Pass
3/ 20	38.4	33.Z	0.86	Pass
30 20	38.4 20 4	33.4 22 4	0.07	Pass
37 10	30.4 20 5	აა.4 22 1	0.07	rass Dass
40 /1	30.0 28 F	33. I 22 1	0.00	Pass
41	30.5	22.2	0.00	F doo
∠ 12	38.5	33.5	0.07	Pass
44	38.5	33.3	0.87	Pass
45	38.5	33.3	0.87	Pass
46	38.4	33.1	0.86	Pass
47	38.4	33.1	0.86	Pass
48	38.5	33.2	0.86	Pass
49	38.5	33.2	0.86	Pass
50	38.4	32.8	0.85	Pass
51	38.4	32.8	0.85	Pass
52	38.5	33	0.86	Pass
53	38.5	33	0.86	Pass
54	38.5	33.1	0.86	Pass
55	38.5	33.1	0.86	Pass
56	38.6	32.9	0.85	Pass
57	38.6	32.9	0.85	Pass
58	38.5	32.9	0.86	Pass
59	38.5	32.9	0.86	Pass
60	38.5	32.9	0.85	Pass
61	38.5	32.9	0.85	Pass
62	38.4	33	0.86	Pass
63	38.4	33	0.86	Pass
64	38.4	32.9	0.86	Pass
65	38.4	32.9	0.86	Pass

33	0.86	Pass
32.9	0.86	Pass
32.6	0.85	Pass
32.5	0.85	Pass
32.7	0.85	Pass
32.6	0.85	Pass
32.4	0.84	Pass
32.2	0.84	Pass
32.1	0.84	Pass
31.8	0.83	Pass
31.7	0.83	Pass
31.6	0.83	Pass
31.5	0.82	Pass
31.5	0.82	Pass
31.4	0.82	Pass
31.4	0.82	Pass
31.3	0.82	Pass
31.2	0.82	Pass
31.2	0.82	Pass
31.4	0.82	Pass
31.4	0.82	Pass
31.3	0.82	Pass
31.3	0.82	Pass
31.2	0.82	Pass
31.2	0.82	Pass
31.2	0.82	Pass
31.3	0.82	Pass
31.4	0.82	Pass
31.4	0.82	Pass
31.2	0.82	Pass
31.2	0.82	Pass
31.2	0.82	Pass
31.3	0.82	Pass
31.2	0.82	Pass
31.3	0.82	Pass
31.4	0.82	Pass
31.4	0.83	Pass
31.5	0.83	Pass
31.5	0.83	Pass
31.7	0.83	Pass
31.8	0.83	Pass
31.9	0.84	Pass
31.9	0.84	Pass
31.8	0.84	Pass
31.9	0.84	Pass
31.9	0.84	Pass
32.2	0.85	Pass

113

114

115

116

117

118 119

120

121

122

123

124 125

126 127

128

129

130

131

132 133

134

135

136

137

138 139

140

141

142

143

144 145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

38.3

38.3

38.3

38.4

38.4

38.3

38.3

38.2

38.2

38.3

38.3

38.3

38.3

38.2

38.2

38.3

38.3

38.2

38.2

38.3

38.3

38.1

38.1

38.1

38.1

38.2

38.2

38.3

38.3

38.1

38.1

38.2

38.2

38.1

38.2

38.2

38

38

38

38

38

38

38

38

38

38

38

MAX FORDHAM

1	160	38	3.	2.3	0.85	Pass		
1	161	37.9	3	2.3	0.85	Pass		
1	162	37.9	3.	2.4	0.86	Pass		
1	163	38	3.	2.5	0.86	Pass		
1	164	38	3	2.6	0.86	Pass		
1	165	37.8	3.	2.6	0.86	Pass		
1	166	37.8	3	2.9	0.87	Pass		
1	167	38	3.	2.9	0.87	Pass		
1	168	37.9	3	2.9	0.87	Pass		
1	169	37.9		33	0.87	Pass		
1	170	37.9		33	0.87	Pass		
1	171	37.8	3	3.1	0.87	Pass		
1	172	37.8	3	3.3	0.88	Pass		
1	173	37.8	3	3.4	0.88	Pass		
1	174	37.9	3	3.6	0.89	Pass		
1	175	37.9	3	3.7	0.89	Pass		
1	176	37.9	3	3.8	0.89	Pass		
1	177	37.8	3	3.9	0.9	Pass		
1	178	37.8	3	3.8	0.89	Pass		
1	179	37.9	3	3.8	0.89	Pass		
1	180	37.9	3	3.9	0.9	Pass		
1	181	37.8		34	0.9	Pass		
1	182	37.8	3	3.9	0.9	Pass		
1	183	37.9		34	0.9	Pass		
1	184	37.9	34	4.1	0.9	Pass		
1	185	38	3	4.2	0.9	Pass		
1	186	38	34	4.5	0.91	Pass		
1	187	37.8	3	4.5	0.91	Pass		
1	188	37.8	34	4.6	0.91	Pass		
1	189	38.1	3	4.7	0.91	Pass		
1	190	38.1	3	4.7	0.91	Pass		
1	191	38	3	4.8	0.92	Pass		
1	192	38		35	0.92	Pass		
1	193	38	3	5.1	0.92	Pass		
1	194	38.1	3	5.1	0.92	Pass		
1	195	38.1	3	5.2	0.92	Pass		
1	196	38.1	3	5.4	0.93	Pass		
1	197	38	3	5.5	0.93	Pass		
1	198	38	3	5.2	0.92	Pass		
APSH Re	esults ►	A	Þ	Þ	5	5	5	<u>.</u>
	PSH	PSF	PSF	PSH	VPS	VPS	VPS	ass.
_ref	⊥_e	Ļ	цт Ц	1_a	Ξ.	Ť	Ť	/Fa
	ГОО	40.4	л О О1	-	10.55	15.04	- - -	=:
0	53.3	43.4	0.81	-9.9	19.55	15.86	0.81	Pass
1	53.4	43.8	0.82	-9.6	19.55	15.87	0.81	Pass
2	53.5	43.9	0.82	-9.6	19.55	15.79	0.81	Pass
3	53.2	44.0	0.83	-9.2	19.55	15.75	0.81	Pass

4	52.9	44.1	0.83	-8.9	19.55	15.66	0.80	Pass	5
5	52.8	44.0	0.83	-8.8	19.55	15.54	0.80	Pass	52
6	52.6	43.6	0.83	-9.0	19.55	15.64	0.80	Pass	5
7	52.4	43.4	0.83	-9.0	19.55	15.65	0.80	Pass	54
8	52.4	43.3	0.83	-9.2	19.55	15.53	0.79	Pass	55
9	52.4	42.6	0.81	-9.8	19.55	15.33	0.78	Pass	50
10	52.3	42.0	0.80	-10.3	19.55	15.13	0.77	Pass	51
11	52.3	42.2	0.81	-10.1	19.55	14.78	0.76	Pass	58
12	52.2	42.7	0.82	-9.5	19.55	14.50	0.74	Pass	59
13	52.2	42.7	0.82	-9.6	19.55	14.35	0.73	Pass	60
14	52.1	42.4	0.81	-9.7	19.55	14.13	0.72	Pass	6
15	52.0	42.4	0.82	-9.5	19.55	13.81	0.71	Pass	6
16	52.0	42.2	0.81	-9.7	19.55	13.48	0.69	Pass	6.
17	51.9	42.3	0.81	-9.6	19.55	13 50	0.69	Pass	6
18	51.9	42.3	0.82	-9.6	19 55	13 56	0.69	Pass	6/
10	52.0	42.3	0.81	-9.7	19.55	13.00	0.69	Pass	6
20	52.0	12.0	0.01	-9.8	19.55	13.44	0.69	Pass	6
20	52.0	42.2 /1 0	0.01	- 7.0	19.55	13.57	0.00	Dass	0.
21	52.0	41.7	0.01	10.1	19.55	12.00	0.07	Dass	00
22	52.0	42.0	0.01	-10.1	19.55	13.19	0.07	Pass	0
23	51.9	41.9	0.01	-10.1	19.00	12.93	0.00	Pass	/(
24	51.9	41.9	0.01	-10.0	19.55	12.09	0.05	Pass	/
25	51.9	41.8	0.81	-10.1	19.55	12.50	0.64	Pass	/2
26	51.8	41.9	0.81	-9.9	19.55	12.21	0.62	Pass	/:
27	51.7	42.1	0.81	-9.6	19.55	12.12	0.62	Pass	74
28	51.7	42.1	0.82	-9.5	19.55	12.14	0.62	Pass	7:
29	51.7	42.2	0.82	-9.4	19.55	12.11	0.62	Pass	70
30	51.6	42.0	0.81	-9.6	19.55	11.92	0.61	Pass	7.
31	51.5	41.9	0.81	-9.6	19.55	11.86	0.61	Pass	78
32	51.4	41.3	0.80	-10.1	19.55	11.46	0.59	Pass	79
33	51.3	41.1	0.80	-10.2	19.55	11.29	0.58	Pass	80
34	51.3	41.0	0.80	-10.3	19.55	11.10	0.57	Pass	8
35	51.3	40.8	0.79	-10.5	19.55	10.89	0.56	Pass	82
36	51.2	40.7	0.79	-10.6	19.55	10.62	0.54	Pass	83
37	51.5	40.2	0.78	-11.3	19.55	9.89	0.51	Pass	84
38	51.7	40.0	0.77	-11.7	19.55	9.63	0.49	Pass	8
39	51.9	39.8	0.77	-12.1	19.55	9.71	0.50	Pass	80
40	52.1	39.8	0.76	-12.3	19.55	9.85	0.50	Pass	82
41	52.1	39.8	0.76	-12.3	19.55	10.06	0.51	Pass	88
42	52.2	39.7	0.76	-12.6	19.55	10.27	0.53	Pass	89
43	52.2	39.2	0.75	-13.0	19.55	10.31	0.53	Pass	90
44	52.3	39.1	0.75	-13.3	19.55	10.19	0.52	Pass	9
45	52.2	39.0	0.75	-13.2	19.55	10.10	0.52	Pass	92
46	52.3	39.1	0.75	-13.2	19.55	10.23	0.52	Pass	9:
47	52.3	39.2	0.75	-13.1	19.55	10.32	0.53	Pass	92
48	52.3	39.2	0.75	-13.0	19.55	10.38	0.53	Pass	9!
49	52.3	39.2	0.75	-13.1	19.55	10.38	0.53	Pass	97
50	52.5	39.3	0.75	-13.2	19.55	10.42	0.53	Pass	9
<u> </u>		0	20				2.50		/.

0.75	-13.4	19.55	10.29	0.53	Pass
0.74	-13.5	19.55	10.14	0.52	Pass
0.74	-13.6	19.55	10.21	0.52	Pass
0.74	-13.6	19.55	10.18	0.52	Pass
0.74	-13.6	19.55	10.15	0.52	Pass
0.75	-13.3	19.55	10.45	0.53	Pass
0.75	-13.2	19.55	10.62	0.54	Pass
0.75	-13.4	19.55	10.49	0.54	Pass
0.74	-13.6	19.55	10.46	0.54	Pass
0.74	-13.8	19.55	10.51	0.54	Pass
0.74	-13.9	19.55	10.60	0.54	Pass
0.73	-14.2	19.55	10.72	0.55	Pass
0.71	-15.2	19.55	10.68	0.55	Pass
0.71	-15.5	19.55	10.76	0.55	Pass
0.71	-15.4	19.55	10.87	0.56	Pass
0.72	-14.9	19.55	10.96	0.56	Pass
0.73	-14.1	19.55	10.92	0.56	Pass
0.74	-13.7	19.55	10.82	0.55	Pass
0.75	-13.1	19.55	10.93	0.56	Pass
0.76	-12.7	19.55	11.00	0.56	Pass
0.76	-12.9	19.55	11.13	0.57	Pass
0.75	-13.3	19.55	11.23	0.57	Pass
0.75	-13.3	19.55	11.35	0.58	Pass
0.74	-13.7	19.55	11.26	0.58	Pass
0.74	-13.9	19.55	11.24	0.57	Pass
0.74	-14.0	19.55	11.24	0.57	Pass
0.74	-14.1	19.55	11.17	0.57	Pass
0.73	-14.3	19.55	11.30	0.58	Pass
0.72	-14.6	19.55	11.27	0.58	Pass
0.72	-14.9	19.55	11.24	0.57	Pass
0.72	-14.8	19.55	11.27	0.58	Pass
0.73	-14.2	19.55	11.17	0.57	Pass
0.74	-14.1	19.55	11.18	0.57	Pass
0.74	-13.8	19.55	11.38	0.58	Pass
0.74	-13.7	19.55	11.43	0.58	Pass
0.74	-13.7	19.55	11.48	0.59	Pass
0.74	-13.7	19.55	11.57	0.59	Pass
0.74	-13.6	19.55	11.66	0.60	Pass
0.75	-13.2	19.55	11.57	0.59	Pass
0.75	-13.1	19.55	11.26	0.58	Pass
0.74	-13.8	19.55	11.16	0.57	Pass
0.74	-13.7	19.55	11.42	0.58	Pass
0.75	-13.5	19.55	11.40	0.58	Pass
0.75	-13.3	19.55	11.43	0.58	Pass
0.74	-13.5	19.55	11.38	0.58	Pass
0.74	-13.9	19.51	11.30	0.58	Pass
0.73	-14.1	19.55	11.35	0.58	Pass

99 92 387 0.73 1.42 19.55 11.78 0.61 Pass 146 50.5 3.6.0 0.71 1.4.5 19.55 1.18 0.61 Pass 102 52.7 385 0.73 1.4.1 19.55 11.84 0.61 Pass 1.47 50.5 3.6.0 0.71 1.4.5 15.5 1.0.4 0.55 1.0.4 0.55 1.0.4 0.55 1.0.4 0.55 1.0.4 0.55 1.0.4 0.55 0.71 1.4.5 11.81 0.60 Pass 1.50 0.23 0.70 1.3.1 1.95 1.1.0 0.60 Pass 1.55 0.73 0.3.1 1.810 0.00 0.55 Pass 1.55 0.73 0.73 1.3.1 1.90 1.91 0.00 0.52 Pass 1.55 0.73 0.73 1.3.1 1.90 1.92 Pass 1.55 0.73 0.73 1.3.1 1.80 9.0 1.81 1.0.0 1.1.1 1.1.1<	98	52.9	38.6	0.73	-14.3	19.55	11.52	0.59	Pass	145	50.6	36.2	0.72	-14.3	19.55	10.18	0.52	Ра
100 52.2 38.7 0.7.3 1.4.1 19.55 11.88 0.61 Pass 147 60.5 30.2 0.7.2 1.4.0 19.55 11.01 0.61 Pass 107 52.7 38.6 0.7.4 13.8 19.55 11.81 0.61 Pass 149 50.2 30.6 0.7.3 13.5 19.00 10.55 Pass 103 52.5 9.0 0.7.6 1.2.5 19.55 11.00 0.60 Pass 150 50.7 31.6 10.01 10.01 10.2 Pass 105 52.4 0.7.6 0.7.6 1.2.5 19.55 1.2.10 0.60 Pass 153 50.7 3.6.9 0.7.3 1.3.8 10.00 0.5.2 Pass 1.5.5 50.7 3.6.9 0.7.3 1.3.8 1.0.0 0.6 Pass 1.55 50.7 3.6.9 0.7.3 1.3.8 1.0.0 0.8.9 Pas 105 2.2.3 3.6.0 0.	99	52.9	38.7	0.73	-14.2	19.55	11.78	0.60	Pass	146	50.5	36.0	0.71	-14.5	19.55	9.89	0.51	Pas
101 22.7 38.5 0.7.3 14.2 19.65 10.44 13.8 19.55 11.84 0.61 Pass 14.9 50.2 36.6 0.7.4 13.3 19.55 11.84 0.61 Pass 150 50.2 36.6 0.7.4 13.8 19.55 11.80 0.60 Pass 150 50.1 36.6 0.7.3 13.5 19.20 10.00 0.52 Pass 17.5 50.1 36.6 0.7.3 13.5 19.81 0.00 0.52 105 52.6 30.3 0.7 7.12 19.55 12.00 0.61 Pass 17.5 50.7 37.0 0.7.3 13.8 18.70 0.00 0.28 Pass 17.5 50.7 37.0 0.7.3 13.8 18.70 0.00 NA Pass 17.5 50.2 37.0 0.7.3 13.8 18.70 0.00 NA Pass 17.5 50.2 37.4 0.7.4 13.8 18.00 0.7 18.8 <td>100</td> <td>52.8</td> <td>38.7</td> <td>0.73</td> <td>-14.1</td> <td>19.55</td> <td>11.88</td> <td>0.61</td> <td>Pass</td> <td>147</td> <td>50.5</td> <td>36.2</td> <td>0.72</td> <td>-14.4</td> <td>19.55</td> <td>9.79</td> <td>0.50</td> <td>Pass</td>	100	52.8	38.7	0.73	-14.1	19.55	11.88	0.61	Pass	147	50.5	36.2	0.72	-14.4	19.55	9.79	0.50	Pass
122 22.4 3.8.8 0.4 -1.3.8 19.55 11.8.1 0.6.0 Pars. 150 50.2 3.6.6 0.7.3 -1.3.5 19.20 0.0.0 0.52 Pars. 105 52.4 39.4 0.75 -1.3.2 19.55 11.80 0.6.0 Pars. 150 50.7 3.2.0 0.73 -1.3.8 10.00 10.52 Pars. 105 52.4 39.4 0.75 -1.3.2 19.55 11.06 0.6.0 Pars. 155 50.7 3.0.9 0.73 -1.3.8 10.40 4.0.5 Pars. 106 52.5 39.4 0.75 -1.2.8 19.55 12.7 0.65 Pars. 155 50.7 3.0.9 0.73 -1.3.9 18.70 9.0.9 0.48 Pars. 110 52.2 39.6 0.75 -1.28 19.55 13.10 0.67 Pars. 156 50.8 3.70 0.73 -1.3.4 18.0 0.4 Pars. 179 12.9 14.0 4.0 4.0 4.0 4.0 4.0 4	101	52.7	38.5	0.73	-14.2	19.55	11.97	0.61	Pass	148	50.6	36.6	0.72	-14.0	19.55	10.04	0.51	Pass
103 525 31 0.4 14.4 19.5 11.8 0.60 Pass 157 501 36.6 0.73 13.5 19.20 10.00 0.52 Pass 105 52.6 39.8 0.76 1.23 19.55 11.80 0.61 Pass 157 50.7 3.69 0.73 1.38 19.40 9.40 0.50 Pass 107 52.5 39.6 0.76 1.28 19.55 12.71 0.63 Pass 156 50.7 3.69 0.73 1.38 18.70 9.10 0.48 Pass 107 52.2 39.4 0.75 1.28 19.55 1.31 0.67 Pass 156 50.8 3.70 0.73 1.38 18.70 9.10 0.48 Pass 117 52.2 39.4 0.75 1.28 1.31 0.67 Pass 165 50.8 3.70 0.73 1.38 18.70 9.10 9.10 1.48	102	52.6	38.8	0.74	-13.8	19.55	11.84	0.61	Pass	149	50.2	36.9	0.74	-13.3	19.20	10.19	0.53	Pass
104 S2-6 39.4 0.75 -1.23 19.55 11.80 0.60 Pass 155 50.7 37.3 19.28 19.80 0.00 0.52 Pass 105 S2-5 30.4 0.75 -1.23 19.55 11.00 0.62 Pass 155 50.7 37.9 0.73 13.5 19.18 10.00 0.52 Pass 107 S2-5 30.4 0.75 -1.31 19.55 12.71 0.64 Pass 155 50.7 30.9 0.73 13.8 19.0 0.00 0.48 Pass 110 52.3 30.7 0.76 -12.8 19.55 12.40 0.66 Pass 155 50.8 30.7 0.73 13.8 18.70 8.90 0.48 Pass 110 52.3 30.6 0.75 12.81 10.55 13.10 0.67 Pass 156 50.8 30.7 0.73 13.8 18.70 8.80 0.48 Pass 112 52.0 30.4 0.75 12.8 10.55 13.8	103	52.5	39.1	0.74	-13.4	19.55	11.81	0.60	Pass	150	50.2	36.6	0.73	-13.6	19.20	9.86	0.51	Pass
105 52.6 93.8 0.76 -12.8 19.55 11.06 0.61 Pass 152 50.7 3.69 0.73 -13.8 19.04 0.44 0.50 Pass 105 52.5 39.4 0.75 -13.1 19.55 12.27 0.63 Pass 155 50.7 3.69 0.73 -13.8 19.04 0.44 0.50 Pass 106 52.5 39.6 0.76 -12.9 19.55 12.71 0.65 Pass 155 50.7 3.69 0.73 -13.8 18.70 9.00 0.48 Pass 117 52.2 39.6 0.76 -12.8 19.55 13.11 0.67 Pass 155 50.8 3.69 0.73 -13.8 18.70 9.00 0.48 Pass 11.65 50.23 3.11 18.70 18.70 18.80 0.47 Pass 117 52.2 39.4 0.74 -13.7 19.55 13.47 0.69 Pass 166 50.8 3.82 0.75 12.8 18.40 8.47	104	52.6	39.4	0.75	-13.2	19.55	11.80	0.60	Pass	151	50.1	36.6	0.73	-13.5	19.20	10.01	0.52	Pass
106 52.5 40.3 0.77 -12.3 19.55 12.70 0.62 Pass 153 50.7 36.9 0.73 -13.8 19.04 9.04 9.050 Pass 107 52.5 39.7 0.76 -12.8 19.55 12.71 0.65 Pass 156 50.7 3.08 0.70 -13.8 18.70 9.10 0.74 9.85 1.71 0.65 Pass 156 50.7 3.08 0.70 -13.8 18.70 9.70 0.74 1.82 19.87 1.81 0.75 1.81 0.67 Pass 156 50.8 3.69 0.73 -13.9 18.70 9.80 0.48 Pass 113 52.2 38.4 0.74 1.32 19.55 1.40 0.64 Pass 160 50.7 7.7 1.40 1.80 8.77 0.48 Pass 114 52.0 38.4 0.75 1.22 1.80 0.76 1.22 1.80 1	105	52.6	39.8	0.76	-12.8	19.55	11.96	0.61	Pass	152	50.7	37.2	0.73	-13.5	19.18	10.00	0.52	Pass
107 52.5 9.4 0.76 -1.2 1.9.5 1.2.7 0.6.3 Pass 1.55 50.7 3.6.9 0.73 -1.3.8 18.70 9.10 Pass 108 52.5 3.9.6 0.76 -1.2.7 1.9.55 1.7.1 0.65 Pass 1.55 50.7 3.6.9 0.73 -1.3.8 18.70 9.00 0.48 Pass 110 52.2 3.9.6 0.76 -1.2.7 1.9.55 1.3.1 0.67 Pass 1.55 50.8 3.6.9 0.7.3 -1.3.8 18.70 9.00 0.48 Pass 111 52.2 3.8.9 0.7.4 1.7.4 1.7.5 1.9.2 0.6.6 Pass 1.60 50.6 3.7.4 0.7.4 1.8.4 1.8.6 8.10 0.4.7 Pass 1.60 50.6 3.7.7 0.7.4 1.8.4 1.8.40 8.40 0.44 Pass 1.60 50.6 3.7.7 0.7.4 1.8.4 8.40 0.7.7 Pass 1.61 50.7 3.6.1 8.40 0.7.7 1.8.4 8.40 0.7.7	106	52.5	40.3	0.77	-12.3	19.55	12.10	0.62	Pass	153	50.7	36.9	0.73	-13.8	19.04	9.44	0.50	Pass
108 52.5 39.6 0.76 -12.9 19.55 12.71 0.64 Pass 109 52.5 39.7 0.76 -12.8 19.55 12.71 0.65 Pass 176 50.8 36.9 0.73 -13.8 18.70 90.0 0.48 Pass 111 52.2 39.4 0.75 -12.8 19.55 13.18 0.67 Pass 156 50.8 36.9 0.73 -13.8 18.70 9.00 0.48 Pass 112 52.1 38.6 0.74 -13.4 19.55 13.18 0.67 Pass 156 50.7 7.4 -13.4 18.06 8.10 Pass 114 52.0 38.6 0.74 -13.4 19.55 13.28 0.68 Pass 164 50.7 7.4 13.40 8.06 0.47 Pass 117 52.0 39.5 0.76 12.4 19.55 13.47 0.69 Pass 164 50.8 39.2 0.77 11.8 8.0 0.40 Pass 175 51.8	107	52.5	39.4	0.75	-13.1	19.55	12.27	0.63	Pass	154	50.5	36.9	0.73	-13.6	18.70	9.26	0.50	Pass
109 52.5 39.7 0.7.6 12.8 19.55 12.71 0.65 Pass 110 52.3 39.6 0.7.6 12.7 19.55 12.94 0.66 Pass 157 50.8 36.9 0.73 13.8 18.70 90.0 0.48 Pass 111 52.2 38.6 0.7.6 13.2 19.55 13.11 0.67 Pass 159 50.6 37.0 0.7.4 13.4 18.70 8.00 0.48 Pass 113 52.2 38.6 0.74 13.2 19.55 13.24 0.68 Pass 160 50.6 37.8 0.75 12.8 18.40 8.70 0.48 Pass 116 52.0 39.5 0.76 12.9 19.55 13.35 0.68 Pass 164 50.6 37.8 0.75 12.8 18.40 8.70 0.48 Pass 117 52.0 39.5 0.76 12.9 19.55 13.3 0.70 Pass 164 50.8 39.0 0.77 11.8 8.80	108	52.5	39.6	0.76	-12.9	19.55	12.51	0.64	Pass	155	50.7	36.9	0.73	-13.8	18.70	9.15	0.49	Pass
110 52.3 39.6 0.76 -12.7 19.55 12.94 0.66 Pass 111 52.2 39.4 0.75 -12.8 19.55 13.10 0.67 Pass 113 52.2 38.9 0.75 -12.8 19.55 13.10 0.67 Pass 113 52.2 38.5 0.74 -13.7 19.55 12.92 0.66 Pass 115 52.0 38.4 0.74 -13.6 19.55 13.24 0.68 Pass 160 50.6 37.8 0.75 -12.9 18.40 8.70 0.48 Pass 116 52.0 39.5 0.76 -12.5 13.40 0.69 Pass 163 50.8 30.2 0.75 -12.6 18.40 8.69 0.47 Pass 117 52.0 39.5 0.76 -12.5 13.43 0.69 Pass 166 50.8 39.2 0.77 -11.6 18.03 8.40 0.47 Pass 120 51.6 37.9 0.74 -13.7 19.55 </td <td>109</td> <td>52.5</td> <td>39.7</td> <td>0.76</td> <td>-12.8</td> <td>19.55</td> <td>12.71</td> <td>0.65</td> <td>Pass</td> <td>156</td> <td>50.8</td> <td>36.9</td> <td>0.73</td> <td>-13.9</td> <td>18.70</td> <td>9.00</td> <td>0.48</td> <td>Pass</td>	109	52.5	39.7	0.76	-12.8	19.55	12.71	0.65	Pass	156	50.8	36.9	0.73	-13.9	18.70	9.00	0.48	Pass
111 52.2 39.4 0.75 -1.28 19.55 13.18 0.67 Pass 112 52.1 38.9 0.75 -1.32 19.55 13.11 0.67 Pass 113 52.2 38.5 0.74 -1.32 19.55 13.11 0.67 Pass 113 52.0 38.5 0.74 -1.36 19.55 13.24 0.68 Pass 116 52.0 38.4 0.74 -1.36 19.55 13.24 0.68 Pass 116 52.0 38.4 0.74 -1.29 18.40 8.66 0.47 Pass 116 52.0 39.5 0.76 -1.24 19.55 13.47 0.69 Pass 117 52.0 39.5 0.76 -1.24 19.55 13.47 0.69 Pass 117 53.0 39.5 0.76 -1.24 19.55 13.47 0.70 Pass 117 53.0 39.4 0.71 13.5 0.70 Pass 166 50.9 39.2 0.77	110	52.3	39.6	0.76	-12.7	19.55	12.94	0.66	Pass	157	50.8	36.9	0.73	-13.9	18.70	8.99	0.48	Pass
111 52.1 38.9 0.75 -13.2 19.55 13.11 0.67 Pass 113 52.2 38.6 0.74 -13.6 19.55 12.92 0.66 Pass 114 52.1 38.6 0.74 -13.6 19.55 12.22 0.66 Pass 116 52.0 38.4 0.74 -13.6 19.55 13.28 0.68 Pass 116 52.0 39.1 0.75 -12.9 18.40 8.76 0.48 Pass 117 52.0 39.5 0.76 -12.5 13.47 0.69 Pass 164 50.9 38.2 0.75 -12.6 18.40 8.60 0.47 Pass 119 51.9 38.2 0.74 -13.5 13.63 0.70 Pass 166 50.8 39.2 0.77 -11.6 18.03 8.24 0.48 Pass 120 51.6 38.2 0.74 -13.7 19.55 13.70 0.70 Pass 166 50.8 39.2 0.77 -11.6 18.03 </td <td>111</td> <td>52.2</td> <td>39.4</td> <td>0.75</td> <td>-12.8</td> <td>19.55</td> <td>13.18</td> <td>0.67</td> <td>Pass</td> <td>158</td> <td>50.8</td> <td>37.0</td> <td>0.73</td> <td>-13.8</td> <td>18.70</td> <td>8.91</td> <td>0.48</td> <td>Pass</td>	111	52.2	39.4	0.75	-12.8	19.55	13.18	0.67	Pass	158	50.8	37.0	0.73	-13.8	18.70	8.91	0.48	Pass
111 52.2 38.5 0.74 -13.7 19.55 12.92 0.66 Pass 114 52.1 38.6 0.74 -13.6 19.55 13.24 0.68 Pass 115 52.0 38.4 0.74 -13.6 19.55 13.26 0.68 Pass 116 50.0 37.4 0.75 -12.9 18.40 8.66 0.47 Pass 117 52.0 39.5 0.76 -12.4 19.55 13.47 0.69 Pass 117 52.0 39.5 0.76 -12.4 19.55 13.47 0.69 Pass 117 53.0 0.76 -12.4 19.55 13.70 0.70 Pass 120 51.8 38.1 0.74 -13.5 19.55 14.15 0.72 Pass 121 51.7 38.2 0.74 -13.4 19.55 13.46 0.72 Pass 122 51.6 37.2 0.73 -14.1 19.55 13.46 0.71 Pass 124 51.0 <td>112</td> <td>52.1</td> <td>38.9</td> <td>0.75</td> <td>-13.2</td> <td>19.55</td> <td>13.11</td> <td>0.67</td> <td>Pass</td> <td>159</td> <td>50.7</td> <td>37.4</td> <td>0.74</td> <td>-13.4</td> <td>18.56</td> <td>8.81</td> <td>0.47</td> <td>Pass</td>	112	52.1	38.9	0.75	-13.2	19.55	13.11	0.67	Pass	159	50.7	37.4	0.74	-13.4	18.56	8.81	0.47	Pass
111 52.1 38.6 0.74 -13.6 19.55 13.24 0.68 Pass 115 52.0 38.4 0.74 -13.6 19.51 13.28 0.68 Pass 116 52.0 39.5 0.75 -12.9 19.55 13.37 0.68 Pass 116 52.0 39.5 0.76 -12.4 19.55 13.47 0.69 Pass 117 52.0 39.5 0.76 -12.4 19.55 13.43 0.70 Pass 117 51.0 39.5 0.75 -12.9 19.55 13.73 0.70 Pass 117 51.0 38.2 0.74 -13.7 19.55 14.15 0.70 Pass 123 51.6 38.2 0.74 -13.4 19.55 14.16 0.72 Pass 123 51.6 38.2 0.74 -13.7 19.55 13.06 0.71 Pass 123 51.6 38.2 0.74 -13.7 19.55 13.60 0.71 Pass 124 </td <td>113</td> <td>52.2</td> <td>38.5</td> <td>0.74</td> <td>-13.7</td> <td>19.55</td> <td>12.92</td> <td>0.66</td> <td>Pass</td> <td>160</td> <td>50.6</td> <td>37.7</td> <td>0.74</td> <td>-12.9</td> <td>18.40</td> <td>8.77</td> <td>0.48</td> <td>Pass</td>	113	52.2	38.5	0.74	-13.7	19.55	12.92	0.66	Pass	160	50.6	37.7	0.74	-12.9	18.40	8.77	0.48	Pass
115 52.0 38.4 0.74 -13.6 19.51 13.28 0.68 Pass 116 52.0 39.1 0.75 -12.9 19.55 13.35 0.68 Pass 117 52.0 39.5 0.76 -12.4 19.55 13.37 0.70 Pass 118 52.0 39.5 0.76 -12.4 19.55 13.37 0.70 Pass 120 51.9 38.0 0.74 -13.7 19.55 13.73 0.70 Pass 121 51.7 38.2 0.74 -13.4 19.55 14.10 0.72 Pass 122 51.6 38.2 0.74 -13.4 19.55 14.10 0.72 Pass 123 51.6 37.0 0.74 -13.7 19.55 14.10 0.72 Pass 124 51.5 37.6 0.73 14.0 19.55 13.80 0.71 Pass 124 51.5 37.6 0.72 14.1 19.55 13.90 0.71 Pass 124	114	52.1	38.6	0.74	-13.6	19.55	13.24	0.68	Pass	161	50.6	37.8	0.75	-12.9	18.40	8.76	0.48	Pass
116 52.0 39.1 0.75 -12.5 13.35 0.68 Pass 117 52.0 39.5 0.76 -12.5 19.55 13.47 0.69 Pass 118 52.0 39.5 0.76 -12.5 19.55 13.63 0.70 Pass 119 51.9 38.0 0.75 -12.9 19.55 13.70 0.70 Pass 120 51.8 38.1 0.74 -13.5 19.55 13.70 0.70 Pass 121 51.7 38.2 0.74 -13.5 19.55 13.70 0.70 Pass 122 51.6 38.2 0.74 -13.5 19.55 14.06 0.72 Pass 123 51.6 37.0 0.74 -13.7 19.55 13.06 0.71 Pass 122 51.6 37.5 0.73 -13.7 19.55 13.80 0.71 Pass 124 51.5 37.6 0.73 -14.1 19.55 13.90 0.71 Pass 125 50.7 <td>115</td> <td>52.0</td> <td>38.4</td> <td>0.74</td> <td>-13.6</td> <td>19.51</td> <td>13.28</td> <td>0.68</td> <td>Pass</td> <td>162</td> <td>50.7</td> <td>37.8</td> <td>0.75</td> <td>-12.8</td> <td>18.40</td> <td>8.66</td> <td>0.47</td> <td>Pass</td>	115	52.0	38.4	0.74	-13.6	19.51	13.28	0.68	Pass	162	50.7	37.8	0.75	-12.8	18.40	8.66	0.47	Pass
111 52.0 39.5 0.76 -12.5 13.47 0.69 Pass 118 52.0 39.5 0.76 -12.4 19.5 13.63 0.70 Pass 119 51.9 38.1 0.74 -13.4 19.5 13.73 0.70 Pass 120 51.8 38.1 0.74 -13.5 13.55 13.70 0.70 Pass 121 51.7 38.2 0.74 -13.1 19.55 13.70 0.70 Pass 122 51.6 38.2 0.74 -13.1 19.55 14.15 0.72 Pass 123 51.6 37.9 0.74 -13.1 19.55 13.40 0.72 Pass 124 51.3 37.2 0.73 -13.9 19.55 13.40 0.71 Pass 124 51.3 37.2 0.73 -14.1 19.55 13.40 0.71 Pass 124 51.3 37.2 0.73 -13.9 15.5 13.43 0.71 Pass 125 51.3	116	52.0	39.1	0.75	-12.9	19.55	13.35	0.68	Pass	163	50.8	38.2	0.75	-12.6	18.40	8.69	0.47	Pass
118 52.0 39.5 0.76 -12.4 19.55 13.63 0.70 Pass 119 51.9 38.9 0.75 -12.9 19.55 13.73 0.70 Pass 120 51.8 38.1 0.74 -13.5 19.55 13.73 0.70 Pass 121 51.7 38.2 0.74 -13.5 19.55 14.15 0.72 Pass 122 51.6 38.2 0.74 -13.7 19.55 14.16 0.72 Pass 123 51.6 37.5 0.73 -14.0 19.55 14.06 0.72 Pass 124 51.5 37.5 0.73 14.0 19.55 13.60 0.71 Pass 125 51.4 37.5 0.73 14.0 19.55 13.60 0.71 Pass 126 51.3 37.2 0.73 14.1 19.55 13.90 0.71 Pass 127 51.0 36.0 0.71 14.1 19.55 13.90 0.71 Pass 128	117	52.0	39.5	0.76	-12.5	19.55	13.47	0.69	Pass	164	50.9	38.4	0.75	-12.6	18.40	8.51	0.46	Pass
119 51.9 38.9 0.75 12.9 19.55 13.73 0.70 Pass 120 51.8 38.1 0.74 -13.7 19.55 13.77 0.70 Pass 121 51.7 38.2 0.74 -13.7 19.55 13.77 0.70 Pass 122 51.6 38.2 0.74 -13.4 19.55 14.06 0.72 Pass 123 51.6 37.7 0.73 -13.7 19.55 13.06 0.71 Pass 122 51.6 37.7 0.73 -13.7 19.55 13.06 0.72 Pass 124 51.5 0.73 -13.9 19.55 13.06 0.71 Pass 125 51.4 37.5 0.73 -14.1 19.55 13.09 0.71 Pass 126 51.3 37.2 0.72 -14.1 19.55 13.09 0.71 Pass 127 50.7 30.40 0.71 -14.5 19.55 13.74 0.70 Pass 128 0.83 </td <td>118</td> <td>52.0</td> <td>39.5</td> <td>0.76</td> <td>-12.4</td> <td>19.55</td> <td>13.63</td> <td>0.70</td> <td>Pass</td> <td>165</td> <td>51.1</td> <td>38.5</td> <td>0.75</td> <td>-12.5</td> <td>18.40</td> <td>8.24</td> <td>0.45</td> <td>Pass</td>	118	52.0	39.5	0.76	-12.4	19.55	13.63	0.70	Pass	165	51.1	38.5	0.75	-12.5	18.40	8.24	0.45	Pass
120 51.8 38.1 0.74 -13.7 19.55 13.77 0.70 Pass 121 51.7 38.2 0.74 -13.5 19.55 14.15 0.72 Pass 122 51.6 38.2 0.74 -13.4 19.55 14.08 0.72 Pass 123 51.6 37.9 0.74 -13.4 19.55 14.06 0.72 Pass 124 51.5 0.73 -13.9 19.55 13.06 0.71 Pass 125 51.4 37.2 0.72 -14.1 19.55 13.94 0.71 Pass 126 51.3 37.2 0.73 -14.1 19.55 13.94 0.71 Pass 127 51.0 36.9 0.72 -14.1 19.55 13.93 0.71 Pass 128 51.0 36.2 0.71 -14.5 19.55 13.24 0.68 Pass 129 50.7 36.0 0.71 -14.5 19.55 12.26 0.63 Pass 120 50.7 </td <td>119</td> <td>51.9</td> <td>38.9</td> <td>0.75</td> <td>-12.9</td> <td>19.55</td> <td>13.73</td> <td>0.70</td> <td>Pass</td> <td>166</td> <td>50.8</td> <td>38.9</td> <td>0.77</td> <td>-11.9</td> <td>18.03</td> <td>8.26</td> <td>0.46</td> <td>Pass</td>	119	51.9	38.9	0.75	-12.9	19.55	13.73	0.70	Pass	166	50.8	38.9	0.77	-11.9	18.03	8.26	0.46	Pass
121 51.7 38.2 0.74 -13.5 19.55 14.15 0.72 Pass 122 51.6 38.2 0.74 -13.4 19.55 14.08 0.72 Pass 123 51.6 37.9 0.74 -13.7 19.55 14.06 0.72 Pass 124 51.5 37.5 0.73 -14.0 19.55 13.86 0.71 Pass 125 51.4 37.5 0.73 -14.1 19.55 13.86 0.71 Pass 126 51.3 37.2 0.72 -14.1 19.55 13.94 0.71 Pass 125 51.4 3.62 0.71 -14.6 19.55 13.24 0.71 Pass 126 50.7 36.0 0.71 -14.5 19.55 13.24 0.68 Pass 129 50.7 36.0 0.71 -14.5 19.55 12.26 0.63 Pass 130 50.6 36.5 0.70 -15.2 19.55 12.26 0.63 Pass 131 </td <td>120</td> <td>51.8</td> <td>38.1</td> <td>0.74</td> <td>-13.7</td> <td>19.55</td> <td>13.77</td> <td>0.70</td> <td>Pass</td> <td>167</td> <td>50.8</td> <td>39.2</td> <td>0.77</td> <td>-11.6</td> <td>18.03</td> <td>8.25</td> <td>0.46</td> <td>Pass</td>	120	51.8	38.1	0.74	-13.7	19.55	13.77	0.70	Pass	167	50.8	39.2	0.77	-11.6	18.03	8.25	0.46	Pass
122 51.6 38.2 0.74 -13.4 19.55 14.08 0.72 Pass 123 51.6 37.9 0.74 -13.7 19.55 14.06 0.72 Pass 124 51.5 37.5 0.73 -14.0 19.55 13.86 0.71 Pass 125 51.4 37.5 0.73 -14.0 19.55 13.94 0.71 Pass 126 51.3 37.2 0.72 -14.1 19.55 13.90 0.71 Pass 127 51.0 36.9 0.72 -14.1 19.55 13.90 0.71 Pass 126 51.3 37.2 0.72 -14.1 19.55 13.93 0.71 Pass 127 50.7 36.0 0.71 -14.5 19.55 13.24 0.46 Pass 128 50.7 36.0 0.71 -14.7 19.55 12.26 0.63 Pass 130 50.7 35.0 0.70 -15.2 19.55 12.26 0.63 Pass 133 </td <td>121</td> <td>51.7</td> <td>38.2</td> <td>0.74</td> <td>-13.5</td> <td>19.55</td> <td>14.15</td> <td>0.72</td> <td>Pass</td> <td>168</td> <td>50.9</td> <td>39.4</td> <td>0.77</td> <td>-11.5</td> <td>18.03</td> <td>8.34</td> <td>0.46</td> <td>Pass</td>	121	51.7	38.2	0.74	-13.5	19.55	14.15	0.72	Pass	168	50.9	39.4	0.77	-11.5	18.03	8.34	0.46	Pass
123 51.6 37.9 0.74 -13.7 19.55 14.06 0.72 Pass 124 51.5 37.5 0.73 -14.0 19.55 13.86 0.71 Pass 125 51.4 37.5 0.73 -14.1 19.55 13.94 0.71 Pass 126 51.3 37.2 0.72 -14.1 19.55 13.94 0.71 Pass 127 51.0 36.9 0.72 -14.1 19.55 13.24 0.71 Pass 128 50.8 36.2 0.71 -14.5 19.55 13.24 0.68 Pass 127 50.7 36.1 0.71 -14.5 19.55 13.24 0.68 Pass 128 50.7 36.0 0.71 -14.5 19.55 12.24 0.68 Pass 131 50.6 35.5 0.70 -15.2 19.55 12.27 0.65 Pass 132 50.6 35.5 0.70 -15.5 19.55 11.20 0.57 Pass 133 </td <td>122</td> <td>51.6</td> <td>38.2</td> <td>0.74</td> <td>-13.4</td> <td>19.55</td> <td>14.08</td> <td>0.72</td> <td>Pass</td> <td>169</td> <td>50.9</td> <td>39.3</td> <td>0.77</td> <td>-11.6</td> <td>18.03</td> <td>8.15</td> <td>0.45</td> <td>Pass</td>	122	51.6	38.2	0.74	-13.4	19.55	14.08	0.72	Pass	169	50.9	39.3	0.77	-11.6	18.03	8.15	0.45	Pass
124 51.5 37.5 0.73 -14.0 19.55 13.86 0.71 Pass 125 51.4 37.5 0.73 -13.9 19.55 13.94 0.71 Pass 126 51.3 37.2 0.72 -14.1 19.55 13.90 0.71 Pass 127 51.0 36.9 0.72 -14.1 19.55 13.93 0.71 Pass 128 50.8 36.2 0.71 -14.6 19.55 13.62 0.70 Pass 129 50.7 36.1 0.71 -14.5 19.55 13.24 0.68 Pass 130 50.7 36.0 0.71 -14.7 19.55 12.24 0.68 Pass 131 50.6 35.5 0.70 -15.2 19.55 12.24 0.62 Pass 132 50.7 35.6 0.70 -15.2 19.55 12.40 0.62 Pass 133 50.6 34.6 0.68 -15.9 19.55 11.20 0.57 Pass 134 </td <td>123</td> <td>51.6</td> <td>37.9</td> <td>0.74</td> <td>-13.7</td> <td>19.55</td> <td>14.06</td> <td>0.72</td> <td>Pass</td> <td>170</td> <td>50.9</td> <td>38.8</td> <td>0.76</td> <td>-12.1</td> <td>18.03</td> <td>7.51</td> <td>0.42</td> <td>Pass</td>	123	51.6	37.9	0.74	-13.7	19.55	14.06	0.72	Pass	170	50.9	38.8	0.76	-12.1	18.03	7.51	0.42	Pass
125 51.4 37.5 0.73 -13.9 19.55 13.94 0.71 Pass 126 51.3 37.2 0.72 -14.1 19.55 13.90 0.71 Pass 127 51.0 36.9 0.72 -14.1 19.55 13.93 0.71 Pass 128 50.8 36.2 0.71 -14.6 19.55 13.62 0.70 Pass 129 50.7 36.1 0.71 -14.7 19.55 13.24 0.68 Pass 120 50.7 36.1 0.71 -14.7 19.55 12.73 0.65 Pass 130 50.7 36.6 0.70 -15.2 19.55 12.73 0.65 Pass 131 50.6 35.5 0.70 -15.2 19.55 12.70 0.63 Pass 133 50.7 35.6 0.70 -15.2 19.55 12.27 0.63 Pass 133 50.6 34.6 0.68 -15.9 19.55 11.20 0.57 Pass 134 </td <td>124</td> <td>51.5</td> <td>37.5</td> <td>0.73</td> <td>-14.0</td> <td>19.55</td> <td>13.86</td> <td>0.71</td> <td>Pass</td> <td>171</td> <td>50.9</td> <td>39.0</td> <td>0.77</td> <td>-11.9</td> <td>18.03</td> <td>7.66</td> <td>0.42</td> <td>Pass</td>	124	51.5	37.5	0.73	-14.0	19.55	13.86	0.71	Pass	171	50.9	39.0	0.77	-11.9	18.03	7.66	0.42	Pass
126 51.3 37.2 0.72 14.1 19.55 13.90 0.71 Pass 127 51.0 36.9 0.72 14.1 19.55 13.93 0.71 Pass 128 50.8 36.2 0.71 14.6 19.55 13.62 0.70 Pass 129 50.7 36.1 0.71 14.6 19.55 13.24 0.68 Pass 130 50.7 36.0 0.71 14.7 19.55 12.24 0.68 Pass 131 50.6 35.5 0.70 15.2 19.55 12.26 0.63 Pass 132 50.7 35.6 0.70 15.2 19.55 12.27 0.63 Pass 133 50.7 35.7 0.70 15.0 19.55 11.20 0.57 Pass 134 50.6 35.2 0.70 15.5 11.20 0.57 Pass 135 50.6 34.6 0.68 15.9 19.55 11.20 0.57 Pass 136 50.4 <	125	51.4	37.5	0.73	-13.9	19.55	13.94	0.71	Pass	172	50.9	39.3	0.77	-11.6	18.03	7.83	0.43	Pass
127 51.0 36.9 0.72 -14.1 19.55 13.93 0.71 Pass 128 50.8 36.2 0.71 -14.6 19.55 13.62 0.70 Pass 129 50.7 36.1 0.71 -14.5 19.55 13.24 0.68 Pass 130 50.7 36.0 0.71 -14.7 19.55 12.26 0.63 Pass 131 50.6 35.5 0.70 -15.2 19.55 12.26 0.63 Pass 132 50.7 35.6 0.70 -15.2 19.55 12.26 0.63 Pass 132 50.7 35.6 0.70 -15.2 19.55 12.26 0.63 Pass 132 50.7 35.6 0.70 -15.2 19.55 12.27 0.63 Pass 133 50.6 34.6 0.68 -15.9 19.55 11.20 0.57 Pass 134 50.6 34.6 0.68 -15.9 19.55 11.20 0.57 Pass 135 </td <td>126</td> <td>51.3</td> <td>37.2</td> <td>0.72</td> <td>-14.1</td> <td>19.55</td> <td>13.90</td> <td>0.71</td> <td>Pass</td> <td>173</td> <td>50.9</td> <td>39.5</td> <td>0.78</td> <td>-11.4</td> <td>18.01</td> <td>7.98</td> <td>0.44</td> <td>Pass</td>	126	51.3	37.2	0.72	-14.1	19.55	13.90	0.71	Pass	173	50.9	39.5	0.78	-11.4	18.01	7.98	0.44	Pass
12850.836.20.71-14.619.5513.620.70Pass12950.736.10.71-14.519.5513.240.68Pass13050.736.00.71-14.719.5512.730.65Pass13150.635.50.70-15.219.5512.260.63Pass13250.735.60.70-15.219.5512.260.63Pass13350.735.70.70-15.219.5512.270.63Pass13450.635.20.70-15.419.5511.200.57Pass13550.634.60.68-15.919.5511.200.57Pass13650.434.40.68-16.019.5511.200.57Pass13750.534.70.69-15.819.5511.200.57Pass13850.634.80.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass	127	51.0	36.9	0.72	-14.1	19.55	13.93	0.71	Pass	174	50.8	39.7	0.78	-11.1	17.87	8.12	0.45	Pass
12950.736.10.7114.519.5513.240.68Pass13050.736.00.7114.719.5512.730.65Pass13150.635.50.7015.219.5512.260.63Pass13250.735.60.7015.219.5512.270.63Pass13350.735.70.7015.419.5512.270.63Pass13450.635.20.7015.419.5512.270.63Pass13550.634.60.68-15.919.5511.200.57Pass13650.434.40.68-16.019.5511.200.57Pass13650.634.40.68-16.019.5511.200.57Pass13650.434.40.68-16.019.5511.200.57Pass13750.534.70.69-15.819.5511.200.57Pass13850.634.80.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.370.58Pass13950.534.70.69-15.919.5511.200.57Pass<	128	50.8	36.2	0.71	-14.6	19.55	13.62	0.70	Pass	175	50.7	39.9	0.79	-10.8	17.78	8.21	0.46	Pass
13050.736.00.71-14.719.5512.730.65Pass13150.635.50.70-15.219.5512.260.63Pass13250.735.60.70-15.219.5512.140.62Pass13350.735.70.70-15.019.5512.270.63Pass13450.635.20.70-15.419.5512.270.63Pass13550.634.60.68-15.919.5511.730.60Pass13650.434.40.68-16.019.5511.200.57Pass13750.534.70.69-15.819.5511.290.58Pass13850.634.80.69-15.819.5511.290.58Pass13950.534.70.69-15.819.5511.290.58Pass13950.534.70.69-15.819.5511.290.58Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.120.57Pass13950.534.70.69-15.819.5511.120.57Pass14050.434.40.68-16.019.5510.440.55Pass14150.434.40.68-16.019.5510.450.53Pass	129	50.7	36.1	0.71	-14.5	19.55	13.24	0.68	Pass	176	50.4	40.0	0.79	-10.4	17.52	8.25	0.47	Pass
13150.635.50.70-15.219.5512.260.63Pass13250.735.60.70-15.219.5512.140.62Pass13350.735.70.70-15.019.5512.270.63Pass13450.635.20.70-15.419.5512.270.63Pass13550.634.60.68-15.919.5511.730.60Pass13650.434.40.68-16.019.5511.200.57Pass13750.534.70.69-15.819.5511.200.57Pass13850.634.80.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.290.58Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass13950.534.70.69-15.819.5511.200.57Pass14050.434.80.69-15.819.5511.200.57Pass14150.434.40.68-16.019.5511.200.57Pass14250.434.40.68-16.019.5511.200.57Pass14450.434.40.68-16.019.5510.840.55Pass	130	50.7	36.0	0.71	-14.7	19.55	12.73	0.65	Pass	177	50.3	40.2	0.80	-10.1	17.36	8.34	0.48	Pass
13250.735.60.7015.219.5512.140.62Pass13350.735.70.7015.019.5512.270.63Pass13450.635.20.7015.419.5511.730.60Pass13550.634.60.6815.919.5511.200.57Pass13650.434.40.6816.019.5511.200.57Pass13750.534.70.6915.819.5511.200.57Pass13850.634.80.6915.819.5511.200.57Pass13950.534.70.6915.819.5511.200.57Pass14050.434.40.6816.019.5511.200.57Pass14150.434.40.6816.019.5511.200.57Pass14250.434.40.6816.019.5511.200.57Pass14450.434.40.6816.019.5511.200.57Pass14450.434.40.6816.119.5510.430.55Pass14450.434.40.6816.119.5510.430.53Pass14450.434.40.6816.019.5510.430.53Pass14450.535.00.6915.519.5510.430.53Pass <t< td=""><td>131</td><td>50.6</td><td>35.5</td><td>0.70</td><td>-15.2</td><td>19.55</td><td>12.26</td><td>0.63</td><td>Pass</td><td>178</td><td>50.0</td><td>40.5</td><td>0.81</td><td>-9.5</td><td>17.06</td><td>8.45</td><td>0.50</td><td>Pass</td></t<>	131	50.6	35.5	0.70	-15.2	19.55	12.26	0.63	Pass	178	50.0	40.5	0.81	-9.5	17.06	8.45	0.50	Pass
133 50.7 35.7 0.70 -15.0 19.55 12.27 0.63 Pass 134 50.6 35.2 0.70 -15.4 19.55 11.73 0.60 Pass 135 50.6 34.6 0.68 -15.9 19.55 11.20 0.57 Pass 136 50.4 34.4 0.68 -16.0 19.55 11.20 0.57 Pass 137 50.5 34.4 0.68 -16.0 19.55 11.20 0.57 Pass 138 50.4 34.4 0.68 -16.0 19.55 11.20 0.58 Pass 137 50.5 34.7 0.69 -15.8 19.55 11.20 0.58 Pass 138 50.6 34.8 0.69 -15.8 19.55 11.54 0.59 Pass 139 50.5 34.7 0.69 -15.9 19.55 11.20 0.57 Pass 140 50.4 34.4 0.68 -16.0 19.55 11.20 0.57 Pass 141 </td <td>132</td> <td>50.7</td> <td>35.6</td> <td>0.70</td> <td>-15.2</td> <td>19.55</td> <td>12.14</td> <td>0.62</td> <td>Pass</td> <td>179</td> <td>49.8</td> <td>40.5</td> <td>0.81</td> <td>-9.3</td> <td>16.83</td> <td>8.47</td> <td>0.50</td> <td>Pass</td>	132	50.7	35.6	0.70	-15.2	19.55	12.14	0.62	Pass	179	49.8	40.5	0.81	-9.3	16.83	8.47	0.50	Pass
13450.635.20.70-15.419.5511.730.60Pass13550.634.60.68-15.919.5511.200.57Pass13650.434.40.68-16.019.5511.200.57Pass13750.534.70.69-15.819.5511.200.58Pass13850.634.80.69-15.819.5511.200.58Pass13950.534.70.69-15.819.5511.370.58Pass13950.534.70.69-15.919.5511.120.57Pass14050.434.40.68-16.019.5511.120.57Pass14150.434.40.68-16.019.5511.120.57Pass14250.434.40.68-16.019.5510.440.55Pass14450.534.70.69-15.510.430.53Pass14450.635.90.69-15.510.430.53Pass14450.635.90.69-15.510.5510.350.53Pass14450.635.90.67-15.510.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass144 <t< td=""><td>133</td><td>50.7</td><td>35.7</td><td>0.70</td><td>-15.0</td><td>19.55</td><td>12.27</td><td>0.63</td><td>Pass</td><td>180</td><td>49.8</td><td>40.6</td><td>0.82</td><td>-9.2</td><td>16.83</td><td>8.55</td><td>0.51</td><td>Pass</td></t<>	133	50.7	35.7	0.70	-15.0	19.55	12.27	0.63	Pass	180	49.8	40.6	0.82	-9.2	16.83	8.55	0.51	Pass
13550.634.60.68-15.919.5511.200.57Pass13650.434.40.68-16.019.5511.290.58Pass13750.534.70.69-15.819.5511.540.59Pass13850.634.80.69-15.819.5511.120.57Pass13950.534.70.69-15.919.5511.120.57Pass14050.434.40.68-16.019.5511.120.57Pass14150.434.40.68-16.019.5511.120.57Pass14250.434.40.68-16.019.5510.440.55Pass14350.535.00.69-15.519.5510.430.53Pass14450.635.90.71-14.719.5510.35Pass14450.635.90.71-14.719.5510.35Pass14450.635.90.71-14.719.5510.35Pass14450.635.90.71-14.719.5510.35Pass14450.635.90.71-14.719.5510.35Pass14450.635.90.71-14.719.5510.35Pass14450.635.90.71-14.719.5510.35Pass14450.635.90.71-14.719.55 <td>134</td> <td>50.6</td> <td>35.2</td> <td>0.70</td> <td>-15.4</td> <td>19.55</td> <td>11.73</td> <td>0.60</td> <td>Pass</td> <td>181</td> <td>49.8</td> <td>40.7</td> <td>0.82</td> <td>-9.0</td> <td>16.76</td> <td>8.61</td> <td>0.51</td> <td>Pass</td>	134	50.6	35.2	0.70	-15.4	19.55	11.73	0.60	Pass	181	49.8	40.7	0.82	-9.0	16.76	8.61	0.51	Pass
13650.434.40.68-16.019.5511.290.58Pass13750.534.70.69-15.819.5511.540.59Pass18449.941.40.83-8.516.769.080.54Pass13850.634.80.69-15.819.5511.370.58Pass18449.941.40.82-8.816.768.770.52Pass13950.534.70.69-15.919.5511.120.57Pass18650.441.40.82-9.017.119.050.53Pass14050.434.40.68-16.019.5510.640.55Pass18750.441.40.82-9.017.119.030.53Pass14150.434.40.68-16.119.5510.640.54Pass18850.441.40.82-9.017.119.030.53Pass14250.434.40.68-16.119.5510.430.53Pass18850.441.40.82-9.017.119.000.53Pass14350.535.00.69-15.519.5510.180.52Pass18950.641.60.82-8.917.189.030.53Pass14450.635.90.71-14.719.5510.180.52Pass19051.042.20.83-8.517.6	135	50.6	34.6	0.68	-15.9	19.55	11.20	0.57	Pass	182	49.8	41.1	0.82	-8.7	16.76	8.87	0.53	Pass
13750.534.70.69-15.819.5511.540.59Pass13850.634.80.69-15.819.5511.370.58Pass18550.041.10.82-8.816.748.860.53Pass13950.534.70.69-15.919.5511.120.57Pass18650.441.40.82-8.916.768.770.52Pass14050.434.50.68-16.019.5510.840.55Pass18650.441.40.82-9.017.119.030.53Pass14150.434.40.68-16.119.5510.640.54Pass18650.441.40.82-9.017.119.030.53Pass14250.434.40.68-16.019.5510.640.54Pass18650.441.40.82-9.017.119.000.53Pass14250.434.40.68-16.019.5510.430.53Pass18650.441.40.82-9.017.119.000.53Pass14350.535.00.69-15.519.5510.180.52Pass19051.042.20.83-8.717.469.410.54Pass14450.635.90.71-14.719.5510.350.53Pass19051.042.20.83-8.517.6	136	50.4	34.4	0.68	-16.0	19.55	11.29	0.58	Pass	183	49.9	41.4	0.83	-8.5	16.76	9.08	0.54	Pass
13850.634.80.69-15.819.5511.370.58Pass13950.534.70.69-15.919.5511.120.57Pass14050.434.50.68-16.019.5510.840.55Pass14150.434.40.68-16.019.5510.640.54Pass14250.434.40.68-16.019.5510.430.53Pass14350.535.00.69-15.519.5510.180.52Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14550.635.90.71-14.719.5510.35Pass <tr< td=""><td>137</td><td>50.5</td><td>34.7</td><td>0.69</td><td>-15.8</td><td>19.55</td><td>11.54</td><td>0.59</td><td>Pass</td><td>184</td><td>49.9</td><td>41.1</td><td>0.82</td><td>-8.8</td><td>16.74</td><td>8.86</td><td>0.53</td><td>Pass</td></tr<>	137	50.5	34.7	0.69	-15.8	19.55	11.54	0.59	Pass	184	49.9	41.1	0.82	-8.8	16.74	8.86	0.53	Pass
13950.534.70.69-15.919.5511.120.57Pass14050.434.50.68-16.019.5510.840.55Pass14150.434.40.68-16.119.5510.640.54Pass14250.434.40.68-16.119.5510.640.54Pass14350.535.00.69-15.519.5510.180.52Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14550.635.90.71-14.719.5510.350.53Pass14650.635.90.69-15.519.5510.180.52Pass14750.635.90.71-14.719.5510.350.53Pass14850.635.90.69-15.519.5510.180.52Pass14950.635.00.69-15.519.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass	138	50.6	34.8	0.69	-15.8	19.55	11.37	0.58	Pass	185	50.0	41.1	0.82	-8.9	16.76	8.77	0.52	Pass
14050.434.50.68-16.019.5510.840.55Pass14150.434.40.68-16.119.5510.640.54Pass18850.441.40.82-9.017.119.030.53Pass14250.434.40.68-16.019.5510.430.53Pass18850.441.40.82-9.017.119.000.53Pass14250.434.40.68-16.019.5510.430.53Pass18950.641.60.82-8.917.189.030.53Pass14350.535.00.69-15.519.5510.180.52Pass19051.042.20.83-8.717.469.410.54Pass14450.635.90.71-14.719.5510.350.53Pass19151.242.60.83-8.517.619.650.55Pass	139	50.5	34.7	0.69	-15.9	19.55	11.12	0.57	Pass	186	50.4	41.4	0.82	-9.0	17.11	9.05	0.53	Pass
14150.434.40.68-16.119.5510.640.54Pass14250.434.40.68-16.019.5510.430.53Pass14350.535.00.69-15.519.5510.180.52Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14450.635.90.71-14.719.5510.350.53Pass14550.635.90.71-14.719.5510.350.53Pass14550.635.90.71-14.719.5510.35Pass14550.635.90.71-14.719.5510.35Pass14550.635.90.71-14.719.5510.35Pass14550.6	140	50.4	34.5	0.68	-16.0	19.55	10.84	0.55	Pass	187	50.4	41.4	0.82	-9.0	17.11	9.03	0.53	Pass
14250.434.40.68-16.019.5510.430.53Pass14350.535.00.69-15.519.5510.180.52Pass19051.042.20.83-8.717.189.030.53Pass14450.635.90.71-14.719.5510.350.53Pass19151.242.60.83-8.517.619.650.55Pass	141	50.4	34.4	0.68	-16.1	19.55	10.64	0.54	Pass	188	50.4	41.4	0.82	-9.0	17.11	9.00	0.53	Pass
143 50.5 35.0 0.69 -15.5 19.55 10.18 0.52 Pass 144 50.6 35.9 0.71 -14.7 19.55 10.35 0.53 Pass 190 51.0 42.2 0.83 -8.7 17.46 9.41 0.54 Pass 144 50.6 35.9 0.71 -14.7 19.55 10.35 0.53 Pass 191 51.2 42.6 0.83 -8.5 17.61 9.65 0.55 Pass	142	50.4	34.4	0.68	-16.0	19.55	10.43	0.53	Pass	189	50.6	41.6	0.82	-8.9	17.18	9.03	0.53	Pass
144 50.6 35.9 0.71 -14.7 19.55 10.35 0.53 Pass 191 51.2 42.6 0.83 -8.5 17.61 9.65 0.55 Pass	143	50.5	35.0	0.69	-15.5	19.55	10.18	0.52	Pass	190	51.0	42.2	0.83	-8.7	17.46	9.41	0.54	Pass
	144	50.6	35.9	0.71	-14.7	19.55	10.35	0.53	Pass	191	51.2	42.6	0.83	-8.5	17.61	9.65	0.55	Pass

192	51.2	43.0	0.84	-8.3	17.62	9.78	0.56	Pass
193	51.3	43.0	0.84	-8.3	17.62	9.69	0.55	Pass
194	51.3	43.2	0.84	-8.1	17.62	9.90	0.56	Pass
195	51.4	43.4	0.85	-8.0	17.64	10.05	0.57	Pass
196	51.6	43.8	0.85	-7.8	17.90	10.47	0.58	Pass
197	51.6	43.9	0.85	-7.7	17.90	10.48	0.59	Pass
198	51.6	44.0	0.85	-7.6	17.92	10.57	0.59	Pass

MAX FORDHAM

