

Land at rear of 175 Briar Road

Energy and Sustainability Statement March 2024

Table of Contents

0. Executive Summary	3
1. Introduction	4
1.1 Site Overview	4
2. Overview of Policies	5
2.1 National Policy	5
2.2 Local Policy: Watford Local Plan	6
3. Methodology	7
3.1 Energy Hierarchy Application	7
3.2 Energy Modelling	7
4. Energy: Be Lean	8
4.1 Passive Measures	8
4.2 Active Measures	8
4.3 Be Lean Results	8
4.4 Passive Overheating Mitigation Measures	9
5. Energy: Be Clean	10
5.1 Area Wide Energy Networks	10
6. Energy: Be Green	11
6.1 Renewable and Low Carbon Technologies Appraisal	11
6.2 Site Constraints Review	11
6.3 Included Low Carbon Technologies: Air Source Heat Pump	12

7. Carbon Reduction Summary	13
8. Sustainability	14
8.1 Sustainability Summary	14
8.2 Management	14
8.3 Health and Wellbeing	14
8.4 Energy	14
8.5 Transport	14
8.6 Water	15
8.7 Flood Risk	15
8.8 Materials and Embodied Carbon	15
8.9 Waste	15
8.10 Pollution	16
8.11 Land Use and Ecology	16
8.12 Sustainability Conclusion	
9. Conclusion	17
10. Appendices	
10.1 Appendix A – SAP Worksheets	

Audit Sheet

Revision	Issued for	Date	Author
0	Draft	28/03/24	OE
1	Submission	05/04/24	OE

This document has been prepared for the sole use of RP Project Design. Its content should not be relied upon by others without the written authority of TwoEighty Consulting Ltd. If any unauthorised third party makes use of this report, they do so at their own risk and TwoEighty Consulting Ltd owe them no duty of care or skill. The content of this report is based on information available as of March 2024, the validity of the statements may therefore vary over time as planning guidance / policies and the evidence base change.

Executive Summary

This Energy and Sustainability statement reports how the proposed scheme at Land at rear of 175 Briar Road, Watford, WD25 0HL has responded to local policy requirements regarding sustainability, energy and climate change.

This assessment is prepared to support the planning application for the construction of a one-bedroom bungalow at land at the rear of 175 Briar Road.

This assessment has been prepared in line with the requirements of Watford's local policy surrounding Energy and Climate Change. The scheme complies with all relevant to Energy and Sustainability contained in Watford's Local Plan (2021).

The proposed energy strategy is set out in this report and the scheme achieves an on-site **CO2 reduction of 59%**, surpassing the 19% CO2 reduction required by local policy.

With regards to sustainability, the scheme aspires to reduce its environmental impact by incorporating sustainable measures across the design. Additional sustainability measures that will be integrated are contained in the body of this report.

Table 1: Regulated domestic carbon dioxide savings achieved on-site.

	Regulated domestic carbon dioxide emissions					
	Tonnes CO2 per annum	% Reduction				
Baseline Part L (2021) Compliant Scheme	0.6	-				
Watford Policy: 19% Reduction Requirement	0.5	19%				
Proposed Scheme at 175 Briar Road	0.2	59%				
Total regulated carbon dioxide reduction	0.4	59%				

Figure 1: Carbon dioxide emissions per annum at the proposed scheme.

*SAP 10.2 Carbon Factors have been used to assess the scheme, with the following emission rates:

Natural Gas: 0.210kgCO2/kWh
Grid Electricity: 0.136 kgCO2/kWh

1. Introduction

1.1 Site Overview

TwoEighty are appointed to prepare this Energy and Sustainability Statement for the proposed scheme at Land at rear of 175 Briar Road, Watford, WD25 0HL. The site plan is shown in Figure 2 to the right.

The proposed development is construction of a one-bedroom bungalow at land at the rear of 175 Briar Road.

The site is situated within the jurisdiction of Watford Borough Council. This assessment details how the proposed scheme adheres to regional and local policy requirements regarding energy and sustainability.

Figure 2: Site location (green).

2. Overview of Policies

2.1 National Policy

The National Planning Policy Framework (NPPF) (December 2023) establishes the Government's planning policies for England and denotes how these are expected to be applied. It provides a clear framework for which local authorities can use to develop their own distinctive local and neighbourhood plans. At the heart of the NPPF is a presumption in favour of sustainable development, which should be a core principle of plan making and decision taking. The core elements of the NPPF relating to sustainability focused decisions are listed below:

Plans and decisions should apply a presumption in favour of sustainable development. For plan-making this means that:

- a) all plans should promote a sustainable pattern of development that seeks to: meet the development needs of their area; align growth and infrastructure; improve the environment; mitigate climate change (including by making effective use of land in urban areas) and adapt to its effects;
- b) strategic policies should, as a minimum, provide for objectively assessed needs for housing and other uses, as well as any needs that cannot be met within neighbouring areas6, unless: i. the application of policies in this Framework that protect areas or assets of particular importance provides a strong reason for restricting the overall scale, type or distribution of development in the plan area; or ii. any adverse impacts of doing so would significantly and demonstrably outweigh the benefits, when assessed against the policies in this Framework taken as a whole. For decision-taking this means:
- c) approving development proposals that accord with an up-to-date development plan without delay; or
- d) where there are no relevant development plan policies, or the policies which are most important for determining the application are out-of-date, granting permission unless:
 - i. the application of policies in this Framework that protect areas or assets of particular importance provides a clear reason for refusing the development proposed7; or
 - ii. any adverse impacts of doing so would significantly and demonstrably outweigh the benefits, when assessed against the policies in this Framework taken as a whole.

The NPPF also acknowledges that the planning system should support the transition to a low carbon future in a changing climate, taking full account of flood risk and coastal change. It should help to: shape places in ways that contribute to radical reductions in greenhouse gas emissions, minimise vulnerability and improve resilience; encourage the reuse of existing resources, including the conversion of existing buildings; and support renewable and low carbon energy and associated infrastructure. To this extent, the policies relevant to procuring a low carbon future include:

New development should be planned for in ways that.

- a) avoid increased vulnerability to the range of impacts arising from climate change. When new development is brought forward in areas which are vulnerable, care should be taken to ensure that risks can be managed through suitable adaptation measures, including through the planning of green infrastructure; and
- b) can help to reduce greenhouse gas emissions, such as through its location, orientation and design. Any local requirements for the sustainability of buildings should reflect the Government's policy for national technical standards.

To help increase the use and supply of renewable and low carbon energy and heat, plans should:

- a) provide a positive strategy for energy from these sources, that maximises the potential for suitable development, and their future re-powering and life extension, while ensuring that adverse impacts are addressed appropriately (including cumulative landscape and visual impacts);
- b) consider identifying suitable areas for renewable and low carbon energy sources, and supporting infrastructure, where this would help secure their development; and
- c) identify opportunities for development to draw its energy supply from decentralised, renewable or low carbon energy supply systems and for colocating potential heat customers and suppliers.

2. Overview of Policies

2.2 Local Policy: Watford Local Plan (2021 – 2038)

Watford Borough Council adopted their new local plan on 17th October 2022. The Local Plan contains planning policies and site allocations to guide new development and inform planning decisions that help shape Watford's future.

Watford declared a climate emergency in 2019, setting a goal to be a carbon-neutral borough by 2030. This means that the borough is committed to reducing carbon dioxide emissions of new development.

The Local Plan enforces this requirement, with the following policies deemed relevant to this Energy and Sustainability Statement:

- Policy CC8.1: Mitigating Climate Change and Reducing Carbon Emissions
- Policy CC8.3: Sustainable Construction and Resource Management

The local plan places significant emphasis on reducing regulated carbon emissions of new development through use of energy efficient building fabric and use of low and zero carbon technologies.

Policy CC8.1 requires new development to employ sustainable construction methods, to be high quality and use on-site low carbon and renewable technologies. Policy CC8.3 then stipulates that new development must achieve a 19% improvement for carbon emission over the target emission rate as set out in Part L (2013) or any updated government standards. In lieu of these policies, the proposed scheme targeted to meet or exceed a 19% improvement for carbon emissions as set out in Part L (2021), which is the latest governmental standard and therefore represents best practice.

The proposed scheme has exceeded the 19% carbon reduction requirements stipulated in local policy, achieving an on-site regulated carbon reduction of 59%.

Other policy requirements relevant to residential development, include conserving water use, managing flood risk and improving biodiversity.

Figure 3: Watford Borough Council's Local Plan (2021 – 2038).

3. Methodology

3.1 Energy Hierarchy Application

In accordance with local policy, the proposed scheme has adopted the Energy Hierarchy, comprised of:

- Be Lean use less energy; achieved through implementation of building envelope upgrades and passive design measures.
- Be Clean supply energy efficiently; connecting to existing or future District Heating networks.
- Be Green use renewable technology; achieved through the implementation of green measures, such as Air Source Heat Pumps.

3.2 Energy Modelling

The latest version (SAP 10.2) of SAP software has been used to model the proposed scheme and accordingly, SAP 10.2 carbon factors have also been used. For the purposes of this report, renewable technology includes the provision of low carbon technologies such as Heat Pump technologies.

For the purposes of 'Be Lean' energy modelling, space heating and domestic hot water is provided by gas boilers with 89.5% efficiency, to standardise a target for comparison of energy efficiency. The 'Be Green' stage of the energy modelling then utilises an energy strategy comprised of Air Source Heat Pumps (ASHPs) which is the proposed energy strategy for this scheme.

The scheme has been modelled utilising the latest drawing set received from RP Project Design on the 20th March 2024.

Figure 6: Building Regulations Part L (2021).

4. Energy: Be Lean

Be Lean refers to the passive design and energy efficient solutions to minimise energy demand on-site.

4.1 Passive Measures

The following passive design measures will be included in the design to reduce energy demand and subsequent CO2 emissions emanating from the proposed development. The proposed building fabric values represent an improvement in comparison to the Part L (2021) backstop values. The following typical envelope performance characteristics and passive design measures will be included (see Table 2).

Parameter	Input	Unit
Floor U-Value	0.13	W/m2K
Roof U-Value	0.13	W/m2K
External Walls U-Value	0.17	W/m2K
Glazing U-Value	1.2	W/m2K
Glazing G-Value	0.76	-
Frame Factor	0.7 (Default)	-
Thermal Mass Parameter	250 (Medium)	kJ/m2K
Thermal Bridge Y- Value	<0.1 (Default)	-
Ventilation Method	Passive	-
Air Permeability	3.0 @ 50Pa (m3/(h.m2))	-
Wastewater Heat Recovery	Recoup: Pipe HEX	Efficiency 63.6%

Table 2: Building fabric parameters included in the proposed scheme's energy model.

A number of Passive Measures will be included on site, comprised of:

- An improved building fabric by comparison to the Part L (2021) back stop values.
- High performance glazing.
- Low air permeability to minimise heat loss.
- An orientation that suits sunlight and daylight access.
- Wastewater Heat Recovery system provided to the bathroom to maximise domestic hot water efficiency.

4.2 Active Measures

The scheme will benefit from high efficiency LED lighting throughout with a minimum efficacy of 90 lumens/Watt.

4.3 Fabric Energy Efficiency

The proposed scheme also has a Dwelling Fabric Energy Efficiency (DFEE) score that exceeds the Target Fabric Energy Efficiency (TFEE) rating representing a fabric efficiency improvement against Building Regulations Part L (2021).

4. Energy: Be Lean

4.4 Passive Overheating Mitigation Measures

Whilst the Be Lean stage predominantly relates to Energy Reduction through design, passive measures to mitigate overheating risk have also been considered, and include:

- Minimising internal heat through fully insulated pipework.
- Reducing heat entering through the use of, ~200mm window reveals and internal shutters.
- Openable windows with large free area to maximise passive ventilation to habitable spaces.
- Careful design of internal spaces to facilitate natural and crossventilation as much as possible at the scheme.
- Active cooling has been avoided due to the increased energy consumption associated with its use.

It is envisioned that through the combination of the above measures, and by adopting principles included within Part O (2021) Building Regulations, the overheating risk of the scheme is reduced.

5. Energy: Be Clean

Be Clean refers to measures that serve to reduce the overall emissions of the development using either District Heating Networks or Combined Heat and Power (CHP) engines. This can be achieved through exploiting local energy resources in proximity to the site boundary, such as secondary heat. The Be Clean stage is reviewed after development has made all reasonable efforts to reduce energy demand at the Be Lean Stage.

5.1 Area Wide Energy Networks: Existing and Planned

The first stage in assessing feasibility of the Be Clean stage is to evaluate localised opportunities for connecting to District Heating Networks (DHN) that are either already existing or planned within the vicinity of the proposed development.

An investigation has been carried out to determine the presence of any area wide district heating networks in the area or if any are planned in the future. This investigation has been conducted utilising the Department for Energy Security and Net Zero's (DESNZ) <u>Heat Network Planning Database</u>.

The investigation concluded that there are no District Heat Networks, either in situ or proposed, in vicinity of the site, with the closest heat network more than 1 mile from the proposed scheme. In addition, as a development of only one residential unit, it is not envisioned that the on-site space heating and domestic hot water demand would be sufficiently large enough to warrant any form of on-site communal or district heating systems. Therefore, there are no carbon savings at this stage of the energy hierarchy.

6. Energy: Be Green

Once all Be Lean and Be Clean measures have been incorporated into the design, the scheme should then look to reduce the overall emissions of the development through the inclusion of renewable and low carbon technologies such as Air Source Heat Pumps or Solar Photovoltaic Panels (PV panels).

This section addresses policies contained within the IPPPS and the Carbon Offsetting SPD. Several renewable and low carbon technologies were assessed for their compatibility with the project.

6.1 Renewable and Low Carbon Technologies Appraisal

The following renewable and low carbon technologies were reviewed for their compatibility with the proposed scheme and discussed with the design team:

- Solar Photovoltaic Panels (PV): PV panels generate electricity on site through exposure to solar radiation.
- **Solar Thermal Panels:** Solar Thermal panels capture long-wave radiation and use it to heat fluid contained in vacuum sealed circuits.
- **Biomass Heating:** Biomass relies on the combustion of organic material such as woodchips to provide space heating and domestic hot water.
- Air Source Ground Heat Pumps (ASHPs): ASHPs work by capturing energy from the ambient outdoor air and use it to evaporate and compress refrigerant. This compression generates heat. ASHPs can be used for both space heating and/or domestic hot water supply.
- Ground Source Heat Pumps (GSHPs): GSHPs capture heat from the earth or sub-terrain aquifers and use this heat to evaporate and compress refrigerant; generating heat.

6.2 Site Constraints Review

A review of the potential low carbon technologies listed above illustrated that Air Source Heat Pumps were best suited to the proposed scheme, partially for their ability to provide both space heating and domestic hot water at very high efficiencies. Biomass was ruled out as a Be Green measure, owing to its requirements for large storage areas for fuel, and equally because of the potential impact on local Air Quality. Any combustion process can emit oxides of nitrogen and particulate matter.

Ground Source Heat Pumps were assessed for their feasibility at the site, however due to complications with both their requirement for borehole or slinky arrangements and subsequent potential for further environmental complications, they were ruled out.

Further information regarding the chosen technologies for the site can be found overleaf.

6. Energy: Be Green

6.3 Included Low Carbon Technologies: Air Source Heat Pump

The scheme has opted to utilise an individual Air Source Heat Pump (ASHP) solution to provide space heating and domestic hot water (DHW) for the proposed dwelling.

Heat Pumps work by extracting energy from the ambient air temperature outside, and using it to evaporate and compress refrigerant, which in turn, generates hot water. They capture the energy from ambient air via an external condenser unit (Figure 8), which connects to an internal heat pump unit. It is currently proposed that the condensers will be discreetly situated at the scheme, away from any local sensitive noise receptors.

The water generated by the Heat Pump system will be stored in a wellinsulated hot water cylinder. The space will be heated using an underfloor heating system to maximise efficiency.

The Heat Pump will seek to comply with the minimum performance standards as set out in the Enhanced Capital Allowances (ECA) criteria and the Microgeneration Certification Scheme for Heat Pump Certification.

Space Heating and DHW Strategy	Туре	Details
Space Heating System	ASHP	170% default efficiency. (MCS)
Heating Emitter	Underfloor Heating	-
Domestic Hot Water System	ASHP	170% default efficiency. (MCS)
DHW Storage	Yes	~200 litres, 150 mm foam insulation
Low / Zero Carbon Technologies Used	ASHP	170% default efficiency.

Table 3: Summary of Space Heating and Domestic Hot Water Strategy at the Be Green Stage.

Figure 8: Dimensions of a Mitsubishi external condenser unit.

Figure 9: Indicative example of Daikin Altherma External Condenser (Source: Daikin).

7. Site Wide Carbon Reduction Summary

The scheme has adopted the Energy Hierarchy, with Be Lean measures comprising a building envelope that exceeds Part L (2021) requirements combined with the inclusion of Wastewater Heat Recovery (WWHRS) systems. Be Green measures include a low carbon space heating and domestic hot water strategy utilising Air Source Heat pump technology.

The scheme achieves an overall **on-site regulated CO2 reduction of 59%**, surpassing the 19% requirement set out in local policy.

Table 5: Summary of carbon dioxide emissions from the baseline scheme.

	Carbon dioxide emissions (tonnes CO2 po annum)					
	Regulated	Unregulated				
Baseline Scheme Compliant with Part L (2021) Building Regulations	0.6	0.2				
Watford Local Plan Target Requirements	0.6	0.2				
After application of Energy Hierarchy at 175 Briar Road.	4.0	5.3				

Figure 11: Carbon emissions summary of the proposed scheme at 175 Briar Road.

8. Sustainability

8.1 Sustainability Summary

Sustainability is a core focal point of the design which constitutes the construction of an energy efficient dwelling. The dwelling's target is to meet or exceed the required carbon reduction target, and compliance at the design stage has been demonstrated in the body of this report.

Additional sustainability measures that will be incorporated and adhered to are detailed below, to assist with compliance with both local and regional policies regarding Energy and Sustainability.

8.2 Management

To ensure that the construction site is managed in a way that is not detrimental to the environment or neighbours, the contractor will be selected with consideration of their ability to comply with the principles of the Considerate Constructors Scheme. The principal contractors and subcontractors will be encouraged to monitor their energy and water consumption on-site to promote conservation use and all timber used will be legally harvested and FSC certified.

To ensure that the proposed building services and energy strategy are sufficiently installed, the scheme will look to achieve MCS certification for the Air Source Heat Pump.

Post completion, a building user guide will be provided to occupants to ensure that the occupants are familiar with the building systems and to answer any questions that might impact on the use of the space. This will ensure that the proposed scheme is used in an efficient manner.

8.3 Health and Wellbeing

The development is designed to encourage a healthy and safe internal and external environment. All habitable spaces will look to meet daylight targets set by the Building Research Establishment's publication on Site Layout: Planning for Daylight and Sunlight – A guide to good practice (2022) Building materials will be specified to improve both the thermal efficiency of the unit, and to improve sound insulation between dwellings and external noise sources.

The unit will be capable of using passive ventilation methods to ensure a constant and fresh flow of air. Cross ventilation has been maximised in accordance with best practice to reduce overheating risk in hotter periods.

8.4 Energy

The proposed scheme demonstrates a carbon reduction that surpasses regulated CO2 reduction targets set in Local and Regional Policy and equates to an 0.4 tonne CO2 reduction beyond Building Regulations Part L (2021).

To further support with energy conservation, the scheme will benefit from the ability to display energy consumption data and record energy use, which will enable residents to reduce their unregulated energy use.

Where white goods are provided to the unit, the scheme will look to procure A-rated energy efficient appliances where feasible. This will reduce both energy consumption and carbon emissions from appliance use within the unit.

All external lighting will use energy efficient bulbs and operate on either a timer or passive infrared (PIR) sensor to minimise use when the spaces aren't in use.

8.5 Transport

To promote the use of public transport, occupants will be provided with details of the local public transport connections in the vicinity of the site. This includes the Briar Road bus stop approximately 150 metres to the north west of the site, providing accessibility to bus route 319. This routes provide frequent trips to Watford, Woodside and Kingswood. The site is also situated within a 2 mile walk of North Watford Train Station.

8. Sustainability

8.5 Transport Continued

The site is situated in proximity to local amenities which could be reached via walking or cycling. There is a local grocery store and pharmacy within 500m of the site.

To promote the adoption of cycling by residents and reduce need for short vehicle trips, a bike storage facility will be provided on site for occupants use. In accordance with Part S of Building Regulations electric Vehicle charging infrastructure will also be incorporated as part of the scheme. This will encourage electric vehicle trips and reduce the use of Internal Combustion Engine (ICE) vehicles, benefitting local air quality.

8.6 Water

Reducing the consumption of potable water will be a significant consideration for the scheme. The water consumption criteria for occupants will be in line with the 110 litres per person per day, as required by Building Regulations Part G.

Water use will be reduced as much as possible, primarily through the specification of efficient sanitary ware and water efficient fittings. External water use will be reduced through providing space for the provision of a water butt in the private amenity space at the rear of the scheme.

8.7 Flood Risk

The scheme is situated within flood Zone 1, meaning the site has a low risk of fluvial flooding.

<u>https://flood-map-for-planning</u>. service.gov.uk/location

Figure 12: Flood risk map for planning. Site (red).

8.8 Materials and Embodied Carbon

Materials with a low environmental impact and low embodied carbon footprint will be implemented where feasible. Recycled, sustainable and locally sourced materials will be prioritised. Where possible, building materials should achieve a rating of A+ to D in the BRE's Green Guide on Materials.

Circular economy principles will be adopted and any waste arising from the demolition of existing structures on site will be assessed for practicability of reusing the waste in the new scheme.

8.9 Waste

Where possible, closed loop recycling will be practiced on site, and where this isn't possible, open loop recycling will be undertaken to minimise the amount of waste generated. Additionally, a construction site waste management strategy will be implemented to set out targets to minimise waste and procedures for handling any hazardous materials that may arise as a result of the proposed works.

Municipal waste will be minimised through the installation of on-site recycling space and storage. Residents will be requested to separate and recycle their waste in dedicated recycling containers provided.

8. Sustainability

8.10 Pollution

To reduce both the carbon dioxide and nitrogen oxide (NOX) emissions associated with the proposed site, there will be no combustion boilers provided.

All external lighting provided will be designed with the consideration of reducing nighttime pollution.

8.11 Land Use and Ecology

To promote an improvement in ecological value, the site will look to protect existing ecological features during the construction stage. The scheme will also benefit from new planting of shrubs and other native species in the garden area to the rear of the site.

8.12 Sustainability Conclusion

The measures identified and detailed in this section promote a holistically sustainable scheme that demonstrates a significant improvement in comparison to the existing dwelling on site. The proposed scheme will benefit from:

- Reduced regulated carbon dioxide emissions.
- No nitrogen oxide emissions from the energy strategy.
- Low flow water appliances.
- Promotion of public transport and active travel, supported by proximity of local transport links and amenities.
- Planting of new shrubs and native species to garden.
- Minimising waste arising from construction and occupation through adoption of circular economy principles.

9. Conclusion

An Energy and Sustainability Statement has been undertaken to demonstrate how the proposed scheme at Land at rear of 175 Briar Road, Watford, WD25 OHL has responded to local policy requirements regarding sustainability, energy and climate change.

This assessment is prepared to support the planning application for the construction of a one-bedroom bungalow at land at the rear of 175 Briar Road.

The proposed energy strategy complies with all local policies relevant to Climate Change and Energy and exceeds the CO2 reduction requirement set out in Watford's Local Plan.

The scheme will benefit from passive design and energy efficiency improvements, including an improved building fabric, beyond requirements of Part L (2021), a Wastewater Heat Recovery System and low energy lighting. The energy strategy is comprised of an Air Source Heat Pump solution providing space heating and domestic hot water, offering a low carbon solution.

The energy strategy follows the energy hierarchy; Be Lean, Be Clean, Be Green to maximise the carbon reduction. The proposed energy strategy is set out in this report and the scheme achieves an on-site regulated **CO2 reduction of 59%** beyond Building Regulations Part L (2021).

The scheme has incorporated the core principles of sustainability in its design and will continue to integrate the sustainability requirements set out in local and regional policy throughout the next stages of the development.

Table 7: Percentage of carbon dioxide reductions achieved at scheme.

	Regulated domestic carbon dioxide emissions					
	Tonnes CO2 per annum	% Reduction				
Baseline Part L (2021) Compliant Scheme	0.6	_				
Watford Policy: 19% Reduction Requirement	0.5	19%				
Proposed Scheme at 175 Briar Road	0.2	59%				
Total regulated carbon dioxide reduction	0.4	59%				

Figure 13 Carbon dioxide emissions per annum at the proposed scheme.

*SAP 10.2 Carbon Factors have been used to assess the scheme, with the following emission rates:

Natural Gas:	0.210kgCO2/kWh
Grid Electricity:	0.136 kgCO2/kWh

10. Appendices

10.1 Appendix A – SAP Worksheets

Property Reference	:e	R	Rear of 175 Briar Road						Is	05/04/2024				
Assessment Refe	rence	В	e Green					Prop Type R	Ref					
Property		R	ear of 175 Briar	Road, Watford	I, WD25 0HL									
SAP Rating					81 B		DER	6.5	7	TER		15.36		
Environmental					96 A		% DER < TEF	2				57.23		
CO ₂ Emissions (t/	year)				0.23		DFEE	49.	.61	TFEE	:	50.01		
Compliance Chec	k				See BREL		% DFEE < TF	EE	07	трер	,	0.80		
/0 DFER STFER					15.50		DFER	09.	.21		`	82.04		
Assessor Details		Mr. Oliv	er Eggenton							Asse	ssor ID	AQ01-00	01	
SAP 10 WORKSHEET CALCULATION OF I	' FOR New E WELLING EM	uild (As 1 ISSIONS F	Designed) DR REGULATIC	(Version 10 NS COMPLIAN).2, February ICE	· 2022)								
1. Overall dwell	ing charac	teristics						Area	Store	/ height		Volume		
Ground floor Total floor area Dwelling volume	a TFA = (la	.)+(1b)+(1	c)+(1d)+(1e)	(ln)	3	7.7400		(m2) 37.7400 (:	(1b) x 3a)+(3b)+(3c)+	(m) 2.4000 (3d) + (3e)	(2b) = (3n) =	(m3) 90.5760 90.5760	(1b) - (3b) (4) (5)	
2. Ventilation r	ate													
Number of open of Number of open f Number of chimme Number of flues Number of flues Number of blocke Number of passiy Number of flues	chimneys flues eys / flues attached t attached t attached t attached t tattached t ed chimneys ittent ext re vents ess gas fir	attached o solid f o other h ract fans es	to closed f uel boiler eater	ire							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 10.0000 0.0000 0.0000	(6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)	
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	e to chimne ethod AP50 se sheltered	ys, flues	and fans	= (6a)+(6b)	+(6c)+(6d)+(6e)+(6f)+	(6g)+(7a)+(7b)+(7c) =		10.0000	Air change / (5) = B	s per hour 0.1104 Yes lower Door 3.0000 0.2604 0	<pre>(8) (17) (18) (19)</pre>	
Shelter factor Infiltration rat	e adjusted	to inclu	de shelter f	actor					(20) = 1 - (21)	[0.075 x = (18)	(19)] = x (20) =	1.0000 0.2604	(20) (21)	
Wind speed Wind factor	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	(22) (22a)	
Effective ac	0.3320 0.5551	0.3255 0.5530	0.3190 0.5509	0.2864 0.5410	0.2799 0.5392	0.2474 0.5306	0.2474 0.5306	0.2409 0.5290	0.2604 0.5339	0.2799 0.5392	0.2930 0.5429	0.3060 0.5468	(22b) (25)	
3. Heat losses a	und heat lo	ss parame	ter											
Element Window (Uw = 1.2 Door Heatloss Floor 1 External Wall 1 External Roof 1 Total net area of Fabric heat loss	20) of external 5, W/K = Su	elements m (A x U)	Aum(A, m2)	Gross m2 65.0000 37.7400	Openings m2 9.3000	Ne 8 1 37 55 37 140	tArea m2 .0000 .3000 .7400 .7400 .7400 .4800 (26)(U-value W/m2K 1.1450 1.0000 0.1300 0.1700 0.1300 30) + (32)	A x U W/K 9.1603 1.3000 4.9062 9.4690 4.9062 = 29.7417	к 11 6	-value kJ/m2K 0.0000 0.0000 9.0000	A x K kJ/K 4151.4000 3342.0000 339.6600	(27) (26) (28a) (29a) (30) (31) (33)	
Heat capacity Cm Thermal mass par Thermal bridges Point Thermal br Total fabric hea	n = Sum(A x cameter (TM (User defi cidges tt loss	: k) IP = Cm / ' ned value	TFA) in kJ/n 0.050 * tot	12K al exposed	area)			(28)	(33)	+ (32a). + (36)	(32e) = (36a) = + (36a) =	7833.0600 207.5533 7.0240 0.0000 36.7657	(34) (35) (36) (37)	
Ventilation heat	Jan	Feb	nthly (38)m Mar	= 0.33 x (2	25)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	(20)	
(38) M Heat transfer co Average = Sum(39	10.5925 oeff 53.3582 0)m / 12 =	16.5285 53.2942	16.4658 53.2315	16.1713 52.9370	16.1162 52.8819	15.8597 52.6254	15.8597 52.6254	15.8122 52.5779	15.9585	10.1162 52.8819	16.2277 52.9934	16.3442 53.1099 52.9367	(38)	

HLP HLP (average) Days in mont	Jan 1.4138 31	Feb 1.4121 28	Mar 1.4105 31	Apr 1.4027 30	May 1.4012 31	Jun 1.3944 30	Jul 1.3944 31	Aug 1.3932 31	Sep 1.3970 30	Oct 1.4012 31	Nov 1.4042 30	Dec 1.4073 1.4027 31	(40)
4. Water heatin	ng energy r	equirements	s (kWh/year)									
Assumed occupan	ncy											1.3477	(42)
Hot water usage	e for mixer 62.7444	showers 61.7838	60.3681	58.1903	56.2390	53.5092	51.3502	53.8743	55.1438	57.8475	60.6632	62.6878	(42a)
Hot water usage	19.8037	19.5048	19.0795	18.4426	17.8686	17.0784	16.4790	17.2120	17.5967	18.3796	19.1936	19.7880	(42b)
Average daily h	28.4313 not water u	27.3974 se (litres,	26.3636 /day)	25.3297	24.2958	23.2620	23.2620	24.2958	25.3297	26.3636	27.3974	28.4313 102.0548	(42c) (43)
Daily hot water	Jan : use	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte Energy content	110.9794 163.3808 (annual)	108.6859 143.8135	105.8111 151.2019	101.9625 133.1886	98.4034 126.8028	93.8496 108.5340	91.0911 100.6583	95.3821 112.2665	98.0702 113.7565	102.5907 132.1985 Total = Su	107.2543 144.9577 um(45)m =	110.9071 162.8752 1593.6341	(44) (45)
Distribution Ic	24.5071	= 0.15 x (4 21.5720	45)m 22.6803	19.9783	19.0204	16.2801	15.0987	16.8400	17.0635	19.8298	21.7437	24.4313	(46)
b) If manufac Hot water sto	cturer declorage loss	ared loss i factor from e 2a	factor is no n Table 2 (:	ot known : kWh/litre/d	ay)							150.0000 0.0158 0.9283	(47) (51) (52)
Temperature f Enter (49) or (factor from (55)	Table 2b)										0.5400	(53) (55)
Total storage 1	36.8551	33.2885	36.8551	35.6662	36.8551	35.6662	36.8551	36.8551	35.6662	36.8551	35.6662	36.8551	(56)
Primary loss	36.8551 23.2624	33.2885 21.0112	36.8551 23.2624	35.6662 22.5120	36.8551 23.2624	35.6662 22.5120	36.8551 23.2624	36.8551 23.2624	35.6662	36.8551 23.2624	35.6662 22.5120	36.8551 23.2624	(57) (59)
Combi loss Total heat requ	0.0000 hired for w	0.0000 ater heatir	0.0000 ng calculate	0.0000 ed for each	0.0000 month	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(61)
WWHRS	223.4983 -45.6440	198.1131 -40.3289	211.3194 -42.1794	191.3668 -36.3503	186.9203 -33.9614	166.7122 -27.9156	160.7758 -24.3946	172.3840 -28.3614	171.9347 -28.9029	192.3160 -34.9327	203.1359 -39.7454	222.9927 -45.4530	(62) (63a)
PV diverter Solar input FGHRS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63b) (63c) (63d)
Output from w/h	177.8543	157.7843	169.1400	155.0165	152.9589	138.7966	136.3812	144.0225	143.0318	157.3832	163.3905	177.5396	(64) (64)
12Total per yea Electric shower	ar (kWh/yea r(s)	r)						rotur pe	ir your (inii	.,,,001, 00		1873	(64)
Host gains from	0.0000	0.0000	0.0000	0.0000 Tot	0.0000 al Energy us	0.0000 ed by insta	0.0000 antaneous ei	0.0000 Lectric show	0.0000 ver(s) (kWh	0.0000 /year) = Sun	0.0000 n(64a)m =	0.0000 0.0000	(64a) (64a)
neat gains iron	102.4181	91.2577	98.3686	90.8278	90.2559	82.6301	81.5629	85.4226	84.3666	92.0500	94.7410	102.2500	(65)
5. Internal gai	ins (see Ta	ble 5 and 5	5a) 										
Metabolic gains	Jan 67 3825	, Watts Feb 67 3825	Mar 67 3825	Apr 67 3825	May	Jun 67 3825	Jul 67 3825	Aug 67 3825	Sep	Oct	Nov 67 3825	Dec 67 3825	(66)
Lighting gains	(calculate 58.5792	d in Append 64.8556	dix L, equa 58.5792	tion L9 or 60.5319	L9a), also s 58.5792	ee Table 5 60.5319	58.5792	58.5792	60.5319	58.5792	60.5319	58.5792	(67)
Appliances gain	ns (calcula 115.8944	ted in Appe 117.0970	endix L, eq 114.0665	lation L13 107.6148	or L13a), al 99.4706	so see Tab. 91.8163	le 5 86.7027	85.5001	88.5307	94.9824	103.1265	110.7809	(68)
Cooking gains (29.7383	in Append: 29.7383	ix L, equat: 29.7383	ion L15 or 29.7383	L15a), also 29.7383	see Table 5 29.7383	29.7383	29.7383	29.7383	29.7383	29.7383	29.7383	(69)
Losses e.g. eva	aporation (1 -53.9060	negative va -53.9060	alues) (Tab -53.9060	Le 5) -53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	(70)
Water heating g	gains (Tabl 137.6587	e 5) 135.8002	132.2159	126.1497	121.3117	114.7641	109.6275	114.8153	117.1758	123.7231	131.5847	137.4328	(72)
Total internal	gains 358.3471	363.9675	351.0764	340.5111	325.5763	310.3270	298.1242	302.1094	309.4531	323.4995	341.4579	353.0076	(73)
6. Solar gains													
[Jan]			A	m2	Solar flux Table 6a W/m2	Specia or 5	g fic data Table 6b	Specific or Tabl	FF data e 6c	Acces facto Table 6	ss or 6d	Gains W	
Northeast Southeast Southwest			5.5 1.8 0.7	000 000 000	11.2829 36.7938 36.7938		0.7600 0.7600 0.7600	0. 0. 0.	7000 7000 7000	0.770 0.770 0.770	00 00 00	22.8786 24.4170 9.4955	(75) (77) (79)
Solar gains Total gains	56.7911 415.1383	104.3356 468.3032	162.9418 514.0182	235.7264 576.2375	294.9149 620.4912	306.3661 616.6930	289.7166 587.8408	243.4826 545.5920	187.8197 497.2728	120.7556 444.2551	69.4066 410.8645	47.7059 400.7135	(83) (84)
7 Mean inter-		ure (bosti											
Temperature dur	ing heating	q periods '	in the livi	ng area fro	 m Table 9. T	'h1 (C)						21.0000	(85)
Utilisation fac	tor for ga Jan	ins for liv Feb	ving area, n Mar	nil,m (see Apr	Table 9a) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	/
tau alpha	40.7782 3.7185	40.8271 3.7218	40.8752 3.7250	41.1026 3.7402	41.1455 3.7430	41.3460 3.7564	41.3460 3.7564	41.3834 3.7589	41.2685 3.7512	41.1455 3.7430	41.0589 3.7373	40.9688 3.7313	
util living are	0.9679	0.9494	0.9139	0.8286	0.6895	0.5191	0.3866	0.4315	0.6530	0.8642	0.9467	0.9716	(86)
MIT Th 2	19.7765 19.7527	19.9530 19.7540	20.2125 19.7553	20.5366 19.7613	20.7681 19.7624	20.8788 19.7676	20.9079 19.7676	20.9028 19.7686	20.8264 19.7656	20.5296 19.7624	20.1055 19.7601	19.7434 19.7578	(87) (88)

util rest of house	0 0369	0 0025	0 7000	0 6226	0 4204	0 2010	0 2214	0 5610	0 0220	0 0212	0 0642	(00)
MIT 2 18.3717 Living area fraction	18.5917	18.9102	19.2933	19.5385	19.6407	19.6591	19.6580	19.6020 fLA =	19.2987 Living area	18.7902 (4) =	18.3341 0.3590	(90) (91)
MIT 18.8761 Temperature adjustment	19.0804	19.3778	19.7397	19.9800	20.0853	20.1074	20.1050	20.0416	19.7406	19.2625	18.8401 0.0000	(92)
adjusted MIT 18.8761	19.0804	19.3778	19.7397	19.9800	20.0853	20.1074	20.1050	20.0416	19.7406	19.2625	18.8401	(93)
8. Space heating requirem	ent											
Jan Utilisation 0.9524 Useful gains 395.3689 Ext temp. 4.3000	Feb 0.9285 434.8054 4.9000	Mar 0.8849 454.8324 6.5000	Apr 0.7874 453.7160 8.9000	May 0.6360 394.6363 11.7000	Jun 0.4533 279.5491 14.6000	Jul 0.3112 182.9419 16.6000	Aug 0.3522 192.1703 16.4000	Sep 0.5836 290.2204 14.1000	Oct 0.8211 364.7826 10.6000	Nov 0.9236 379.4581 7.1000	Dec 0.9573 383.5990 4.2000	(94) (95) (96)
Heat loss rate W 777.7528	755.7360	685.5049	573.8216	437.8620	288.6638	184.5807	194.7989	313.2666	483.3743	644.5305	777.5347	(97)
Space heating kWh 284.4937 Space heating requirement	215.6654 - total p	171.6203 er year (kW	86.4761 h/year)	32.1599	0.0000	0.0000	0.0000	0.0000	88.2322	190.8521	293.0882 1362.5880	(98a)
Solar heating kWh 0.0000 Solar heating contributio	0.0000 n - total ;	0.0000 per year (k	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating kWh 284.4937	215.6654	171.6203	86.4761	32.1599	0.0000	0.0000	0.0000	0.0000	88.2322	190.8521	293.0882	(98c)
Space heating per m2	aiter sor	ar concribu	LIUII - LULA.	r þer year	(Kwii/year)				(98c)	/ (4) =	36.1046	(99)
9a. Energy requirements -	Individua	l heating s	ystems, inc	luding micr	:0-CHP							
Fraction of space heat fr	om seconda	ry/suppleme	ntary system	n (Table 11	.)						0.0000	(201)
Fraction of space heat fr Efficiency of main space Efficiency of main space Efficiency of secondary/s	om main sy heating sy heating sy upplementa	stem(s) stem 1 (in stem 2 (in ry heating	%) %) system, %								1.0000 219.3000 0.0000 0.0000	(202) (206) (207) (208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 284.4937	215.6654	171.6203	86.4761	32.1599	0.0000	0.0000	0.0000	0.0000	88.2322	190.8521	293.0882	(98)
Space heating efficiency 219.3000	(main heat 219.3000	ing system 219.3000	1) 219.3000	219.3000	0.0000	0.0000	0.0000	0.0000	219.3000	219.3000	219.3000	(210)
Space heating fuel (main 129.7281	heating sy 98.3426	stem) 78.2583	39.4328	14.6648	0.0000	0.0000	0.0000	0.0000	40.2336	87.0279	133.6472	(211)
Space heating efficiency 0.0000	(main heat 0.0000	ing system 0.0000	2) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating fuel (main 0.0000	heating sy 0.0000	stem 2) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Space heating fuel (secon 0.0000	dary) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating												
177.8543	157.7843	169.1400	155.0165	152.9589	138.7966	136.3812	144.0225	143.0318	157.3832	163.3905	177.5396	(64)
(217)m 190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	190.4000	(217)
93.4109 Space cooling fuel requir	82.8699	88.8340	81.4162	80.3355	72.8974	71.6288	75.6421	75.1217	82.6593	85.8143	93.2456	(219)
(221)m 0.0000 Pumps and Fa 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(221) (231)
Electricity generated by	PVs (Appen	dix M) (neg	ative quant:	4.629/ ity)	3.7825	4.2233	5.4897	7.1305	9.3556	10.5672	11.6405	(232)
Electricity generated by	wind turbi	nes (Append	ix M) (nega	tive quanti	.ty)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233a)
Electricity generated by	hydro-elec	tric genera	tors (Append	dix M) (nec	gative quanti	ty)	0.0000	0.0000	0.0000	0.0000	0.0000	(22540)
Electricity used or net e (235c)m 0.0000	lectricity 0.0000	generated 0.0000	by micro-CH 0.0000	P (Appendix 0.0000	N) (negativ 0.0000	e if net g 0.0000	eneration) 0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
Electricity generated by (233b)m 0.0000	PVs (Appen 0.0000	dix M) (neg 0.0000	ative quant: 0.0000	ity) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233b)
Electricity generated by (234b)m 0.0000	wind turbi 0.0000	nes (Append 0.0000	ix M) (nega 0.0000	tive quanti 0.0000	.ty) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
Electricity generated by (235b)m 0.0000	hydro-elec 0.0000	tric genera 0.0000	tors (Append 0.0000	dix M) (nec 0.0000	gative quanti 0.0000	ty) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235b)
Electricity used or net e (235d)m 0.0000	lectricity 0.0000	generated 0.0000	by micro-CHI 0.0000	P (Appendi) 0.0000	N) (negativ 0.0000	e if net g 0.0000	eneration) 0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Annual totals kWh/year Space heating fuel - main Space heating fuel - main	system 1 system 2										621.3351 0.0000	(211) (213)
Space heating fuel - seco Efficiency of water heate Water heating fuel used	ndary r										0.0000 190.4000 983.8757	(215)
Space cooling fuel											0.0000	(221)
Electricity for pumps and Total electricity for the Electricity for lighting	fans: above, kW (calculate	h/year d in Append	ix L)								0.0000 91.4053	(231) (232)
Energy saving/generation PV generation	technologi	es (Appendi	ces M ,N and	d Q)							0.0000	(233)
Wind generation Hydro-electric generation Electricity generated - M	(Appendix Nicro CHP (N) Appendix N)									0.0000 0.0000 0.0000	(234) (235a) (235)
Appendix Q - special feat Energy saved or generated	ures										-0.0000	(236)
Energy used Total delivered energy fo	r all uses										0.0000 1696.6161	(237) (238)
12a. Carbon dioxide emiss	ions - Ind	ividual hea	ting system:	s including	g micro-CHP						Den é a	
							Energy kWh/year	Emiss	ion Iactor kg CO2/kWh	k	Emissions g CO2/year	

Space heating - main system 1621.3351Total CO2 associated with community systems983.8757Water heating (other fuel)983.8757Space and water heating0.0000Pumps, fans and electric keep-hot0.0000Energy for lighting91.4051Total CO2, kg/yearEPC Dwelling Carbon Dioxide Emission Rate (DER)									0.1558 0.1403 0.0000 0.1443		96.8261 0.0000 138.0575 234.8836 0.0000 13.1926 248.0762 6.5700	(261) (373) (264) (265) (267) (268) (272) (273)	
13a. Primary ene	rgy - Indiv	vidual heat:	ing syste	ms including	micro-CHP								
Space heating - Total CO2 associ Water heating (O Space and water Pumps, fans and Energy for light Total Primary en Dwelling Primary	main system ated with o ther fuel) heating electric ke ing ergy kWh/ye energy Rat	n 1 community s eep-hot ear ce (DPER)	ystems					Energy kWh/year 621.3351 983.8757 0.0000 91.4053	Primary energy kg	factor C02/kWh 1.5769 1.5188 0.0000 1.5338	Prima	ry energy kWh/year 979.8026 0.0000 1494.3330 2474.1356 0.0000 140.2005 2614.3361 69.2700	(275) (473) (278) (279) (281) (282) (286) (287)
SAP 10 WORKSHEET CALCULATION OF T	FOR New Bu ARGET EMISS	nild (As De: SIONS	signed)	(Version 10.	2, February	2022)							
1. Overall dwell Ground floor Total floor area Dwelling volume	TFA = (1a)	+(1b)+(1c)+	+(1d)+(1e)(ln)	3	7.7400		Area (m2) 37.7400	Storey (1b) x 3a)+(3b)+(3c)+(height (m) 2.4000 3d)+(3e)	(2b) = (3n) =	Volume (m3) 90.5760 90.5760	(1b) - (3b (4) (5)
2. Ventilation r	ate										m3	per hour	
Number of open c Number of open f Number of chimme Number of flues Number of flues Number of blocke Number of interm Number of fluele	himneys lues ys / flues attached to attached to d chimneys ittent extr e vents ss gas fire	attached to solid fue: o ther hear cact fans	o closed l boiler ter	fire							$\begin{array}{ccccccc} 0 & * & 80 & = \\ 0 & * & 20 & = \\ 0 & * & 10 & = \\ 0 & * & 20 & = \\ 0 & * & 35 & = \\ 0 & * & 20 & = \\ 2 & * & 10 & = \\ 0 & * & 10 & = \\ 0 & * & 40 & = \end{array}$	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 20.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\end{array}$	(6a) (6b) (6c) (6d) (6e) (6f) (7a) (7b) (7c)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	to chimney thod AP50 e sheltered	vs, flues an	nd fans	= (6a)+(6b)+	(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+(7b)+(7c) =		20.0000	Air changes) / (5) = Bl	per hour 0.2208 Yes ower Door 5.0000 0.4708 0	<pre>(8) (17) (18) (19)</pre>
Shelter factor Infiltration rat	e adjusted	to include	shelter	factor					(20) = 1 - (21)	[0.075 > = (18)	x (19)] = x (20) =	1.0000 0.4708	(20) (21)
Wind speed Wind factor Adj infilt rate Effective ac	Jan 5.1000 1.2750 0.6003 0.6802	Feb 5.0000 1.2500 0.5885 0.6732	Mar 4.9000 1.2250 0.5767 0.6663	Apr 4.4000 1.1000 0.5179 0.6341	May 4.3000 1.0750 0.5061 0.6281	Jun 3.8000 0.9500 0.4473 0.6000	Jul 3.8000 0.9500 0.4473 0.6000	Aug 3.7000 0.9250 0.4355 0.5948	Sep 4.0000 1.0000 0.4708 0.6108	Oct 4.3000 1.0750 0.5061 0.6281	Nov 4.5000 1.1250 0.5297 0.6403	Dec 4.7000 1.1750 0.5532 0.6530	(22) (22a) (22b) (25)
3. Heat losses a Element	nd heat los	s paramete:	 r 	Gross	Openings	Net	 Area	U-value	A x U	F	(-value	АхК	
TER Opaque door TER Opening Type Heatloss Floor 1 External Wall 1 External Roof 1 Total net area o Fabric heat loss	<pre>(Uw = 1.20 f external , W/K = Sum</pre>)) elements An n (A x U)	um(A, m2)	m2 65.0000 37.7400	m2 9.3000	1. 8. 37. 55. 37. 140.	m2 3000 7400 7400 7400 4800 (26)(W/m2K 1.0000 1.1450 0.1300 0.1800 0.1100 30) + (32)	W/K 1.3000 9.1603 4.9062 10.0260 4.1514 = 29.5439		kJ/m2K	kJ/K	(26) (27) (28a) (29a) (30) (31) (33)
Thermal mass par List of Thermal K1 Eleme E5 Groun E16 Corn Thermal bridges	ameter (TME Bridges nt d floor (no er (normal) (Sum(L x Ps	? = Cm / TF2 ormal) Si) calculat	A) in kJ/ ted using	m2K Appendix K)] 2! !	Length Psi 5.0000 9.6000	-value 0.1600 0.0900	Tota 4.000 0.864	207.5533 1 0 4.8640	(35)
Point Thermal br Total fabric hea Ventilation heat	idges t loss loss calcu Jan	lated montl Feb	hly (38)m Mar	= 0.33 x (25 Apr)m x (5) May	Jun	Jul	Aug	(33) Sep	+ (36) Oct	(36a) = + (36a) = Nov	0.0000 34.4079 Dec	(37)

(20)	20 2202	20 1212	10 0162	10 0524	10 7722	17 0240	17 02/0	17 7705	10 2570	10 7722	10 1277	10 5107	(20)
Heat transfer	coeff	20.1212	19.9102	10.9554	10.//55	17.9340	17.9340	17.7795	10.2370	10.//33	19.1377	19.3107	(30)
Average = Sum(54.7382 39)m / 12 =	54.5291 =	54.3241	53.3614	53.1812	52.3427	52.3427	52.1874	52.6657	53.1812	53.5456	53.9266 53.3605	(39)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
HLP HLP (average)	1.4504	1.4449	1.4394	1.4139	1.4091	1.3869	1.3869	1.3828	1.3955	1.4091	1.4188	1.4289 1.4139	(40)
Days in mont	31	28	31	30	31	30	31	31	30	31	30	31	
4. Water heati	ng energy r	requirement	s (kWh/year)									
Assumed occupa	ncy											1.3477	(42)
Hot water usag	46.8150	46.1115	45.0863	43.1248	41.6772	40.0629	39.1454	40.1628	41.2781	43.0114	45.0150	46.6357	(42a)
Hot Water usag	e for baths 20.2552	19.9544	19.5308	18.7497	18.1649	17.5164	17.1661	17.5867	18.0447	18.7387	19.5358	20.1868	(42b)
Hot water usag	e for other 28.4313	27.3974	26.3636	25.3297	24.2958	23.2620	23.2620	24.2958	25.3297	26.3636	27.3974	28.4313	(42c)
Average daily	hot water u	ise (litres	/day)									87.7883	(43)
Daily hot wate	Jan r use	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte	95.5016 151.2511	93.4633 133.0906	90.9807 139.8339	87.2042 119.3782	84.1379 113.2658	80.8413 99.4038	79.5734 96.2371	82.0453 101.5893	84.6525 104.3850	88.1136 119.5693	91.9483 130.9972	95.2537 149.1443	(44) (45)
Energy content Distribution 1	(annual) oss (46)m	= 0.15 x (45)m							Total = S	um(45)m =	1458.1456	
Water storage	22.6877	19.9636	20.9751	17.9067	16.9899	14.9106	14.4356	15.2384	15.6578	17.9354	19.6496	22.3716	(46)
Store volume	turer decla	ared loss f	actor is kn	own (kWh/	· (vef							150.0000	(47)
Temperature	factor from	n Table 2b	accor is kii	0.000	aay).							0.5400	(49)
Total storage	(54) in (55 loss	01 0745	00.0005	00 5700	00.0005	00 5700	00 0005	00.0005	00 5700	00 0005	00 5700	0.7527	(55)
If cylinder co	23.3325 ntains dedi	21.0745 icated sola	r storage	22.5798	23.3325	22.5798	23.3325	23.3325	22.5798	23.3325	22.5798	23.3325	(56)
Primary loss	23.3325 23.2624	21.0745 21.0112	23.3325 23.2624	22.5798 22.5120	23.3325 23.2624	22.5798 22.5120	23.3325 23.2624	23.3325 23.2624	22.5798 22.5120	23.3325 23.2624	22.5798 22.5120	23.3325 23.2624	(57) (59)
Combi loss Total heat req	0.0000 uired for w	0.0000 vater heati	0.0000 ng calculat	0.0000 ed for eacl	0.0000 n month	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(61)
WWHRS	197.8460 -21.4019	175.1763 -18.9280	186.4288 -19.8203	164.4700 -16.4120	159.8607 -15.2954	144.4956 -13.0884	142.8320 -12.2683	148.1842 -13.0461	149.4769 -13.5417	166.1642 -15.9642	176.0890 -18.0855	195.7392 -21.0056	(62) (63a)
PV diverter Solar input	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000 0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	(63b) (63c)
FGHRS Output from w/	0.0000 h	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63d)
	176.4442	156.2483	166.6085	148.0580	144.5653	131.4072	130.5638	135.1381 Total p	135.9351 er vear (kW	150.2000 h/vear) = S	158.0035 um(64)m =	174.7337	(64)
12Total per ye	ar (kWh/yea	ar)						P	1 (1808	(64)
Licetiie Showe	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(64a)
Heat gains fro	m water hea	ating, kWh/	month	75 7667	TA 0200		co ozio	71 0544	70 7015	7year) - Su	70 (200	0.0000	(04a)
	87.3009	//.9212	83.7707	/5./00/	/4.9308	09.1252	69.2/48	/1.0544	/0./815	//.032/	/9.6300	80.8004	(65)
5. Internal ga	ins (see Ta	able 5 and	5a)										
Metabolic gain	s (Table 5)	, Watts											
(66)m	Jan 67.3825	Feb 67.3825	Mar 67.3825	Apr 67.3825	May 67.3825	Jun 67.3825	Jul 67.3825	Aug 67.3825	Sep 67.3825	Oct 67.3825	Nov 67.3825	Dec 67.3825	(66)
Lighting gains	(calculate 58.5792	ed in Appen 64.8556	dix L, equa 58.5792	tion L9 or 60.5319	L9a), also s 58.5792	see Table 5 60.5319	58.5792	58.5792	60.5319	58.5792	60.5319	58.5792	(67)
Appliances gai	ns (calcula 115.8944	ated in App 117.0970	endix L, eq 114.0665	uation L13 107.6148	or L13a), al 99.4706	lso see Tabi 91.8163	le 5 86.7027	85.5001	88.5307	94.9824	103.1265	110.7809	(68)
Cooking gains	(calculated 29.7383	1 in Append 29.7383	ix L, equat 29.7383	ion L15 or 29.7383	L15a), also 29.7383	see Table 5 29.7383	5 29.7383	29.7383	29.7383	29.7383	29.7383	29.7383	(69)
Pumps, fans	3.0000 aporation (3.0000 (negative v	3.0000 alues) (Tab	3.0000	3.0000	0.0000	0.0000	0.0000	0.0000	3.0000	3.0000	3.0000	(70)
Water heating	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	-53.9060	(71)
Matcl internel	117.6975	115.9541	112.5950	105.2316	100.7215	96.0073	93.1112	95.5032	98.3076	103.5386	110.5973	116.7559	(72)
iotai internai	338.3859	344.1215	331.4555	319.5929	304.9861	291.5702	281.6079	282.7972	290.5849	303.3150	320.4704	332.3308	(73)
6. Solar gains													
[Jan]			A	rea	Solar flux		g		FF	Acce	ss	Gains	
				m2	Table 6a W/m2	Speci: or 5	fic data Table 6b	Specific or Tab	data le 6c	fact Table	or 6d	W	
Northeast			5.5	000	11.2829		0.6300	0	.7000	0.77	00	18.9652	(75)
Southeast			1.8	000	36.7938		0.6300	0	.7000	0.77	00	20.2404	(77)
									.,	0.,,		,	(,,,)
Solar gains	47.0769	86.4888	135.0702	195.4048	244.4689	253.9613	240.1598	201.8343	155.6926	100.1000	57.5344	39.5457	(83)
iotai gains	202.402/	430.0103	400.325/	JT4.33/7	J47.4351	J4J.JJIJ	JZI./0/8	404.0313	440.2//5	403.4130	318.0048	J/⊥.8/64	(04)
7. Mean intern	al temperat	ure (heati	ng season)										
Temperature du	ring heatin	ng periods	in the livi	ng area fro	om Table 9, 1	[h1 (C)						21.0000	(85)
Utilisation fa	ctor for ga Jan	ains for li Feb	ving area, Mar	nil,m (see Apr	Table 9a) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau alpha	39.7501 3.6500	39.9026 3.6602	40.0531 3.6702	40.7758 3.7184	40.9139 3.7276	41.5693 3.7713	41.5693 3.7713	41.6930 3.7795	41.3144 3.7543	40.9139 3.7276	40.6354 3.7090	40.3484 3.6899	
util living ar	ea 0.9748	0.9610	0.9347	0.8669	0.7452	0.5723	0.4299	0.4771	0.7021	0.8923	0.9584	0.9776	(86)

MIT Th 2	19.3387 19.7249	19.5664 19.7291	19.9126 19.7332	20.3808 19.7527	20.7351 19.7563	20.9288 19.7734	20.9812 19.7734	20.9724 19.7765	20.8439 19.7668	20.3992 19.7563	19.8138 19.7489	19.3191 19.7412	(87) (88)
util rest of h	ouse 0.9681	0.9508	0.9172	0.8317	0.6815	0.4779	0.3154	0.3585	0.6114	0.8556	0.9457	0.9716	(89)
MIT 2 Living area fr	17.8593 action	18.1468	18.5785	19.1512	19.5408	19.7330	19.7673	19.7666	19.6643 fLA =	19.1904 Living area	18.4747 / (4) =	17.8454 0.3590	(90) (91)
MIT Temperature ad	18.3905 ljustment	18.6564	19.0575	19.5927	19.9696	20.1623	20.2031	20.1995	20.0878	19.6244	18.9555	18.3745 0.0000	(92)
adjusted MIT	18.3905	18.6564	19.0575	19.5927	19.9696	20.1623	20.2031	20.1995	20.0878	19.6244	18.9555	18.3745	(93)
8. Space heati	ng requirem	ent											
Utilisation	Jan 0.9586	Feb 0.9396	Mar 0.9056	Apr 0.8264	May 0.6934	Jun 0.5092	Jul 0.3564	Aug 0.4008	Sep 0.6370	Oct 0.8510	Nov 0.9352	Dec 0.9628	(94)
Useful gains Ext temp.	369.4942 4.3000	404.5999 4.9000	422.4946 6.5000	425.6196 8.9000	380.9809 11.7000	277.7629 14.6000	185.9828 16.6000	194.2333 16.4000	284.2663 14.1000	343.3041 10.6000	353.5176 7.1000	358.0286 4.2000	(95) (96)
Heat loss rate	W 771.2862	750.1266	682.1760	570.5751	439.7874	291.1472	188.5975	198.2882	315.3510	479.9275	634.8083	764.3825	(97)
Space heating	kWh 298.9332	232.1939	193.2030	104.3680	43.7520	0.0000	0.0000	0.0000	0.0000	101.6478	202.5294	302.3273	(98a)
Space heating Solar heating	requirement kWh	- total pe	r year (kW	lh/year)								1478.9545	
Solar heating	0.0000 contributio	0.0000 n - total pe	0.0000 er year (k	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	(98b)
Space heating	298.9332	232.1939	193.2030	104.3680	43.7520	0.0000	0.0000	0.0000	0.0000	101.6478	202.5294	302.3273	(98c)
Space heating	per m2	arter sola:	r contribu	ition - totai	per year	(kwn/year)				(98c)	/ (4) =	39.1880	(99)
92 Enorgy rog	uiromonte -	Individual	bosting	vetome incl	uding mice								
Fraction of en	ace heat fr		v/suppleme	ntary system	(Table 11							0 0000	(201)
Fraction of sp Efficiency of	ace heat fr	om main syst	tem(s) tem 1 (in	<pre>%)</pre>	,	,						1.0000	(202)
Efficiency of	main space :	heating syst	tem 2 (in	%) svetem %								0.0000	(200)
Diffortency of	Jan	Feb	Mar	Apr	Mav	Jun	J11]	Αυσ	Sep	Oct	Nov	Dec	(200)
Space heating	requirement	232 1939	193 2030	104 3680	43 7520	0 0000	0 0000	0 0000	0 0000	101 6478	202 5294	302 3273	(98)
Space heating	efficiency 92 3000	(main heatin	ng system	1)	92 3000	0.0000	0.0000	0.0000	0.0000	92 3000	92 3000	92 3000	(210)
Space heating	fuel (main)	heating syst	tem)	113 0747	47 4020	0.0000	0.0000	0.0000	0.0000	110 1276	219 /251	327 5495	(211)
Space heating	efficiency	(main heatin	ng system	2) 0.0000	0 0000	0.0000	0 0000	0.0000	0.0000	0 0000	0 0000	0 0000	(212)
Space heating	fuel (main	heating syst	tem 2)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating	fuel (secon	dary)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Matan bosting	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Water heating	requirement	156 2483	166 6085	148 0580	144 5653	131 4072	130 5638	135 1381	135 9351	150 2000	158 0035	174 7337	(64)
Efficiency of	water heate	r 94 9463	94 3029	93 2003	91 7244	79 9000	79 9000	79 9000	79 9000	93 2035	94 6176	79.8000	(216)
Fuel for water	heating, k	Wh/month	107 4204	177 7615	176 0020	164 6707	162 6127	160 2460	170 2449	100 6011	196 7264	204 0006	(210)
Space cooling	fuel requir	ement	0.0000	1/1./015	1/0.0950	104.0707	103.0137	109.3400	0.0000	0.0000	0.0000	204.9000	(215)
Pumps and Fa	7.3041	6.5973	7.3041	7.0685	7.3041	7.0685	7.3041	7.3041	7.0685	7.3041	7.0685	7.3041	(221)
Electricity ge	nerated by	PVs (Append:	8./919 ix M) (neg	ative quanti	4.9754 ty)	4.0650	4.5388	5.8997	7.0031	10.0544	11.3364	12.5099	(232)
Electricity ge	nerated by	-40.9582 wind turbin	-55.9883 es (Append	-59.8755 lix M) (negat	ive quanti	-57.4316	-56.8437	-54.8369	-50.8958	-45.4669	-32.9192	-26.7399	(233a
Electricity ge	nerated by	hydro-elect:	ric genera	tors (Append	ix M) (nec	gative quant	ity)	0.0000	0.0000	0.0000	0.0000	0.0000	(234a
(235a)m Electricity us	ed or net e	lectricity	generated	by micro-CHP	(Appendia	(negati	ve if net o	generation)	0.0000	0.0000	0.0000	0.0000	(235a
(235C)m Electricity ge	nerated by	U.UUUU PVs (Append:	0.0000 ix M) (neg	u.0000 ative quanti	U.UUUU ty)	0.000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(2350
(233D)m Electricity ge	nerated by	-5U./894 wind turbine	-98.9869 es (Append	-145.8841 lix M) (negat	-190.2218 ive quanti	-190.0422 ity)	-18/.6695	-123.3.00	-118.8053	-/1.47/1	-32.5354	-19.5625	(∠33b
(234D) M Electricity ge	nerated by	hydro-elect:	u.uuuu ric genera	u.uuuu tors (Append	0.0000 ix M) (nec	u.UUUU gative quant	0.0000 ity)	0.0000	0.0000	0.0000	0.0000	0.0000	(234b
(235b)m Electricity us	u.0000 ed or net e	U.0000 lectricity	U.0000 generated	0.0000 by micro-CHP	0.0000 (Appendia	0.0000 (N) (negati	0.0000 ve if net c	0.0000 generation)	0.0000	0.0000	0.0000	0.0000	(235b
(235d)m Annual totals	0.0000 kWh/year	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235d
Space heating Space heating	fuel - main fuel - main	system 1 system 2										1602.3343 0.0000	(211) (213)
Space heating Efficiency of	fuel - seco water heate	ndary r										0.0000 79.8000	(215)
Water heating Space cooling	fuel used fuel											2183.1527 0.0000	(219) (221)
Electricity fo	r pumps and	fans:	,										
Total electric Electricity fo	ity for the r lighting	above, kWh (calculated	/year in Append	lix L)								86.0000 98.2318	(231) (232)
Energy saving/	generation	technologie:	s (Appendi	.ces M ,N and	Q)								
PV generation Wind generatio	n											-1865.3941 0.0000	(233) (234)
Hydro-electric Electricity ge	generation nerated - M	(Appendix 1 icro CHP (Ap	N) ppendix N)									0.0000 0.0000	(235a (235)
Appendix Q - s Energy saved o	pecial feat r generated	ures										-0.0000	(236)
Energy used Total delivere	d energy fo	r all uses										0.0000 2104.3247	(237) (238)
	52												/

12a. Carbon dioxide emissions - Individual heating systems including micro-CHP

	Energy	Emission factor	Emissions
	kWh/year	kg CO2/kWh	kg CO2/year
Space heating - main system 1	1602.3343	0.2100	336.4902 (261)
Total CO2 associated with community systems			0.0000 (373)
Water heating (other fuel)	2183.1527	0.2100	458.4621 (264)
Space and water heating			794.9523 (265)
Pumps, fans and electric keep-hot	86.0000	0.1387	11.9293 (267)
Energy for lighting	98.2318	0.1443	14.1779 (268)
Energy saving/generation technologies			
PV Unit electricity used in dwelling	-574.7964	0.1356	-77.9508
PV Unit electricity exported	-1290.5977	0.1265	-163.2356
Total			-241.1864 (269)
Total CO2, kg/year			579.8730 (272)
EPC Target Carbon Dioxide Emission Rate (TER)			15.3600 (273)

13a. Primary energy - Individual heating systems including micro-CHP

	Energy Prim	nary energy factor	Primary energy	
	kWh/year	kg CO2/kWh	kWh/year	
Space heating - main system 1	1602.3343	1.1300	1810.6377	(275)
Total CO2 associated with community systems			0.0000	(473)
Water heating (other fuel)	2183.1527	1.1300	2466.9625	(278)
Space and water heating			4277.6002	(279)
Pumps, fans and electric keep-hot	86.0000	1.5128	130.1008	(281)
Energy for lighting	98.2318	1.5338	150.6713	(282)
Energy saving/generation technologies				
PV Unit electricity used in dwelling	-574.7964	1.5013	-862.9212	
PV Unit electricity exported	-1290.5977	0.4643	-599.2226	
Total			-1462.1438	(283)
Total Primary energy kWh/year			3096.2286	(286)
Target Primary Energy Rate (TPER)			82.0400	(287)