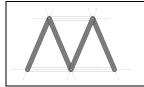


Morgan Structural Limited Blending Structure with Architecture


UYS Storage Facility, Oxford Drainage Technical Note 01

Client:Cryer & Coe ArchitectsDate:20/03/2024Project No:12011Rev:0Author:Nicola TileyChecked By:Gavin Walker

Operating and postal address: The Old Brewery 7-11 Lodway Pill Bristol BS20 0DH TEL: 01275 217171

Registered No. 8146644 www.MorganStructural.co.uk The Institution of **StructuralEngineers**

CONTENTS

Refe	rence	Section	<u>Page</u>
1.0	-	Introduction	2
2.0	-	Existing Site Condition & Drainage	3
3.0	-	Proposed Development & Surface Water Drainage	4
4.0	-	Water Quality	6
5.0	-	Proposed Foul Water Drainage	7
Арре	endix 1	Causeway Flow Brownfield Runoff Calculations	8
Арре	endix 2	Proposed Attenuation Calculations - Causeway Flow	9
Арре	endix 3	Proposed Drainage Strategy Drawing MSL-120131-XX-DR-C-3000_P01	10

\vee \vee	Client	Cryer & Coe Architects	Sheet No.	2	Rev	0
			Job No.	120131		
	Project UYS Storage Facility, Oxford			20/	03/202	24
			Prepared	Nico	ola Tile	ey
			Chkd	Gavi	n Walk	er

1. Introduction:

- 1.1 Morgan Structural Ltd were instructed by Cryer & Coe Architects to produce a drainage strategy report to support the planning submission for the proposed scheme at UYS, Oxford.
- 1.2 The proposals are based on an initial site visit and tracing survey completed by Morgan Structural and Drain Technology completed on 24th March 2024.

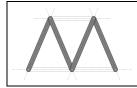
\vee \vee	Client	Cryer & Coe Architects	Sheet No.	3	Rev	0
			Job No.	120131		
	Project UYS Storage Facility, Oxford			20/	03/202	24
			Prepared	Nic	ola Tile	ey
			Chkd	Gavi	in Walk	ker

2. Existing Site Conditions & Drainage:

- 2.1 The site is currently home to a large industrial unit that was previously used for the storage, distribution and manufacture of car parts.
- 2.2 The site is located at the end of Garsington Road as part of the Unipart Business Centre, Oxford.
- 2.3 Currently there is an access road, various concrete service yards, a main building and a temporary building located within a car park.
- 2.4 To the south and west of the site is a mixture of open scrub land and existing storage areas as part of the Unipart Business Centre. To the east there is open farmland as well as the Hollow Brook. To the north lies an abandoned railway line and woodland before reaching Oxford Road.
- 2.5 The existing foul drainage system currently drains to a pumping station located to the east of the temporary building in the car park and appears to be out of commission due to the build-up of foul water within the pumping chamber and the surrounding network.
- 2.6 The existing surface water system drains to wards the south-east corner of the site before discharging towards the Hollow Brook via a 300mm diameter pipe as well as a large petrol interceptor.
- 2.7 The roof water from the main building is collected internally at high level before discharging at points along the perimeter of the building.
- 2.8 For an indicative layout of the existing system see Morgan Structural drawing: MSL-120131-XX-DR-C-3000_P01 - Drainage Strategy

\vee \vee	Client	Cryer & Coe Architects	Sheet No.	4 Rev 0
			Job No.	120131
	Project	UYS Storage Facility, Oxford	Date	20/03/2024
			Prepared	Nicola Tiley
			Chkd	Gavin Walker

3. Proposed Development & Surface Water Drainage:


- 3.1 It is proposed to demolish the existing buildings on site and to provide a secure, fenced open storage facility.
- 3.2 The intention is to maintain as much of the existing system as possible and continue discharging to the Hollow Brook but at a reduced discharge rate and provide attenuation storage in the form of a buried crate system.
- 3.3 Greenfield runoff rates have been calculated based on the proposed impermeable areas (same as current) and Causeway Flow Software's internal IH124 Method. These calculations are summarised below.

Return Period (Years)	Flow Rate (l/s)
1	8.3
30	19.1
100	24.2
QBar	9.8

- 3.4 Given the intention of the site is to keep the impermeable area as per current and keep works to a minimum to avoid intense workings to remove concrete, providing suitable mitigation to achieve greenfield discharge from site will not be possible.
- 3.5 It is therefore proposed that a reasonable betterment be provided to existing discharge rates presently produced from site.
- 3.6 Based on the present impermeable areas, Causeway Flow calculations have been undertaken to confirm the brownfield rates generated from site and are included in **Appendix 1**. These are summarised as follows:

Return Period (Years)	Flow Rate (l/s)
1	314.0
30	763.0
100	990.5

- 3.7 Whilst these are the calculated brownfield rates from site, it is acknowledged that outfall from site is currently provided by a 300mm diameter pipe, which is assumed to connect to the Hollow Brook in the southeast.
- 3.8 Given the flatness of the site and surrounding area, it is assumed this outfall pipe will be laid at a gentle gradient. Assuming the 300mm diameter pipe has been laid to achieve a self-cleanse velocity of 1l/s, the gradient of the pipe should be 1:238.
- 3.9 On this basis, HR Wallingford *"Tables for the hydraulic design of pipes, sewer and channels"* states that the maximum flow through the pipe is 71.6l/s.
- 3.10 Betterment will be provided on this value, as opposed to calculated brownfield rates, and it is proposed to restrict flows by 50% to 35.8l/s.

Client	Cryer & Coe Architects	Sheet No.	5 Rev		0
		Job No.	120131		
Project	UYS Storage Facility, Oxford	Date	20/03/2024		
		Prepared	Nic	ola Tile	ey
		Chkd	Gav	in Wall	ker

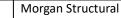
- 3.11 Through restriction of flows to 35.8l/s from site, it has been calculated an attenuation tank of 1000m² x 0.8m depth is required to provide suitable storage for storm events up to the 1 in 100Year storm with 40% Climate Change.
- 3.12 The proposed attenuation calculations from Causeway Flow are included in Appendix 2.
- 3.13 A Drainage Strategy has been produced by Morgan Structural, ref *MSL-120131-XX-DR-C-3000_P01*, and is included in **Appendix 3**.

\vee \vee	Client	Cryer & Coe Architects	Sheet No.	6	Rev	0
			Job No.	120131		
	Project UYS Storage Facility, Oxford				03/202	24
			Prepared	Nice	ola Tile	ey
			Chkd	Gavi	in Walk	ker

4. Water Quality:

- 4.1 The SuDS Manual (CIRIA C753) states that the design of surface water drainage should consider minimising contaminants in surface water runoff discharged from site. The level of treatment required depends on the proposed land use, according to the pollution hazard indices.
- 4.2 During the survey of the existing drainage system, an existing petrol and oil interceptor was found at the site located beneath existing trees. As part of the proposals this will be replaced with a new interceptor as specified on the drainage strategy drawing.
- 4.3 The new petrol and oil separator will remove the majority of contaminants from site surface water runoff.
- 4.4 Additional methods of good practise will be utilised across the site including:
 - All gullies having suitable silt traps/catchpits to reduce sediments entering the system.
 - Upstream and downstream chambers of attenuation features have suitable catchpits to reduce sediments/particles and their associated risk of blockage.
- 4.5 Further measures recommended for incorporation are channel drains which incorporate filter mediums, such as Meaclean Pro, to treat runoff at source.

\vee \vee	Client	Cryer & Coe Architects	Sheet No.	7	Rev	0
			Job No.	120131		
	Project UYS Storage Facility, Oxford			20/	03/202	24
			Prepared	Nic	ola Tile	ey
			Chkd	Gav	in Walk	ker


5. Proposed Foul Water Drainage:

5.1 It is proposed to drain the foul sewerage utilising the existing foul pumping station subject to a detailed condition survey and re-commissioning.

\vee \vee	Client Cryer & Coe Architects Sheet No.					
			Job No.	120131		
	Project UYS Storage Facility, Oxford		Date	20/03/2024		
			Prepared	Nicola Tiley		
			Chkd	Gavin Walker		

APPENDIX 1

Causeway Flow Brownfield Runoff Calculations

Time of Entry (mins) 5.00

21/03/2024 **Design Settings** Rainfall Methodology FSR Maximum Time of Concentration (mins) 30.00 Return Period (years) 100 Maximum Rainfall (mm/hr) 50.0 Additional Flow (%) 40 Minimum Velocity (m/s) 1.00 FSR Region England and Wales Connection Type Level Soffits M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.200 Ratio-R 0.400 Preferred Cover Depth (m) 1.200 CV 0.750 Include Intermediate Ground \checkmark

Enforce best practice design rules \checkmark

<u>Nodes</u>

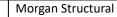
Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S1	1.140	5.00	76.500	1200	456906.075	204299.508	1.800
S2	1.140	5.00	76.500	1200	456901.359	204278.412	1.800
S3	0.000		76.500	1200	456931.257	204277.319	2.017
OUTFALL	0.000		76.500	1200	456939.038	204271.333	2.030

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	•		T of C (mins)	Rain (mm/hr)
1.000	S1	S3	33.563	0.600	74.700	74.633	0.067	500.0	600	5.52	50.0
2.000	S2	S3	29.918	0.600	74.700	74.640	0.060	500.0	600	5.46	50.0
1.001	S3	OUTFALL	9.817	0.600	74.483	74.470	0.013	755.2	750	5.68	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)		Depth	Σ Area (ha)	Inflow	Depth	Pro Velocity (m/s)
1.000	1.082	305.9	216.3	1.200	1.267	1.140	0.0	374	1.169
2.000	1.082	305.9	216.3	1.200	1.260	1.140	0.0	374	1.169
1.001	1.010	446.3	432.6	1.267	1.280	2.280	0.0	600	1.142

Pipeline Schedule

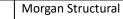

Link	0			Link Type			US Depth (m)			DS Depth (m)
1.000	33.563	500.0	600	Circular	76.500	74.700	1.200	76.500	74.633	1.267
2.000	29.918	500.0	600	Circular	76.500	74.700	1.200	76.500	74.640	1.260
1.001	9.817	755.2	750	Circular	76.500	74.483	1.267	76.500	74.470	1.280

Link	US Node	Dia (mm)	Node Type	МН Туре	DS Node	Dia (mm)	Node Type	МН Туре
1.000	S1	1200	Manhole	Adoptable	S3	1200	Manhole	Adoptable
2.000	S2	1200	Manhole	Adoptable	S3	1200	Manhole	Adoptable
1.001	S3	1200	Manhole	Adoptable	OUTFALL	1200	Manhole	Adoptable

Simulation Settings

Rainfall Methodology	FSR	Winter CV	0.840
FSR Region	England and Wales	Analysis Speed	Normal
M5-60 (mm)	20.000	Skip Steady State	х
Ratio-R	0.400	Drain Down Time (mins)	240
Summer CV	0.750	Additional Storage (m³/ha)	20.0

CAUSEWAY 🗘	Morgan Structural	Netw Nico	Brownfield Rates.p vork: Storm Netwo a Tiley 3/2024		Page 2
	<u>S</u>	imulation Setti	ngs		
	Check Discharge Rate(s) 1 year (l/s) 30 year (l/s)	0.5 Che	100 year (l ck Discharge Volur		
15 30 60		Storm Duratio	ns 480 600	720	960 1440
Re	turn Period Climate C (years) (CC %	6)	A %)	tional Flo (Q %)	
	1 30 100	0 0 0	0 0 0		0 0 0
	<u>Pre-dev</u>	elopment Disc	narge Rate		
	Site Makeup Greenfield Method tively Drained Area (ha) SAAR (mm) Host BFIHost Region QMed conversion factor Growth Factor 1 year	Greenfield FEH 2.280 632 1 0.980 6 1.136 0.85	Q 1 y Q 30 y		1.95 2.48 0 0.6 0.6

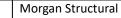


File: Brownfield Rates.pfd Network: Storm Network Nicola Tiley 21/03/2024

Results for 1 year Critical Storm Duration. Lowest mass balance: 99.61%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S1	10	75.008	0.308	160.5	4.2506	0.0000	ОК
15 minute winter	S2	10	75.005	0.305	160.5	4.2092	0.0000	ОК
15 minute winter	S3	11	74.894	0.411	310.7	0.4651	0.0000	OK
15 minute winter	OUTFALL	11	74.812	0.342	314.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	S1	1.000	S3	155.5	1.191	0.508	4.3930	
15 minute winter	S2	2.000	S3	155.4	1.218	0.508	3.8393	
15 minute winter	S3	1.001	OUTFALL	314.0	1.419	0.703	2.1723	148.2

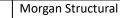


Results for 30 year Critical Storm Duration. Lowest mass balance: 99.61%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S1	10	75.325	0.625	394.4	8.6179	0.0000	SURCHARGED
15 minute winter	S2	10	75.317	0.617	394.4	8.5134	0.0000	SURCHARGED
15 minute winter	S3	10	75.182	0.699	763.5	0.7904	0.0000	ОК
15 minute winter	OUTFALL	11	75.012	0.542	763.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	S1	1.000	S3	381.5	1.366	1.247	9.2608	
15 minute winter	S2	2.000	S3	382.4	1.372	1.250	8.2198	
15 minute winter	S3	1.001	OUTFALL	763.0	1.962	1.709	3.7675	362.5

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.61%


Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S1	10	75.587	0.887	511.6	12.2369	0.0000	SURCHARGED
15 minute winter	S2	10	75.568	0.868	511.6	11.9749	0.0000	SURCHARGED
15 minute winter	S3	10	75.329	0.846	989.6	0.9566	0.0000	SURCHARGED
15 minute winter	OUTFALL	11	75.084	0.614	990.5	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	S1	1.000	S3	495.1	1.758	1.618	9.4539	
15 minute winter	S2	2.000	S3	494.5	1.756	1.617	8.4272	
15 minute winter	S3	1.001	OUTFALL	990.5	2.282	2.219	4.0530	470.3

\vee	Client	Cryer & Coe Architects	Sheet No.	9 Rev 0
			Job No.	120131
	Project	UYS Storage Facility, Oxford	Date	20/03/2024
			Prepared	Nicola Tiley
			Chkd	Gavin Walker

APPENDIX 2

Proposed Attenuation Calculations - Causeway Flow

File: Attenuation Calcs.pfd	
Network: Storm Network	
Nicola Tiley	
21/02/2024	

21/03/2024 **Design Settings** Rainfall Methodology FSR Maximum Time of Concentration (mins) 30.00 Return Period (years) 100 Maximum Rainfall (mm/hr) 50.0 Additional Flow (%) 40 Minimum Velocity (m/s) 1.00 FSR Region England and Wales Connection Type Level Soffits M5-60 (mm) 20.000 Minimum Backdrop Height (m) 0.200 Ratio-R 0.400 Preferred Cover Depth (m) 1.200 CV 0.750 Include Intermediate Ground \checkmark Time of Entry (mins) 5.00

Enforce best practice design rules x

Nodes

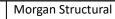
Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
S1	1.140	5.00	76.500	1200	456906.075	204299.508	1.500
S2	1.140	5.00	76.500	1200	456901.359	204278.412	1.500
S3	0.000		76.500	1800	456931.257	204277.319	1.567
OUTFALL	0.000		76.500	1200	456939.038	204271.333	1.608

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	-	T of C (mins)	Rain (mm/hr)
1.000	S1	S3	33.563	0.600	75.000	74.933	0.067	500.0	600	5.52	50.0
2.000	S2	S3	29.918	0.600	75.000	74.940	0.060	500.0	600	5.46	50.0
1.001	S3	OUTFALL	9.817	0.600	74.933	74.892	0.041	239.4	300	5.68	50.0

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)		Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.082	305.9	216.3	0.900	0.967	1.140	0.0	374	1.169
2.000	1.082	305.9	216.3	0.900	0.960	1.140	0.0	374	1.169
1.001	1.011	71.5	432.6	1.267	1.308	2.280	0.0	300	1.025

Pipeline Schedule


Link	-						US Depth			
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)
1.000	33.563	500.0	600	Circular	76.500	75.000	0.900	76.500	74.933	0.967
2.000	29.918	500.0	600	Circular	76.500	75.000	0.900	76.500	74.940	0.960
1.001	9.817	239.4	300	Circular	76.500	74.933	1.267	76.500	74.892	1.308

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	S1	1200	Manhole	Adoptable	S3	1800	Manhole	Adoptable
2.000	S2	1200	Manhole	Adoptable	S3	1800	Manhole	Adoptable
1.001	S3	1800	Manhole	Adoptable	OUTFALL	1200	Manhole	Adoptable

Simulation Settings

Rainfall Methodology	FSR	Winter CV	0.840
FSR Region	England and Wales	Analysis Speed	Normal
M5-60 (mm)	20.000	Skip Steady State	х
Ratio-R	0.400	Drain Down Time (mins)	240
Summer CV	0.750	Additional Storage (m³/ha)	20.0

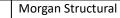
CAUSEWAY 🛟	Morgan Structu	1	File: Attenuation Network: Storm Nicola Tiley 21/03/2024		Page 2
		Simulation	<u>Settings</u>		
			100 Check Discharg) year (l/s) 2.0 ge Volume x	
15 30 6	0 120 18	Storm Dur 0 240 36	ations 50 480	600 720	960 1440
R	eturn Period Cli (years)	mate Change A (CC %)	dditional Area (A %)	Additional Flo (Q %)	ow.
	1 30 100	0 0 0	0 0 0		0 0 0
	Ē	Pre-development	Discharge Rate		
	В	lethod FEH ea (ha) 2.280 (mm) 632 Host 1 FIHost 0.980 Region 6 factor 1.136	Growth	n Factor 30 year Factor 100 year Betterment (%) QMed QBar Q 1 year (I/s) Q 30 year (I/s) Q 100 year (I/s)	2.48 0 0.6 0.6
	No	de S3 Online Hydr	o-Brake [®] Conti	<u>ol</u>	
Downsti Replaces Downsti Invert Design E	ilap Valve x ream Link 1.001 ream Link √ Level (m) 74.93 Depth (m) 0.800 Flow (l/s) 35.8	Pr 3 Min Outle	Objective Sump Available oduct Number t Diameter (m) Diameter (mm)	\checkmark	e upstream storage 3-3580-0800-3580
	Nod	le S3 Depth/Area	Storage Structu	<u>ire</u>	
Base Inf Coefficier Side Inf Coefficier				Invert Time to half emp	Level (m) 74.933 oty (mins) 192
(m)	Area Inf Area (m²) (m²) 000.0 0.0	Depth Area (m) (m²) 0.800 1000) (m²)	Depth Area (m) (m ²) 0.801 0.0) (m²)


File: Attenuation Calcs.pfd Network: Storm Network Nicola Tiley 21/03/2024

|--|

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S1	8	75.468	0.468	160.6	7.6367	0.0000	ОК
15 minute winter	S2	10	75.304	0.304	160.6	4.9716	0.0000	ОК
180 minute winter	S3	128	75.154	0.221	79.0	210.5869	0.0000	OK
15 minute summer	OUTFALL	1	74.892	0.000	13.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	S1	1.000	S3	186.7	2.325	0.610	4.0062	
15 minute winter	S2	2.000	S3	156.4	1.221	0.511	3.8340	
180 minute winter	S3	Hydro-Brake [®]	OUTFALL	30.2				287.6

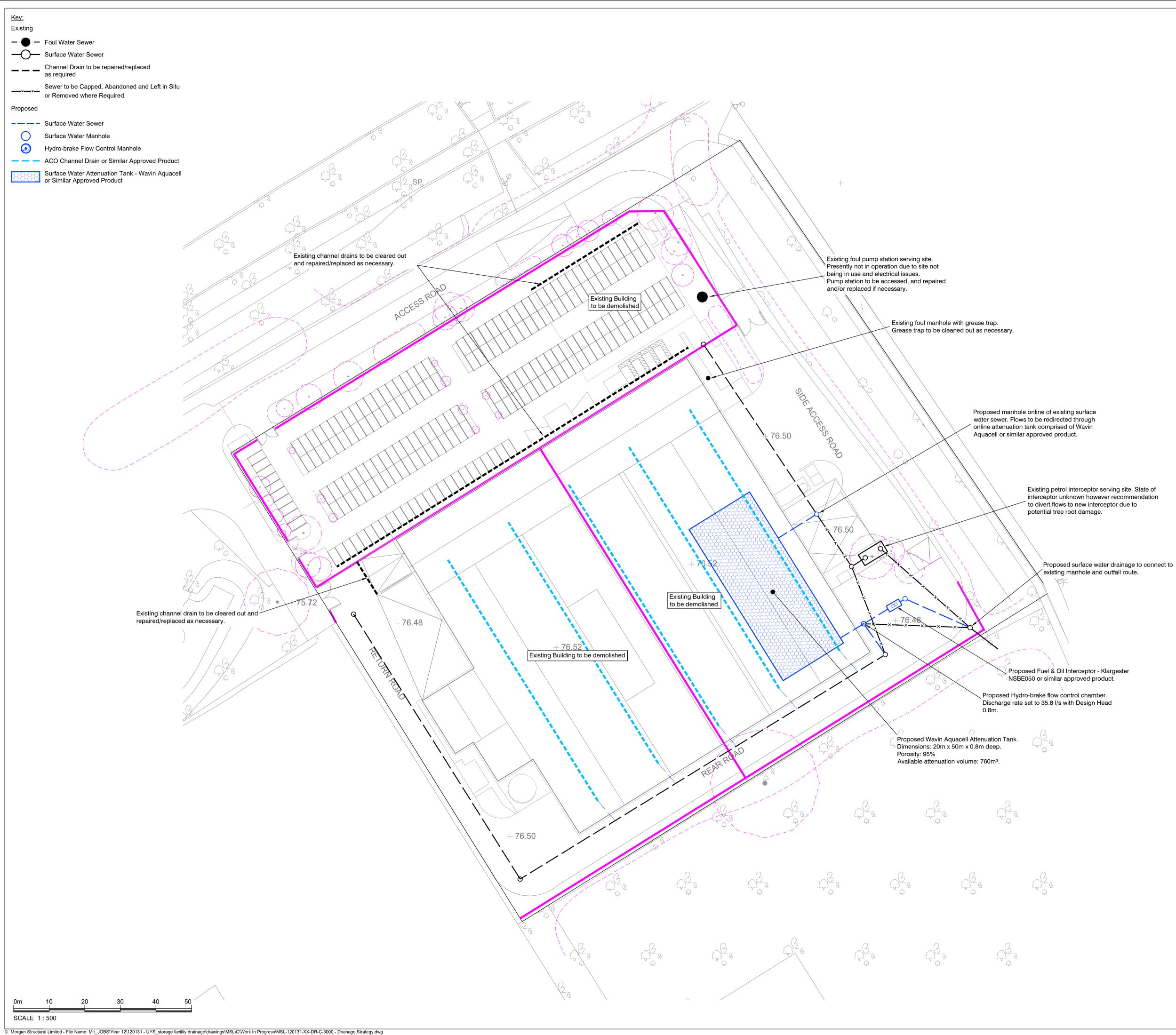


Results for 30 year Critical Storm Duration. Lowest mass balance: 99.89%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	S1	6	75.552	0.552	394.1	9.0195	0.0000	ОК
15 minute winter	S2	10	75.536	0.536	394.1	8.7453	0.0000	ОК
120 minute winter	S3	116	75.483	0.550	241.6	523.7673	0.0000	SURCHARGED
15 minute summer	OUTFALL	1	74.892	0.000	35.4	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	S1	1.000	S3	395.1	2.740	1.292	5.1880	, γ
15 minute winter	S2	2.000	S3	382.1	1.622	1.249	6.9976	
120 minute winter	S3	Hydro-Brake®	OUTFALL	35.8				589.3

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.89%


Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute winter	S1	172	75.708	0.708	119.1	11.5603	0.0000	SURCHARGED
180 minute winter	S2	172	75.708	0.708	119.1	11.5607	0.0000	SURCHARGED
180 minute winter	S3	172	75.708	0.775	229.0	737.8652	0.0000	SURCHARGED
15 minute summer	OUTFALL	1	74.892	0.000	35.8	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
180 minute winter	S1	1.000	S3	114.4	1.229	0.374	9.4539	
180 minute winter	S2	2.000	S3	114.6	0.873	0.375	8.4272	
180 minute winter	S3	Hydro-Brake [®]	OUTFALL	35.8				751.8

Client	Cryer & Coe Architects	Sheet No.	10 Rev 0
		Job No.	120131
Project	UYS Storage Facility, Oxford	Date	20/03/2024
		Prepared	Nicola Tiley
		Chkd	Gavin Walker

APPENDIX 3

Proposed Drainage Strategy Drawing MSL-120131-XX-DR-C-3000_P01

DO NOT SCALE this drawing. Use figured dimensions only. The Contractor must check & verify all dimensions on site. Any discrepancies must be reported immediately to the Engineer for clarification before proceeding. This drawing is copyright and owned by Morgan Structural Limited.

SAFETY, HEALTH AND ENVIRONMENTAL INFORMATION Refer to the relevant Construction (Design and Management) documentation

where applicable. It is assumed that all works on this drawing will be carried out by a competent contractor, working where appropriate to an approved method statement.

Drainage Notes

- All private drainage shall be in accordance with BS8301 and relevant sections of Approved Document H of the Building Regulations.
- The contractor is to check the level of existing sewers being used as outfalls or crossing proposed drainage runs PRIOR to laying any pipes. Any discrepencies are to be reported to the Engineer
- For private drains where cover to pipes is less than 900mm in vehicular areas or 600mm in other areas protection in the form of a 100mm thick concrete pad shall be provided over the pipe granular surround.
- Where drains do not exceed 600mm deep, plastic or clay access fittings minimum diameter 225mm shall be used. Elsewhere proprietary plastic or precast concrete inspection chambers shall be used. Unless shown otherwise FW inspection chambers are to be 750mm below dpc level and SW chambers and rodding eyes to be 600mm below dpc.
- All gullies and rainwater downpipes connected directly to drains are to be roddable.
- All drainage shall be laid upstream and each run between manholes shall be laid complete prior to backfilling. Where this is not practical trial holes or other means of identifying the line and level of services shall be carried out prior to works commencing.
- All branch drains, or connections, are to discharge to the collectors obliquely, and in the direction of the main flow.

Drainage Calculations:

Existing Impermeable Area: 2.28Ha

Brownfield runoff using the Rational Method:

Q = CiA

Q = 2.78 x 50 x 2.28

Q = 316.9 l/s

Greenfield using IH124 via Causeway Flow:

Q1Yr	-	8.3 l/s
Q30Yr	-	19.1 l/s
Q100Yr	-	24.2 l/s
QBar	-	9.8 l/s

Brownfield using Causeway Flow:

Q1Yr Q30Yr Q100Yr		314.0 l/s 763.0 l/s 990.5 l/s
Bettermen	t at 40	0%:

Q1Yr	-	188.4 l/s
Q30Yr	-	457.8 l/s
Q100Yr	-	594.3 l/s
Bottormo	at at 5(20/ •

Betterment at 50%:

Q1Yr	-	157.0 l/s
Q30Yr	-	381.5 l/s
Q100Yr	-	495.2 l/s

Based on the assumption that the existing 300Ø outfall pipe is laid at flattest grade to achieve self cleanse (1:238) this only enables discharge of 71.6 l/s.

By

If limited to 50% of the 300Ø pipe discharge rate assumed above, 35.81/s, Flow requires:

1000m² x 0.8m deep attenuation tank.

P01 20.03.24 First issue for discussion

Rev Date Description Client

Charterhouse

UYS Oxford, Garsington Road, OX4 2BW

Title

Proposed Drainage Strategy

Drawing S	tatus LIMINAR	Y		
Drawn	Checked	Approved	Date	Scale @ A1
NT	GW	NT	Mar 2024	1:500
Project No.		Drawing No.	Revision	
120131		MSL-1201	P01	
		Morgan Structure	ural Limited with Architecture	

Company Registered in England and Wales No. 8146644