

Factual Site Investigation

Whitby Maritime Hub

Willmott Dixon Construction Ltd

S230311

Solmek Ltd

12 Yarm Road Stockton-on-Tees TS18 3NA Tel: 01642 607083

www.solmek.com

info@solmek.com

FACTUAL SITE INVESTIGATION REPORT

WHITBY MARITIME HUB

TABLE OF CONTENTS

1	INTRODUCTION	.2
2	SITE DESCRIPTION AND FIELDWORK	.2
3	GROUND GAS/WATER MONITORING	.7
4	GEOTECHNICAL TESTING	.8
ТАВ	LE 1: SUMMARY OF GROUNDWATER STRIKES	.4
ТАВ	LE 2: SUMMARY OF MONITORING WELL RESPONSE ZONES	.7
ТАВ	LE 3: SUMMARY OF GAS MONITORING RESULTS	.7

APPENDICES

Appendix A:	Drawings
Appendix B:	Borehole & Trial Pit Logs
Appendix C:	Contamination Testing Results
Appendix D:	Geotechnical Laboratory Results
Appendix E:	Monitoring Results
Appendix F:	Notes on Limitations & Contamination Guidelines

Revision	Date	Prepared By	Signed
		L Cassidy Principal Environmental Engineer	
		Checked By	
Draft	December 2023	R Woods Principal Geotechnical Engineer	
1		Approved By	
		R Woods Principal Geotechnical Engineer	

1 INTRODUCTION

1.1 Authorisation

The site investigation described in this report was carried out by Solmek to the instructions of Fairhurst, on behalf of Wilmott Dixon Construction, on land at Endeavour car park, Whitby. A site location plan is presented as Figure 1 in Appendix A.

1.2 Scope of Works

The site is expected to be developed with a new commercial building.

A geotechnical and environmental investigation including a ground gas assessment was requested. The type and position of exploratory positions and the scope and nature of testing were all determined by Fairhurst.

The fieldwork and testing was generally carried out according to the recommendations of BS5930:2015+A1:2020 "Code of Practice for Ground Investigations" and where applicable BS EN 1997-2:2007 with soil descriptions to BS EN 14688-1:2013 where applicable. The information provided in this report is based on the investigation fieldwork and is subject to the comments and approval of the various regulatory authorities.

There may be other conditions prevailing on the site which have not been disclosed by this investigation and which have not been taken into account by this report. Solmek reserve the right to alter conclusions and recommendations should further information be available or provided. Any schematic representation or opinion of the possible configuration of ground conditions between exploratory holes is conjectural and given for guidance only and confirmation of intermediate ground conditions should be considered if deemed necessary.

2 SITE DESCRIPTION AND FIELDWORK

The site is located at 489952, 510865 and is approximately 0.3Ha. The site consists of hardstanding (variably concrete/tarmacadam) forming a parking area, serving the centre of Whitby. The car park is generally busy and access is via Langborne Road, to the west.

The site falls slightly towards the east.

The site is bounded to the north and west by roads/commercial developments, and the River Esk to the east.

2.1 Fieldwork

The fieldwork was undertaken in two phases, with Phase 1 commencing on 13th March 2023 and Phase 2 commencing on 16th October 2023. The extent of the investigation was:

Ground penetrating radar (GPR) scan of the exploratory positions to check for underground utilities. 2no. cable percussive boreholes (BH104 & BH104A) to a maximum depth of 3.70mbgl.

- The borehole locations and depths were specified by Fairhurst.
- These boreholes were both terminated due to encountering shallow obstructions.

4no. cable percussive boreholes with rotary follow-on (BH101-BH103 & BH105) to a maximum depth of 28.50mbgl.

• The borehole locations and depths were specified by Fairhurst.

4no. small percussive boreholes (WS101-WS102 & WS104-WS105) to a maximum depth of 6.45mbgl.

- o The borehole locations and depths were specified by Fairhurst.
- WS103 was cancelled.

Gas monitoring wells were installed within all boreholes (except BH104 & BH104A).

• Gas response zones were designed by Fairhurst and are shown on the borehole logs and are summarised in Table 2.

5no. machine excavated trial pits (PLT01-PLT05) to a maximum depth of 0.70mbgl.

• These locations were specified by Fairhurst for Plate Load Tests to be undertaken.

Insitu testing in the exploratory boreholes as Standard Penetration Tests (SPTs).

Retrieval of samples for geotechnical and contamination testing. Topographic survey of fieldwork positions.

The boreholes were backfilled with gas pipe installations, and the trial pits were backfilled with clean arisings.

Descriptions of the strata encountered in the exploratory positions together with details of sampling and groundwater are presented in Appendix B of this report. A plan showing the location of all positions can be found in Appendix A (Figure 2).

3 GROUND CONDITIONS

A brief summary of the ground conditions encountered is given below.

3.1 Made Ground

Made ground was variable across the site and was encountered to a minimum depth of 3.30mbgl (BH102) and a maximum depth of 4.30mbgl (BH101).

The made ground was not fully penetrated within BH104, BH104A, WS104, which terminated at depths between 1.70 and 3.70mbgl.

The made ground broadly consisted of a surface covering of concrete, which ranged in thickness from 0.22 to 0.40m.

Within BH102, BH105, PLT01, PLT04 and WS105, the concrete was overlain by macadam, ranging in thickness from 0.17-0.30m.

The underlying made ground was variable, with a granular subbase of dolomite (0.03-0.35m thick) generally present beneath the concrete.

The remainder of the made ground generally consisted of granular material of varying composition, with ash, brick, sandstone, limestone, chalk, ceramics, coal and metal present.

Locally, bands of cohesive made ground were encountered, as summarised below:

BH101 – 3.00-4.30m: Soft slightly sandy gravelly silt BH104 – 3.20-3.60m: Soft slightly sandy slightly gravelly silt BH105 – 2.60-3.40m: Soft slightly sandy slightly gravelly silty clay WS102 – 0.60-1.50m: Soft sandy slightly gravelly clay WS104 – 0.60-3.45m: Soft sandy slightly gravelly clay WS105 – 0.75-3.50m: Soft sandy slightly gravelly clay

Within BH101 only, a hydrocarbon sheen was noted at 3.10mbgl.

3.2 Obstructions

The below buried obstructions (other than surface hardstanding) were encountered during the intrusive works:

BH101 – buried concrete from 0.45-0.70m
BH102 – SPT result of 50+ at 1.20mbgl
BH103 – SPT result of 50+ at 2.00mbgl
BH104 – SPT result of 50+ at 1.20mbgl, metal obstruction encountered at 3.70mbgl resulting in the borehole being terminated
BH104A – concrete obstruction encountered at 1.70mbgl, resulting in the borehole being terminated

3.3 Natural Deposits

Proven to underlie the made ground deposits across the site, natural deposits variably comprised interbedded bands of generally loose sands and soft silts/clays to depths of between 12.30 and 15.50mbgl,

at which point a band of dense to very dense sandy gravel (locally cobbles) was encountered and then proven to the base of the natural deposits.

Peat was encountered locally, within BH102 (7.10-8.90mbgl) and BH105 (7.10-8.70mbgl), whilst peat bands were noted within the clay between 8.90 and 12.00mbgl within BH102. Plant matter was present within BH101 (7.00-12.30mbgl) and BH103 (7.90-12.40mbgl).

3.4 Solid Geology

Rockhead was encountered between 17.20mbgl within BH101 and BH105 and 18.00mbgl within BH103, generally comprising mudstone (sandstone within BH103).

The rock was cored to a maximum depth of 28.50mbgl and generally comprised mudstone with localised bands of siltstone and sandstone.

3.5 Groundwater

Groundwater strikes, where encountered, are presented on the exploratory logs (Appendix B) and are summarised below in Table 1:

Exploratory Position Depth Encountered (mbgl)		Strata	
3.10	2.95	MADE GROUND	
12.40	6.10	SANDY GRAVEL	
2.60	2.40	MADE GROUND	
12.40	8.20	SANDY GRAVEL	
2.90	2.40	MADE GROUND	
12.10	7.30	SANDY GRAVEL	
3.40	-	MADE GROUND	
12.00	7.90	SANDY GRAVEL	
	(mbgl) 3.10 12.40 2.60 12.40 2.90 12.10 3.40	(mbgi) (mbgi) 3.10 2.95 12.40 6.10 2.60 2.40 12.40 8.20 2.90 2.40 12.10 7.30 3.40 -	

TABLE 1: SUMMARY OF GROUNDWATER STRIKES

It should be noted the rapid rate of advancement of the exploratory holes may mask minor seepages and it should be borne in mind that water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities. Therefore, water levels significantly higher than those found during this investigation may be encountered.

4 CONTAMINATION TESTING RESULTS

The proposed development of the site is to involve the construction of a commercial building. The chemical samples were generally retrieved in line with BS ISO 18400-105:2017 "Soil Quality. Sampling". The chemical results are presented in Appendix C.

4.1 Contamination Testing

4.1.1 Soil Contamination Testing

To provide information upon the possibility of ground contamination, 15no samples of made ground and 4no samples of natural material were selected for contamination testing. The number and type of samples chosen were specified by Fairhurst, and are detailed below:

Schedule 1: 17th March

WS101 – 0.80-1.00m (Made ground – cohesive) WS101 – 3.70-3.90m (Natural sand) WS102 – 0.60-0.80m (Made ground – cohesive) WS102 – 1.50-1.60m (Made ground – cohesive) WS102 – 3.80-4.00m (Natural sand) WS104 – 0.60-0.80m (Made ground – cohesive) WS105 – 1.20-1.50m (Made ground – cohesive) WS105 – 3.50-4.00m (Natural sand)

Schedule 2: 20th October

BH102 – 0.60m (Made ground – granular) BH102 – 1.00m (Made ground – granular) BH102 – 7.50m (Peat) BH105 – 2.20m (Made ground – granular) BH105 – 3.50m (Made ground – cohesive)

Schedule 3: 25th October

BH104 – 0.80m (Made ground – granular) BH104 – 1.00m (Made ground – cohesive)

Schedule 4: 27th October

BH101 – 0.80m (Made ground – granular)
BH101 – 3.10m (Made ground – cohesive, hydrocarbon sheen)
BH101 – 3.80m (Made ground – cohesive)
BH103 – 0.70m (Made ground – granular)

The samples selected are considered to provide coverage of both the made ground and shallow natural strata from across the site that would be most likely to be exposed during future site works. The samples were tested for the following contaminant suites:

16no Metals, semi-metals, non-metals, inorganic determinants 16no Speciated Polyaromatic Hydrocarbons (PAHs) 16no Total Petroleum Hydrocarbon Criteria Working Group fractions (TPHCWG) 16no Total Petroleum Hydrocarbons (DRO/MRO Splits) 16no Phenol 14no Asbestos identification screenings 5no Methyl Tert-Butyl Ether (MTBE) 5no Benzene, Toluene, Ethylbenzene & Xylenes (BTEX) 5no Waste Acceptance Criteria (WAC) 4no Organic Matter 4no Calorific Value 3no Chlorine 3no Nitrate 3no Polychlorinated Biphenyls (PCBs) 2no Asbestos quantification tests

4.1.2 Leachate Contamination Testing

The following samples were also sent for leachate analysis, at the request of Fairhurst:

Schedule 1: 17th March

WS101 – 0.80-1.00m (Made ground – cohesive)

WS102 – 1.50-1.60m (Made ground – cohesive) WS102 – 3.80-4.00m (Natural sand) WS104 – 0.60-0.80m (Made ground – cohesive) WS105 – 1.20-1.50m (Made ground – cohesive)

Schedule 2: 20th October

BH102 – 1.00m (Made ground – granular) BH105 – 2.20m (Made ground – granular)

Schedule 3: 25th October

BH104 - 0.80m (Made ground - granular)

Schedule 4: 27th October

BH101 – 0.80m (Made ground – granular) BH101 – 3.10m (Made ground – cohesive, hydrocarbon sheen) BH103 – 0.70m (Made ground – granular)

The leachates were tested for the following contaminant suites:

11no Metals, semi-metals, non-metals, inorganic determinants
11no Speciated Polyaromatic Hydrocarbons (PAHs)
11no Total Petroleum Hydrocarbon Criteria Working Group fractions (TPHCWG)
11no Phenol
3no Methyl Tert-Butyl Ether (MTBE)
3no Benzene, Toluene, Ethylbenzene & Xylenes (BTEX)
2no Polychlorinated Biphenyls (PCBs)

4.1.3 Water Contamination Testing

During the gas monitoring fieldwork, samples of groundwater were retrieved where possible. Samples were retrieved once the wells were purged 3x the well volume and then allowed to recharge. The following samples were sent for water analysis, at the request of Fairhurst:

 $\begin{array}{l} BH101-3.07m\\ BH102-1.86m\\ BH103-1.45m\\ BH105-2.10m\\ WS101-2.10m\\ \end{array}$

The water samples were tested for the following contaminant suites:

5no Metals, semi-metals, non-metals, inorganic determinants
5no Water Hardness
5no Speciated Polyaromatic Hydrocarbons (PAHs)
5no Total Petroleum Hydrocarbon Criteria Working Group fractions (TPHCWG)
5no Phenol
3no Methyl Tert-Butyl Ether (MTBE)
3no Benzene, Toluene, Ethylbenzene & Xylenes (BTEX)
3no Polychlorinated Biphenyls (PCBs)

The water sampling results are outstanding and will be added to a future revision of this report.

4.2 Test Results

The contamination test results are presented in Appendix C.

5 GROUND GAS/WATER MONITORING

The proposed development includes the construction of a commercial building.

Ground gases such as carbon dioxide (CO_2) , methane (CH_4) , carbon monoxide (CO) and volatile organic compounds (VOCs) can be classed as a form of contamination where there is a potential risk to human health.

For this report, gas monitoring was via measuring emissions from eight standpipes (all boreholes except BH104 & BH104A) that were installed during the sitework. The gas monitoring will consist of six visits.

5.1 Monitoring Wells and Response Zones

During the site investigation works, gas monitoring wells were installed within fourteen boreholes, at the request of Fairhurst. The response zones were specified by Fairhurst and are briefly summarised below in Table 2.

TABLE 2: SUMMARY OF MONITORING WELL RESPONSE ZONES

Borehole	Pipework	Installation Depth (mbgl)	Response zone of slotted pipework (mbgl)	Response Zone Stratum
BH101	50mm HDPE pipe	12.30	7.00-12.30	Silt
BH102	50mm HDPE pipe	17.00	12.00-17.00	Sand/Gravel
BH103	50mm HDPE pipe	12.40	7.90-12.40	Silt
BH105	50mm HDPE pipe	8.70	7.10-8.70	Peat
WS101	50mm HDPE pipe	3.70	1.20-3.70	Made Ground
WS102*	50mm HDPE pipe	5.00	3.60-5.00	Sand
WS104	50mm HDPE pipe	3.00	1.20-3.00	Made Ground
WS105	50mm HDPE pipe	2.50	1.20-2.50	Made Ground
*install removed/destr	oyed between installation	and commencement of mo	nitoring	

5.2 Ground Gas Results

Two monitoring visits have been completed to date. The atmospheric pressure has an impact on the concentrations of gas released. Atmospheric pressure was between 999 and 1003 during the visits to date. The results of the visits undertaken to date are summarised below in Table 3 and are presented in full in Appendix E.

Borehole	Borehole Flow CH₄ Range (/v/v) (//hr)		CO₂ Range (%v/v)	O₂ Range (%v/v)	PID Range (ppm)	CO Range (ppm)	H₂S Range (ppm)	GW Range (mbgl)
BH101	0.1	3.0 - 8.0	0.0 – 0.3	14.0 – 18.4	0.2 - 0.4	0	0	1.28 – 3.07
BH102	0.1	6.7 – 9.4	0.3 – 0.5	14.3 – 16.2	0.1 – 0.8	0	0	1.82 – 1.86
BH103	0.1	6.7 – 7.3	0.2	17.9 – 18.0	0.3 – 0.6	0	0	1.23 – 1.45
BH105	0.1	0	0.2	19.2 – 19.4	0	0	0	2.10
WS101	0.1	0	2.2 – 4.9	3.9 – 18.0	0	0	0	2.20 - 2.30
WS104	0.1	0	0.0	20.0 - 20.4	0	0	0	1.28 – 2.60
WS105	0.1	0	0.7 – 0.8	19.1 – 19.4	0	0	0	2.00 - 2.05

TABLE 3: SUMMARY OF GAS MONITORING RESULTS

6 **GEOTECHNICAL TESTING**

Samples taken from the boreholes underwent a series of geotechnical tests to aid design and soil description. In addition, insitu Standard Penetration Tests (SPTs) were undertaken at regular intervals during drilling.

The geotechnical results are presented in Appendix D.

The scope of the testing undertaken was determined by Fairhurst.

6.1 In-Situ Testing

The in-situ testing results are shown on the logs (Appendix B). The Plate Load Test results are shown in Appendix D.

Generally, Standard Penetration Tests (SPTs) within the made ground yielded N values ranging from 6 to 35 within cohesive made ground (locally 50+), and between 3 and 38 within granular made ground (locally 50+).

SPTs within the localised shallow sand deposits ranged from 1 to 35, indicating very loose to dense deposits.

SPTs within the silt deposits ranged from 0 to 12, indicating very low to medium strength deposits.

SPTs within the localised peat deposits ranged from 7.

SPTs within the deeper granular deposits ranged from 17 to 50+, generally increasing with depth, indicating medium dense to very dense deposits.

SPTs within the clay deposits ranged from 6 to 19, indicating low to high strength deposits.

SPTs upon/within the rockhead ranged from 50+, generally increasing with depth.

6.2 Laboratory Testing

The scope of the laboratory testing to be undertaken was determined by Fairhurst. The below soils testing was scheduled:

16no K1.1 Moisture contents 16no K1.2 Atterberg limits 12no K1.9 Particle Size Distribution (PSD) 11no K1.12 Sedimentation by hydrometer 6no K2.1 Organic Matter Content (OMC) 9no K2.4 Sulphate 9no K2.12 pH 3no K3.9 CBR 1no K1.8 Particle Density 4no K4.1 One dimensional consolidation 4no K6.16 Undrained shear strength in triaxial

The below rock testing was scheduled:

6no K8.14 Uniaxial Compressive Strength (UCS) 8no K8.21 Point Load Test (PLT) 1no Point Load Test (Axial & Diametral) 3no Direct Shear 5no K2.4 Sulphate 5no K2.12 pH 5no Water Content

The geotechnical results are presented in Appendix D. Some geotechnical results are outstanding and will be added as an addendum to this report.

SOLMEK

APPENDIX A: Figures & Drawings

	16 Yarm Road, Stockton on Tees, TS18 3N el: 01642 607083 Email: info@solmek.com
Figu	ıre Title
Site	Location Plan
Proj	ect Number
S230	0311
Proj	ect Name
Whit	by Maritime Hub, Whitby
Clie	nt
Willn	nott Dixon Construction
Date	2
Octo	ber 2023
DRG	S Number
Figu	re 1
Scal	e
1:35	00 @ A4 [DO NOT SCALE]
Leger	nd Key Project Bounds - Project Bounds

	SOLMEK
	6 Yarm Road, Stockton on Tees, TS18 3NA : 01642 607083 Email: info@solmek.com
Figu	re Title
Explo	pratory Hole Location Plan
Proje	ect Number
S230	311
Proje	ect Name
Whit	by Maritime Hub, Whitby
Clien	t
Willm	ott Dixon Construction
Date	
Octol	ber 2023
DRG	Number
Figur	e 2
Scale	9
1:100	00 @ A4 [DO NOT SCALE]
Legen	d Key
+	Locations By Type - BH
€	Locations By Type - CP
	Locations By Type - CP+RC
	Locations By Type - TP
-	
	Locations By Type - WS Project Bounds - Project Bounds

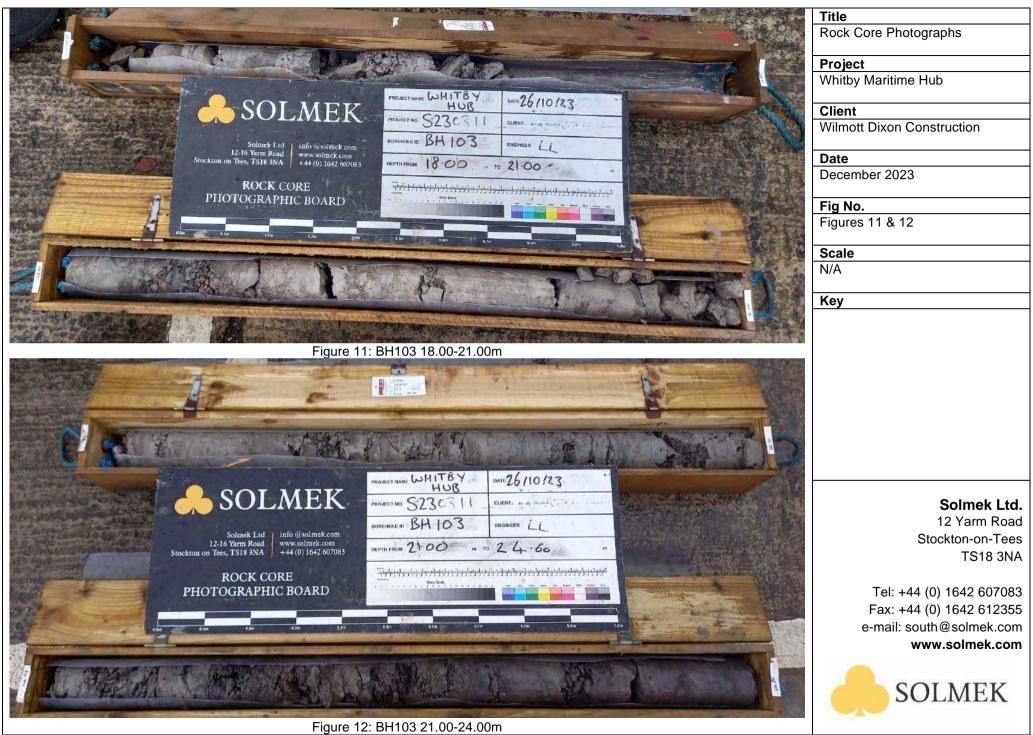
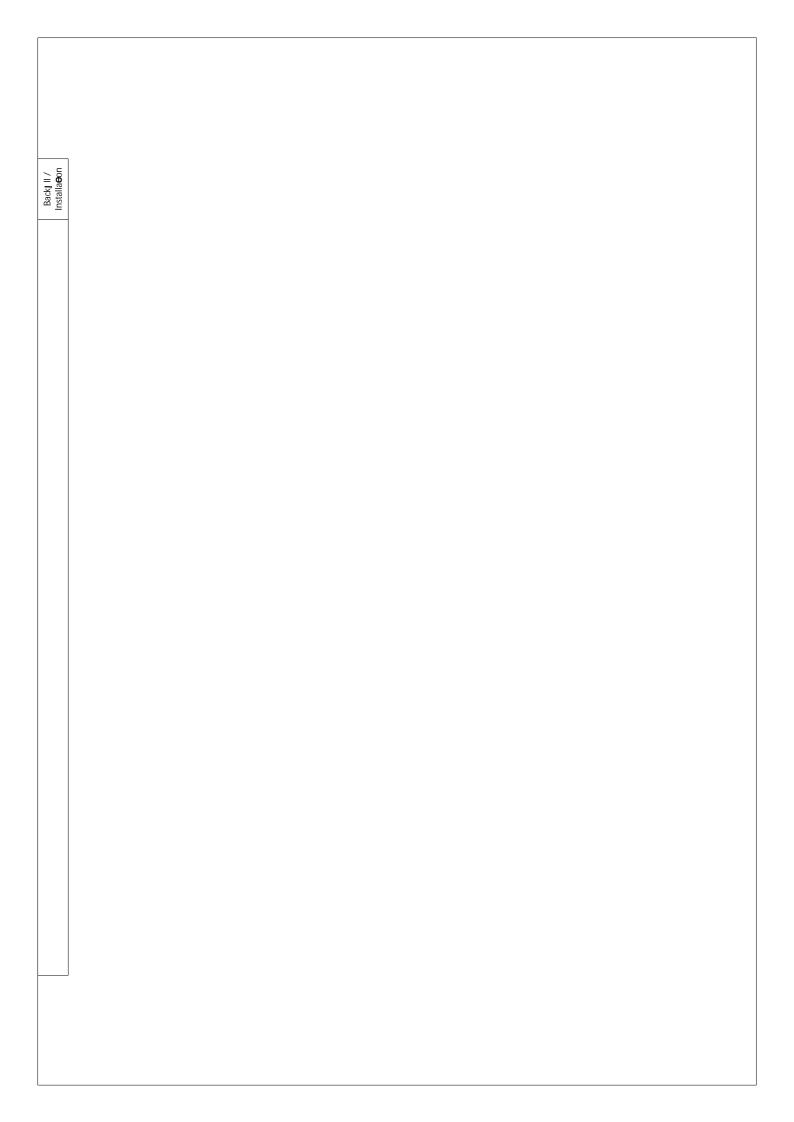
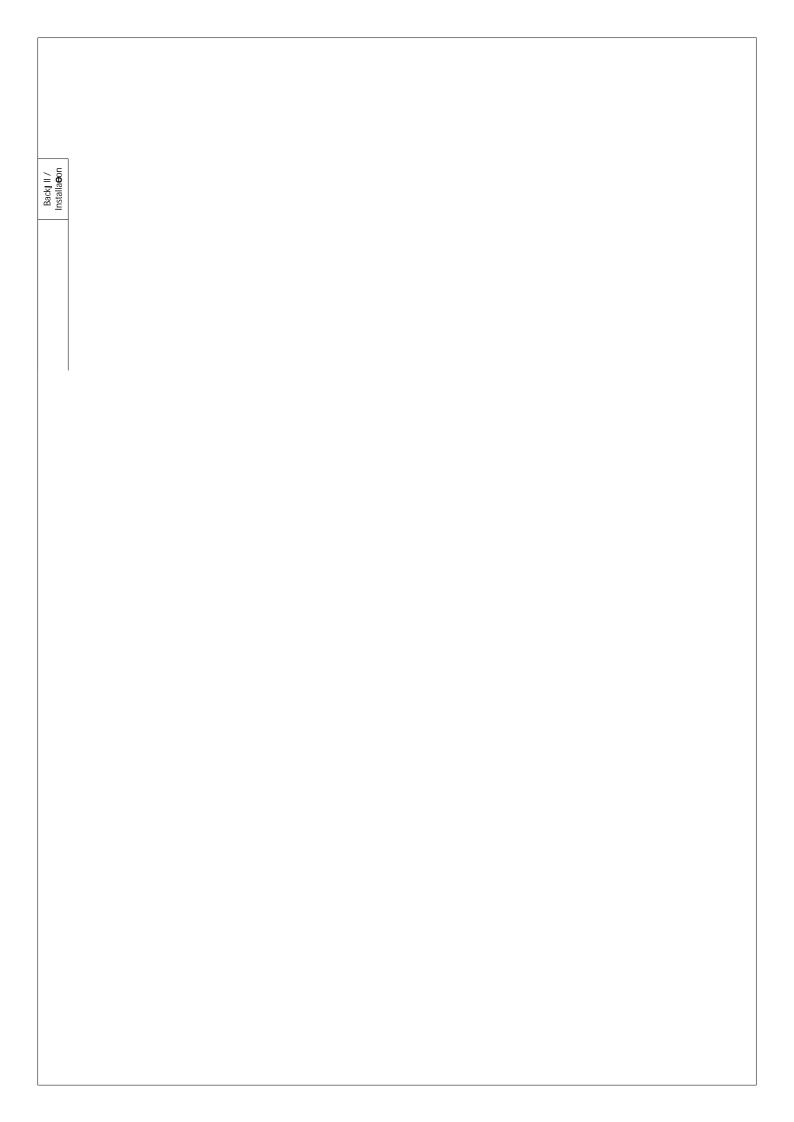
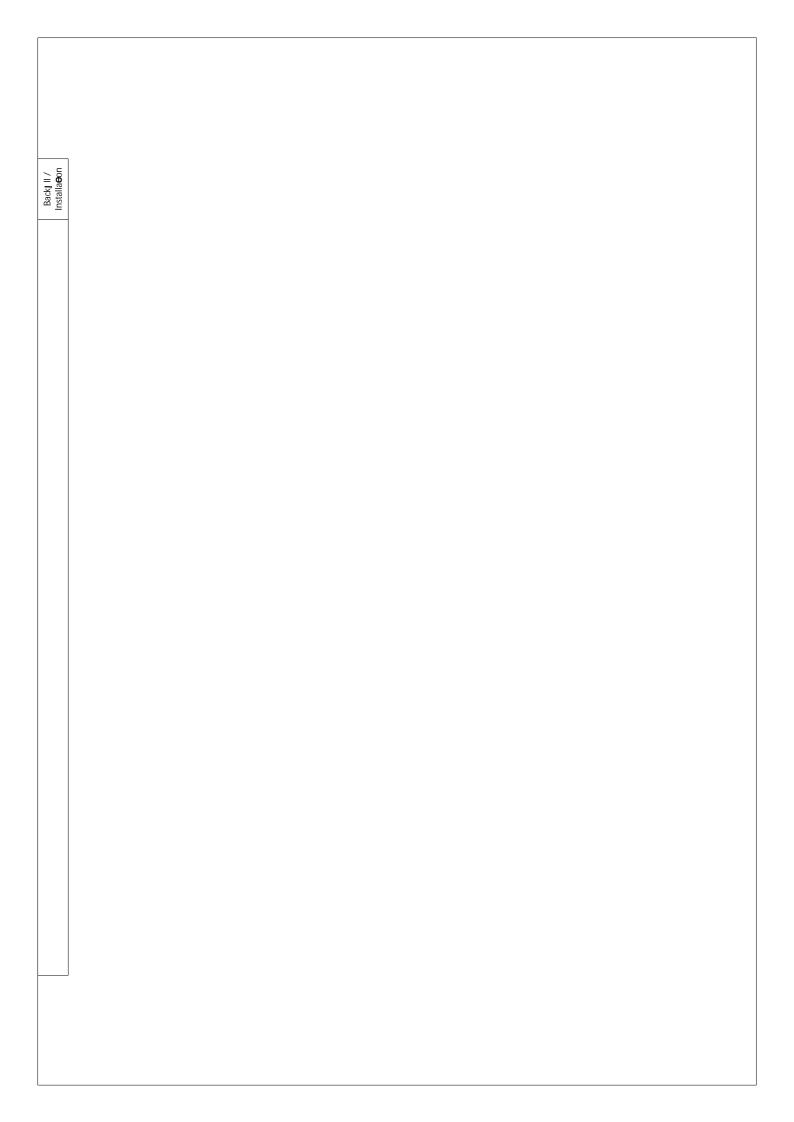
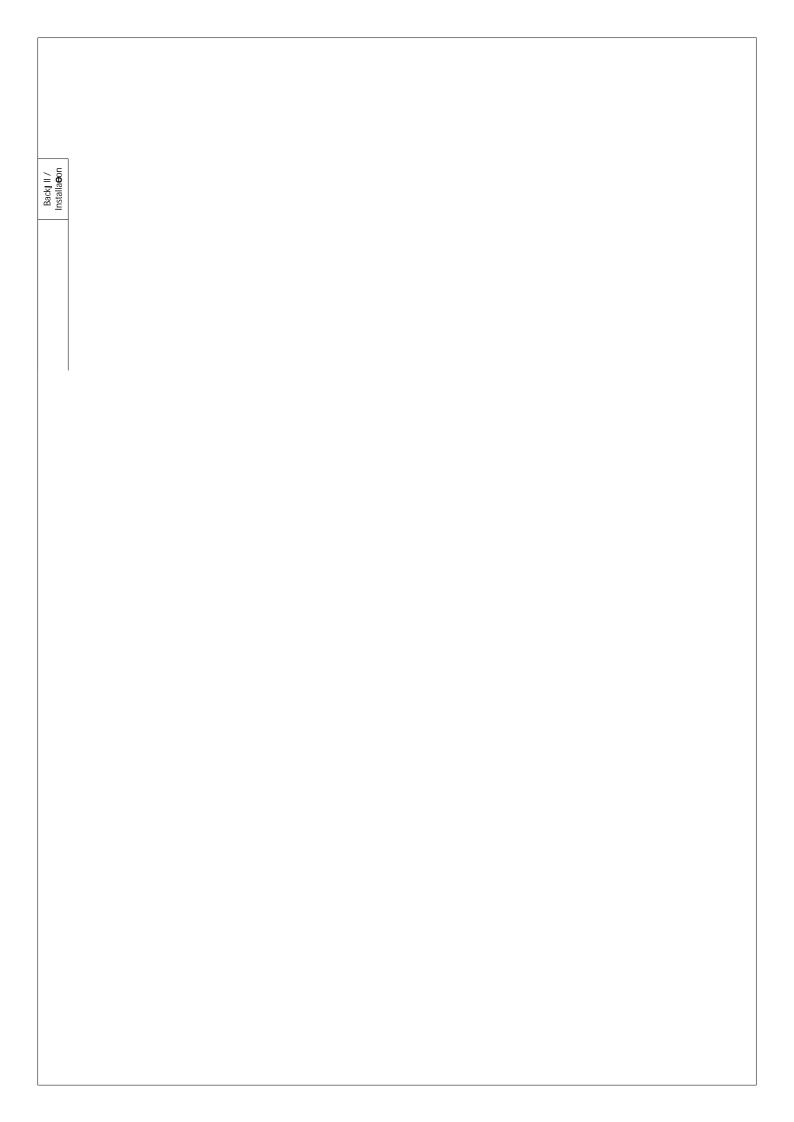


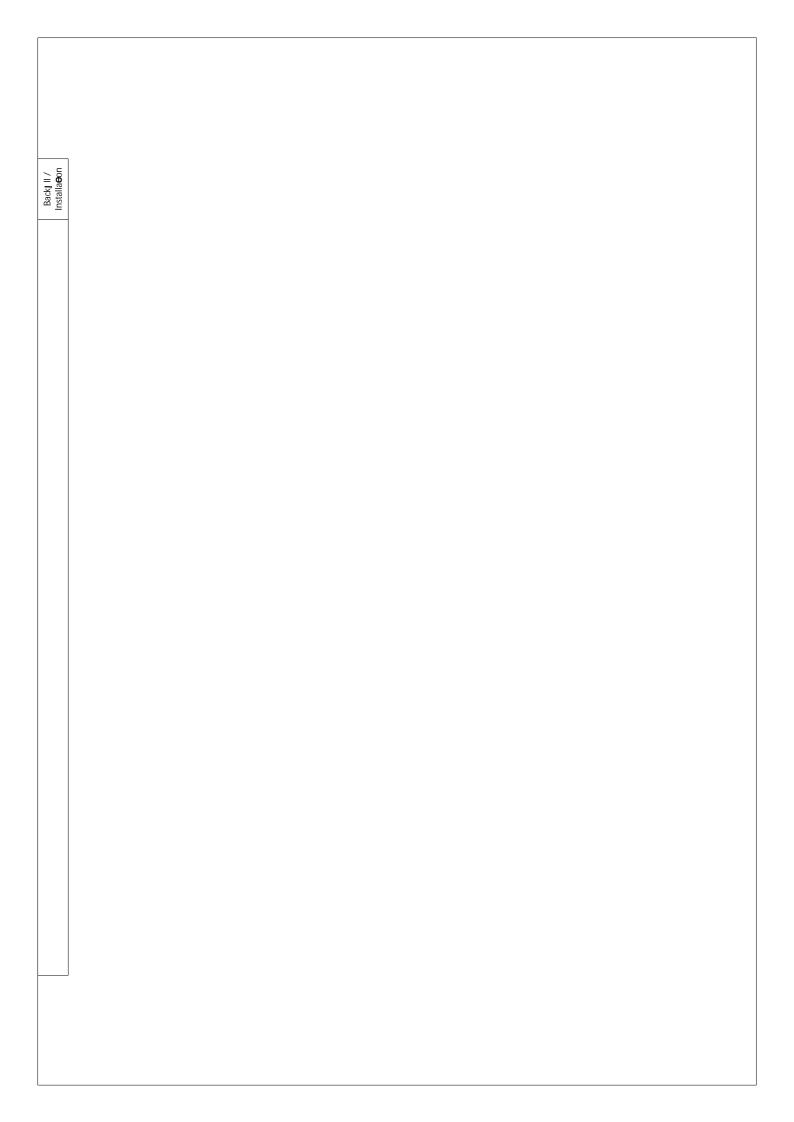
Figure 10: BH102 27.00-26.50m

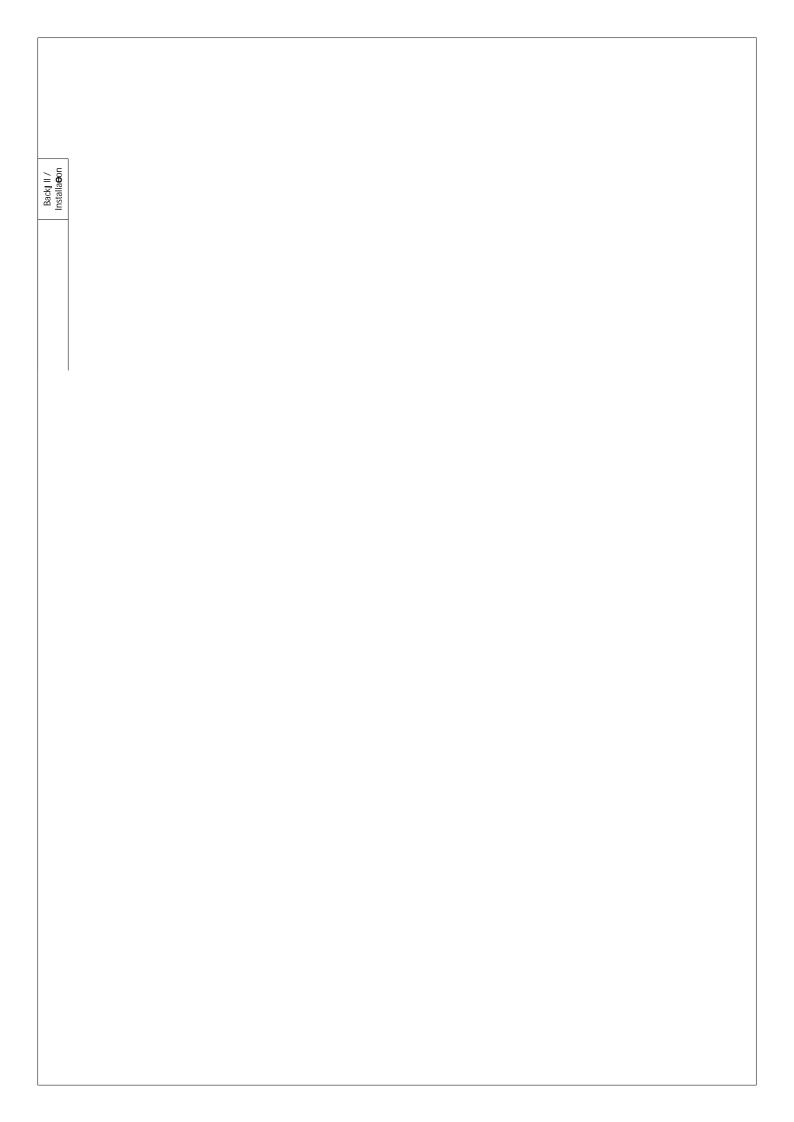


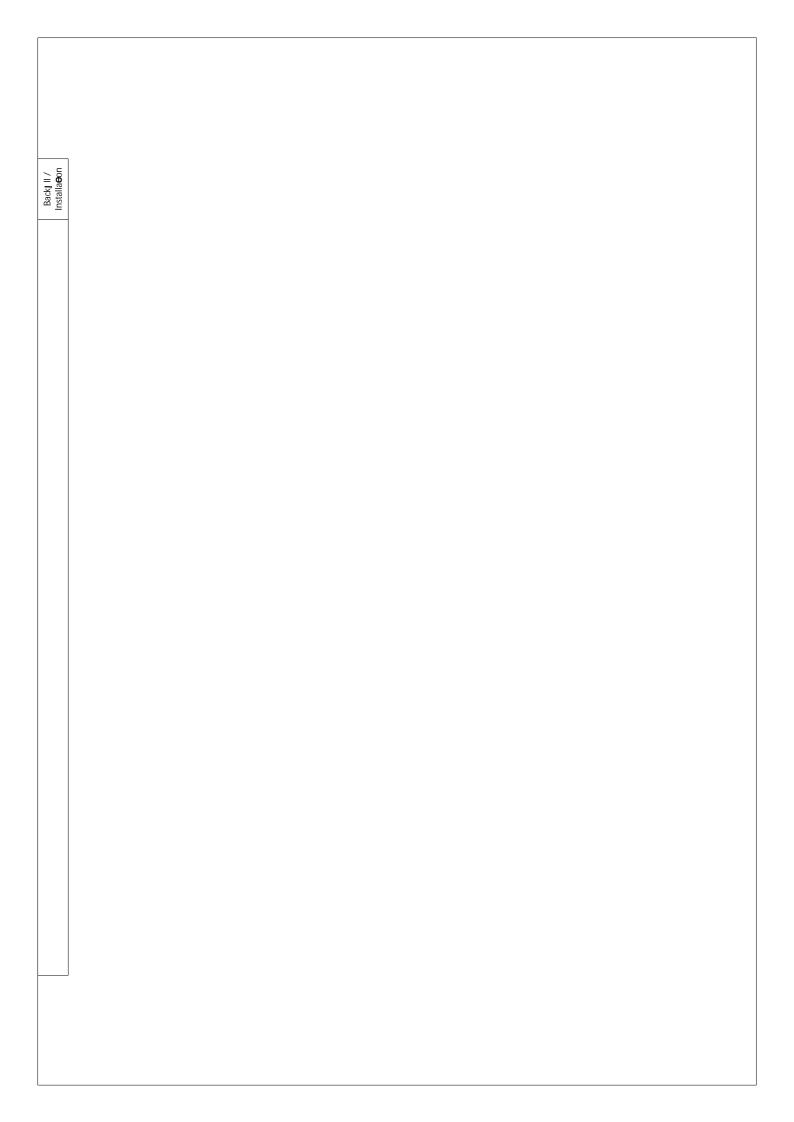


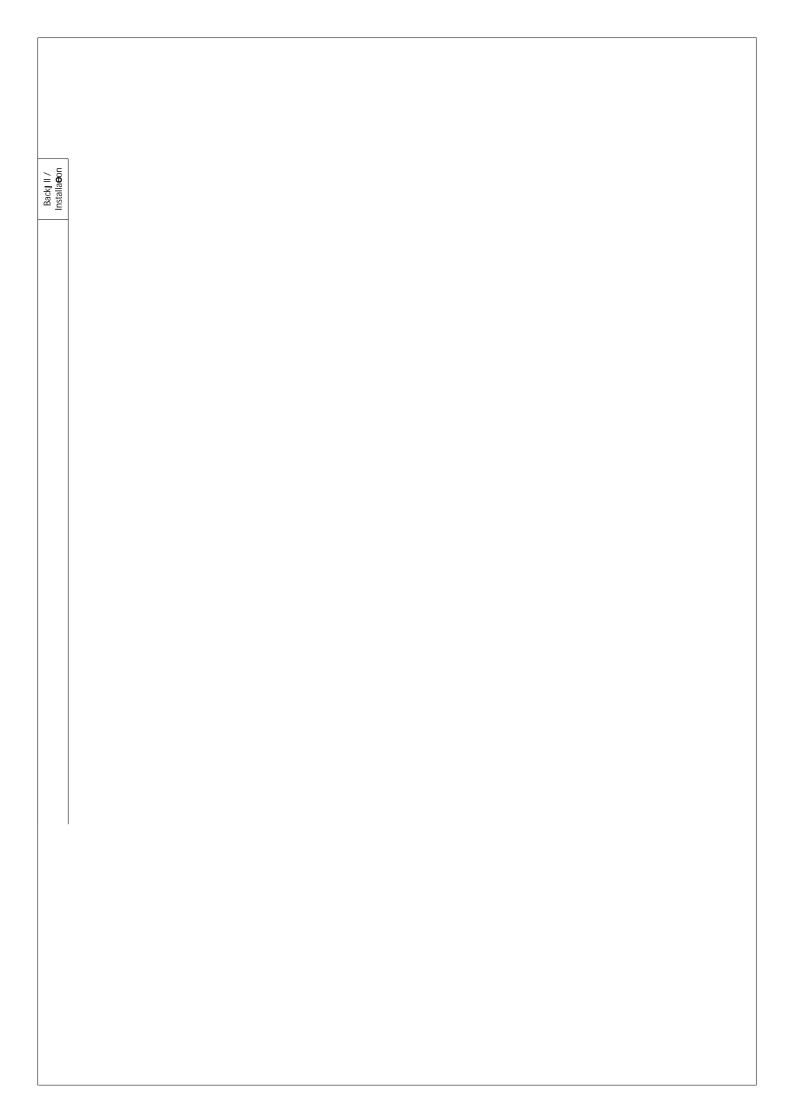


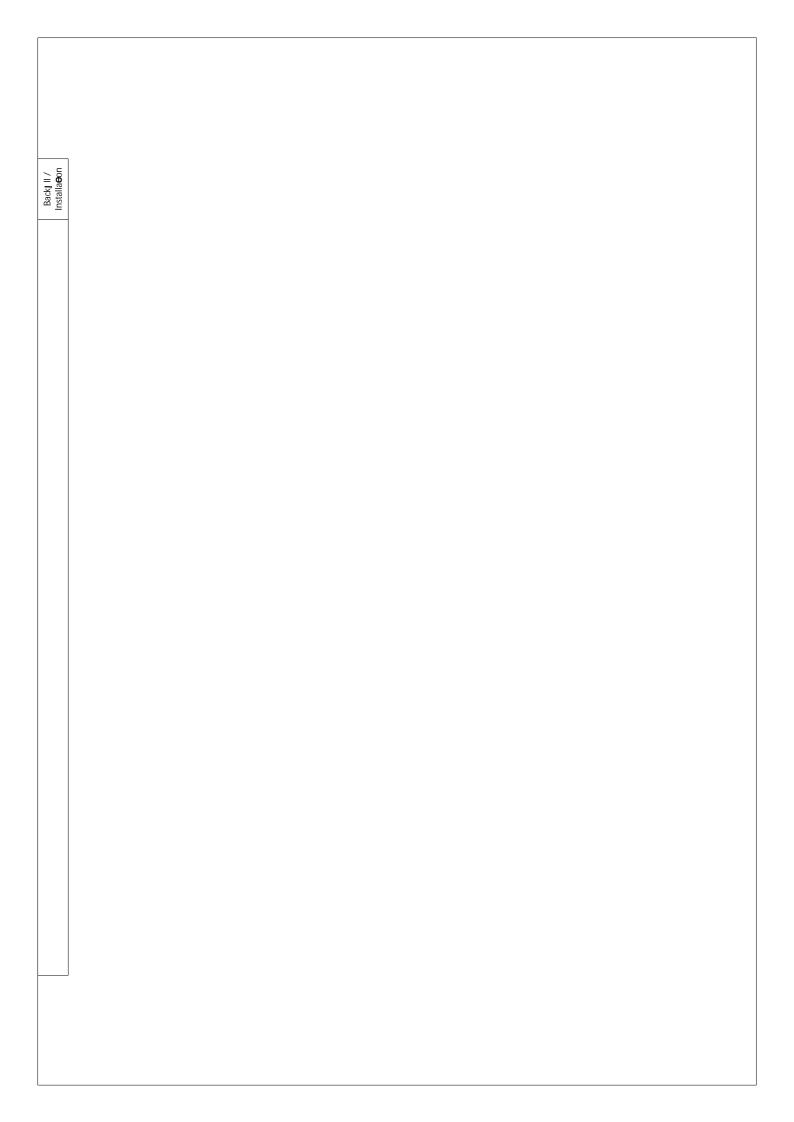



APPENDIX B: Borehole & Trial Pit Logs









ter ke	Samples & In Situ Testing Depth Level						
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	
				0.25	3.48		
				0.65 0.70	3.08 3.03		
						J	

er Ke	Samples & In Situ Testing Depth Level						
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	
				0.24 0.30	3.46 3.40		
				0.30	3.40		
						J	

er Ke	Samples & In Situ Testing Depth Level						
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	
				0.22 0.30	3.22 3.14		
						J	

er Ke	Samples	s & In Situ	ı Testing	Depth	Level	Lanard	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend	
				0.17	3.56		
				0.55 0.60	3.18 3.14		
				0.60	3.14		

e e	Samples	s & In Situ	Depth	Level	Logond	
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend
				0.22 0.25	3.16 3.13	

APPENDIX C: Contamination Laboratory Results

Issued: 29-Mar-23

Certificate Number 23-06584 Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

Our Reference	23-06584
Client Reference	S230311
Order No	SOL7164LC
Contract Title	Whitby Maritime Hub, Whitby
Description	8 Soil samples, 9 Leachate samples.

Date Received 20-Mar-23

Dule sturied 20-War-25	Date Started	20-Mar-23
------------------------	--------------	-----------

Date Completed 29-Mar-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Summary of Chemical Analysis Matrix Descriptions

Our Ref 23-06584 Client Ref 5230311 Contract Title Whitby Maritime Hub, Whitby

Sample ID	Depth	Lab No	Completed	Matrix Description
WS101	0.80-1.00	2142976	29/03/2023	Very gravelly, sandy CLAY (Possible made ground - brick)
WS101	3.70-3.90	2142977	29/03/2023	Black very gravelly, sandy CLAY
WS102	0.60-0.80	2142978	29/03/2023	Brown very gravelly, sandy CLAY (Possible made ground - brick) (Possible made ground - slate)
WS102	1.50-1.60	2142979	29/03/2023	Brown very gravelly, sandy CLAY (Possible made ground - brick)
WS102	3.80-4.00	2142980	29/03/2023	Dark brown slightly gravelly, sandy CLAY
WS104	0.60-0.80	2142981	29/03/2023	Brown gravelly, sandy CLAY (Possible made ground - brick)
WS105	1.20-1.50	2142982	29/03/2023	Brown gravelly, sandy CLAY (Possible made ground - brick)
WS105	3.50-4.00	2142983	29/03/2023	Brown slightly gravelly, sandy CLAY (Possible made ground - brick)

Our Ref 23-06584 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

Contract litle Whitby Marit	ime Hub, whit	.by	r							
			Lab No	2142976	2142977	2142979	2142980	2142981	2142982	2142983
		.Sa	mple ID	WS101	WS101	WS102	WS102	WS104	WS105	WS105
			Depth	0.80-1.00	3.70-3.90	1.50-1.60	3.80-4.00	0.60-0.80	1.20-1.50	3.50-4.00
			Other ID							
			ole Type	ES	ES	ES	ES	ES	ES	ES
		•			15/03/2023	14/03/2023		14/03/2023	15/03/2023	15/03/2023
			ng Time	n/s	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units							
Metals	1									
Antimony	DETSC 2301*	1	mg/kg	5.3	< 1.0	1.2	< 1.0	1.6	1.8	< 1.0
Arsenic	DETSC 2301#	0.2	mg/kg	14	7.8	4.0	12	9.1	15	8.9
Barium	DETSC 2301#	1.5	mg/kg	220	71	220	68	160	88	71
Beryllium	DETSC 2301#	0.2	mg/kg	1.7	0.2	0.9	0.4	1.0	0.7	0.3
Boron, Water Soluble	DETSC 2311#	0.2	mg/kg	1.1	1.6	2.7	4.7	2.4	1.1	1.9
Cadmium	DETSC 2301#	0.1	mg/kg	0.6	0.1	< 0.1	< 0.1	0.2	0.1	< 0.1
	DETSC 2301*	0.15	mg/kg	14	13	15	13	16	13	8.7
	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	94	23	28	13	32	29	29
Iron	DETSC 2301	25	mg/kg	23000	19000	41000	26000	34000	36000	18000
Lead	DETSC 2301#	0.3	mg/kg	370	110	23	28	190	81	130
Manganese	DETSC 2301#	20	mg/kg	550	450	230	240	400	350	160
Mercury	DETSC 2325#	0.05	mg/kg	0.12	0.41	< 0.05	0.08	0.20	0.15	0.38
Molybdenum	DETSC 2301#	0.4	mg/kg	3.1	0.5	< 0.4	1.1	0.8	1.9	0.7
Nickel	DETSC 2301#	1	mg/kg	22	11	47	15	27	18	10
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	37	63	25	30	31	31	20
Zinc	DETSC 2301#	1	mg/kg	250	78	58	63	100	58	37
Inorganics										
рН	DETSC 2008#		рН	9.9	8.2	8.8	8.6	8.7	9.6	8.4
Calorific Value	DETSC 5008	1	MJ/kg					< 1.0		
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.5	0.2	< 0.1	< 0.1	0.6	0.5	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Cyanide, Complex	DETSC 2130*	0.2	mg/kg	0.4	< 0.2	< 0.2	< 0.2	0.5	0.5	< 0.2
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6	0.9	< 0.6	0.7	0.7	< 0.6	0.8
	DETSC 2002#	0.1	%					1.9		
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	2.5	3.4	4.6	6.7	4.7	4.1	5.5
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	170	210	32	340	140	260	340
Sulphur as S, Total	DETSC 2320	0.01	%	0.11	0.18	0.02	0.39	0.07	0.10	0.95
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.16	0.14	0.04	0.20	0.10	0.14	0.25
Petroleum Hydrocarbons										
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >EC10-EC12: EH_2D_AL	DETSC 3521#	1.5	mg/kg	6.32	3.40	2.04	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC12-EC16: EH_2D_AL	DETSC 3521#	1.2	mg/kg	27.45	3.94	2.07	< 1.20	1.51	1.60	< 1.20
Aliphatic >EC16-EC21: EH_2D_AL	DETSC 3521#	1.5	mg/kg	25.72	4.66	2.31	< 1.50	< 1.50	< 1.50	< 1.50
Aliphatic >EC21-EC35: EH_2D_AL		3.4	mg/kg	335.1	13.28	6.50	4.89	< 3.40	6.72	< 3.40
Aliphatic >EC35-EC40: EH_2D_AL		3.4	mg/kg	133.6	13.25	3.90	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic >EC40-EC44: EH_2D_AL	DETSC 3521*	3.4	mg/kg	34.29	12.68	< 3.40	< 3.40	< 3.40	< 3.40	< 3.40
Aliphatic C5-C44: EH_2D+HS_1D_AL	DETSC 3521*	10	mg/kg	562.5	51.22	16.81	< 10.00	< 10.00	< 10.00	< 10.00
	·		5 0							

Our Ref 23-06584 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

Contract Title Whitby Marit	ime Hub, whi	tby				1	1	1	1	1
			Lab No	2142976	2142977	2142979	2142980	2142981	2142982	
		.Sa	mple ID	WS101	WS101	WS102	WS102	WS104	WS105	WS105
			Depth	0.80-1.00	3.70-3.90	1.50-1.60	3.80-4.00	0.60-0.80	1.20-1.50	3.50-4.00
			Other ID							
			ole Type	ES	ES			ES		-
				15/03/2023	15/03/2023	14/03/2023	14/03/2023	14/03/2023	15/03/2023	15/03/2023
		•	ng Time	n/s						
Test	Method	LOD	Units							
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >EC10-EC12: EH_2D_AR	DETSC 3521#	0.9	mg/kg	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90	< 0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521#	0.5	mg/kg	1.97	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Aromatic >EC16-EC21: EH_2D_AR	DETSC 3521#	0.6	mg/kg	20.63	1.14	1.09	0.99	3.17	1.14	8.05
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521#	1.4	mg/kg	19.13	3.54	4.44	< 1.40	3.98	< 1.40	4.48
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	mg/kg	2.28	3.73	6.16	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic >EC40-EC44: EH_2D_AR	DETSC 3521*	1.4	mg/kg	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40	< 1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	mg/kg	44.02	< 10.00	11.69	< 10.00	< 10.00	< 10.00	12.53
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	mg/kg	606.5	51.22	28.51	< 10.00	< 10.00	< 10.00	12.53
C5-C10 Gasoline Range Organics (GRO): HS_1D_Total	DETSC 3321*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
EPH (C6-C10): HS_1D_Total	DETSC 3321*	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	DETSC 3311#	10	mg/kg	230	< 10			99	< 10	
EPH (C10-C40): EH_1D_Total	DETSC 3311#	10	mg/kg	490	< 10	< 10	< 10	240	81	120
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01				< 0.01		
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01				< 0.01		
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01				< 0.01		
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01				< 0.01		
MTBE	DETSC 3321	0.01	mg/kg	< 0.01				< 0.01		
	DETCO 2211#	10	ma m // / m	2/0	. 10	. 10	. 10	140	74	20
C24-C40 Lube Oil Range Organics (LORO): EH_1D_Total	DE15C 3311#	10	mg/kg	260	< 10	< 10	< 10	140	74	38
	DETCO 2201	0.1	100 m /l / m	0.0	. 0. 1	0.1	0.1	0.0	0.1	.01
Naphthalene	DETSC 3301	0.1	mg/kg	0.2	< 0.1	< 0.1	< 0.1	0.8		
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	0.6	< 0.1	< 0.1	< 0.1	0.7	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	1.0	< 0.1	< 0.1	< 0.1	0.9		< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	7.4	< 0.1	< 0.1	< 0.1	6.8	0.2	
Anthracene	DETSC 3301	0.1	mg/kg	2.0	< 0.1	< 0.1	< 0.1	1.3	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	24	< 0.1	< 0.1	< 0.1	11	0.3	
Pyrene	DETSC 3301	0.1	mg/kg	21	< 0.1	< 0.1	< 0.1	10	0.6	
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	12	< 0.1	< 0.1	< 0.1	4.9	< 0.1	0.4
Chrysene	DETSC 3301	0.1	mg/kg	13	< 0.1	< 0.1	< 0.1	5.1	< 0.1	0.4
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	9.0	< 0.1	< 0.1	< 0.1	3.3		< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	5.6	< 0.1	< 0.1	< 0.1	2.1	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	12	< 0.1	< 0.1	< 0.1	4.4		< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	8.1	< 0.1	< 0.1	< 0.1	2.7		< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	1.3	< 0.1	< 0.1	< 0.1	0.6	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	7.4	< 0.1	< 0.1	< 0.1	2.4		< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	120	< 1.6	< 1.6	< 1.6	57	< 1.6	2.2

Our Ref 23-06584 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

		.~ j	-							
			Lab No	2142976	2142977	2142979	2142980	2142981	2142982	2142983
		.Sa	mple ID	WS101	WS101	WS102	WS102	WS104	WS105	WS105
			Depth	0.80-1.00	3.70-3.90	1.50-1.60	3.80-4.00	0.60-0.80	1.20-1.50	3.50-4.00
		(Other ID							
		Samp	ole Type	ES						
		Sampli	ng Date	15/03/2023	15/03/2023	14/03/2023	14/03/2023	14/03/2023	15/03/2023	15/03/2023
		Sampli	ng Time	n/s						
Test	Method	LOD	Units							
PCBs										
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01				< 0.01		
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01				< 0.01		
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01				< 0.01		
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01				< 0.01		
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01				< 0.01		
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01				< 0.01		
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01				< 0.01		
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01				< 0.01		
Phenols										
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3

Summary of Chemical Analysis Leachate Samples

Our Ref 23-06584 Client Ref S230311

Contract Title Whitby Maritime Hub, Whitby

Contract little whitby Marin		lby						
		C.	Lab No	2142984	2142985	2142986	2142987	2142988
		.58	ample ID	WS101	WS102	WS102	WS104	WS105
			Depth	0.80-1.00	1.50-1.60	3.80-4.00	0.60-0.80	1.20-1.50
			Other ID	50	50	50	F0	50
			ple Type	ES	ES	ES	ES	ES
							14/03/2023	
Teet	Mathad		ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Metals		0.17		0.01	0.17	0.00	0 ()	0.41
Antimony, Dissolved	DETSC 2306	0.17	ug/l	0.81	< 0.17	0.32	0.63	0.41
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	3.4	0.47	1.6	1.4	1.4
Barium, Dissolved	DETSC 2306	0.26	ug/l	5.5	2.0	10	7.6	5.4
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	< 12	74	130	28	< 12
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	9.0	7.0	3.1	1.8	3.8
Iron, Dissolved	DETSC 2306	5.5	ug/l	140	150	61	140	130
Lead, Dissolved	DETSC 2306	0.09	ug/l	2.1	0.40	0.12	2.2	1.2
Manganese, Dissolved	DETSC 2306	0.22	ug/l	1.3	1.5	2.3	1.9	1.3
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	< 0.01	0.01	< 0.01
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	1.2	< 1.1	7.2	1.7	< 1.1
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.38	0.35	< 0.25	0.25	0.31
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	7.1	1.4	1.9	1.4	1.3
Zinc, Dissolved	DETSC 2306	1.3	ug/l	1.9	< 1.3	< 1.3	< 1.3	< 1.3
Inorganics			- J.					
pH	DETSC 2008		pН	8.3	7.9	7.5	7.4	7.4
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40
Cyanide, Free	DETSC 2130	20	ug/l	< 20	< 20	< 20	< 20	< 20
Cyanide, Complex	DETSC 2130*	40	ug/l	< 40	< 40	< 40	< 40	< 40
Thiocyanate	DETSC 2130	20	ug/l	< 20	300	< 20	59	44
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.074	0.095	0.66	0.12	0.14
Sulphate as SO4	DETSC 2055	0.013	mg/l	6.4	6.1	6.5	10	12
Petroleum Hydrocarbons	DE130 2033	0.1	iiig/i	U.4	0.1	0.5	10	12
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322 DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10: HS_1D_AL		0.1	Ŭ	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3322		ug/l					
		1	ug/l	< 1.0	15	2.4	< 1.0	< 1.0
Aliphatic C10-C44: EH_CU_1D_AL		1	ug/l	< 1.0	100	5.5	< 1.0	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL		1	ug/l	< 1.0	14	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL		1	ug/l	< 1.0	24	1.4	< 1.0	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL		1	ug/l	< 1.0	36	1.0	< 1.0	< 1.0
Aliphatic C35-C44: EH_CU_1D_AL		1	ug/l	< 1.0	13	< 1.0	< 1.0	< 1.0
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C10-C12: EH_CU_1D_AR		1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Summary of Chemical Analysis Leachate Samples

Our Ref 23-06584 Client Ref S230311

Contract Title Whitby Maritime Hub, Whitby

		5	Lab No	2142984	2142985	2142986	2142987	2142988
		.Sa	ample ID	WS101	WS102	WS102	WS104	WS105
			Depth	0.80-1.00	1.50-1.60	3.80-4.00	0.60-0.80	1.20-1.50
			Other ID					
		Sam	ple Type	ES	ES	ES	ES	ES
		Sampl	ing Date	15/03/2023	14/03/2023	14/03/2023	14/03/2023	15/03/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Aromatic C16-C21: EH_CU_1D_AR		1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	1	ug/l	< 1.0	100	5.5	< 1.0	< 1.0
PAHs								
Naphthalene	DETSC 3304	0.05	ug/l	0.06	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	0.05	< 0.01	0.03	0.02	0.03
Acenaphthene	DETSC 3304	0.01	ug/l	0.03	< 0.01	< 0.01	0.04	< 0.01
Fluorene	DETSC 3304	0.01	ug/l	0.03	< 0.01	< 0.01	0.01	< 0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.21	0.03	< 0.01	0.04	0.01
Anthracene	DETSC 3304	0.01	ug/l	0.14	< 0.01	< 0.01	0.04	0.02
Fluoranthene	DETSC 3304	0.01	ug/l	0.76	0.04	0.02	0.23	0.04
Pyrene	DETSC 3304	0.01	ug/l	0.65	0.04	0.03	0.26	0.04
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.43	0.02	0.02	0.13	0.03
Chrysene	DETSC 3304	0.01	ug/l	0.52	0.03	0.03	0.18	0.04
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.58	0.04	0.02	0.30	0.07
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.23	< 0.01	< 0.01	0.13	0.02
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.50	0.02	0.02	0.28	0.05
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	0.43	0.02	0.01	0.25	0.05
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	0.08	< 0.01	< 0.01	0.03	< 0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	0.42	0.03	0.01	0.25	0.05
PAH Total	DETSC 3304	0.2	ug/l	5.1	0.29	< 0.20	2.2	0.46
Phenols								
Phenol - Monohydric	DETSC 2130	100	ug/l	< 100	< 100	< 100	< 100	< 100

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-06584 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby Sample Id WS101 0.80-1.00

Sample Numbers 2142976 2142989 2142990 Date Analysed 29/03/2023

Test Results On Waste					WAC Limit Values		
					Inert	SNRHW	Hazardous
Determinand and Method Reference		Units		sult	Waste		Waste
DETSC 2084# Total Organic Carbon		%	10	0.0	3	5	6
DETSC2003# Loss On Ignition		%			n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0	0.04	6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	49	0.0	500	n/a	n/a
DETSC 3301 PAHs		mg/kg	12	0.0	100	n/a	n/a
DETSC2008# pH		pH Units			n/a	>6	n/a
DETS073* Acid Neutralisation Capacity (pH4)	mol/kg			n/a	TBE	TBE
DETS073* Acid Neutralisation Capacity (pH7)	mol/kg			n/a	TBE	TBE
Test Results On Leachate						'AC Limit Va	
						lues for LS10	
Determinand and Method Reference		<u> </u>	Amount Lea		Inert	SNRHW	Hazardous
DETSC 2306 Arsenic as As	2:1 6	8:1 3.4	LS2 0.012	LS10 0.038	Waste 0.5	2	Waste 25
DETSC 2306 Arsenic as As DETSC 2306 Barium as Ba	о 6.5	3.4 4.2	< 0.012	< 0.1	20	2 100	25 300
DETSC 2306 Bandin as Ba	< 0.030	4.2 < 0.030	< 0.02	< 0.1	0.04		5 5
DETSC 2306 Chromium as Cr						1 10	5 70
	0.94 15	0.61	< 0.02 0.03	< 0.1 0.088	0.5	50	
DETSC 2306 Copper as Cu		7.7			2		100
DETSC 2306 Mercury as Hg DETSC 2306 Molybdenum as Mo	< 0.010	< 0.010	< 0.0004	< 0.002	0.01	0.2	2
5	2.4	1.3	< 0.02	< 0.1 < 0.1	0.5	10	30
DETSC 2306 Nickel as Ni	0.62	< 0.50	< 0.02		0.4 0.5	10	40 50
DETSC 2306 Lead as Pb	2.8	2.7	< 0.01	< 0.05		10	50 5
DETSC 2306 Antimony as Sb	1.8	1	< 0.01	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se	0.77	0.46	< 0.006	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn	2.6	4	0.005	0.038	4	50	200
DETSC 2055 Chloride as Cl	12000	150	24	< 100	800	15,000	25,000
DETSC 2055* Fluoride as F	290	130	0.58	1.54	10	150	500
DETSC 2055 Sulphate as SO4	17000	3800	34	< 100	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	120000	46000	240	570.2	4000	60,000	100,000
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	8200	9500	16.4	93.1	500	800	1000
Additional Information	(<u>-</u>		1			To Be Evalua	
DETSC 2008 pH	6.5	8.1			SNRHW -	Stable Non-I	
DETSC 2009 Conductivity uS/cm	171.0	65.2				Hazardous V	Vaste
* Temperature*	17.0	18.0					
Mass of Sample Kg*	0.140						
Mass of dry Sample Kg*	0.111						
Stage 1		1					
Volume of Leachant L2*	0.192						
Volume of Eluate VE1*	0.165						
Stage 2							
Volume of Leachant L8*	0.887						
Volume of Eluate VE2*	0.84	_					

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

V.2.06

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-06584 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby Sample Id WS104 0.60-0.80

Sample Numbers 2142981 2142991 2142992 Date Analysed 29/03/2023

Test Results On Waste					WAC Limit Values			
Test Results OIT Waste					Inert	SNRHW	Hazardous	
Determinand and Method Reference		Units	Re	sult	Waste	JINKIIW	Waste	
DETSC 2084# Total Organic Carbon		%	2	.0	3	5	6	
DETSC2003# Loss On Ignition		%			n/a	n/a	10	
DETSC 3321# BTEX		mg/kg	< 0	0.04	6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0	0.01	1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	24	0.0	500	n/a	n/a	
DETSC 3301 PAHs		mg/kg	57	7.0	100	n/a	n/a	
DETSC2008# pH		pH Units			n/a	>6	n/a	
DETS073* Acid Neutralisation Capacity (pH4)	mol/kg			n/a	TBE	TBE	
DETS073* Acid Neutralisation Capacity (pH7		mol/kg			n/a	TBE	TBE	
Test Results On Leachate					W	AC Limit Va	lues	
	-		-			ues for LS10		
Determinand and Method Reference		<u> </u>	Amount Lea		Inert	SNRHW	Hazardous	
	2:1	8:1	LS2	LS10	Waste		Waste	
DETSC 2306 Arsenic as As	3.5	1.3	0.007	0.017	0.5	2	25	
DETSC 2306 Barium as Ba	23	11	0.05	0.13	20	100	300	
DETSC 2306 Cadmium as Cd	< 0.030	< 0.030	< 0.004	< 0.02	0.04	1	5	
DETSC 2306 Chromium as Cr	2.1	0.97	< 0.02	< 0.1	0.5	10	70	
DETSC 2306 Copper as Cu	4.3	3.4	0.009	0.036	2	50	100	
DETSC 2306 Mercury as Hg	0.022	0.015	< 0.0004	< 0.002	0.01	0.2	2	
DETSC 2306 Molybdenum as Mo	4.1	1.8	< 0.02	< 0.1	0.5	10	30	
DETSC 2306 Nickel as Ni	0.63	< 0.50	< 0.02	< 0.1	0.4	10	40	
DETSC 2306 Lead as Pb	3.7	2.1	< 0.01	< 0.05	0.5	10	50	
DETSC 2306 Antimony as Sb	2.5	1	< 0.01	< 0.05	0.06	0.7	5	
DETSC 2306 Selenium as Se	0.96	0.48	< 0.006	< 0.03	0.1	0.5	7	
DETSC 2306 Zinc as Zn	2.6	2	0.005	0.021	4	50	200	
DETSC 2055 Chloride as Cl	17000	2200	34	< 100	800	15,000	25,000	
DETSC 2055* Fluoride as F	930	170	1.86	2.97	10	150	500	
DETSC 2055 Sulphate as SO4	50000	7300	100	144.2	1000	20,000	50,000	
DETSC 2009* Total Dissolved Solids	170000	55000	340	741.7	4000	60,000	100,000	
DETSC 2130 Phenol Index	< 100	< 100	< 0.2	< 1	1	n/a	n/a	
DETSC 2085 Dissolved Organic Carbon	9100	7500	18.2	77.7	500	800	1000	
Additional Information	-	-	-		TBE -	To Be Evalua	ated	
DETSC 2008 pH	8.0	7.7	1		SNRHW -	Stable Non-I	Reactive	
DETSC 2009 Conductivity uS/cm	241.0	78.1				Hazardous V		
* Temperature*	18.0	18.0						
Mass of Sample Kg*	0.140		-					
Mass of dry Sample Kg*	0.118							
Stage 1	-							
Volume of Leachant L2*	0.213							
Volume of Eluate VE1*	0.196							
Stage 2								
Volume of Leachant L8*	0.94							
Volume of Eluate VE2*	0.894							
	ided for aut			t accort roop on				

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-06584 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2142976	WS101 0.80-1.00	SOIL	NAD	none	Pierce Booth
2142978	WS102 0.60-0.80	SOIL	NAD	none	Pierce Booth
2142981	WS104 0.60-0.80	SOIL	NAD	none	Pierce Booth
2142982	WS105 1.20-1.50	SOIL	NAD	none	Pierce Booth

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Inappropriate

Information in Support of the Analytical Results

Our Ref 23-06584 Client Ref S230311 Contract Whitby Maritime Hub, Whitby

Containers Received & Deviating Samples

		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2142976	WS101 0.80-1.00 SOIL	15/03/23	GJ 250ml x2, PT 1L	Ammonia (3 days)	
2142977	WS101 3.70-3.90 SOIL	15/03/23	GJ 250ml x2, PT 1L	Ammonia (3 days)	
2142978	WS102 0.60-0.80 SOIL	14/03/23	GJ 250ml x2, PT 1L		
2142979	WS102 1.50-1.60 SOIL	14/03/23	GJ 250ml x2, PT 1L	Ammonia (3 days)	
2142980	WS102 3.80-4.00 SOIL	14/03/23	GJ 250ml x2, PT 1L	Ammonia (3 days)	
2142981	WS104 0.60-0.80 SOIL	14/03/23	GJ 250ml x2, PT 1L	Ammonia (3 days)	
2142982	WS105 1.20-1.50 SOIL	15/03/23	GJ 250ml x2, PT 1L	Ammonia (3 days)	
2142983	WS105 3.50-4.00 SOIL	15/03/23	GJ 250ml x2, PT 1L	Ammonia (3 days)	
2142984	WS101 0.80-1.00 LEACHATE	15/03/23	GJ 250ml x2, PT 1L		
2142985	WS102 1.50-1.60 LEACHATE	14/03/23	GJ 250ml x2, PT 1L		
2142986	WS102 3.80-4.00 LEACHATE	14/03/23	GJ 250ml x2, PT 1L		
2142987	WS104 0.60-0.80 LEACHATE	14/03/23	GJ 250ml x2, PT 1L		
2142988	WS105 1.20-1.50 LEACHATE	15/03/23	GJ 250ml x2, PT 1L		
2142989	WS101 0.80-1.00 LEACHATE	15/03/23	GJ 250ml x2, PT 1L		
2142990	WS101 0.80-1.00 LEACHATE	15/03/23	GJ 250ml x2, PT 1L		
2142991	WS104 0.60-0.80 LEACHATE	14/03/23	GJ 250ml x2, PT 1L		
2142992	WS104 0.60-0.80 LEACHATE	14/03/23	GJ 250ml x2, PT 1L		
	Destin Lier T Tub	1.1.00,20			

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det Aliphatic C5-C6 Acronym HS_1D_AL

Appendix A - Details of Analysis

Method	Parameter	Units	Limit of Detection	Sample Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2002 DETSC 2003		%	0.1	Air Dried	No	Yes	Yes
DETSC 2003 DETSC 2008	Loss on ignition pH	pH Units	1	Air Dried	No	Yes	Yes
	•						Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072 DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
	•						
DETSC 3072 DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received As Received	No	Yes	Yes
	Aliphatic C21-C35	mg/kg	3.4		No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
	<pre></pre>						

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

Issued: 02-Nov-23

Certificate Number 23-24975 Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-24975
- Client Reference S230311
 - Order No SOL--7796
 - Contract Title WHITBY MARITIME HUB, WHITBY
 - Description 5 Soil samples, 4 Leachate samples.
 - Date Received 23-Oct-23
 - Date Started 23-Oct-23
- Date Completed 02-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Summary of Chemical Analysis Matrix Descriptions

Sample ID	Depth	Lab No	Completed	Matrix Description
BH102	1	2251104	02/11/2023	Brown/ orange very gravelly CLAY (Made ground - brick)
BH102	7.5	2251105	02/11/2023	Dark slightly gravelly, sandy CLAY
BH105	2.2	2251106	02/11/2023	Dark brown slightly gravelly, sandy CLAY including odd rootlets (Possible made ground - brick)
BH105	3.5	2251107	02/11/2023	Dark brown slightly gravelly, sandy CLAY including odd rootlets

	Lab No	2251104	2251105	2251106	2251107		
		Sa	ample ID	BH102	BH102	BH105	BH105
			Depth	1.00	7.50	2.20	3.50
		(Other ID				
			ple Type	ES	ES	ES	ES
				16/10/2023			
			ing Time		n/s	n/s	n/s
Test	Method	LOD	Units				
Metals							
Antimony	DETSC 2301*	1	mg/kg	1.4		1.3	< 1.0
Arsenic	DETSC 2301#	0.2	mg/kg	7.1		11	13
Barium	DETSC 2301#	1.5	mg/kg	59		130	57
Beryllium	DETSC 2301#	0.2	mg/kg	0.4		1.1	0.4
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	2.3		2.0	3.7
Cadmium	DETSC 2301#	0.1	mg/kg	1.1		0.3	0.1
Chromium III	DETSC 2301*	0.15	mg/kg	11		15	14
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0		< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	12		32	12
Iron	DETSC 2301	25	mg/kg	16000		30000	32000
Lead	DETSC 2301#	0.3	mg/kg	17		92	40
Manganese	DETSC 2301#	20	mg/kg	180		570	270
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05		0.13	0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	1.6		1.6	1.1
Nickel	DETSC 2301#	1	mg/kg	9.2		16	14
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5		0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	16		36	35
Zinc	DETSC 2301#	1	mg/kg	72		72	54
Inorganics		· · · · ·					
рН	DETSC 2008#		pН	9.6		8.3	8.6
Calorific Value	DETSC 5008	1	MJ/kg	< 1.0			
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1		0.2	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1		< 0.1	< 0.1
Cyanide, Complex	DETSC 2130*	0.2	mg/kg	< 0.2		< 0.2	< 0.2
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6		0.9	0.8
Organic matter	DETSC 2002#	0.1	%		3.2		
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	1.4		43	4.7
Nitrate as N	*	1	mg/kg	< 1.0		< 1.0	< 1.0
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	1000		210	360
Sulphur as S, Total	DETSC 2320	0.01	%	0.27		0.13	0.39
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.69		0.13	0.13
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5		< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2		< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5		< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4		< 3.4	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4		< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	< 10		< 10	< 10

			Lab No	2251104	2251105	2251106	2251107
		.Sa	ample ID	BH102	BH102	BH105	BH105
			Depth	1.00	7.50	2.20	3.50
			Other ID				
			ple Type	ES	ES	ES	ES
				16/10/2023			16/10/2023
			ing Time		n/s	n/s	n/s
Test	Method	LOD	Units				
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9		< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5		< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6		< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4		< 1.4	< 1.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4		< 1.4	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	< 10		< 10	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	< 10		< 10	< 10
TPH (C6-C40): EH_CU+HS_1D_Total	DETSC 3311*	10	mg/kg	< 10		94	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01			
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01			
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01			
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01			
MTBE	DETSC 3321	0.01	mg/kg	< 0.01			
PAHs							
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1		0.2	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1		0.4	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1		0.3	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1		0.7	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	0.1		2.8	0.2
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1		0.8	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	0.5		4.4	0.2
Pyrene	DETSC 3301	0.1	mg/kg	0.3		3.7	0.2
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	0.2		2.2	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	0.3		2.5	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	0.2		1.7	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	0.2		1.2	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	0.3		2.5	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1		2.4	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1		0.5	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1		1.2	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	2.0		27	< 1.6
PCBs							
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01			

			Lab No	2251104	2251105	2251106	2251107
	.Sample ID			BH102	BH102	BH105	BH105
			Depth	1.00	7.50	2.20	3.50
		Other ID					
		Sam	ple Type	ES	ES	ES	ES
		Sampl	ing Date	16/10/2023	16/10/2023	16/10/2023	16/10/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01			
Phenols							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3		< 0.3	0.3

Summary of Chemical Analysis Leachate Samples

			Lab No	2251108	2251109
		.Sa	mple ID	BH102	BH102
			Depth	1.00	7.50
		(Other ID		
		Samp	ole Type	ES	ES
		Sampli	ng Date	16/10/2023	16/10/2023
		Sampli	ng Time	n/s	n/s
Test	Method	LOD	Units		
Preparation					
NRA Leachate Preparation	DETSC 1009*			Y	Y
Metals					
Antimony, Dissolved	DETSC 2306	0.17	ug/l	2.6	1.5
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.7	2.5
Barium, Dissolved	DETSC 2306	0.26	ug/l	30	12
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	71	93
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	21	14
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.7	0.5
Iron, Dissolved	DETSC 2306	5.5	ug/l	< 5.5	7.3
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.29	0.31
Manganese, Dissolved	DETSC 2306	0.22	ug/l	0.95	1.3
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	3.4	4.7
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.46	< 0.25
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	4.3	2.9
Zinc, Dissolved	DETSC 2306	1.3	ug/l	< 1.3	< 1.3
Inorganics					
рН	DETSC 2008		pН	8.1	8.3
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40
Cyanide, Free	DETSC 2130	20	ug/l	< 20	< 20
Cyanide, Complex	DETSC 2130*	40	ug/l	< 40	< 40
Thiocyanate	DETSC 2130	20	ug/l	< 20	25
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	< 0.015	< 0.015
Sulphate as SO4	DETSC 2055	0.1	mg/l	130	20

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-24975 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY Sample Id BH102 1.00

Sample Numbers 2251104 2251110 Date Analysed 31/10/2023

			5	1	\٨/	AC Limit Va		
Test Results On Waste					nert	I	Hazardous	
Determinand and Method Reference		Units	Result		/aste	SNRHW	Waste	
DETSC 2084# Total Organic Carbon		%	2.1		3	5	6	
DETSC2003# Loss On Ignition		%			n/a	n/a	10	
DETSC 3321# BTEX		mg/kg	< 0.04					
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1			
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500			
DETSC 3301 PAHs		mg/kg	2.0					
DETSC2008# pH		pH Units						
DETS073* Acid Neutralisation Capacity (pH4))	mol/kg						
DETS073* Acid Neutralisation Capacity (pH7)		mol/kg				TBE	TBE	
		V	•		W	AC Limit Va	lues	
Test Results On Leachate				L	6 n/a n/a 1 n/a n/a 500 n/a n/a 500 n/a n/a 100 n/a n/a 100 n/a n/a n/a >6 n/a n/a TBE TBE n/a SNRHW Hazardous Waste 0.5 2 25 20 100 300 0.04 1 5 0.5 10 70 2 50 100 0.5 10 30 0.5 10 30 0.4 10 40 0.5 10 50 0.1 0.5 7 4 50 200 800 15,000 25,000			
Determinand and Method Reference	Conc in El	luate ug/l	Amount Leached* mg/kg		nert		Hazardous	
Determinand and Method Reference	10):1	LS10	W	/aste	SINKHW	Waste	
DETSC 2306 Arsenic as As	1.	.3	0.013		0.5	2	25	
DETSC 2306 Barium as Ba	4		0.47		20	100	300	
DETSC 2306 Cadmium as Cd	0.0		< 0.02	(0.04	1	5	
DETSC 2306 Chromium as Cr	2.		< 0.1		0.5	10	70	
DETSC 2306 Copper as Cu	1.		< 0.02		2	50	100	
DETSC 2306 Mercury as Hg	0.0		< 0.002					
DETSC 2306 Molybdenum as Mo		0	0.1		0.5	10	30	
DETSC 2306 Nickel as Ni	0.0		< 0.1				40	
DETSC 2306 Lead as Pb	0.9		< 0.05		0.5		50	
DETSC 2306 Antimony as Sb	0.3		< 0.05				5	
DETSC 2306 Selenium as Se	1.		< 0.03		0.1			
DETSC 2306 Zinc as Zn		1.3	< 0.01					
DETSC 2055 Chloride as Cl	250		250					
DETSC 2055* Fluoride as F	25		2.5					
DETSC 2055 Sulphate as SO4	240		2400		1000	20,000	50,000	
DETSC 2009* Total Dissolved Solids	450		4500	4	4000	60,000	100,000	
DETSC 2130 Phenol Index	< 1		< 1		1	n/a	n/a	
DETSC 2085 Dissolved Organic Carbon	< 20	000	< 50		500	800	1000	
Additional Information			•			To Be Evalua		
DETSC 2008 pH	8.			S	NRHW -	Stable Non-		
DETSC 2009 Conductivity uS/cm	639					Hazardous V	Vaste	
* Temperature*		8.0	J					
Mass of Sample Kg*	0.1							
Mass of dry Sample Kg*	0.0	92						
Stage 1								
Volume of Leachant L2*	0.9							
Volume of Eluate VE1*	0.8	85						

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-24975 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY Sample Id BH105 2.20

Sample Numbers 2251106 2251111 Date Analysed 31/10/2023

					WAC Limit	Values	
Test Results On Waste				Inert		Hazardous	
Determinand and Method Reference		Units	Result	Waste		/ Waste	
DETSC 2084# Total Organic Carbon		%	3.5	3	5	6	
DETSC2003# Loss On Ignition		%	0.0	n/a	n/a	10	
DETSC 3321# BTEX		mg/kg	< 0.04	6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	94.0	500	n/a	n/a	
DETSC 3301 PAHs		mg/kg	27.0	100	n/a	n/a	
DETSC2008# pH		pH Units		n/a	>6	n/a	
DETS073* Acid Neutralisation Capacity (pH4)	mol/kg		n/a	TBE	TBE	
DETS073* Acid Neutralisation Capacity (pH7		mol/kg		n/a	TBE	TBE	
	,	- · · J			WAC Limit		
Test Results On Leachate				Limit		S10 Leachate	
	Conc in E	luate ug/l	Amount Leached* mg/kg	Inert		Hazardous	
Determinand and Method Reference	10		LS10	Waste	SNRHV	/ Waste	
DETSC 2306 Arsenic as As	1	.2	0.012	0.5	2	25	
DETSC 2306 Barium as Ba	1	5	0.15	20	100	300	
DETSC 2306 Cadmium as Cd	0.	11	< 0.02	0.04	1	5	
DETSC 2306 Chromium as Cr	1.	.3	< 0.1	0.5	10	70	
DETSC 2306 Copper as Cu	2	.1	0.021	2	50	100	
DETSC 2306 Mercury as Hg	0.0)21	< 0.002	0.01	0.2	2	
DETSC 2306 Molybdenum as Mo	4	.7	< 0.1	0.5	10	30	
DETSC 2306 Nickel as Ni	1.	.3	< 0.1	0.4	10	40	
DETSC 2306 Lead as Pb	4	.4	< 0.05	0.5	10	50	
DETSC 2306 Antimony as Sb	0.4	44	< 0.05	0.06	0.7	5	
DETSC 2306 Selenium as Se	1.	.5	< 0.03	0.1	0.5	7	
DETSC 2306 Zinc as Zn	2	0	0.2	4	50	200	
DETSC 2055 Chloride as Cl	85	00	< 100	800	15,000	25,000	
DETSC 2055* Fluoride as F	< 1	00	< 0.1	10	150	500	
DETSC 2055 Sulphate as SO4	120	000	120	1000	20,000	50,000	
DETSC 2009* Total Dissolved Solids	760	000	760	4000	60,000	100,000	
DETSC 2130 Phenol Index	< 1	00	< 1	1	n/a	n/a	
DETSC 2085 Dissolved Organic Carbon	22	00	< 50	500	800	1000	
Additional Information			_	TE	BE - To Be Eva	luated	
DETSC 2008 pH		.8		SNRH	N - Stable No		
DETSC 2009 Conductivity uS/cm		9.0			Hazardou	s Waste	
* Temperature*	18	3.0	J				
Mass of Sample Kg*	0.1	00					
Mass of dry Sample Kg*	0.0)92					
Stage 1							
Volume of Leachant L2*	0.9	913					
Volume of Eluate VE1*	0.	85					

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-24975 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2251103	BH102 0.60	SOIL	NAD	none	Ben Rose
2251104	BH102 1.00	SOIL	NAD	none	Ben Rose
2251106	BH105 2.20	SOIL	NAD	none	Ben Rose
2251107	BH105 3.50	SOIL	NAD	none	Ben Rose

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-24975 Client Ref S230311 Contract WHITBY MARITIME HUB, WHITBY

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2251103	BH102 0.60 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251104	BH102 1.00 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251105	BH102 7.50 SOIL	16/10/23	PT 500ml		
2251106	BH105 2.20 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251107	BH105 3.50 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251108	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2		
2251109	BH102 7.50 LEACHATE	16/10/23	PT 500ml		
2251110	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2		
2251111	BH105 2.20 LEACHATE	16/10/23	PT 500ml		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det Aliphatic C5-C6 Acronym HS_1D_AL

Appendix A - Details of Analysis

		5	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC 2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC 2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC 2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC 2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC 2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 2311	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	As Received	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes

Appendix A - Details of Analysis

ripper		119515	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3321	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3521	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3521	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3521	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

Issued: 11-Dec-23

Certificate Number 23-24975-1 Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

Our Reference 23-24975-1

Client Reference S230311

Order No SOL--7796

Contract Title WHITBY MARITIME HUB, WHITBY

Description 5 Soil samples, 4 Leachate prepared by DETS samples.

Date Received 23-Oct-23

Date Started 23-Oct-23

Date Completed 11-Dec-23

Test Procedures Identified by prefix DETSn (details on request).

Notes This report supersedes 23-24975, amendments made

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited Unit 2, Park Road Industrial Estate South, Consett, Co Durham, DH8 5PY Tel: 01207 582333 • email: info@dets.co.uk • www.dets.co.uk

Summary of Chemical Analysis Matrix Descriptions

Sample ID	Depth	Lab No	Completed	Matrix Description
BH102	1	2251104	02/11/2023	Brown/ orange very gravelly CLAY (Made ground - brick)
BH102	7.5	2251105	02/11/2023	Dark slightly gravelly, sandy CLAY
BH105	2.2	2251106	02/11/2023	Dark brown slightly gravelly, sandy CLAY including odd rootlets (Possible made ground - brick)
BH105	3.5	2251107	02/11/2023	Dark brown slightly gravelly, sandy CLAY including odd rootlets

Our Ref 23-24975-1

Client Ref S230311

Contract Title WHITBY MARITIME HUB, WHITBY

Contract Intel WHITEF WARTINE			Lab No	2251104	2251105	2251106	2251107
	.Sample IE			BH102	BH102	BH105	BH105
			Depth	1.00	7.50	2.20	3.50
			Other ID			-	
			ple Type	ES	ES	ES	ES
				16/10/2023	16/10/2023	16/10/2023	16/10/2023
			ing Time		n/s	n/s	n/s
Test	Method	LOD	Units				
Metals							
Antimony	DETSC 2301*	1	mg/kg	1.4		1.3	< 1.0
Arsenic	DETSC 2301#	0.2	mg/kg	7.1		11	13
Barium	DETSC 2301#	1.5	mg/kg	59		130	57
Beryllium	DETSC 2301#	0.2	mg/kg	0.4		1.1	0.4
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	2.3		2.0	3.7
Cadmium	DETSC 2301#	0.1	mg/kg	1.1		0.3	0.1
Chromium III	DETSC 2301*	0.15	mg/kg	11		15	14
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0		< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	12		32	12
Iron	DETSC 2301	25	mg/kg	16000		30000	32000
Lead	DETSC 2301#	0.3	mg/kg	17		92	40
Manganese	DETSC 2301#	20	mg/kg	180		570	270
Mercury	DETSC 2325#	0.05	mg/kg	< 0.05		0.13	0.05
Molybdenum	DETSC 2301#	0.4	mg/kg	1.6		1.6	1.1
Nickel	DETSC 2301#	1	mg/kg	9.2		16	14
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5		0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	16		36	35
Zinc	DETSC 2301#	1	mg/kg	72		72	54
Inorganics							
рН	DETSC 2008#		pН	9.6		8.3	8.6
Calorific Value	DETSC 5008	1	MJ/kg	< 1.0			
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1		0.2	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1		< 0.1	< 0.1
Cyanide, Complex	DETSC 2130*	0.2	mg/kg	< 0.2		< 0.2	< 0.2
Thiocyanate	DETSC 2130#	0.6	mg/kg	< 0.6		0.9	0.8
Organic matter	DETSC 2002#	0.1	%		3.2		
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	1.4		43	4.7
Nitrate as N	*	1	mg/kg	< 1.0		< 1.0	< 1.0
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	1000		210	360
Sulphur as S, Total	DETSC 2320	0.01	%	0.27		0.13	0.39
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.69		0.13	0.13
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5		< 1.5	< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg	< 1.2		< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg	< 1.5		< 1.5	< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4		< 3.4	< 3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	mg/kg	< 3.4		< 3.4	< 3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	< 10		< 10	< 10

Our Ref 23-24975-1 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY

			Lab No	2251104	2251105	2251106	2251107
		S	ample ID	BH102	BH102	BH105	BH105
		.00	Depth	1.00	7.50	2.20	3.50
			Other ID		,100	2120	0100
			ple Type	ES	ES	ES	ES
		Sampl	ing Date	16/10/2023	16/10/2023	16/10/2023	16/10/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01		< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	< 0.9		< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	< 0.5		< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	< 0.6		< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4		< 1.4	< 1.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	mg/kg	< 1.4		< 1.4	< 1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	< 10		< 10	< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	mg/kg	< 10		< 10	< 10
TPH (C6-C40): EH+HS_1D_Total	DETSC 3311*	10	mg/kg	< 10		94	< 10
Benzene	DETSC 3321#	0.01	mg/kg	< 0.01			
Ethylbenzene	DETSC 3321#	0.01	mg/kg	< 0.01			
Toluene	DETSC 3321#	0.01	mg/kg	< 0.01			
Xylene	DETSC 3321#	0.01	mg/kg	< 0.01			
MTBE	DETSC 3321	0.01	mg/kg	< 0.01			
PAHs							
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1		0.2	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1		0.4	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1		0.3	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1		0.7	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	0.1		2.8	0.2
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1		0.8	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	0.5		4.4	0.2
Pyrene	DETSC 3301	0.1	mg/kg	0.3		3.7	0.2
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	0.2		2.2	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	0.3		2.5	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	0.2		1.7	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	0.2		1.2	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	0.3		2.5	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1		2.4	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1		0.5	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1		1.2	< 0.1
PAH 16 Total	DETSC 3301	1.6	mg/kg	2.0		27	< 1.6
PCBs							
PCB 28 + PCB 31	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 52	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 101	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 118	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 153	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 138	DETSC 3401#	0.01	mg/kg	< 0.01			
PCB 180	DETSC 3401#	0.01	mg/kg	< 0.01			

Our Ref 23-24975-1 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY

		Lab No			2251105	2251106	2251107
		.Sa	ample ID	BH102	BH102	BH105	BH105
			Depth	1.00	7.50	2.20	3.50
			Other ID				
	Sample Type			ES	ES	ES	ES
		Sampl	ing Date	16/10/2023	16/10/2023	16/10/2023	16/10/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
PCB 7 Total	DETSC 3401#	0.01	mg/kg	< 0.01			
Phenols							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3		< 0.3	0.3

Our Ref 23-24975-1 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY

			Lab No	2251108	2251109	2251111
		.Sa	ample ID	BH102	BH102	BH105
			Depth	1.00	7.50	2.20
			Other ID			
		Sam	Sample Type		ES	ES
				16/10/2023	16/10/2023	16/10/2023
		Sampl	Sampling Time		n/s	n/s
Test	Method	LOD	Units			
Metals						
Antimony, Dissolved	DETSC 2306	0.17	ug/l	2.6	1.5	0.44
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.7	2.5	1.2
Barium, Dissolved	DETSC 2306	0.26	ug/l	30	12	15
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	71	93	33
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	0.11
Chromium III, Dissolved	DETSC 2306*	1	ug/l	21	14	1.3
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.7	0.5	2.1
Iron, Dissolved	DETSC 2306	5.5	ug/l	< 5.5	7.3	24
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.29	0.31	4.5
Manganese, Dissolved	DETSC 2306	0.22	ug/l	0.95	1.3	9.8
Mercury, Dissolved	DETSC 2306	0.01	ug/l	< 0.01	< 0.01	0.02
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	3.4	4.7	4.7
Nickel, Dissolved	DETSC 2306	0.5	ug/l	< 0.5	< 0.5	1.3
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.46	< 0.25	1.5
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	4.3	2.9	1.9
Zinc, Dissolved	DETSC 2306	1.3	ug/l	< 1.3	< 1.3	20
Inorganics		· · · · ·			• •	
рН	DETSC 2008		pН	8.1	8.3	
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	
Cyanide, Free	DETSC 2130	20	ug/l	< 20	< 20	
Cyanide, Complex	DETSC 2130*	40	ug/l	< 40	< 40	
Thiocyanate	DETSC 2130	20	ug/l	< 20	25	
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	< 0.015	< 0.015	
Sulphate as SO4	DETSC 2055	0.1	mg/l	130	20	

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-24975 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY Sample Id BH102 1.00

Sample Numbers 2251104 2251110 Date Analysed 31/10/2023

					WAC Limit Values			
Test Results On Waste					Inert		Hazardous	
Determinand and Method Reference		Units	Result	1 י	Waste	SINKHW	Waste	
DETSC 2084# Total Organic Carbon		%	2.1	1 🗆	3	5	6	
DETSC2003# Loss On Ignition	ETSC2003# Loss On Ignition				n/a	n/a	10	
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a	
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a	
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a	
DETSC 3301 PAHs		mg/kg	2.0		100	n/a	n/a	
DETSC2008# pH		pH Units			n/a	>6	n/a	
DETS073* Acid Neutralisation Capacity (pH4	.)	mol/kg			n/a	TBE	TBE	
DETS073* Acid Neutralisation Capacity (pH7)	mol/kg			n/a	TBE	TBE	
Test Results On Leachate					W	AC Limit Va	lues	
					Limit val	SNRHW Waste 5 6 a n/a 10 n/a n/a n/a n/a ste n/a n/a ste n/a a 56 n/a a 7BE TBE a TBE TBE wAC Limit Values Hazardous ste SNRHW Waste 5 2 25 0 100 300 04 1 5 5 10 70 5 10 30 4 10 40 5 10 30 4 10 40 5 10 50 06 0.7 5 1 0.5 7		
Determinand and Method Reference		luate ug/l	Amount Leached* mg/kg		Inert	SNBH/W	Hazardous	
):1	LS10		Waste		Waste	
DETSC 2306 Arsenic as As		.3	0.013		0.5		25	
DETSC 2306 Barium as Ba		7	0.47		20	100	300	
DETSC 2306 Cadmium as Cd)54	< 0.02		0.04			
DETSC 2306 Chromium as Cr		.4	< 0.1		0.5			
DETSC 2306 Copper as Cu		.6	< 0.02		2		100	
DETSC 2306 Mercury as Hg)21	< 0.002		0.01	0.2	2	
DETSC 2306 Molybdenum as Mo		0	0.1		0.5			
DETSC 2306 Nickel as Ni		62	< 0.1		0.4		40	
DETSC 2306 Lead as Pb		53	< 0.05		0.5		50	
DETSC 2306 Antimony as Sb	0.	36	< 0.05		0.06		5	
DETSC 2306 Selenium as Se	1	.8	< 0.03		0.1			
DETSC 2306 Zinc as Zn		1.3	< 0.01		4	50	200	
DETSC 2055 Chloride as Cl		000	250		800			
DETSC 2055* Fluoride as F		50	2.5		10			
DETSC 2055 Sulphate as SO4	240	000	2400		1000		50,000	
DETSC 2009* Total Dissolved Solids		000	4500		4000	60,000	100,000	
DETSC 2130 Phenol Index	< 1	100	< 1		1		n/a	
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50	╵└	500			
Additional Information			-					
DETSC 2008 pH		.6			SNRHW -	Stable Non-I	Reactive	
DETSC 2009 Conductivity uS/cm		9.0				Hazardous V	Vaste	
* Temperature*	18	3.0	l					
Mass of Sample Kg*	0.1	100						
Mass of dry Sample Kg*	0.0)92						
Stage 1	-							
Volume of Leachant L2*	0.9	913						
Volume of Eluate VE1*	0.	85						

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-24975 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY Sample Id BH105 2.20

Sample Numbers 2251106 2251111 Date Analysed 31/10/2023

Tast Decults On Wests	ant Deputte On Weste					WAC Limit Values			
Test Results On Waste					Inert		Hazardous		
Determinand and Method Reference		Units	Result		Waste	SINKHAA	Waste		
DETSC 2084# Total Organic Carbon		%	3.5		3	5	6		
DETSC2003# Loss On Ignition		%			n/a	n/a	10		
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a		
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a		
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	94.0		500	n/a	n/a		
DETSC 3301 PAHs		mg/kg	27.0		100	n/a	n/a		
DETSC2008# pH		pH Units			n/a	>6	n/a		
DETS073* Acid Neutralisation Capacity (pH4))	mol/kg			n/a	TBE	TBE		
DETS073* Acid Neutralisation Capacity (pH7))	mol/kg			n/a	TBE	TBE		
Test Desults On Lesshats				1	W	AC Limit Va	lues		
Test Results On Leachate					Waste SNRHW Waste 3 5 6 n/a n/a 10 6 n/a n/a 1 n/a n/a 500 n/a n/a 100 n/a n/a 100 n/a n/a n/a 56 n/a n/a 7BE TBE				
Determinand and Method Reference	Conc in E	luate ug/l	Amount Leached* mg/kg		Inert		Hazardous		
	10):1	LS10		Waste	JINKIIV	Waste		
DETSC 2306 Arsenic as As		.2	0.012		0.5	2	25		
DETSC 2306 Barium as Ba	1	5	0.15		20	100	300		
DETSC 2306 Cadmium as Cd	0.	11	< 0.02		0.04	1	5		
DETSC 2306 Chromium as Cr		.3	< 0.1		0.5	10	70		
DETSC 2306 Copper as Cu	2	.1	0.021		2	50	100		
DETSC 2306 Mercury as Hg	0.0)21	< 0.002		0.01	0.2	2		
DETSC 2306 Molybdenum as Mo	4	.7	< 0.1		0.5	10	30		
DETSC 2306 Nickel as Ni	1	.3	< 0.1		0.4	10	40		
DETSC 2306 Lead as Pb	4	.4	< 0.05		0.5	10	50		
DETSC 2306 Antimony as Sb	0.4	44	< 0.05		0.06	0.7	5		
DETSC 2306 Selenium as Se	1	.5	< 0.03		0.1	0.5	7		
DETSC 2306 Zinc as Zn	2	0	0.2		4	50	200		
DETSC 2055 Chloride as Cl	85	00	< 100		800	15,000	25,000		
DETSC 2055* Fluoride as F	< 1	00	< 0.1		10	150	500		
DETSC 2055 Sulphate as SO4	120	000	120		1000	20,000	50,000		
DETSC 2009* Total Dissolved Solids	760	000	760		4000	60,000	100,000		
DETSC 2130 Phenol Index	< 1	00	< 1		1	n/a	n/a		
DETSC 2085 Dissolved Organic Carbon	22	00	< 50		500	800	1000		
Additional Information					TBE -	To Be Evalua	ated		
DETSC 2008 pH		.8			SNRHW -	Stable Non-I	Reactive		
DETSC 2009 Conductivity uS/cm	10	9.0				Hazardous V	Vaste		
* Temperature*	18	3.0							
Mass of Sample Kg*	0.1	100							
Mass of dry Sample Kg*)92							
Stage 1	I								
Volume of Leachant L2*	0.9	913							
Volume of Eluate VE1*	0.	85							

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-24975-1 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2251103	BH102 0.60	SOIL	NAD	none	Ben Rose
2251104	BH102 1.00	SOIL	NAD	none	Ben Rose
2251106	BH105 2.20	SOIL	NAD	none	Ben Rose
2251107	BH105 3.50	SOIL	NAD	none	Ben Rose

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-24975-1 Client Ref S230311 Contract WHITBY MARITIME HUB, WHITBY

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2251103	BH102 0.60 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251104	BH102 1.00 SOIL	16/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days)	BTEX / C5-C10
2251105	BH102 7.50 SOIL	16/10/23	PT 500ml		
2251106	BH105 2.20 SOIL	16/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days)	BTEX / C5-C10
2251107	BH105 3.50 SOIL	16/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days)	BTEX / C5-C10
2251108	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2		
2251109	BH102 7.50 LEACHATE	16/10/23	PT 500ml		
2251110	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2		
2251111	BH105 2.20 LEACHATE	16/10/23	PT 500ml		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det Aliphatic C5-C6 Acronym HS_1D_AL

Appendix A - Details of Analysis

		J	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC 2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC 2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC 2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC 2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC 2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 2311	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	As Received	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10 0 F	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene Benzo(a)anthracene	mg/kg	0.03		No	Yes	Yes
DETSC 3303		mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303 DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes Yes	Yes Yes
DETSC 3303 DETSC 3303	Benzo(g,h,i)perylene Dibenzo(a,h)anthracene	mg/kg	0.03 0.03	As Received As Received	No No	Yes	Yes
DETSC 3303 DETSC 3303	Fluoranthene	mg/kg	0.03	As Received			Yes
DE130 3303		mg/kg	0.03	AS NELEIVEU	No	Yes	103

Appendix A - Details of Analysis

		5	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3321	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3521	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3521	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3521	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

Issued: 01-Dec-23

Certificate Number 23-27300 Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-27300
- Client Reference S230311
 - Order No SOL--7796
 - Contract Title WHITBY MARITIME HUB, WHITBY
 - *Description* 1 Soil sample, 2 Leachate prepared by DETS samples.
 - Date Received 23-Oct-23
- Date Started 20-Nov-23
- Date Completed 01-Dec-23
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Our Ref 23-27300 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY

			Lab No	2264873		
		.Sar	mple ID	BH105		
	Depth					
		0	ther ID			
		Samp	Іе Туре	ES		
		Samplir	16/10/2023			
		Samplir	ng Time	n/s		
Test	Method	LOD	Units			
Inorganics						
Calorific Value	DETSC 5008	1	MJ/kg	< 1.0		

Our Ref 23-27300 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY

			1		
		6	Lab No		2264875
		.5	ample ID	BH102	BH105
			Depth	1.00	2.20
			Other ID		
			ple Type	ES	ES
				16/10/2023	
Test			ing Time	n/s	n/s
Test	Method	LOD	Units		
Preparation		1		V	V
NRA Leachate Preparation	DETSC 1009*			Y	Y
Petroleum Hydrocarbons		0.1	. //	0.1	0.1
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l		< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l		< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l		< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l		< 1.0
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l		< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l		< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l		< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l		< 0.1
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l		< 1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l		< 10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total		10	ug/l		< 10
Benzene	DETSC 3322	1	ug/l		< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0
Xylene	DETSC 3322	1	ug/l		< 1.0
MTBE	DETSC 3322	1	ug/l	< 1.0	< 1.0
PAHs	1				
Naphthalene	DETSC 3304	0.05	ug/l		< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	0.09
Acenaphthene	DETSC 3304	0.01	ug/l	0.02	0.27
Fluorene	DETSC 3304	0.01	ug/l	0.02	0.17
Phenanthrene	DETSC 3304	0.01	ug/l	0.12	0.46
Anthracene	DETSC 3304	0.01	ug/l	0.04	0.19
Fluoranthene	DETSC 3304	0.01	ug/l	0.11	0.79
Pyrene	DETSC 3304	0.01	ug/l	0.13	0.62
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.06	0.34
Chrysene	DETSC 3304	0.01	ug/l	0.06	0.37
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.07	0.49
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.03	0.24
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.06	0.39
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	0.04	0.31

Our Ref 23-27300 Client Ref S230311 Contract Title WHITBY MARITIME HUB, WHITBY

		Lab No	2264874	2264875
	.Sa	ample ID	BH102	BH105
		Depth	1.00	2.20
	(Other ID		
	Sam	ple Type	ES	ES
	Sampl	ing Date	16/10/2023	16/10/2023
	Sampl	ing Time	n/s	n/s
Method	LOD	Units		
DETSC 3304	0.01	ug/l	< 0.01	0.05
DETSC 3304	0.01	ug/l	0.05	0.26
DETSC 3304	0.2	ug/l	0.79	5.0
DETSC 3402	0.3	ug/l	< 0.3	< 0.3
DETSC 3402	0.2	ug/l	< 0.2	< 0.2
DETSC 3402	0.3	ug/l	< 0.3	< 0.3
DETSC 3402	0.6	ug/l	< 0.6	< 0.6
DETSC 3402	0.2	ug/l	< 0.2	< 0.2
DETSC 3402	0.2	ug/l	< 0.2	< 0.2
DETSC 3402	0.2	ug/l	< 0.2	< 0.2
DETSC 3402	1	ug/l	< 1.0	< 1.0
DETSC 2130	100	ug/l	< 100	< 100
	Method DETSC 3304 DETSC 3304 DETSC 3304 DETSC 3402 DETSC 3402 DETSC 3402 DETSC 3402 DETSC 3402 DETSC 3402 DETSC 3402 DETSC 3402	.Sa Sampl Sampl Sampl Sampl Detsc 3304 DETSC 3304 0.01 DETSC 3304 0.01 DETSC 3304 0.01 DETSC 3402 0.2 DETSC 3402	Lab No .Sample ID Depth Other ID Sample Type Sampling Date Sampling Time Method LOD Units DETSC 3304 0.01 ug/l DETSC 3304 0.01 ug/l DETSC 3304 0.2 ug/l DETSC 3402 0.3 ug/l DETSC 3402 0.3 ug/l DETSC 3402 0.4 ug/l DETSC 3402 0.2 ug/l	Lab No 2264874 Sample ID BH102 Depth 1.00 Other ID Sample Type Sampling Date 16/10/2023 Sampling Time n/s Method LOD DETSC 3304 0.01 ug/l DETSC 3304 0.01 ug/l DETSC 3304 0.2 ug/l DETSC 3304 0.2 ug/l DETSC 3402 0.3 ug/l DETSC 3402 0.3 ug/l DETSC 3402 0.4 ug/l DETSC 3402 0.2 ug/l DET

.....

Information in Support of the Analytical Results

Our Ref 23-27300 Client Ref S230311 Contract WHITBY MARITIME HUB, WHITBY

Containers Received & Deviating Samples

					Holding time	Inappropriate		
		Date			exceeded for	container for		
Lab No	Sample ID	Sampled	Containers Received		tests	tests		
2264873	BH105 2.20 SOIL	16/10/23	GJ 250ml, PT 1L x2					
2264874	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2					
2264875	BH105 2.20 LEACHATE	16/10/23	GJ 250ml, PT 1L x2					
Key: G-Glas	Key: G-Glass P-Plastic J-Jar T-Tub							

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

 HS Headspace analysis EH Extractable Hydrocarbons - i.e. everything extracted by the solvent CU Clean-up - e.g. by florisil, silica gel 1D GC - Single coil gas chromatography 2D GC-GC - Double coil gas chromatography
CUClean-up - e.g. by florisil, silica gel1DGC - Single coil gas chromatography
1D GC - Single coil gas chromatography
2D GC-GC - Double coil gas chromatography
Total Aliphatics & Aromatics
AL Aliphatics only
AR Aromatics only
#1 EH_2D_Total but with humics mathematically subtracted
#2 EH_2D_Total but with fatty acids mathematically subtracted
_ Operator - underscore to separate acronyms (exception for +)
 Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Aliphatic C5-C6 Aliphatic C6-C8 Aliphatic C8-C10 Aliphatic C10-C12 Aliphatic C12-C16 Aliphatic C16-C21 Aliphatic C21-C35 Aliphatic C35-C40 Aliphatic C5-C40 Aromatic C5-C7 Aromatic C7-C8 Aromatic C8-C10 Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C35 Aromatic C35-C40 Aromatic C5-C40 TPH Ali/Aro C5-C40 Acronym HS_1D_AL HS_1D_AL HS_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU+HS_1D_AL HS_1D_AR HS_1D_AR HS_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU+HS_1D_AR EH_CU+HS_1D_Total

End of Report

Issued: 28-Nov-23

Certificate Number 23-27302 Client SOLMEK

12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-27302
- Client Reference S230311
 - Order No SOL-7810
 - Contract Title Whitby Maritime Hub, Whitby
 - Description 2 Soil samples.
 - Date Received 26-Oct-23
 - Date Started 20-Nov-23
- Date Completed 28-Nov-23
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

5	, i j				
			Lab No		2264878
		.Sa	mple ID	BH104	BH104
			Depth	0.80	1.00
			Other ID		
			ole Type	ES	ES
		Sampl	ing Date	19/10/2023	19/10/2023
		Sampli	ng Time	n/s	n/s
Test	Method	LOD	Units		
Metals					
Antimony	DETSC 2301*	1	mg/kg	1.5	1.6
Arsenic	DETSC 2301#	0.2	mg/kg	3.8	3.6
Barium	DETSC 2301#	1.5	mg/kg	51	45
Beryllium	DETSC 2301#	0.2	mg/kg	< 0.2	< 0.2
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	0.8	0.6
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	< 0.1
Chromium III	DETSC 2301*	0.15	mg/kg	4.5	4.0
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	13	12
Iron	DETSC 2301	25	mg/kg	7800	7500
Lead	DETSC 2301#	0.3	mg/kg	54	42
Manganese	DETSC 2301#	20	mg/kg	280	290
Mercury	DETSC 2325#	0.05	mg/kg	0.08	0.07
Molybdenum	DETSC 2301#	0.4	mg/kg	0.5	0.5
Nickel	DETSC 2301#	1	mg/kg	8.9	7.6
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	8.8	7.4
Zinc	DETSC 2301#	1	mg/kg	43	38
Inorganics	•		<u> </u>		
рН	DETSC 2008#		pН	8.4	8.2
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	< 0.1	< 0.1
Cyanide, Complex	DETSC 2130*	0.2	mg/kg	< 0.2	< 0.2
Thiocyanate	DETSC 2130#	0.6	mg/kg	4.5	4.3
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	2.0	2.4
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	200	170
Sulphur as S, Total	DETSC 2320	0.01	%	0.04	0.04
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.09	0.08
Petroleum Hydrocarbons					
TPH (C6-C40): EH+HS_1D_Total	DETSC 3311*	10	mg/kg	< 10	< 10

Information in Support of the Analytical Results

Our Ref 23-27302 Client Ref S230311 Contract Whitby Maritime Hub, Whitby

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for		
Lab No	Sample ID	Sampled	Containers Received	tests	tests		
2264877	BH104 0.80 SOIL	19/10/23	GJ 250ml, PT 1L x2				
2264878	BH104 1.00 SOIL	19/10/23	GJ 250ml, PT 1L x2				
Key: G-Glass P-Plastic J-Jar T-Tub							
DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may							
be deviatin	be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on						

Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
	Det Acronym

Det TPH (C6-C40) Acronym EH+HS_1D_Total

End of Report

Issued: 23-Nov-23

Certificate Number 23-27292 Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-27292
- Client Reference S230311
 - Order No SOL-7819
 - Contract Title Whitby Maritime Hub, Whitby
 - Description 2 Soil samples.
 - Date Received 01-Nov-23
 - Date Started 20-Nov-23
- Date Completed 23-Nov-23
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

General Manager

Summary of Asbestos Analysis Samples

Lab No	Sample ID	Sample Location	Material Type	Result	Comment*	Analyst		
Crocidolite = Blu	e Asbestos, Amosite = Br	rown Asbestos, Chrysotile = White A	sbestos. Anthophyllite,	Actinolite and Trei	molite are other forms of	of Asbestos. Samples		
are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected.								
Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not								
included in labor	ratory scope of accredita	tion.						

Summary of Asbestos Quantification Analysis Soil Samples

Our Ref 23-27292 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

	Lab No	2264823	2264824			
	.Sample					
		Depth	3.10	0.70		
		Other ID				
	Sar	nple Type	ES	ES		
	oling Date	23/10/2023	23/10/2023			
		oling Time				
Test	Method	Units				
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	< 0.001	0.002		
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	0.002		
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	<0.001	na		
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na		
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na		
Breakdown of Gravimetric Analysis (a)				,		
Mass of Sample		g	957.67	771.29		
ACMs present*		type		Cement		
Mass of ACM in sample		g		0.12		
% ACM by mass		%		0.02		
% asbestos in ACM		%		15		
% asbestos in sample		%		0.002		
Breakdown of Detailed Gravimetric Analysis (b)						
% Amphibole bundles in sample		Mass %	na	na		
% Chrysotile bundles in sample		Mass %	<0.001	na		
Breakdown of PCOM Analysis (c)						
% Amphibole fibres in sample		Mass %	na	na		
% Chrysotile fibres in sample		Mass %	na	na		
Breakdown of Potentially Respirable Fibre Analysis (d)						
Amphibole fibres		Fibres/g	na	na		
Chrysotile fibres		Fibres/g	na	na		
* Denotes test or material description outside of UKAS acc % asbestos in Asbestos Containing Materials (ACMs) is def						

by reference to HSG 264.

Recommended sample size for quantification is approximately 1kg

denotes deviating sample

нотопо пше позрогоризте

Information in Support of the Analytical Results

Our Ref 23-27292 Client Ref S230311

Contract Whitby Maritime Hub, Whitby

Containers Received & Deviating Samples

				5	
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2264823	BH101 3.10 SOIL	23/10/23	GJ 250ml, PT 1L x2		
2264824	BH103 0.70 SOIL	23/10/23	GJ 250ml, PT 1L x2		
Koun C Clas	c D Diactia L Iar T Tub				

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued: 22-Nov-23

Certificate Number 23-27301

Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-27301
- Client Reference S230311
 - Order No SOL-7819
 - Contract Title Whitby Maritime Hub, Whitby
 - Description One Soil sample.
 - Date Received 01-Nov-23
 - Date Started 20-Nov-23
- Date Completed 22-Nov-23
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

La	ab No	2264876	
.Samp	ole ID	BH101	
Ľ	Depth		
Oth	Other ID		
Sample	Sample Type		
Sampling	Sampling Date		
Sampling	Sampling Time		
Test Method LOD	Units		
Inorganics			
Calorific Value DETSC 5008 1 N	∕JJ/kg	< 1.0	

Information in Support of the Analytical Results

Our Ref 23-27301 Client Ref S230311 Contract Whitby Maritime Hub, Whitby

Containers Received & Deviating Samples

				Holding time	Inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2264876	BH101 3.10 SOIL	23/10/23	GJ 250ml, PT 1L x2		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued: 14-Nov-23

Certificate Number 23-25774 Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-25774
- Client Reference S230311
 - Order No SOL-7819
 - Contract Title Whitby Maritime Hub, Whitby
 - Description 4 Soil samples, 5 Leachate samples.
 - Date Received 01-Nov-23
 - Date Started 01-Nov-23
- Date Completed 14-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood

General Manager

			Lab No		2256397	2256398	2256399
		.Sa	ample ID	BH101	BH101	BH101	BH103
			Depth	0.80	3.10	3.80	0.70
	Other ID						
			ple Type	ES	ES	ES	ES
				23/10/2023	23/10/2023	23/10/2023	23/10/2023
			ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Metals							
Antimony	DETSC 2301*	1	mg/kg	1.2	1.1	1.3	2.4
Arsenic	DETSC 2301#	0.2	mg/kg	10	7.3	7.8	8.5
Barium	DETSC 2301#	1.5	mg/kg	110	150	130	160
Beryllium	DETSC 2301#	0.2	mg/kg	0.5	1.5	1.1	0.6
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	4.4	5.4	3.4	1.3
Cadmium	DETSC 2301#	0.1	mg/kg	0.1	0.2	0.1	0.1
Chromium III	DETSC 2301*	0.15	mg/kg	11	13	17	13
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	33	32	120	2100
Iron	DETSC 2301	25	mg/kg	25000	16000	19000	20000
Lead	DETSC 2301#	0.3	mg/kg	110	120	150	230
Manganese	DETSC 2301#	20	mg/kg	360	580	520	410
Mercury	DETSC 2325#	0.05	mg/kg	0.38	0.16	0.63	0.10
Molybdenum	DETSC 2301#	0.4	mg/kg	1.1	1.1	7.4	1.1
Nickel	DETSC 2301#	1	mg/kg	21	15	16	18
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	1.1	< 0.5	< 0.5
Vanadium	DETSC 2301#	0.8	mg/kg	27	30	27	23
Zinc	DETSC 2301#	1	mg/kg	81	100	100	100
Inorganics		-				•	
рН	DETSC 2008#		pН	9.2	9.4	8.9	9.1
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.3	< 0.1	< 0.1	0.1
Cyanide, Free	DETSC 2130#	0.1	mg/kg	0.1	< 0.1	< 0.1	< 0.1
Cyanide, Complex	DETSC 2130*	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
Thiocyanate	DETSC 2130#	0.6	mg/kg	3.8	1.0	< 0.6	2.1
Organic matter	DETSC 2002#	0.1	%	1.8	1.4		
Ammoniacal Nitrogen as N	DETSC 2119#	0.5	mg/kg	1.6	1.5	1.4	1.5
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	77	510	53	820
Sulphur as S, Total	DETSC 2320	0.01	%	0.05	0.29	0.32	0.13
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.08	0.17	0.19	0.27

	Lab No				2256397	2256398	2256399
	.Sample ID				BH101	BH101	BH103
	Depth			0.80	3.10	3.80	0.70
			Other ID				
			ple Type		ES	-	ES
			0	23/10/2023	23/10/2023	23/10/2023	23/10/2023
			ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg		< 0.01	< 0.01	< 0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg		< 1.5		< 1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072#	1.2	mg/kg		< 1.2	< 1.2	< 1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072#	1.5	mg/kg		< 1.5		< 1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072#	3.4	mg/kg	< 3.4	< 3.4		< 3.4
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	< 0.01	< 0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072#	0.9	mg/kg	4.2	< 0.9	< 0.9	< 0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072#	0.5	mg/kg	1.9	< 0.5	< 0.5	< 0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072#	0.6	mg/kg	0.8	< 0.6	< 0.6	< 0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072#	1.4	mg/kg	< 1.4	< 1.4	< 1.4	< 1.4
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	mg/kg	< 10	< 10	< 10	< 10
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total		10	mg/kg		< 10		< 10
EPH (C10-C40): EH_1D_Total	DETSC 3311#	10	mg/kg		69		130
Benzene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01	
Ethylbenzene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01	
Toluene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01	
Xylene	DETSC 3321#	0.01	mg/kg		< 0.01	< 0.01	
MTBE	DETSC 3321	0.01	mg/kg		< 0.01	< 0.01	

		Lab No	2256396	2256397	2256398	2256399	
		.Sample ID			BH101	BH101	BH103
			Depth		3.10	3.80	0.70
			Other ID				
			ple Type		ES	-	ES
				23/10/2023	23/10/2023	23/10/2023	23/10/2023
			ing Time	n/s	n/s	n/s	n/s
Test	Method	LOD	Units				
PAHs							
Naphthalene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	0.5
Acenaphthylene	DETSC 3301	0.1	mg/kg		< 0.1	< 0.1	1.6
Acenaphthene	DETSC 3301	0.1	mg/kg		< 0.1	0.1	0.4
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	0.2	0.3	2.7
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	1.2	1.8	9.6
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	0.7	0.4	2.7
Fluoranthene	DETSC 3301	0.1	mg/kg		3.9	3.4	7.4
Pyrene	DETSC 3301	0.1	mg/kg	0.1	3.3		
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	1.6	1.1	2.8
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	1.4	1.1	2.9
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	1.0	0.8	1.4
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	0.6	0.5	1.0
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	1.4	1.2	2.2
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	0.9	0.8	1.2
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	0.3	0.2	0.3
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	0.8	0.6	0.9
PAH 16 Total	DETSC 3301	1.6	mg/kg		17	15	44
Phenols							
Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	0.7	0.7	< 0.3

Contract little whitby Maritime	nub, whitby					
		_	Lab No			2256402
		.Sample ID		BH101	BH101	BH103
		Depth		0.80	3.10	0.70
			Other ID			
			ple Type		ES	ES
				23/10/2023	23/10/2023	23/10/2023
			ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Preparation						
BS EN 12457 10:1	DETSC 1009*					
NRA Leachate Preparation	DETSC 1009*			Y	Y	Y
Metals						
Antimony, Dissolved	DETSC 2306	0.17	ug/l	1.6	1.5	1.7
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	9.9	1.8	0.70
Barium, Dissolved	DETSC 2306	0.26	ug/l	3.0	18	37
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	41	90	32
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	5.6	< 1.0	4.3
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.8	< 0.4	1.8
Iron, Dissolved	DETSC 2306	5.5	ug/l	100	< 5.5	< 5.5
Lead, Dissolved	DETSC 2306	0.09	ug/l	1.5	0.10	1.0
Manganese, Dissolved	DETSC 2306	0.22	ug/l	1.7	14	4.0
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.01	< 0.01	< 0.01
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	3.0	6.2	2.1
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.6	< 0.5	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.83	0.53	0.61
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	2.9	2.9	0.8
Zinc, Dissolved	DETSC 2306	1.3	ug/l	< 1.3	< 1.3	4.0
Inorganics			<u> </u>		L	
pH	DETSC 2008		pН	8.2	7.8	7.4
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40
Cyanide, Free	DETSC 2130	20	ug/l		< 20	
Cyanide, Complex	DETSC 2130*	40	ug/l	< 40	< 40	
Thiocyanate	DETSC 2130	20	ug/l	95	< 20	
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.019	< 0.015	
Sulphate as SO4	DETSC 2055	0.1	mg/l	8.0	45	140

5	5	Lab No		2256400	2256401	2256402
		.Sa	ample ID	BH101	BH101	BH103
		Depth		0.80	3.10	0.70
		Other ID				
		Sample Type		ES	ES	ES
		Sampling Date		23/10/2023	23/10/2023	23/10/2023
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Petroleum Hydrocarbons						
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l	< 10	< 10	< 10
		10		10	10	10
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total		10	ug/l	< 10	< 10	< 10
Benzene	DETSC 3322	1	ug/l		< 1.0	
Toluene	DETSC 3322	1	ug/l		< 1.0	
Ethylbenzene	DETSC 3322	1	ug/l		< 1.0	
Xylene	DETSC 3322	1	ug/l		< 1.0	
MTBE	DETSC 3322	1	ug/l		< 1.0	
PAHs		0.05		0.07	0.05	0.05
Naphthalene	DETSC 3304	0.05	ug/l			< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	0.01	0.03
Acenaphthene	DETSC 3304	0.01	ug/l	< 0.01	0.07	0.02
Fluorene	DETSC 3304	0.01	ug/l			0.03
Phenanthrene	DETSC 3304	0.01	ug/l	0.01		0.07
Anthracene	DETSC 3304	0.01	ug/l	< 0.01		0.03
Fluoranthene	DETSC 3304	0.01	ug/l	0.01		0.17
Pyrene	DETSC 3304	0.01	ug/l	0.01	0.19	0.16
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	0.09	0.09
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	0.10	0.10
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.12	0.14
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	0.05	0.05
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	0.10	0.13
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	0.07	0.09
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01		0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	0.07	0.08
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	1.3	1.2

			Lab No	2256400	2256401	2256402
		.Sa	mple ID	BH101	BH101	BH103
			Depth	0.80	3.10	0.70
		(Other ID			
		Samp	ole Type	ES	ES	ES
		Sampli	ng Date	23/10/2023	23/10/2023	23/10/2023
		Sampli	ng Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Phenols						
Phenol - Monohydric	DETSC 2130	100	ug/l	140	< 100	< 100

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-25774 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby Sample Id BH101 3.10

Sample Numbers 2256397 2256403 Date Analysed 10/11/2023

Test Results On Waste				1	W	'AC Limit Va	lues
				┘┌─	Inert	SNRHW	Hazardous
Determinand and Method Reference		Units	Result	V	Vaste		Waste
DETSC 2084# Total Organic Carbon		%	2.7		3	5	6
DETSC2003# Loss On Ignition		%			n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	69.0		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	17.0		100	n/a	n/a
DETSC2008# pH		pH Units			n/a	>6	n/a
DETS073* Acid Neutralisation Capacity (pH4)	mol/kg			n/a	TBE	TBE
DETS073* Acid Neutralisation Capacity (pH7)	mol/kg			n/a	TBE	TBE
Test Results On Leachate				1 [W	'AC Limit Va	lues
						lues for LS1	
Determinand and Method Reference			Amount Leached* mg/kg		Inert	SNRHW	Hazardous
	10):1	LS10	V	Vaste	JINICITY	Waste
DETSC 2306 Arsenic as As	1	.1	0.011		0.5	2	25
DETSC 2306 Barium as Ba		6	0.16		20	100	300
DETSC 2306 Cadmium as Cd		030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr		34	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu		.40	< 0.02		2	50	100
DETSC 2306 Mercury as Hg		010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	4	.3	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni	< 0	.50	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb	0.	25	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb		1	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se	0.	27	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	2	.2	0.022		4	50	200
DETSC 2055 Chloride as Cl	190	000	1900		800	15,000	25,000
DETSC 2055* Fluoride as F	15	50	1.5		10	150	500
DETSC 2055 Sulphate as SO4	310	000	310		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids	710	000	7100		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	00	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000
Additional Information	-			'	TBE -	To Be Evalua	ated
DETSC 2008 pH	7	.5		5	SNRHW -	Stable Non-	Reactive
DETSC 2009 Conductivity uS/cm	102	20.0				Hazardous V	Vaste
* Temperature*	17	7.0					
Mass of Sample Kg*	0.1	20					
Mass of dry Sample Kg*	0.0)99					
Stage 1	-						
Volume of Leachant L2*	0.9	966					
Volume of Eluate VE1*	0.	91					

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-25774 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby Sample Id BH103 0.70

Sample Numbers 2256399 2256404 Date Analysed 10/11/2023

Test Results On Waste		WAC Limit Values				
Test Results OIT Waste					SNRHW	Hazardous
Determinand and Method Reference		Units	Result	Waste	JINKIIV	Waste
DETSC 2084# Total Organic Carbon		%	1.4	3	5	6
DETSC2003# Loss On Ignition		%		n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04	6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01	1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	130.0	500	n/a	n/a
DETSC 3301 PAHs		mg/kg	44.0	100	n/a	n/a
DETSC2008# pH		pH Units		n/a	>6	n/a
DETS073* Acid Neutralisation Capacity (pH4		mol/kg		n/a	TBE	TBE
DETS073* Acid Neutralisation Capacity (pH7)	mol/kg		n/a	TBE	TBE
Test Results On Leachate				W	AC Limit Va	lues
					lues for LS1	
Determinand and Method Reference		luate ug/l	Amount Leached* mg/kg	Inert	SNRHW	Hazardous
	10		LS10	Waste		Waste
DETSC 2306 Arsenic as As		62	< 0.01	0.5	2	25
DETSC 2306 Barium as Ba		3	0.33	20	100	300
DETSC 2306 Cadmium as Cd		030	< 0.02	0.04	1	5
DETSC 2306 Chromium as Cr		.4	< 0.1	0.5	10	70
DETSC 2306 Copper as Cu		.7	< 0.02	2	50	100
DETSC 2306 Mercury as Hg		010	< 0.002	0.01	0.2	2
DETSC 2306 Molybdenum as Mo		.6	< 0.1	0.5	10	30
DETSC 2306 Nickel as Ni		.50	< 0.1	0.4	10	40
DETSC 2306 Lead as Pb		.3	< 0.05	0.5	10	50
DETSC 2306 Antimony as Sb		.5	< 0.05	0.06	0.7	5
DETSC 2306 Selenium as Se		64	< 0.03	0.1	0.5	7
DETSC 2306 Zinc as Zn		.7	0.047	4	50	200
DETSC 2055 Chloride as Cl		000	720	800	15,000	25,000
DETSC 2055* Fluoride as F		90	2.9	10	150	500
DETSC 2055 Sulphate as SO4		000	1400	1000	20,000	50,000
DETSC 2009* Total Dissolved Solids		000	7600	4000	60,000	100,000
DETSC 2130 Phenol Index		00	< 1	1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50	500	800	1000
Additional Information			-	TBE -	To Be Evalua	ated
DETSC 2008 pH	7	.1		SNRHW -	Stable Non-	Reactive
ETSC 2009 Conductivity uS/cm 1090.0					Hazardous \	Waste
* Temperature*	17	7.0	ļ			
Mass of Sample Kg*	0.1	20				
Mass of dry Sample Kg*	0.0)99				
Stage 1						
Volume of Leachant L2*	0.9	974				
Volume of Eluate VE1*	0.	92				

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-25774 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2256396	BH101 0.80	SOIL	NAD	none	Ben Rose
2256397	BH101 3.10	SOIL	Chrysotile	Chrysotile present as fibre bundles	Ben Rose
2256399	BH103 0.70	SOIL	Chrysotile	Chrysotile present in microscopic cement fragments	Ben Rose

are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Our Ref 23-25774 Client Ref S230311 Contract Whitby Maritime Hub, Whitby

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2256396	BH101 0.80 SOIL	23/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	BTEX / C5-C10
2256397	BH101 3.10 SOIL	23/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	BTEX / C5-C10
2256398	BH101 3.80 SOIL	23/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	BTEX / C5-C10
2256399	BH103 0.70 SOIL	23/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	BTEX / C5-C10
2256400	BH101 0.80 LEACHATE	23/10/23	GJ 250ml, PT 1L x2		
2256401	BH101 3.10 LEACHATE	23/10/23	GJ 250ml, PT 1L x2		
2256402	BH103 0.70 LEACHATE	23/10/23	GJ 250ml, PT 1L x2		
2256403	BH101 3.10 LEACHATE	23/10/23	GJ 250ml, PT 1L x2		
2256404	BH103 0.70 LEACHATE	23/10/23	GJ 250ml, PT 1L x2		
Key: G-Glas	ss P-Plastic J-Jar T-Tub				
		0 9		pratory did not undertake the sampling. Ir	1
be deviatin	n Deviating Sample criteria a	re based on Bri	tish and International standards	and laboratory trials in conjunction with	the LIKAS note 'Guidance on

be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det

Aliphatic C5-C6 Aliphatic C6-C8 Aliphatic C8-C10 Aliphatic C10-C12 Aliphatic C12-C16 Aliphatic C16-C21 Aliphatic C21-C35 Aliphatic C5-C35 Aromatic C5-C7 Aromatic C7-C8 Aromatic C8-C10 Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C35 Aromatic C5-C35 TPH Ali/Aro Total C5-C35 EPH (C10-C40) TPH (C10-C40)

Acronym HS_1D_AL HS_1D_AL HS_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU+HS_1D_AL HS_1D_AR HS_1D_AR HS_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU+HS_1D_AR EH_CU+HS_1D_Total EH_1D_Total EH_1D_Total

End of Report

Issued: 09-Nov-23

Certificate Number 23-25310 Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland

- Our Reference 23-25310
- Client Reference S230311
 - Order No SOL-7810
 - Contract Title Whitby Maritime Hub, Whitby

TS18 3NA

- Description 2 Soil samples, 2 Leachate samples.
- Date Received 26-Oct-23
- Date Started 26-Oct-23
- Date Completed 09-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Summary of Chemical Analysis Matrix Descriptions

Our Ref 23-25310 Client Ref 5230311 Contract Title Whitby Maritime Hub, Whitby

Sample ID	Depth	Lab No	Completed	Matrix Description
BH104	0.8	2253351	09/11/2023	Light brown very gravelly, sandy CLAY
BH104	1	2253352	09/11/2023	Light brown very gravelly, sandy CLAY

Summary of Chemical Analysis Soil Samples

Our Ref 23-25310 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

Sample ID BH104 BH104 BH104 BH104 BH104 BH104 Depth Other ID Sampling Date Sampling Date 19/10/2023 19/10/2023 19/10/2023 19/10/2023 19/10/2023 19/10/2023 19/10/2023 Sampling Time n/s n/s n/s n/s 19/10/2023 19/10/2023 19/10/2023 19/10/2023 19/10/2023 N/s n/s n/s n/s n/s n/s n/s 10/10/2023 19/10/2023 19/10/2023 N/s 10/10/2023 19/10/2023 N/s 10/10/2023 N/s 10/10/2023		io, whitey					
Depth 0.80 1.00 Other ID Es Es Sampling Date 19/10/2023 19/10/2023 Aliphatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg Aliphatic C6-C8: HS_1D_AL DETSC 3321* 0.01 mg/kg 1.5 Aliphatic C10-C12: EH_CU_1D_AL DETSC 3072# 1.5 mg/kg 3.4 3.4 Aliphatic C1-C35: EH_CU_1D_AL DETSC 3072* 1.0 mg/kg < 0.01			6			2253352	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$.52				
Sample Type Es Sampling Date Sampling Time n/s Test Method Petroleum Hydrocarbons Aliphatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.40 0.43 Aliphatic C3-C10: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.01 adv/kg 0.01 mg/kg 0.01 Adv Aliphatic C10-C12: EH_CU_1D_AL DETSC 3072# 1.5 mg/kg < 1.5 Aliphatic C10-C12: EH_CU_1D_AL DETSC 3072# 10 mg/kg < 0.01 Aromatic C10-C12: EH_CU_1D_AR DETSC 3072# 0.01 mg/kg < 0.01 Aromatic C10-C12: EH_CU_1D_AR DETSC 3072# 0.01 mg/kg Aromatic C10-C12: EH_CU_1D_AR DETSC 3072# <th colspan<="" td=""><td></td><td></td><td></td><td></td><td>0.80</td><td>1.00</td></th>	<td></td> <td></td> <td></td> <td></td> <td>0.80</td> <td>1.00</td>					0.80	1.00
Sampling Date Sampling Time 19/10/2023 n/s Test Method LOD Units Petroleum Hydrocarbons Iighatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.40 0.43 Aliphatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.99 0.07 Aliphatic C10-C12: EH_CU_1D_AL DETSC 3072# 1.5 mg/kg <1.5							
Sampling Timen/sn/sPetroleum HydrocarbonsAliphatic C5-C6: HS_TD_ALDETSC 3321*0.01mg/kg0.40Aliphatic C5-C6: HS_TD_ALDETSC 3321*0.01mg/kg0.99Aliphatic C10-C12: EH_CU_1D_ALDETSC 3072#1.5mg/kg<1.5				5.		ES	
Test Method LOD Units Petroleum Hydrocarbons Aliphatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.40 0.43 Aliphatic C6-C8: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.99 0.07 Aliphatic C10-C12: EH_CU_1D_AL DETSC 3072# 1.5 mg/kg <1.5					19/10/2023	19/10/2023	
Petroleum Hydrocarbons Aliphatic C5-C6: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.00 0.43 Aliphatic C6-C8: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.01 0.07 Aliphatic C8-C10: HS_1D_AL DETSC 3321* 0.01 mg/kg 0.99 0.07 Aliphatic C10-C12: EH_CU_1D_AL DETSC 3072# 1.5 mg/kg <1.5			Sampli	ing Time	n/s	n/s	
Aliphatic C5-C6: HS_1D_ALDETSC 3321*0.01mg/kg0.400.43Aliphatic C6-C8: HS_1D_ALDETSC 3321*0.01mg/kg<0.01	Test	Method	LOD	Units			
Aliphatic C6-C8: HS_1D_ALDETSC 3321*0.01mg/kg< 0.01< 0.01Aliphatic C8-C10: HS_1D_ALDETSC 3321*0.01mg/kg0.990.07Aliphatic C10-C12: EH_CU_1D_ALDETSC 3072#1.5mg/kg< 1.5	Petroleum Hydrocarbons						
Aliphatic C8-C10: HS_1D_ALDETSC 3321*0.01mg/kg0.990.07Aliphatic C10-C12: EH_CU_1D_ALDETSC 3072#1.5mg/kg<1.5	Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	mg/kg	0.40	0.43	
Aliphatic C10-C12: EH_CU_1D_AL DETSC $3072\#$ 1.5 mg/kg < 1.5 < 1.5 Aliphatic C12-C16: EH_CU_1D_AL DETSC $3072\#$ 1.2 mg/kg < 1.2	Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	
Aliphatic C10-C12: EH_CU_1D_AL DETSC 3072# 1.5 mg/kg < 1.5 < 1.5 Aliphatic C12-C16: EH_CU_1D_AL DETSC 3072# 1.2 mg/kg < 1.2	Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	mg/kg	0.99	0.07	
Aliphatic C12-C16: EH_CU_1D_AL DETSC 3072# 1.2 mg/kg <1.2		DETSC 3072#			< 1.5	< 1.5	
Aliphatic C16-C21: EH_CU_1D_ALDETSC $3072^{\#}$ 1.5mg/kg< 1.5< 1.5Aliphatic C21-C35: EH_CU_1D_ALDETSC $3072^{\#}$ 3.4mg/kg< 3.4							
Aliphatic C21-C35: EH_CU_1D_AL DETSC 3072# 3.4 mg/kg < 3.4 Aliphatic C5-C35: EH_CU+HS_1D_AL DETSC 3072* 10 mg/kg < 10 Aromatic C5-C35: EH_CU+HS_1D_AR DETSC 3321* 0.01 mg/kg < 0.01 < 0.01 Aromatic C7-C8: HS_1D_AR DETSC 3321* 0.01 mg/kg < 0.01 < 0.01 Aromatic C10-C12: EH_CU_1D_AR DETSC 3072# 0.9 mg/kg < 0.9 < 0.9 Aromatic C10-C12: EH_CU_1D_AR DETSC 3072# 0.9 mg/kg < 0.5 < 0.5 Aromatic C16-C21: EH_CU_1D_AR DETSC 3072# 0.6 mg/kg < 0.6 < 0.6 Aromatic C5-C35: EH_CU_1D_AR DETSC 3072# 10 mg/kg < 1.4 < 1.4 Aromatic C5-C35: EH_CU_HS_1D_Total DETSC 3301 0.1 mg/kg < 0.2 0.2 Naphthalene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Naphthalene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 PAHs DETSC 3301 0.1 mg/kg < 0.1 < 0.1							
Aliphatic C5-C35: EH_CU+HS_1D_ALDETSC 3072^* 10mg/kg< 10< 10Aromatic C5-C7: HS_1D_ARDETSC 3321^* 0.01mg/kg< 0.01							
Aromatic C5-C7: HS_1D_ARDETSC 3321^* 0.01mg/kg< 0.01< 0.01Aromatic C7-C8: HS_1D_ARDETSC 3321^* 0.01mg/kg< 0.01							
Aromatic C7-C8: HS_1D_ARDETSC 3321^* 0.01mg/kg< 0.01< 0.01Aromatic C8-C10: HS_1D_ARDETSC 3321^* 0.01mg/kg< 0.01							
Aromatic C8-C10: HS_1D_ARDETSC 3321^* 0.01mg/kg< 0.01< 0.01Aromatic C10-C12: EH_CU_1D_ARDETSC $3072^{\#}$ 0.9mg/kg< 0.9							
Aromatic C10-C12: EH_CU_1D_ARDETSC 3072# 0.9 mg/kg < 0.9 < 0.9 Aromatic C12-C16: EH_CU_1D_ARDETSC 3072# 0.5 mg/kg < 0.6 < 0.6 Aromatic C16-C21: EH_CU_1D_ARDETSC 3072# 0.6 mg/kg < 1.4 < 1.4 Aromatic C21-C35: EH_CU_HS_1D_ARDETSC 3072# 1.4 mg/kg < 1.4 < 1.4 Aromatic C5-C35: EH_CU+HS_1D_ARDETSC 3072* 10 mg/kg < 10 < 10 PAHsDETSC 3301 0.1 mg/kg < 0.1 < 0.1 AcenaphthyleneDETSC 3301 0.1 mg/kg < 0.1 < 0.1 AcenaphthyleneDETSC 3301 0.1 mg/kg < 0.1 < 0.1 PhenanthreneDETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(a)anthraceneDETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(b)fluorantheneDETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(b)fluorantheneDETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(a)anthraceneDETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(a)anthracene <td< td=""><td></td><td></td><td></td><td>0 0</td><td></td><td></td></td<>				0 0			
Aromatic C12-C16: EH_CU_1D_ARDETSC $3072\#$ 0.5mg/kg< 0.5< < 0.5Aromatic C16-C21: EH_CU_1D_ARDETSC $3072\#$ 0.6mg/kg< 0.6							
Aromatic C16-C21: EH_CU_1D_AR DETSC $3072^{\#}$ 0.6 mg/kg < 0.6 < 0.6 Aromatic C21-C35: EH_CU_1D_AR DETSC $3072^{\#}$ 1.4 mg/kg < 1.4							
Aromatic C21-C35: EH_CU_1D_ARDETSC 3072#1.4 mg/kg < 1.4< 1.4Aromatic C5-C35: EH_CU+HS_1D_ARDETSC 3072*10 mg/kg < 10							
Aromatic C5-C35: EH_CU+HS_1D_ARDETSC 3072^* 10mg/kg< 10< 10TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_TotalDETSC 3072^* 10mg/kg< 10				0 0			
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total DETSC 3072* 10 mg/kg < 10 < 10 PAHs Naphthalene DETSC 3301 0.1 mg/kg 0.2 0.2 Acenaphthylene DETSC 3301 0.1 mg/kg 0.2 0.2 Acenaphthene DETSC 3301 0.1 mg/kg 0.2 0.2 Acenaphthene DETSC 3301 0.1 mg/kg 0.1 <0.1							
PAHs DETSC 3301 0.1 mg/kg < 0.1	ATOMALIC C5-C35: EH_C0+H5_TD_AR	DETSC 3072^	10	ту/ку	< 10	< 10	
PAHs DETSC 3301 0.1 mg/kg < 0.1	TDU Ali/Aro Total CE C2E, EU CU, US 1D Total		10	ma/ka	< 10	< 10	
NaphthaleneDETSC 33010.1 mg/kg < 0.1< 0.1AcenaphthyleneDETSC 33010.1 mg/kg 0.20.2AcenaphtheneDETSC 33010.1 mg/kg < 0.1		DE13C 3072	10	шу/ку	< 10	< 10	
AcenaphthyleneDETSC 33010.1 mg/kg 0.20.2AcenaphtheneDETSC 33010.1 mg/kg < 0.1		DETSC 2201	0.1	ma/ka	< 0.1	< 0.1	
Acenaphthene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Fluorene DETSC 3301 0.1 mg/kg < 0.1							
Fluorene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Phenanthrene DETSC 3301 0.1 mg/kg 0.1 < 0.1							
Phenanthrene DETSC 3301 0.1 mg/kg 0.1 < 0.1 Anthracene DETSC 3301 0.1 mg/kg < 0.1	•						
AnthraceneDETSC 33010.1 mg/kg < 0.1< 0.1FluorantheneDETSC 33010.1 mg/kg < 0.1							
Fluoranthene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Pyrene DETSC 3301 0.1 mg/kg < 0.1							
PyreneDETSC 33010.1 mg/kg < 0.1< 0.1Benzo(a)anthraceneDETSC 33010.1 mg/kg < 0.1							
Benzo(a)anthracene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Chrysene DETSC 3301 0.1 mg/kg < 0.1							
Chrysene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(b)fluoranthene DETSC 3301 0.1 mg/kg < 0.1	5						
Benzo(b)fluoranthene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(k)fluoranthene DETSC 3301 0.1 mg/kg < 0.1				0 0		< 0.1	
Benzo(k)fluoranthene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(a)pyrene DETSC 3301 0.1 mg/kg < 0.1				0 0		< 0.1	
Benzo(a)pyrene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Indeno(1,2,3-c,d)pyrene DETSC 3301 0.1 mg/kg < 0.1						< 0.1	
Indeno(1,2,3-c,d)pyrene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Dibenzo(a,h)anthracene DETSC 3301 0.1 mg/kg < 0.1						< 0.1	
Dibenzo(a,h)anthracene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 Benzo(g,h,i)perylene DETSC 3301 0.1 mg/kg < 0.1		DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	
Benzo(g,h,i)perylene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 PAH 16 Total DETSC 3301 1.6 mg/kg < 1.6		DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	
Benzo(g,h,i)perylene DETSC 3301 0.1 mg/kg < 0.1 < 0.1 PAH 16 Total DETSC 3301 1.6 mg/kg < 1.6	Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1	
PAH 16 Total DETSC 3301 1.6 mg/kg < 1.6 < 1.6 Phenols	Benzo(g,h,i)perylene		0.1			< 0.1	
Phenols				5			
				3.3			
TETICHOL-IVIOHOHVAHC (DETSCZENTER) U.S. MAZKAT < U.S. D.S.	Phenol - Monohydric	DETSC 2130#	0.3	mg/kg	< 0.3	0.5	

Summary of Chemical Analysis Leachate Samples

Our Ref 23-25310 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

contract fille whitby Maritime H	ub, whitby		Lab No	2252252
		S a	mple ID	2253353 BH104
		.30	Depth	
		(Depth Other ID	0.80
			ole Type	ГС
			51	ES 19/10/2023
		•	ng Time	
Test	Method	LOD	Units	n/s
Preparation	Method	LOD	Units	
BS EN 12457 10:1	DETSC 1009*			Y
BS EN 12457 10:1	DETSC 1009*			ľ
Metals	DE12C 1009"			
		0 1 7		20
Antimony, Dissolved	DETSC 2306	0.17	ug/l	2.8
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.3
Barium, Dissolved	DETSC 2306	0.26	ug/l	24
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	27
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.12
Chromium III, Dissolved	DETSC 2306*	1	ug/l	4.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.3
Iron, Dissolved	DETSC 2306	5.5	ug/l	74
Lead, Dissolved	DETSC 2306	0.09	ug/l	6.0
Manganese, Dissolved	DETSC 2306	0.22	ug/l	14
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.03
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	6.0
Nickel, Dissolved	DETSC 2306	0.5	ug/l	1.7
Selenium, Dissolved	DETSC 2306	0.25	ug/l	1.9
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	2.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	36
Inorganics				
рН	DETSC 2008		рН	6.6
Cyanide, Total	DETSC 2130	40	ug/l	< 40
Cyanide, Free	DETSC 2130	20	ug/l	< 20
Cyanide, Complex	DETSC 2130*	40	ug/l	< 40
Thiocyanate	DETSC 2130	20	ug/l	< 20
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.070
Sulphate as SO4	DETSC 2055	0.1	mg/l	28
Petroleum Hydrocarbons				
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1

Summary of Chemical Analysis Leachate Samples

Our Ref 23-25310 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

	_		2253353
	.Sa		BH104
			0.80
		5.	ES
			19/10/2023
	Sampli	ng Time	n/s
Method	LOD	Units	
	1	ug/l	< 1.0
		ug/l	< 1.0
DETSC 3072*		ug/l	< 1.0
DETSC 3072*	1	ug/l	< 1.0
DETSC 3072*	10	ug/l	< 10
	10		10
DETSC 30/2*	10	ug/I	< 10
		0	0.07
			< 0.01
			0.01
			< 0.01
		5	0.02
DETSC 3304	0.01	ug/l	< 0.01
DETSC 3304	0.01	ug/l	0.02
DETSC 3304	0.01	ug/l	0.02
DETSC 3304*	0.01	ug/l	< 0.01
DETSC 3304	0.01	ug/l	< 0.01
DETSC 3304	0.01	ug/l	< 0.01
DETSC 3304	0.01	ug/l	< 0.01
DETSC 3304	0.01	ug/l	< 0.01
DETSC 3304	0.01	ug/l	< 0.01
DETSC 3304	0.01	ug/l	< 0.01
DETSC 3304	0.01	ug/l	0.01
DETSC 3304	0.2	ug/l	< 0.20
DETSC 2130	100	ug/l	< 100
	DETSC 3072* DETSC 3072* DETSC 3072* DETSC 3072* DETSC 3072* DETSC 3072* DETSC 3072* DETSC 3072* DETSC 3304 DETSC 3304	Sample Sample Sample Sample Sample DETSC 3072* 1 DETSC 3072* 10 DETSC 304 0.01 DETSC 3304 0.01	DETSC 3072* 1 ug/l DETSC 3072* 10 ug/l DETSC 3304 0.01 ug/l DETSC 3304 0.01

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-25310 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby Sample Id BH104 0.80

Sample Numbers 2253351 2253354 Date Analysed 06/11/2023

		ן ר	W	AC Limit Va	lues		
Test Results On Waste	Test Results On Waste			11	Inert		Hazardous
Determinand and Method Reference		Units	Result	11	Waste	SNRHW	Waste
DETSC 2084# Total Organic Carbon		%	9.0	ן ר	3	5	6
DETSC2003# Loss On Ignition		%			n/a	n/a	10
DETSC 3321# BTEX		mg/kg	< 0.04		6	n/a	n/a
DETSC 3401# PCBs (7 congeners)		mg/kg	< 0.01		1	n/a	n/a
DETSC 3311# EPH (C10 - C40): EH_1D_Total		mg/kg	< 10		500	n/a	n/a
DETSC 3301 PAHs		mg/kg	< 1.6		100	n/a	n/a
DETSC2008# pH		pH Units			n/a	>6	n/a
DETS073* Acid Neutralisation Capacity (pH4)	mol/kg			n/a	TBE	TBE
DETS073* Acid Neutralisation Capacity (pH7)	mol/kg			n/a	TBE	TBE
Test Results On Leachate				<u>ן</u> נ	W	AC Limit Va	lues
					Limit val	ues for LS10) Leachate
Determinand and Method Reference	Conc in E	luate ug/l	Amount Leached* mg/kg	1	Inert	SNRHW	Hazardous
):1	LS10		Waste	SINKIIV	Waste
DETSC 2306 Arsenic as As		32	< 0.01	11	0.5	2	25
DETSC 2306 Barium as Ba		5	0.15		20	100	300
DETSC 2306 Cadmium as Cd		030	< 0.02		0.04	1	5
DETSC 2306 Chromium as Cr		.25	< 0.1		0.5	10	70
DETSC 2306 Copper as Cu		2	0.02		2	50	100
DETSC 2306 Mercury as Hg		010	< 0.002		0.01	0.2	2
DETSC 2306 Molybdenum as Mo	< ´	1.1	< 0.1		0.5	10	30
DETSC 2306 Nickel as Ni		.50	< 0.1		0.4	10	40
DETSC 2306 Lead as Pb		18	< 0.05		0.5	10	50
DETSC 2306 Antimony as Sb	2	.7	< 0.05		0.06	0.7	5
DETSC 2306 Selenium as Se		44	< 0.03		0.1	0.5	7
DETSC 2306 Zinc as Zn	5	.9	0.059		4	50	200
DETSC 2055 Chloride as Cl	250	000	250		800	15,000	25,000
DETSC 2055* Fluoride as F	18	80	1.8		10	150	500
DETSC 2055 Sulphate as SO4	300	000	300		1000	20,000	50,000
DETSC 2009* Total Dissolved Solids		000	1700		4000	60,000	100,000
DETSC 2130 Phenol Index	< 1	00	< 1		1	n/a	n/a
DETSC 2085 Dissolved Organic Carbon	< 2	000	< 50		500	800	1000
Additional Information						To Be Evalua	
DETSC 2008 pH		.2				Stable Non-I	
DETSC 2009 Conductivity uS/cm		9.0				Hazardous V	Vaste
* Temperature*	18	3.0	ļ				
Mass of Sample Kg*	0.1	10					
Mass of dry Sample Kg*	0.0)95					
Stage 1	-						
Volume of Leachant L2*		936					
Volume of Eluate VE1*	0.	88					

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.

V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

Summary of Asbestos Analysis Soil Samples

Our Ref 23-25310 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2253351	BH104 0.80	SOIL	NAD	none	Ben Rose
2253352	BH104 1.00	SOIL	NAD	none	Ben Rose
Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos.					

Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Our Ref 23-25310 Client Ref S230311 Contract Whitby Maritime Hub, Whitby

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2253351	BH104 0.80 SOIL	19/10/23	GJ 250ml, PT 1L x2		BTEX / C5-C10
2253352	BH104 1.00 SOIL	19/10/23	GJ 250ml, PT 1L x2		BTEX / C5-C10
2253353	BH104 0.80 LEACHATE	19/10/23	GJ 250ml, PT 1L x2		
2253354	BH104 0.80 LEACHATE	19/10/23	GJ 250ml, PT 1L x2		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det Aliphatic C5-C6 Acronym HS_1D_AL

Appendix A - Details of Analysis

		J	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	рН	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC 2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC 2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC 2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC 2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC 2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 2311	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	As Received	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10 0 F	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene Benzo(a)anthracene	mg/kg	0.03		No	Yes	Yes
DETSC 3303		mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303 DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes Yes	Yes Yes
DETSC 3303 DETSC 3303	Benzo(g,h,i)perylene Dibenzo(a,h)anthracene	mg/kg	0.03 0.03	As Received As Received	No No	Yes	Yes
DETSC 3303 DETSC 3303	Fluoranthene	mg/kg	0.03	As Received			Yes
DE130 3303		mg/kg	0.03	AS NELEIVEU	No	Yes	105

Appendix A - Details of Analysis

• •		5	Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3321	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3521	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3521	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3521	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

Issued: 11-Dec-23

Certificate Number 23-27958 Client SOLMEK 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-27958
- Client Reference S230311
 - Order No SOL-7906
 - Contract Title Whitby Maritime Hub, Whitby
 - Description 5 Water samples.
 - Date Received 28-Nov-23
 - Date Started 28-Nov-23
- Date Completed 11-Dec-23
- *Test Procedures* Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

General Manager

Summary of Chemical Analysis Water Samples Our Ref 23-27958

Our Ref 23-27958 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

contract rule whitby Martime H	ab, whitey		Lab No	2268784	2268785	2268786	2268787	2268788
		Sa	ample ID	BH101	BH102	BH103	BH105	WS101
		.00	Depth		1.86	1.86	2.00	2.30
			Other ID				2100	2.00
			ple Type		WATER	WATER	WATER	WATER
				27/11/2023	27/11/2023			
			ing Time		n/s	n/s	n/s	n/s
Test	Method	LOD	Units				I	
Metals								
Antimony, Dissolved	DETSC 2306	0.17	ug/l	1.1	0.19	< 0.17	0.68	0.89
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	2.8	1.7	1.3	2.0	2.4
Barium, Dissolved	DETSC 2306	0.26	ug/l	140	610	480	350	290
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	62	140	110	130	880
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.13	0.03	< 0.03	< 0.03	0.04
Chromium III, Dissolved	DETSC 2306*	1	ug/l	12	2.3	7.9	5.5	< 1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	< 7.0	< 7.0	< 7.0	< 7.0	< 7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	11	1.6	1.2	1.7	0.9
Iron, Dissolved	DETSC 2306	5.5	ug/l	84	27	24	32	110
Lead, Dissolved	DETSC 2306	0.09	ug/l		0.55	1.1	0.46	0.18
Manganese, Dissolved	DETSC 2306	0.22	ug/l		520	210	51	4500
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.03	0.01	< 0.01	< 0.01	< 0.01
Molybdenum, Dissolved	DETSC 2306	1.1	ug/l	21	14	5.6	15	10
Nickel, Dissolved	DETSC 2306	0.5	ug/l	2.1	0.7	0.6	1.8	5.3
Selenium, Dissolved	DETSC 2306	0.25	ug/l	2.1	0.63	0.33	0.45	0.35
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	5.8	< 0.6	< 0.6	< 0.6	0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	20	55	76	95	84
Inorganics			5				I	
pH	DETSC 2008		pН	9.5	8.0	7.7	7.8	7.3
Cyanide, Total	DETSC 2130	40	ug/l	< 40	< 40	< 40	< 40	< 40
Cyanide, Free	DETSC 2130	20	ug/l	< 20	< 20	< 20	< 20	< 20
Cyanide, Complex	DETSC 2130*	40	ug/l	< 40	< 40	< 40	< 40	< 40
Thiocyanate	DETSC 2130	20	ug/l	< 20	< 20	< 20	< 20	< 20
Total Hardness as CaCO3	DETSC 2303	0.1	mg/l	74.5	144	121	138	1310
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg/l	0.26	0.45	0.43	1.3	1.8
Sulphate as SO4	DETSC 2055	0.1	mg/l	76	11	5.1	110	610
Petroleum Hydrocarbons	1		Ŭ				1	
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322 DETSC 3322	0.1	ug/l	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
			-			< 1.0		< 1.0
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0		< 1.0	
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Summary of Chemical Analysis Water Samples Our Ref 23-27958

Our Ref 23-27958 Client Ref S230311 Contract Title Whitby Maritime Hub, Whitby

contract rule wintby Martine ru	,		Lab No	2268784	2268785	2268786	2268787	2268788
		.Sa	ample ID	BH101	BH102	BH103	BH105	WS101
			Depth	2.07	1.86	1.86	2.00	2.30
			Other ID					
		Sam	ple Type	WATER	WATER	WATER	WATER	WATER
				27/11/2023	27/11/2023		27/11/2023	27/11/2023
			ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l	< 10	< 10	< 10	< 10	< 10
		10	ug/l	< 10	< 10	< 10	< 10	< 10
Benzene	DETSC 3322	1	ug/l	< 1.0	< 1.0			< 1.0
Toluene	DETSC 3322	1	ug/l	< 1.0	< 1.0			< 1.0
Ethylbenzene	DETSC 3322	1	ug/l	< 1.0	< 1.0			< 1.0
Xylene	DETSC 3322	1	ug/l	< 1.0	< 1.0			< 1.0
MTBE	DETSC 3322	1	ug/l	< 1.0	< 1.0			< 1.0
PAHs		r						
Naphthalene	DETSC 3304	0.05	ug/l	0.07	0.08	< 0.05	< 0.05	< 0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.02
Acenaphthene	DETSC 3304	0.01	ug/l	0.01	0.01	< 0.01	0.01	0.02
Fluorene	DETSC 3304	0.01	ug/l	0.01	0.01	< 0.01	< 0.01	0.02
Phenanthrene	DETSC 3304	0.01	ug/l	0.03	0.02	0.01	< 0.01	0.10
Anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.07
Fluoranthene	DETSC 3304	0.01	ug/l	0.02	< 0.01	< 0.01	< 0.01	0.33
Pyrene	DETSC 3304	0.01	ug/l	0.02	< 0.01	< 0.01	< 0.01	0.29
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.12
Chrysene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.14
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.20
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.07
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.17
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.13
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.03
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	< 0.01	< 0.01	< 0.01	< 0.01	0.12
PAH Total	DETSC 3304	0.2	ug/l	< 0.20	< 0.20	< 0.20	< 0.20	1.8
PCBs							ц	
PCB 28 + PCB 31	DETSC 3402	0.3	ug/l	< 0.3	< 0.3			< 0.3
PCB 52	DETSC 3402	0.2	ug/l	< 0.2	< 0.2			< 0.2
PCB 101	DETSC 3402	0.3	ug/l	< 0.3	< 0.3			< 0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	< 0.6	< 0.6			< 0.6
PCB 138	DETSC 3402	0.2	ug/l	< 0.2	< 0.2			< 0.2
PCB 153	DETSC 3402	0.2	ug/l	< 0.2	< 0.2			< 0.2
PCB 180	DETSC 3402	0.2	ug/l	< 0.2	< 0.2			< 0.2
PCB 7 Total	DETSC 3402	1	ug/l	< 1.0	< 1.0			< 1.0
Phenols			5					
Phenol - Monohydric	DETSC 2130	100	ug/l	< 100	< 100	< 100	< 100	< 100
<u>ل</u>			0					

Our Ref 23-27958 Client Ref S230311

Contract Whitby Maritime Hub, Whitby

Containers Received & Deviating Samples

oontain		Date		Holding time				
Lab No	Sample ID	Sampled	Containers Received	tests	tests			
2268784	BH101 2.07 WATER	27/11/23	GB to 500ml x4, GV					
2268785	BH102 1.86 WATER	27/11/23	GB to 500ml x4, GV					
2268786	BH103 1.86 WATER	27/11/23	GB to 500ml x4, GV					
2268787	BH105 2.00 WATER	27/11/23	GB to 500ml x4, GV					
2268788	WS101 2.30 WATER	27/11/23	GB to 500ml x2, GV					
Key: G-Glass	Key: G-Glass B-Bottle V-Vial							

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

List of HWOL Acronyms and Operators

Acronym							
HS	Headspace analysis						
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent						
CU	Clean-up - e.g. by florisil, silica gel						
1D	GC - Single coil gas chromatography						
2D	GC-GC - Double coil gas chromatography						
Total	Aliphatics & Aromatics						
AL	Aliphatics only						
AR	Aromatics only						
#1	EH_2D_Total but with humics mathematically subtracted						
#2	EH_2D_Total but with fatty acids mathematically subtracted						
_	Operator - underscore to separate acronyms (exception for +)						
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total						
	Dot Acronym						

Det

Aliphatic C5-C6 Aliphatic C6-C8 Aliphatic C8-C10 Aliphatic C10-C12 Aliphatic C12-C16 Aliphatic C16-C21 Aliphatic C21-C35 Aliphatic C5-C35 Aromatic C5-C7 Aromatic C7-C8 Aromatic C8-C10 Aromatic C10-C12 Aromatic C12-C16 Aromatic C16-C21 Aromatic C21-C35 Aromatic C5-C35 TPH Ali/Aro Total C5-C35 Acronym HS_1D_AL HS_1D_AL HS_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU_1D_AL EH_CU+HS_1D_AL HS_1D_AR HS_1D_AR HS_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU_1D_AR EH_CU+HS_1D_AR EH_CU+HS_1D_Total

End of Report

APPENDIX D: Geotechnical Laboratory Results

Laboratory Report Front Sheet

, , ,	Stockton on Tees,	E(≯≮)∃	
Site name	Job number	TS18 3NA	
Whitby	S230311		TESTING
wintey	5250511		10258

G2M Testing (Stockton)

12-16 Yarm Road,

Client details:

S230311
Solmek
12 Yarm Road,
Stockton-on-tees,
TS18 3NA
01642 607083
lcassidy@solmek.com
Leo Cassidy
31/03/2023
,, _0_0
19/04/2023

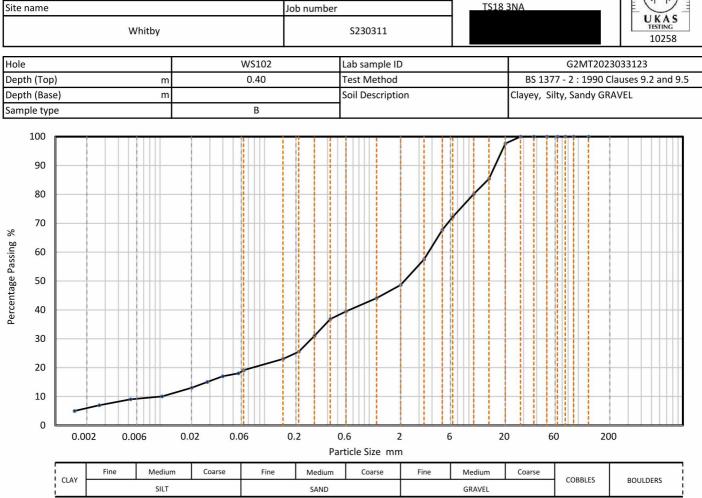
Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the above reporting date the samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Signature:	Approved Signitories:			
		D.Anderson (Managing Director)		
	\checkmark	J. Brischuk (Laboratory Manager)		
		T. Finnimore (Quality/Technical Manager)		

Summary of Classification Tests											12-16 Yaı Road, Stockton Tees,	on		
	W	hitby						30311				TS18 3NA		10258
Hole	Тор	pth Base	Туре	w	Oven temp	wa	Pa %	Pr %	wL	wP %	IP	IL	Plasticity class	Preparation method
WS101	m 2.40	m	D	% 24	ос 105	% 65	% 37	% 63	% 38-s	% 26	% 12	3.250	MI	Tested after >425µm removed by hand
WS102	1.20		В	16	105	30	54	46	37-s	27	10	0.300	MI	Tested after washing to remove >425µm
WS104	1.80		В	26	105	84	31	69	34-s	25	9	6.556	ML	Tested after >425µm removed by hand
W\$105	3.30		В	23	105	256	9	91	35-s	25	10	23.100	MI	Tested after washing to remove >425µm


All tests found in G2M Testing UKAS Schedule of Accreditation are tested to standard unless otherwise indicated

Key	Description		Category	BS Test Code
w	Moisture content			BS 1377:1990 Part 2 Clause 3.2
wa	wa Equivalent moisture content passing 425μm sieve			BS 1377:1990 Part 2 Clause 3.2
and Linuted limits		Single point	-S	BS 1377:1990 Part 2 Clause 4.4
wL	Liquid limit	Four point	-f	BS 1377:1990 Part 2 Clause 4.3
wP	wP Plastic limit			BS 1377:1990 Part 2 Clause 5.2
Ра	Percentage passing 425um sieve	2		
Pr	Percentage retained 425um siev	/e		
IP	Plasticity index			BS 1377:1990 Part 2 Clause 5.4
IL	Liquidity index			BS 1377:1990 Part 2 Clause 5.4
	Suffix indicating test is "Not UKAS Accredited"		*	

Approved by	JBrischuk
Approval date	14/04/2023 16:08
Date report generated	
Report Number	

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	19	
90	100	0.0561	18	
75	100	0.0398	17	
63	100	0.0283	15	
50	100	0.0201	13	
37.5	100	0.0104	10	
28	100	0.0052	9	
20	98	0.0026	7	
14	85	0.0015	5	
10	80			
6.3	72			
5	68			
3.35	58			
2	49			
1.18	44			
0.6	40	Particle density	(assumed)	
0.425	37	2.65	Mg/m3	
0.3	31			
0.212	26			
0.15	23			
0.063	19			

Dry	Macc	ofcomp	م ما
Diy	11/1022	of samp	ie, g

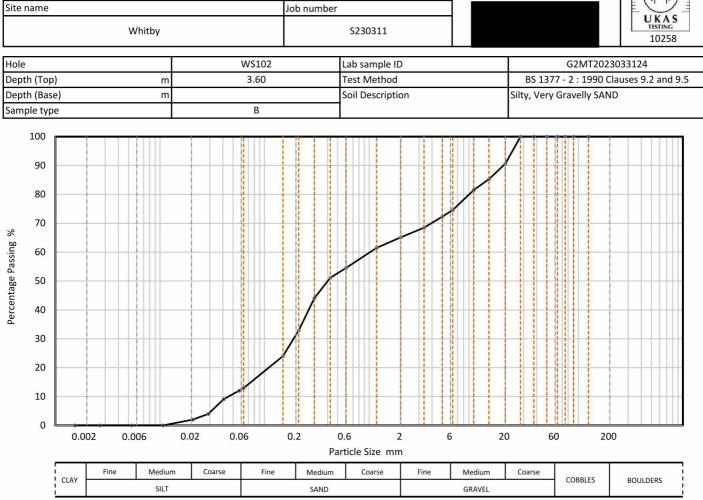
814

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	51.4
Sand	29.5
Silt	13.0
Clay	6.1

Grading Analysis		
D100	mm	
D60	mm	3.7
D30	mm	0.282
D10	mm	0.00877
Uniformity Coefficient		420
Curvature Coefficient		2.5

Remarks

Preparation and testing in accordance with test method unless noted below


Sample tested was deviating in accordance with BS1377 test standard

Approved byD AndersonApproval date11/04/2023 10:39

Accreditation status

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	13	
90	100	0.0570	12	
75	100	0.0406	9	
63	100	0.0290	4	
50	100	0.0206	2	
37.5	100	0.0107	0	
28	100	0.0053	0	
20	91	0.0027	0	
14	85	0.0015	0	
10	82			
6.3	75			
5	72			
3.35	69			
2	65			
1.18	62			
0.6	55	Particle density	(assumed)	
0.425	51	2.65	Mg/m3	
0.3	44			
0.212	33			
0.15	24			
0.063	13			

Drv	Mass	of	samp	le.	g

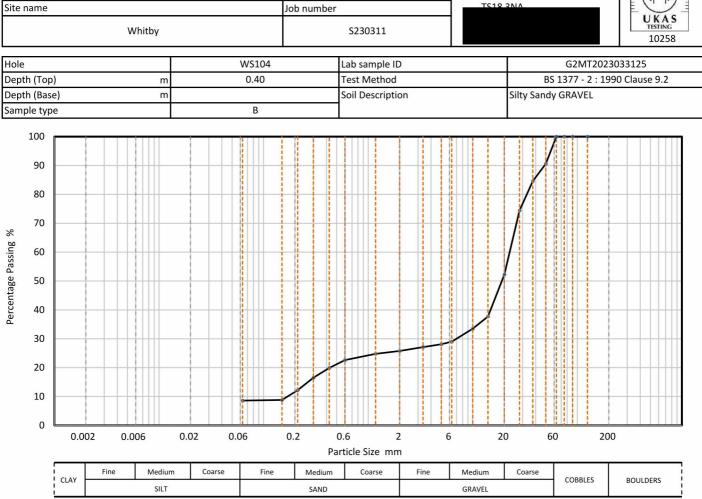
1281

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	34.9
Sand	52.3
Silt	12.8
Clay	0.0

Grading Analysis		
D100	mm	
D60	mm	1.02
D30	mm	0.189
D10	mm	0.0452
Uniformity Coefficient		22
Curvature Coefficient		0.78

Remarks

Preparation and testing in accordance with test method unless noted below


Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

ļ	Approved by	D Anderson
ļ	Approval date	14/04/2023 15:26

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,

Siev	/ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100		
90	100		
75	100		
63	100		
50	91		
37.5	85		
28	74		
20	52		
14	38		
10	34		
6.3	29		
5	28		
3.35	27		
2	26		
1.18	25		
0.6	23		
0.425	20]	
0.3	17		
0.212	12		
0.15	9]	
0.063	9]	

1.1	3 3	100		5	
Drv	Mass	of	samp	le.	g

4228

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	74.2
Sand	17.2
Fines <0.063mm	9.0

Grading Analysis		
D100	mm	
D60	mm	22.5
D30	mm	6.98
D10	mm	0.169
Uniformity Coefficient		130
Curvature Coefficient		13

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved by	D Anderson
Approval date	14/04/2023 15:26

				Californ	ia Roari	na Rati		\	Joł	o Ref	S230	311
				Camorn)	Во	rehole/Pit No.	WS1	02
ite	Name		Whitby				Sa	mple No.				
oil I	Descrip	tion							De	pth m	0.40	
	cimen rence		ws	\$102	Specimer Depth	n	0.40	m	Sa	mple Type	В	
	cimen cription								Ke	yLAB ID	G2MT202	3033123
	Method	ł	BS1377 : F	Part 4 : 1990	, clause 7				СВ	R Test Number	1	
ecir	nen Pr	eparatio	n									
	_	ondition etails		OULDED ompacted with ner	th specified	standard e	ffort using 2	.5kg	Peric Time	ting details od of soaking to surface unt of swell record	Not soake	ed days days mm
	Ma	aterial ret	ained on 20)mm sieve r	emoved		31	%		density after soakir		Mg/m3
	Ini	itial Spec	imen details	Dry d	density lensity sure content		2.07 1.75 18.6	Mg/m3 Mg/m3 %	Surc	harge applied	2 1	kg kPa
					Force	v Penetra	tion Plots					
	1.20 1.00 0.80 0.60 0.40 0.20	×										alues orrectio data
		0	I	2	3 P	4 enetration	5 mm	6	_	7 8		
F	Results			Curve correction applied	2.5mm	CBR V 5mm	alues, % Highest	Average	-	Moisture Content		
		ТОР		applieu	1.2	2.6	2.6		-	% 18.9		
		BASI	Ξ		1.1	2.5	2.5	2.6		19.0		
	General	remarks			Test specif	ic remarks		Арр	roved		Fig No.	1
									JBri	schuk	Sheet No	1

			Californ	ia Roari	na Rati	o (CBR	\	Job Ref	S230311
			Californ		ny nau)	Borehole/Pit No.	WS104
ite Na	ame	Whitby							
oil De	il Description Depth m						0.40		
pecim eferei		W	/S104	Specimer Depth	n	0.40	m	Sample Type	В
pecim escrip								KeyLAB ID	G2MT2023033125
	lethod	BS1377 :	Part 4 : 1990	, clause 7				CBR Test Numb	er 1
ecime	en Preparati	on							
	Condition Details	Red	MOULDED compacted wit	h specified	standard	effort using 2	5kg	Soaking details Period of soaking Time to surface	Not soaked days days
	Material r	etained on 2	20mm sieve re	emoved		21	%	Amount of swell re Dry density after s	
	Initial Spe	ecimen deta	Dry d	density ensity ure content		1.91 1.51 26.8	Mg/m3 Mg/m3 %	Surcharge applied	
				Force	v Penetra	tion Plots			
0	0.16								
0	0.14								_
0	0.12								_
								-	— × — Top data
×	0.10 x							*	Top values
	.08					\frown			Top correction
roice A 0	0.06								
	*								—— Base Correction
0	0.04 😽 🗕 🗕 🗖								
0	0.02								
0	0.00								
	0	1	2	3 P	4 enetration	5 mm	6	7	8
Re	sults		Curve		CBR \	/alues, %	1	Moisture	
			correction applied	2.5mm	5mm	Highest	Average	Content %	
	TO			0.3	0.5	0.5	0.5	26.6	
	BAS			0.3	0.5	0.5		26.0	
Ge	eneral remark	(S		Test specif	ic remarks	5	Арр	roved	Fig No. 1
								JBrischuk	Sheet No 2

Issued:

12-Apr-23

Certificate Number 23-07997

Client G2M Testing Ltd 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-07997
- Client Reference S230311
 - Order No LAB1840
 - Contract Title WHITBY
 - Description 3 Soil samples.
 - Date Received 04-Apr-23
 - Date Started 04-Apr-23
- Date Completed 12-Apr-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

Our Ref 23-07997 Client Ref S230311 Contract Title WHITBY

			Lab No	2151135	2151136	2151137
		.S	ample ID	WS104	WS105	WS101
			Depth	3.30	3.30	4.00
			Other ID			
		Sam	рlе Туре	SOIL	SOIL	SOIL
		Samp	ling Date	31/03/2023	31/03/2023	31/03/2023
		Sampl	ling Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Inorganics						
рН	DETSC 2008#		pН	11.1	8.5	
Organic matter	DETSC 2002#	0.1	%	0.7	0.4	0.4
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	140	170	

Our Ref 23-07997 Client Ref S230311 Contract WHITBY

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2151135	WS104 3.30 SOIL	31/03/23	PT 1L		
2151136	WS105 3.30 SOIL	31/03/23	PT 1L		
2151137	WS101 4.00 SOIL	31/03/23	PT 1L		
Key: P-Plasti	c T-Tub				

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Laboratory Report F	ront Sheet	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	
Site name	Job number	TS18 3NA	
Whitby	\$230311		UKAS TESTING 10258

Client details:

Reference:	S230311_2			
Name:	Solmek			
Address:	12 Yarm Road,			
	Stockton-on-tees,			
	TS18 3NA			
	01642 607083			
Telephone:	01642 607083			
Email:	lcassidy@solmek.com			
Lindi.	en de la construction de la constru			
FAO:	Leo Cassidy			
	,			
Samples received:				
Data annual	00/11/2022			
Date commenced:	09/11/2023			
Date reported:	22/11/2023			
	,,			

Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the above reporting date the samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Signature:	Approved Signitories:				
		D.Anderson (Managing Director)			
	\checkmark	J. Brischuk (Laboratory Manager)			

Summary of Classification Tests

Whitby

Site name

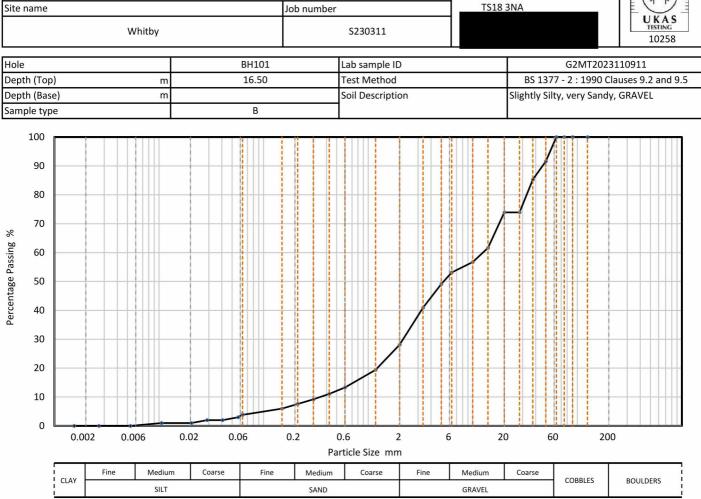
G2M Testing (Stockton) 12-16 Yarm Road,

Stockton on Tees, TS18 3NA

Job number

S230311

n de la	De	pth	-		Oven		D	D		n	IP		Plasticity	Provide the state
Hole	Тор	Base	Туре	w	temp.	wa	Ра	Pr	wL	wP		IL	class	Preparation method
	m	m		%	oc	%	%	%	%	%	%			T
BH101	3.00		D	25	50	33	75	25	25-s	19	6	2.333	ML	Tested after >425µm removed by hand
BH101	5.00		D	27	50	27	99	1	27-s	11	16	1.000	CL	Tested after >425µm removed by hand
BH101	7.50		D	40	105	40	100	0	48-s	35	13	0.385	MI	Tested in natural condition
BH101	15.00		D	16	105	22	74	26	30-s	15	15	0.467	CL	Tested after >425µm removed by hand
BH101	19.50		С	14	105									
BH101	24.50		С	12	105									
BH102	7.50		D	43	105	43	100	0	59-s	39	20	0.200	мн	Tested in natural condition
BH102	10.50		D	45	50	45	100	0	65-s	28	37	0.459	СН	Tested in natural condition
BH102	21.35		С	13	105									
BH103	4.00		D	20	50	20	100	0	24-s	19	5	0.200	ML	Tested in natural condition
BH103	6.00		D	29	105	29	100	0	29-s	23	6	1.000	ML	Tested in natural condition
BH103	10.50		D	49	105	49	100	0	63-s	32	31	0.548	МН	Tested in natural condition
BH103	21.90		с	9.2	105									
BH103	23.70		С	11	105									
BH105	4.00		D	18	105	18	100	0	28-s	21	7	-0.429	CL	Tested in natural condition
BH105	10.50		D	36	105	36	100	0	60-s	34	26	0.077	МН	Tested in natural condition
BH105	13.50		D	22	105	22	100	0	28-s	19	9	0.333	CL	Tested in natural condition


All tests found in G2M Testing UKAS Schedule of Accreditation are tested to standard unless otherwise indicated

Key	Description		Category	BS Test Code
w	Moisture content			BS 1377:1990 Part 2 Clause 3.2
wa	Equivalent moisture content pas sieve	ssing 425µm		BS 1377:1990 Part 2 Clause 3.2
	Liquid limit	Single point	-S	BS 1377:1990 Part 2 Clause 4.4
WL	wL Liquid limit For		-f	BS 1377:1990 Part 2 Clause 4.3
wP	Plastic limit			BS 1377:1990 Part 2 Clause 5.2
Ра	Percentage passing 425um sieve	2		
Pr	Percentage retained 425um siev	re 🛛		
IP	Plasticity index			BS 1377:1990 Part 2 Clause 5.4
IL	Liquidity index			BS 1377:1990 Part 2 Clause 5.4
	Suffix indicating test is "Not UKAS Accredited"			

Approved by	D Anderson
Approval date	16/11/2023 09:34
Date report generated	
Report Number	

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	4
90	100	0.0570	3
75	100	0.0405	2
63	100	0.0288	2
50	92	0.0204	1
37.5	85	0.0106	1
28	74	0.0053	0
20	74	0.0027	0
14	62	0.0015	0
10	57		
6.3	53		
5	49		
3.35	41		
2	28		
1.18	19		
0.6	13	Particle density	(assumed)
0.425	11	2.65	Mg/m3
0.3	9		
0.212	8]	
0.15	6]	
0.063	4	1	

122.23	S2. 21	-		
Drv	Mass	of	samp	e g
		۰.	Samp	.~, 0

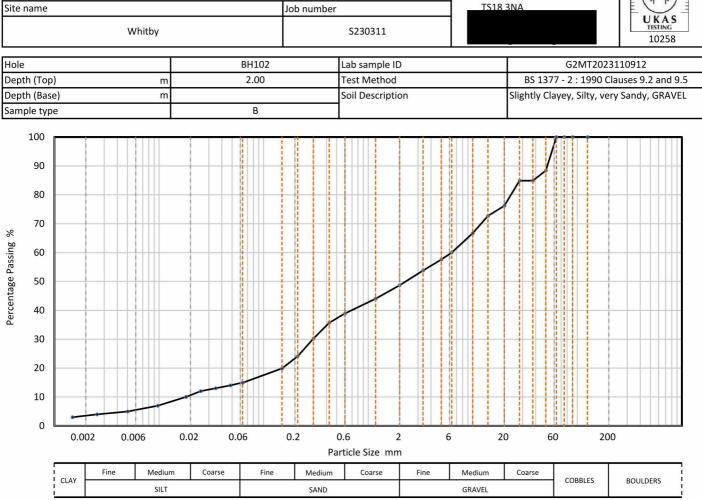
6896

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	71.9
Sand	24.2
Silt	3.9
Clay	0.0

Grading Analysis		
D100	mm	
D60	mm	12.5
D30	mm	2.16
D10	mm	0.346
Uniformity Coefficient		36
Curvature Coefficient		1.1

Remarks

Preparation and testing in accordance with test method unless noted below


Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved by	D Anderson
Approval date	20/11/2023 08:33

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Sieving		Sedimo	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	15
90	100	0.0481	14
75	100	0.0348	13
63	100	0.0251	12
50	88	0.0181	10
37.5	85	0.0097	7
28	85	0.0050	5
20	76	0.0026	4
14	73	0.0015	3
10	67		
6.3	60		
5	58		
3.35	54		
2	49		
1.18	44		
0.6	39	Particle density	(assumed)
0.425	36	2.65	Mg/m3
0.3	30		
0.212	24		
0.15	20		
0.063	15		

Drv	Mass	of	samp	le.g
<i>–</i> ,		۰.	Jan	·~, o

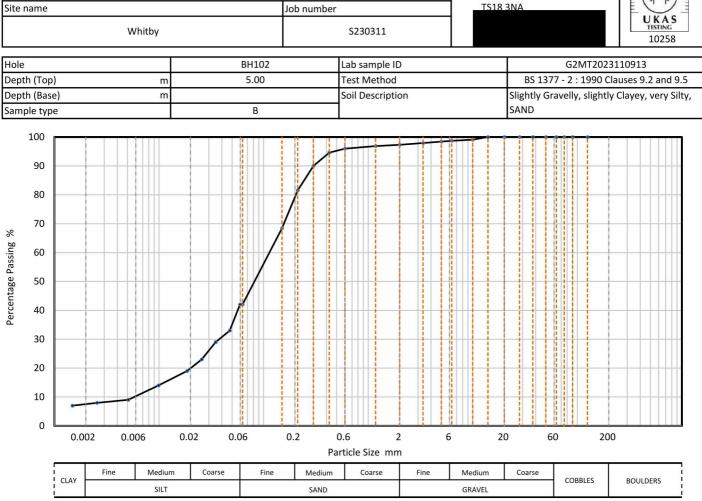
4702

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	51.3
Sand	33.7
Silt	11.7
Clay	3.3

Grading Analysis		
D100	mm	
D60	mm	6.3
D30	mm	0.296
D10	mm	0.0174
Uniformity Coefficient		360
Curvature Coefficient		0.8

Remarks

Preparation and testing in accordance with test method unless noted below


Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved by	D Anderson
Approval date	20/11/2023 08:36

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TS18 3NA

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0595	42
90	100	0.0475	33
75	100	0.0348	29
63	100	0.0256	23
50	100	0.0186	19
37.5	100	0.0099	14
28	100	0.0051	9
20	100	0.0026	8
14	100	0.0015	7
10	99		
6.3	99		
5	98		
3.35	98		
2	97		
1.18	97		
0.6	96	Particle density	(assumed)
0.425	95	2.65	Mg/m3
0.3	90		
0.212	82		
0.15	68		
0.063	42		

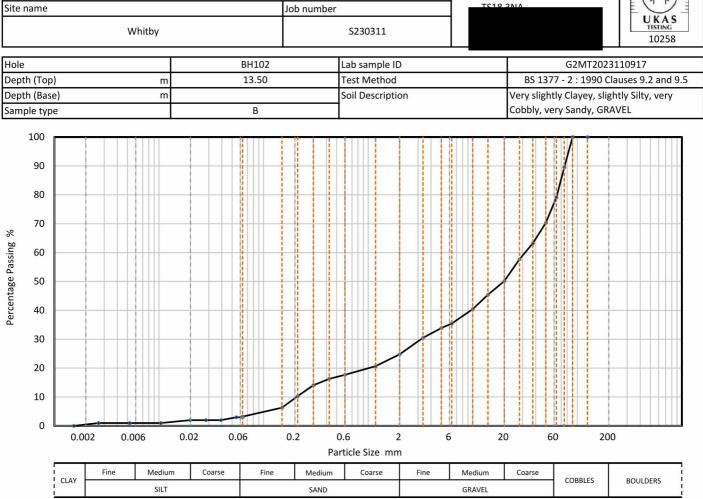
52.35	SD - 21				
Drv	Mass	of	samp	le i	σ
<i>U</i> , y	141035	0.	Junp	,	ъ

490

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	2.7
Sand	55.4
Silt	34.4
Clay	7.5

Grading Analysis		
D100	mm	
D60	mm	0.114
D30	mm	0.0379
D10	mm	0.00593
Uniformity Coefficient		19
Curvature Coefficient		2.1

Remarks


Preparation and testing in accordance with test method unless noted below

Accreditation status

Approved by	D Anderson
Approval date	17/11/2023 08:07

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	3
90	100	0.0550	3
75	90	0.0391	2
63	79	0.0279	2
50	70	0.0199	2
37.5	63	0.0104	1
28	58	0.0052	1
20	50	0.0026	1
14	45	0.0015	0
10	40		
6.3	35		
5	34		
3.35	31		
2	25		
1.18	21		
0.6	18	Particle density	(assumed)
0.425	16	2.65	Mg/m3
0.3	14		
0.212	10	1	
0.15	6]	
0.063	3	1	

Dry	Mass	ot	samp	le,	g

14653

Sample Proportions	% dry mass
Very coarse	20.9
Gravel	54.4
Sand	21.6
Silt	2.7
Clay	0.4

Grading Analysis		
D100	mm	
D60	mm	31.6
D30	mm	3.2
D10	mm	0.207
Uniformity Coefficient		150
Curvature Coefficient		1.6

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard


Accreditation status

2	Approved by	D Anderson
	Approval date	20/11/2023 08:41

Site name

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, **TS18 3NA**

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	19
90	100	0.0499	18
75	85	0.0360	16
63	75	0.0260	14
50	75	0.0187	12
37.5	70	0.0099	9
28	70	0.0051	6
20	59	0.0026	5
14	55	0.0015	5
10	52		
6.3	48		
5	47		
3.35	44		
2	42		
1.18	39		
0.6	36	Particle density	(assumed)
0.425	34	2.65	Mg/m3
0.3	31		
0.212	29		
0.15	24]	
0.063	19		

52.35	SD - 21				
Drv	Mass	of	samp	le l	σ
<i>U</i> , y	141035	0.	Samp	,	ъ

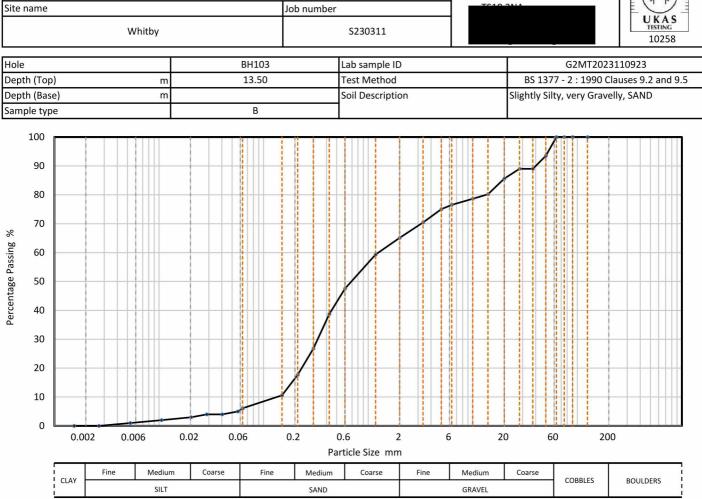
3923

Sample Proportions	% dry mass
Very coarse	24.6
Gravel	33.7
Sand	23.1
Silt	13.7
Clay	4.9

Grading Analysis		
D100	mm	
D60	mm	20.6
D30	mm	0.263
D10	mm	0.0124
Uniformity Coefficient		1700
Curvature Coefficient		0.27

Remarks

Preparation and testing in accordance with test method unless noted below


Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved by	D Anderson
Approval date	20/11/2023 08:45

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,

Sieving		Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	6
90	100	0.0565	5
75	100	0.0402	4
63	100	0.0286	4
50	94	0.0203	3
37.5	89	0.0105	2
28	89	0.0053	1
20	86	0.0027	0
14	80	0.0015	0
10	79		
6.3	77		
5	75		
3.35	70		
2	65		
1.18	59		
0.6	48	Particle density	(assumed)
0.425	39	2.65	Mg/m3
0.3	27		
0.212	18]	
0.15	11	1	
0.063	6	1	

122.23	S2. 21	-		
Drv	Mass	of	samp	e g
		۰.	Samp	.~, 0

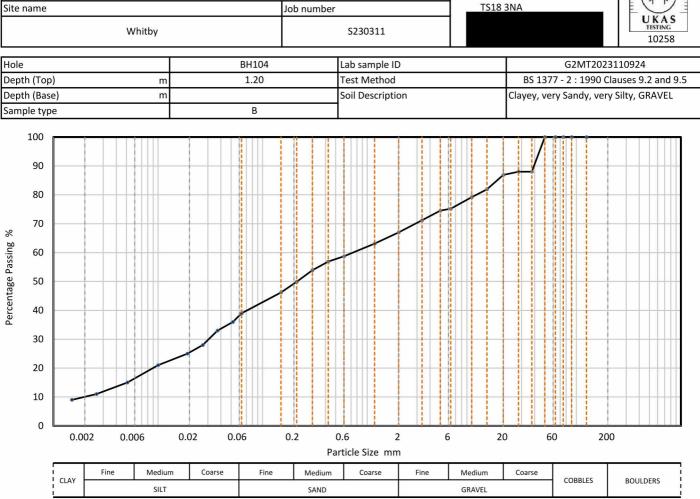
3679

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	34.9
Sand	58.9
Silt	6.2
Clay	0.0

Grading Analysis		
D100	mm	
D60	mm	1.26
D30	mm	0.329
D10	mm	0.133
Uniformity Coefficient		9.5
Curvature Coefficient		0.65

Remarks

Preparation and testing in accordance with test method unless noted below


Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved b	ру	D Anderson
Approval d	ate	20/11/2023 08:49

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	39	
90	100	0.0520	36	
75	100	0.0371	33	
63	100	0.0268	28	
50	100	0.0191	25	
37.5	88	0.0100	21	
28	88	0.0051	15	
20	87	0.0026	11	
14	82	0.0015	9	
10	79			
6.3	75			
5	75			
3.35	71			
2	67			
1.18	63			
0.6	59	Particle density	(assumed)	
0.425	57	2.65	Mg/m3	
0.3	54			
0.212	50			
0.15	46]		
0.063	39]		

52.35	SD - 21				
Drv	Mass	of	samp	le l	σ
<i>U</i> , y	141035	0.	Samp	,	ъ

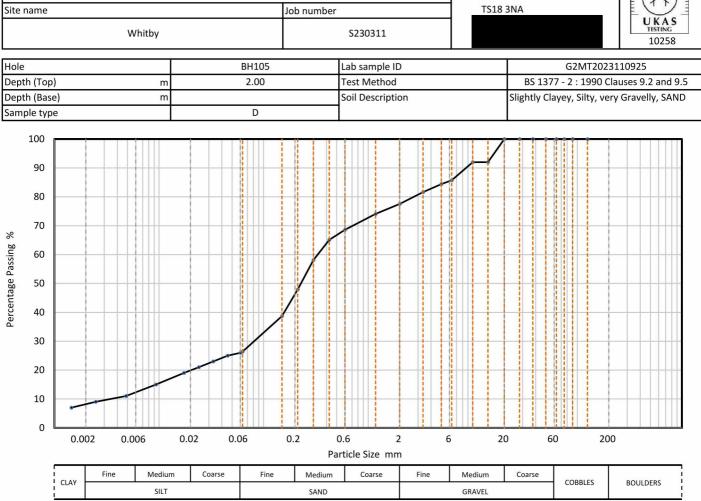
2567

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	33.0
Sand	27.9
Silt	29.1
Clay	10.0

Grading Analysis		
D100	mm	
D60	mm	0.728
D30	mm	0.0307
D10	mm	0.002
Uniformity Coefficient		360
Curvature Coefficient		0.65

Remarks

Preparation and testing in accordance with test method unless noted below


Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved by	D Anderson
Approval date	22/11/2023 08:14

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,

Sieving		Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0601	26	
90	100	0.0454	25	
75	100	0.0330	23	
63	100	0.0240	21	
50	100	0.0173	19	
37.5	100	0.0094	15	
28	100	0.0048	11	
20	100	0.0025	9	
14	92	0.0015	7	
10	92			
6.3	86			
5	84			
3.35	82			
2	78			
1.18	74			
0.6	69	Particle density	(assumed)	
0.425	65	2.65	Mg/m3	
0.3	58			
0.212	48]		
0.15	39	1		
0.063	26	1		

Drv	Mass	of	samp	le g
Diy	111035	01	Jump	10,8

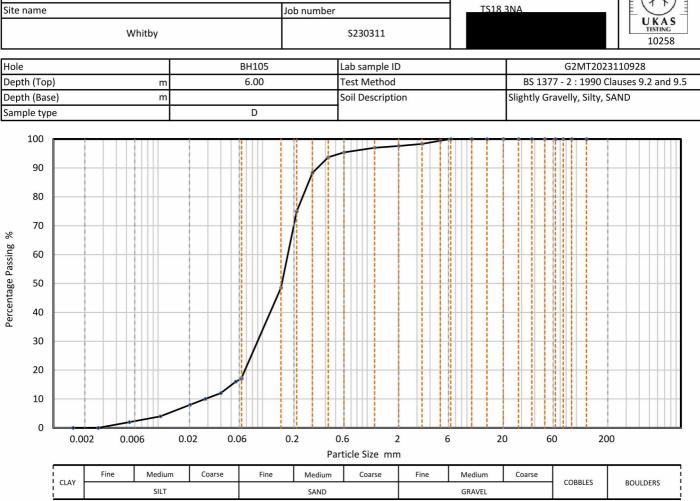
220

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	22.5
Sand	51.2
Silt	18.2
Clay	8.1

Grading Analysis		
D100	mm	
D60	mm	0.33
D30	mm	0.0813
D10	mm	0.00348
Uniformity Coefficient		95
Curvature Coefficient		5.7

Remarks

Preparation and testing in accordance with test method unless noted below


Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Approved by	D Anderson				
Approval date	17/11/2023 08:34				

G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,

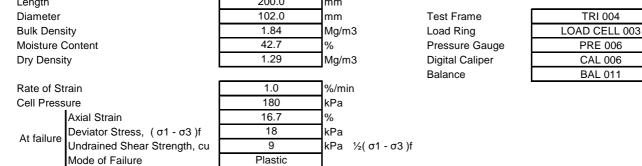
Siev	ing	Sedimentation				
Particle Size mm	% Passing	Particle Size mm	% Passing			
125	100	0.0630	17			
90	100	0.0555	16			
75	100	0.0398	12			
63	100	0.0284	10			
50	100	0.0202	8			
37.5	100	0.0105	4			
28	100	0.0053	2			
20	100	0.0027	0			
14	100	0.0015	0			
10	100					
6.3	100					
5	99					
3.35	98					
2	98					
1.18	97					
0.6	95	Particle density	(assumed)			
0.425	94	2.65	Mg/m3			
0.3	88					
0.212	75]				
0.15	49]				
0.063	17					

12.33	2.121				
Drv I	Mass	of	samp	le.	g

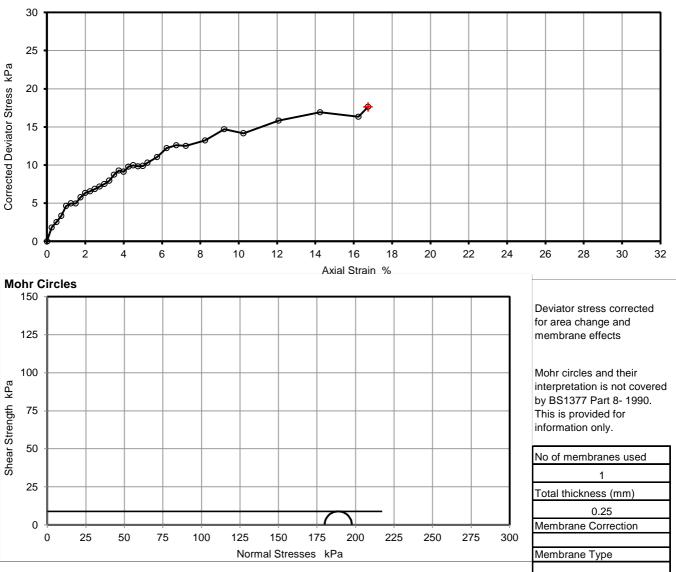
128

Sample Proportions	% dry mass				
Very coarse	0.0				
Gravel	2.4				
Sand	80.2				
Silt	17.4				
Clay	0.0				

Grading Analysis		
D100	mm	
D60	mm	0.174
D30	mm	0.0896
D10	mm	0.0304
Uniformity Coefficient		5.7
Curvature Coefficient	1.5	


Remarks

Preparation and testing in accordance with test method unless noted below


Accreditation status

Approved by	D Anderson				
Approval date	17/11/2023 08:41				

	Unconsolida	ted Undraine	d Triaxial	Job Ref	S230311 BH101	
	Compressio		t measurement	Borehole/Pit No.		
Site Name	Whitby			Sample No.		
Soil Description				Depth	9.00	
Specimen Reference	BH101	Specimen 9.00 m		Sample Type	U	
Specimen Description	Extremely Low Str	ength CLAY		KeyLAB ID	G2MT202311098	
Test Method				Date of test	10/11/2023	
Test Number Length		1 200.0	mm	Tracable Equipment	Record	

Deviator Stress v Axial Strain

	Unconsolidated Undrained Triaxial				Job Ref	S230311	
UKAS 10258		Test withou	ut measureme	nt	Borehole/Pit No.	BH102	
Site Name	Whitby			Sample No.			
Soil Description				Depth	9.00		
Specimen Reference	BH102	Specimen Depth	9.00	m	Sample Type	U	
Specimen Description	Very Low Strength C	CLAY	- -		KeyLAB ID	G2MT2023110915	
Test Method					Date of test	10/11/2023	
Test Number Length		1 202.0	mm		Tracable Equipment	Record	
Diameter		102.0	mm		Test Frame	TRI 004	
Bulk Density		1.81	Mg/m3		Load Ring	LOAD CELL 003	
Moisture Content		46.5	%		Pressure Gauge	PRE 006	
Dry Density		1.23	Mg/m3		Digital Caliper	CAL 006	
				Balance	BAL 011		

%/min

kPa ½(σ1-σ3)f

kPa

% kPa

1.0

180

19.7

35

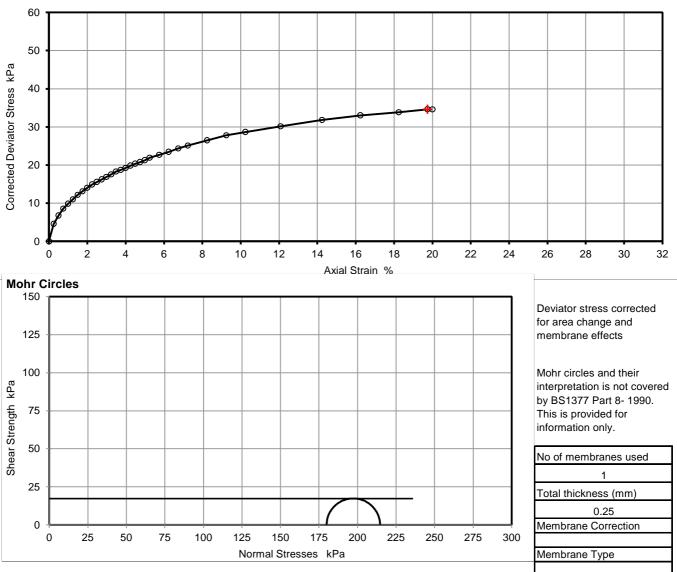
17

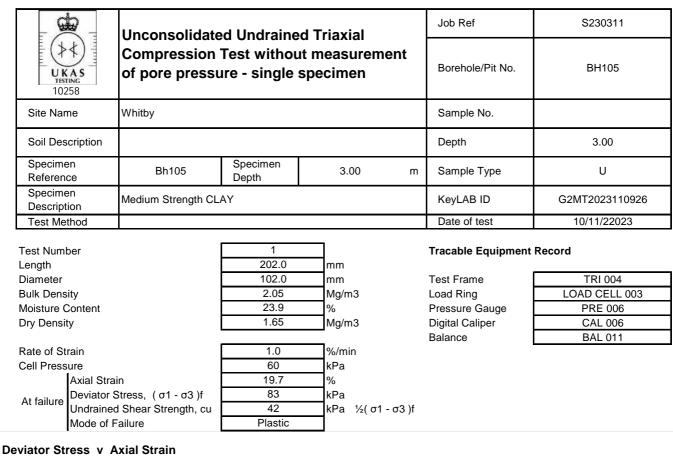
Plastic

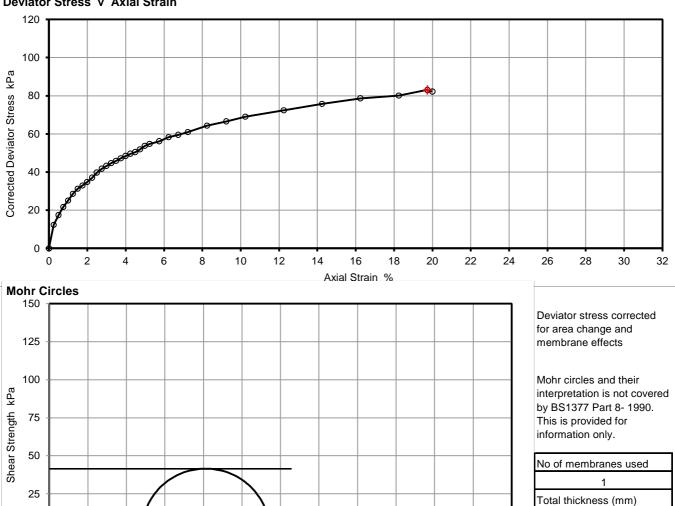
Deviator Stress v Axial Strain

Axial Strain

Mode of Failure


Deviator Stress, ($\sigma 1 - \sigma 3$)f


Undrained Shear Strength, cu


Rate of Strain

Cell Pressure

At failure

Normal Stresses kPa 0.25

Membrane Correction

Membrane Type

Unconsolidate	Job Ref	S230311				
Compression	Test withou	it measurement	Borehole/Pit No.	BH105		
Whitby			Sample No.			
			Depth	9.00		
BH105	Specimen Depth	9.00 m	Sample Type	U		
Very Low Strength C	LAY		KeyLAB ID	G2MT2023110930		
			Date of test	10/11/2023		
	1 202.0	mm	Tracable Equipment	Record		
	102.0	mm	Test Frame	TRI 004		
	1.74	Mg/m3	Load Ring	LOAD CELL 003		
	46.3	%	Pressure Gauge	PRE 006		
	Compression of pore pressu Whitby BH105	Compression Test withou of pore pressure - single Whitby Whitby BH105 Specimen Depth Very Low Strength CLAY 1 202.0 102.0 1.74 1.74	BH105 Specimen 9.00 m Very Low Strength CLAY 1 202.0 mm 102.0 mm 1.74 Mg/m3	Unconsolidated Undrained Triaxial Compression Test without measurement of pore pressure - single specimen Borehole/Pit No. Whitby Sample No. Whitby Depth BH105 Specimen Depth 9.00 m Sample Type Very Low Strength CLAY KeyLAB ID Date of test 102.0 mm mm Test Frame Load Ring		

Mg/m3

%/min

kPa

kPa

kPa ½(σ1-σ3)f

%

Digital Caliper Balance CAL 006

BAL 011

1.19

1.0

180

18.5

34

17

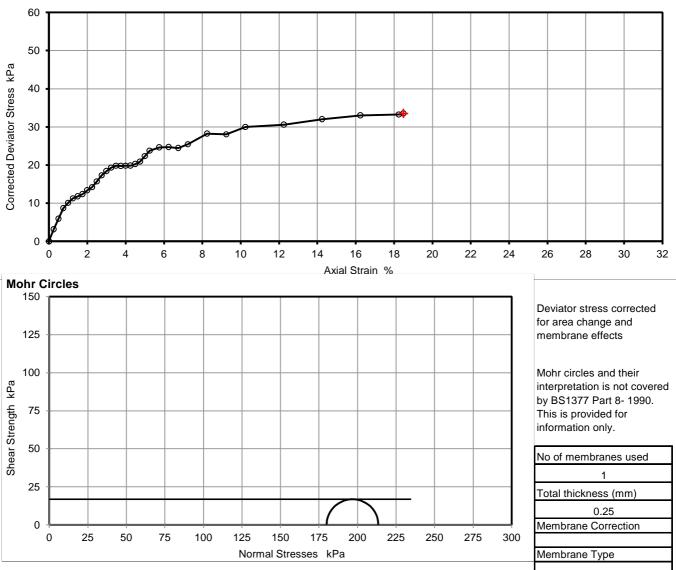
Plastic

Deviator Stress	۷	Axial Strain	
------------------------	---	--------------	--

Axial Strain

Mode of Failure

Deviator Stress, ($\sigma 1 - \sigma 3$)f


Undrained Shear Strength, cu

Dry Density

Rate of Strain

Cell Pressure

At failure

	G	Ð							Job	Ref			S230311	
		NG	ONI	ONE DIMENSIONAL CONSOLIDATION TEST BS EN ISO 17892 -5, clause 3							it No.		BH105	
Si	te Nam		Whitby						San	nple No				
Sc	oil Desc	ription							Dep	oth			3	
	pecime		BH	1105	Specime	n	3	m	San	nple Ty	pe		U	
Sp	eferenc pecime	n			Depth					LABID		G2	MT202311092	6
	escriptio		BS EN ISI	17892 :Part	5					e starte			13/11/2023	Ŭ
	0.700													
	0.650	,			– e _o									
	0.000													
	0.600	o					-~							
	0.55													
Ratio	0.550								\checkmark					
Voids Ratio	0.500	o								\leq				
>														
	0.450											~		
	0.400	o												
	0.350	D												
	0.300	,			_									
	0.250	ס 								_				
	0.200	, <u> </u>												
time)	5.0	0												
og tin	4.0 3.0													
Cv m²/yr (log	2.0					*								
v m ² /	1.0						*			×				
0	0.0	0 1			10		1	00			1	1000		10000
		1		1	CV		1	00 essure kPa	l			1000		10000
	plied ssure	Voids ratio	Μv	Cv (t50, log)	(t90, root	Csec	Prep	aration						
	кРа		m2/MN	m2/yr	, m2/yr		4							
	0.0 60	0.667 0.602	- 0.65	- 2.5	- 8.9	- 0.0018	Inde	x tests	Liquid	limit		% Plast	ic limit	%
	120	0.575	0.29	1.1	5.6	0.002	Parti	cle density				assumed	2.65	Mg/m3
	240 480	0.535 0.488	0.21 0.13	1 1.1	3.9 4.3	0.0024	Spec	cimen details	S			Initial	Final	
	60 960	0.514 0.425	0.041 0.066	1.7	6.3	0.0029	Diam					74.76 20.23	- 17.28	mm
	900	0.425	0.000	1.7	0.5	0.0029	Heig Mois	ture Conten	t			25.4	19.6	mm %
	Image: state						1.99 1.59		Mg/m3 Mg/m3					
							0.667							
							-	ration age tempera	ature fo	r test		101 2'	1.0	% oC
							Swe	ling Pressur	e					kPa
							Settl Rem	ement on sa arks	aturation	า				%
]							
Final	values	should be use	d with caution	n	Tested	Chec	ked	Approved		Printe	ed :		Fig. No	
		mid point of lo										/2023 10:33	3	
Cv co	orrected	to 20oC									<i>∠∠</i> /	10.33		1

					Particle Density by Gas	Jar	Tests -	Sun	nmary of Results			
Project No.			Project Name									
S230311 Sar						itby	tby					
Hole No.	Ref	Sar Top	nple Base Type		Soil Description at test horizon		cle Density Mg/m ³		Remarks			
BH104		1.20		в	Soft, Brown, Gravelly, Slightly Sandy, Slightly Silty, CLAY		2.69					
				<u> </u>								
				<u> </u>								
				┢								
				┣—								
				<u> </u>								
				┢								
				_								
				-								
				-		\vdash						
	I		<u> </u>	<u> </u>		1						
Notes Tests perforr Gas Jar tests					77 unless annotated otherwise use 8.2		Date Printe 22/11/2023		Table			
				., 510					sheet			

Summary of Rock Point Load Tests

Whitby

Job number

S230311

Site name

G2M Testing (Stockton) 12-16 Yarm Road,

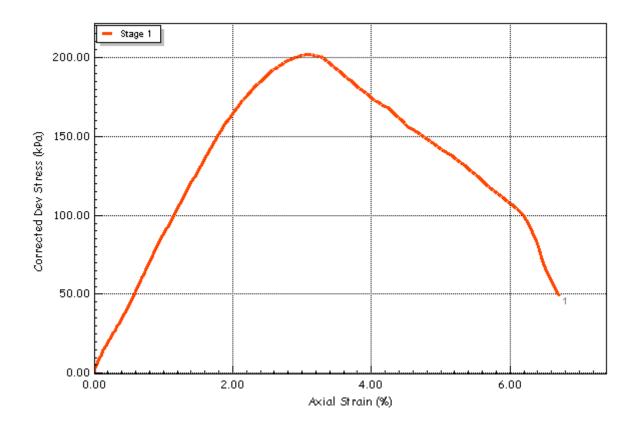
Stockton on Tees, TS18 3NA

-														-	-
Hole		ample		Specin		Rock type and test		Туре	Failure		mensio		ls	ls(50)	Remarks
	Depth	Ref	Туре	Depth	Ref	condition	Туре	Dir.	validity	W	D	D'		0 0	
	m			m						mm	mm	mm	MPa	MPa	
BH101	18.60		С	18.60	BH101	As received	А	Ρ	Valid	100	120		0.00	0.01	CLAY
BH101	22.95		С	22.95	Bh101	Mudstone	A	Ρ	Valid	100	120		0.01	0.01	
BH101	25.65		С	25.65	BH101	Mudstone	A	Ρ	Valid	100	40		0.20	0.23	
BH101	27.22		С	27.22	BH101	Mudstone	A	Ρ	Valid	100	80		0.13	0.18	
BH102	19.90		С	19.90	BH102	Mudstone	А	Ρ	Valid	40	100		0.91	1.07	
BH102	20.10		С	20.10	BH102	Mudstone	A	Ρ	Valid	100	60		0.01	0.02	
BH102	24.40		С	24.40	BH102	Sandstone	A	Ρ	Valid	100	50		0.38	0.47	
BH102	26.30		с	26.30	BH102	Mudstone	А	Р	Valid	100	50		0.75	0.93	
BH103	18.30		С	18.30	BH103	Mudstone	A	Ρ	Valid	105	60		0.02	0.02	
BH103	20.10		С	20.10	BH103	Mudstone	A	Ρ	Valid	100	60		0.28	0.35	
BH103	21.10		С	21.10	BH103	Mudstone	A	Ρ	Valid	100	60		0.08	0.10	
BH103	22.20		с	22.20	BH103	Mudstone	A	Ρ	Valid	100	60		0.01	0.02	
BH103	22.90		С	22.90	BH103	Mudstone	A	Р	Valid	100	60		0.40	0.52	
BH103	24.77		С	24.77	BH103	As received	A	Ρ	Valid	100	60		0.03	0.03	
BH103	26.35		С	26.35	BH103	As received	A	Ρ	Valid	100	60		1.22	1.57	

Test not currently within the scope of G2M Testing UKAS accrediation schedule

Column	Кеу	Description
	A	Axial
Test Type	В	Block
rest type	D	Diametral
	I	Irregular lump
	L	Parallel to planes of weakness
Test Direction	Р	Perpendicular to planes of weakness
	U	Unknown
	W	Width
Dimensions	D	Platen seperation at start of test
	D'	Platen seperation at sample failure
	ls	Point Load Index
	ls(50)	Corrected Point Load Index to equivalent 50 mm diameter

Approved by	- But .
Approval date	11/12/2023 13:16
Date report generated	
Report Number	


Summary Report

Sample Details	Depth	20.20-20.55 m	1		
	Description	Undisturbid			
	Туре	Mudstone			
	Initial Sample Length	Lo	(mm)	216.0	
	Initial Sample Diameter	Do	(mm)	103.8	
	Initial Sample Weight		(gr)	4285.0	
sketch showing specimen location in original sample	Bulk Density	17 W	(Mg/m3)	2.34	
	Particle Density	ρs	(Mg/m3)	2.65	
Initial Conditions					
Strain Rate		ε	(%/min)	1.816	
MembraneThickness		ть	(mm)	0.00	
Displacement Input		LIP	(mm)	CH 2	
Load Input		N IP	(N)	CH 1	
Initial Moisture		ω i%	(%)	7.63	
Initial Dry Density		ρdO	(Mg/m3)	2.18	
Initial Voids Ratio		eo		0.22	
Initial Degree of Saturation		So	(%)	93	
Final Conditions					
Max Deviator Stress		(σ1-σ3)f	(kPa)	201.72	
01		10000	(0()	0.4.4	

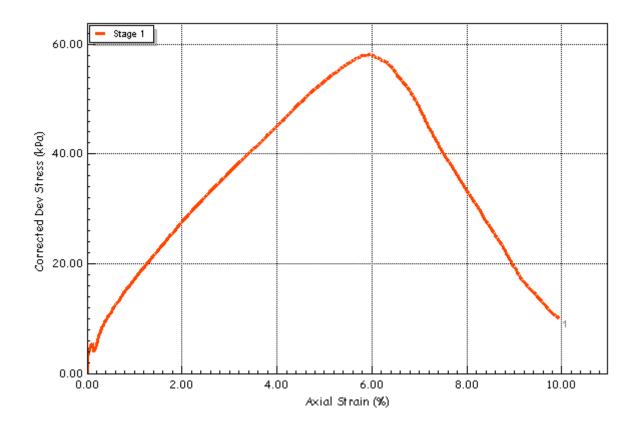
5 f %	(%)	3.14
ω (%	(%)	7.63
ρdf	(Mg/m3)	2.18
		0.22
Sf	(%)	93.3
		1 Maria
		1
		Failure Sketch
	εf% ωf% Pdf ef	ov_f% (%) p∘df (Mg/m3) e∘f ·

\frown	Test Method	BS1377: Part 7 19		Test Name		SOLMEK BH101 20.20
	Database: DESKTC	P-IBEJL9B\SQLEX	PRESS2019 \	Test Date 07/12/2023		
(12mtocting	Site Reference			Borehole	BH101	
Mer nosung	Jobfile	S230311		Sample	BH101 20.20	-20.55m
	Client	SOLMEK		Depth	20.20-20.55 (m
	Operator Ali		Checked Gra	ham	Approved	Aiston

Test Results Plots

\frown	Test Method	BS1377: Part 7 19	90 : Clause 7	Test Name	UCS 071223 SOLMEK BH101 20.20
	Database: DESKT	DP-IBEJL9B\SQLEX	Test Date	07/12/2023	
(12mtocting	Site Reference			Borehole	BH101
YLHR CSUIN	Jobfile	S230311		Sample	BH101 20.20-20.55m
	Client	SOLMEK		Depth	20.20-20.55 m
	Operator Ali		Checked Gra	ham	Approved Aiston

Summary Report


Sample Details	Depth			
	Description Type	UNDISTU MUDSTO		
ad.	Initial Sample Length Initial Sample Diameter	Ln Do	(mm) (mm)	204.0 102.3
sketch showing specimen location in original sample	Initial Sample Weight Bulk Density	νo Po	(gr) (Mg/m3)	3489.5 2.08
	Particle Density	ρs	(Mg/m3)	2.65

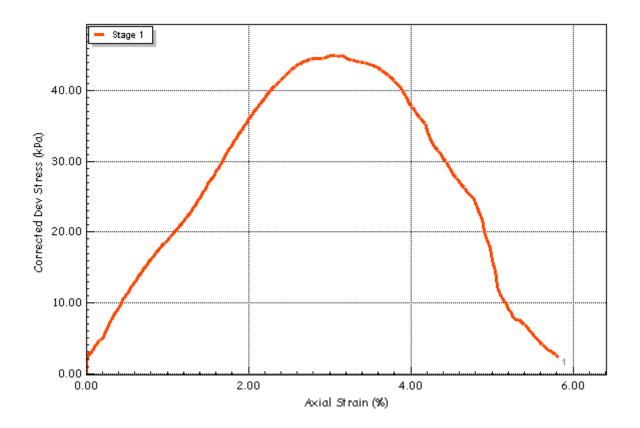
Initial Conditions				
Strain Rate	ε	(%/min)	1.943	
MembraneThickness	ть	(mm)	0.00	
Displacement Input	LIP	(mm)	CH 2	
Load Input	N IP	(N)	CH 1	
Initial Moisture	ω į%	(%)	11	
Initial Dry Density	Ob Q	(Mg/m3)	1.88	
Initial Voids Ratio	eo		0.41	
Initial Degree of Saturation	So	(%)	69	

Final Conditions			
Max Deviator Stress	(σ1-σ3)f	(kPa)	58.09
Strain At Max Stress	٤ f %	(%)	5.95
Final Moisture	00 f %	(%)	11
Final Dry Density	ρdf	(Mg/m3)	1.88
Final Voids Ratio	ef		0.41
Final Degree of Saturation	Sf	(%)	68.7
Notes			
			Failure Sketch
			(surface inclination)

\cap	Test Method Database: DESKTC	BS1377: Part 7 19 P-IBEJL9B\SQLEX		Test Name Test Date	UCS 071223 BH102 07/12/2023		
(12mtocting	Site Reference			Borehole	BH102		
Men n usung	Jobfile	S230311		Sample	BH102 23-05-23 40	C 2	
	Client	SOLMEK		Depth			
	Operator Ali		Checked Gra	ham	Approved Aisto	on	

Test Results Plots

	Test Method	BS1377: Part 7 19	90 : Clause 7		Test Name	UCS 071223	BH102	
	Database: DESKTOP-IBEJL9B\SQLEXPRESS2019 \				Test Date	07/12/2023		
(12mtocting	Site Reference				Borehole	BH102		
YLI I I UCSII I	Jobfile	S230311			Sample	BH102 23-05	-23 40	
	Client	SOLMEK			Depth			
	Operator Ali		Checked	Grah	iam	Approved	Aiston	


Summary Report

Sample Details	Depth	19.95-20.2	25					
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Description	UNDISTURBID						
	Туре	Mudstone						
	Initial Sample Length	Lo	(mm)	209.0				
	Initial Sample Diameter	Do	(mm)	103.5				
akatah abawing apaaiman	Initial Sample Weight	Wο	(gr)	3886.2				
sketch showing specimen location in original sample	Bulk Density	PO	(Mg/m3)	2.21				
	Particle Density	ρs	(Mg/m3)	2.65				
Strain Rate		ε	(%/min)	1.886				
MembraneThickness		ть	(mm)	0.00				
		10.0	()					
		1012030	(CH 2				
Displacement Input		LIP	(mm)	0112				
Displacement Input Load Input		L IP N IP	(mm) (N)	CH 1				
			(N)					
Load Input			,					
Load Input Initial Moisture		N IP	(N)	CH 1				
		ΝIP ωi%	(N) (%)	CH 1 10				

Final Conditions			
Max Deviator Stress	(σ1-σ3)f	(kPa)	44.95
Strain At Max Stress	۵ ۴ %	(%)	3.15
Final Moisture	00 f %	(%)	10
Final Dry Density	P df	(Mg/m3)	2.01
Final Voids Ratio			0.32
Final Degree of Saturation	ef Sf	(%)	83.8
Notes			
			Failure Sketch
			(surface inclination)

\cap		Test Method Database: DES	BS1377: Part 7 1 KTOP-IBEJL9B\SQLE			Test Name Test Date	UCS 071223 07/12/2023	SOLMEK BH105
n2m	tocting	Site Reference				Borehole	BH105	
Sellin	.courry	Jobfile	S230311			Sample	BH105 19.95	5-20.25 m
		Client	SOLMEK			Depth	19.95-20.25	
		Operator	Ali	Checked	Grał	nam	Approved	Aiston

Test Results Plots

	Test Method	BS1377: Part 7 19	990 : Clause 7		Test Name	UCS 071223	SOLMEK BH105
	Database: DESKT	OP-IBEJL9B\SQLE>	KPRESS2019 \	Test Date	07/12/2023		
(12mtocting	Site Reference			Borehole	BH105		
YLI I I CSII I	Jobfile	S230311			Sample	BH105 19.95	-20.25 m
	Client	SOLMEK			Depth	19.95-20.25	
	Operator A	li	Checked	Grah	nam	Approved	Aiston

Contract Number: PSL23/9618

Report Date: 04 December 2023

Client's Reference: S230311

Client Name: G2M Testing Unit 5e Edwardson Road Meadowfield Durham DH7 8RL

For the attention of: James Eglintine

Contract Title:	Whitby

Date Received:	15/11/2023
Date Commenced:	15/11/2023
Date Completed:	4/12/2023

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

L Knight (Assistant Laboratory Manager) R Berriman (Associate Director)

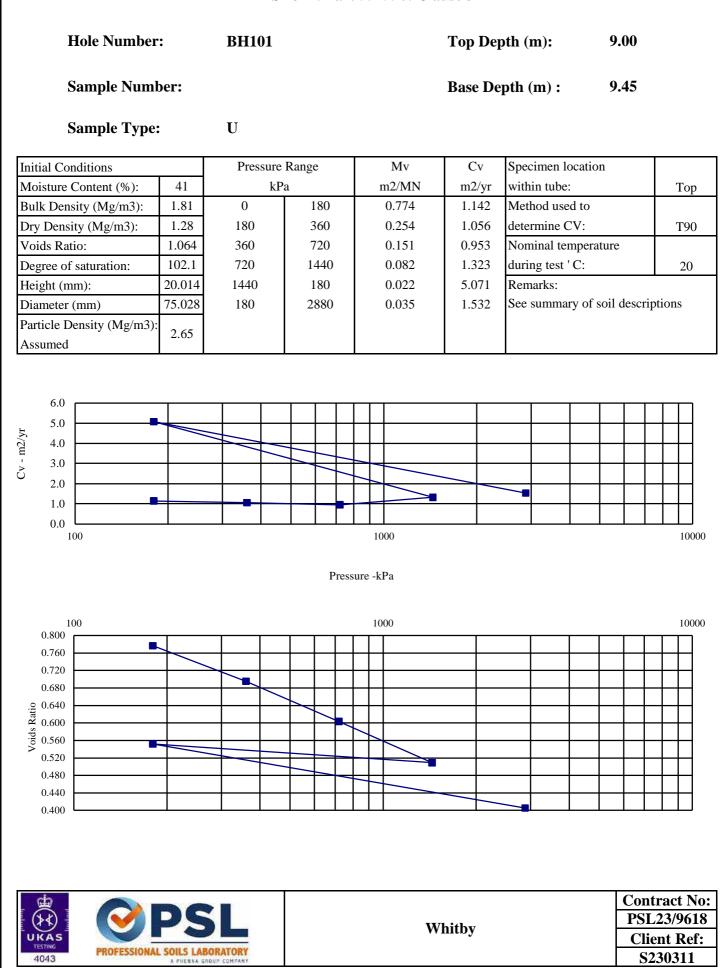
A Watkins (Managing Director) S Eyre (Senior Technical Coordinator)

(Laboratory Manager)

S Royle

T Watkins (Senior Technician)

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster, DN4 0 A R Page 1 of

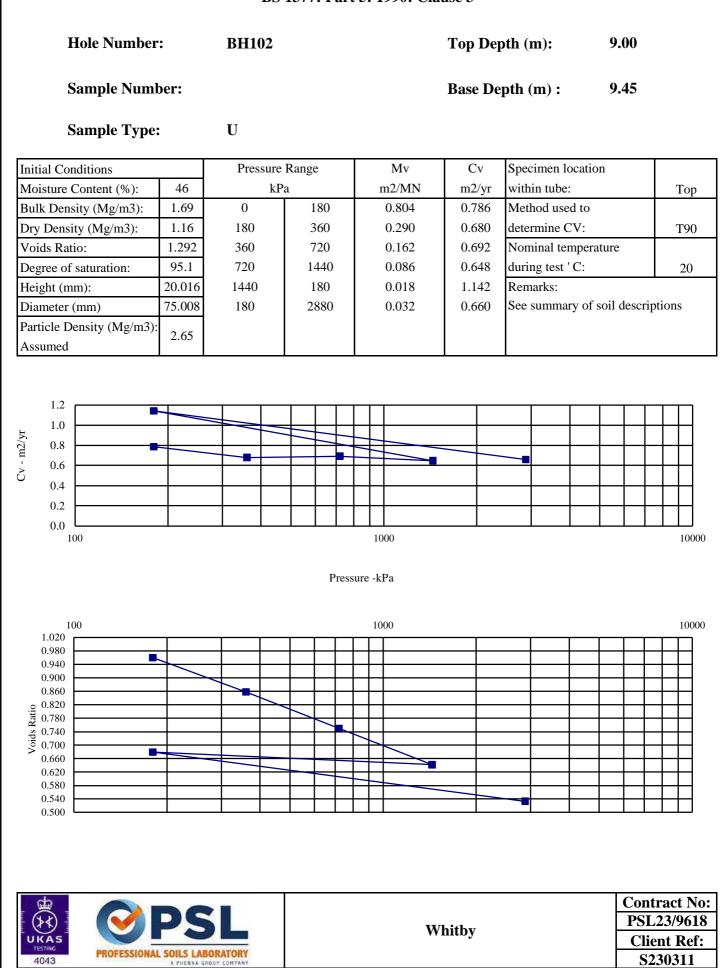

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH101		U	9.00	9.45	Brown slightly sandy very silty CLAY.
BH102		U	9.00	9.45	Brown slightly sandy very silty CLAY.
BH105		U	9.00	9.45	Brown slightly sandy very silty CLAY.

				Contract No:	
			Whitby	PSL23/9618	
	PROFESSIONAL SOILS LABORATORY A PHENNA GROUP COMPANY		w muy	Client Ref:	
4043				S230311	
	PSLRF011	Issue No.1	Approved by: L Pavey	03/01/2022	

ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3



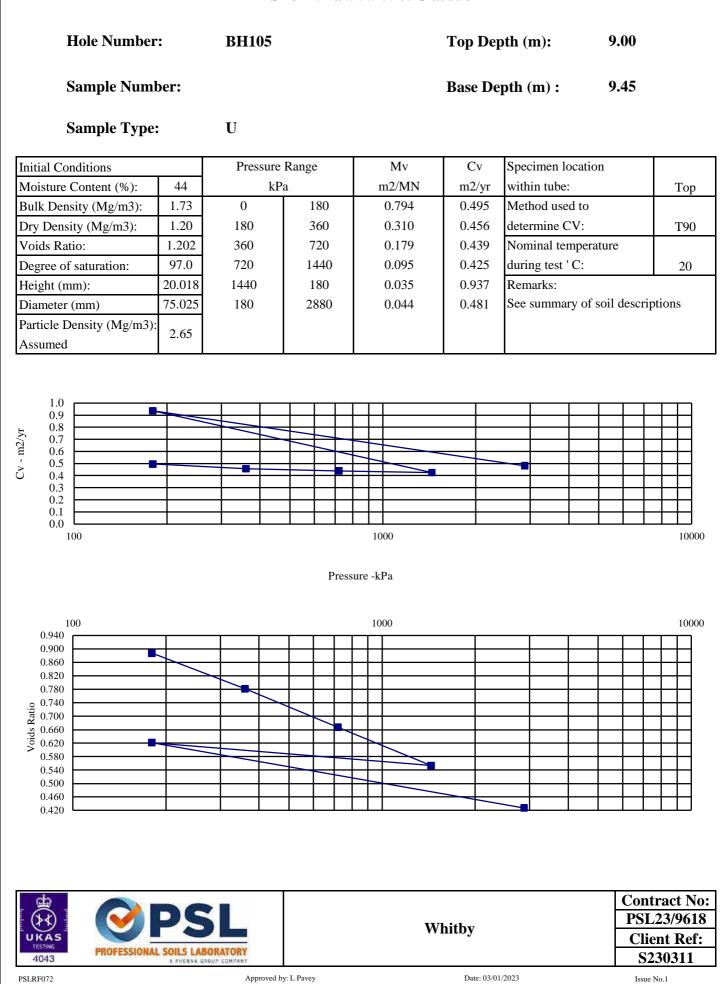
PSLRF072

Approved by: L Pavey

ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

Approved by: L Pavey


Date: 03/01/2023

Issue No.1

PSLRF072

ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

Issue No.1

PSLRF072

Issued: 16-Nov-23

Certificate Number 23-26611 Client G2M Testing Ltd 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-26611
- *Client Reference* S230311
 - Order No LAB2042
 - Contract Title WHITBY
 - Description 7 Soil samples.
 - Date Received 13-Nov-23
 - Date Started 13-Nov-23
- Date Completed 16-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

General Manager

Summary of Chemical Analysis Soil Samples

Our Ref 23-26611 Client Ref S230311 Contract Title WHITBY

			Lab No	2261184	2261185	2261186	2261187	2261188	2261189
		.Sa	mple ID	BH101	BH101	BH102	BH102	BH103	BH103
			Depth	5.00	13.50	7.50	10.50	7.50	10.50
		(Other ID						
			ole Type	D	D	D	D	D	D
		•	ng Date	n/s	n/s	n/s	n/s	n/s	n/s
		Sampli	ng Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Inorganics									
рН	DETSC 2008#		рН	7.8	7.8	5.7	7.0	7.2	7.2
Organic matter	DETSC 2002#	0.1	%	3.4		8.4		7.0	7.4
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	830	41	1900	820	780	560

Summary of Chemical Analysis Soil Samples

Our Ref 23-26611 Client Ref S230311 Contract Title WHITBY

			Lab No	2261190
		.S	ample ID	BH105
			Depth	7.10
			Other ID	
		Sam	ple Type	D
		Samp	ling Date	n/s
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Inorganics				
рН	DETSC 2008#		pН	
Organic matter	DETSC 2002#	0.1	%	11
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	

парогорнате

Information in Support of the Analytical Results

Our Ref 23-26611 Client Ref S230311 Contract WHITBY

Containers Received & Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	container for tests
2261184	BH101 5.00 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days),	
				Organic Matter (Manual) (28 days), pH +	
2261185	BH101 13.50 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
2261186	BH102 7.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days),	
				Organic Matter (Manual) (28 days), pH +	
				Conductivity (7 days)	
2261187	BH102 10.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH +	
				Conductivity (7 days)	
2261188	BH103 7.50 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days),	
				Organic Matter (Manual) (28 days), pH +	
				Conductivity (7 days)	
2261189	BH103 10.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days),	
				Organic Matter (Manual) (28 days), pH +	
				Conductivity (7 days)	
2261190	BH105 7.10 SOIL		PT 1L	Sample date not supplied, Organic Matter (Manual)	
				(28 days)	

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

28-Nov-23

Certificate Number 23-27587

Client G2M Testing Ltd 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-27587
- *Client Reference* S230311
 - Order No LAB2042
 - Contract Title WHITBY
 - Description One Soil sample.
 - Date Received 23-Nov-23
 - Date Started 23-Nov-23
- Date Completed 28-Nov-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

Our Ref 23-27587 Client Ref S230311 Contract Title WHITBY

			Lab No	2266640
		.S	ample ID	BH105
			Depth	10.50
			Other ID	
		Sam	ple Type	D
		Samp	ling Date	n/s
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Inorganics				
рН	DETSC 2008#		pН	9.4
Organic matter	DETSC 2002#	0.1	%	4.0
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	660

Information in Support of the Analytical Results

Our Ref 23-27587 Client Ref S230311 Contract WHITBY

Containers Received & Deviating Samples

		Date		Inappropriate container for
Lab No	Sample ID	Sampled Containers Received	Holding time exceeded for tests	tests
2266640	BH105 10.50 SOIL	PT 500ml	Sample date not supplied, Anions 2:1 (30 days), Organic Matter (Manual) (28 days), pH + Conductivity (7 days)	
Key: P-Plast	ic T-Tub			

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Issued:

12-Dec-23

Certificate Number 23-28817

Client G2M Testing Ltd 12 Yarm Road Stockton On Tees Cleveland TS18 3NA

- Our Reference 23-28817
- Client Reference S230311
 - Order No LAB2077
 - Contract Title WHITBY ROCK SCHEDULE
 - Description 5 Soil samples.
 - Date Received 07-Dec-23
 - Date Started 07-Dec-23
- Date Completed 12-Dec-23
- Test Procedures Identified by prefix DETSn (details on request).
 - *Notes* Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

V

Kirk Bridgewood General Manager

Summary of Chemical Analysis Soil Samples

Our Ref 23-28817 Client Ref S230311 Contract Title WHITBY ROCK SCHEDULE

			Lab No	2273501	2273502	2273503	2273504	2273505
		.Sa	ample ID	BH101	BH101	BH102	BH103	BH105
			Depth	19.50	24.50	21.35	21.90	23.70
			Other ID					
		Sam	ple Type	D	D	D	D	D
		Sampl	ing Date	n/s	n/s	n/s	n/s	n/s
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units					
Inorganics								
рН	DETSC 2008#		рН	8.5	7.9	8.2	8.7	8.6
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	< 10	270	24	29	34

Inappropriate

Information in Support of the Analytical Results

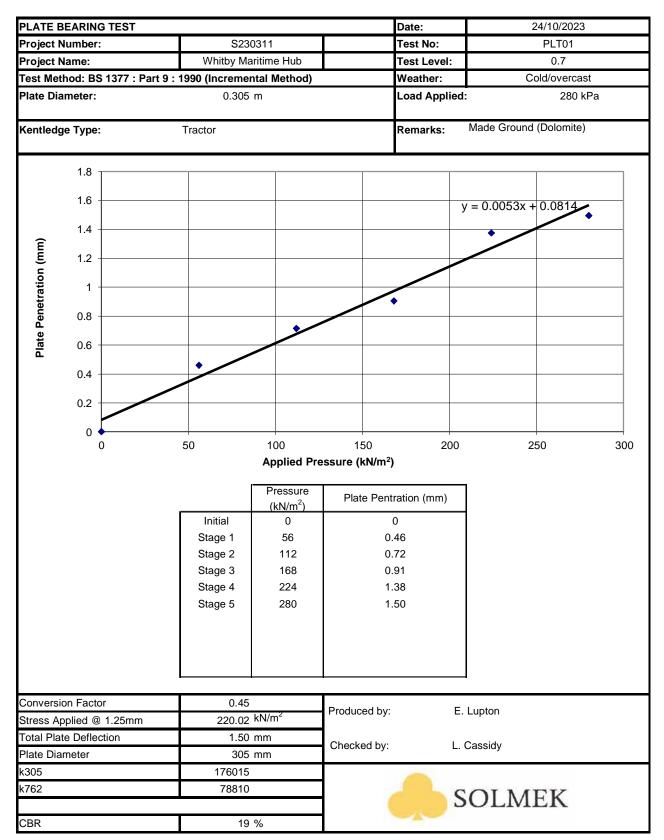
Our Ref 23-28817 Client Ref S230311 Contract WHITBY ROCK SCHEDULE

Containers Received & Deviating Samples

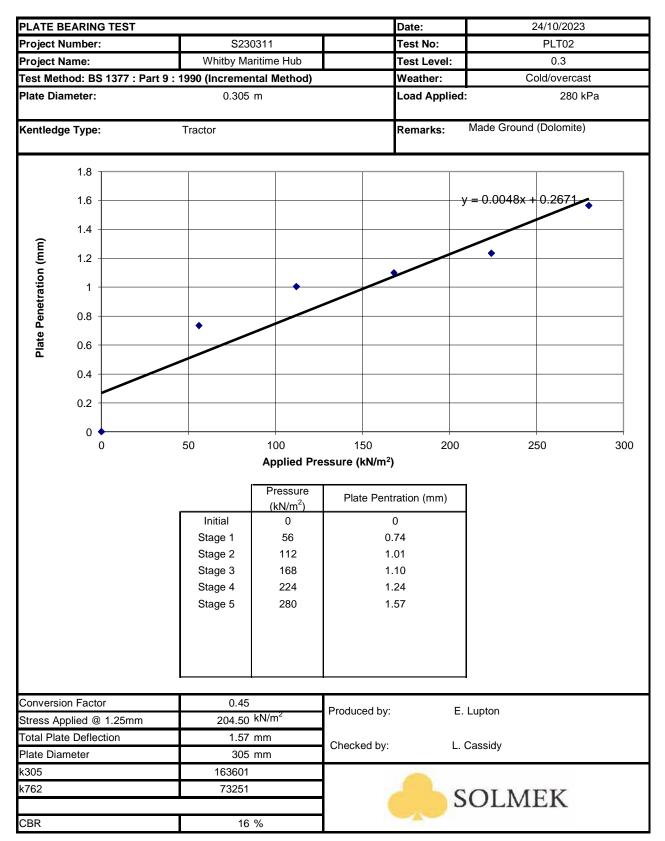
		Date			container for
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
2273501	BH101 19.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
2273502	BH101 24.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
2273503	BH102 21.35 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
2273504	BH103 21.90 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
2273505	BH105 23.70 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

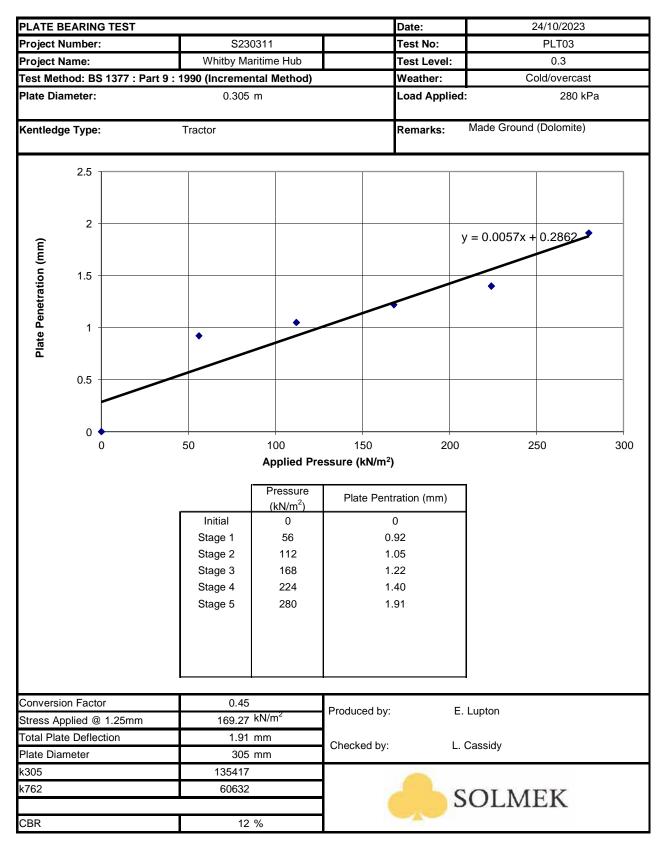
Soil Analysis Notes

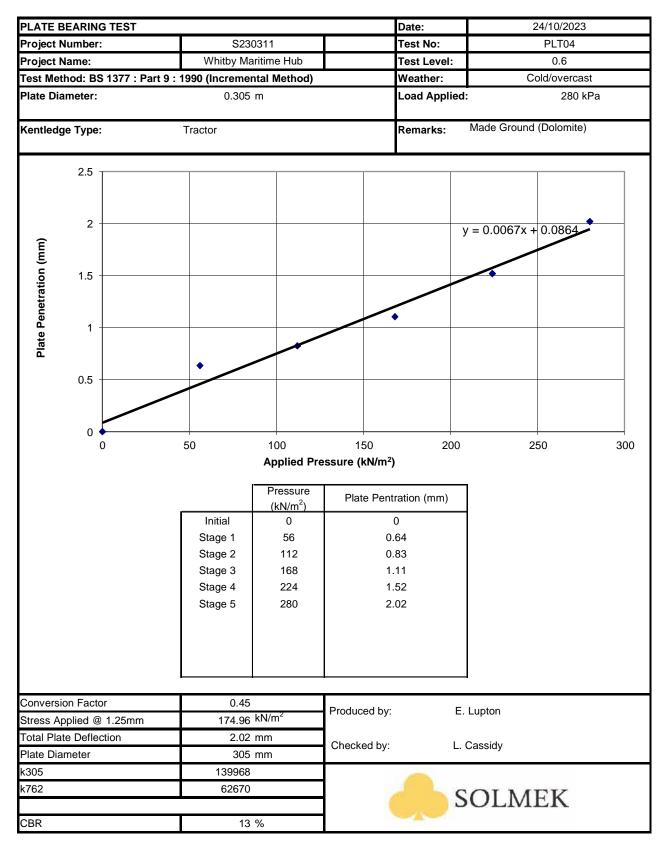

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

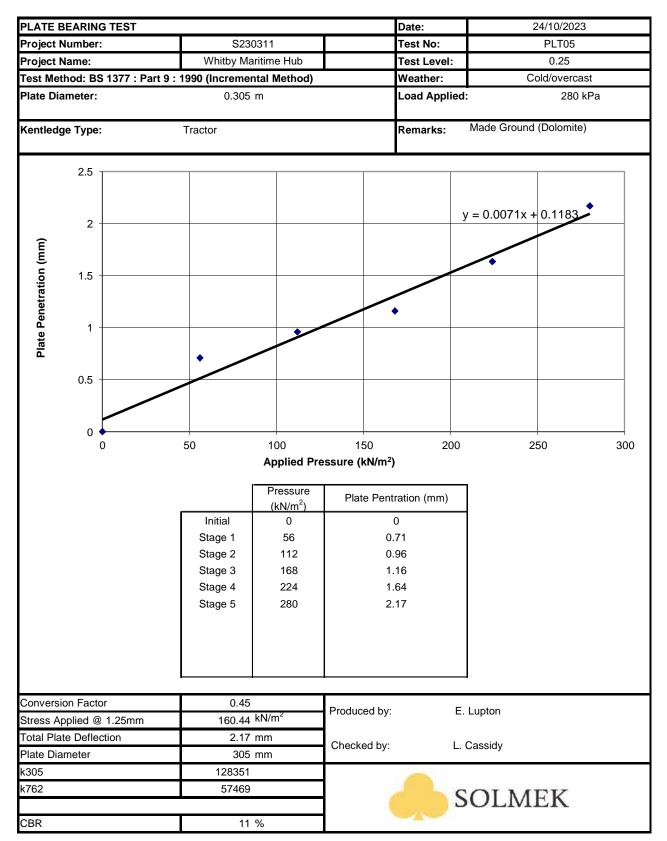
Disposal


From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report


SOLMEK GEOTECHNICAL TESTING LABORATORY


SOLMEK GEOTECHNICAL TESTING LABORATORY


SOLMEK GEOTECHNICAL TESTING LABORATORY

SOLMEK GEOTECHNICAL TESTING LABORATORY

SOLMEK GEOTECHNICAL TESTING LABORATORY

APPENDIX E: Gas Monitoring Results

GAS MONITORING RESULTS

Project number	S230311
Project name	Whitby Maritime Hub, Whitby
Client	Fairhurst
Visit no	1
Date	20/11/2023
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Cloudy
Ground Conditions	Wet
Ambient Atmospheric Pressure	1003
Regional Pressure Trend	Falling

Position Flow Dr	Position Flow Pres	Drocouro	Pressure	С	H4	С	02	O2 (% v/v)	PID	CO	H2S	Groundwater	Depth to	Notes
POSILION		Flessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	OZ (% V/V)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	Notes	
BH101	0.1	1003	8.0	0.0080	0.3	0.0003	14.0	0.2	0.0	0.0	1.28	12.30		
BH102	0.1	1003	6.7	0.0067	0.3	0.0003	16.2	0.1	0.0	0.0	1.82	17.00		
BH103	0.1	1003	6.7	0.0067	0.2	0.0002	17.9	0.3	0.0	0.0	1.23	12.40		
BH105	0.1	1003	0.0	0.0000	0.2	0.0002	19.4	0.0	0.0	0.0	2.10	8.70		
WS101	0.1	1003	0.0	0.0000	2.2	0.0022	18.0	0.0	0.0	0.0	2.20	3.70		
WS104	0.1	1003	0.0	0.0000	0.0	0.0000	20.4	0.0	0.0	0.0	1.28	5.00		
WS105	0.1	1003	0.0	0.0000	0.8	0.0008	19.1	0.0	0.0	0.0	2.05	3.00		

KEY

CH₄ = Methane, CO₂ = Carbon Dioxide, O₂ = Oxygen, CO = Carbon Monoxide, H₂S = Hydrogen Sulphide, GSV = Gas Screening Value (If no flow is recorded a value of 0.1 is assumed), ND = Not Detected, * = not measured, N/A = Not applicable, % = % by volume, mbgl = m below ground level, ppm = parts per million.

GAS MONITORING RESULTS

Project number	S230311
Project name	Whitby Maritime Hub, Whitby
Client	Fairhurst
Visit no	2
Date	27/11/2023
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Cloudy
Ground Conditions	Wet
Ambient Atmospheric Pressure	999
Regional Pressure Trend	Falling

Position Flow Pres	Drocouro	Proceuro	Pressure	С	H4	С	02	O2 (% v/v)	PID	CO	H2S	Groundwater	Depth to	Notes
	Flessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	OZ (% V/V)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	notes		
BH101	0.1	999	3.0	0.0030	0.0	0.0000	18.4	0.4	0.0	0.0	3.07	12.30	Water sample retrieved	
BH102	0.1	999	9.4	0.0094	0.5	0.0005	14.3	0.8	0.0	0.0	1.86	17.00	Water sample retrieved	
BH103	0.1	999	7.3	0.0073	0.2	0.0002	18.0	0.6	0.0	0.0	1.45	12.40	Water sample retrieved	
BH105	0.1	999	0.0	0.0000	0.2	0.0002	19.2	0.0	0.0	0.0	2.10	8.70	Water sample retrieved (partia	
WS101	0.1	999	0.0	0.0000	4.9	0.0049	3.9	0.0	0.0	0.0	2.30	3.70	Water sample retrieved (partia	
WS104	0.1	999	0.0	0.0000	0.0	0.0000	20.0	0.0	0.0	0.0	2.60	5.00	Insufficient water	
WS105	0.1	999	0.0	0.0000	0.7	0.0007	19.4	0.0	0.0	0.0	2.00	3.00	Insufficient water	

KEY

CH₄ = Methane, CO₂ = Carbon Dioxide, O₂ = Oxygen, CO = Carbon Monoxide, H₂S = Hydrogen Sulphide, GSV = Gas Screening Value (If no flow is recorded a value of 0.1 is assumed), ND = Not Detected, * = not measured, N/A = Not applicable, % = % by volume, mbgl = m below ground level, ppm = parts per million.

GAS MONITORING RESULTS

Project number	S230311					
Project name	Whitby Maritime Hub, Whitby					
Client	Fairhurst					
Visit no	3					
Date	15/12/2023					
Equipment	GFM 435 Gas Analyser					
Operator	LO					

Weather Conditions	Sunny
Ground Conditions	Damp
Ambient Atmospheric Pressure	1031
Regional Pressure Trend	Steady

Position Flow Press	Pressure	С	H4	С	02	O2 (% v/v)	PID	CO	H2S	Groundwater	Depth to	Notes	
POSILION	osition Flow Pressu	Flessule	(% v/v)	GSV (l/hr)	(% v/v)	GSV (l/hr)	OZ (% V/V)	(ppm)	(ppm)	(ppm)	Level (mbgl)	Base (mbgl)	Notes
BH101	0.1	1031	1.2	0.0012	0.0	0.0000	19.2	0.2	0.0	0.0	1.90	12.30	
BH102	0.1	1031	2.6	0.0026	0.5	0.0005	18.0	0.3	0.0	0.0	1.79	17.00	
BH103	0.1	1031	4.8	0.0048	0.2	0.0002	18.6	0.3	0.0	0.0	1.54	12.40	
BH105	0.1	1031	0.0	0.0000	0.3	0.0003	18.5	0.0	0.0	0.0	0.99	8.70	
WS101	0.1	1031	0.0	0.0000	3.0	0.0030	11.9	0.0	0.0	0.0	2.22	3.70	
WS104	0.1	1031	0.0	0.0000	0.0	0.0000	20.1	0.0	0.0	0.0	2.00	5.00	
WS105	0.1	1031	0.0	0.0000	0.7	0.0007	19.1	0.0	0.0	0.0	2.02	3.00	

KEY

CH₄ = Methane, CO₂ = Carbon Dioxide, O₂ = Oxygen, CO = Carbon Monoxide, H₂S = Hydrogen Sulphide, GSV = Gas Screening Value (If no flow is recorded a value of 0.1 is assumed), ND = Not Detected, * = not measured, N/A = Not applicable, % = % by volume, mbgl = m below ground level, ppm = parts per million.

APPENDIX F: Notes on Limitations & Contamination Guidance

UK BACKGROUND

Environmental Protection Act 1990: Part 2A Revised Statutory Guidance (April 2012)

This revised document explains how the Local Authority should decide if land, based on a legal interpretation, is contaminated. The document replaces the previous guidance given in Annex 3 of DEFRA Circular 01/2006, issued in accordance with section 78YA of the 1990 Environmental Protection Act.

The main objectives of the Part 2A regime are to "identify and remove unacceptable risks to human health and the environment" and to "seek to ensure that contaminated land is made suitable for its current use".

Part 2A uses a risk based approach to defining contaminated land whereby the "risk" is interpreted as "the likelihood that harm, or pollution of water, will occur as a result of contaminants in, on or under the land" and by "the scale and seriousness of such harm or pollution if it did occur".

For a relevant risk to exist a contaminant, pathway and receptor linkage must be present before the land can be considered to be contaminated. The document explains that "for a risk to exist there must be contaminants present in, on or under the land in a form and quantity that poses a hazard, and one or more pathways by which they might significantly harm people, the environment, or property; or significantly pollute controlled waters."

A conceptual model is used to develop and communicate the risks associated with a particular site.

To determine if land is contaminated the local authority use various categories from 1 to 4. Categories 1 and 2 include "land which is capable of being determined as contaminated land on grounds of significant possibility of significant harm to human health."

Categories 3 and 4 "encompass land which is not capable of being determined on such grounds".

PRELIMINARY CONCEPTUAL MODEL

Preliminary Conceptual Models are undertaken in accordance with CIRIA C552. The Preliminary Conceptual Model assesses the consequence and the likelihood of a risk being realised to provide a risk classification, using the tables detailed below.

CONSEQUENCE OF RISK BEING REALISED (Based on C552 CIRIA, 2001)

Classification	Definition	Example
Severe	Short-term (acute) risk to human health, the environment, an element of the development or other aspect with is likely to result in <i>significant harm</i> , damage or both.	High concentrations of cyanide on the surface of an informal recreational area. Major spills of contaminants from site into controlled water. High concentrations of explosive gas in the subsurface environment that have a clear unobstructed pathway into buildings.
Moderate	Chronic damage to human health, a plausible chance that an event will occur, although the timeline is not immediate to be in the short-term.	Appreciable concentration of contamination that over the longer- term will cause significant harm i.e. high lead concentration in topsoil. Shallow mine workings that are potentially unstable but may remain in a satisfactory or stable conditions for a number of years.
Mild	Low level pollution of non-sensitive water, a feasible hazardous scenario although the timeline of such occurring can probably be considered in 10's of years.	The effect of high sulphate concentrations on structural concrete. Pollution of non-classified groundwater.
Minor	Harm, although not necessarily significant to human health, or with respect to other aspects of the development, which are considered implausible in terms of occurrence, or will have little consequential impact.	The presence of contaminants at such low concentrations that protective equipment is required during site works. Any damage to structures is minimal and will not be structural in characteristics.

PROBABILITY OF RISK BEING REALISED (C552 CIRIA, 2001)

Classification	Definition
High Likelihood	There is a viable pollutant linkage and an event that either appears very likely in the short
	term and almost inevitable over the long term, or there is evidence that the receptor has
	been harmed or polluted.
Likely	There is a viable pollutant linkage and all elements are present and in the right place, which
	means that it is probable that an event will occur. Circumstances are such that an event is
	not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	There is a viable pollutant linkage and circumstances are possible under which an event
	could occur. However, it is by no means certain that even over a longer period such event
	would take place, and is less likely in the shorter term.
Unlikely	There is a viable pollutant linkage but circumstances are such that it is improbable that an
	event would occur even in the very long term.

RISK CLASSIFICATION MATRIX (C552 CIRIA, 2001)

Risk = Probability x		Consequence								
Consequence		Severe	Moderate	Mild	Minor					
Probability	High likelihood	Very high risk	High risk	Moderate risk	Moderate/low risk					
	Likely	High risk	Moderate risk	Moderate/low risk	Low risk					
	Low likelihood	Moderate risk	Moderate/low risk	Low risk	Very low risk					
	Unlikely	Moderate/low risk	Low risk	Very low risk	Very low risk					

HUMAN RECEPTORS

Human exposure to contaminants present in soils can occur via several pathways. Direct exposure pathways include dermal absorption after contact with contaminated ground, inhalation of soil or dust, inhalation of volatised compounds, and inadvertent soil ingestion (or deliberate soil ingestion in the case of some children). Other indirect pathways include human ingestion of plants grown in contaminated soil or contaminated ground or surface water. Contaminants associated with wind blown dust can affect humans on surrounding sites.

VEGETATION

Plants can be affected by soil contamination in a number of ways resulting in growth inhibition, nutrient deficiencies and yellowing of leaves. Contaminants are taken up by plants through the roots and through foliage. Contaminants identified as being highly phytotoxic include boron, cadmium, copper, lead, nickel, and zinc.

To establish if the levels of contaminants present on a site may pose a risk to vegetation the results of the contamination testing are compared to a series of threshold values published in 'Code of Good Agricultural Practice for the Protection of Soil'.

GROUNDWATER AND SURFACE WATER RECEPTORS

The principal pathway by which soil contamination may reach the water environment is through a slow seepage or leaching to groundwater or surface water. The potential for contaminants to migrate along such pathways is dependent on the chemical and physical characteristics of the contaminants and the local hydrogeology. Surface watercourses may also accumulate contamination as contaminated sediments are deposited within the water body.

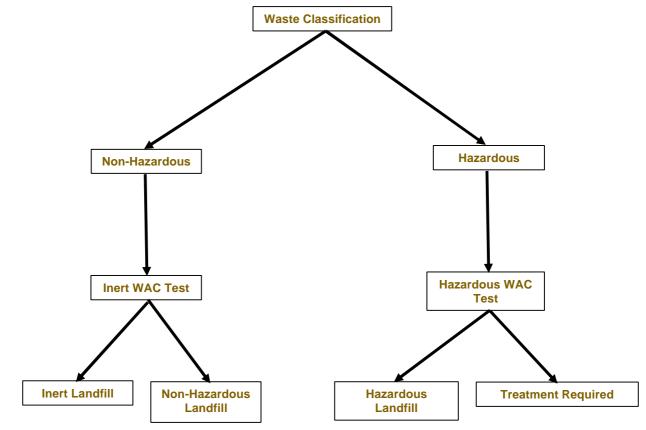
Where the site investigated overlies major/principal aquifers (and in some cases minor/secondary aquifers depending on certain conditions), groundwater Source Protection Zones and areas in close proximity to groundwater abstractions, contamination test results have been compared with the Water Supply (Water Quality) Regulations 1989 and The Water Supply (Water Quality) Regulations 2000.

Should a surface water receptor, such as a fresh water environment (river, canal, stream, lake etc), or marine environment be considered sensitive in relation to a site, then test results are compared with DEFRA & SEPA Environmental Quality Standards (2004). Many of the Environmental Quality Standards are hardness (CaCO₃) depended. Where no hardness values are available, Solmek assume conservative values (of between 0 and 50mg/l).

In the absence of vulnerable ground and surface water environments, Solmek may compare any test results with the Environment Agency Leachate Quality Threshold Values.

DETAILED QUANTITATIVE RISK ASSESSMENT (DQRA)

In line with Environment Agency's guidance document Environment Agency Land Contamination Risk Management, which replaced the now-withdrawn Contaminated Land Report 11 – Model Procedures for the Management of Land Contamination (2004), a DQRA for groundwater/human health may be required following a Phase 2 investigation and before the preparation of a Phase 3 Remediation Strategy. For human health DQRA, a site specific assessment criteria is undertaken using CLEA Software Version 1.06. For groundwater DQRA, the Environment Agency Remedial Targets Worksheet Version 3.1 is used.


WASTE CLASSIFICATION AND WASTE ACCEPTANCE CRITERIA

During the site strip and construction activities, material may be required to be removed from site. Any such material would require classification, in line with Environment Agency Technical Guidance *Waste Classification: Guidance on the classification and assessment of waste (2015).* This would classify the material as either Non-Hazardous or Hazardous Waste.

Once the material has been classified, determining the suitable landfill for disposal is governed by landfill directive Waste Acceptance Criteria (WAC) testing, with landfills categorized as Inert Waste, Stable Non-Reactive Hazardous Waste and Hazardous Waste. The WAC testing relates to materials that are to be exported from a site/development to landfill, and do not directly relate to human health specifically. The testing results are generally presented as certificates which can be used by site owners/contractors etc, which should be presented to the accepting waste facility or waste contractor.

If waste classification and/or WAC testing are not undertaken, material taken off site may be subject to WAC testing by the appropriate waste disposal company. The decision on whether or not to accept waste, or whether further testing is required, is at the discretion of the waste disposal company.

The below flow chart provides further information on the waste classification process.

CONSTRUCTION MATERIALS

Materials at risk from possible soil contaminants include inorganic matrices such as cement and concrete and also organic material such as plastics and rubbers. Acid ground conditions and high levels of sulphates can accelerate the corrosion of building materials. Where pH and soluble sulphate analysis has been undertaken, Solmek compare the test results with the guidelines presented within BRE Special Digest 1, 2005 (3rd Edition) 'Concrete in Aggressive Ground'. Plastics and rubbers are generally used for piping and service ducts and are potentially attacked by a range of chemicals, most of which are organic, particularly petroleum based substances. Drinking water supplies can be tainted by substances that can penetrate piping and water companies enforce stringent threshold values.

The levels of potential contaminants should be compared to thresholds supplied in the UK Water Industry Research (UKWIR) publication "Guidance for the selection of Water Supply Pipes to be used in Brownfield Sites" (January 2011). A Brownfield Site is defined in the document as "Land or premises that have not previously been used or developed that may be vacant or derelict". It should be noted that Brownfield sites may not be contaminated. The guidance does not apply to Greenfield Sites however water companies may have their own assessment criteria which should be checked by the developer. The table below outlines the pipe material selection threshold concentrations.

	Pipe Material (Threshold concentrations in mg/kg)					
Parameter group	PE	PVC	Barrier pipe (PE-AL-PE)	Wrapped Steel	Wrapped Ductile Iron	Copper
Extended VOC suite by purge and trap or head space and GC-MS with TIC	0.5	0.125	Pass	Pass	Pass	Pass
+ BTEX + MTBE	0.1	0.03	Pass	Pass	Pass	Pass
SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C5-C10)	2	1.4	Pass	Pass	Pass	Pass
+ Phenols	2	0.4	Pass	Pass	Pass	Pass
+ Cresols and chlorinated phenols	2	0.04	Pass	Pass	Pass	Pass
Mineral oil C11-C20	10	Pass	Pass	Pass	Pass	Pass
Mineral oil C21-C40	500	Pass	Pass	Pass	Pass	Pass
Corrosive (Conductivity, Redox and pH)	Pass	Pass	Pass	Corrosive if pH <7 and conductivity >400µS/cm	Corrosive if pH <5, Eh not neutral and conductivity >400µS/cm	Corrosive if pH <5 or >8 and Eh positive
Specific suite identified as relevant following site investigation						
Ethers	0.5	1	Pass	Pass	Pass	Pass
Nitrobenzene	0.5	0.4	Pass	Pass	Pass	Pass
Ketones	0.5	0.02	Pass	Pass	Pass	Pass
Aldehydes	0.5	0.02	Pass	Pass	Pass	Pass
Amines	Fail	Pass	Pass	Pass	Pass	Pass

REQUIREMENTS OF PARTIES WITHIN THE DEVELOPMENT PROCESS

Interested parties involved in the development process may use the data in different ways and there may be varying views and interpretation of the factual data. Local Authority staff may have a view on contamination and human health and the wider environment. The Environment Agency are concerned principally with the protection of Controlled waters. Building insurers, funders and purchasers may be primarily concerned with issues of potential commercial blight. Purchasers are also not always fully informed, and perceptions on issues associated with risk can affect the decision to purchase. Developers and construction organisations will focus on financial aspects of dealing with the contamination in the context of the development and construction programme.

RISKS & LIABILITIES FROM CONTAMINATION

In simple terms, risks associated with contamination may be considered in terms of 1) statutory risks and 2) development related risks. If contamination is severe or forms a potential hazard based on its potential to affect groundwater, surface water or human health, a statutory risk may be present, and as such, if the risk is not reduced, criminal proceedings may be instigated by a government body or local authority.

If the contamination is less severe or not considered to be mobile, it may be considered a commercial liability which could, in theory remain untreated, but which may at a later date affect the value of the property, or, with changing legislation, become a statutory risk. Commercial liabilities could give rise to civil proceedings by third parties if there are grounds for action.

★Solmek conditions of offer, notes on limitations & basis for contract (ref: version1/2023)

These conditions accompany our tender and supercede any previous conditions issued. Solmek will prepare a report solely for the use of the Client (the party invoiced) and its agent(s). No reliance should be placed on the contents of this report, in whole or in part by 3rd parties. The report, its content and format and associated data are copyright, and the property of Solmek. Photocopying of part or all of the contents, transfer or reproduction of any kind is forbidden without written permission from Solmek. A charge may be levied against such approval, the same to be made at the discretion of Solmek.

Solmek cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. Solmek are not responsible for the action negligent of otherwise of subcontractors or third parties.

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, ground gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Solmek cannot be held liable for any unrecorded or unforeseen obstructions between exploratory boreholes and trial pits. This includes instances where previous structures on the site (buried man made structures) or the presence of boulder clay (cobbles and/or boulder obstructions) have been anticipated. All types of piling operations should make allowance for obstructions within the construction budget to accommodate this. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.4 of BS 10175:2011 in order to confirm the conceptual assumptions. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, Solmek cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

All information acquired by Solmek in the course of investigation is the property of Solmek, and, only also becomes the joint property of the Client only on the complete settlement of all invoices relating to the project. Solmek reserve the right to use the information in commercial tendering and marketing, unless the Client expressly wishes otherwise in writing. The quoted rates do not include VAT, and payment terms are 30 days from dispatch of invoice from our offices. Quotes are subject to a site visit.

We have allowed for 1 mobilisation and normal working hours unless otherwise stated. The scope of the investigation may be reviewed following the desk study and/or fieldwork. The presence or otherwise of Japanese Knotweed or other invasive plants can be difficult to identify especially during winter months. If Japanese Knotweed or other invasive species are suspect, it should be confirmed by an ecologist. We have not allowed for acquiring services information, and cannot be responsible for damage to underground services or pipes not shown to us or not clearly shown on plans. Costs incurred will be passed on to you, and in commissioning Solmek you understand and accept that you/your agent have a contractual relationship with Solmek & you accept this. Our rates assume unobstructed, reasonably level and firm access to the exploratory positions and adequate clear working areas and headroom. We have priced on the basis that you or your client have the necessary permissions, wayleaves and approvals to access land. All boreholes and pits are backfilled with arisings except where gas monitoring pipes are installed with stopcock covers. Solmek are not responsible for any uneven surfaces as a result of siteworks and rutting and backfilled excavations may require re-levelling and/or making good by others after fieldwork is complete, and Solmek has not allowed for this. No price has been provided or requested for a return visit to remove pipework and covers. Hourly rates apply to consultancy only and do not include expenses unless otherwise shown. If warranties are required, legal costs incurred will be passed on to you assuming Solmek agree to complete such warranties, modified or otherwise and you understand and agree to pay all costs.

We reserve the right to pursue full payment of the invoice prior to release of any information including reports. We advise you/your client that we may elect to pursue our statutory rights under late payment legislation, and will apply 8% to the base rate for unreasonably late payments. Solmek are exempt from the CIS Scheme. Solmek offer to undertake work <u>only</u> in strict accordance with conditions covered by our current insurances, which are available for inspection. Solmek are not responsible for acts, negligent or otherwise of subcontractors and as a matter of policy cannot indemnify any other parties. Professional indemnity Insurance is limited to ten times the invoice net total except where stated otherwise by Solmek. Solmek give notice that consequential loss as a direct or indirect result of Solmek's activities or omission of the same are excluded.

