Whitby Maritime Hub

Geo-Environmental
 Interpretative Report

FAIRHURST

WHIT-FHT-XX-XX-RP-C00007

CONTROL SHEET

CLIENT:

PROJECT TITLE:
 PROJECT TITLE:

Willmott Dixon Construction Ltd

REPORT TITLE:
Whitby Maritime Hub
Geo-Environmental Interpretative Report
PROJECT REFERENCE:
152982

DOCUMENT NUMBER:

WHIT-FHT-XX-XX-RP-C-00007 P01

əןnpəyэ्S [enoidd丈 8 ənss\|	Issue 1 (P01)		Name	Signature		Date
	Prepared by	R. Dixon				15.01.2024
	Checked by	C. McCue				15.01.2024
	Approved by		D. Doherty			15.01.2024
	Issue	Date	Status	Description	Signature	
	2				By	
					Checked	
					Approved	
	3				By	
					Checked	
					Approved	

This document has been prepared in accordance with the Fairhurst Quality and Environmental Management System and in accordance with the instructions of the client, Willmott Dixon Construction Ltd for the client's sole and specific use. Any other persons who use any information contained herein do so at their own risk. Any information provided by third parties and referred to herein has not been checked or verified by Fairhurst unless otherwise expressly stated within this report.
Unless otherwise agreed in writing, all intellectual property rights in, or arising out of, or in connection with this report, are owned by Fairhurst. The client named above has a licence to copy and use this report only for the purposes for which it was provided. The licence to use and copy this report is subject to other terms and conditions agreed between Fairhurst and the client.
Fairhurst is the trading name of Fairhurst Group LLP, a limited liability partnership registered in Scotland with the registered number SO307306 and registered office at 43 George Street, Edinburgh EH2 2HT.

CONTENTS

1.0 INTRODUCTION 1
2.0 LIMITATIONS 1
3.0 SOURCES OF INFORMATION 1
4.0 DEVELOPMENT PROPOSALS 1
5.0 SITE DESCRIPTION AND TOPOGRAPHY 2
6.0 SUMMARY OF POTENTIAL CONTAMINATION SOURCES AND GEOTECHNICAL CONSTRAINTS 2
7.0 DESIGN OF GROUND INVESTIGATION 4
8.0 QUALITY ASSURANCE AND QUALITY CONTROL 9
9.0 GROUND CONDITIONS 9
10.0 GROUNDWATER CONDITIONS 12
11.0 SOIL GAS AND VAPOURS 13
12.0 GEOTECHNICAL PROPERTIES 14
13.0 CHEMICAL PROPERTIES 23
14.0 ENVIRONMENTAL ASSESSMENT 29
15.0 RECOMMENDATIONS ON REMEDIAL/MITIGATION MEASURES 40
16.0 PRELIMINARY ENGINEERING ASSESSMENT 42
17.0 REFERENCES 47

APPENDICES

Appendix 1: DrawingsAppendix 2a: Ground Investigation Factual Report (Draft)Appendix 2b: Supplementary Gas and Groundwater MonitoringAppendix 3: Contamination SummaryAppendix 4: Assessment Criteria
Appendix 5: Geotechnical Figures

1.0 INTRODUCTION

Fairhurst have been commissioned by Willmott Dixon Construction Ltd (WDC) on behalf of Scarborough Borough Council (SBC) to undertake a ground investigation for the proposed development of a Maritime Training Hub at Endeavour Wharf in Whitby.

The aims of the ground investigation were to obtain geotechnical and environmental information to assist with sub-structure design and confirm the on-site chemical conditions. The ground investigation was also designed to address the potential geotechnical and environmental constraints to the proposed development identified by the Geo-Environmental Desk Study (Ref. 01), prepared by Fairhurst.

This report presents the findings of the ground investigation undertaken on site, comments on the ground, groundwater and gassing conditions, and presents a contamination qualitative risk assessment and conceptual site model. Based on these findings, recommendations are made with regard to remedial works (from a geo-environmental and geotechnical perspective), mitigation measures, and preliminary engineering design considerations.

It is understood that this Geo-Environmental Interpretative Report is to be utilised in support of a planning application for the proposed development.

2.0 LIMITATIONS

This Report is for the private and confidential use of Willmott Dixon Construction Ltd (the Client) for whom the Report is undertaken and should not be reproduced in whole or in part, or relied upon by third parties for any use whatsoever. Fairhurst accepts no duty or responsibility (including negligence) to any party other than the stated Client and disclaims all liability of any nature whatsoever to any such party in respect of this Report.

This Geo-Environmental Interpretative Report should be construed as being a Ground Investigation Report (GIR) as defined in BS EN 1997-1 (Ref. 02) and BS EN 1997-2 (Ref. 03). This report is not intended to be and should not be viewed or treated as a Geotechnical Design Report (GDR) as defined in BS EN 1997-1 and BS EN 1997-2. Any design recommendations which are provided are for guidance only and are intended to allow the relevant designer to assess the results and to permit design of the relevant elements of design.

3.0 SOURCES OF INFORMATION

The following information has been considered in the compilation of this report;
Fairhurst Geo-Environmental Desk Study (Ref. 01).
Solmek Limited, Ground Investigation Factual Report (Draft) (Appendix 2a and 2b).

4.0 DEVELOPMENT PROPOSALS

The new Whitby Maritime Hub development comprises a two storey steel structure, approximately $32 \mathrm{~m} \times 19 \mathrm{~m}$ on plan, which will be used primarily for training, but also has several units that are available for private tenants to use for business.

In addition to the main building structure, an external plant and refuse bin store are also proposed along the western boundary.

The planning boundary comprises the entirety of the existing car park at Endeavour Wharf, however not all will be subject to development, and a large portion of the external surfacing and levels are to be retained. The existing harbour master stores and workshops within the south of the site are to be demolished as part of the works. Following demolition and limited resurfacing surrounding the proposed building, the car park lining will be repainted. The extent of the proposed resurfacing works within the development area is detailed within Enjoy Design's Drawing in Appendix 1.

The three main gated access points and the tourist information building located within the south eastern corner are to be retained as part of the development. The existing car park distribution building is to be relocated within the development area.

Soft landscaping is to be limited to 6 No. above ground stainless steel planters located to the south of the proposed building, which will form a barrier between the public car park and the plant and maintenance areas of the building.

5.0 SITE DESCRIPTION AND TOPOGRAPHY

The development site, which has an approximate National Grid Reference NZ 89952 10865, is situated at Endeavour Wharf in the centre of Whitby. The area is currently occupied by an existing car park, comprising hardstanding of concrete and tarmac.

The site is bound to the south west by a café along Langborne Road, which also provided vehicle access, with commercial developments beyond, to the south by a public car park and tourist information shop and to the east and north by the River Esk, including quay walls as part of the wharf.

The 0.90 ha site is irregular in shape and is approximately 180 m in length and 70 m in width. Topographical levels gently slope from north (5.00mOD) to south (3.50mOD).

The site boundary and current conditions, are presented on Enjoy Design's drawing included within Appendix 1.

6.0 SUMMARY OF POTENTIAL CONTAMINATION SOURCES AND GEOTECHNICAL CONSTRAINTS

The following potential contamination sources and geotechnical constraints were identified by the Geo-Environmental Desk Study (Ref. 01).

6.1 On Site Potential Contamination Sources

Variable thicknesses, locally very deep, of heterogeneous made grade associated with the upfilling of the River Esk and subsequent construction and operation of Endeavour Wharf;

Construction, and subsequent demolition, of various buildings, warehouses and sheds;
Historic land uses including; a shipyard, railway sidings and a car park; and,
Gas and/or vapours, associated with made ground, infilled land, alluvial deposits and historic contamination.

6.2 Off Site Potential Contamination Sources

Potential migration onsite of contaminated groundwaters and leachates associated with offsite historic development including; railway land, engine sheds, goods sheds, electrical substations, infilled land, a garage and a bus station.

Migration and accumulation of soil gas and vapours associated with offsite made ground, infilled land and a former gas works.

6.3 Potential Geotechnical Constraints

A significant thickness of heterogeneous made ground, with poor engineering properties, low bearing capacity and high compressibility.

The presence of thick alluvial deposits, with low bearing capacity and high and variable compressibility, providing poor near surface conditions for foundations, roads and hardstanding.

A moderate risk of unexploded ordinance beneath the site.
The potential presence of soils and groundwater containing elevated pH , sulphates and chlorides with the potential for attack on buried concrete.

The presence of existing below ground structures associated with Endeavour Wharf, including; quay walls, tie rods, anchor piles and relieving slabs. Future maintenance or replacement of these features may be required and is to be considered during detailed design.

The known presence of extensive relic foundations, floor slabs and service runs, or the like, which could prove an obstruction to proposed foundations and services, and act as hard spots, requiring consideration in the structural designs, pre-auguring or removal.

Shallow, tidally influenced groundwaters, in the made ground and alluvial deposits.
The potential requirement to remove surplus hardstanding off site, should it not be possible to overlay it or re-incorporate crushed materials within the proposed development.

The requirement to remove asphalt/ tarmac hardstanding off site should it not be possible to overlay it in proposed hardstanding areas or the coal tar content determine it too high for reuse.

The requirement to remove surplus Made Ground and superficial deposits generated by the development off site, should it not be possible to re-incorporate them due to the requirement to tie in to existing levels at the boundary.

The presence of existing services potentially requiring diversion, decommissioning or protection should they be retained.

The potential presence of invasive species.

6.4 Recommendations

The following recommendations were provided within Fairhurst's Geo-Environmental Desk Study Report (Ref. 01):

Site investigation to confirm the geotechnical and chemical characteristics of the underlying made ground, superficial deposits, solid geology and groundwater regime.

A botanical survey to establish the location and extend of Japanese Knotweed onsite (and any other invasive species), and treatment/ removal of any identified species by a specialist.

Tracing and mapping of existing site services, including confirmation of the requirements for diversion, decommissioning or protection, and any easements or access for maintenance.

Structural survey of the existing quay walls associated with Endeavour Wharf to confirm their ongoing integrity.

Physical tracing of quay wall tie rods, anchor piles and relieving slabs to facilitate detailed design of the development layout, along with consideration of future maintenance requirements.

7.0 DESIGN OF GROUND INVESTIGATION

7.1 Investigation Objectives

In order to address recommendations presented in the Desk Study (Ref. 01), a ground investigation was designed by Fairhurst. The objectives of the ground investigation were to provide geotechnical and geo-environmental information for the proposed development for detailed design and planning purposes and to target the environmental and geotechnical issues listed in Section 6.0.

Specifically, there was a need to assess the current state of the site in relation to;

Environmental Considerations

Confirm the nature, putrescible content and chemical characteristics of the made ground, superficial deposits and groundwaters;

Confirm the potential for soil gas and vapour emissions associated with made ground, superficial deposits, infilled land and contamination, potentially underlying or migrating onto the site.

Geotechnical Considerations

Confirm the extent, thickness and material properties of hardstanding, made ground, superficial deposits and underlying bedrock geology present at the site;

Confirm the bearing characteristics of Made Ground and superficial deposits and bedrock, for foundation and hardstanding design, including in-situ Plate Load Bearing Tests;

Confirm the depth, thickness and composition of the relic concrete floor slab (and other relic structures, as encountered) left in place in the west of the site, along with the presence of any underlying contamination;

Determine the pH , sulphate and chloride content of the made ground, superficial deposits and groundwater for concrete design; and

Confirm the groundwater regime underlying the site.

7.2 Ground Investigation Design

The ground investigation was designed generally in accordance with BS5930:2015+A1:2020 Code of Practice for Site Investigations (Ref. 04), BS10175 Investigation of Potentially Contaminated Sites (Ref. 05) and Eurocode 7 (EN 1997-2) (Ref. 03).

7.3 Ground Investigation Works Undertaken

The ground investigation works were undertaken in two phases by Solmek Ltd, commencing on the $13^{\text {th }}$ March and $16^{\text {th }}$ October 2023 respectively. All site works were completed by the $26^{\text {th }}$ October 2023. The works comprised the following;

Phase 1

4 No. window samples boreholes (WS101, WS102, WS104 and WS105) to a maximum depth of 6.45 mbgl ;

In-situ testing within the boreholes, including standard penetration tests;
Installation of gas and groundwater monitoring stand pipes; and
A programme of chemical and geotechnical sampling and laboratory analysis.
Phase 2
6 No. cable percussion boreholes ($\mathrm{BH} 101-\mathrm{BH} 104, \mathrm{BH} 104 \mathrm{~A}$ and BH 105) to a maximum depth of 18.45 mbgl ;

4 No. rotary follow on holes (BH101-BH103 and BH 105) to a maximum depth of 28.50 mbgl ;
5 No. plate load tests (PLT101-PLT105) undertaken at depths between 0.25 mbgl and 0.70 mbgl ;

In-situ testing within the cable percussion boreholes, including standard penetration tests;
Installation of gas and groundwater monitoring stand pipes; and
A programme of chemical and geotechnical sampling and laboratory analysis.

Post Site Works

A programme of groundwater and ground gas monitoring comprising 6 No. post site works visits over a period of three months, of which four have been undertaken.

The exploratory hole locations are shown on Fairhurst Drawing No. 152982/9001 included in Appendix 1.

Supplementary site investigation to confirm the location of the anchor piles and tie rods associated with the quay walls along the north and eastern site boundaries was undertaken by a third party contractor concurrently with the Phase 1 works (Ref. 06). This trial pit investigation confirmed the exclusion zone for the quay wall and associated sensitive structures, in order for the building footprint to be finalised.

7.4 Ground Investigation Constraints

The following constraints were encountered during the ground investigation works:
The site comprises an existing car park and although this was closed during both phases of site investigation, cars were parked within the working areas and positions were relocated where required to protect private property.

A structure to the quay walls along the eastern and northern site boundaries includes anchor piles and tie rods which required protection during the site works. As such a 24 m exclusion
zone from the quay wall was established and all exploratory hole positions were located outwith this zone.

WS103 was proposed adjacent to a pedestrian footpath and access road which it was later determined needed to remain in operation and accessible to the public. No alternative location could be agreed for WS103 to be completed within the site boundary resulting in it being abandoned.

The proposed building footprint was revised following completion of the Phase 2 works (boreholes), as such some positions (BH101) are now located at a greater distance from the proposed building footprint than was originally intended.

BH 104 and BH104A were terminated due to obstructions within the made ground at shallow depth which prevented progress to the intended investigation depth. Although attempts were made to relocate this position, space was limited and it was decided that this position would not be redrilled at this time.

Existing utilities and services, were recorded to be extensively present. Exploratory positions were moved where required to avoid these.

7.5 Stratigraphic Descriptions

Descriptions of the strata encountered during the ground investigation within each exploratory hole are presented in Appendix 2a. Stratigraphic descriptions were specified to be to BS5930:2015 (Ref. 04) and BS EN ISO 14688:2018 (Ref. 07), as appropriate.

7.6 In-situ Testing

Standard penetration tests (SPTs) were carried out in the boreholes to provide an indication on the relative density of the granular soils encountered, and the undrained shear strength of the cohesive soils. SPT tests were specified to be undertaken in accordance with BS EN ISO 22476-3 2005 + A1 2011 (Ref. 08).

7.7 Chemical Laboratory Testing

Chemical analysis was undertaken on samples collected as part of the site investigation works to assess the chemical condition of the soils and groundwaters. The scheduled testing is summarised in Table 1.

Table 1: Summary of chemical laboratory testing

Laboratory Test		No. of Samples Tested	
	Made Ground	Natura Superficial Deposits	Total
Soils: General Suite: Heavy metals (antimony, arsenic, barium, beryllium, boron, cadmium, chromium (IV and total), copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, vanadium and zinc), inorganics (including; ammonia, cyanide (free, complex and total) and thiocyanate)	12		
Soils: pH and Water Soluble Sulphate		4	16
Soils: Speciated TPH, Speciated PAH and Phenol	14		

Laboratory Test	No. of Samples Tested		
	Made Ground	Natura Superficial Deposits	Total
Soils: BTEX and MTBE	5	-	5
Soils: PCBs	3	-	3
Asbestos Screen (Quantification)	$11(2)$	$1(-)$	$12(2)$
Calorific Value	4	-	4
Waste Acceptance Criteria (WAC)	7	-	7
Leachates Suite: Heavy metals, inorganics, hydrocarbons (TPH / PAH / phenol)	10	1	11
Leachates: BTEX and MTBE	3	-	3
Leachates: PCBs	2	-	2
Waters General Suite: Heavy metals, inorganics, hydrocarbons ((TPH / PAH /phenol) and water hardness	-	-	5
Waters: BTEX, MTBE and PCBs	-	-	3

7.8 Geotechnical Laboratory Testing

Geotechnical testing was undertaken on samples collected as part of the site investigation works to determine the material properties of the soils and provide preliminary geotechnical design information. The scheduled testing is summarised in Tables 2 (soils) and 3 (rock).

Table 2: Summary of geotechnical laboratory testing (soils)

Laboratory Test	No. of Samples Tested			
	Made Ground	Alluvial Deposits	Glacial Deposits	Total
Moisture Content	5	10	1	16
Atterberg Limits	5	10	1	16
Particle Size Distribution - wet sieving and sedimentation by hydrometer	4	5	3	12
Undrained Triaxial Shear Strength	1	3	-	4
One Dimensional Consolidation	1	3	-	4
California Bearing Ratio (re-moulded)	2	-	-	4

Table 3: Summary of geotechnical laboratory testing (rock)

Laboratory Test	Samples Tested		
	Mudstone	Sandstone	Siltstone
pH and Water Soluble Sulphate	4	-	1
Natural Water Content	4	-	1
Uniaxial Compressive Strength	6	-	1
Point Load Strength Index (axial and diametral)	8	1	3

7.9 Monitoring Works Undertaken

Gas and groundwater monitoring standpipes were installed within eight of the exploratory boreholes during the ground investigation. Details of the monitoring response zones are summarised within Table 4.

Table 4: Summary of monitoring response zones

Borehole	Response Zone (mbgl)	Response Zone (mOD)	Strata
BH101	$7.00-12.30$	-3.56 to -8.86	Alluvial Silt
BH102	$12.00-17.00$	-8.29 to -13.29	Glacial Sand/ Gravel
BH103	$7.90-12.40$	-4.52 to -9.02	Alluvial Silt
BH105	$7.10-8.70$	-3.42 to -5.02	Alluvial Peat
WS101	$1.20-3.70$	2.30 to -0.20	Made Ground (granular)
WS102*	$3.60-5.00$	-0.23 to -1.63	Made Ground (cohesive)
WS104	$1.20-3.00$	2.40 to 0.60	Made Ground (cohesive)
WS105	$1.20-2.50$	2.52 to 1.22	

*Installation destroyed post site works
At the time of reporting, the standpipes have been monitored on four occasions post site works between $20^{\text {th }}$ November and $8^{\text {th }}$ January 2024. Gas monitoring has included the recording of methane, carbon dioxide, oxygen, carbon monoxide, hydrogen sulphide and volatile vapours together with gas flow rate and atmospheric pressure.

The results of the gas and groundwater monitoring undertaken to date are presented in Appendix 2 a and 2 b .

All findings in relation to the groundwater regime and gas profile at the site are preliminary and subject to confirmation upon completion of the outstanding monitoring works.

8.0 QUALITY ASSURANCE AND QUALITY CONTROL

8.1 General

The quality assurance and control requirements for the ground investigation were prepared by Fairhurst.

8.2 Responsibilities

Solmek Ltd. were responsible for overall implementation and monitoring of the quality assurance during sampling, field investigations and laboratory analysis.

8.3 Laboratory Testing

The geotechnical testing of soil samples was undertaken by a UKAS accredited laboratory and in accordance with BS1377:1990 (Ref. 09). The chemical testing was undertaken by an UKAS / MCERTS accredited laboratory.

9.0 GROUND CONDITIONS

The results of the ground investigation indicate the following general sequence of strata beneath the site;

Hardstanding, typically either asphalt or concrete.
Made ground, typically comprising granular and/ or localised cohesive deposits.
Alluvial deposits typically comprising soft silts and clays, interbedded with peat and loose sand and gravel.

Glacial deposits comprising stiff clays interbedded with dense gravel and cobbles.
Solid geology comprising interbedded mudstone, siltstone and sandstone.
Details of each of the stratum encountered are discussed in more detail in the following sections.

9.1 Hardstanding

Hardstanding comprising reinforced concrete associated with the existing car park was recorded within the eastern half of the site in all exploratory positions to a depth of up to 0.4 mbgl and was underlain by sub-base to 0.60 mbgl .

Asphalt was recorded locally within the western site extents (BH102, BH105, WS105, PLT01 and PLT04) from ground level to depths between 0.17 mbgl and to 0.30 mbgl (3.42 mOD and 3.54 mOD) Hardstanding within this area of the site is inferred to be associated with a former warehouse floor slab which was subsequently overlain by car parking. Locally deeper concrete was recorded underlying the asphalt from depths between 0.20 mbgl and $0.30 \mathrm{mbgl}(3.42 \mathrm{mOD}$ to 3.48 mOD) to depths between 0.68 mbgl and $0.75 \mathrm{mbgl}(2.97 \mathrm{mOD}$ to 3.00 mOD) within BH 105 and WS105.

9.2 General Made Ground

Granular Made Ground

The hardstanding is underlain predominantly by granular made ground comprising slightly sandy gravel from depths between 0.22 mbgl and 0.75 mbgl (3.33 mOD to 0.44 mOD) to depths between 0.60 mbgl and 3.70 mbgl (3.00 mOD to -0.32 mOD). Sand is fine to coarse with ash. Gravel is fine to coarse, angular to sub-angular of brick, sandstone, chalk, limestone, mudstone and occasional ceramic, coal, glass and metal noted with a low cobble content of angular brick also noted. Locally within BH 104 the granular made ground comprised cobbles and boulders of angular hard chalk.

Cohesive Made Ground

Cohesive made ground was locally recorded underlying the hardstanding (WS105, 0.75 mbgl to $3.50 \mathrm{mbgl})$, interbedded within the granular made ground (WS102, 1.50 mbgl to 2.00 mbgl) or underlying the granular made ground ($\mathrm{BH} 101, \mathrm{BH} 105$ and WS104) and proven to depths between 3.40 mbgl and 4.30 mbgl (0.28 mOD to -0.86 mOD).

The cohesive made ground was recorded to comprise: soft slightly sandy gravelly silt (BH101), soft slightly sandy slightly gravelly silty clay (BH105) or soft sandy slightly gravelly clay (WS102, WS104 and WS105), with a moderate cobble content, locally very cobbly.

Sand is fine to coarse with ash. Gravel is fine to coarse, angular to sub-angular of sandstone, limestone, mudstone, brick, glass, coal and metal. Cobbles and boulders are noted and are angular to sub-angular of sandstone, brick, concrete and occasionally chalk.

9.3 Alluvial Deposits

Natural alluvial deposits were recorded, underlying the made ground, to a maximum depth of 15.50 mbgl . The alluvium was recorded to comprise soft silts and clays, very loose to medium dense sands and gravels and peat.

Alluvial Sand and Gravel

Alluvial sands and gravels were recorded in all exploratory positions (with the exception of BH 101 , BH103 and WS104) and described as very clayey sand or sandy gravel. Sand is fine to coarse. Gravel is angular to rounded fine to coarse of sandstone and mudstone. Occasional cobbles were noted.

The alluvial sands and gravels were recorded from depths between 3.30 mbgl and 4.90 mbgl (0.41 mOD and -1.22 mOD) to depths between 4.25 mbgl and $7.10 \mathrm{mbgl}(-0.53 \mathrm{mOD}$ and -3.42 mOD). Locally deeper bands of alluvial sands and gravels were recorded in BH 102 and BH 105 at depths of 12.00 mbgl to $12.50 \mathrm{mbgl}(-8.29 \mathrm{mOD}$ to $-8.79 \mathrm{mOD})$ and 12.00 mbgl to 13.30 mbgl (-8.32mOD to -9.62mOD) respectively,

The base of the sands and gravels was not proven within the window samples.

Alluvial Silt

Alluvial silt was locally recorded to underlie the made ground within BH 101 and BH 103 , proven to depths between 12.30 mbgl and $12.40 \mathrm{mbgl}(-8.86 \mathrm{mOD}$ and $-9.02 \mathrm{mOD})$. The silts are recorded as soft, sandy or clayey low strength silt of low to intermediate plasticity. Sand present is medium spaced, beds of grey fine to coarse sand. Locally within the deeper deposits, frequent plant matter was noted (BH103).

In addition, a band of soft silt was recorded within BH 105 , underlying the granular alluvium between 13.30 mbgl and $15.50 \mathrm{mbgl}(-9.62 \mathrm{mOD}$ to $-11.82 \mathrm{mOD})$.

Peat

Peat deposits were locally recorded within BH 102 and BH 105 underlying the granular alluvial deposits. The peat was recorded to be organic rich with some intact plant matter noted. Peat was recorded from $7.10 \mathrm{mbgl}(-3.39$ to -3.42 mOD) to depths between 8.70 mbgl and 8.90 mbgl (-5.02mOD and -5.19mOD).

Alluvial Clay

Soft alluvial silty clay was locally recorded within BH 102 and BH 105 from 8.90 mbgl to 12.00 mbgl $(-8.29 \mathrm{mOD}$ to $-5.19 \mathrm{mOD})$ and 8.70 mbgl to $12.00 \mathrm{mbgl}(-5.02 \mathrm{mOD}$ to $-8.32 \mathrm{mOD})$ respectively, bands of peat were noted within the clay.

9.4 Glacial Deposits

Glacial deposits were recorded to underlie the alluvium in each of the deep boreholes (BH101-BH103 and BH 105).

Gravels and Cobbles

Dense gravel was recorded within $\mathrm{BH} 101, \mathrm{BH} 102$ and BH 105 , underlying the alluvium, proven to depths between 17.00 mbg and $17.20 \mathrm{mbgl}(-13.29 \mathrm{mOD}$ to -13.76 mOD). The gravel within BH101 was interbedded with clay.

The gravel was described to be of limestone and sandstone with cobbles and boulders noted.
Dense slightly sandy gravelly cobbles, of mudstone and sandstone, were recorded within BH103 between 12.40 mbgl and $17.40 \mathrm{mbgl}(-9.02 \mathrm{mOD}$ to $-14.02 \mathrm{mOD})$.

Clay

Glacial clays were locally recorded within BH 101 (interbedded with the gravel) and BH 102 (underlying the gravel). The deposits were present from 14.20 mbgl to $16.40 \mathrm{mbgl}(-8.86 \mathrm{mOD}$ to -12.96 mOD) in BH101 and 17.00 mbgl to $17.70 \mathrm{mbgl}(-13.29 \mathrm{mOD}$ to $-13.99 \mathrm{mOD})$ in BH102.

The glacial clay was described as stiff slightly sandy slightly gravelly clay, with cobbles and boulders noted within BH102.

9.5 Solid Geology

Solid geology comprising interbedded mudstone, siltstone and occasional sandstone was recorded within the deep boreholes, underlying the glacial deposits from depths between 17.20 mbgl and $17.70 \mathrm{mbgl}(-13.52 \mathrm{mOD}$ and -20.62 mOD), proven to a maximum recorded depth of 28.50 mbg (-24.79mOD and -25.12mAOD) (BH101 - BH103 and BH105) where the boreholes were terminated.

The bedrock was weathered / very soft, becoming soft with depth.

9.6 Visual / Olfactory Evidence of Contamination

The following visual or olfactory evidence of potential contamination was observed during the intrusive ground investigation:

BH101: Hydrocarbon sheen noted in the cohesive made ground at 3.10 mbgl .

WS101: Slight sulphurous odour noted in the alluvial sand between 3.70 mbgl and 4.00 mbgl .
WS102: Slight sulphurous odour noted in the alluvial sand between 3.60 mbgl and 4.00 mbgl .
WS105: Slight sulphurous odour noted in the alluvial sand between 3.70 mbgl and 4.00 mbgl .

9.7 Relic Foundations and Obstructions

The site contains significant relic foundations throughout, including a reinforced concrete slab associated with a former warehouse within the western half of the site. As such, all exploratory hole positions were cored prior to commencement of the hand dug inspection pits.

BH104 and BH104A encountered obstructions at shallow depth and the position could not be accommodated. BH104A encountered a metallic obstruction which was reported as potentially associated within the anchor pile, however this position is located outwith the exclusion zone for the quay wall. It is recommended that further intrusive investigation in the form of trial pitting is undertaken prior to development in this area to confirm that the features noted in this area do not relate to the quay walls or wharf sub-structure.

10.0 GROUNDWATER CONDITIONS

The groundwater strikes recorded during the site works are summarised in Table 5:
Table 5: Summary of groundwater recorded during site works

Ref	Level (level after 20 mins)		Strata
	mbgl	mOD	
BH101	$3.10(2.95)$	$0.34(0.49)$	Glacial Sand/Gravel
	$12.40(6.10)$	$-8.96(-2.66)$	Alluvial Silt
	$2.60(2.40)$	$1.11(1.31)$	Alluvial Peat
	$12.40(8.20)$	$-8.69(-4.49)$	Made Ground (granular)
BH103	$2.90(2.40)$	$0.48(0.98)$	Alluvial Sand
	$12.10(7.30)$	$-8.72(-3.92)$	Made Ground (cohesive)
BH104	3.40 (no change)	$0.05($ no change)	Made Ground (cohesive)
BH105	$12.00(7.90)$	$-8.32(-4.22)$	Made Ground (granular)
WS102	Damp at 3.00	0.37	

At the time of reporting, the standpipes installed during the ground investigation have been monitored on four occasions between $20^{\text {th }}$ November and $8^{\text {th }}$ January 2024. A further 2 No. monitoring visits are scheduled to be undertaken.

The monitoring undertaken to date is summarised in Table 6.
Table 6: Summary of groundwater recorded during monitoring

Ref	Level		~ Response Zone
	mbgl	mOD	
BH101	$1.28-3.07$	$0.37-2.16$	Alluvial Silt
BH102	$1.79-1.86$	$1.85-1.92$	Glacial Sand/ Gravel
BH103	$1.23-1.54$	$1.84-2.15$	Alluvial Silt
BH105	$0.99-2.10$	$1.58-2.69$	Alluvial Peat

Ref	Level		Response Zone
	mbgl	mOD	
WS101	$2.20-2.30$	$1.20-1.30$	Made Ground (Granular)
WS102			
WS104	$1.28-2.60$	$1.00-2.32$	Made Ground (cohesive)
WS105	$2.00-2.05$	$1.67-1.72$	Made Ground (cohesive)

*Installation removed/destroyed post site works
The groundwater monitoring results are presented in full in Appendix 2 a and 2 b .
Based on observations during the site works and groundwater monitoring undertaken to date, the following preliminary groundwater regime is anticipated;

Isolated perched groundwater within granular lenses in the made ground and granular alluvial / glacial deposits.

A groundwater table within the Made Ground and alluvial deposits, assessed as likely to be in hydraulic continuity and tidally influenced by the River Esk.

A main groundwater table at depth within the Cloughton Formation (sandstone, siltstone, mudstone), however this was not proven during the intrusive site investigation works.

All assertions as to the groundwater regime should be confirmed following completion of the monitoring programme.

Seasonal fluctuation of the shallow perched groundwater table cannot be discounted, with tidal fluctuations expected in the made ground / superficial groundwater body.

The Desk Study (Ref. 01) indicates the superficial deposits across the site classify as a Secondary A Aquifer. The underlying bedrock of the Cloughton Formation classifies as a Secondary A Aquifer of medium groundwater vulnerability.

11.0 SOIL GAS AND VAPOURS

The results of the ground investigation indicate the ground conditions to comprise of made ground to a maximum proven depth of 4.30 mbgl , underlain by alluvium and peat deposits to a maximum proven depth of 15.50 mbgl , where glacial deposits are present.

There was no visual or olfactory evidence of contamination or putrescible materials recorded during the site investigation works.

The site is considered to present a moderate risk in terms of a "gas generation potential of source" in accordance with CIRIA C665 (Ref. 10). On this basis, and in view of the low sensitivity of the development (commercial), 6 No. gas monitoring visits were scheduled to be undertaken over a minimum period of three months.

8 No. gas and groundwater monitoring standpipes were installed within the exploratory holes on site, with 4 No. response zones in the made ground (WS101, WS102, WS104 and WS105) and 4 No. in the natural superficial deposits (BH101, BH102, BH103, BH105). WS102 was destroyed after the site works as such no monitoring has taken place at this position.

At the time of reporting, the standpipes installed during the ground investigation have been monitored on four occasions between $20^{\text {th }}$ November and $8^{\text {th }}$ January 2024, post site works. A further 2 No. monitoring visits are scheduled to be undertaken.

The results of the gas and vapour monitoring are presented in Appendix 2 a and 2 b and summarised in Table 7:

Table 7: Summary of post site works gas monitoring

Carbon Dioxide, CO_{2} (\%v/v)	Methane, CH_{4} (\%v/v)	Oxygen, O_{2} (\%v/v)	Flow Rate (l/hr)	Volatile Vapours (ppm)	Hydrogen Sulphide, $\mathrm{H}_{2} \mathrm{~S}$ (ppm)	Carbon Monoxi de, CO (ppm)	Atmosph eric Pressure (mb)	Maximum Gas Screening Value (GSV)*	
								CO_{2}	CH_{4}
$\begin{gathered} \hline 0.1 \text { to } \\ 4.90 \end{gathered}$	$\begin{aligned} & \hline<0.1 \text { to } \\ & 24.50 \end{aligned}$	$\begin{aligned} & 1.60 \text { to } \\ & 20.40 \end{aligned}$	0.10**	$\begin{gathered} 0.00- \\ 1.00 \end{gathered}$	0.00	0.00	$\begin{gathered} 999 \text { to } \\ 1038 \end{gathered}$	0.0049	0.0245

*Gas Screening Value, as defined by CIRA C665 (Ref. 10), based upon maximum carbon dioxide / methane concentration and positive flow rate.
**No flow rate was detected therefore detection limit of monitoring equipment has been used as worst case.
Based upon a maximum flow rate of $0.11 / \mathrm{hr}$, these readings give a Gas Screening Value of 0.0049 for carbon dioxide and 0.0245 for methane and the site is indicated as a Gas Characteristic Situation 1 (Very Low Risk) in accordance with CIRIA C665 (Ref. 10) and BS8485 (Ref. 11). However, as carbon dioxide concentrations approaching 5% were recorded, methane has been recorded over 1% (maximum 24.50%), and depleted oxygen is as low as 1.60%, it is considered that a preliminary classification of Gas Characteristic Situation 2 (Low Risk) is appropriate for the development.

The findings in relation to the gas conditions and the Gas Characteristic Situation at the site are preliminary and subject to confirmation upon completion of the remaining monitoring visits.

On the basis of the findings to date, gas protection measures are anticipated to be required and should be designed, installed and validated by a Specialist Gas Protection System Contractor with the proposed measures and validation procedures agreed with the Local Authority prior to installation. For the avoidance of doubt, Fairhurst do not offer these services.

A site specific Radon Report was procured as part of the Phase 1 Desk Study (Ref. 01) which confirmed that no radon protection measures are required within the proposed development. Requirements in this regard, however, should be confirmed with the Local Planning Authority / Regulator.

12.0 GEOTECHNICAL PROPERTIES

In-situ and laboratory geotechnical testing was undertaken as part of the ground investigation. The geotechnical soil properties for each of the stratum encountered are detailed in the following section.

12.1 Granular Made Ground

Particle Size Distribution

The results of 4 No. particle size distribution tests undertaken on the granular made ground indicate the material to comprise the following particle composition:

Table 8: Summary of Particle Size Distribution for Granular Made Ground

Particle Size		Percentage Composition			
		BH102	BH104	WS102	WS104
Boulders \& Cobbles	$>60 \mathrm{~mm}$	0\%	0\%	0\%	0\%
Gravel	60 mm to 2 mm	51\%	33\%	51\%	74\%
Sand	2 mm to 0.06 mm	34\%	28\%	30\%	17\%
Silts	$\begin{aligned} & 0.06 \mathrm{~mm} \text { to } \\ & 0.002 \mathrm{~mm} \end{aligned}$	12\%	29\%	13\%	9\%
Clays	<0.002mm	3\%	10\%	6\%	

Based upon the gradings undertaken, the granular made ground sampled has been assessed as a very sandy silty gravel (BH102, WS102 and WS104) or a very silty very sandy gravel (BH104), which generally correlates with the Engineer's field descriptions for the strata.

Standard Penetration Tests (SPTs)

The results of 16 No. SPTs undertaken in the granular made ground at depths between 1.20 mbgl and 3.00 mbgl determined field N values between 3 and 38 which relate to N 160 values between 4 and 50 and indicate very loose to dense conditions.

3 No. tests undertaken within the granular made ground recorded SPT N values of 50 , considered likely to be attributable to cobbles present within the material and are therefore discounted from further assessment.

Angle of Shearing Resistance

Based upon a design SPT value of 10 for the granular made ground, and correlation between SPT N values and effective angle of shearing resistance (φ^{\prime}) (Ref. 13), an angle of shearing resistance value of 30° is considered appropriate for design purposes for the granular made ground.

CBRs

The results of 2 No. plate bearing tests (PLT101 and PLT105) undertaken within the area of proposed resurfacing at respective depths of 0.70 mbgl and 0.25 mbgl within the granular made ground, gave CBR values of 19% and 11%.

A further 3 No. tests, undertaken outwith the extents of the proposed resurfacing, between depths of 0.30 mbgl and 0.60 mbgl within the granular made ground, gave CBR values between 12% and 16%.

A further 2 No. laboratory CBR tests undertaken on remoulded samples taken at depths of 0.40 mbgl (WS102, within the area of proposed resurfacing and WS104, outwith the area of proposed resurfacing) gave CBR values of 2.6% and 0.5% respectively.

As such a CBR value of 3% is considered appropriate for the granular made ground, subject to confirmatory testing during construction.

pH and Sulphate

The results of 6 No. water soluble sulphate and pH tests undertaken on the granular made ground gave water soluble sulphate contents between $77 \mathrm{mg} / \mathrm{l}$ and $1,000 \mathrm{mg} / \mathrm{l}$ with pH values between of 8.2 and 9.6.

Organic Matter

The results of a single organic matter content test undertaken on the granular made ground gave an organic matter content of 1.9%. Based on the limited testing the granular made ground would classify as being low organic in accordance with BS EN ISO 14688-2:2018 (Ref. 07).

12.2 Cohesive Made Ground

Natural Moisture Content

The results of 5 No. natural moisture content tests undertaken on the cohesive made ground gave moisture contents between 16% and 26%.

Atterberg Limits

The results of 5 No. Atterberg Limits tests undertaken on the cohesive made ground gave plastic limits between 19% and 27%, liquid limits between 25% and 38%, and plasticity indices between 6% and 12%.

On the basis of the limited results, the cohesive made ground would be classified as a clay of low to intermediate plasticity.

CBRs

In consideration of the plasticity indices recorded for the cohesive made ground and the guidance provided in Interim Advice Note 73/06 2009 (Ref. 14), a CBR value of 4\% can be derived; however, on the basis of the inherent variability of the material, a CBR of 2% is considered to be appropriate for the cohesive made ground, subject to confirmatory testing during construction.

Undrained Shear Strength

The results of a single triaxial test undertaken within the cohesive made ground, at a depth of 3.00 mbgl gave an undrained shear strength (c_{u}) value of $42 \mathrm{kN} / \mathrm{m}^{2}$ indicating medium strength and firm consistency.

The results of 10 No. SPTs undertaken in the cohesive made ground at depths between 1.20 mbgl and 4.00 mbgl determined field N values between 5 and 28 which correspond to corrected SPT N60 values between 5 and 26.

A single test undertaken within the cohesive made ground recorded an SPT N value of 50, considered likely to be attributable to cobbles present within the material and has therefore been discounted from further assessment.

Based upon empirical correlation between SPT N_{60} values, plasticity index and undrained shear strength (c_{u}) and using an F1 value of 5.0 (Ref. 13), undrained shear strengths (c_{u}) between $23 \mathrm{kN} / \mathrm{m}^{2}$ and $129 \mathrm{kN} / \mathrm{m}^{2}$ can be derived for the cohesive made ground. These results indicate low to high strengths and soft to stiff consistencies.

Based on consideration of the above, and the visual description of the material, an undrained shear strength of $40 \mathrm{kN} / \mathrm{m}^{2}$ is considered appropriate for use as a design value for the cohesive made ground beneath the proposed building;

Coefficient of Volume Compressibility

The results of a single oedometer consolidation test undertaken on the cohesive made ground at a depth of 3.00 mbgl , gave a coefficient of volume compressibility $\left(\mathrm{m}_{v}\right)$ value of $0.13 \mathrm{~m}^{2} / \mathrm{MN}$.

Based upon empirical correlation between the SPT N_{60} values, plasticity index and the coefficient of volume compressibility (m_{v}), and using an F2 value of 0.52 (Ref. 13) based upon the plasticity indices recorded for this material, m_{v} values between $0.07 \mathrm{~m}^{2} / \mathrm{MN}$ and $0.42 \mathrm{~m}^{2} / \mathrm{MN}$ can be derived for the cohesive made ground.

Based upon consideration of the above results, an m_{v} value of $0.30 \mathrm{~m}^{2} / \mathrm{MN}$ is considered appropriate for use as a design value for the cohesive made ground beneath the proposed building.

pH and Sulphate

The results of 8 No. tests undertaken on the cohesive made ground gave water soluble sulphate contents between $32 \mathrm{mg} / \mathrm{l}$ and $510 \mathrm{mg} / \mathrm{l}$ and pH values between 8.5 and 11.1.

Organic Matter

The results of 4 tests undertaken on the cohesive made ground gave organic matter contents between 0.4% and 1.9%. Based on the results the cohesive made ground would classify as being low organic in accordance with BS EN ISO 14688-2:2018 (Ref. 07).

12.3 Alluvial Silt

Natural Moisture Content

The results of 7 No. tests undertaken on the alluvial silt gave moisture contents between 18% and 49\%.

Atterberg Limits

The results of 7 No. Atterberg Limits tests undertaken on the alluvial silt gave plastic limits between 11% and 35%, liquid limits between 27% and 63% and plasticity indices between 5% and 31%.

On the basis of these results, the alluvial silt would be classified as silt of low to intermediate plasticity or clay of intermediate to high plasticity.

Undrained Shear Strength

The result of a single triaxial test undertaken within the alluvial silt, at a depth of 9.00 mbgl gave an undrained shear strength (c_{u}) value of $9 \mathrm{kN} / \mathrm{m}^{2}$ indicating low strength and soft consistency.

The results of 17 No. Standard Penetration Tests undertaken in the alluvial silt at depths between 4.00 mbgl and 15.00 mbgl , determined field N values between 1 and 12 , which correspond to corrected N_{60} values between 1 and 14.

Based upon the correlation between SPT N60 values, plasticity index and undrained shear strength (cu_{u}, and using an F1 value of 4.2 (Ref. 13) based upon the plasticity indices recorded for this material, undrained shear strengths (c_{u}) ranging between $4 \mathrm{kN} / \mathrm{m}^{2}$ and $59 \mathrm{kN} / \mathrm{m}^{2}$ can be derived for the alluvial silt.

Based on consideration of the above, and the visual description of the material, an undrained shear strength of $10 \mathrm{kN} / \mathrm{m}^{2}$ is considered appropriate for use as a design value for the alluvial silt.

The undrained shear strengths are plotted against depth and elevation on Figures 1 and 2 respectively included within Appendix 5.

Coefficient of Volume Compressibility

The result of a single oedometer consolidation test undertaken at a depth of 9.00 mbgl , gave a coefficient of volume compressibility $\left(\mathrm{m}_{\mathrm{v}}\right)$ value $0.13 \mathrm{~m}^{2} / \mathrm{MN}$.

Based upon empirical correlation between plasticity index, the coefficient of compressibility and the SPT (N_{60}) value, and using an F2 value of 0.44 (Ref. 13), based upon the plasticity indices recorded for this material, m_{v} values ranging between $0.16 \mathrm{~m}^{2} / \mathrm{MN}$ and $2.18 \mathrm{~m}^{2} / \mathrm{MN}$ can be derived for the silt.

Based upon consideration of the above results, an m_{v} value of $1.00 \mathrm{~m}^{2} / \mathrm{MN}$ is considered appropriate for use as a design value for the alluvial silt.

The coefficients of compressibility are plotted against depth and elevation on Figures 3 and 4 respectively included within Appendix 5.

pH and Sulphate

The results of 5 No. tests undertaken on the alluvial silt gave water soluble sulphate contents between $360 \mathrm{mg} / \mathrm{I}$ and $830 \mathrm{mg} / \mathrm{l}$ and pH values between 7.2 and 8.6.

Organic Matter

The results of 4 No. tests undertaken on the alluvial silt gave organic matter contents between 3.2\% and 7.4%. On the basis of the results these deposits would classify as being low to medium organic in accordance with BS EN ISO 14688-2:2018 (Ref. 07).

12.4 Alluvial Sands and Gravels

Particle Size Distribution

The results of 5 No. particle size distribution tests undertaken on the granular alluvial deposits indicate the material to comprise the following particle composition:

Table 9: Summary of Particle Size Distribution for Alluvial Sands and Gravels

Particle Size		Percentage Composition				
		BH102	BH103	BH105	BH105	WS102
Boulders \& Cobbles	>60mm	0\%	25\%	0\%	0\%	0\%
Gravel	60 mm to 2 mm	3\%	34\%	23\%	2\%	35\%
Sand	$\begin{aligned} & 2 \mathrm{~mm} \text { to } \\ & 0.06 \mathrm{~mm} \end{aligned}$	55\%	23\%	51\%	80\%	52\%
Silts	$\begin{aligned} & 0.06 \mathrm{~mm} \text { to } \\ & 0.002 \mathrm{~mm} \end{aligned}$	34\%	14\%	18\%	17\%	13\%
Clays	<0.002mm	8\%	5\%	8\%	0\%	0\%

Based upon the gradings undertaken, the granular alluvial deposits sampled have been assessed as a silty or very silty sand (BH102 and BH105, 6.00 mbgl), or a very gravelly silty sand (BH103, BH105, 2.00 mbgl and WS102, which generally correlates with the Engineer's field descriptions for the strata.

Standard Penetration Tests (SPTs)

The results of 14 No. SPTs undertaken in the alluvial sands and gravels at depths between 3.80 mbgl and 6.00 mbgl determined field N values between 1 and 35 which correlates to N 160 values between 1 and 39 and indicate very loose to medium dense conditions.

The SPT N values are plotted against depth and elevation in Figures 5 and 6 respectively included within Appendix 5.

Angle of Shearing Resistance

Based upon a design SPT N value of 5 for the granular alluvium, and correlation between SPT N values and effective angle of shearing resistance (φ^{\prime}) (Ref. 13), an angle of shearing resistance value of 26° is considered appropriate for design purposes for the alluvial sands and gravels.

pH and Sulphate

The results of 3 No. tests undertaken on the granular alluvial deposits gave water soluble sulphate contents between $210 \mathrm{mg} / \mathrm{l}$ and $340 \mathrm{mg} / \mathrm{l}$ and pH values between 8.2 and 8.6.

12.5 Peat

Natural Moisture Content

The results of a single test undertaken on the peat gave a moisture content of 43%.

Atterberg Limits

The results of a single Atterberg Limits test undertaken on the peat gave a plastic limit of 39%, liquid limit of 59% and plasticity index of 20%.

Undrained Shear Strength

The results of a single Standard Penetration Test undertaken in the peat deposits at a depth of 7.50 mbgl , determined a field N of 7 which corresponds to a corrected N_{60} value of 8 .

Based upon correlation between the SPT N60 value, plasticity index and undrained shear strength (C_{u}), and using an F1 value of 4.2 (Ref. 13) based upon the plasticity indices recorded for this material, an undrained shear strength (Cu) of $34 \mathrm{kN} / \mathrm{m}^{2}$ can be derived for the peat.

Based upon consideration of the above result, and inconsideration of the variability in the engineering properties of this material, an undrained shear strength of $5 \mathrm{kN} / \mathrm{m}^{2}$ is considered appropriate for use as the design value for the peat.

The designer shall take into consideration the potential for variable and lower values and undertake a sensitivity analysis as part of detailed design.

Coefficient of Volume Compressibility

Based upon empirical correlation between plasticity index, the coefficient of compressibility and the SPT (N_{60}) value, and using an F2 value of 0.44 (Ref. 13), based upon the plasticity index recorded for this material, an m_{v} value $0.28 \mathrm{~m}^{2} / \mathrm{MN}$ can be derived for the peat.

Based upon consideration of the above results and published data for peat (Ref. 13), an m_{v} value of $1.50 \mathrm{~m}^{2} / \mathrm{MN}$ is considered appropriate for use as the design value for the peat.

The designer shall take into consideration the potential for variable and higher values and undertake a sensitivity analysis as part of detailed design.

pH and Sulphate

The results of a single test undertaken on the peat deposits gave a water soluble sulphate content of $1,900 \mathrm{mg} / \mathrm{l}$ and pH value of 5.7 .

Organic Matter

The results of 2 No. tests undertaken on the peat deposits gave organic matter contents between 8.4% and 11%. Based on the limited results the peat would classify as being medium organic in accordance with BS EN ISO 14688-2:2018 (Ref. 07).

12.6 Alluvial Clay

Natural Moisture Content

The results of 2 No. tests undertaken on the alluvial clay gave moisture contents of 36% and 45%.

Atterberg Limits

The results of 2 No. Atterberg Limits tests undertaken on the alluvial clay gave plastic limits of 28% and 34%, liquid limits of 60% and 65% and plasticity indices of 26% and 37%.

On the basis of these results, the alluvial clays would be classified as a high plasticity clay or silt.

Undrained Shear Strength

The results of 2 No. triaxial tests undertaken within the alluvial clay, both at a depth of 9.00 mbgl gave undrained shear strength (Cu) values of $17 \mathrm{kN} / \mathrm{m}^{2}$ indicating low strengths and soft consistencies.

The results of 2 No. Standard Penetration Tests undertaken in the alluvial clay, both at a depth of 10.50 mbgl , determined field N values of 5 and 6 which correspond to corrected N_{60} values of 6 and 7 .

Based upon the correlation between SPT N_{60} values, plasticity index and undrained shear strength (c_{u}), and using an F1 value of 4.2 (Ref. 13) based upon the plasticity indices recorded for this material, undrained shear strengths (c_{u}) ranging between $26 \mathrm{kN} / \mathrm{m}^{2}$ and $31 \mathrm{kN} / \mathrm{m}^{2}$ can be derived for the alluvial clay.

Based on consideration of the above, and the visual description of the material, an undrained shear strength of $20 \mathrm{kN} / \mathrm{m}^{2}$ is considered appropriate for use as a design value for the alluvial clay.

Coefficient of Volume Compressibility

The results of 2 No. oedometer consolidation tests both undertaken at a depth of 9.00 mbgl , gave coefficient of volume compressibility $\left(\mathrm{m}_{\mathrm{v}}\right)$ values of $0.09 \mathrm{~m}^{2} / \mathrm{MN}$ and $0.10 \mathrm{~m}^{2} / \mathrm{MN}$.

Based upon empirical correlation between plasticity index, the coefficient of compressibility and the SPT (N_{60}) value, and using an F2 value of 0.44 (Ref. 13), based upon the plasticity indices recorded for this material, m_{v} values of $0.31 \mathrm{~m}^{2} / \mathrm{MN}$ and $0.37 \mathrm{~m}^{2} / \mathrm{MN}$ can be derived for the alluvial clay.

Based upon consideration of the above results, an m_{v} value of $0.30 \mathrm{~m}^{2} / \mathrm{MN}$ is considered appropriate for use as design value for the alluvial clay.

12.7 Glacial Clays

Natural Moisture Content

The results of a single moisture content test undertaken on the glacial clays gave a moisture content of 16%.

Atterberg Limits

The results of a single Atterberg Limits test undertaken on the glacial clays gave plastic limit of 15%, liquid limit of 30% and plasticity index of 15%.

Undrained Shear Strength

The results of a single Standard Penetration Test undertaken in the Glacial clays at a depth of 15.00 mbgl , determined a field SPT N value of 19 which corresponds to a corrected N_{60} value of 14.

Based upon correlation between the SPT N60 value, plasticity index and undrained shear strength (C_{u}), and using an F1 value of 5.0 (Ref. 13) based upon the plasticity indices for this material, an undrained shear strength $\left(\mathrm{c}_{u}\right)$ of $116 \mathrm{kN} / \mathrm{m}^{2}$ can be derived for the glacial clays. This results indicate high strength and stiff consistency.

Based on consideration of the above, the visual description of the material and the limited number of tests, a moderately conservative undrained shear strength of $100 \mathrm{kN} / \mathrm{m}^{2}$ is considered appropriate for use as design values for the Glacial clays.

Coefficient of Volume Compressibility

Based upon empirical correlation between plasticity index, the coefficient of compressibility and the SPT (N_{60}) value, and using an F2 value of 0.52 (Ref. 13), based upon the plasticity indices for this material, an m_{v} value of $0.08 \mathrm{~m}^{2} / \mathrm{MN}$ can be derived for the glacial clay.

Based upon consideration of the above result, and the limited data, an m_{v} value of $0.10 \mathrm{~m}^{2} / \mathrm{MN}$ is considered appropriate for use as the design value for the glacial clays.

pH and Sulphate

The results of 2 No. tests undertaken on the Glacial clays gave water soluble sulphate contents of $660 \mathrm{mg} / \mathrm{l}$ and $820 \mathrm{mg} / \mathrm{l}$ and pH values of 7.0 and 9.4 .

Organic Matter

The result of a single organic matter content test undertaken on the glacial clay deposits gave an organic matter content of 4%. Based on this result the glacial clay would classify as being low organic in accordance with BS EN ISO 14688-2:2018 (Ref. 07).

12.8 Granular Glacial Deposits

Particle Size Distribution

The results of 3 No. particle size distribution tests undertaken on the granular glacial deposits indicates the material to comprise the following particle composition:

Table 10: Summary of Particle Size Distribution for Granular Glacial Deposits

Particle Size	Percentage Composition			
		BH101 16.50 mbgl	BH102 13.50 mbgl	BH103 13.50mbgl
Boulders \& Cobbles	$>60 \mathrm{~mm}$	0%	21%	0%
Gravel	60 mm to 2 mm	72%	54%	35%
Sand	2 mm to 0.06 mm	24%	22%	59%
Silts	0.06 mm to 0.002 mm	39%	3%	6
Clays	$<0.002 \mathrm{~mm}$	0%	0%	0%

Based upon the gradings undertaken, the samples are assessed to comprise a slightly silty to very silty, gravelly to very gravelly sand or sandy to very sandy gravel, with a locally high cobble content (BH102), which generally correlates with the Engineer's field descriptions for the strata.

Standard Penetration Tests (SPTs)

The results of 9 No. SPTs undertaken in the granular glacial deposits at depths between 13.00 mbgl and 16.50 mbgl determined field N values between 17 and 50 , which correlates to N 160 values between 17 and 38 and indicates medium dense to dense conditions.

The SPT N values are plotted against depth and elevation in Figures 7 and 8 respectively included within Appendix 5.

Angle of Shearing Resistance

Based upon a design SPT N value of 24 for the granular glacial deposits and correlation between SPT N values and effective angle of shearing resistance (φ^{\prime}) (Ref. 13), an angle of shearing resistance value of 34° is considered appropriate for design purposes for the granular glacial deposits.

pH and Sulphate

The results of a single test undertaken on the granular glacial deposits gave a water soluble sulphate content of $41 \mathrm{mg} / \mathrm{l}$ and a pH value of 7.8 .

12.9 Bedrock

Solid geology comprising interbedded mudstone, siltstone and occasional sandstone was recorded to a maximum depth of $28.50 \mathrm{mbgl}(-25.12 \mathrm{mOD})$ where the boreholes were terminated.

Natural Moisture Content

The results of 5 No. moisture content tests undertaken on cored samples of the mudstone and sandstone gave moisture contents between 3.3% and 7.4%.

Standard Penetration Tests (SPTs)

The results of 8 No. SPTs undertaken at the rock head interface, all at depths of 18.00 mbgl , determined field N values of $50+$.

Angle of Shearing Resistance

Based upon consideration of both the weathered nature of the bedrock and available published data (Ref. 13), an angle of shearing resistance value of 27° is considered appropriate for design purposes for the bedrock.

Point Load

1 No. point load test scheduled on a sample of mudstone gave axial Is50 values between 0.01 MPa and 1.57 MPa .

5 No. point load tests scheduled on the siltstone gave axial Is50 values between 0.02 MPa and 0.52 MPa .

Unconfined Compressive Strength (UCS)

Based upon an empirical correlation between axial Point Load Tests and using K value conversion factors of 12.6 for a mudstone and 14.7 for a siltstone (Ref. 15), unconfined compressive strengths between 0.13 MPa and 20.00 MPa can be derived for the mudstone and between 0.29 MPa and 7.60MPa can be derived for the siltstone, indicating weak to moderately strong conditions, which corroborates the description of the sandstone detailed on the drilling logs.

3 No. unconfined compressive strength tests undertaken on mudstone samples at depths between 19.95 mbgl and 20.20 mbgl gave UCS strengths between 0.04 MPa and 0.20 MPa indicating that the rock at this depth is destructured / completely weathered, exhibiting behaviour more akin to a soil.

On the basis of the UCS and Point Load test results and the visual descriptions of the bedrock, the following unconfined compressive strengths are considered appropriate for use as design values for the bedrock (mudstone, sandstone and siltstone) on site:
0.10 MPa to a depth of 20.00 mbgl ;
0.25 MPa to between 20.00 mbgl and 23.00 mbgl ; and
1.00 MPa below 23.00 mbgl .

The unconfined compressive strengths are plotted against depth and elevation in Figures 9 and 10 respectively included within Appendix 5.

pH and Sulphate

The results of 4 No. water soluble sulphate and pH tests undertaken on the mudstone bedrock gave water soluble sulphate contents between $<10 \mathrm{mg} / \mathrm{l}$ and $270 \mathrm{mg} / \mathrm{l}$ with pH values between 7.9 and 8.6.

The result of a single test undertaken on the siltstone gave a water soluble sulphate content of $29 \mathrm{mg} / \mathrm{l}$ and $270 \mathrm{mg} / \mathrm{l}$ with a pH value of 8.7.

13.0 CHEMICAL PROPERTIES

13.1 Soils - Visual / Olfactory Evidence of Contamination

No significant visual or olfactory evidence of contamination was recorded during the site investigation works.

13.2 Chemical Analysis and Assessment Criteria

The programme of chemical testing undertaken included the analysis of soil samples for specific determinants, which could potentially indicate contamination risks. A preliminary screen of the chemical test results has been undertaken, as presented in Appendix 3, in order to identify contamination hazards using site specific assessment criteria derived for a commercial development. The Assessment Criteria are presented in Appendix 4. Detailed assessment of the potential hazards presented by the elevated concentrations recorded, concerning specific receptors, is presented below.

13.3 Chemical Analysis of Made Ground

No significant difference in material chemistry was noted in the made ground attributable to specific contamination sources. As such, for the purpose of this assessment it has been assumed that the made ground comprises a single source.

Selected made ground samples, have been analysed for the range of determinands presented in Section 7.7. The results of the chemical testing have been compared to site specific assessment criteria for receptors including human health, (Tier 1 assessment criteria for commercial site end use), the built development and soft landscaping. The results of these tests are summarised below:

Human Health

The chemical analysis has recorded localised exceedances of the Tier 1 GAC with regard to human health as presented within Table 11.
Table 11: Soil Analysis Results (Human Health)

Contaminant	Range of Recorded Results (mg/kg)	Assessment Criteria	No. of Failures $/$ No. of Tests	Location of Failures
Asbestos	No Asbestos Detected (NAD) to 0.002%	No Asbestos Detected (NAD)	$2 / 12$	BH101 (3.10mbgl) and BH103 $(0.70 \mathrm{mbgl})$, Chrysotile fibres.

Built Development

The chemical analysis has recorded localised exceedances of the Tier 1 GAC with regard to built development as presented within Table 12.
Table 12: Soil Analysis Results (Built Development)

Contaminant	Range of Recorded Results $(\mathbf{m g} / \mathbf{k g})$	Assessment Criteria	No. of Failures $/$ No. of Tests	Location of Failures
Sulphate Water Soluble	$510 \mathrm{mg} / \mathrm{lto}$ (SO4)	$500 \mathrm{mg} / \mathrm{l}$		$3 / 12$

Landscaping

The chemical analysis has recorded localised exceedances with regard to landscaping as presented within Table 13.

Table 13: Soil Analysis Results (Landscaping)

Contaminant	Range of Recorded Results	Assessment Criteria*	No. of Failures $/$ No. of Tests	Location of Failures
Water Soluble Boron	$3.40 \mathrm{mg} / \mathrm{kg}$ to $5.4 \mathrm{mg} / \mathrm{kg}$	$3.0 \mathrm{mg} / \mathrm{kg}$	$3 / 12$	BH101 $(0.80 \mathrm{mbgl}, 3.10 \mathrm{mbgl}$ and 3.80 mbgl$)$
Copper	$2,100 \mathrm{mg} / \mathrm{kg}$	$200 \mathrm{mg} / \mathrm{kg}$	$1 / 12$	BH103 $(0.70 \mathrm{mbgl})$
Molybdenum	$7.4 \mathrm{mg} / \mathrm{kg}$	$4.0 \mathrm{mg} / \mathrm{kg}$	$1 / 12$	$\mathrm{BH} 101(3.80 \mathrm{mg} / \mathrm{kg})$

[^0]
13.4 Chemical Analysis of Natural Superficial Deposits

Selected samples of the natural deposits were analysed for the range of determinands given in Section 7.7 and the results have been compared to site specific assessment criteria for receptors including human health, the built development and landscaping.

Human Health

No elevated concentrations of contaminants were recorded were recorded above the assessment criteria for human health.

Built Development

The chemical analysis has recorded localised exceedances of the Tier 1 GAC with regard to built development as presented within Table 14.

Table 14: Soil Analysis Results (Built Development)

Contaminant	Range of Recorded Results $\mathbf{(m g} / \mathbf{k g})$	Assessment Criteria	No. of Failures $/$ No. of Tests	Location of Failures
				$\mathrm{BH} 101(5.00 \mathrm{mbgl})$
Sulphate Water Soluble	$210 \mathrm{mg} / \mathrm{lto}$			$\mathrm{BH} 102(7.50 \mathrm{mbgl})$
(SO4)	$1,900 \mathrm{mg} / \mathrm{l}$	$500 \mathrm{mg} / \mathrm{l}$	$6 / 12$	$\mathrm{BH} 102(11.00 \mathrm{mbgl})$
				$\mathrm{BH} 103(7.50 \mathrm{mbgl}$
			$\mathrm{BH} 103(10.50 \mathrm{mbgl})$	
			$\mathrm{BH} 105(11.00 \mathrm{mbgl})$	

Landscaping

The chemical analysis has recorded localised exceedances with regard to landscaping as presented within Table 15.

Table 15: Soil Analysis Results (Landscaping)

Contaminant	Range of Recorded Results	Assessment Criteria*	No. of Failures $/$ No. of Tests	Location of Failures
Water Soluble Boron	$3.7 \mathrm{mg} / \mathrm{kg}$ to $4.7 \mathrm{mg} / \mathrm{kg}$	$3.0 \mathrm{mg} / \mathrm{kg}$	$3 / 12$	BH105 $(3.50 \mathrm{mbgl})$ WS102 $(3.80 \mathrm{mbgl})$

13.5 Leachate Analysis of Made Ground

Samples taken from the made ground were analysed for the range of leachable determinands given in Section 7.7 and the results have been compared to assessment criteria derived for groundwaters. On the basis of the nearest controlled surface water feature comprising the tidally influenced River Esk immediately adjacent to the east of the site, the results have also been assessed against surface water (marine) criteria.

The results of the assessment are summarised below:

Controlled Waters - Surface Waters (Marine)

The leachate analysis has recorded localised exceedances with regard to marine surface waters as presented within Table 16.

Table 16: Leachate Analysis Results (Surface Waters, Marine)

Contaminant	Range of Recorded Results	Assessment Criteria	No. of Failures / No. of Tests	Location of Failures
Copper	7.00ug/l to 9.00ug/l	5.00ug/l	2/9	WS101 (0.80 mbgl) WS102 (1.50mbgl)
Aliphatic TPH C12-16	100ug//	20ug/l	1/10	WS102 (1.50mbgl)
Anthracene	$0.14 \mathrm{ug} / \mathrm{l}$ to 0.19ug/l	0.10ug/l	2/10	$\begin{gathered} \hline \text { BH105 (2.20ug/l) } \\ \text { WS101 (0.80mbgl) } \end{gathered}$
Benzo(a)anthracene	0.09ug/l to 0.43ug/l	0.05ug//	5/10	BH101 (3.10mbgl) BH103 (0.70 mbgl) BH105 (2.20,bgl) WS101 (0.80 mbg) WS104 (0.60 mbgl)
Benzo(a)pyrene	0.06ug/l to 0.50ug/l	0.05ug/l	6/10	BH101 (3.10 mbgl) BH102 (1.00 mbgl) BH103 (0.70 mbgl) BH105 (2.20,bgl) WS101 (0.80 mbg) WS104 (0.60mbgl)
Benzo(b)fluoranthene Benzo(k)fluoranthene	$0.04 \mathrm{ug} / \mathrm{l}$ to $0.58 \mathrm{ug} / \mathrm{l}$ <0.01ug/l to $0.24 \mathrm{ug} / \mathrm{l}$	0.03ug/l sum	8/10	BH101 (3.10mbgl) BH102 (1.00mbgl) BH103 (0.70 mbg) BH105 (2.20,bgl) WS101 (0.80 mbgl) WS102 (1.50mbgl) WS104 (0.60 mbgl) WS105 (1.20mbgl)
Benzo(ghi)perylene Indeno(123-cd)pyrene	0.01ug/l to 0.42ug/l <0.01ug/l to 0.43ug/l	0.002ug/l sum	9/10	BH101 (3.10mbgl) BH102 (1.00 mbgl) BH103 (0.70 mbgl) BH104 (0.80 mbgl) BH105 (2.20 mbgl) WS101 (0.80 mbgl) WS102 (1.50mbgl) WS104 (0.60 mbg) WS105 (1.20mbgl)
Dibenzo(ah)anthracene	0.05ug/l to 0.08ug/l	0.10ug/I	2/10	$\begin{aligned} & \text { BH105 (2.20mbgl) } \\ & \text { WS101 (0.80mbgl) } \end{aligned}$
Fluoranthene	$0.17 \mathrm{ug} / \mathrm{l}$ to $0.79 \mathrm{ug} / \mathrm{l}$	0.10ug/l	5/10	BH101 (3.10mbgl) BH103 (0.70 mbg) BH105 (2.20 mbgl) WS101 (0.80 mbgl) WS104 (0.60 mbgl)

Controlled Waters - Groundwaters

The leachate analysis has recorded localised exceedances with regard to groundwaters as presented within Table 17.

Table 17: Leachate Analysis Results (Groundwater)

Contaminant	Range of Recorded Results	Assessment Criteria	No. of Failures $/$ No. of Tests	Location of Failures
				BH101 (3.10mbgl)
				BH102 (1.00mbgl)
Benzo(a)pyrene	$0.06 \mathrm{ug} / \mathrm{l}$ to 0.50ug/l	$0.01 \mathrm{ug} / \mathrm{I}$		$\mathrm{BH} 103(0.70 \mathrm{mbgl})$
			$8 / 10$	BH105 (2.20mbgl)
			WS101 (0.80mbgl)	
			WS102 (1.50mbgl)	
			WS104 (0.60mbgl)	
			WS105 (1.20mbgl)	

Contaminant	Range of Recorded Results	Assessment Criteria	No. of Failures / No. of Tests	Location of Failures
Benzo(b)fluoranthene	0.04ug/l to 0.58ug/l	$0.10 \mathrm{ug} / \mathrm{l}$ sum	7/10	BH101 (3.10mbgl)
Benzo(k)fluoranthene	<0.01ug/l to 0.24ug/l			BH102 (1.00 mbgl) BH103 (0.70 mbgl)
Benzo(ghi)perylene	0.01ug/l to 0.42ug/l			WS101 (0.80 mbgl) WS104 (0.60mbgl)
Indeno(123-cd)pyrene	<0.01ug/l to 0.43ug/l			WS105 (1.20mbgl)

13.6 Leachate Analysis of Natural Superficial Deposits

Samples taken from the natural superficial deposits (due to the presence of a sulphurous odour at the interface between the made ground and the natural alluvium) were analysed for the range of leachable determinants given in Section 7.7 and the results have been compared to assessment criteria derived for groundwaters. On the basis of the nearest controlled surface water feature comprising the tidally influenced River Esk immediately adjacent to the east of the site, the results have also been assessed against surface water (marine) criteria.

The results of the assessment are summarised below:

Controlled Waters - Surface Waters (Marine)

The leachate analysis has recorded localised exceedances with regard to marine surface waters as presented within Table 18.

Table 18: Leachate Analysis Results (Surface Waters, Marine)

Contaminant	Range of Recorded Results	Assessment Criteria	No. of Failures $/$ No. of Tests	Location of Failures
Benzo(b)fluoranthene	$0.20 \mathrm{ug} / \mathrm{l}$	$0.03 \mathrm{ug} / \mathrm{l} \mathrm{sum}$	$1 / 1$	WS102 (3.80mbgl)
Benzo(k)fluoranthene	$0.07 \mathrm{ug} / \mathrm{l}$		$1 / 1$	WS102 (3.80mbgl)
Benzo(ghi)perylene	$0.12 \mathrm{ug} / \mathrm{l}$	$0.002 \mathrm{ug} / \mathrm{l} \mathrm{sum}$		
Indeno(123-cd)pyrene	$0.13 \mathrm{ug} / \mathrm{l}$			

Controlled Waters - Groundwaters

The leachate analysis has recorded localised exceedances with regard to groundwaters as presented within Table 19.

Table 19: Leachate Analysis Results (Groundwater)

Contaminant	Range of Recorded Results	Assessment Criteria	No. of Failures $/$ No. of Tests	Location of Failures
Benzo(a)pyrene	$0.02 \mathrm{ug} / \mathrm{l}$	$0.01 \mathrm{ug} / \mathrm{l}$	$1 / 1$	WS102 (3.80mbgl)

13.7 Groundwater Analysis

Samples taken from the ground water standpipes during the post sit works monitoring were analysed for the range of leachable determinants given in Section 7.7 and the results have been compared to assessment criteria derived for groundwaters. On the basis of the nearest controlled surface water feature comprising the tidally influenced River Esk immediately adjacent to the east of the site, the results have also been assessed against surface water (marine) criteria.

The results of the assessment are summarised below:

Controlled Waters - Surface Waters (Marine)

The groundwater analysis has recorded localised exceedances with regard to marine surface waters as presented within Table 20.

Table 20: Groundwater Analysis Results (Surface Waters, Marine)

Contaminant	Range of Recorded Results	Assessment Criteria	No. of Failures / No. of Tests	Location of Failures
Copper	11.00ug/l	5.00ug/l	1/5	BH101
Zinc	55ug/l to 95ug/l	40ug/l	4/5	BH102 BH103 BH105 WS101
Benzo(a)anthracene	0.12ug/l	0.05ug/l	1/5	WS101
Benzo(a)pyrene	0.17ug/l	0.05ug/l	1/5	WS101
Benzo(b)fluoranthene	0.50ug/l			
Benzo(k)fluoranthene	0.07ug/l	0.03ug/ sum	$1 / 5$	S101
Benzo(ghi)perylene	0.12ug/l	0.002ug/l sum	1/5	WS101
Indeno(123-cd)pyrene	0.13ug/I			
Fluoranthene	0.33ug/l	0.10ug/l	1/5	WS101

Controlled Waters - Groundwaters

The groundwater analysis has recorded localised exceedances with regard to groundwaters as presented within Table 21.
Table 21: Water Analysis Results (Groundwater)

Contaminant	Range of Recorded Results	Assessment Criteria	No. of Failures $/$ No. of Tests	Location of Failures
Manganese	$51 \mathrm{ug} / \mathrm{l}$ to $4,500 \mathrm{ug} / \mathrm{l}$	$50 \mathrm{ug} / \mathrm{l}$	$4 / 5$	BH

13.8 Detection Limits

Human Health, the Built Development and Landscaping

The detection limits for all total soil tests were below assessment criteria for human health, built development and landscaping receptors.

Surface Water Assessment Criteria

Concentrations for chromium (VI) (<7ug/l), cyanide free (<20ug/l), benzo(ghi)perylene (<0.10ug/l) and indeno(123-cd)pyrene were recorded at levels below the testing laboratories limit of detection, however these detection limits are above the surface water assessment criteria.

Ground Water Assessment Criteria

The detection limits for water samples tests were below the assessment criteria for ground water receptors.

13.9 Waste Analysis

Five Waste Acceptance Criteria (WAC) tests were undertaken on samples taken from the boreholes and window samples (BH101, BH102, BH105, WS101 and WS104) within the made ground deposits. The results of the WAC screens are included in Appendix 2 and indicate that materials generated as part of the development may require disposal to a hazardous landfill, due to elevated total organic carbon, total dissolved solids and chlorides.

Waste disposal classification of onsite materials which may be generated as part of the works, and require offsite disposal, is outside the scope of this report and should be confirmed by the receiving landfill / treatment facility following excavation and confirmatory testing, as per the landfill or treatment facility's requirements.

14.0 ENVIRONMENTAL ASSESSMENT

14.1 Approach to Contamination Risk Assessment

The Environmental Protection Act 1990, Part II A Contaminated Land (Section 57 of the Environment Act 1995) and the Contaminated Land Regulations 2006 (and 2012 amendments) provide a basis on which to determine the risks and liabilities presented by a contaminated site. Contaminated Land is defined within Section 78A(2) of the Environmental Protection Act 1990, Part II A Contaminated Land (by commencement of Section 86 of The Water Act 2003 [Commencement Order No. 11] Order 2012) as:
"Any land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land that-
(a) Significant harm is being caused or there is significant possibility of such harm being caused; or
(b) Significant pollution of controlled waters is being caused, or there is a significant possibility of such pollution being caused."

Section 57 of the Environment Act 1995 requires that any site identified as being "contaminated" by the Local Authority will be registered by them and remediation will be required to render the site fit for use.

The presence of contamination is not the sole factor for deciding whether a site is contaminated. Relevant parties should identify site-specific risks and provide objective, cost-effective methods to manage the contamination in a manner which satisfies the proposed end-use.

A risk-based approach, which takes both technical and non-technical aspects into consideration when making decisions on contamination resulting from past, present or future human activities, is advocated. The assessment of environmental risks generally relies on the identification of three principal elements forming a 'pollutant or contaminant linkage':

Source: the contaminant
Pathway: the route through which the contaminant can migrate, and

Receptor: all human, animal, plant, controlled water or property that may be adversely affected (harmed) by the contaminant

In the absence of one of these elements, on a given site, there is no risk. Where all three elements are present, risk assessment is required to determine the significance of the harm or pollution that is being or may be caused. As outlined above, the terms of the Contaminated Land regime specify that remediation need only be implemented where a site is causing, or there is a significant possibility that it will cause, significant harm, or that pollution of controlled waters is being caused or there is a significant possibility of such pollution being caused.

Development of contaminated land is usually addressed through the application of planning and development legislation and guidance (i.e. NPPF). The suitable for use approach is seen as the most appropriate basis to deal with contaminated land, taking account of environmental, social and economic objectives. The assessment is made in the context of the proposed land use.

14.2 Conceptual Site ModeI

A conceptual site model is formed by presenting all identified and suspected sources, pathways and receptors. For this site, a conceptual site model has been developed based on the results of the site investigation and with consideration of a Commercial end use.

The significance of the presence of these elements is considered by carrying out a risk assessment of all potential pollutant or contaminant linkages, as presented in the following sections.

14.3 Source Characterisation

The following sources of contamination have been identified in relation to the site as determined by the ground investigation:

Made Ground

Localised presence of asbestos fibres (Human Health).
Locally elevated concentrations of water soluble sulphate (Built Development).
Locally elevated concentrations of heavy metals (Landscaping).
Localised elevated leachable concentrations of heavy metals, speciated TPH and speciated PAHs (Controlled Waters - Surface Waters)

Localised elevated leachable concentrations of speciated PAHs (Controlled Waters Groundwater)

Natural Superficials

Locally elevated concentrations of heavy metals (Landscaping).
Localised elevated leachable concentrations of speciated PAHs (Controlled Waters - Surface Waters)

Localised elevated leachable concentrations of speciated PAHs (Controlled Waters Groundwater)

Groundwaters

Localised elevated concentrations of heavy metals and speciated PAHs (Controlled Waters Surface Waters)

Localised elevated concentrations of heavy metals, pH and speciated PAHs (Controlled Waters Groundwater)

Soil Gas

Gas readings show there are depleted oxygen and elevated methane and carbon dioxide levels. The site has been preliminarily assessed as Gas Characteristic Situation 2.

14.4 Pathway Characterisation

The potential pathways by which receptors might be exposed to contaminants (sources) at the site can vary depending on the proposed land use.

For humans, the possible route of exposure to contaminants is:
Inhalation of dusts, fibres and accumulated ground gas and vapours;
Ingestion of soil and groundwater either by hand-to-mouth activity or by eating plants grown in contaminated soils/ waters; and

Dermal (skin) contact with contaminated soils and waters and transfer of contaminants through the skin to the body.

Buildings and service conduits can also be affected by contaminants in the following ways:
Ground gas and vapours accumulating in voids within or beneath structures;
By direct contact of building fabric with contaminated soils;
Service trenches acting as preferential migration pathways; and
Ingress of contaminants into conduits, contaminating drinking water supplies.
For the local water environment the following pathways may be present:
Leaching of contaminants from the soil to on-site groundwater;
Run-off from the site surface entering surface water courses near the site; and
Migration of contaminated on-site groundwater to off-site surface waters or groundwater.
For plants and soft landscaping the main pathway for exposure involves either direct contact with contaminated soils or groundwater or uptake of contaminants into the plant leading to adverse impact.

14.5 Receptor Characterisation

The receptors are the elements in the pollutant linkage that can potentially be harmed by the contaminants. These are as follows:

Part IIA Receptors

Human Health:
Property:
The Water Environment:

Site end users and adjacent site users
Buildings and services
Groundwaters:
Secondary A Aquifer - Granular Glacial Deposits
Secondary A Aquifers - Cloughton Bedrock Formation Surface Waters:
River Esk - adjacent east (Tidal)
Vegetation: Vegetation Growth

Non Part IIA Receptors

Human Health: Construction and maintenance workers.

14.6 Hazard Assessment

A screen of the chemical and gas monitoring data has been undertaken using Assessment Criteria developed for site specific receptors (Appendix 4) and the proposed end uses, to identify contamination hazards.

Where hazards have been identified these are summarised in Table 22:

Table 22 - Contaminants of Concern

Source	Human Health			Built Development (Buildings / Services)	Ecology	Pollution to Controlled Waters	
	End Users	Adjacent Users	Construction/ Maintenance Workers		Landscaping	Groundwaters	Surface Waters (Marine)
Made Ground	$\begin{aligned} & \text { Asbestos 0.002\% } \\ & (<0.001 \%) \end{aligned}$	$\begin{gathered} \text { Asbestos 0.002\% } \\ (<0.001 \%) \end{gathered}$	$\begin{gathered} \text { Asbestos } 0.002 \% \\ (<0.001 \%) \end{gathered}$	Water Soluble Sulphate $1,000 \mathrm{mg} / \mathrm{l}(500 \mathrm{mg} / \mathrm{l})$	Boron $5.4 \mathrm{mg} / \mathrm{kg}$ $(3 \mathrm{mg} / \mathrm{kg})$ Copper $2,100 \mathrm{mg} / \mathrm{kg}$ $(200 \mathrm{mg} / \mathrm{kg})$ Lead $370 \mathrm{mg} / \mathrm{kg}$ $(300 \mathrm{mg} / \mathrm{kg})$ Molybdenum $7.4 \mathrm{mg} / \mathrm{kg}$ $(4 \mathrm{mg} / \mathrm{kg})$	Benzo(a)pyrene 0.50ug/l (0.01ug/) Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(ghi)perylene and Indeno(123-cdpyrene $0.85 \mathrm{ug} /(0.10 \mathrm{ug} / \mathrm{l})$	
Natural Superficial Deposits	-	-	-	Water Soluble Sulphate $1,900 \mathrm{mg} / \mathrm{l}$ ($500 \mathrm{mg} / \mathrm{l}$)	Boron $5.4 \mathrm{mg} / \mathrm{kg}$ (3mg/kg)	Benzo(a)pyrene $0.02 \mathrm{ug} / \mathrm{I}$ $(0.01 \mathrm{ug} / \mathrm{I})$	Benzo(b)fluoranthene and Benzo(k)fluoranthene $0.03 \mathrm{ug} / \mathrm{I}$ (0.03ug/ total) Benzo(ghi) perylene and Indeno(123-cdpyrene 0.02ug/I ($0.002 \mathrm{ug} / \mathrm{ltatal}$)
Groundwaters	-	-	-	-		$\begin{gathered} \text { Manganese 4,500ug/l } \\ \text { (50ug/l) } \\ \mathrm{pH} 9.5(6.5-8.5) \\ \text { Benzo(a)pyrene } 0.17 \mathrm{ug} / \mathrm{l} \\ \text { (0.01ug/l) } \\ \text { Benzo(b)fluoranthene, } \\ \text { Benzo(k)fluoranthene, } \\ \text { Benzo(ghi)perylene and } \\ \text { Indeno(123-cdpyrene } \\ 0.52 \mathrm{ug} / \mathrm{l} \\ \text { (0.10ug/l) } \end{gathered}$	```Copper 11ug/l (5ug/) Zinc 95ug/l (40ug/l) \\ Benzo(a)anthracene 0.12ug/l (0.05ug/l) \\ Benzo(a)pyrene \(0.17 \mathrm{ug} / \mathrm{l}\) (\(0.05 \mathrm{ug} /\)) Benzo(b)fluoranthene and Benzo(k)fluoranthene 0.27ug/l (0.03ug/l total) Benzo(ghi)perylene and Indeno(123-cdpyrene 0.25ug/I (0.002ug/l total) \\ Fluoranthene 0.33ug/l (0.1ug/l)```

Source	Human Health			Built Development (Buildings / Services)	Ecology	Pollution to Controlled Waters	
	End Users	Adjacent Users	Construction/ Maintenance Workers		Landscaping	Groundwaters	Surface Waters (Marine)
Soil Gas	Depleted Oxygen 1.6\% Carbon Dioxide - 4.9\% Methane 24.5\%	Depleted Oxygen 1.6\% Carbon Dioxide - 4.9\% Methane 24.5\%	Depleted Oxygen 1.6\% Carbon Dioxide - 4.9\% Methane 24.5\%	-	-	-	-

Values shown are the maximum concentrations recorded as part of the site investigation works.
The values shown in brackets are based upon a recorded organic matter of 1.0\% and relate to the Assessment Criteria Limit, detailed in Appendix 4.

14.7 Contaminant Linkages and Qualitative Risk Assessment

The significance of potential contaminant linkages at the site have been qualitatively assessed by considering the magnitude of the hazard and the possibility of the linkages occurring as shown in Table 23.

As part of future redevelopment and maintenance of the site it is assumed that the adoption of a permit to dig system and appropriate health and safety measures (i.e. RPE, PPE, monitoring, decontamination etc.) based upon a risk assessment of site conditions by future contractors would adequately mitigate the risk posed to construction and maintenance workers from the identified sources of contamination. As such, no contaminant linkage exists and construction / maintenance workers are not considered further in this risk assessment.

Table 23 - Qualitative Risk Assessment for Identified Sources of Contamination

Source	Contaminants of Concern	Potential Pathway (s)	Potential Receptor (s)	Assessment	Potential Severity	Potential Probability	Risk Class	Remediation / Mitigation
	Soils - Heavy Metals, Sulphates and Asbestos Leachates Heavy Metals, speciated TPHs and speciated PAHs Groundwater Heavy Metals, pH, speciated TPHs and speciated PAHs		Human Health End Users	Post construction the site is to comprise built development and hardstanding. It is understood that any soft landscaping is to be restricted to raised planters. On this basis, there is no pathway for end users to come into direct contact with contaminated soils (including asbestos). Imported soils used in the planters will need to be chemically suitable such that they do not present a risk to human health, as detailed in Section 15.	High	Low	Low	Yes
		Ingestion, inhalation \& dermal contact	Human Health Adjacent Users	There is the potential for onsite contaminants to migrate offsite and for adjacent site users to ingest or come into direct contact with them. However, significant sources of contamination were not identified by investigation and it is understood that the majority of the site is to be covered with hardstanding and building cover, which would reduce the infiltration of rainfall and therefore the offsite migration of mobile contamination. There is the temporary potential for the inhalation of wind-blown dust and asbestos fibres migrating offsite, which could be generated during earthworks and construction works. However, if appropriate suppression and monitoring is undertaken then no pathway or linkage would exist. Mitigation measures as detailed in Section 15 should be implemented.	Low	High	Moderate	Yes - During Construction
		Accumulation of gas / vapours and inhalation	Human Health End Users	There is the potential for elevated gas and vapours to migrate and accumulate within confined spaces in the built development, representing a risk of asphyxiation. There is also the potential for harm to site end users from migration, accumulation in confined spaces within the proposed development and explosion of gas / vapours. Mitigation measures as detailed in Section 15 should be implemented.	High	Low	Moderate	Yes
		Migration offsite, accumulation of gas / vapours and inhalation	Human Health Adjacent Users	There is the limited potential for the asphyxiation of adjacent users in confined spaces within adjacent properties from the migration, accumulation and inhalation of gas and vapours originating from onsite sources.	Low	High	Low	No
		Direct contact	Property; built fabric \& services	There is the potential for chemical attack on below ground concrete and services (including tainting of water supply pipes) from direct contact with contaminants in the soils and groundwaters. Potentially high concentrations of chlorides and sulphates in saline groundwater and salt water spray also present a risk to concrete utilised as part of the proposed development. Mitigation measures as detailed in Section 15 should be implemented.	Moderate	Moderate	Moderate	Yes
		Accumulation of gas / vapours, preferential pathways and ingress		There is the potential for migration of potentially explosive gas/vapours and accumulation in confined spaces within the proposed development. Mitigation measures as detailed in Section 15 should be implemented.	Low	High	Moderate	Yes

Source	Contaminants of Concern	Potential Pathway (s)	Potential Receptor (s)	Assessment	Potential Severity	Potential Probability	Risk Class	Remediation / Mitigation
			Controlled Waters (Surface Waters)	Surface water may be at risk from potentially mobile contaminants on site via migration of contaminated groundwater through permeable granular deposits and leaching of mobile contamination. Analysed groundwater samples have recorded localised concentrations of heavy metals, PAH's and TPH's which exceed the Tier 1 Assessment Criteria for the protection of surface water. However, significant sources of total contamination have not been identified (no exceedances of the Tier 1 assessment criteria for a commercial development) and leachable contaminants within the deposits were marginal and localised in nature. Although the assessment point for the River Esk is directly adjacent to the site, when considering the flow rate and extent of the River a high dilution factor is likely to be assigned to this surface water feature, as such reducing the associated risk to the surface water body. A significant proportion of the made ground and superficial deposits are also cohesive in nature, which is likely to be significantly restricting the migration of leachable contaminants and perched groundwater. Given that significant sources of contamination were not identified in the soils present on site and the marginal and localised nature of the leachate and groundwater exceedances recorded, the risk to the River Esk is considered low. The site is also to be covered with hardstanding and building cover, which further reduces the infiltration of rainfall and therefore the off-site migration of mobile or leachable contamination. There is a temporary pollution risk that the River Esk, located immediately east of the site may be impacted by contaminated surface water runoff during the construction phase. Due to the relatively flat topography of the site it is considered that this risk is low and can be mitigated through adoption of best practice surface water management techniques during construction. Post construction surface water run-off is to be controlled by a formal surface water drainage system. Should previously unrecorded hydrocarbon contamination be identified during investigation or construction works then additional assessments should be undertaken.	Moderate	Low	Low	Yes - During Construction
		Direct contact and uptake of contaminants	Landscaped Areas	It is understood that soft landscaping is to be restricted to raised planters with no planting within existing site soils. On this basis, there is no pathway for direct contact with or uptake of contaminated soils. Imported soils used in the planters will need to be chemically suitable such that they do not present a risk to soft landscaping, as detailed in Section 15.	Low	Low	Low	Yes
	Carbon dioxide, methane and depleted oxygen	Accumulation in confined spaces and inhalation resulting in asphyxiation	Human Health End Users	Methane concentrations of up to 24.50% and depleted oxygen concentrations as low as 1.6% have been recorded as part of the preliminary gas monitoring programme. These concentrations are considered to present a risk to human health and the built development. Subject to completion of the post site works monitoring programme, gas protection measures	High	Low	Moderate	Yes

Source	Contaminants of Concern	Potential Pathway (s)	Potential Receptor (s)	Assessment	Potential Severity	Potential Probability	Risk Class	Remediation / Mitigation
		Accumulation in confined spaces and ignition	Built development	(CS2) are anticipated to be required. Potential sources of hydrocarbons were not recorded as visual/olfactory evidence and only marginally elevated volatile vapours of up to 1.00 ppm were recorded during the post site works monitoring. As such, vapour protection measures are not considered to be required, subject to confirmation following completion of gas monitoring programme. The site is located within an area with less than 1% of homes at or above the Action Level. As such, radon gas protection measures are not a statutory requirement within new buildings on site. Requirements in this regard, however, should be confirmed with the Local Planning Authority Regulator. Should previously unrecorded hydrocarbon contamination be identified during construction works then additional assessments should be undertaken.	High	Low	Moderate	Yes

15.0 RECOMMENDATIONS ON REMEDIAL/MITIGATION MEASURES

Based on review of the site investigation information and the potential contaminant linkages identified in the previous sections, the contamination sources identified on site would not preclude site development. The following preparatory works and mitigation measures should however be adopted.

15.1 Preparatory Works

As part of the preparatory works to facilitate redevelopment, the following surveys should be completed and measures adopted:

Further intrusive investigation in the form of trial pitting in the area of boreholes BH 104 and BH104A, which encountered metallic obstructions, to confirm that the features do not relate to the quay walls or wharf sub-structure.

Following completion of the gas and groundwater monitoring programme, and agreement of the required gas protection measures with the Regulators, all installed boreholes should be decommissioned in accordance with current Environment Agency guidance to prevent them acting as a preferential pathway for migration of ground gas and contamination.

15.2 Mitigation Measures during Construction

15.2.1 General Measures

The following measures are required during the construction phase of development:
Implementation of health, safety, welfare and hygiene practices appropriate to the contamination risks identified by the site investigation and qualitative risk assessment, including asbestos risk.

Monitoring of sensitive structures including the existing quay wall, tie rods and anchor piles during construction activities.

Monitoring for soil gas and vapours in excavations, buried chambers and confined spaces during construction where man access is required.

Control of surface water runoff during all works until completion.
Implementation of dust and asbestos fibre control measures and monitoring, particularly during the earthworks. The specific measures required are to be informed by a construction phase risk assessment.

15.2.2 Measures Relating to Potential Asbestos Contamination

Made ground, has been identified to be impacted with asbestos fibres (chrysotile). Quantification analysis of the seven positive samples determined asbestos concentrations of up to 0.002%. There is a risk that further, unrecorded asbestos fibres and Asbestos Contaminated Materials (ACMs) may be identified in the soils during development.

The Principal Contractor, or their appointed sub-contractor/s shall undertake, or employ a specialist asbestos consultant/ contractor to undertake, a construction phase risk assessment and advise on the requirements for monitoring and mitigation measures during development of the site.

The Principal Contractor, or their appointed sub-contractor/s, shall prepare their own Risk Assessment and Method Statement (RAMS) for the proposed works following consultation with an Asbestos Specialist, and undertake all further testing and controls highlighted which are considered
necessary, to satisfy themselves of the potential risks and that the mitigation measures adopted fully address these risks and sever potential pathways to human health.

Should previously unidentified asbestos be identified in the soils during the works, the Engineer should be informed and the Principal Contractor, or their appointed sub-contractor/s, shall take further advice from a Specialist Asbestos consultant / contractor.

15.3 Material Management Plan

Should the reuse of site won made ground be proposed as part of the development, or the importation of engineered fill, working platforms or planting mediums from other development sites, a Materials Management Plan (MMP) may be required to facilitate these operations. The MMP should be prepared in accordance with 'The Definition of Waste: Development Industry Code of Practice (DoW CoP), published by Contaminated Land: Applications in Real Environments (CL:AIRE).

15.4 Mitigation Measures within the Built Development

It is recommended that the following mitigation measures are incorporated into the built development:

15.3.1 Clean Planting Medium

Post construction, the site is to comprise built development and hardstanding. It is understood that soft landscaping is to be restricted to raised planters. On this basis, there is no pathway for end users to come into direct contact with contaminated soils (including asbestos) underlying the site.

Imported soils used in the planters will need to be chemically suitable for use such that they do not present a risk to human health, with criteria agreed with the Regulators as part of the planning process and testing undertaken prior to import.

15.3.2 Gas Protection Measures

The gas monitoring undertaken to date has identified the gassing regime on site as a preliminary Gas Characteristic Situation 2 in accordance with CIRIA C665 (Ref. 10) and BS 8485 (Ref. 11), indicating that gas protection measures will be required within confined spaces in the proposed built development.

Protection measures shall be designed, installed and validated by a Specialist Gas Protection System Contractor with the proposed measures and validation procedures agreed with the Local Authority prior to installation. For the avoidance of doubt, Fairhurst do not offer these services.

Significant sources of hydrocarbons and volatile vapours were not recorded during the site investigation or during the post site works monitoring to date, however it is recommended that the specialist Contractor consider the requirement to incorporate vapour protection measures within the built development as part of their design. In addition, should hydrocarbon contamination be identified during the enabling works then this should be considered within any designs.

At the time of reporting the gas monitoring programme is incomplete. The assessment of the requirement for gas protection measures presented above is preliminary and subject to completion of two further monitoring visits (anticipated to be completed early 2024).

The BGS Site Specific Radon Report (included in Ref. 01) states that radon protective measures are not required for the development area. The requirement for omission of site specific radon protection measures should, however, be agreed with Environmental Health as part of the detailed design of the gas protection measures.

15.3.3 In Ground Concrete

Based on the site investigation, buried concrete should be designed to Design Sulphate Class DS-2, ACEC Class AC-2 in accordance with BRE Special Digest 1:2005, Concrete in Aggressive Ground (Ref. 16).

The risk to specific elements of the proposed development from high concentrations of chlorides and sulphates in saline groundwater and salt water spray should also be eliminated by designing the concrete mix to be resistant to the environmental conditions at the site - BS6349 Part 1 (2000) (Ref. 17). In addition, cover to the main reinforcement shall be 75 mm minimum.

It is recommended that as part of the detailed design of the concrete mix, supplementary testing is undertaken on waters from the River Esk to confirm the chemical composition (including chloride content) and confirm the above classification.

15.3.4 Potable Water Supply

At the time of reporting, the proposed route of potable water is unknown. In view of the chemical conditions prevailing at the site special precautions are likely to be required in relation to potable water pipes. It is recommended that upon confirmation of their proposed route, the desk study and factual site investigation results are provided to the Local Water Authority for consideration, and their requirements confirmed concerning further testing along the line of supply pipelines or use of chemically resistant pipework, in accordance with guidance from the UK Water Industry Research (Ref. 18).

15.3.5 Unrecorded Contamination

The above assessment is based on the intrusive investigations results to date. The risk of unrecorded contamination, including but not limited to asbestos and hydrocarbons, being identified within areas of the site which have not previously been investigated cannot be fully discounted and is considered high. Such occurrences should immediately be notified to the Engineer for consideration.

16.0 PRELIMINARY ENGINEERING ASSESSMENT

16.1 Design Elements and Requirements

The development proposals are shown on Enjoy Design's drawing, included in Appendix 1.
The commentary provided within the following section represents a preliminary assessment and is subject to confirmation of the structural design requirements, which at this stage have been inferred as;

Maximum unfactored column loads of $2,500 \mathrm{kN}$.
Maximum unfactored line loads of $50 \mathrm{kN} / \mathrm{m}$.
A permissible tolerance of 10 mm for Total Settlement to the building
A permissible tolerance of 1 in 500 for Differential Settlement to the building.
A proposed finished floor level (FFL) of 3.89 mOD for the building, and topographical levels between 3.497 mOD and 3.890 mOD for external areas, which remain close to existing.

16.2 Geotechnical Considerations

Based on current site conditions, the findings of the ground investigation and development proposals. the following geotechnical considerations have been identified.

Hardstanding including reinforced concrete is present throughout the majority of the site area which will require as a minimum removal in the area of the building and to facilitate service installation.

The presence of heterogeneous made ground across the site with variable thickness, strength and compressibility, and considered to be an unsuitable founding strata.

Alluvial deposits including peat with low and variable bearing capacity, compressibility and material properties and comprising interlayered granular and cohesive materials.

The presence of relic foundations, structures and floor slabs associated with historic development, along with structures and fill materials associated with historical reclamation of the area from the river. These features could present obstructions during construction works or present hard spots to the development.

The potential presence of ballast and large debris within the made ground and cobbles and boulders in the natural superficial deposits which could present hard spots and difficult ground conditions for piling or excavations for services.

Presence of sensitive infrastructure including quay walls, anchor piles and tie rods which are to be retained and will require protection during construction activities. Additional loading of this sensitive infrastructure should be avoided during construction and future operation without further detailed assessment.

The requirement to import suitable materials to form working platforms (i.e. a piling platform).
Generation of hardstanding and Made Ground materials requiring either reuse as part of the development under an approved Materials Management Plan, Environmental Exemption or Environmental Permit, or offsite disposal. Due to the proposed levels the latter is the more likely option.

The requirement to import suitable materials to act as a planting medium within raised planters (i.e. subsoil and topsoil).

The presence of localised potentially combustible materials including coal within the made ground requiring appropriate mitigation.

The presence of existing services requiring diversion, decommissioning or protection, should they be retained.

Shallow groundwater within the Made Ground and superficial deposits, inferred to be in hydraulic continuity with the river and tidally influenced. Due to the groundwater table being variable in height and shallow in places and at times, it is considered that groundwater conditions will present a constraint to the works programme and require control measures during excavations. This could include undertaking works at low tide and/ or dewatering.

Potential for aggressive ground and groundwaters including pH and sulphate within soils and chlorides and saltwater, with the potential for chemical attack on in-ground concrete, foundations and services.

A moderate risk of $U X O$, requiring the following mitigation measures:

- Preparation of a UXO Risk Management Plan.
- Site Specific UXO Awareness Briefings to all personnel conducting intrusive works.

16.3 Temporary Works

The following temporary works are anticipated as part of the proposed development:
Vibration and visual monitoring of the existing quay walls associated with Endeavour Wharf to confirm their ongoing integrity.

Excavation of made ground and superficial deposits should give minimal difficulty to traditional plant.

Removal of relic structures or large obstructions to facilitate the works, where encountered, will require use of a hydraulic breaker.
Shallow groundwater within the made ground and superficial deposits is inferred to be in hydraulic continuity with the river and tidally influenced. Discontinuous confined groundwaters are also expected behind/within structures. Significant groundwater flow is expected during site works and groundwater conditions could present a constraint to the works programme and require temporary works and control measures during excavations. This could include undertaking works at low tide and/ or dewatering by means of sumps, coffer dams and well point dewatering.

The shallow water bearing/tidally influenced very low density granular layers may be prone to necking after auger/flight extraction. Piles, if proposed, are anticipated to require installation with temporary casing to mitigate the impacts of the tidally influenced groundwater present beneath the site.

The made ground has been locally recorded to contain asbestos (0.002%). The presence of further materials at greater concentrations cannot be discounted. The generation of contaminated/ asbestos impacted arisings, control of asbestos fibre generation and generation of preferential contamination migration pathways should be considered by the Contractor during the proposed piling works.

Due to the identified material properties of the granular made ground and the preliminary groundwater conditions, adequate lateral trench support will be required for deeper excavations, to prevent trench wall collapse or over excavations, as well as to create a safe working environment.

Excavations on this site should also remain open for as short a period as possible, since some site materials may be susceptible to deterioration, if left open to the natural elements for any significant period of time.

Surface water runoff management should be implemented during construction in order to prevent the generation and migration of leachates during excavation works and prevent potential impact on the adjacent River Esk.

A working platform / distribution mattress will be required to facilitate the piling works / ground improvement for the building foundations.

16.4 Foundation Design Requirements

Based upon the high design loadings anticipated, and the nature of the underlying soils (comprising made ground to depth of up to 4.30 mbgl , underlain by alluvial deposits to a maximum depth of 15.50 mbgl), conventional shallow pad and strip, raft or ground improvement solutions are not anticipated to be viable options for the scheme. As such, it is recommended that a piled foundation
solution is adopted to ensure that total and differential settlements are restricted to less than the required limits.

Subject to detailed design by a Specialist Piling Contractor, it is anticipated that piles using a combination of skin friction and end bearing, will be required to be installed either into the glacial deposits (dense gravels and stiff clays) or the bedrock.

Due to the presence of thick made ground, and compressible alluvial deposits, negative skin friction loads will need to be accommodated for by the load bearing capacity of the pile.

In addition to the detrimental impacts of negative skin friction, the proposed pile design will also need to consider the presence of concrete obstructions / ballast at shallow depth, cobbles and boulders within the natural deposits, the impacts of tidally influenced groundwater at shallow depth and the presence of sensitive structures (quay walls, anchor piles and tie rods) within the vicinity of the proposed building footprint.

The impact of potentially high concentrations of chlorides and sulphates from saline / tidal groundwater and salt water spray from the River Esk shall also be considered.

In consideration of the above constraints, a cased Continuous Flight Auger (CFA) or rotary bored piling option may appropriate.

Consultation with Roger Bullivant Limited, a Specialist Piling Contractor, has been undertaken as part of the design development of the substructure solution. Roger Bullivant Limited have advised that 450 mm diameter CFA piles could provide a capacity of up to 600 kN per pile.

Alternatively, subject to detailed review by a Specialist Contractor and written confirmation that the site constraints (including: tidally influenced groundwater, sensitive structures and the presence of both shallow and deep obstructions), ground improvement in the form of Controlled Modulus Columns (CMCs) / Rigid Inclusions may be a more economical solution Preliminary consultation with Vibro Menard, a Specialist Ground Improvement Contactor, indicates a uniform bearing capacity of $200 \mathrm{kN} / \mathrm{m}^{2}$ could be achieved across the site.

For both piled and CMC solutions, an imported granular working platform / distribution mattress would be required to facilitate installation. The thickness of the granular working platform would be subject to detailed design following confirmation of the proposed rig loadings and size. The associated disposal of existing materials to accommodate the working platform should be included in the development costings.

16.5 Floor Slab

On the basis of the ground conditions identified on site comprising made ground to depths of up to 4.30 mbgl , and the presence of natural alluvial deposits with poor engineering properties to a significant depth, a suspended floor slab is likely to be required within the proposed maritime building.

Alternatively, should ground improvement such as CMC's be utilised, there is potential for a ground bearing solution to be implemented alongside a distribution mattress where total and differential settlements can be reduced to within acceptable tolerances.

16.6 Pavement Design

On the basis that the proposed site levels (remaining relatively close to existing), the maximum loading of a bin lorry and an assumed preliminary construction thickness of 0.45 m , formation levels
within areas of hardstanding and access roads are anticipated to lie within the granular made ground deposits.

In consideration of the guidance provided in Interim Advice Note 73/06 2009 (Ref. 14) and the nature of the made ground, the following preliminary CBR design values are likely to be applicable following adequate re-compaction of the subgrade:
3% CBR for the granular made ground; and
2% CBR for the cohesive made ground.
Materials with a CBR less than 2.5% are generally considered an unsuitable base upon which to form hardstanding.

It is recommended that confirmatory CBR testing of the subgrade is undertaken following proof rolling during construction. The formation level should be protected prior to and following testing (i.e. between excavation and placement of hardstanding). If the formation is left exposed and subject to moisture, then due to the materials encountered during the investigation there is a high chance that the deposits could quickly degrade resulting in a significantly lower CBR.

Soft spots and cohesive made ground deposits demonstrating a CBR lower than 2.5% cannot be discounted. These materials would need to be locally removed and replaced with competent material, such as SHW Class 6F5, to form a more robust construction makeup.

Subject to the groundwater conditions encountered, and the CBR results recorded during confirmatory testing, there may also be a requirement to undertake a level of stabilisation (lime / cement) at formation level, or introduce increased capping thicknesses / geogrids within the construction make-ups in the car park areas.

17.0 REFERENCES

1. DID/152982/01 Issue 1 - Geo-Environmental Desk Study for Maritime Training Hub, Whitby, Fairhurst, February 2023.
2. BS EN 1997-1:2004+A1:2013, Eurocode 7 Geotechnical Design Part 2 Geotechnical Design Ground Investigation and Testing.
3. BS EN 1997-2:2007+June 2010 Corrigendum, Eurocode 7 Geotechnical Design Part 1 General Rules.
4. BS 5930:2015+A1:2020, Code of Practice for Site Investigations.
5. BS 10175:2011+A2:2017, Investigation of Potentially Contaminated Sites.
6. Alto Tie Rod Investigation Pack, May 2023.
7. BS 14688-2:2018, Geotechnical investigation and testing - Identification and Classification of Soil, Part 2: Principles for a classification.
8. BS 22476-3 2005 + A1 2011, Geotechnical investigation and testing, Field testing - standard penetration test.
9. BS 1377:1990, Soils for Civil Engineering Purposes. Part 1: General requirements and sample preparation.
10. CIRIA Publication 665, Assessing Risks Posed By Hazardous Ground Gases to Buildings, 2007.
11. BS 8485:2015+A1:2019, Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings.
12. BGS Radon potential - British Geological Survey (bgs.ac.uk).
13. Foundation Design and Construction, $7^{\text {th }}$ Edition, MJ Tomlinson, 2001.
14. Interim Advice Note 73/06 Revision 1 (2009). Design Guidance for Road Pavement Foundations (Draft HD25).
15. Using the Point Load Test to Determine the Uniaxial Compressive Strength of Coal Measure Rock, John Rusnak and Christopher Mark, January 2000.
16. BRE Special Digest No. 1:2005 (3rd Edition), Concrete in Aggressive Ground.
17. BS6349 Part 1 (2000), Maritime Structures. General Criteria.
18. Water Sector Guidance in relation to the adoption of self-laid assets by Water Companies in England (UKWIR), June 2022.

Appendix 1

Drawings

Drawing Ref.	Revision	Originator	Title
P22-01573-MET-EXT- XX-TOP-M2-G-001	01	Met Geo Environmental	Topographical Survey
$4052-01$	A	Three Sixty Group	Ground Penetrating Radar Interpretation
WHIT-ENJ-Z0-00-DR- A-90002 S3	P05	Enjoy Design Ltd	Existing Site Plan
WHIT-ENJ-Z0-00-DR- A-90003	P13	Enjoy Design Ltd	Exploratory Hole Location Plan
WHIT- FHT_Z1_00_DR_G- 09001	P02	Fairhurst	Eite Plan

Notes.
TOPOGRAPHICAL SURVEY BASED ON MET SURVEYS DRAwING
P22-
TOPOGRAPHICAL SURVEY YASED ON MET SURVEYS DRAWING
P22-01573-MET-EXT--XX-TOP-M2-G-G-2D Topoparaphical Survey

Witimor oxon construction
Priedet
Whitby maritime hub
Tilie
PROPOSED
RITE PLAN

Appendix 2a

Ground Investigation Factual Report (Draft)

COLMEK

Factual Site Investigation

Whitby Maritime Hub

Willmott Dixon Construction Ltd

S230311

Solmek Ltd
12 Yarm Road
Stockton-on-Tees
TS18 3NA
Tel: 01642607083

www.solmek.com
info@ solmek.com

FACTUAL SITE INVESTIGATION REPORT
 WHITBY MARITIME HUB

TABLE OF CONTENTS

1 INTRODUCTION 2
2 SITE DESCRIPTION AND FIELDWORK 2
3 GROUND GAS/WATER MONITORING 7
4 GEOTECHNICAL TESTING 8
TABLE 1: SUMMARY OF GROUNDWATER STRIKES 4
TABLE 2: SUMMARY OF MONITORING WELL RESPONSE ZONES 7
TABLE 3: SUMMARY OF GAS MONITORING RESULTS 7
APPENDICES
Appendix A: Drawings
Appendix B: Borehole \& Trial Pit Logs
Appendix C: Contamination Testing Results
Appendix D: Geotechnical Laboratory Results
Appendix E: Monitoring Results
Appendix F: Notes on Limitations \& Contamination Guidelines

Revision	Date	Prepared By	Signed
Draft		L Cassidy Principal Environmental Engineer	
		December 2023	Checked By R Woods Principal Geotechnical Engineer
		Approved By	
	R Woods Principal Geotechnical Engineer		

1 INTRODUCTION

1.1 Authorisation

The site investigation described in this report was carried out by Solmek to the instructions of Fairhurst, on behalf of Wilmott Dixon Construction, on land at Endeavour car park, Whitby. A site location plan is presented as Figure 1 in Appendix A.

1.2 Scope of Works

The site is expected to be developed with a new commercial building.
A geotechnical and environmental investigation including a ground gas assessment was requested. The type and position of exploratory positions and the scope and nature of testing were all determined by Fairhurst.

The fieldwork and testing was generally carried out according to the recommendations of BS5930:2015+A1:2020 "Code of Practice for Ground Investigations" and where applicable BS EN 1997-2:2007 with soil descriptions to BS EN 14688-1:2013 where applicable. The information provided in this report is based on the investigation fieldwork and is subject to the comments and approval of the various regulatory authorities.

There may be other conditions prevailing on the site which have not been disclosed by this investigation and which have not been taken into account by this report. Solmek reserve the right to alter conclusions and recommendations should further information be available or provided. Any schematic representation or opinion of the possible configuration of ground conditions between exploratory holes is conjectural and given for guidance only and confirmation of intermediate ground conditions should be considered if deemed necessary.

2 SITE DESCRIPTION AND FIELDWORK

The site is located at 489952,510865 and is approximately 0.3 Ha . The site consists of hardstanding (variably concrete/tarmacadam) forming a parking area, serving the centre of Whitby. The car park is generally busy and access is via Langborne Road, to the west.

The site falls slightly towards the east.
The site is bounded to the north and west by roads/commercial developments, and the River Esk to the east.

2.1 Fieldwork

The fieldwork was undertaken in two phases, with Phase 1 commencing on $13^{\text {th }}$ March 2023 and Phase 2 commencing on $16^{\text {th }}$ October 2023. The extent of the investigation was:

Ground penetrating radar (GPR) scan of the exploratory positions to check for underground utilities. 2no. cable percussive boreholes (BH104 \& BH104A) to a maximum depth of 3.70 mbgl .

- The borehole locations and depths were specified by Fairhurst.
- These boreholes were both terminated due to encountering shallow obstructions.

4no. cable percussive boreholes with rotary follow-on ($\mathrm{BH} 101-\mathrm{BH} 103 \& \mathrm{BH} 105$) to a maximum depth of 28.50 mbgl .

- The borehole locations and depths were specified by Fairhurst.

4no. small percussive boreholes (WS101-WS102 \& WS104-WS105) to a maximum depth of 6.45 mbgl .

- The borehole locations and depths were specified by Fairhurst.
- WS103 was cancelled.

Gas monitoring wells were installed within all boreholes (except BH104 \& BH104A).

- Gas response zones were designed by Fairhurst and are shown on the borehole logs and are summarised in Table 2.
5no. machine excavated trial pits (PLT01-PLT05) to a maximum depth of 0.70 mbgl .
- These locations were specified by Fairhurst for Plate Load Tests to be undertaken. Insitu testing in the exploratory boreholes as Standard Penetration Tests (SPTs).

Retrieval of samples for geotechnical and contamination testing.
Topographic survey of fieldwork positions.
The boreholes were backfilled with gas pipe installations, and the trial pits were backfilled with clean arisings.
Descriptions of the strata encountered in the exploratory positions together with details of sampling and groundwater are presented in Appendix B of this report. A plan showing the location of all positions can be found in Appendix A (Figure 2).

3 GROUND CONDITIONS

A brief summary of the ground conditions encountered is given below.

3.1 Made Ground

Made ground was variable across the site and was encountered to a minimum depth of 3.30 mbgl (BH 102) and a maximum depth of 4.30 mbgl (BH 101).

The made ground was not fully penetrated within BH104, BH104A, WS104, which terminated at depths between 1.70 and 3.70 mbgl .

The made ground broadly consisted of a surface covering of concrete, which ranged in thickness from 0.22 to 0.40 m .

Within BH102, BH105, PLT01, PLT04 and WS105, the concrete was overlain by macadam, ranging in thickness from 0.17-0.30m.

The underlying made ground was variable, with a granular subbase of dolomite (0.03-0.35m thick) generally present beneath the concrete.

The remainder of the made ground generally consisted of granular material of varying composition, with ash, brick, sandstone, limestone, chalk, ceramics, coal and metal present.

Locally, bands of cohesive made ground were encountered, as summarised below:

```
BH101 - 3.00-4.30m: Soft slightly sandy gravelly silt
BH104-3.20-3.60m: Soft slightly sandy slightly gravelly silt
BH105-2.60-3.40m: Soft slightly sandy slightly gravelly silty clay
WS102-0.60-1.50m: Soft sandy slightly gravelly clay
WS104-0.60-3.45m: Soft sandy slightly gravelly clay
WS105-0.75-3.50m: Soft sandy slightly gravelly clay
```

Within BH101 only, a hydrocarbon sheen was noted at 3.10 mbgl .

3.2 Obstructions

The below buried obstructions (other than surface hardstanding) were encountered during the intrusive works:

BH101 - buried concrete from 0.45-0.70m
BH102 - SPT result of $50+$ at 1.20 mbgl
BH103 - SPT result of $50+$ at 2.00 mbgl
BH104 - SPT result of $50+$ at 1.20 mbgl , metal obstruction encountered at 3.70 mbgl resulting in the borehole being terminated
BH104A - concrete obstruction encountered at 1.70 mbgl , resulting in the borehole being terminated

3.3 Natural Deposits

Proven to underlie the made ground deposits across the site, natural deposits variably comprised interbedded bands of generally loose sands and soft silts/clays to depths of between 12.30 and 15.50 mbgl ,
at which point a band of dense to very dense sandy gravel (locally cobbles) was encountered and then proven to the base of the natural deposits.

Peat was encountered locally, within BH102 (7.10-8.90mbgl) and BH105 (7.10-8.70mbgl), whilst peat bands were noted within the clay between 8.90 and 12.00 mbgl within BH 102 . Plant matter was present within BH101 ($7.00-12.30 \mathrm{mbgl}$) and BH103 (7.90-12.40mbgl).

3.4 Solid Geology

Rockhead was encountered between 17.20 mbgl within BH 101 and BH 105 and 18.00 mbgl within BH 103 , generally comprising mudstone (sandstone within BH 103).

The rock was cored to a maximum depth of 28.50 mbg and generally comprised mudstone with localised bands of siltstone and sandstone.

3.5 Groundwater

Groundwater strikes, where encountered, are presented on the exploratory logs (Appendix B) and are summarised below in Table 1:

TABLE 1: SUMMARY OF GROUNDWATER STRIKES

Exploratory Position	Depth Encountered $(\mathbf{m b g l})$	Depth after $\mathbf{2 0}$ minutes $(\mathbf{m b g l})$	Strata
	3.10	2.95	MADE GROUND
	12.40	6.10	SANDY GRAVEL
BH102	2.60	2.40	MADE GROUND
	12.40	8.20	SANDY GRAVEL
BH 103	2.90	2.40	MADE GROUND
	12.10	7.30	SANDY GRAVEL
BH105	3.40	-	MADE GROUND

It should be noted the rapid rate of advancement of the exploratory holes may mask minor seepages and it should be borne in mind that water levels fluctuate with a number of influences including season, rainfall, dewatering and pumping activities. Therefore, water levels significantly higher than those found during this investigation may be encountered.

4 CONTAMINATION TESTING RESULTS

The proposed development of the site is to involve the construction of a commercial building. The chemical samples were generally retrieved in line with BS ISO 18400-105:2017 "Soil Quality. Sampling". The chemical results are presented in Appendix C.

4.1 Contamination Testing

4.1.1 Soil Contamination Testing

To provide information upon the possibility of ground contamination, 15 no samples of made ground and 4no samples of natural material were selected for contamination testing. The number and type of samples chosen were specified by Fairhurst, and are detailed below:

Schedule 1: $17^{\text {th }}$ March

$$
\begin{aligned}
& \text { WS101 }-0.80-1.00 \mathrm{~m} \text { (Made ground - cohesive) } \\
& \text { WS101 - 3.70-3.90m (Natural sand) } \\
& \text { WS102 - 0.60-0.80m (Made ground - cohesive) } \\
& \text { WS102 - 1.50-1.60m (Made ground - cohesive) } \\
& \text { WS102 }-3.80-4.00 \mathrm{~m} \text { (Natural sand) } \\
& \text { WS104 - 0.60-0.80m (Made ground - cohesive) } \\
& \text { WS105 - 1.20-1.50m (Made ground - cohesive) } \\
& \text { WS105 - 3.50-4.00m (Natural sand) }
\end{aligned}
$$

Schedule 2: $20^{\text {th }}$ October

```
BH102 - 0.60m (Made ground - granular)
BH102 - 1.00m (Made ground - granular)
BH102 - 7.50m (Peat)
BH105 - 2.20m (Made ground - granular)
BH105 - 3.50m (Made ground - cohesive)
```

Schedule 3: $25^{\text {th }}$ October

```
BH104-0.80m (Made ground - granular)
BH104 - 1.00m (Made ground - cohesive)
```

Schedule 4: $27^{\text {th }}$ October
BH101-0.80m (Made ground - granular)
BH101 - 3.10m (Made ground - cohesive, hydrocarbon sheen)
BH101 - 3.80m (Made ground - cohesive)
BH103-0.70m (Made ground - granular)

The samples selected are considered to provide coverage of both the made ground and shallow natural strata from across the site that would be most likely to be exposed during future site works. The samples were tested for the following contaminant suites:
16no Metals, semi-metals, non-metals, inorganic determinants
16 no Speciated Polyaromatic Hydrocarbons (PAHs)
16no Total Petroleum Hydrocarbon Criteria Working Group fractions (TPHCWG)
16no Total Petroleum Hydrocarbons (DRO/MRO Splits)
16no Phenol
14no Asbestos identification screenings
5no Methyl Tert-Butyl Ether (MTBE)
5no Benzene, Toluene, Ethylbenzene \& Xylenes (BTEX)
5no Waste Acceptance Criteria (WAC)
4no Organic Matter
4no Calorific Value
3no Chlorine
3no Nitrate
3no Polychlorinated Biphenyls (PCBs)
2no Asbestos quantification tests

4.1.2 Leachate Contamination Testing

The following samples were also sent for leachate analysis, at the request of Fairhurst:

Schedule 1: $17^{\text {th }}$ March

WS101-0.80-1.00m (Made ground - cohesive)

WS102-1.50-1.60m (Made ground - cohesive)
WS102 - 3.80-4.00m (Natural sand)
WS104-0.60-0.80m (Made ground - cohesive)
WS105-1.20-1.50m (Made ground - cohesive)
Schedule 2: $20^{\text {th }}$ October
BH102-1.00m (Made ground - granular)
BH105-2.20m (Made ground - granular)
Schedule 3: $25^{\text {th }}$ October
BH104 - 0.80m (Made ground - granular)

Schedule 4: $27^{\text {th }}$ October

```
BH101 - 0.80m (Made ground - granular)
BH101 - 3.10m (Made ground - cohesive, hydrocarbon sheen)
BH103 - 0.70m (Made ground - granular)
```

The leachates were tested for the following contaminant suites:

```
11no Metals, semi-metals, non-metals, inorganic determinants
11no Speciated Polyaromatic Hydrocarbons (PAHs)
11no Total Petroleum Hydrocarbon Criteria Working Group fractions (TPHCWG)
11no Phenol
3no Methyl Tert-Butyl Ether (MTBE)
3no Benzene, Toluene, Ethylbenzene & Xylenes (BTEX)
2no Polychlorinated Biphenyls (PCBs)
```


4.1.3 Water Contamination Testing

During the gas monitoring fieldwork, samples of groundwater were retrieved where possible. Samples were retrieved once the wells were purged $3 x$ the well volume and then allowed to recharge. The following samples were sent for water analysis, at the request of Fairhurst:

$$
\begin{aligned}
& \text { BH101 }-3.07 \mathrm{~m} \\
& \text { BH102 }-1.86 \mathrm{~m} \\
& \text { BH103 }-1.45 \mathrm{~m} \\
& \text { BH105 }-2.10 \mathrm{~m} \\
& \text { WS101 }-2.10 \mathrm{~m}
\end{aligned}
$$

The water samples were tested for the following contaminant suites:

```
5no Metals, semi-metals, non-metals, inorganic determinants
5no Water Hardness
5no Speciated Polyaromatic Hydrocarbons (PAHs)
5no Total Petroleum Hydrocarbon Criteria Working Group fractions (TPHCWG)
5no Phenol
3no Methyl Tert-Butyl Ether (MTBE)
3no Benzene, Toluene, Ethylbenzene & Xylenes (BTEX)
3no Polychlorinated Biphenyls (PCBs)
```

The water sampling results are outstanding and will be added to a future revision of this report.

4.2 Test Results

The contamination test results are presented in Appendix C.

5

GROUND GAS/WATER MONITORING

The proposed development includes the construction of a commercial building.
Ground gases such as carbon dioxide $\left(\mathrm{CO}_{2}\right)$, methane $\left(\mathrm{CH}_{4}\right)$, carbon monoxide (CO) and volatile organic compounds (VOCs) can be classed as a form of contamination where there is a potential risk to human health.

For this report, gas monitoring was via measuring emissions from eight standpipes (all boreholes except BH 104 \& BH 104 A) that were installed during the sitework. The gas monitoring will consist of six visits.

5.1 Monitoring Wells and Response Zones

During the site investigation works, gas monitoring wells were installed within fourteen boreholes, at the request of Fairhurst. The response zones were specified by Fairhurst and are briefly summarised below in Table 2.

TABLE 2: SUMMARY OF MONITORING WELL RESPONSE ZONES

Borehole	Pipework	Installation Depth (mbgl)	Response zone of slotted pipework (mbgl)	Response Zone Stratum
BH101	50 mm HDPE pipe	12.30	$7.00-12.30$	Silt
BH102	50 mm HDPE pipe	17.00	$12.00-17.00$	Sand/Gravel
BH103	50 mm HDPE pipe	12.40	$7.90-12.40$	Silt
BH105	50 mm HDPE pipe	8.70	$7.10-8.70$	Peat
WS101	50 mm HDPE pipe	3.70	$1.20-3.70$	Made Ground
WS102*	50 mm HDPE pipe	5.00	$1.20-3.00$	Sand
WS104	50 mm HDPE pipe	3.00	$1.20-2.50$	Made Ground
WS105	50 mm HDPE pipe	2.50	Made Ground	

5.2 Ground Gas Results

Two monitoring visits have been completed to date. The atmospheric pressure has an impact on the concentrations of gas released. Atmospheric pressure was between 999 and 1003 during the visits to date. The results of the visits undertaken to date are summarised below in Table 3 and are presented in full in Appendix E.

TABLE 3: SUMMARY OF GAS MONITORING RESULTS

Borehole	Flow Range $(\mathbf{l} / \mathbf{h r})$	$\mathbf{C H}_{4}$ Range $(\% \mathbf{v} / \mathbf{v})$	$\mathbf{C O}_{2}$ Range $(\% \mathbf{\%} / \mathbf{v})$	\mathbf{O}_{2} Range $(\% \mathbf{v} / \mathbf{v})$	PID Range $(\mathbf{p p m})$	CO Range $(\mathbf{p p m})$	$\mathbf{H}_{2} \mathbf{S}$ Range $(\mathbf{p p m})$	GW Range $(\mathbf{m b g l})$
BH101	0.1	$3.0-8.0$	$0.0-0.3$	$14.0-18.4$	$0.2-0.4$	0	0	$1.28-3.07$
BH102	0.1	$6.7-9.4$	$0.3-0.5$	$14.3-16.2$	$0.1-0.8$	0	0	$1.82-1.86$
BH103	0.1	$6.7-7.3$	0.2	$17.9-18.0$	$0.3-0.6$	0	0	$1.23-1.45$
BH105	0.1	0	0.2	$19.2-19.4$	0	0	0	2.10
WS101	0.1	0	$2.2-4.9$	$3.9-18.0$	0	0	0	$2.20-2.30$
WS104	0.1	0	0.0	$20.0-20.4$	0	0	0	$1.28-2.60$
WS105	0.1	0	$0.7-0.8$	$19.1-19.4$	0	0	0	$2.00-2.05$

6

GEOTECHNICAL TESTING

Samples taken from the boreholes underwent a series of geotechnical tests to aid design and soil description. In addition, insitu Standard Penetration Tests (SPTs) were undertaken at regular intervals during drilling.

The geotechnical results are presented in Appendix D.
The scope of the testing undertaken was determined by Fairhurst.

6.1 In-Situ Testing

The in-situ testing results are shown on the logs (Appendix B). The Plate Load Test results are shown in Appendix D.
Generally, Standard Penetration Tests (SPTs) within the made ground yielded N values ranging from 6 to 35 within cohesive made ground (locally 50+), and between 3 and 38 within granular made ground (locally 50+).

SPTs within the localised shallow sand deposits ranged from 1 to 35 , indicating very loose to dense deposits.

SPTs within the silt deposits ranged from 0 to 12 , indicating very low to medium strength deposits.
SPTs within the localised peat deposits ranged from 7.
SPTs within the deeper granular deposits ranged from 17 to $50+$, generally increasing with depth, indicating medium dense to very dense deposits.

SPTs within the clay deposits ranged from 6 to 19, indicating low to high strength deposits.
SPTs upon/within the rockhead ranged from 50+, generally increasing with depth.

6.2 Laboratory Testing

The scope of the laboratory testing to be undertaken was determined by Fairhurst. The below soils testing was scheduled:

```
16no K1.1 Moisture contents
16no K1.2 Atterberg limits
12no K1.9 Particle Size Distribution (PSD)
11no K1.12 Sedimentation by hydrometer
6no K2.1 Organic Matter Content (OMC)
9no K2.4 Sulphate
9no K2.12 pH
3no K3.9 CBR
1no K1.8 Particle Density
4no K4.1 One dimensional consolidation
4no K6.16 Undrained shear strength in triaxial
```

The below rock testing was scheduled:

6no K8.14 Uniaxial Compressive Strength (UCS)
8no K8.21 Point Load Test (PLT)
1no Point Load Test (Axial \& Diametral)
3no Direct Shear
5no K2.4 Sulphate
5no K2.12 pH
5no Water Content

The geotechnical results are presented in Appendix D. Some geotechnical results are outstanding and will be added as an addendum to this report.

SOLMEK

APPENDIX A:

Figures \& Drawings

SOLMEK

12-16 Yarm Road, Stockton on Tees, TS18 3NA Tel: 01642607083 Email: info@solmek.com

Figure Title

Exploratory Hole Location Plan

Project Number

S230311

Project Name

Whitby Maritime Hub, Whitby

Clien

Willmott Dixon Construction

Date
October 2023

DRG Number

Figure 2

Scale

1:1000 @ A4 [DO NOT SCALE]

- Locations By Type - BH
- Locations By Type - CP

Locations By Type - CP+R
Locations By Type - TP
W Locations By Type - Ws
\square Project Bounds - Project Bounds

Figure 3: BH101 18.00-21.00m

Rock Core Photographs

Project

Whitby Maritime Hub

Client

Wilmott Dixon Construction
Date
December 2023

Fig No.

Figures 3 \& 4

Scale

N/A

Key

Whitby Maritime Hub

Client

Wilmott Dixon Construction
Date
December 2023
Fig No.
Figures 7 \& 8

Scale

N/A
Key

Figure 8: BH102 21.00-24.00m

Project

Whitby Maritime Hub

Client

Wilmott Dixon Construction
Date
December 2023
Fig No.
Figures 9 \& 10

Scale

N/A
Key

Figure 9: BH102 24.00-27.00m

Solmek Ltd.
12 Yarm Road Stockton-on-Tees TS18 3NA

Tel: +44 (0) 1642607083 Fax: +44 (0) 1642612355 e-mail: south@solmek.com www.solmek.com

Title
Rock Core Photographs
Project
Whitby Maritime Hub

Client

Wilmott Dixon Construction
Date
December 2023

Fig No.

Figures 11 \& 12

Scale

N/A
Key

Solmek Ltd. 12 Yarm Road Stockton-on-Tees TS18 3NA

Tel: +44 (0) 1642607083 Fax: +44 (0) 1642612355 e-mail: south@solmek.com www.solmek.com

Project

Whitby Maritime Hub

Client

Wilmott Dixon Construction

Date

December 2023

Fig No.

Figures 15 \& 16

Scale

N/A
Key

Figure 16: BH105 21.00-24.00m

APPENDIX B: Borehole \& Trial Pit Logs

	Samples \& In Situ Testing			Depth (m)	Level (m)	Legend
	Depth	Type	Results			
				0.17	3.56	
				$\begin{aligned} & 0.55 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 3.18 \\ & 3.14 \end{aligned}$	

APPENDIX C:

Contamination Laboratory Results

\& DETS

Certificate of Analysis

Client SOLMEK

12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-06584

Client Reference S230311
Order No SOL7164LC
Contract Title Whitby Maritime Hub, Whitby
Description 8 Soil samples, 9 Leachate samples.

Date Received 20-Mar-23

Date Started 20-Mar-23

Date Completed 29-Mar-23

Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis

Matrix Descriptions

Our Ref 23-06584
Client Ref 5230311
Contract Title Whitby Maritime Hub, Whitby

Sample ID
Depth
WS101 Lab No Completed M atrix Description WS101 $0.80-1.00$ 2142976 $29 / 03 / 2023$ Very gravelly, sandy CLAY (Possible made ground - brick) WS102 $3.70-3.90$ 2142977 $29 / 03 / 2023$ Black very gravelly, sandy CLAY WS102 $0.60-0.80$ 2142978 $29 / 03 / 2023$ Brown very gravelly, sandy CLAY (Possible made ground - brick) (Possible made ground - slate) WS102 $1.50-1.60$ 2142979 $29 / 03 / 2023$ Brown very gravelly, sandy CLAY (Possible made ground - brick) WS104 $3.80-4.00$ 2142980 $29 / 03 / 2023$ Dark brown slightly gravelly, sandy CLAY WS105 $0.60-0.80$ 2142981 $29 / 03 / 2023$ Brown gravelly, sandy CLAY (Possible made ground - brick) WS105 $1.20-1.50$ 2142982 $29 / 03 / 2023$ Brown gravelly, sandy CLAY (Possible made ground - brick)$\| 3.50-4.00$
2142983
$29 / 03 / 2023$
Brown slightly gravelly, sandy CLAY (Possible made ground - brick)

Summary of Chemical Analysis

Soil Samples

Our Ref 23-06584
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby
Lab No
.Sample ID
Depth
Other ID
Sample Type
Sampling Date
Sampling Time

2142976	2142977	2142979	2142980	2142981	2142982	2142983
WS101	WS101	WS102	WS102	WS104	WS105	WS105
$0.80-1.00$	$3.70-3.90$	$1.50-1.60$	$3.80-4.00$	$0.60-0.80$	$1.20-1.50$	$3.50-4.00$
ES						
$15 / 03 / 2023$	$15 / 03 / 2023$	$14 / 03 / 2023$	$14 / 03 / 2023$	$14 / 03 / 2023$	$15 / 03 / 2023$	$15 / 03 / 2023$
n / s						

 \title{

Summary of Chemical Analysis
 \title{ \section*{Summary of Chemical Analysis

 Soil Samples}

 Soil Samples}}

Our Ref 23-06584
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby
\& DETS
Lab No
.Sample ID
Depth
Other ID
Sample Type
Sampling Date
Sampling Time

2142976	2142977	2142979	2142980	2142981	2142982	2142983
WS101	WS101	WS102	WS102	WS104	WS105	WS105
$0.80-1.00$	$3.70-3.90$	$1.50-1.60$	$3.80-4.00$	$0.60-0.80$	$1.20-1.50$	$3.50-4.00$
ES						
$15 / 03 / 2023$	$15 / 03 / 2023$	$14 / 03 / 2023$	$14 / 03 / 2023$	$14 / 03 / 2023$	$15 / 03 / 2023$	$15 / 03 / 2023$
n / s						

Test	M ethod	LOD	Units							
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Aromatic \times Cl10-EC12: EH_2D_AR	DETSC 3521\#	0.9	$\mathrm{mg} / \mathrm{kg}$	<0.90	<0.90	<0.90	<0.90	<0.90	<0.90	<0.90
Aromatic >EC12-EC16: EH_2D_AR	DETSC 3521\#	0.5	$\mathrm{mg} / \mathrm{kg}$	1.97	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Aromatic \times CC16-EC21: EH_2D_AR	DETSC 3521\#	0.6	$\mathrm{mg} / \mathrm{kg}$	20.63	1.14	1.09	0.99	3.17	1.14	8.05
Aromatic >EC21-EC35: EH_2D_AR	DETSC 3521\#	1.4	$\mathrm{mg} / \mathrm{kg}$	19.13	3.54	4.44	<1.40	3.98	<1.40	4.48
Aromatic >EC35-EC40: EH_2D_AR	DETSC 3521*	1.4	$\mathrm{mg} / \mathrm{kg}$	2.28	3.73	6.16	<1.40	<1.40	<1.40	<1.40
Aromatic ॠEC40-EC44: EH_2D_AR	DETSC 3521*	1.4	$\mathrm{mg} / \mathrm{kg}$	<1.40	<1.40	<1.40	<1.40	<1.40	<1.40	<1.40
Aromatic C5-C44: EH_2D+HS_1D_AR	DETSC 3521*	10	$\mathrm{mg} / \mathrm{kg}$	44.02	<10.00	11.69	<10.00	<10.00	<10.00	12.53
TPH Ali/Aro C5-C44: EH_2D+HS_1D_Total	DETSC 3521*	10	$\mathrm{mg} / \mathrm{kg}$	606.5	51.22	28.51	<10.00	<10.00	<10.00	12.53
C5-C10 Gasoline Range Organics (GRO): HS_1D_Total	DETSC 3321*	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EPH (C6-C10): HS_1D_Total	DETSC 3321*	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
C10-C24 Diesel Range Organics (DRO): EH_1D_Total	DETSC 3311\#	10	$\mathrm{mg} / \mathrm{kg}$	230	<10	<10	<10	99	<10	87
EPH (C10-C40): EH_1D_Total	DETSC 3311\#	10	$\mathrm{mg} / \mathrm{kg}$	490	<10	<10	<10	240	81	120
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
M TBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
C24-C40 Lube Oil Range Organics (LORO): EH_1D_Total	DETSC 3311\#	10	$\mathrm{mg} / \mathrm{kg}$	260	<10	<10	<10	140	74	38
PAHs										
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.2	<0.1	<0.1	<0.1	0.8	<0.1	<0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.6	<0.1	<0.1	<0.1	0.7	<0.1	<0.1
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.0	<0.1	<0.1	<0.1	0.9	<0.1	<0.1
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	7.4	<0.1	<0.1	<0.1	6.8	0.2	<0.1
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	2.0	<0.1	<0.1	<0.1	1.3	<0.1	<0.1
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	24	<0.1	<0.1	<0.1	11	0.3	0.6
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	21	<0.1	<0.1	<0.1	10	0.6	0.8
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	12	<0.1	<0.1	<0.1	4.9	<0.1	0.4
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	13	<0.1	<0.1	<0.1	5.1	<0.1	0.4
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	9.0	<0.1	<0.1	<0.1	3.3	<0.1	<0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	5.6	<0.1	<0.1	<0.1	2.1	<0.1	<0.1
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	12	<0.1	<0.1	<0.1	4.4	<0.1	<0.1
Indeno(1,2,3-c, d) pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	8.1	<0.1	<0.1	<0.1	2.7	<0.1	<0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	1.3	<0.1	<0.1	<0.1	0.6	<0.1	<0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	7.4	<0.1	<0.1	<0.1	2.4	<0.1	<0.1
PAH 16 Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	120	<1.6	<1.6	<1.6	57	<1.6	2.2

Summary of Chemical Analysis

Soil Samples

Our Ref 23-06584
Client Ref S230311
Contract Title Whitby Maritime Hub, Whitby

	M ethod	.Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		2142976	2142977	2142979	2142980	2142981	2142982	2142983
				WS101	WS101	WS102	WS102	WS104	WS105	WS105
				0.80-1.00	3.70-3.90	1.50-1.60	3.80-4.00	0.60-0.80	1.20-1.50	3.50-4.00
				ES						
				15/03/2023	15/03/2023	14/03/2023	14/03/2023	14/03/2023	15/03/2023	15/03/2023
				n / s						
Test		LOD	Units							
PCBs										
PCB 28 +PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01				<0.01		
Phenols										
Phenol-Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3

Summary of Chemical Analysis

Leachate Samples

Our Ref 23-06584
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Lab No
.Sample ID
Depth
Other ID
Sample Type
Sampling Date
Sampling Time

2142984	2142985	2142986	2142987	2142988
WS101	WS102	WS102	WS104	WS105
$0.80-1.00$	$1.50-1.60$	$3.80-4.00$	$0.60-0.80$	$1.20-1.50$
ES	ES	ES	ES	ES
$15 / 03 / 2023$	$14 / 03 / 2023$	$14 / 03 / 2023$	$14 / 03 / 2023$	$15 / 03 / 2023$
n / s				

Test
Metals

Antimony, Dissolved	DETSC 2306	0.17	ug/l	0.81	<0.17	0.32	0.63	0.41
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	3.4	0.47	1.6	1.4	1.4
Barium, Dissolved	DETSC 2306	0.26	ug/l	5.5	2.0	10	7.6	5.4
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	<12	74	130	28	<12
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	<0.03	<0.03	<0.03	<0.03	<0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	<7.0	<7.0	<7.0	<7.0	<7.0
Copper, Dissolved	DETSC 2306	0.4	ug / l	9.0	7.0	3.1	1.8	3.8
Iron, Dissolved	DETSC 2306	5.5	ug/l	140	150	61	140	130
Lead, Dissolved	DETSC 2306	0.09	ug/l	2.1	0.40	0.12	2.2	1.2
M anganese, Dissolved	DETSC 2306	0.22	ug/l	1.3	1.5	2.3	1.9	1.3
M ercury, Dissolved	DETSC 2306	0.01	ug/l	<0.01	<0.01	<0.01	0.01	<0.01
M olybdenum, Dissolved	DETSC 2306	1.1	ug/l	1.2	<1.1	7.2	1.7	<1.1
Nickel, Dissolved	DETSC 2306	0.5	ug/l	<0.5	<0.5	<0.5	<0.5	<0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.38	0.35	<0.25	0.25	0.31
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	7.1	1.4	1.9	1.4	1.3
Zinc, Dissolved	DETSC 2306	1.3	ug/l	1.9	<1.3	<1.3	<1.3	<1.3
Inorganics								
pH	DETSC 2008		pH	8.3	7.9	7.5	7.4	7.4
Cyanide, Total	DETSC 2130	40	ug/l	<40	<40	<40	<40	<40
Cyanide, Free	DETSC 2130	20	ug/l	<20	<20	<20	<20	<20
Cyanide, Complex	DETSC 2130*	40	ug/l	<40	<40	<40	<40	<40
Thiocyanate	DETSC 2130	20	ug/l	<20	300	<20	59	44
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg / l	0.074	0.095	0.66	0.12	0.14
Sulphate as SO4	DETSC 2055	0.1	mg / l	6.4	6.1	6.5	10	12

Petroleum Hydrocarbons

Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	15	2.4	<1.0	<1.0
Aliphatic C10-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	100	5.5	<1.0	<1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	14	<1.0	<1.0	<1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	24	1.4	<1.0	<1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	36	1.0	<1.0	<1.0
Aliphatic C35-C44: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	13	<1.0	<1.0	<1.0
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0

Summary of Chemical Analysis

Leachate Samples

Our Ref 23-06584
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Test	M ethod	Lab No .Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		2142984	2142985	2142986	2142987	2142988
				WS101	WS102	WS102	WS104	WS105
				0.80-1.00	1.50-1.60	3.80-4.00	0.60-0.80	1.20-1.50
				ES	ES	ES	ES	ES
				15/03/2023	14/03/2023	14/03/2023	14/03/2023	15/03/2023
				n / s				
		LOD	Units					
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic C35-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic C10-C44: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Ali/Aro C10-C44: EH_CU_1D_Total	DETSC 3072*	1	ug/l	<1.0	100	5.5	<1.0	<1.0

PAHs

Naphthalene	DETSC 3304	0.05	ug/l	0.06	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	0.05	<0.01	0.03	0.02	0.03
Acenaphthene	DETSC 3304	0.01	ug/l	0.03	<0.01	<0.01	0.04	<0.01
Fluorene	DETSC 3304	0.01	ug/l	0.03	<0.01	<0.01	0.01	<0.01
Phenanthrene	DETSC 3304	0.01	ug/l	0.21	0.03	<0.01	0.04	0.01
Anthracene	DETSC 3304	0.01	ug/l	0.14	<0.01	<0.01	0.04	0.02
Fluoranthene	DETSC 3304	0.01	ug/l	0.76	0.04	0.02	0.23	0.04
Pyrene	DETSC 3304	0.01	ug/l	0.65	0.04	0.03	0.26	0.04
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	0.43	0.02	0.02	0.13	0.03
Chrysene	DETSC 3304	0.01	ug/l	0.52	0.03	0.03	0.18	0.04
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	0.58	0.04	0.02	0.30	0.07
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	0.23	<0.01	<0.01	0.13	0.02
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	0.50	0.02	0.02	0.28	0.05
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	0.43	0.02	0.01	0.25	0.05
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	0.08	<0.01	<0.01	0.03	<0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	0.42	0.03	0.01	0.25	0.05
PAH Total	DETSC 3304	0.2	ug/l	5.1	0.29	<0.20	2.2	0.46

Phenols

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-06584
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby
Sample Id WS101 0.80-1.00

Sample Numbers 214297621429892142990
Date Analysed 29/03/2023

Test Results On Waste			
Determinand and Method Reference	Units	Result	
DETSC 2084\#Total Organic Carbon	$\%$	10.0	
DETSC2003\#Loss On Ignition	$\%$		
DETSC 3321\#BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04	
DETSC 3401\# PCBs (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01	
DETSC 3311\#EPH (C10 - C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	490.0	
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	120.0	
DESSC200\#pH	pH Units		
DETSO73* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$		
DETS073* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$		

Test Results On Leachate

Determinand and M ethod Reference	Conc in Eluate ug/I		Amount Leached* mg/ kg	
	$\mathbf{2 : 1}$	$\mathbf{8 : 1}$	LS2	$\mathbf{L S 1 0}$
DETSC 2306 Arsenic as As	6	3.4	0.012	0.038
DETSC 2306 Barium as Ba	6.5	4.2	<0.02	<0.1
DETSC 2306 Cadmium as Cd	<0.030	<0.030	<0.004	<0.02
DETSC 2306 Chromium as Cr	0.94	0.61	<0.02	<0.1
DETSC 2306 Copper as Cu	15	7.7	0.03	0.088
DETSC 2306 M ercury as Hg	<0.010	<0.010	<0.0004	<0.002
DETSC 2306 M olybdenum as M 0	2.4	1.3	<0.02	<0.1
DETSC 2306 Nickel as Ni	0.62	<0.50	<0.02	<0.1
DETSC 2306 Lead as Pb	2.8	2.7	<0.01	<0.05
DETSC 2306 Antimony as Sb	1.8	1	<0.01	<0.05
DETSC 2306 Selenium as Se	0.77	0.46	<0.006	<0.03
DETSC 2306 Zinc as Zn	2.6	4	0.005	0.038
DETSC 2055 Chloride as Cl	12000	150	24	<100
DETSC 2055* Fluoride as F	290	130	0.58	1.54
DETSC 2055 Sulphate as SO4	17000	3800	34	<100
DETSC 2009* Total Dissolved Solids	120000	46000	240	570.2
DETSC 2130 Phenol Index	<100	<100	<0.2	<1
DETSC 2085 Dissolved Organic Carbon	8200	9500	16.4	93.1

Additional Information

DETSC 2008 pH	6.5	8.1
DETSC 2009 Conductivity uS/cm	171.0	65.2
* Temperature*	17.0	18.0
M ass of Sample Kg*	0.140	
M ass of dry Sample Kg*	0.111	

Stage 1

Volume of Leachant L2*	0.192
Volume of Eluate VE1*	0.165

Stage 2

Volume of Leachant L8*	0.887
Volume of Eluate VE2*	0.84

WAC Limit Values		
Inert Waste	SNRHW	Hazardous Waste
3	5	6
n / a	n / a	10
6	n / a	n / a
1	n / a	n / a
500	n / a	n / a
100	n / a	n / a
n / a	>6	n / a
n / a	TBE	TBE
n / a	TBE	TBE

WAC Limit Values					
Limit values for LS10 Leachate			$	$	Inert
:---:	:---:	:---:			
Waste	SNRHW	Hazardous			
---	---	---	---	---	---
Waste	$	$	0.5	2	25
:---:	:---:	:---:			
20	100	300			
0.04	1	5			
0.5	10	70			
2	50	100			
0.01	0.2	2			
0.5	10	30			
0.4	10	40			
0.5	10	50			
0.06	0.7	5			
0.1	0.5	7			
4	50	200			
800	15,000	25,000			
10	150	500			
1000	20,000	50,000			
4000	60,000	100,000			
1	n/a	n/a			
500	800	1000			
TBE - To Be Evaluated					
SNRHW - Stable Non-Reactive					
Hazardous Waste					

Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.
v.2.06 $\quad *$ DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

W ASTE ACCEPTANCE CRITERIA TESTING

 ANALYTICAL REPORTOur Ref 23-06584
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby
Sample Id WS104 0.60-0.80

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084\#Total Organic Carbon	$\%$	2.0
DETSC2003\#Loss On Ignition	$\%$	
DETSC 3321\# BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04
DESC 3401\#PCBs (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01
DESSC 3311\#EPH (C10-C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	20.0
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	57.0
DETSC2008\#pH	pH Units	
DETS073* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$	
DETS073* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$	

Test Results On Leachate

Determinand and M ethod Reference	Conc in Eluate ug/l		Amount Leached* mg/ kg	
	$\mathbf{2 : 1}$	$\mathbf{8 : 1}$	LS2	LS10
DETSC 2306 Arsenic as As	3.5	1.3	0.007	0.017
DETSC 2306 Barium as Ba	23	11	0.05	0.13
DETSC 2306 Cadmium as Cd	<0.030	<0.030	<0.004	<0.02
DETSC 2306 Chromium as Cr	2.1	0.97	<0.02	<0.1
DETSC 2306 Copper as Cu	4.3	3.4	0.009	0.036
DETSC 2306 M ercury as Hg	0.022	0.015	<0.0004	<0.002
DETSC 2306 M olybdenum as M o	4.1	1.8	<0.02	<0.1
DETSC 2306 Nickel as Ni	0.63	<0.50	<0.02	<0.1
DETSC 2306 Lead as Pb	3.7	2.1	<0.01	<0.05
DETSC 2306 Antimony as Sb	2.5	1	<0.01	<0.05
DETSC 2306 Selenium as Se	0.96	0.48	<0.006	<0.03
DETSC 2306 Zinc as Zn	2.6	2	0.005	0.021
DETSC 2055 Chloride as Cl	17000	2200	34	<100
DETSC 2055* Fluoride as F	930	170	1.86	2.97
DETSC 2055 Sulphate as SO4	50000	7300	100	144.2
DETSC 2009* Total Dissolved Solids	170000	55000	340	741.7
DETSC 2130 Phenol Index	<100	<100	<0.2	<1
DETSC 2085 Dissolved Organic Carbon	9100	7500	18.2	77.7

Additional Information

DETSC 2008 pH	8.0	7.7
DETSC 2009 Conductivity uS/cm	241.0	78.1
* Temperature*	18.0	18.0
M ass of Sample Kg*		
M ass of dry Sample Kg*	0.140	

WAC Limit Values		
Inert Waste	SNRHW	Hazardous Waste
3	5	6
n / a	n / a	10
6	n / a	n / a
1	n / a	n / a
500	n / a	n / a
100	n / a	n / a
n / a	>6	n / a
n / a	TBE	TBE
n / a	TBE	TBE

WAC Limit Values Limit values for LS10 Leachate		
Inert Waste	SNRHW	Hazardous Waste
0.5	2	25
20	100	300
0.04	1	5
0.5	10	70
2	50	100
0.01	0.2	2
0.5	10	30
0.4	10	40
0.5	10	50
0.06	0.7	5
0.1	0.5	7
4	50	200
800	15,000	25,000
10	150	500
1000	20,000	50,000
4000	60,000	100,000
1	n/a	n/a
500	800	1000
TBE - To Be Evaluated SNRHW - Stable Non-Reactive Hazardous Waste		

DETSC 2008 pH	8.0	7.7		
DETSC 2009 Conductivity uS/cm	241.0	78.1		
* Temperature*	18.0	18.0		
M ass of Sample Kg*				0.140
M ass of dry Sample Kg*				
	0.118			

Stage 1

Volume of Leachant L2*	0.213
Volume of Eluate VE1*	0.196

Stage 2

Volume of Leachant L8*	0.94
Volume of Eluate VE2*	0.894

Sample Numbers 214298121429912142992
Date Analysed 29/03/2023

[^1]
Summary of Asbestos Analysis

Soil Samples

Our Ref 23-06584
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2142976	WS101 $0.80-1.00$	SOIL	NAD	none	Pierce Booth
2142978	WS102 $0.60-0.80$	SOIL	NAD	none	Pierce Booth
2142981	WS104 $0.60-0.80$	SOIL	NAD	none	Pierce Booth
2142982	WS105 $1.20-1.50$	SOIL	NAD	none	Pierce Booth

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD =No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-06584
Client Ref S230311
Contract Whitby Maritime Hub, Whitby
Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2142976	WS101 0.80-1.00 SOIL	15/03/23	GJ 250ml x2, PT 1L	Ammonia (3 days)	
2142977	WS101 3.70-3.90 SOIL	15/03/23	GJ 250 ml x2, PT 1L	Ammonia (3 days)	
2142978	WS102 0.60-0.80 SOIL	14/03/23	GJ 250 ml x2, PT 1L		
2142979	WS102 1.50-1.60 SOIL	14/03/23	GJ 250 ml x2, PT 1L	Ammonia (3 days)	
2142980	WS102 3.80-4.00 SOIL	14/03/23	GJ 250 ml x2, PT 1L	Ammonia (3 days)	
2142981	WS104 0.60-0.80 SOIL	14/03/23	GJ $250 \mathrm{ml} \mathrm{x2} ,\mathrm{PT} \mathrm{1L}$	Ammonia (3 days)	
2142982	WS105 1.20-1.50 SOIL	15/03/23	GJ $250 \mathrm{ml} \mathrm{x2} ,\mathrm{PT} \mathrm{1L}$	Ammonia (3 days)	
2142983	WS105 3.50-4.00 SOIL	15/03/23	GJ $250 \mathrm{ml} \mathrm{x2} ,\mathrm{PT} \mathrm{1L}$	Ammonia (3 days)	
2142984	WS101 0.80-1.00 LEACHATE	15/03/23	GJ $250 \mathrm{ml} \mathrm{x2} ,\mathrm{PT} \mathrm{1L}$		
2142985	WS102 1.50-1.60 LEACHATE	14/03/23	GJ $250 \mathrm{ml} \mathrm{x2} ,\mathrm{PT} \mathrm{1L}$		
2142986	WS102 3.80-4.00 LEACHATE	14/03/23	GJ 250ml x2, PT 1L		
2142987	WS104 0.60-0.80 LEACHATE	14/03/23	GJ 250ml x2, PT 1L		
2142988	WS105 1.20-1.50 LEACHATE	15/03/23	GJ 250 ml x2, PT 1L		
2142989	WS101 0.80-1.00 LEACHATE	15/03/23	GJ 250ml x2, PT 1L		
2142990	WS101 0.80-1.00 LEACHATE	15/03/23	GJ 250 ml x2, PT 1L		
2142991	WS104 0.60-0.80 LEACHATE	14/03/23	GJ $250 \mathrm{ml} \mathrm{x2} ,\mathrm{PT} \mathrm{1L}$		
2142992	WS104 0.60-0.80 LEACHATE	14/03/23	GJ $250 \mathrm{ml} \mathrm{x2} ,\mathrm{PT} \mathrm{1L}$		
Key: G-Glass P-Plastic J-Jar T-Tub DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.					

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym Description

HS Headspace analysis
EH Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU Clean-up - e.g. by florisil, silica gel
1D GC - Single coil gas chromatography
2D GC-GC - Double coil gas chromatography
Total Aliphatics \& Aromatics
AL Aliphatics only
AR Aromatics only
\#1 EH_2D_Total but with humics mathematically subtracted
\#2 EH_2D_Total but with fatty acids mathematically subtracted
Operator - underscore to separate acronyms (exception for +)
$+\quad$ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
Det
Acronym
Aliphatic C5-C6

HS_1D_AL

Appendix A - Details of Analysis

M ethod	Parameter	Units	LImit ot Detection	Sample Preparation	Sub-Contracted	UKAS	M CERTS
DETSC 2002	Organic matter	\%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	\%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	pH	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	$\mathrm{mg} / \mathrm{kg}$	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg / l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	\%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	\%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	$\mathrm{mg} / \mathrm{kg}$	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	$\mathrm{mg} / \mathrm{kg}$	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	$\mathrm{mg} / \mathrm{kg}$	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	\%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	M ercury	$\mathrm{mg} / \mathrm{kg}$	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	$\mathrm{mg} / \mathrm{kg}$	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	$\mathrm{mg} / \mathrm{kg}$	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	$\mathrm{mg} / \mathrm{kg}$	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	$\mathrm{mg} / \mathrm{kg}$	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC2301	M anganese	$\mathrm{mg} / \mathrm{kg}$	20	Air Dried	No	Yes	Yes
DETSC2301	M olybdenum	$\mathrm{mg} / \mathrm{kg}$	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	$\mathrm{mg} / \mathrm{kg}$	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	$\mathrm{mg} / \mathrm{kg}$	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	$\mathrm{mg} / \mathrm{kg}$	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	$\mathrm{mg} / \mathrm{kg}$	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic $\mathrm{C} 10-\mathrm{C} 12$	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic $\mathrm{C10-C12}$	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic $\mathrm{C} 12-\mathrm{C} 16$	$\mathrm{mg} / \mathrm{kg}$	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic $\mathrm{C} 12-\mathrm{C} 16$	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	$\mathrm{mg} / \mathrm{kg}$	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	$m+p$ Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes

Appendix A - Details of Analysis

Method	Parameter	Units	Limit ot Detection	Sample Preparation	Sub-Contracted	UKAS	M CERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes

M ethod details are shown only for those determinands listed in Annex A of the M CERTS standard. Anything not included on this list falls outside the scope of M CERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

so DETS

Certificate of Analysis

Client SOLMEK
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-24975
Client Reference S230311
Order No SOL--7796
Contract Title WHITBY MARITIME HUB, WHITBY
Description 5 Soil samples, 4 Leachate samples.
Date Received 23-Oct-23
Date Started 23-Oct-23
Date Completed 02-Nov-23
Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood
General Manager

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis
Matrix Descriptions
Our Ref 23-24975
Client Ref 5230311
Contract Title whitby maritim e hub, whitby
Sample ID Depth Lab No Completed Matrix Description

BH102	1	2251104	$02 / 11 / 2023$	Brown/ orange very gravelly CLAY (M ade ground - brick)
BH102	7.5	2251105	$02 / 11 / 2023$	Dark slightly gravelly, sandy CLAY
BH105	2.2	2251106	$02 / 11 / 2023$	Dark brown slightly gravelly, sandy CLAY including odd rootlets (Possible made ground - brick)
BH105	3.5	2251107	$02 / 11 / 2023$	Dark brown slightly gravelly, sandy CLAY including odd rootlets

Summary of Chemical Analysis
 Soil Samples

Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY M ARITIME HUB, WHITBY

Summary of Chemical Analysis
 Soil Samples

Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY M ARITIME HUB, WHITBY

Summary of Chemical Analysis

Soil Samples

Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY M ARITIME HUB, WHITBY

	Method	.Sample ID		BH102	BH102	BH105	BH105
			Depth	1.00	7.50	2.20	3.50
			ther ID				
		Samp	e Type	ES	ES	ES	ES
		Sampli	g Date	16/10/2023	16/10/2023	16/10/2023	16/10/2023
		Sampli	g Time	n / s	n / s	n / s	n / s
Test		LOD	Units				
PCB 7 Total	DETSC 3401\#	0.01	mg/kg	<0.01			
Phenols							
Phenol - M onohydric	DETSC 2130\#	0.3	mg/kg	<0.3		<0.3	0.3

Summary of Chemical Analysis

Leachate Samples
Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY

	Method	Lab No .Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		2251108	2251109
				BH102	BH102
				1.00	7.50
				ES	ES
				16/10/2023	16/10/2023
				n / s	n / s
Test		LOD	Units		
Preparation					
NRA Leachate Preparation	DETSC 1009*			Y	Y
M etals					
Antimony, Dissolved	DETSC 2306	0.17	ug/l	2.6	1.5
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.7	2.5
Barium, Dissolved	DETSC 2306	0.26	ug/l	30	12
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	<0.1	<0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	71	93
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	<0.03	<0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	21	14
Chromium, Hexavalent	DETSC 2203	7	ug/l	<7.0	<7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.7	0.5
Iron, Dissolved	DETSC 2306	5.5	ug/l	<5.5	7.3
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.29	0.31
M anganese, Dissolved	DETSC 2306	0.22	ug/l	0.95	1.3
M ercury, Dissolved	DETSC 2306	0.01	ug/l	<0.01	<0.01
M olybdenum, Dissolved	DETSC 2306	1.1	ug/l	3.4	4.7
Nickel, Dissolved	DETSC 2306	0.5	ug/l	<0.5	<0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.46	<0.25
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	4.3	2.9
Zinc, Dissolved	DETSC 2306	1.3	ug/l	<1.3	<1.3
Inorganics					
pH	DETSC 2008		pH	8.1	8.3
Cyanide, Total	DETSC 2130	40	ug/l	<40	<40
Cyanide, Free	DETSC 2130	20	ug/l	<20	<20
Cyanide, Complex	DETSC 2130*	40	ug/l	<40	<40
Thiocyanate	DETSC 2130	20	ug/l	<20	25
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg / l	<0.015	<0.015
Sulphate as SO4	DETSC 2055	0.1	mg / l	130	20

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY M ARITIME HUB, WHITBY
Sample Id BH102 1.00
Sample Numbers 22511042251110
Date Analysed 31/10/2023

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084\#Total Organic Carbon	$\%$	2.1
DETSC2003\#Loss On Ignition	$\%$	
DETSC 3321\#BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04
DETSC 3401\#PCBs (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01
DETSC 3311\#EPH (C10-C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	<10
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	2.0
DETSC2008\# pH	pH Units	
DETSO73* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$	
DETSO73* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$	

Test Results On Leachate

Determinand and M ethod Reference	Conc in Eluate ug/I	Amount Leached* $\mathbf{~ m g} / \mathbf{k g}$
	$\mathbf{1 0 : 1}$	LS10
DETSC 2306 Arsenic as As	1.3	0.013
DETSC 2306 Barium as Ba	47	0.47
DETSC 2306 Cadmium as Cd	0.054	<0.02
DETSC 2306 Chromium as Cr	2.4	<0.1
DETSC 2306 Copper as Cu	1.6	<0.02
DETSC 2306 M ercury as Hg	0.021	<0.002
DETSC 2306 M olybdenum as Mo	10	0.1
DETSC 2306 Nickel as Ni	0.62	<0.1
DETSC 2306 Lead as Pb	0.53	<0.05
DETSC 2306 Antimony as Sb	0.36	<0.05
DETSC 2306 Selenium as Se	1.8	<0.03
DETSC 2306 Zinc as Zn	<1.3	<0.01
DETSC 2055 Chloride as Cl	25000	250
DETSC 2055* Fluoride as F	250	2.5
DETSC 2055 Sulphate as SO4	240000	2400
DETSC 2009* Total Dissolved Solids	450000	4500
DETSC 2130 Phenol Index	<100	<1
DETSC 2085 Dissolved Organic Carbon	<2000	<50

Additional Information

DETSC 2008 pH	8.6
DETSC 2009 Conductivity uS/ cm	639.0
* Temperature*	18.0
M ass of Sample Kg*	0.100
Mass of dry Sample Kg*	0.092
Stage 1	
Volume of Leachant L2*	0.913
Volume of Eluate VE1*	0.85

[^2]
WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY M ARITIME HUB, WHITBY
Sample Id BH105 2.20
Sample Numbers 22511062251111
Date Analysed 31/10/2023

Test Results On Waste		
Determinand and Method Reference	Units	Result
DETSC 2084\#Total Organic Carbon	$\%$	3.5
DETSC2003\#Loss On Ignition	$\%$	
DETSC 3321\#BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04
DETSC 3401\#PCBs (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01
DETSC 3311\#EPH (C10 - C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	94.0
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	27.0
DETSC2008\# pH	pH Units	
DETSO73* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$	
DETSO73* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$	

WAC Limit Values		
Inert Waste	SNRHW	Hazardous Waste
3	5	6
n / a	n / a	10
6	n / a	n / a
1	n / a	n / a
500	n / a	n / a
100	n / a	n / a
n / a	>6	n / a
n / a	TBE	TBE
n / a	TBE	TBE

Test Results On Leachate

Determinand and Method Reference	Conc in Eluate ug/I	Amount Leached* $\mathbf{~ m g} / \mathbf{k g}$
	$\mathbf{1 0 : 1}$	LS10
DETSC 2306 Arsenic as As	1.2	0.012
DETSC 2306 Barium as Ba	15	0.15
DETSC 2306 Cadmium as Cd	0.11	<0.02
DETSC 2306 Chromium as Cr	1.3	<0.1
DETSC 2306 Copper as Cu	2.1	0.021
DETSC 2306 M ercury as Hg	0.021	<0.002
DETSC 2306 M olybdenum as M o	4.7	<0.1
DETSC 2306 Nickel as Ni	1.3	<0.1
DETSC 2306 Lead as Pb	4.4	<0.05
DETSC 2306 Antimony as Sb	0.44	<0.05
DETSC 2306 Selenium as Se	1.5	<0.03
DETSC 2306 Zinc as Zn	20	0.2
DETSC 2055 Chloride as Cl	8500	<100
DETSC 2055* Fluoride as F	<100	<0.1
DETSC 2055 Sulphate as SO4	12000	120
DETSC 2009* Total Dissolved Solids	76000	760
DETSC 2130 Phenol Index	<100	<1
DETSC 2085 Dissolved Organic Carbon	2200	<50

Additional Information

DETSC 2008 pH	6.8
DETSC 2009 Conductivity uS/ cm	109.0
* Temperature*	18.0
Mass of Sample Kg*	0.100
Mass of dry Sample Kg*	0.092
Stage 1	
Volume of Leachant L2*	0.913
Volume of Eluate VE1*	0.85

[^3]
Summary of Asbestos Analysis

Soil Samples

Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY M ARITIME HUB, WHITBY

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2251103	BH102 0.60	SOIL	NAD	none	Ben Rose
2251104	BH102 1.00	SOIL	NAD	none	Ben Rose
2251106	BH105 2.20	SOIL	NAD	none	Ben Rose
2251107	BH105 3.50	SOIL	NAD	none	Ben Rose

Crocidolite = Blue Asbestos, Amosite =Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD =No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-24975
Client Ref S230311
Contract WHITBY M ARITIME HUB, WHITBY

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2251103	BH102 0.60 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251104	BH102 1.00 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251105	BH102 7.50 SOIL	16/10/23	PT 500ml		
2251106	BH105 2.20 SOIL	16/10/23	GJ 250 ml , PT 1L x2		
2251107	BH105 3.50 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251108	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2		
2251109	BH102 7.50 LEACHATE	16/10/23	PT 500 ml		
2251110	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2		
2251111	BH105 2.20 LEACHATE	16/10/23	PT 500ml		
Key: G-Gla DETS cann be deviating Deviating etc are dev no sample this will pr	-Plastic J-Jar T-Tub be held responsible for Deviating Sample criteri ples'. All samples receiv ing due to the reasons s ate (soils) or date+time ent samples being report	tegrity of samp based on Br re listed abo d. This means ers) has been s deviating w	mples received whereby the tish and International stand e. However, those samples that the analysis is accredit supplied then samples are d here specific hold times are	y did not undertake the sampling. laboratory trials in conjunction with additional comments in relation to applicable, but results may be com However, if you are able to supply ded and where the container supp	this instance samples received may the UKAS note 'Guidance on hold time, inappropriate containers romised due to sample deviations. If sampled date (and time for waters) ed is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym Desaription

HS Headspace analysis
EH Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU Clean-up - e.g. by florisil, silica gel
1D GC - Single coil gas chromatography
2D GC-GC - Double coil gas chromatography
Total Aliphatics \& Aromatics
AL Aliphatics only
AR Aromatics only
\#1 EH_2D_Total but with humics mathematically subtracted
\#2 EH_2D_Total but with fatty acids mathematically subtracted
Operator - underscore to separate acronyms (exception for +)
$+\quad$ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
Det
Acronym

Aliphatic C5-C6
HS_1D_AL

Appendix A - Details of Analysis

Method	Parameter	Units	LImIt or Detection	sample Preparation	Sub-Contracted	UKAS	M CERTS
DETSC 2002	Organic matter	\%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	\%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	pH	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg / l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	\%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	$\mathrm{mg} / \mathrm{kg}$	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol-Monohydric	$\mathrm{mg} / \mathrm{kg}$	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	$\mathrm{mg} / \mathrm{kg}$	0.6	Air Dried	No	Yes	Yes
DETSC 2301	Arsenic	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Barium	$\mathrm{mg} / \mathrm{kg}$	1.5	Air Dried	No	Yes	Yes
DETSC 2301	Beryllium	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC 2301	Cadmium Available	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC 2301	Cadmium	$\mathrm{mg} / \mathrm{kg}$	0.1	Air Dried	No	Yes	Yes
DETSC 2301	Cobalt	$\mathrm{mg} / \mathrm{kg}$	0.7	Air Dried	No	Yes	Yes
DETSC 2301	Chromium	$\mathrm{mg} / \mathrm{kg}$	0.15	Air Dried	No	Yes	Yes
DETSC 2301	Copper	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC 2301	M anganese	$\mathrm{mg} / \mathrm{kg}$	20	Air Dried	No	Yes	Yes
DETSC 2301	M olybdenum	$\mathrm{mg} / \mathrm{kg}$	0.4	Air Dried	No	Yes	Yes
DETSC 2301	Nickel	$\mathrm{mg} / \mathrm{kg}$	1	Air Dried	No	Yes	Yes
DETSC 2301	Lead	$\mathrm{mg} / \mathrm{kg}$	0.3	Air Dried	No	Yes	Yes
DETSC 2301	Selenium	$\mathrm{mg} / \mathrm{kg}$	0.5	Air Dried	No	Yes	Yes
DETSC 2301	Zinc	$\mathrm{mg} / \mathrm{kg}$	1	Air Dried	No	Yes	Yes
DETSC 2311	Boron (water soluble)	$\mathrm{mg} / \mathrm{kg}$	0.2	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	\%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	M ercury	$\mathrm{mg} / \mathrm{kg}$	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	$\mathrm{mg} / \mathrm{kg}$	0.75	As Received	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic $\mathrm{C} 10-\mathrm{C} 12$	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	$\mathrm{mg} / \mathrm{kg}$	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	1.4	As Received	No	Yes	Yes
DETSC 3303	Acenaphthene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes

Appendix A - Details of Analysis

M ethod	Parameter	Units	Limit or Detection	sampie Preparation	Sub-Contracted	UKAS	M CERTS
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3321	Benzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	Ethylbenzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	$m+p$ Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3521	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic $\mathrm{C} 10-\mathrm{C} 12$	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	3.4	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3521	Aromatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	0.5	As Received	No	Yes	Yes
DETSC 3521	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3521	Aromatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	1.4	As Received	No	Yes	Yes

M ethod details are shown only for those determinands listed in Annex A of the M CERTS standard. Anything not included on this list falls outside the scope of M CERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

so DETS

Certificate of Analysis

Client SOLMEK
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-24975-1

Client Reference S230311

Order No SOL--7796
Contract Title WHITBY MARITIME HUB, WHITBY
Description 5 Soil samples, 4 Leachate prepared by DETS samples.

Date Received 23-Oct-23
Date Started 23-Oct-23
Date Completed 11-Dec-23
Test Procedures Identified by prefix DETSn (details on request).
Notes This report supersedes 23-24975, amendments made
Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Kirk Bridgewood
General Manager

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis

Matrix Descriptions

Our Ref 23-24975-1
Client Ref 5230311
Contract Title WHITBY MARITIME HUB, WHITBY

Sample ID
Depth
BH102 1 Lab No Completed M atrix Description BH102 7.5 2251104 $02 / 11 / 2023$ Brown/ orange very gravelly CLAY (M ade ground - brick) BH105 2.2 2251105 $02 / 11 / 2023$ Dark slightly gravelly, sandy CLAY BH105 3.5 2251106 $02 / 11 / 2023$ Dark brown slightly gravelly, sandy CLAY including odd rootlets (Possible made ground - brick)

Summary of Chemical Analysis

Soil Samples
Our Ref 23-24975-1
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY

Test	Method	Sampling Time		n / s	n / s	n / s	n/s
		LOD	Units				
Metals							
Antimony	DETSC 2301*	1	$\mathrm{mg} / \mathrm{kg}$	1.4		1.3	<1.0
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	7.1		11	13
Barium	DETSC 2301\#	1.5	$\mathrm{mg} / \mathrm{kg}$	59		130	57
Beryllium	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	0.4		1.1	0.4
Boron, W ater Soluble (2.5:1)	DETSC 2311\#	0.2	$\mathrm{mg} / \mathrm{kg}$	2.3		2.0	3.7
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	1.1		0.3	0.1
Chromium III	DETSC 2301*	0.15	$\mathrm{mg} / \mathrm{kg}$	11		15	14
Chromium, Hexavalent	DETSC 2204*	1	$\mathrm{mg} / \mathrm{kg}$	<1.0		<1.0	<1.0
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	12		32	12
Iron	DETSC 2301	25	$\mathrm{mg} / \mathrm{kg}$	16000		30000	32000
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	17		92	40
M anganese	DETSC 2301\#	20	$\mathrm{mg} / \mathrm{kg}$	180		570	270
M ercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	<0.05		0.13	0.05
M olybdenum	DETSC 2301\#	0.4	$\mathrm{mg} / \mathrm{kg}$	1.6		1.6	1.1
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	9.2		16	14
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5		0.5	<0.5
Vanadium	DETSC 2301\#	0.8	$\mathrm{mg} / \mathrm{kg}$	16		36	35
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	72		72	54
Inorganics							
pH	DETSC 2008\#		pH	9.6		8.3	8.6
Calorific Value	DETSC 5008	1	MJ/kg	<1.0			
Cyanide, Total	DETSC 2130\#	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		0.2	<0.1
Cyanide, Free	DETSC 2130\#	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		<0.1	<0.1
Cyanide, Complex	DETSC 2130*	0.2	$\mathrm{mg} / \mathrm{kg}$	<0.2		<0.2	<0.2
Thiocyanate	DETSC 2130\#	0.6	$\mathrm{mg} / \mathrm{kg}$	<0.6		0.9	0.8
Organic matter	DETSC 2002\#	0.1	\%		3.2		
Ammoniacal Nitrogen as N	DETSC 2119\#	0.5	$\mathrm{mg} / \mathrm{kg}$	1.4		43	4.7
Nitrate as N	*	1	$\mathrm{mg} / \mathrm{kg}$	<1.0		<1.0	<1.0
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076\#	10	mg / l	1000		210	360
Sulphur as S, Total	DETSC 2320	0.01	\%	0.27		0.13	0.39
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.69		0.13	0.13
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01		<0.01	<0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01		<0.01	<0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01		<0.01	<0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	<1.5		<1.5	<1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$	<1.2		<1.2	<1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	<1.5		<1.5	<1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$	<3.4		<3.4	<3.4
Aliphatic C35-C40: EH_CU_1D_AL	DETSC 3072*	3.4	$\mathrm{mg} / \mathrm{kg}$	<3.4		<3.4	<3.4
Aliphatic C5-C40: EH_CU+HS_1D_AL	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10		<10	<10

Summary of Chemical Analysis
 Soil Samples

Our Ref 23-24975-1
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY

Test	Sampling Time			n / s	n/s	n / s	n / s
	Method	LOD	Units				
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01		<0.01	<0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01		<0.01	<0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01		<0.01	<0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$	<0.9		<0.9	<0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5		<0.5	<0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$	<0.6		<0.6	<0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$	<1.4		<1.4	<1.4
Aromatic C35-C40: EH_CU_1D_AR	DETSC 3072*	1.4	$\mathrm{mg} / \mathrm{kg}$	<1.4		<1.4	<1.4
Aromatic C5-C40: EH_CU+HS_1D_AR	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10		<10	<10
TPH Ali/Aro C5-C40: EH_CU+HS_1D_Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10		<10	<10
TPH (C6-C40): EH+HS_1D_Total	DETSC 3311*	10	$\mathrm{mg} / \mathrm{kg}$	<10		94	<10
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
PAHs							
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		0.2	<0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		0.4	<0.1
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		0.3	<0.1
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		0.7	<0.1
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1		2.8	0.2
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		0.8	<0.1
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.5		4.4	0.2
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.3		3.7	0.2
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.2		2.2	<0.1
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.3		2.5	<0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.2		1.7	<0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.2		1.2	<0.1
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.3		2.5	<0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		2.4	<0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		0.5	<0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1		1.2	<0.1
PAH 16 Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	2.0		27	<1.6
PCBs							
PCB 28 +PCB 31	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
PCB 52	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
PCB 101	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
PCB 118	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
PCB 153	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
PCB 138	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
PCB 180	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			

Summary of Chemical Analysis

Soil Samples

Our Ref 23-24975-1
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY

	Method	Lab No.Sample IDDepthOther IDSample TypeSampling DateSampling Time		2251104	2251105	2251106	2251107
				BH102	BH102	BH105	BH105
				1.00	7.50	2.20	3.50
				ES	ES	ES	ES
				16/10/2023	16/10/2023	16/10/2023	16/10/2023
				n / s	n / s	n / s	n / s
Test		LOD	Units				
PCB 7 Total	DETSC 3401\#	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01			
Phenols							
Phenol - Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	<0.3		<0.3	0.3

Summary of Chemical Analysis

Leachate Samples

Our Ref 23-24975-1
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY

Test	M ethod			2251108	2251109	2251111
				BH102	BH102	BH105
				1.00	7.50	2.20
				ES	ES	ES
				16/10/2023	16/10/2023	16/10/2023
				n / s	n / s	n / s
		LOD	Units			
Metals						
Antimony, Dissolved	DETSC 2306	0.17	ug/l	2.6	1.5	0.44
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.7	2.5	1.2
Barium, Dissolved	DETSC 2306	0.26	ug/l	30	12	15
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	<0.1	<0.1	<0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	71	93	33
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	<0.03	<0.03	0.11
Chromium III, Dissolved	DETSC 2306*	1	ug/l	21	14	1.3
Chromium, Hexavalent	DETSC 2203	7	ug/l	<7.0	<7.0	<7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.7	0.5	2.1
Iron, Dissolved	DETSC 2306	5.5	ug/l	<5.5	7.3	24
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.29	0.31	4.5
M anganese, Dissolved	DETSC 2306	0.22	ug/l	0.95	1.3	9.8
M ercury, Dissolved	DETSC 2306	0.01	ug/l	<0.01	<0.01	0.02
M olybdenum, Dissolved	DETSC 2306	1.1	ug/l	3.4	4.7	4.7
Nickel, Dissolved	DETSC 2306	0.5	ug/l	<0.5	<0.5	1.3
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.46	<0.25	1.5
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	4.3	2.9	1.9
Zinc, Dissolved	DETSC 2306	1.3	ug/l	<1.3	<1.3	20
Inorganics						
pH	DETSC 2008		pH	8.1	8.3	
Cyanide, Total	DETSC 2130	40	ug/l	<40	<40	
Cyanide, Free	DETSC 2130	20	ug/l	<20	<20	
Cyanide, Complex	DETSC 2130*	40	ug/l	<40	<40	
Thiocyanate	DETSC 2130	20	ug/l	<20	25	
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg / l	<0.015	<0.015	
Sulphate as SO4	DETSC 2055	0.1	mg / l	130	20	

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY MARITIM E HUB, WHITBY
Sample Id BH102 1.00

Sample Numbers 22511042251110
Date Analysed 31/10/2023

Test Results On W aste			
Determinand and M ethod Reference	Units	Result	
DETSC 2084\#Total Organic Carbon	$\%$	2.1	
DETSC2003\# Loss On Ignition	$\%$		
DETSC 3321\# BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04	
DETSC 3401\#PCBs (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01	
DETSC 3311\#EPH (C10-C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	<10	
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	2.0	
DETSC2008\# pH	pH Units		
DETS073* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$		
DETS073* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$		

Test Results On Leachate

Determinand and M ethod Reference	Conc in Eluate ug/l	Amount Leached* mg/ kg
	$\mathbf{1 0 : 1}$	LS10
DETSC 2306 Arsenic as As	1.3	0.013
DETSC 2306 Barium as Ba	47	0.47
DETSC 2306 Cadmium as Cd	0.054	<0.02
DETSC 2306 Chromium as Cr	2.4	<0.1
DETSC 2306 Copper as Cu	1.6	<0.02
DETSC 2306 M ercury as Hg	0.021	<0.002
DETSC 2306 M olybdenum as M o	10	0.1
DETSC 2306 Nickel as Ni	0.62	<0.1
DETSC 2306 Lead as Pb	0.53	<0.05
DETSC 2306 Antimony as Sb	0.36	<0.05
DETSC 2306 Selenium as Se	1.8	<0.03
DETSC 2306 Zinc as Zn	<1.3	<0.01
DETSC 2055 Chloride as Cl	25000	250
DETSC 2055* Fluoride as F	250	2.5
DETSC 2055 Sulphate as SO4	240000	2400
DETSC 2009* Total Dissolved Solids	450000	4500
DETSC 2130 Phenol Index	<100	<1
DETSC 2085 Dissolved Organic Carbon	<2000	<50

Additional Information

DETSC 2008 pH	8.6
DETSC 2009 Conductivity uS/cm	639.0
* Temperature*	18.0
M ass of Sample Kg*	0.100
Mass of dry Sample Kg*	0.092
Stage 1	
Volume of Leachant L2*	0.913
Volume of Eluate VE1*	0.85

WAC Limit Values		
Inert Waste	SNRHW	Hazardous Waste
3	5	6
n / a	n / a	10
6	n / a	n / a
1	n / a	n / a
500	n / a	n / a
100	n / a	n / a
n / a	>6	n / a
n / a	TBE	TBE
n / a	TBE	TBE

WAC Limit Values					
Limit values for LS10 Leachate			$	$	Inert
:---:	:---:	:---:			
Waste	\quad SNRHW	Hazardous			
---	---	---	---	---	---
Waste	$	$	0.5	2	25
:---:	:---:	:---:			
20	100	300			
0.04	1	5			
0.5	10	70			
2	50	100			
0.01	0.2	2			
0.5	10	30			
0.4	10	40			
0.5	10	50			
0.06	0.7	5			
0.1	0.5	7			
4	50	200			
800	15,000	25,000			
10	150	500			
1000	20,000	50,000			
4000	60,000	100,000			
1	n / a	n / a			
500	800	1000			
TBE - To Be Evaluated					
SNRHW - Stable Non-Reactive					
Hazardous Waste					

[^4] Values are correct at time of issue.
V.2.06

* DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-24975
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY
Sample Id BH105 2.20

Test Results On W aste		
Determinand and M ethod Reference	Units	Result
DETSC 2084\#Total Organic Carbon	$\%$	3.5
DETSC2003\# Loss On Ignition	$\%$	
DETSC 3321\#BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04
DETSC 3401\#PCBs (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01
DETSC 3311\#EPH (C10 - C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	94.0
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	27.0
DETSC2008\#pH	pH Units	
DETS073* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$	
DETS073* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$	

Test Results On Leachate

Determinand and M ethod Reference	Conc in Eluate ug/I	Amount Leached* mg/ kg
	$\mathbf{1 0 : 1}$	LS10
DETSC 2306 Arsenic as As	1.2	0.012
DETSC 2306 Barium as Ba	15	0.15
DETSC 2306 Cadmium as Cd	0.11	<0.02
DETSC 2306 Chromium as Cr	1.3	<0.1
DETSC 2306 Copper as Cu	2.1	0.021
DETSC 2306 M ercury as Hg	0.021	<0.002
DETSC 2306 M olybdenum as M 0	4.7	<0.1
DETSC 2306 Nickel as Ni	1.3	<0.1
DETSC 2306 Lead as Pb	4.4	<0.05
DETSC 2306 Antimony as Sb	0.44	<0.05
DETSC 2306 Selenium as Se	1.5	<0.03
DETSC 2306 Zinc as Zn	20	0.2
DETSC 2055 Chloride as Cl	8500	<100
DETSC 2055* Fluoride as F	<100	<0.1
DETSC 2055 Sulphate as SO4	12000	120
DETSC 2009* Total Dissolved Solids	76000	760
DETSC 2130 Phenol Index	<100	<1
DETSC 2085 Dissolved Organic Carbon	2200	<50

Additional Information

DETSC 2008 pH	6.8
DETSC 2009 Conductivity uS/cm	109.0
* Temperature*	18.0
M ass of Sample Kg*	0.100
Mass of dry Sample Kg*	0.092
Stage 1	
Volume of Leachant L2*	0.913
Volume of Eluate VE1*	0.85

[^5]Summary of Asbestos Analysis
Soil Samples
Our Ref 23-24975-1
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2251103	BH102 0.60	SOIL	NAD	none	Ben Rose
2251104	BH102 1.00	SOIL	NAD	none	Ben Rose
2251106	BH105 2.20	SOIL	NAD	none	Ben Rose
2251107	BH105 3.50	SOIL	NAD	none	Ben Rose

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD =No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-24975-1
Client Ref S230311
Contract WHITBY MARITIME HUB, WHITBY

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2251103	BH102 0.60 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2251104	BH102 1.00 SOIL	16/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days)	BTEX / C5-C10
2251105	BH102 7.50 SOIL	16/10/23	PT 500 ml		
2251106	BH105 2.20 SOIL	16/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days)	BTEX / C5-C10
2251107	BH105 3.50 SOIL	16/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days)	BTEX / C5-C10
2251108	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2		
2251109	BH102 7.50 LEACHATE	16/10/23	PT 500ml		
2251110	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L x2		
2251111	BH105 2.20 LEACHATE	16/10/23	PT 500ml		
Key: G-Glass P-Plastic J-Jar T-Tub DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.					

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym Description

HS Headspace analysis
EH Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU Clean-up - e.g. by florisil, silica gel
1D GC - Single coil gas chromatography
2D GC-GC - Double coil gas chromatography
Total Aliphatics \& Aromatics
AL Aliphatics only
AR Aromatics only
\#1 EH_2D_Total but with humics mathematically subtracted
\#2 EH_2D_Total but with fatty acids mathematically subtracted
Operator - underscore to separate acronyms (exception for +)
$+\quad$ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
Det
Acronym
Aliphatic C5-C6

HS_1D_AL

Appendix A - Details of Analysis

		LImıt ot	Sample			
M ethod	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS

Appendix A - Details of Analysis

M ethod	Parameter	Units	Limit ot Detection	Sample Preparation	Sub-Contracted	UKAS	M CERTS
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3321	Benzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	Ethylbenzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	$m+p$ Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3521	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic $\mathrm{C} 10-\mathrm{C} 12$	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic $\mathrm{C} 12-\mathrm{Cl} 6$	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	3.4	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3521	Aromatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	0.5	As Received	No	Yes	Yes
DETSC 3521	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3521	Aromatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	1.4	As Received	No	Yes	Yes

M ethod details are shown only for those determinands listed in Annex A of the M CERTS standard. Anything not included on this list falls outside the scope of M CERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

$\%$ DETS

Certificate of Analysis

Certificate Number 23-27300
Client SOLMEK
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-27300
Client Reference S230311
Order No SOL--7796
Contract Title WHITBY MARITIME HUB, WHITBY
Description 1 Soil sample, 2 Leachate prepared by DETS samples.

Date Received 23-Oct-23
Date Started 20-Nov-23

Date Completed 01-Dec-23

Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Kirk Bridgewood
General Manager

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis

Soil Samples

Our Ref 23-27300
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY

		Lab No Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		
				2264873
				BH105
				2.20
				ES
				16/10/2023
				n / s
Test	M ethod	LOD	Units	
Inorganics				
Calorific Value	DETSC 5008	1	MJ/kg	<1.0

Summary of Chemical Analysis
Leachate Samples
Our Ref 23-27300
Client Ref S230311
Contract Title WHITBY M ARITIM E HUB, WHITBY

Summary of Chemical Analysis

Leachate Samples

Our Ref 23-27300
Client Ref S230311
Contract Title WHITBY MARITIM E HUB, WHITBY

Test	Method			2264874	2264875
				BH102	BH105
				1.00	2.20
				ES	ES
				16/10/2023	16/10/2023
				n / s	n / s
		LOD	Units		
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	<0.01	0.05
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug / l	0.05	0.26
PAH Total	DETSC 3304	0.2	ug/l	0.79	5.0
PCBs					
PCB 28 +PCB 31	DETSC 3402	0.3	ug/I	<0.3	<0.3
PCB 52	DETSC 3402	0.2	ug/l	<0.2	<0.2
PCB 101	DETSC 3402	0.3	ug/l	<0.3	<0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	<0.6	<0.6
PCB 138	DETSC 3402	0.2	ug/l	<0.2	<0.2
PCB 153	DETSC 3402	0.2	ug/l	<0.2	<0.2
PCB 180	DETSC 3402	0.2	ug/l	<0.2	<0.2
PCB 7 Total	DETSC 3402	1	ug/l	<1.0	<1.0
Phenols					
Phenol-Monohydric	DETSC 2130	100	ug/l	<100	<100

Information in Support of the Analytical Results

Our Ref 23-27300
Client Ref S230311
Contract WHITBY M ARITIM E HUB, WHITBY

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2264873	BH105 2.20 SOIL	16/10/23	GJ 250ml, PT 1L x2		
2264874	BH102 1.00 LEACHATE	16/10/23	GJ 250ml, PT 1L $\times 2$		
2264875	BH105 2.20 LEACHATE	16/10/23	G) 250 ml, PT 1L $\times 2$		
Key: G-Glass P-Plastic J-Jar T-Tub DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date +time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.					

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym Description

HS Headspace analysis
EH Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU Clean-up - e.g. by florisil, silica gel
1D GC - Single coil gas chromatography
2D GC-GC - Double coil gas chromatography
Total Aliphatics \& Aromatics
AL Aliphatics only
AR Aromatics only
\#1 EH_2D_Total but with humics mathematically subtracted
\#2 EH_2D_Total but with fatty acids mathematically subtracted
Operator - underscore to separate acronyms (exception for +)
$+\quad$ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det
Aliphatic C5-C6
Aliphatic C6-C8
Aliphatic C8-C10
Aliphatic C10-C12
Aliphatic C12-C16
Aliphatic C16-C21
Aliphatic C21-C35
Aliphatic C35-C40
Aliphatic C5-C40
Aromatic C5-C7
Aromatic C7-C8
Aromatic C8-C10
Aromatic C10-C12
Aromatic C12-C16
Aromatic C16-C21
Aromatic C21-C35
Aromatic C35-C40
Aromatic C5-C40
TPH Ali/Aro C5-C40

Acronym
HS_1D_AL
HS_1D_AL
HS_1D_AL
EH_CU_1D_AL
EH_CU_1D_AL
EH_CU_1D_AL
EH_CU_1D_AL
EH_CU_1D_AL
EH_CU+HS_1D_AL
HS_1D_AR
HS_1D_AR
HS_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU+HS_1D_AR
EH_CU+HS_1D_Total

\& DETS

Certificate of Analysis

Client SOLMEK
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-27302

Client Reference S230311

Order No SOL-7810
Contract Title Whitby Maritime Hub, Whitby
Description 2 Soil samples.
Date Received 26-Oct-23

Date Started 20-Nov-23

Date Completed 28-Nov-23

Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis

Soil Samples
Our Ref 23-27302
Client Ref S230311
Contract Title Whitby Maritime Hub, Whitby

Test	Method	Sampling Time		n/s	n/s
		LOD	Units		
M etals					
Antimony	DETSC 2301*	1	mg/kg	1.5	1.6
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	3.8	3.6
Barium	DETSC 2301\#	1.5	$\mathrm{mg} / \mathrm{kg}$	51	45
Beryllium	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	<0.2	<0.2
Boron, Water Soluble (2.5:1)	DETSC 2311\#	0.2	$\mathrm{mg} / \mathrm{kg}$	0.8	0.6
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1	<0.1
Chromium III	DETSC 2301*	0.15	$\mathrm{mg} / \mathrm{kg}$	4.5	4.0
Chromium, Hexavalent	DETSC 2204*	1	$\mathrm{mg} / \mathrm{kg}$	<1.0	<1.0
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	13	12
Iron	DETSC 2301	25	$\mathrm{mg} / \mathrm{kg}$	7800	7500
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	54	42
M anganese	DETSC 2301\#	20	$\mathrm{mg} / \mathrm{kg}$	280	290
M ercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	0.08	0.07
M olybdenum	DETSC 2301\#	0.4	$\mathrm{mg} / \mathrm{kg}$	0.5	0.5
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	8.9	7.6
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5	<0.5
Vanadium	DETSC 2301\#	0.8	$\mathrm{mg} / \mathrm{kg}$	8.8	7.4
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	43	38
Inorganics					
pH	DETSC 2008\#		pH	8.4	8.2
Cyanide, Total	DETSC 2130\#	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Cyanide, Free	DETSC 2130\#	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Cyanide, Complex	DETSC 2130*	0.2	$\mathrm{mg} / \mathrm{kg}$	<0.2	<0.2
Thiocyanate	DETSC 2130\#	0.6	$\mathrm{mg} / \mathrm{kg}$	4.5	4.3
Ammoniacal Nitrogen as N	DETSC 2119\#	0.5	$\mathrm{mg} / \mathrm{kg}$	2.0	2.4
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076\#	10	mg / l	200	170
Sulphur as S, Total	DETSC 2320	0.01	\%	0.04	0.04
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.09	0.08
Petroleum Hydrocarbons					
TPH (C6-C40): EH+HS_1D_Total	DETSC 3311*	10	$\mathrm{mg} / \mathrm{kg}$	<10	<10

Information in Support of the Analytical Results

Our Ref 23-27302
Client Ref S230311
Contract Whitby M aritime Hub, Whitby

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2264877	BH104 0.80 SOIL	19/10/23	GJ 250ml, PT 1Lx2		
2264878	BH104 1.00 SOIL	19/10/23	GJ 250ml, PT 1L x2		
Key: G-Glass P-Plastic J-Jar T-Tub					
DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on					
Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters)					

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
ID	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics \& Aromatics
AL	Aliphatics only
AR	Aromatics only
\#1	EH_2D_Total but with humics mathematically subtracted
\#2	EH_2D_Total but with fatty acids mathematically subtracted
-	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
	Det
	TPH (C6-C40)

End of Report

\% DETS

Certificate of Analysis

Client SOLMEK
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-27292
Client Reference S230311
Order No SOL-7819
Contract Title Whitby Maritime Hub, Whitby
Description 2 Soil samples.
Date Received 01-Nov-23
Date Started 20-Nov-23
Date Completed 23-Nov-23
Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Kirk Bridgewood General Manager

Summary of Asbestos Analysis Samples

Our Ref 23-27292
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby
Lab No Sample ID \quad Sample Location \quad Material Type \quad Result \quad Comment* Analyst

Crocidolite = Blue Asbestos, Amosite =Brown Asbestos, Chrysotile $=$ White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD =No Asbestos Detected.
Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: ${ }^{*}$-not included in laboratory scope of accreditation.

DE

Summary of Asbestos Quantification Analysis
 Soil Samples

Our Ref 23-27292
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Test	Method	Units		
Total M ass\% Asbestos (a+b+c)	DETSC 1102	Mass \%	< 0.001	0.002
Gravimetric Quantification (a)	DETSC 1102	M ass \%	na	0.002
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass \%	<0.001	na
Quantification by PCOM (c)	DETSC 1102	Mass \%	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na
Breakdown of Gravimetric Analysis (a)				

M ass of Sample		g	957.67
ACM s present*		type	
Mass of ACM in sample	g		Cement
\% ACM by mass	$\%$	0.12	
$\%$ asbestos in ACM		$\%$	0.02
$\%$ asbestos in sample		$\%$	15

Breakdown of Detailed Gravimetric Analysis (b)

\% Amphibole bundles in sample	Mass \%	na	na
\% Chrysotile bundles in sample	Mass \%	<0.001	na
Breakdown of PCOM Analysis (c)			
\% Amphibole fibres in sample	Mass \%	na	na
\% Chrysotile fibres in sample	Mass \%	na	na

Breakdown of Potentially Respirable Fibre Analysis (d)

Amphibole fibres		Fibres/g	na	na
Chrysotile fibres		Fibres/g	na	na

[^6]
Information in Support of the Analytical Results

Our Ref 23-27292
Client Ref S230311
Contract Whitby M aritime Hub, Whitby

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	noiaing time exceeded for tests	inappropriate container for tests
2264823	BH101 3.10 SOIL	23/10/23	GJ 250ml, PT 1L x2		
2264824	BH103 0.70 SOIL	23/10/23	G] 250 ml, PT 1L x2		
Key: G-Gla DETS cann be deviati Deviating etc are de no sample this will pr	P-Plastic J-Jar T-Tu be held responsib Deviating Sample mples'. All sample ing due to the rea ate (soils) or date nt samples being	tegrity of samp based on Br re listed abo d. This means ers) has been s deviating w	ples received whereby the ish and International stand . However, those samples that the analysis is accredit supplied then samples are dev ere specific hold times are	In this instance sa th the UKAS note o hold time, inapp mpromised due to a sampled date (plied is suitable.	ples received may uidance on priate containers smple deviations. If nd time for waters)

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

\& DETS

Certificate of Analysis

Client SOLMEK
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-27301
Client Reference S230311
Order No SOL-7819
Contract Title Whitby Maritime Hub, Whitby
Description One Soil sample.
Date Received 01-Nov-23
Date Started 20-Nov-23

Date Completed 22-Nov-23

Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis
 Soil Samples

Our Ref 23-27301
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

	M ethod			2264876
				BH101
				3.10
				ES
				23/10/2023
				n / s
Test		LOD	Units	
Inorganics				
Calorific Value	DETSC 5008	1	MJ/kg	<1.0

Information in Support of the Analytical Results

Our Ref 23-27301
Client Ref S230311
Contract Whitby Maritime Hub, Whitby

Containers Received \& Deviating Samples

	Date	Holding time exceeded for	Inappropriate container for tests
Lests			

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

\& DETS

Certificate of Analysis

Client SOLMEK
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-25774
Client Reference S230311
Order No SOL-7819
Contract Title Whitby Maritime Hub, Whitby
Description 4 Soil samples, 5 Leachate samples.
Date Received 01-Nov-23
Date Started 01-Nov-23
Date Completed 14-Nov-23
Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

KIrk Bridgewood
General Manager

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis

Soil Samples
Our Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Test	Method	Sampling Time		/s	n/s	n/s	n/s
		LOD	Units				
Metals							
Antimony	DETSC 2301*	1	$\mathrm{mg} / \mathrm{kg}$	1.2	1.1	1.3	2.4
Arsenic	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	10	7.3	7.8	8.5
Barium	DETSC 2301\#	1.5	$\mathrm{mg} / \mathrm{kg}$	110	150	130	160
Beryllium	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	0.5	1.5	1.1	0.6
Boron, W ater Soluble (2.5:1)	DETSC 2311\#	0.2	$\mathrm{mg} / \mathrm{kg}$	4.4	5.4	3.4	1.3
Cadmium	DETSC 2301\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1	0.2	0.1	0.1
Chromium III	DETSC 2301*	0.15	$\mathrm{mg} / \mathrm{kg}$	11	13	17	13
Chromium, Hexavalent	DETSC 2204*	1	$\mathrm{mg} / \mathrm{kg}$	<1.0	<1.0	<1.0	<1.0
Copper	DETSC 2301\#	0.2	$\mathrm{mg} / \mathrm{kg}$	33	32	120	2100
Iron	DETSC 2301	25	$\mathrm{mg} / \mathrm{kg}$	25000	16000	19000	20000
Lead	DETSC 2301\#	0.3	$\mathrm{mg} / \mathrm{kg}$	110	120	150	230
M anganese	DETSC 2301\#	20	$\mathrm{mg} / \mathrm{kg}$	360	580	520	410
M ercury	DETSC 2325\#	0.05	$\mathrm{mg} / \mathrm{kg}$	0.38	0.16	0.63	0.10
M olybdenum	DETSC 2301\#	0.4	$\mathrm{mg} / \mathrm{kg}$	1.1	1.1	7.4	1.1
Nickel	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	21	15	16	18
Selenium	DETSC 2301\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5	1.1	<0.5	<0.5
Vanadium	DETSC 2301\#	0.8	$\mathrm{mg} / \mathrm{kg}$	27	30	27	23
Zinc	DETSC 2301\#	1	$\mathrm{mg} / \mathrm{kg}$	81	100	100	100
Inorganics							
pH	DETSC 2008\#		pH	9.2	9.4	8.9	9.1
Cyanide, Total	DETSC 2130\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.3	<0.1	<0.1	0.1
Cyanide, Free	DETSC 2130\#	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1	<0.1	<0.1	<0.1
Cyanide, Complex	DETSC 2130*	0.2	$\mathrm{mg} / \mathrm{kg}$	<0.2	<0.2	<0.2	<0.2
Thiocyanate	DETSC 2130\#	0.6	$\mathrm{mg} / \mathrm{kg}$	3.8	1.0	<0.6	2.1
Organic matter	DETSC 2002\#	0.1	\%	1.8	1.4		
Ammoniacal Nitrogen as N	DETSC 2119\#	0.5	$\mathrm{mg} / \mathrm{kg}$	1.6	1.5	1.4	1.5
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076\#	10	mg/l	77	510	53	820
Sulphur as S, Total	DETSC 2320	0.01	\%	0.05	0.29	0.32	0.13
Sulphate as SO4, Total	DETSC 2321\#	0.01	\%	0.08	0.17	0.19	0.27

Summary of Chemical Analysis

Soil Samples
Our Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Test	M ethod	LOD	Units				
Petroleum Hydrocarbons							
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	<1.5	<1.5	<1.5	<1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$	<1.2	<1.2	<1.2	<1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	<1.5	<1.5	<1.5	<1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$	<3.4	<3.4	<3.4	<3.4
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10	<10	<10	<10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01	<0.01	<0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$	4.2	<0.9	<0.9	<0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$	1.9	<0.5	<0.5	<0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$	0.8	<0.6	<0.6	<0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$	<1.4	<1.4	<1.4	<1.4
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10	<10	<10	<10
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10	<10	<10	<10
EPH (C10-C40): EH_1D_Total	DETSC 3311\#	10	$\mathrm{mg} / \mathrm{kg}$	15	69	60	130
Benzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$		<0.01	<0.01	
Ethylbenzene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$		<0.01	<0.01	
Toluene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$		<0.01	<0.01	
Xylene	DETSC 3321\#	0.01	$\mathrm{mg} / \mathrm{kg}$		<0.01	<0.01	
MTBE	DETSC 3321	0.01	$\mathrm{mg} / \mathrm{kg}$		<0.01	<0.01	

Summary of Chemical Analysis

Soil Samples

Our Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

	M ethod	Sampling Time		n / s	n / s	n/s	n / s
Test		LOD	Units				
PAHs							
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	0.5
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	<0.1	1.6
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1	0.1	0.4
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	0.2	0.3	2.7
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	1.2	1.8	9.6
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	0.7	0.4	2.7
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1	3.9	3.4	7.4
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1	3.3	2.8	6.1
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	1.6	1.1	2.8
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	1.4	1.1	2.9
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	1.0	0.8	1.4
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	0.6	0.5	1.0
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	1.4	1.2	2.2
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	0.9	0.8	1.2
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	0.3	0.2	0.3
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	0.8	0.6	0.9
PAH 16 Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	<1.6	17	15	44
Phenols							
Phenol-Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	<0.3	0.7	0.7	<0.3

Summary of Chemical Analysis

Leachate Samples
Our Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

est	Method		Units			
Preparation						
BSEN 12457 10:1	DETSC 1009*					
NRA Leachate Preparation	DETSC 1009*			Y	Y	Y
Metals						
Antimony, Dissolved	DETSC 2306	0.17	ug/l	1.6	1.5	1.7
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	9.9	1.8	0.70
Barium, Dissolved	DETSC 2306	0.26	ug/l	3.0	18	37
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	<0.1	<0.1	<0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	41	90	32
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	<0.03	<0.03	<0.03
Chromium III, Dissolved	DETSC 2306*	1	ug/l	5.6	<1.0	4.3
Chromium, Hexavalent	DETSC 2203	7	ug/l	<7.0	<7.0	<7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	1.8	<0.4	1.8
Iron, Dissolved	DETSC 2306	5.5	ug/l	100	<5.5	<5.5
Lead, Dissolved	DETSC 2306	0.09	ug/l	1.5	0.10	1.0
M anganese, Dissolved	DETSC 2306	0.22	ug/l	1.7	14	4.0
M ercury, Dissolved	DETSC 2306	0.01	ug/l	0.01	<0.01	<0.01
M olybdenum, Dissolved	DETSC 2306	1.1	ug/l	3.0	6.2	2.1
Nickel, Dissolved	DETSC 2306	0.5	ug/l	0.6	<0.5	<0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	0.83	0.53	0.61
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	2.9	2.9	0.8
Zinc, Dissolved	DETSC 2306	1.3	ug/l	<1.3	<1.3	4.0
Inorganics						
pH	DETSC 2008		pH	8.2	7.8	7.4
Cyanide, Total	DETSC 2130	40	ug/l	<40	<40	<40
Cyanide, Free	DETSC 2130	20	ug/l	<20	<20	<20
Cyanide, Complex	DETSC 2130*	40	ug/l	<40	<40	<40
Thiocyanate	DETSC 2130	20	ug/l	95	<20	<20
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg / l	0.019	<0.015	<0.015
Sulphate as SO4	DETSC 2055	0.1	mg / l	8.0	45	140

Summary of Chemical Analysis

Leachate Samples
Our Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

es	M ethod		Units			
Petroleum Hydrocarbons						
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	<10	<10	<10
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l	<10	<10	<10
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	ug/l	<10	<10	<10
Benzene	DETSC 3322	1	ug/l		<1.0	
Toluene	DETSC 3322	1	ug/l		<1.0	
Ethylbenzene	DETSC 3322	1	ug/l		<1.0	
Xylene	DETSC 3322	1	ug/l		<1.0	
MTBE	DETSC 3322	1	ug/l		<1.0	
PAHs						
Naphthalene	DETSC 3304	0.05	ug/l	0.07	<0.05	<0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	<0.01	0.01	0.03
Acenaphthene	DETSC 3304	0.01	ug/l	<0.01	0.07	0.02
Fluorene	DETSC 3304	0.01	ug/l	<0.01	0.04	0.03
Phenanthrene	DETSC 3304	0.01	ug/l	0.01	0.10	0.07
Anthracene	DETSC 3304	0.01	ug/l	<0.01	0.04	0.03
Fluoranthene	DETSC 3304	0.01	ug/l	0.01	0.22	0.17
Pyrene	DETSC 3304	0.01	ug/l	0.01	0.19	0.16
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	<0.01	0.09	0.09
Chrysene	DETSC 3304	0.01	ug/l	<0.01	0.10	0.10
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	<0.01	0.12	0.14
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	<0.01	0.05	0.05
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	<0.01	0.10	0.13
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug/l	<0.01	0.07	0.09
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	<0.01	0.02	0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	<0.01	0.07	0.08
PAH Total	DETSC 3304	0.2	ug/l	<0.20	1.3	1.2

Summary of Chemical Analysis

Leachate Samples

Our Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Test
Method

Lab No	2256400	2256401	2256402
Sample ID	BH101	BH101	BH 103
Depth	0.80	3.10	0.70
Other ID			
Sample Type	ES	ES	ES
Sampling Date	$23 / 10 / 2023$	$23 / 10 / 2023$	$23 / 10 / 2023$
	n / s	n / s	n / s

Phenols
Phenol - Monohydric
DETSC 2130
100
ug/l $140<100$ <100

WASTE ACCEPTANCE CRITERIA TESTING ANALYTICAL REPORT

Our Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby
Sample Id BH101 3.10

Sample Numbers 22563972256403
Date Analysed 10/11/2023

Test Results On Waste			
Determinand and M ethod Reference	Units	Result	
DETSC 2084\#Total Organic Carbon	$\%$	2.7	
DETSC2003\#Loss On Ignition	$\%$		
DETSC 3321\#BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04	
DETSC 3401\#PCBs (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01	
DETSC 3311\#EPH (C10-C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	69.0	
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	17.0	
DETSC2008\# pH	pH Units		
DETSO73* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$		
DETS073* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$		

Test Results On Leachate

Determinand and M ethod Reference	Conc in Eluate ug/I	Amount Leached* mg/kg
	$\mathbf{1 0 : 1}$	LS10
DETSC 2306 Arsenic as As	1.1	0.011
DETSC 2306 Barium as Ba	16	0.16
DETSC 2306 Cadmium as Cd	<0.030	<0.02
DETSC 2306 Chromium as Cr	0.34	<0.1
DETSC 2306 Copper as Cu	<0.40	<0.02
DETSC 2306 M ercury as Hg	<0.010	<0.002
DETSC 2306 M olybdenum as M o	4.3	<0.1
DETSC 2306 Nickel as Ni	<0.50	<0.1
DETSC 2306 Lead as Pb	0.25	<0.05
DETSC 2306 Antimony as Sb	1	<0.05
DETSC 2306 Selenium as Se	0.27	<0.03
DETSC 2306 Zinc as Zn	2.2	0.022
DETSC 2055 Chloride as Cl	190000	1900
DETSC 2055* Fluoride as F	150	1.5
DETSC 2055 Sulphate as SO4	31000	310
DETSC 2009* Total Dissolved Solids	710000	7100
DETSC 2130 Phenol Index	<100	<1
DETSC 2085 Dissolved Organic Carbon	<2000	<50

Additional Information

DETSC 2008 pH	7.5
DETSC 2009 Conductivity uS/ cm	1020.0
* Temperature*	17.0
M ass of Sample Kg*	0.120
M ass of dry Sample Kg*	0.099
Stage 1	
Volume of Leachant L2*	0.966
Volume of Eluate VE1*	0.91

[^7]
WASTE ACCEPTANCE CRITERIA TESTING

 ANALYTICAL REPORTOur Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby
Sample Id BH103 0.70

Sample Numbers 22563992256404
Date Analysed 10/11/2023

Test Results On Waste			
Determinand and M ethod Reference	Units	Result	
DETSC 2084\#Total Organic Carbon	$\%$	1.4	
DETSC2003\#Loss On Ignition	$\%$		
DETSC 3321\#BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04	
DETSC 3401\#PCBs (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01	
DETSC 3311\#EPH (C10-C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	130.0	
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	44.0	
DETSC2008\# pH	pH Units		
DETSO73* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$		
DETS073* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$		

Test Results On Leachate

Determinand and M ethod Reference	Conc in Eluate ug/l	Amount Leached* mg/ kg
	$\mathbf{1 0 : 1}$	LS10
DETSC 2306 Arsenic as As	0.62	<0.01
DETSC 2306 Barium as Ba	33	0.33
DETSC 2306 Cadmium as Cd	<0.030	<0.02
DETSC 2306 Chromium as Cr	1.4	<0.1
DETSC 2306 Copper as Cu	1.7	<0.02
DETSC 2306 M ercury as Hg	<0.010	<0.002
DETSC 2306 M olybdenum as M o	1.6	<0.1
DETSC 2306 Nickel as Ni	<0.50	<0.1
DETSC 2306 Lead as Pb	1.3	<0.05
DETSC 2306 Antimony as Sb	2.5	<0.05
DETSC 2306 Selenium as Se	0.64	<0.03
DETSC 2306 Zinc as Zn	4.7	0.047
DETSC 2055 Chloride as Cl	72000	720
DETSC 2055* Fluoride as F	290	2.9
DETSC 2055 Sulphate as SO4	140000	1400
DETSC 2009* Total Dissolved Solids	760000	7600
DETSC 2130 Phenol Index	<100	<1
DETSC 2085 Dissolved Organic Carbon	<2000	<50

Additional Information

DETSC 2008 pH	7.1
DETSC 2009 Conductivity uS/cm	1090.0
* Temperature*	17.0
M ass of Sample Kg* 0.120 M ass of dry Sample Kg* 0.099 Stage 1 Volume of Leachant L2* 0.974 Volume of Eluate VE1* 0.92 ln	

[^8]
Summary of Asbestos Analysis

Soil Samples

Our Ref 23-25774
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2256396	BH101 0.80	SOIL	NAD	none	Ben Rose
2256397	BH101 3.10	SOIL	Chrysotile	Chrysotile present as fibre bundles	Ben Rose
2256399	BH103 0.70	SOIL	Chrysotile	Chrysotile present in microscopic cement fragments	Ben Rose

Crocidolite =Blue Asbestos, Amosite =Brown Asbestos, Chrysotile =White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD =No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-25774
Client Ref S230311
Contract Whitby Maritime Hub, Whitby

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2256396	BH101 0.80 SOIL	23/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days), Total Sulphur ICP (7 days), pH + Conductivity (7 days)	BTEX / C5-C10
2256397	BH101 3.10 SOIL	23/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days), Total Sulphur ICP (7 days), pH +Conductivity (7 days)	BTEX / C5-C10
2256398	BH101 3.80 SOIL	23/10/23	GJ 250ml, PT 1L x2	Ammonia (3 days), Total Sulphur ICP (7 days), pH +Conductivity (7 days)	BTEX / C5-C10
2256399	BH103 0.70 SOIL	23/10/23	GJ 250ml, PT 1Lx2	Ammonia (3 days), Total Sulphur ICP (7 days), pH +Conductivity (7 days)	BTEX / C5-C10
2256400	BH101 0.80 LEACHATE	23/10/23	GJ 250ml, PT 1L x2		
2256401	BH101 3.10 LEACHATE	23/10/23	GJ 250ml, PT 1Lx2		
2256402	BH103 0.70 LEACHATE	23/10/23	GJ 250ml, PT 1Lx2		
2256403	BH101 3.10 LEACHATE	23/10/23	GJ 250ml, PT 1Lx2		
2256404	BH103 0.70 LEACHATE	23/10/23	GJ 250ml, PT 1Lx2		
Key: G-Glass P-Plastic J-Jar T-Tub DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.					

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym Description

HS Headspace analysis
EH Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU Clean-up - e.g. by florisil, silica gel
1D GC - Single coil gas chromatography
2D GC-GC - Double coil gas chromatography
Total Aliphatics \& Aromatics
AL Aliphatics only
AR Aromatics only
\#1 EH_2D_Total but with humics mathematically subtracted
\#2 EH_2D_Total but with fatty acids mathematically subtracted
Operator - underscore to separate acronyms (exception for +)
$+\quad$ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det
Aliphatic C5-C6
Aliphatic C6-C8
Aliphatic C8-C10
Aliphatic C10-C12
Aliphatic C12-C16
Aliphatic C16-C21
Aliphatic C21-C35
Aliphatic C5-C35
Aromatic C5-C7
Aromatic C7-C8
Aromatic C8-C10
Aromatic C10-C12
Aromatic C12-C16
Aromatic C16-C21
Aromatic C21-C35
Aromatic C5-C35
TPH Ali/Aro Total C5-C35
EPH (C10-C40)
TPH (C10-C40)

Acronym
HS_1D_AL
HS_1D_AL
HS_1D_AL
EH_CU_1D_AL
EH_CU_1D_AL
EH_CU_1D_AL
EH_CU_1D_AL
EH_CU +HS_1D_AL
HS_1D_AR
HS_1D_AR
HS_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU +HS_1D_AR
EH_CU+HS_1D_Total
EH_1D_Total
EH_1D_Total

\& DETS

Certificate of Analysis

Client SOLMEK

12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-25310

Client Reference S230311

Order No SOL-7810
Contract Title Whitby Maritime Hub, Whitby
Description 2 Soil samples, 2 Leachate samples.
Date Received 26-Oct-23
Date Started 26-Oct-23
Date Completed 09-Nov-23
Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Summary of Chemical Analysis
 Matrix Descriptions

Our Ref 23-25310
Client Ref S230311
Contract Title Whitby Maritime Hub, Whitby

Sample ID	Depth	Lab No	Completed	M atrix Description
BH104	0.8	2253351	$09 / 11 / 2023$	Light brown very gravelly, sandy CLAY
BH104	1	2253352	$09 / 11 / 2023$	Light brown very gravelly, sandy CLAY

Summary of Chemical Analysis

Soil Samples
Our Ref 23-25310
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Test	Method	Sampling Time		n/s	n / s
		LOD	Units		
Petroleum Hydrocarbons					
Aliphatic C5-C6: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	0.40	0.43
Aliphatic C6-C8: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01
Aliphatic C8-C10: HS_1D_AL	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	0.99	0.07
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	<1.5	<1.5
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072\#	1.2	$\mathrm{mg} / \mathrm{kg}$	<1.2	<1.2
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072\#	1.5	$\mathrm{mg} / \mathrm{kg}$	<1.5	<1.5
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072\#	3.4	$\mathrm{mg} / \mathrm{kg}$	<3.4	<3.4
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10	<10
Aromatic C5-C7: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01
Aromatic C7-C8: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01
Aromatic C8-C10: HS_1D_AR	DETSC 3321*	0.01	$\mathrm{mg} / \mathrm{kg}$	<0.01	<0.01
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072\#	0.9	$\mathrm{mg} / \mathrm{kg}$	<0.9	<0.9
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072\#	0.5	$\mathrm{mg} / \mathrm{kg}$	<0.5	<0.5
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072\#	0.6	$\mathrm{mg} / \mathrm{kg}$	<0.6	<0.6
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072\#	1.4	$\mathrm{mg} / \mathrm{kg}$	<1.4	<1.4
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10	<10
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	$\mathrm{mg} / \mathrm{kg}$	<10	<10
PAHs					
Naphthalene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Acenaphthylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.2	0.2
Acenaphthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Fluorene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Phenanthrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	0.1	<0.1
Anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Benzo(a)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Chrysene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Benzo(a)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	$\mathrm{mg} / \mathrm{kg}$	<0.1	<0.1
PAH 16 Total	DETSC 3301	1.6	$\mathrm{mg} / \mathrm{kg}$	<1.6	<1.6
Phenols					
Phenol-Monohydric	DETSC 2130\#	0.3	$\mathrm{mg} / \mathrm{kg}$	<0.3	0.5

Summary of Chemical Analysis

Leachate Samples
Our Ref 23-25310
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

	M ethod	Lab No.Sample IDDepthOther IDSample TypeSampling DateSampling Time		2253353
				BH104
				0.80
				ES
				19/10/2023
				n / s
Test		LOD	Units	
Preparation				
BS EN 12457 10:1	DETSC 1009*			Y
BS EN 12457 10:1	DETSC 1009*			
Metals				
Antimony, Dissolved	DETSC 2306	0.17	ug/I	2.8
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	1.3
Barium, Dissolved	DETSC 2306	0.26	ug/l	24
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	<0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	27
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.12
Chromium III, Dissolved	DETSC 2306*	1	ug/l	4.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	<7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	2.3
Iron, Dissolved	DETSC 2306	5.5	ug/l	74
Lead, Dissolved	DETSC 2306	0.09	ug/l	6.0
M anganese, Dissolved	DETSC 2306	0.22	ug/l	14
M ercury, Dissolved	DETSC 2306	0.01	ug/l	0.03
M olybdenum, Dissolved	DETSC 2306	1.1	ug/l	6.0
Nickel, Dissolved	DETSC 2306	0.5	ug/l	1.7
Selenium, Dissolved	DETSC 2306	0.25	ug/l	1.9
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	2.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	36
Inorganics				
pH	DETSC 2008		pH	6.6
Cyanide, Total	DETSC 2130	40	ug/l	<40
Cyanide, Free	DETSC 2130	20	ug/l	<20
Cyanide, Complex	DETSC 2130*	40	ug/l	<40
Thiocyanate	DETSC 2130	20	ug/l	<20
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg / l	0.070
Sulphate as SO4	DETSC 2055	0.1	mg / l	28
Petroleum Hydrocarbons				
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/I	<0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	<10
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1

Summary of Chemical Analysis

Leachate Samples

Our Ref 23-25310
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

	M ethod	Lab No .Sample ID Depth Other ID Sample Type Sampling Date Sampling Time		2253353
				BH104
				0.80
				ES
				19/10/2023
				n/s
Test		LOD	Units	
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0
Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l	<10
TPH Ali/Aro Total C5-C35: EH_CU+HS_1D_Total	DETSC 3072*	10	ug/l	<10

PAHs

Naphthalene	DETSC 3304	0.05	ug / l	0.07
Acenaphthylene	DETSC 3304	0.01	ug / l	<0.01
Acenaphthene	DETSC 3304	0.01	ug / l	0.01
Fluorene	DETSC 3304	0.01	ug / l	<0.01
Phenanthrene	DETSC 3304	0.01	$\mathrm{ug} / \mathrm{l} /$	0.02
Anthracene	DETSC 3304	0.01	ug / l	<0.01
Fluoranthene	DETSC 3304	0.01	ug / l	0.02
Pyrene	DETSC 3304	0.01	ug / l	0.02
Benzo(a)anthracene	DETSC 3304*	0.01	ug / l	<0.01
Chrysene	DETSC 3304	0.01	ug / l	<0.01
Benzo(b)fluoranthene	DETSC 3304	0.01	ug / l	<0.01
Benzo(k)fluoranthene	DETSC 3304	0.01	ug / l	<0.01
Benzo(a)pyrene	DETSC 3304	0.01	ug / l	<0.01
Indeno(1,2,3-c,d)pyrene	DETSC 3304	0.01	ug / l	<0.01
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug / l	<0.01
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug / l	0.01
PAH Total	DETSC 3304	0.2	ug / l	<0.20
Phenols				
Phenol - Monohydric	DETSC 2130	100	$\mathrm{ug} / /$	<100

W ASTE ACCEPTANCE CRITERIA TESTING

 ANALYTICAL REPORTOur Ref 23-25310
Client Ref S230311
Contract Title Whitby Maritime Hub, Whitby
Sample Id BH104 0.80

Sample Numbers 22533512253354
Date Analysed 06/11/2023

Test Results On Waste			
Determinand and M ethod Reference	Units	Result	
DETSC 2084\#Total Organic Carbon	$\%$	9.0	
DETSC2003\#Loss On Ignition	$\%$		
DETSC 3321\#BTEX	$\mathrm{mg} / \mathrm{kg}$	<0.04	
DETSC 3401\#PCBS (7 congeners)	$\mathrm{mg} / \mathrm{kg}$	<0.01	
DETSC 3311\#EPH (C10 - C40): EH_1D_Total	$\mathrm{mg} / \mathrm{kg}$	<10	
DETSC 3301 PAHs	$\mathrm{mg} / \mathrm{kg}$	<1.6	
DESTC2008\#pH	pH Units		
DETSO73* Acid Neutralisation Capacity (pH4)	$\mathrm{mol} / \mathrm{kg}$		
DETS073* Acid Neutralisation Capacity (pH7)	$\mathrm{mol} / \mathrm{kg}$		

Test Results On Leachate

Determinand and M ethod Reference	Conc in Eluate ug/l	Amount Leached* mg/ kg
	$\mathbf{1 0 : 1}$	LS10
DETSC 2306 Arsenic as As	0.32	<0.01
DETSC 2306 Barium as Ba	15	0.15
DETSC 2306 Cadmium as Cd	<0.030	<0.02
DETSC 2306 Chromium as Cr	<0.25	<0.1
DETSC 2306 Copper as Cu	2	0.02
DETSC 2306 M ercury as Hg	<0.010	<0.002
DETSC 2306 M olybdenum as M o	<1.1	<0.1
DETSC 2306 Nickel as Ni	<0.50	<0.1
DETSC 2306 Lead as Pb	0.18	<0.05
DETSC 2306 Antimony as Sb	2.7	<0.05
DETSC 2306 Selenium as Se	0.44	<0.03
DETSC 2306 Zinc as Zn	5.9	0.059
DETSC 2055 Chloride as Cl	25000	250
DETSC 2055* Fluoride as F	180	1.8
DETSC 2055 Sulphate as SO4	30000	300
DETSC 2009* Total Dissolved Solids	170000	1700
DETSC 2130 Phenol Index	<100	<1
DETSC 2085 Dissolved Organic Carbon	<2000	<50

Additional Information

DETSC 2008 pH	7.2
DETSC 2009 Conductivity uS/ cm	239.0
* Temperature*	18.0
M ass of Sample Kg*	0.110
Mass of dry Sample Kg*	0.095
Stage 1	
Volume of Leachant L2*	0.936
Volume of Eluate VE1*	0.88

[^9]Summary of Asbestos Analysis
Soil Samples
Our Ref 23-25310
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Lab No	Sample ID	M aterial Type	Result	Comment*	Analyst
2253351	BH104 0.80	SOIL	NAD	none	Ben Rose
2253352	BH104 1.00	SOIL	NAD	none	Ben Rose

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile =White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD =No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-25310
Client Ref S230311
Contract Whitby Maritime Hub, Whitby

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2253351	BH104 0.80 SOIL	19/10/23	GJ 250ml, PT 1L x2		BTEX / C5-C10
2253352	BH104 1.00 SOIL	19/10/23	GJ 250ml, PT 1L x2		BTEX / C5-C10
2253353	BH104 0.80 LEACHATE	19/10/23	GJ 250ml, PT 1L x2		
2253354	BH104 0.80 LEACHATE	19/10/23	GJ 250ml, PT 1L x2		
Key: G-Gla DETS cann be deviati Deviating etc are de no sampled this will pr	P-Plastic J-Jar T-Tub be held responsible for Deviating Sample criteri mples'. All samples recei ing due to the reasons date (soils) or date+time nt samples being repor	tegrity of sam based on Britis re listed abov d. This means ers) has been s deviating w	ples received whereby the ish and International stand e. However, those samples that the analysis is accredit supplied then samples are d here specific hold times are	ake the sampling. in conjunction with ments in relation to esults may be com are able to supply the container supp	this instance samples received may the UKAS note 'Guidance on hold time, inappropriate containers romised due to sample deviations. If sampled date (and time for waters) ed is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym Description

HS Headspace analysis
EH Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU Clean-up - e.g. by florisil, silica gel
1D GC - Single coil gas chromatography
2D GC-GC - Double coil gas chromatography
Total Aliphatics \& Aromatics
AL Aliphatics only
AR Aromatics only
\#1 EH_2D_Total but with humics mathematically subtracted
\#2 EH_2D_Total but with fatty acids mathematically subtracted
Operator - underscore to separate acronyms (exception for +)
$+\quad$ Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total
Det
Acronym
Aliphatic C5-C6

HS_1D_AL

Appendix A - Details of Analysis

		LImıt ot	Sample			
M ethod	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS

Appendix A - Details of Analysis

M ethod	Parameter	Units	Limit ot Detection	Sample Preparation	Sub-Contracted	UKAS	M CERTS
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	$\mathrm{mg} / \mathrm{kg}$	0.03	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3321	Benzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	Ethylbenzene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3321	Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	$m+p$ Xylene	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3321	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	$\mathrm{mg} / \mathrm{kg}$	0.01	As Received	No	Yes	Yes
DETSC 3521	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic $\mathrm{C} 10-\mathrm{C} 12$	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3521	Aliphatic $\mathrm{C} 12-\mathrm{Cl} 6$	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C16-C21	$\mathrm{mg} / \mathrm{kg}$	1.5	As Received	No	Yes	Yes
DETSC 3521	Aliphatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	3.4	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3521	Aromatic C10-C35	$\mathrm{mg} / \mathrm{kg}$	10	As Received	No	Yes	Yes
DETSC 3521	Aromatic C12-C16	$\mathrm{mg} / \mathrm{kg}$	0.5	As Received	No	Yes	Yes
DETSC 3521	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3521	Aromatic C21-C35	$\mathrm{mg} / \mathrm{kg}$	1.4	As Received	No	Yes	Yes

M ethod details are shown only for those determinands listed in Annex A of the M CERTS standard. Anything not included on this list falls outside the scope of M CERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

\% DETS

Certificate of Analysis

Client SOLMEK
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-27958
Client Reference S230311
Order No SOL-7906
Contract Title Whitby Maritime Hub, Whitby
Description 5 Water samples.
Date Received 28-Nov-23
Date Started 28-Nov-23
Date Completed 11-Dec-23
Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

General Manager

Summary of Chemical Analysis
 Water Samples

Our Ref 23-27958
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Test	Method	Sampling Time		n / s	n / s	n / s	n / s	m/s
		LOD	Units					
Metals								
Antimony, Dissolved	DETSC 2306	0.17	ug/l	1.1	0.19	<0.17	0.68	0.89
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	2.8	1.7	1.3	2.0	2.4
Barium, Dissolved	DETSC 2306	0.26	ug/l	140	610	480	350	290
Beryllium, Dissolved	DETSC 2306*	0.1	ug/l	0.1	<0.1	<0.1	<0.1	<0.1
Boron, Dissolved	DETSC 2306*	12	ug/l	62	140	110	130	880
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	0.13	0.03	<0.03	<0.03	0.04
Chromium III, Dissolved	DETSC 2306*	1	ug/l	12	2.3	7.9	5.5	<1.0
Chromium, Hexavalent	DETSC 2203	7	ug/l	<7.0	<7.0	<7.0	<7.0	<7.0
Copper, Dissolved	DETSC 2306	0.4	ug/l	11	1.6	1.2	1.7	0.9
Iron, Dissolved	DETSC 2306	5.5	ug/l	84	27	24	32	110
Lead, Dissolved	DETSC 2306	0.09	ug/l	1.6	0.55	1.1	0.46	0.18
M anganese, Dissolved	DETSC 2306	0.22	ug/l	9.6	520	210	51	4500
M ercury, Dissolved	DETSC 2306	0.01	ug/l	0.03	0.01	<0.01	<0.01	<0.01
M olybdenum, Dissolved	DETSC 2306	1.1	ug/l	21	14	5.6	15	10
Nickel, Dissolved	DETSC 2306	0.5	ug/l	2.1	0.7	0.6	1.8	5.3
Selenium, Dissolved	DETSC 2306	0.25	ug/l	2.1	0.63	0.33	0.45	0.35
Vanadium, Dissolved	DETSC 2306	0.6	ug/l	5.8	<0.6	<0.6	<0.6	0.6
Zinc, Dissolved	DETSC 2306	1.3	ug/l	20	55	76	95	84
Inorganics								
pH	DETSC 2008		pH	9.5	8.0	7.7	7.8	7.3
Cyanide, Total	DETSC 2130	40	ug/l	<40	<40	<40	<40	<40
Cyanide, Free	DETSC 2130	20	ug/l	<20	<20	<20	<20	<20
Cyanide, Complex	DETSC 2130*	40	ug/l	<40	<40	<40	<40	<40
Thiocyanate	DETSC 2130	20	ug/l	<20	<20	<20	<20	<20
Total Hardness as CaCO3	DETSC 2303	0.1	mg / l	74.5	144	121	138	1310
Ammoniacal Nitrogen as N	DETSC 2207	0.015	mg / l	0.26	0.45	0.43	1.3	1.8
Sulphate as S04	DETSC 2055	0.1	mg / l	76	11	5.1	110	610
Petroleum Hydrocarbons								
Aliphatic C5-C6: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aliphatic C6-C8: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aliphatic C8-C10: HS_1D_AL	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aliphatic C10-C12: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aliphatic C12-C16: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aliphatic C16-C21: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aliphatic C21-C35: EH_CU_1D_AL	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aliphatic C5-C35: EH_CU+HS_1D_AL	DETSC 3072*	10	ug/l	<10	<10	<10	<10	<10
Aromatic C5-C7: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aromatic C7-C8: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aromatic C8-C10: HS_1D_AR	DETSC 3322	0.1	ug/l	<0.1	<0.1	<0.1	<0.1	<0.1
Aromatic C10-C12: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic C12-C16: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic C16-C21: EH_CU_1D_AR	DETSC 3072*	1	ug/l	<1.0	<1.0	<1.0	<1.0	<1.0

Summary of Chemical Analysis
 Water Samples

Our Ref 23-27958
Client Ref S230311
Contract Title Whitby M aritime Hub, Whitby

Aromatic C21-C35: EH_CU_1D_AR	DETSC 3072*	1	ug/I	<1.0	<1.0	<1.0	<1.0	<1.0
Aromatic C5-C35: EH_CU+HS_1D_AR	DETSC 3072*	10	ug/l	<10	<10	<10	<10	<10
TPH Ali/Aro Total C5-C35: EH_CUHS_1D_Total	DETSC 3072*	10	ug/l	<10	<10	<10	<10	<10
Benzene	DETSC 3322	1	ug/l	<1.0	<1.0			<1.0
Toluene	DETSC 3322	1	ug/l	<1.0	<1.0			<1.0
Ethylbenzene	DETSC 3322	1	ug/l	<1.0	<1.0			<1.0
Xylene	DETSC 3322	1	ug/l	<1.0	<1.0			<1.0
MTBE	DETSC 3322	1	ug/l	<1.0	<1.0			<1.0
PAHs								
Naphthalene	DETSC 3304	0.05	ug/l	0.07	0.08	<0.05	<0.05	<0.05
Acenaphthylene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.02
Acenaphthene	DETSC 3304	0.01	ug/l	0.01	0.01	<0.01	0.01	0.02
Fluorene	DETSC 3304	0.01	ug/l	0.01	0.01	<0.01	<0.01	0.02
Phenanthrene	DETSC 3304	0.01	ug/l	0.03	0.02	0.01	<0.01	0.10
Anthracene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.07
Fluoranthene	DETSC 3304	0.01	ug/l	0.02	<0.01	<0.01	<0.01	0.33
Pyrene	DETSC 3304	0.01	ug/l	0.02	<0.01	<0.01	<0.01	0.29
Benzo(a)anthracene	DETSC 3304*	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.12
Chrysene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.14
Benzo(b)fluoranthene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.20
Benzo(k)fluoranthene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.07
Benzo(a)pyrene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.17
Indeno(1,2,3-c, d) pyrene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.13
Dibenzo(a,h)anthracene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.03
Benzo(g,h,i)perylene	DETSC 3304	0.01	ug/l	<0.01	<0.01	<0.01	<0.01	0.12
PAH Total	DETSC 3304	0.2	ug/l	<0.20	<0.20	<0.20	<0.20	1.8
PCBs								
PCB 28 +PCB 31	DETSC 3402	0.3	ug/I	<0.3	<0.3			<0.3
PCB 52	DETSC 3402	0.2	ug / l	<0.2	<0.2			<0.2
PCB 101	DETSC 3402	0.3	ug/l	<0.3	<0.3			<0.3
PCB 118 + PCB 123	DETSC 3402	0.6	ug/l	<0.6	<0.6			<0.6
PCB 138	DETSC 3402	0.2	ug/l	<0.2	<0.2			<0.2
PCB 153	DETSC 3402	0.2	ug/l	<0.2	<0.2			<0.2
PCB 180	DETSC 3402	0.2	ug/l	<0.2	<0.2			<0.2
PCB 7 Total	DETSC 3402	1	ug/l	<1.0	<1.0			<1.0
Phenols								
Phenol-Monohydric	DETSC 2130	100	ug/l	<100	<100	<100	<100	<100

Information in Support of the Analytical Results

Our Ref 23-27958
Client Ref S230311
Contract Whitby Maritime Hub, Whitby

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	noiaing time exceeded for tests	imappropriate container for tests
2268784	BH101 2.07 WATER	27/11/23	GB to $500 \mathrm{ml} \times 4, \mathrm{GV}$		
2268785	BH102 1.86 WATER	27/11/23	GB to 500 ml x $4, \mathrm{GV}$		
2268786	BH103 1.86 WATER	27/11/23	GB to $500 \mathrm{ml} \times 4$, GV		
2268787	BH105 2.00 WATER	27/11/23	GB to $500 \mathrm{ml} \times 4, \mathrm{GV}$		
2268788	WS101 2.30 WATER	27/11/23	GB to 500 ml x2, GV		

Key: G-Glass B-Bottle V-Vial
DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or datettime (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Information in Support of the Analytical Results

List of HWOL Acronyms and Operators

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics \& Aromatics
AL	Aliphatics only
AR	Aromatics only
\#1	EH_2D_Total but with humics mathematically subtracted
\#2	EH_2D_Total but with fatty acids mathematically subtracted
-	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det
Aliphatic C5-C6
Aliphatic C6-C8
Aliphatic C8-C10
Aliphatic C10-C12
Aliphatic C12-C16
Aliphatic C16-C21
Aliphatic C21-C35
Aliphatic C5-C35
Aromatic C5-C7
Aromatic C7-C8
Aromatic C8-C10
Aromatic C10-C12
Aromatic C12-C16
Aromatic C16-C21
Aromatic C21-C35
Aromatic C5-C35
TPH Ali/Aro Total C5-C35

Acronym
HS_1D_AL
HS_1D_AL
HS_1D_AL
EH_CU_1D_AL
$\mathrm{EH}_{-}^{-} \mathrm{CU}_{-}^{-} 1 \mathrm{D}_{-}^{-} \mathrm{AL}$
EH_CU_1D_AL
EH_CU_1D_AL
EH_CU ${ }^{-} \mathrm{HS}_{-}^{-} 1 D_{-} \mathrm{AL}$
HS_1D_AR
HS_1D_AR
HS_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU_1D_AR
EH_CU + HS_1D_AR
EH_CU +HS_1D_Total

[^10]
APPENDIX D:
 Geotechnical Laboratory Results

Laboratory Report Front Sheet		G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	¢
Site name	lob number		UkAs
Whitby	${ }_{5230311}$		10258

Client details:

Reference:
Name:
Address:

Telephone:
Email:

FAO: Leo Cassidy

Samples received:

Date commenced:
31/03/2023

Date reported:
19/04/2023

Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the above reporting date the samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Hole	Depth		Type	$\begin{aligned} & w \\ & \% \end{aligned}$	Oven temp. oc	wa \%	$\begin{gathered} \mathbf{P a} \\ \% \end{gathered}$	$\begin{gathered} \text { Pr } \\ \% \end{gathered}$	wL \%	$\begin{gathered} \mathbf{w P} \\ \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { IP } \\ & \% \end{aligned}$	IL	Plasticity class	Preparation method
	$\begin{gathered} \text { Top } \\ \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { m } \end{gathered}$												
WS101	2.40		D	24	105	65	37	63	38-s	26	12	3.250	MI	Tested after $>425 \mu \mathrm{~m}$ removed by hand
WS102	1.20		B	16	105	30	54	46	37-s	27	10	0.300	MI	Tested after washing to remove $>425 \mu \mathrm{~m}$
WS104	1.80		B	26	105	84	31	69	34-s	25	9	6.556	ML	Tested after $>425 \mu \mathrm{~m}$ removed by hand
WS105	3.30		B	23	105	256	9	91	35-s	25	10	23.100	MI	Tested after washing to remove $>425 \mu \mathrm{~m}$

All tests found in G2M Testing UKAS Schedule of Accreditation are tested to standard unless otherwise indicated

Key	Description	Category	BS Test Code
w	Moisture content		BS 1377:1990 Part 2 Clause 3.2
wa	Equivalent moisture content passing 425 $\mu \mathrm{m}$ sieve		BS 1377:1990 Part 2 Clause 3.2
	Liquid limit	Single point Four point	- -
		-f	BS 1377:1990 Part 2 Clause 4.4
wP	Plastic limit		BS 1377:1990 Part 2 Clause 4.3
Pa	Percentage passing 425um sieve		
Pr	Percentage retained 425um sieve		
IP	Plasticity index		BS 1377:1990 Part 2 Clause 5.4
IL	Liquidity index		BS 1377:1990 Part 2 Clause 5.4
	Suffix indicating test is "Not UKAS Accredited"	$*$	

Approved by	JBrischuk
Approval date	14/04/2023 16:08
Date report generated	
Report Number	

PARTICLE	15	IBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	
Site name		Job number		
Whitby		S230311		TESING 10258
Hole	WS102	Lab sample ID	G2MT2023033123	
Depth (Top) m	0.40	Test Method	BS 1377-2 : 1990 Clauses 9.2 and 9.5	
Depth (Base) m		Soil Description	Clayey, Silty, Sandy GRAVEL	
Sample type	B			

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	19
90	100	0.0561	18
75	100	0.0398	17
63	100	0.0283	15
50	100	0.0201	13
37.5	100	0.0104	10
28	100	0.0052	9
20	98	0.0026	7
14	85	0.0015	5
10	80		
6.3	72		
5	68		
3.35	58		
2	49		
1.18	44		
0.6	40	Particle density	(assumed)
0.425	37	2.65	$\mathrm{Mg} / \mathrm{m} 3$
0.3	31		
0.212	26		
0.15	23		
0.063	19		

Dry Mass of sample, g

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	51.4
Sand	29.5
Silt	13.0
Clay	6.1

Grading Analysis		
D100	mm	
D60	mm	3.7
D30	mm	0.282
D10	mm	0.00877
Uniformity Coefficient	420	
Curvature Coefficient	2.5	

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$11 / 04 / 202310: 39$

PARTICLE	15	IBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	
Site name		Job number		\approx
Whitby		S230311		$\frac{1 \text { TESING }}{10258}$
Hole	WS102	Lab sample ID	G2MT2023033124	
Depth (Top) m	3.60	Test Method	BS 1377-2 : 1990 Clauses 9.2 and 9.5	
Depth (Base) m		Soil Description	Silty, Very Gravelly SAND	
Sample type	B			

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	13
90	100	0.0570	12
75	100	0.0406	9
63	100	0.0290	4
50	100	0.0206	2
37.5	100	0.0107	0
28	100	0.0053	0
20	91	0.0027	0
14	85	0.0015	0
10	82		
6.3	75		
5	72		
3.35	69		
2	65		
1.18	62		
0.6	55		
0.425	51		
0.3	44		
0.212	33	24	
0.15	13		
063			

Dry Mass of sample, g
1281

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	34.9
Sand	52.3
Silt	12.8
Clay	0.0

Grading Analysis		
D100	mm	
D60	mm	1.02
D30	mm	0.189
D10	mm	0.0452
Uniformity Coefficient	22	
Curvature Coefficient		0.78

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$14 / 04 / 2023$ 15:26

PARTICLE	15	IBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TC18-3NA	
Site name		Job number		
Whitby		S230311		$\frac{\underbrace{}_{\text {tBFANG }}}{10258}$
Hole	WS104	Lab sample ID	G2MT2023033125	
Depth (Top) m	0.40	Test Method	BS 1377-2 : 1990 Clause 9.2	
Depth (Base) m		Soil Description	Silty Sandy GRAVEL	
Sample type	B			

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100		
90	100		
75	100		
63	100		
50	91		
37.5	85		
28	74		
20	52		
14	38		
10	34		
6.3	29		
5	28		
3.35	27		
2	26		
1.18	25		
0.6	23		
0.425	20		
0.3	17		
0.212	12		
0.15	9		
063	9		

Dry Mass of sample, g
4228

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	74.2
Sand	17.2
Fines $<0.063 \mathrm{~mm}$	9.0

Grading Analysis		
D100	mm	
D60	mm	22.5
D30	mm	6.98
D10	mm	0.169
Uniformity Coefficient	130	
Curvature Coefficient		13

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$14 / 04 / 2023$ 15:26

\& DETS

Certificate of Analysis

Certificate Number 23-07997

Issued:
12-Apr-23
Client G2M Testing Ltd
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-07997
Client Reference S230311
Order No LAB1840
Contract Title WHITBY
Description 3 Soil samples.
Date Received 04-Apr-23
Date Started 04-Apr-23

Date Completed 12-Apr-23

Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis

Soil Samples

Our Ref 23-07997
Client Ref S230311
Contract Title WHITBY

			b No	2151135	2151136	2151137
			le ID	WS104	WS105	WS101
			Depth	3.30	3.30	4.00
			er ID			
		Sam	Type	SOIL	SOIL	SOIL
		Samp	Date	31/03/2023	31/03/2023	31/03/2023
		Sampl	Time	n / s	n / s	n / s
Test	M ethod	LOD	Units			
Inorganics						
pH	DETSC 2008\#		pH	11.1	8.5	
Organic matter	DETSC 2002\#	0.1	\%	0.7	0.4	0.4
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076\#	10	mg / l	140	170	

Information in Support of the Analytical Results

Our Ref 23-07997
Client Ref S230311

Contract WHITBY
Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2151135	WS104 3.30 SOIL	31/03/23	PT 1L		
2151136	WS105 3.30 SOIL	31/03/23	PT 1L		
2151137	WS101 4.00 SOIL	31/03/23	PT 1L		
Key: P-Plas DETS cann be deviating Deviating etc are dev no sample this will pr	T-Tub be held responsibl Deviating Sample mples'. All samples ing due to the rea ate (soils) or date nt samples being	tegrity of sa based on Br re listed abo d. This means ers) has been s deviating w	ples received whereby the ish and International stand e. However, those samples that the analysis is accredit supplied then samples are ere specific hold times are	In this instance sa th the UKAS note to hold time, inapp mpromised due to a sampled date (plied is suitable.	mples received may uidance on opriate containers sample deviations. If nd time for waters)

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Laborato	nt Sheet	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	
Site name	Job number		
Whitby	S230311		

Client details:

Reference:
Name:
Address:

Telephone:
Email:

FAO:

Samples received:

Date commenced:
09/11/2023

Date reported:
S230311_2
Solmek
12 Yarm Road,
Stockton-on-tees,
TS18 3NA

01642607083

Leo Cassidy

22/11/2023

Icassidy@solmek.com

Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the above reporting date the samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Signature:		Approved Signitories:
		D.Anderson (Managing Director) \quad
	\square	J. Brischuk (Laboratory Manager)
	\square	

Summary of Classification Tests			G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TS18 3NA	10258
Site name		Job number		
	Whitby	S230311		

Hole	Depth		Type	w \%	Oven temp. oc	wa$\%$	Pa \%	$\begin{gathered} \text { Pr } \\ \% \end{gathered}$	wL \%	$\begin{gathered} \mathbf{w P} \\ \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { IP } \\ & \% \end{aligned}$	IL	Plasticity class	Preparation method
	$\begin{gathered} \text { Top } \\ \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { m } \end{gathered}$												
BH101	3.00		D	25	50	33	75	25	25-s	19	6	2.333	ML	Tested after >425 $\mu \mathrm{m}$ removed by hand
BH101	5.00		D	27	50	27	99	1	27-s	11	16	1.000	CL	Tested after $>425 \mu \mathrm{~m}$ removed by hand
BH101	7.50		D	40	105	40	100	0	48-s	35	13	0.385	MI	Tested in natural condition
BH101	15.00		D	16	105	22	74	26	30-s	15	15	0.467	CL	Tested after $>425 \mu \mathrm{~m}$ removed by hand
BH101	19.50		C	14	105									
BH101	24.50		c	12	105									
BH102	7.50		D	43	105	43	100	0	59-s	39	20	0.200	MH	Tested in natural condition
BH102	10.50		D	45	50	45	100	0	65-s	28	37	0.459	CH	Tested in natural condition
BH102	21.35		C	13	105									
BH103	4.00		D	20	50	20	100	0	24-s	19	5	0.200	ML	Tested in natural condition
BH103	6.00		D	29	105	29	100	0	29-s	23	6	1.000	ML	Tested in natural condition
BH103	10.50		D	49	105	49	100	0	63-s	32	31	0.548	MH	Tested in natural condition
BH103	21.90		C	9.2	105									
BH103	23.70		c	11	105									
BH105	4.00		D	18	105	18	100	0	28-s	21	7	-0.429	CL	Tested in natural condition
BH105	10.50		D	36	105	36	100	0	60-s	34	26	0.077	MH	Tested in natural condition
BH105	13.50		D	22	105	22	100	0	28-s	19	9	0.333	CL	Tested in natural condition

All tests found in G2M Testing UKAS Schedule of Accreditation are tested to standard unless otherwise indicated

Key	Description	Category	BS Test Code
w	Moisture content		BS 1377:1990 Part 2 Clause 3.2
wa	Equivalent moisture content passing 425 sieve		BS 1377:1990 Part 2 Clause 3.2
	Liquid limit	Single point Four point	-5
		-f	BS 1377:1990 Part 2 Clause 4.4
wP	Plastic limit		BS 1377:1990 Part 2 Clause 4.3
Pa	Percentage passing 425um sieve		
Pr	Percentage retained 425um sieve		
IP	Plasticity index		BS 1377:1990 Part 2 Clause 5.4
IL	Liquidity index		BS 1377:1990 Part 2 Clause 5.4
	Suffix indicating test is "Not UKAS Accredited"	$*$	

Approved by	D Anderson
Approval date	16/11/2023 09:34
Date report generated	
Report Number	

PARTICLE	15	IBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	
Site name		Job number		
Whitby		S230311		$\frac{\underset{\text { TEGHNG }}{ }}{10258}$
Hole	BH101	Lab sample ID	G2MT2023110911	
Depth (Top) m	16.50	Test Method	BS 1377-2 : 1990 Clauses 9.2 and 9.5	
Depth (Base) m		Soil Description	Slightly Silty, very Sandy, GRAVEL	
Sample type	B			

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	4
90	100	0.0570	3
75	100	0.0405	2
63	100	0.0288	2
50	92	0.0204	1
37.5	85	0.0106	1
28	74	0.0053	0
20	74	0.0027	0
14	62	0.0015	0
10	57		
6.3	53		
5	49		
3.35	41		
2	28		
1.18	19		
0.6	13		
0.425	11		
0.3	9		
0.212	8		
0.15	6		
063			

Dry Mass of sample, g
6896

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	71.9
Sand	24.2
Silt	3.9
Clay	0.0

Grading Analysis		
D100	mm	
D60	mm	12.5
D30	mm	2.16
D10	mm	0.346
Uniformity Coefficient	36	
Curvature Coefficient		1.1

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$20 / 11 / 202308: 33$

PARTICLE	15	R\|BUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	
Site name		Job number		而
Whitby		S230311		$\frac{\underset{\text { TEGHNG }}{ }}{10258}$
Hole	BH102	Lab sample ID	G2MT2023110912	
Depth (Top) m	2.00	Test Method	BS 1377-2 : 1990 Clauses 9.2 and 9.5	
Depth (Base) m		Soil Description	Slightly Clayey, Silty, very Sandy, GRAVEL	
Sample type	B			

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	15
90	100	0.0481	14
75	100	0.0348	13
63	100	0.0251	12
50	88	0.0181	10
37.5	85	0.0097	7
28	85	0.0050	5
20	76	0.0026	4
14	73	0.0015	3
10	67		
6.3	60		
5	58		
3.35	54		
2	49		
1.18	44		
0.6	39	Particle density	(assumed)
0.425	36	2.65	Mg/m3
0.3	30		
0.212	24		
0.15	20		
0.063	15		

Dry Mass of sample, g
4702

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	51.3
Sand	33.7
Silt	11.7
Clay	3.3

Grading Analysis		
D100	mm	
D60	mm	6.3
D30	mm	0.296
D10	mm	0.0174
Uniformity Coefficient	360	
Curvature Coefficient	0.8	

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$20 / 11 / 202308: 36$

PARTICLE	15	RISUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	
Site name		Job number		
Whitby		S230311		$\frac{10}{\substack{\text { TESING }}}$
Hole	BH102	Lab sample ID	G2MT2023110913	
Depth (Top) m	5.00	Test Method	BS 1377-2:1990 Clauses 9.2 and 9.5	
Depth (Base) m		Soil Description	Slightly Gravelly, slightly Clayey, very Silty, SAND	
Sample type	B			

CLAY	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBLES	BOULDERS
	SILT				SAND				GRAVEL		

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0595	42
90	100	0.0475	33
75	100	0.0348	29
63	100	0.0256	23
50	100	0.0186	19
37.5	100	0.0099	14
28	100	0.0051	9
20	100	0.0026	8
14	100	0.0015	7
10	99		
6.3	99		
5	98		
3.35	98		
2	97		
1.18	97		
0.6	96	Particle density	(assumed)
0.425	95	2.65	$\mathrm{Mg} / \mathrm{m} 3$
0.3	90		
0.212	82		
0.15	68		
0.063	42		

Dry Mass of sample, g $\quad 490$

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	2.7
Sand	55.4
Silt	34.4
Clay	7.5

Grading Analysis		
D100	mm	
D60	mm	0.114
D30	mm	0.0379
D10	mm	0.00593
Uniformity Coefficient	19	
Curvature Coefficient	2.1	

Remarks

Preparation and testing in accordance with test method unless noted below

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$17 / 11 / 202308: 07$

PARTICLE	15	IBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,	
Site name		Job number		\approx
Whitby		S230311		$\frac{\text { TESING }}{10258}$
Hole	BH102	Lab sample ID	G2MT2023110917	
Depth (Top) m	13.50	Test Method	BS 1377-2:1990 Clauses 9.2 and 9.5	
Depth (Base) m		Soil Description	Very slightly Clayey, slightly Silty, very Cobbly, very Sandy, GRAVEL	
Sample type	B			

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	3
90	100	0.0550	3
75	90	0.0391	2
63	79	0.0279	2
50	70	0.0199	2
37.5	63	0.0104	1
28	58	0.0052	1
20	50	0.0026	1
14	45	0.0015	0
10	40		
6.3	35		
5	34		
3.35	31		
2	25		
1.18	21		
0.6	18		
0.425	16		
0.3	14		
0.212	10		
0.15	6		
0.063	3		

Dry Mass of sample, g
14653

Sample Proportions	\% dry mass
Very coarse	20.9
Gravel	54.4
Sand	21.6
Silt	2.7
Clay	0.4

Grading Analysis		
D100	mm	
D60	mm	31.6
D30	mm	3.2
D10	mm	0.207
Uniformity Coefficient	150	
Curvature Coefficient	1.6	

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$20 / 11 / 202308: 41$

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	19
90	100	0.0499	18
75	85	0.0360	16
63	75	0.0260	14
50	75	0.0187	12
37.5	70	0.0099	9
28	70	0.0051	6
20	59	0.0026	5
14	55	0.0015	5
10	52		
6.3	48		
5	47		
3.35	44		
2	42		
1.18	39		
0.6	36	Particle density	(assumed)
0.425	34	2.65	Mg/m3
0.3	31		
0.212	29		
0.15	24		
0.063	19		

Dry Mass of sample, g
3923

Sample Proportions	\% dry mass
Very coarse	24.6
Gravel	33.7
Sand	23.1
Silt	13.7
Clay	4.9

Grading Analysis		
D100	mm	
D60	mm	20.6
D30	mm	0.263
D10	mm	0.0124
Uniformity Coefficient	1700	
Curvature Coefficient	0.27	

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$20 / 11 / 202308: 45$

PARTICLE	15	IBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TS18.3NA		
Site name		Job number			
Whitby		S230311			
Hole	BH103	Lab sample ID	G2MT2023110923		
Depth (Top) m	13.50	Test Method	BS 1377-2 : 1990 Clauses 9.2 and 9.5		
Depth (Base) m		Soil Description	Slightly Silty, very Gravelly, SAND		
Sample type	B				

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	6
90	100	0.0565	5
75	100	0.0402	4
63	100	0.0286	4
50	94	0.0203	3
37.5	89	0.0105	2
28	89	0.0053	1
20	86	0.0027	0
14	80	0.0015	0
10	79		
6.3	77		
5	75		
3.35	70		
2	65		
1.18	59		
0.6	48	Particle density	(assumed)
0.425	39	2.65	Mg/m3
0.3	27		
0.212	18		
0.15	11		
0.063	6		

Dry Mass of sample, g
3679

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	34.9
Sand	58.9
Silt	6.2
Clay	0.0

Grading Analysis		
D100	mm	
D60	mm	1.26
D30	mm	0.329
D10	mm	0.133
Uniformity Coefficient	9.5	
Curvature Coefficient	0.65	

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$20 / 11 / 202308: 49$

PARTICLE	15	IBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TS18 3NA	
Site name		Job number		
Whitby		S230311		$\frac{\underset{\text { IESING }}{ }}{10258}$
Hole	BH104	Lab sample ID	G2MT2023110924	
Depth (Top) m	1.20	Test Method	BS 1377-2 : 1990 Clauses 9.2 and 9.5	
Depth (Base) m		Soil Description	Clayey, very Sandy, very Silty, GRAVEL	
Sample type	B			

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	39
90	100	0.0520	36
75	100	0.0371	33
63	100	0.0268	28
50	100	0.0191	25
37.5	88	0.0100	21
28	88	0.0051	15
20	87	0.0026	11
14	82	0.0015	9
10	79		
6.3	75		
5	75		
3.35	71		
2	67		
1.18	63		
0.6	59	Particle density	(assumed)
0.425	57	2.65	Mg/m3
0.3	54		
0.212	50		
0.15	46		
0.063	39		

Dry Mass of sample, g
2567

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	33.0
Sand	27.9
Silt	29.1
Clay	10.0

Grading Analysis		
D100	mm	
D60	mm	0.728
D30	mm	0.0307
D10	mm	0.002
Uniformity Coefficient	360	
Curvature Coefficient	0.65	

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$22 / 11 / 202308: 14$

PARTICLE	15	RBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees,		
Site name		Job number			
Whitby		S230311			
Hole	BH105	Lab sample ID	G2MT2023110925		
Depth (Top) m	2.00	Test Method	BS 1377-2 : 1990 Clauses 9.2 and 9.5		
Depth (Base) m		Soil Description	Slightly Clayey, Silty, very Gravelly, SAND		
Sample type	D				

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0601	26
90	100	0.0454	25
75	100	0.0330	23
63	100	0.0240	21
50	100	0.0173	19
37.5	100	0.0094	15
28	100	0.0048	11
20	100	0.0025	9
14	92	0.0015	7
10	92		
6.3	86		
5	84		
3.35	82		
2	78		
1.18	74		
0.6	69	Particle density	(assumed)
0.425	65	2.65	Mg/m3
0.3	58		
0.212	48		
0.15	39		
0.063	26		

Dry Mass of sample, g
220

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	22.5
Sand	51.2
Silt	18.2
Clay	8.1

Grading Analysis		
D100	mm	
D60	mm	0.33
D30	mm	0.0813
D10	mm	0.00348
Uniformity Coefficient	95	
Curvature Coefficient	5.7	

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test standard

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule.

Approved by	D Anderson
Approval date	$17 / 11 / 202308: 34$

PARTICLE	15	IBUTION	G2M Testing (Stockton) 12-16 Yarm Road, Stockton on Tees, TS183NA	
Site name		Job number		
Whitby		S230311		
Hole	BH105	Lab sample ID	G2M	0928
Depth (Top) m	6.00	Test Method	BS 1377-2:1	es 9.2 and 9.5
Depth (Base) m		Soil Description	Slightly Gravelly, S	
Sample type	D			

Sieving		Sedimentation	
Particle Size mm	\% Passing	Particle Size mm	\% Passing
125	100	0.0630	17
90	100	0.0555	16
75	100	0.0398	12
63	100	0.0284	10
50	100	0.0202	8
37.5	100	0.0105	4
28	100	0.0053	2
20	100	0.0027	0
14	100	0.0015	0
10	100		
6.3	100		
5	99		
3.35	98		
2	98		
1.18	97		
0.6	95	Particle density	(assumed)
0.425	94	2.65	Mg/m3
0.3	88		
0.212	75		
0.15	49		
0.063	17		

Dry Mass of sample, g
128

Sample Proportions	\% dry mass
Very coarse	0.0
Gravel	2.4
Sand	80.2
Silt	17.4
Clay	0.0

Grading Analysis		
D100	mm	
D60	mm	0.174
D30	mm	0.0896
D10	mm	0.0304
Uniformity Coefficient	5.7	
Curvature Coefficient	1.5	

Remarks

Preparation and testing in accordance with test method unless noted below

Accreditation status

Hydrometer is the usual Sedimentation method carried out by G2M Testing and is part of the G2M Testing UKAS accreditation schedule

Approved by	D Anderson
Approval date	$17 / 11 / 202308: 41$

(\%)	Unconsolidated Undrained Triaxial Compression Test without measurement of pore pressure - single specimen			Job Ref	S230311
UKAS TETING 10258				Borehole/Pit No.	BH101
Site Name	Whitby			Sample No.	
Soil Description				Depth	9.00
Specimen Reference	BH101	Specimen Depth	9.00	Sample Type	U
Specimen Description				KeyLAB ID	G2MT202311098
Test Method	Extremely Low Strength CLAY			Date of test	10/11/2023

Test Number
Length
Diameter
Bulk Density
Moisture Content
Dry Density

Rate of Strain
Cell Pressure
Axial Strain
Deviator Stress, ($\sigma 1-\sigma 3$)
Undrained Shear Strength, cu Mode of Failure

1	
$y n n$	mm
200.0	mm
102.0	$\mathrm{Mg} / \mathrm{m} 3$
1.84	
42.7	$\mathrm{Mg} / \mathrm{m} 3$

Tracable Equipment Record

Test Frame	TRI 004
Load Ring	LOAD CELL 003
Pressure Gauge	PRE 006
	Digital Caliper
Balance	CAL 006

Deviator Stress v Axial Strain

Deviator stress corrected
for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377 Part 8-1990
This is provided for information only.

No of membranes used
1
Total thickness (mm)
0.25
Membrane Correction
Membrane Type

Test Number
Length
Diameter
Bulk Density
Moisture Content
Dry Density

Rate of Strain
Cell Pressure
Axial Strain
Deviator Stress, ($\sigma 1-\sigma 3$)f
Undrained Shear Strength, cu Mode of Failure

1	mm
202.0	
102.0	mm
1.81	$\mathrm{Mg} / \mathrm{m} 3$
46.5	\%
1.23	$\mathrm{Mg} / \mathrm{m} 3$

Tracable Equipment Record

Test Frame	TRI 004
Load Ring	
Pressure Gauge	LOAD CELL 003
Digital Caliper Balance	PRE 006

Deviator Stress v Axial Strain

Deviator stress corrected
for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377 Part 8-1990
This is provided for information only.

No of membranes used
1
Total thickness (mm)
0.25
Membrane Correction
Membrane Type

Test Number
Length
Diameter
Bulk Density
Moisture Content
Dry Density

Rate of Strain
Cell Pressure
Axial Strain
Deviator Stress, ($\sigma 1-\sigma 3$)f
Undrained Shear Strength, cu Mode of Failure

1	
$y n n$	mm
202.0	mm
102.0	$\mathrm{Mg} / \mathrm{m} 3$
2.05	
23.9	$\mathrm{Mg} / \mathrm{m} 3$

1.0	$\% / \mathrm{min}$
60	kPa
$\%$	$\%$
19.7	kPa
83	$\mathrm{kPa} \quad 1 / 2(\sigma 1-\sigma 3) \mathrm{f}$
42	

Tracable Equipment Record

Test Frame	TRI 004
Load Ring	
Pressure Gauge	LOAD CELL 003
Digital Caliper Balance	PRE 006

Deviator Stress v Axial Strain

Deviator stress corrected
for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377 Part 8-1990
This is provided for information only.

No of membranes used
1
Total thickness (mm)
0.25
Membrane Correction
Membrane Type

(\%)	Unconsolidated Undrained Triaxial Compression Test without measurement of pore pressure - single specimen			Job Ref	S230311
UKAS TETING 10258				Borehole/Pit No.	BH105
Site Name	Whitby			Sample No.	
Soil Description				Depth	9.00
Specimen Reference	BH105	Specimen Depth	9.00	Sample Type	U
Specimen Description				KeyLAB ID	G2MT2023110930
Test Method	Very Low Strength CLAY			Date of test	10/11/2023

Test Number
Length
Diameter
Bulk Density
Moisture Content
Dry Density

Rate of Strain
Cell Pressure
Axial Strain
Deviator Stress, ($\sigma 1-\sigma 3$)f
Undrained Shear Strength, cu Mode of Failure

1	
$y n n$	mm
202.0	mm
102.0	$\mathrm{Mg} / \mathrm{m} 3$
1.74	$\mathrm{Mg} / \mathrm{m} 3$

Tracable Equipment Record

Test Frame	TRI 004
Load Ring	
Pressure Gauge	LOAD CELL 003
Digital Caliper Balance	PRE 006

Deviator Stress v Axial Strain

Deviator stress corrected
for area change and membrane effects

Mohr circles and their interpretation is not covered by BS1377 Part 8-1990
This is provided for information only.

No of membranes used
1
Total thickness (mm)
0.25
Membrane Correction
Membrane Type

					Particle Density by G	ar Tests	mary of Results
$\begin{array}{\|r\|} \hline \text { Project No. } \\ \text { S23 } \end{array}$	0311		Project	t Nam		Whitby	
			mple				
Hole No.	Ref	Top	Base	Type	at test horizon	$\mathrm{Mg} / \mathrm{m}^{3}$	
BH104		1.20		B	Soft, Brown, Gravelly, Slighty Sandy, Slighty Sily, CLAY	2.69	
Notes Tests performed in accordance with BS 1377 unless annotated otherwise Gas Jar tests to BS1377: Part 2 : 1990, clause 8.2						Date Printed 22/11/2023	$\begin{aligned} & \text { Table } \\ & \text { sheet } \end{aligned}$

Hole	Sample			Specimen		Rock type and test condition	Test Type		Failure validity	Dimensions			Is MPa	$\begin{aligned} & \text { Is(50) } \\ & \mathrm{MPa} \end{aligned}$	Remarks
	Depth m	Ref	Type	Depth m	Ref		Type	Dir.		$\begin{gathered} \mathrm{W} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \mathrm{D}^{\prime} \\ \mathrm{mm} \end{gathered}$			
BH101	18.60		C	18.60	BH101	As received	A	P	Valid	100	120		0.00	0.01	CLAY
BH101	22.95		C	22.95	Bh101	M udstone	A	P	Valid	100	120		0.01	0.01	
BH101	25.65		C	25.65	BH101	M udstone	A	P	Valid	100	40		0.20	0.23	
BH101	27.22		C	27.22	BH101	M udstone	A	P	Valid	100	80		0.13	0.18	
BH102	19.90		C	19.90	BH102	M udstone	A	P	Valid	40	100		0.91	1.07	
BH102	20.10		C	20.10	BH102	M udstone	A	P	Valid	100	60		0.01	0.02	
BH102	24.40		C	24.40	BH102	Sandstone	A	P	Valid	100	50		0.38	0.47	
BH102	26.30		C	26.30	BH102	M udstone	A	P	Valid	100	50		0.75	0.93	
BH103	18.30		C	18.30	$\mathrm{BH}^{2} 03$	M udstone	A	P	Valid	105	60		0.02	0.02	
BH103	20.10		C	20.10	BH103	M udstone	A	P	Valid	100	60		0.28	0.35	
BH103	21.10		C	21.10	BH103	M udstone	A	P	Valid	100	60		0.08	0.10	
BH103	22.20		C	22.20	BH103	M udstone	A	P	Valid	100	60		0.01	0.02	
BH103	22.90		C	22.90	BH103	M udstone	A	P	Valid	100	60		0.40	0.52	
BH103	24.77		C	24.77	BH103	As received	A	P	Valid	100	60		0.03	0.03	
BH103	26.35		C	26.35	BH103	As received	A	P	Valid	100	60		1.22	1.57	

Test not currently within the scope of G2M Testing UKAS accrediation schedule

Column	Key	Description
Test Type	A	Axial
	B	Block
	D	Diametral
	I	Irregular lump
Test Direction	L	Parallel to planes of weakness
	P	Perpendicular to planes of weakness
	U	Unknown
	W	Width
	D	Platen seperation at start of test
	D	Platen seperation at sample failure
	IS	Point Load Index
	IS(50)	Corrected Point Load Index to equivalent 50 mm diameter

Approved by	Lesk
Approval date	$11 / 12 / 202313: 16$
Date report generated	
Report Number	

Unconfined Compression

Sample Details	Depth	20.20-20.55 m		
	Description	Undisturbid		
k	Type	Muds		
(8x)	Initial Sample Length	Lo	(mm)	216.0
86x	Initial Sample Diameter	D 0	(mm)	103.8
	Initial Sample Weight	Wo	(gr)	4285.0
sketch showing specimen	Bulk Density	po	(Mg/m3)	2.34
location in original sample	Particle Density	ρ_{s}	(Mg/m3)	2.65

Initial Conditions			
Strain Rate	ε	(\%/min)	1.816
MembraneThickness	mb	(mm)	0.00
Displacement Input	L IP	(mm)	CH 2
Load Input	N IP	(N)	CH 1
Initial Moisture	$\omega{ }^{\prime} \%$	(\%)	7.63
Initial Dry Density	$\rho \mathrm{do}$	(Mg/m3)	2.18
Initial Voids Ratio	eo		0.22
Initial Degree of Saturation	So	(\%)	93

Final Conditions

Max Deviator Stress	$\left(\sigma_{1}-\sigma_{3}\right) f$	(kPa)	201.72
Strain At Max Stress	$\varepsilon_{\uparrow} \%$	$(\%)$	3.14
Final Moisture	$\omega \uparrow \%$	$(\%)$	7.63
Final Dry Density	$\rho \mathrm{df}$	$(\mathrm{Mg} / \mathrm{m} 3)$	2.18
Final Voids Ratio	ef	.	0.22
Final Degree of Saturation	S_{f}	$(\%)$	93.3

Notes

Failure Sketch (surface inclination)

	Test Method BS1377: Part 71990 : Clause 7 Database: DESKTOP-IBEJL9BISQLEXPRESS2019					Test Name Test Date	$\begin{aligned} & \text { UCS } 071 \\ & 07 / 12 / 20 \end{aligned}$	SOLME
	Site Refer					Borehole	BH101	
	Jobfile	S230311				Sample	BH101 2	20.55m
	Client	SOLMEK				Depth	20.20-20	
	Operator	Al		Checked	Graham		Approved	Aiston

Unconfined Compression

Sample Details	Depth			
	Description	UNDISTURBID MUDSTONE		
	Type			
	Initial Sample Length	Lo	(mm)	204.0
	Initial Sample Diameter	D 0	(mm)	102.3
	Initial Sample Weight	Wo	(gr)	3489.5
sketch showing specimen	Bulk Density	$\rho 0$	($\mathrm{Mg} / \mathrm{m} 3$)	2.08
location in original sample	Particle Density	ρ_{s}	($\mathrm{Mg} / \mathrm{m} 3$)	2.65

Initial Conditions			
Strain Rate	ε	(\%/min)	1.943
MembraneThickness	mb	(mm)	0.00
Displacement Input	LIP	(mm)	CH 2
Load Input	N IP	(N)	CH 1
Initial Moisture	$\omega{ }^{\text {i }}$ \%	(\%)	11
Initial Dry Density	$\rho \mathrm{do}$	(Mg/m3)	1.88
Initial Voids Ratio	eo	.	0.41
Initial Degree of Saturation	So	(\%)	69

Final Conditions

Max Deviator Stress	$\left(\sigma_{1}-\sigma_{3}\right) f$	(kPa)	58.09
Strain At Max Stress	$\varepsilon_{f} \%$	$(\%)$	5.95
Final Moisture	$\omega f \%$	$(\%)$	11
Final Dry Density	ρ_{df}	$(\mathrm{Mg} / \mathrm{m} 3)$	1.88
Final Voids Ratio	eff_{f}	.	0.41
Final Degree of Saturation	S_{f}	$(\%)$	68.7

Notes

Failure Sketch (surface inclination)

Unconfined Compression

Sample Details	Depth	19.95-20.25		
	Description	UNDISTURBID		
	Type	Mudstone		
	Initial Sample Length	Lo	(mm)	209.0
	Initial Sample Diameter	D 0	(mm)	103.5
	Initial Sample W eight	Wo	(gr)	3886.2
sketch showing specimen	Bulk Density	po	(Mg/m3)	2.21
location in original sample	Particle Density	ρs	(Mg/m3)	2.65

Initial Conditions			
Strain Rate	ε	(\%/min)	1.886
MembraneThickness	mb	(mm)	0.00
Displacement Input	L IP	(mm)	CH 2
Load Input	N IP	(N)	CH 1
Initial Moisture	$\omega{ }^{\prime} \%$	(\%)	10
Initial Dry Density	$\rho \mathrm{do}$	(Mg/m3)	2.01
Initial Voids Ratio	eo		0.32
Initial Degree of Saturation	So	(\%)	84

Final Conditions

Max Deviator Stress	$\left(\sigma_{1}-\sigma_{3}\right) f$	(kPa)	44.95
Strain At Max Stress	$\varepsilon_{f} \%$	$(\%)$	3.15
Final Moisture	$\omega f \%$	$(\%)$	10
Final Dry Density	ρ_{df}	$(\mathrm{Mg} / \mathrm{m} 3)$	2.01
Final Voids Ratio	eff_{f}	.	0.32
Final Degree of Saturation	S_{f}	$(\%)$	83.8

Notes

Failure Sketch (surface inclination)

Contract Number: PSL23/9618

Report Date: 04 December 2023
Client's Reference: S230311Client Name: \quad G2M TestingUnit 5e
Edwardson Road
Meadowfield
Durham
DH7 8RL
For the attention of: James Eglintine
Contract Title: Whitby
Date Received: \quad 15/11/2023
Date Commenced: 15/11/2023Date Completed: 4/12/2023
Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth \mathbf{m}	Base Depth m	
BH101		\mathbf{U}	$\mathbf{9 . 0 0}$	$\mathbf{9 . 4 5}$	Brown slightly sandy very silty CLAY.
BH102		\mathbf{U}	$\mathbf{9 . 0 0}$	$\mathbf{9 . 4 5}$	Brown slightly sandy very silty CLAY.
BH105		U	$\mathbf{9 . 0 0}$	$\mathbf{9 . 4 5}$	Brown slightly sandy very silty CLAY.

ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

Hole Number:

Sample Number:
Sample Type:

Initial Conditions		Pressure Range kPa		$\begin{gathered} \mathrm{Mv} \\ \mathrm{~m} 2 / \mathrm{MN} \end{gathered}$	$\begin{gathered} \mathrm{Cv} \\ \mathrm{~m} 2 / \mathrm{yr} \end{gathered}$	Specimen location within tube:	Top
Moisture Content (\%):	41						
Bulk Density (Mg/m3):	1.81	0	180	0.774	1.142	Method used to	
Dry Density ($\mathrm{Mg} / \mathrm{m} 3$):	1.28	180	360	0.254	1.056	determine CV:	T90
Voids Ratio:	1.064	360	720	0.151	0.953	Nominal temperature	
Degree of saturation:	102.1	720	1440	0.082	1.323	during test ' C :	20
Height (mm) :	20.014	1440	180	0.022	5.071	Remarks:	
Diameter (mm)	75.028	180	2880	0.035	1.532	See summary of soil	
Particle Density (Mg/m3): Assumed	2.65						

Pressure - kPa

ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

Hole Number:	BH102	Top Depth $(\mathrm{m}):$
Sample Number:		9.00
Sase Depth $(\mathrm{m}):$	9.45	

Sample Type: U

Initial Conditions		Pressure Range kPa		$\begin{gathered} \mathrm{Mv} \\ \mathrm{~m} 2 / \mathrm{MN} \end{gathered}$	$\begin{gathered} \mathrm{Cv} \\ \mathrm{~m} 2 / \mathrm{yr} \end{gathered}$	Specimen location within tube:	Top
Moisture Content (\%):	46						
Bulk Density (Mg/m3):	1.69	0	180	0.804	0.786	Method used to	
Dry Density (Mg/m3):	1.16	180	360	0.290	0.680	determine CV:	T90
Voids Ratio:	1.292	360	720	0.162	0.692	Nominal temperature	
Degree of saturation:	95.1	720	1440	0.086	0.648	during test ' C :	20
Height (mm) :	20.016	1440	180	0.018	1.142	Remarks:	
Diameter (mm)	75.008	180	2880	0.032	0.660	See summary of soil d	
Particle Density (Mg/m3): Assumed	2.65						

Pressure - kPa

	PROFESSIONAL SOILS LABORATORY	Whitby	Contract No:
			PSL23/9618
			Client Ref:
			S230311
PSLRFO72	Appoved by 1 Pevey		Isue No. 1

ONE DIMENSIONAL CONSOLIDATION TEST

BS 1377: Part 5: 1990: Clause 3

Hole Number:	BH105	Top Depth $(\mathrm{m}):$	9.00
Sample Number:		Base Depth $(\mathrm{m}):$	9.45

Sample Type: U

Initial Conditions		Pressure Range kPa		$\begin{gathered} \mathrm{Mv} \\ \mathrm{~m} 2 / \mathrm{MN} \end{gathered}$	$\begin{gathered} \mathrm{Cv} \\ \mathrm{~m} 2 / \mathrm{yr} \end{gathered}$	Specimen location within tube:	Top
Moisture Content (\%):	44						
Bulk Density (Mg/m3):	1.73	0	180	0.794	0.495	Method used to	
Dry Density (Mg/m3):	1.20	180	360	0.310	0.456	determine CV:	T90
Voids Ratio:	1.202	360	720	0.179	0.439	Nominal temperature	
Degree of saturation:	97.0	720	1440	0.095	0.425	during test ' C :	20
Height (mm) :	20.018	1440	180	0.035	0.937	Remarks:	
Diameter (mm)	75.025	180	2880	0.044	0.481	See summary of soil d	
Particle Density (Mg/m3) Assumed	2.65						

Pressure - kPa

	PROFESSIONAL SOILS LABORATORY	Whitby	Contract No:
			PSL23/9618
			Client Ref:
			S230311
PSLRFO72	Appoved by 1 Pevey		Issue No. 1

\% DETS

Certificate of Analysis

Client G2M Testing Ltd

12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-26611
Client Reference S230311
Order No LAB2042
Contract Title WHITBY
Description 7 Soil samples.
Date Received 13-Nov-23
Date Started 13-Nov-23
Date Completed 16-Nov-23
Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Kirk Bridgewood General Manager

Summary of Chemical Analysis
 Soil Samples

Our Ref 23-26611
Client Ref S230311
Contract Title WHITBY

Test
Method

Lab No	2261184	2261185	2261186	2261187	2261188	2261189
.Sample ID	BH101	BH101	BH102	BH102	BH103	BH103
Depth	5.00	13.50	7.50	10.50	7.50	10.50
Other ID						
Sample Type	D	D	D	D	D	D
Sampling Date	n/s	n / s	n / s	n/s	n / s	n/s
Sampling Time	n/s	n / s	n / s	n / s	n / s	n/s
LOD Units						

Inorganics
pH
Organic matter
Sulphate Aqueous Extract as SO4 (2:1)

DETSC 2008\#		pH	7.8	7.8	5.7	7.0	7.2	7.2
DETSC 2002\#	0.1	$\%$	3.4		8.4		7.0	7.4
DETSC 2076\#	10	mg / l	830	41	1900	820	780	560

Summary of Chemical Analysis
Soil Samples
Our Ref 23-26611
Client Ref S230311
Contract Title WHITBY

			Lab No	2261190
			mple ID	BH105
			Depth	7.10
			ther ID	
			e Type	D
		Samp	g Date	n / s
		Sampl	g Time	n / s
Test	M ethod	LOD	Units	
Inorganics				
pH	DETSC 2008\#		pH	
Organic matter	DETSC 2002\#	0.1	\%	11
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076\#	10	mg/l	

Information in Support of the Analytical Results

Our Ref 23-26611
Client Ref 5230311
Contract WHITBY
Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	mappropriate container for tests
2261184	BH101 5.00 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), Organic Matter (M anual) (28 days), pH + randurtivitv (7 dava)	
2261185	BH101 13.50 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivitv (7 davs)	
2261186	BH102 7.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), Organic M atter (M anual) (28 days), pH + randurtivitv (7 dava)	
2261187	BH102 10.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivitv (7 davs)	
2261188	BH103 7.50 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (30 days), Organic M atter (M anual) (28 days), pH + randurtivitv (7 dava)	
2261189	BH103 10.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), Organic M atter (M anual) (28 days), pH + randurtivitv (7 dava)	
2261190	BH105 7.10 SOIL		PT 1L	Sample date not supplied, Organic M atter (M anual) (28 davs)	
Key: P-Pla DETS cann be deviatin Deviating etc are de no sampled this will p	T-Tub be held responsible Deviating Sample cri mples'. All samples r ting due to the reas date (soils) or date+t ent samples being re	egrity of sam based on Britis listed abov This means rs) has been deviating wh	mples received whereby the tish and International stand e. However, those samples that the analysis is accredit supplied then samples are here specific hold times are	y did not undertake the sampling. In this instance sam laboratory trials in conjunction with the UKAS note 'Guid additional comments in relation to hold time, inappropren applicable, but results may be compromised due to sa However, if you are able to supply a sampled date (and eded and where the container supplied is suitable.	ples received may uidance on priate containers mple deviations. If and time for waters)

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

[^11]
\& DETS

Certificate of Analysis

Client G2M Testing Ltd
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-27587

Client Reference S230311

Order No LAB2042
Contract Title WHITBY
Description One Soil sample.
Date Received 23-Nov-23
Date Started 23-Nov-23

Date Completed 28-Nov-23

Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Kirk Bridgewood General Manager

Derwentside Environmental Testing Services Limited

Summary of Chemical Analysis

Soil Samples
Our Ref 23-27587
Client Ref S230311
Contract Title WHITBY

Information in Support of the Analytical Results

Our Ref 23-27587
Client Ref S230311

Contract WHITBY
Containers Received \& Deviating Samples
Lab No
Lample ID

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+1-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

\& DETS

Certificate of Analysis

Client G2M Testing Ltd
12 Yarm Road
Stockton On Tees
Cleveland
TS18 3NA

Our Reference 23-28817
Client Reference S230311
Order No LAB2077
Contract Title WHITBY ROCK SCHEDULE
Description 5 Soil samples.
Date Received 07-Dec-23

Date Started 07-Dec-23

Date Completed 12-Dec-23

Test Procedures Identified by prefix DETSn (details on request).
Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Kirk Bridgewood
General Manager

Summary of Chemical Analysis

Soil Samples

Our Ref 23-28817
Client Ref S230311
Contract Title WHITBY ROCK SCHEDULE

Test
Method

Lab No	2273501	2273502	2273503	2273504	2273505
.Sample ID	BH101	BH101	BH102	BH103	BH105
Depth	19.50	24.50	21.35	21.90	23.70
Other ID					
Sample Type	D	D	D	D	D
Sampling Date	n / s				
Sampling Time	n / s				

Inorganics								
pH	DETSC 2008\#		pH	8.5	7.9	8.2	8.7	8.6
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076\#	10	mg / I	<10	270	24	29	34

Information in Support of the Analytical Results

Our Ref $23-28817$
Client Ref 5230311
Contract WHITBY ROCK SCHEDULE

Containers Received \& Deviating Samples

Lab No	Sample ID	Date Sampled	Containers Received	Holding time exceeded for tests	Inappropriate container for tests
2273501	BH101 19.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
2273502	BH101 24.50 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
2273503	BH102 21.35 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
2273504	BH103 21.90 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
2273505	BH105 23.70 SOIL		PT 1L	Sample date not supplied, Anions 2:1 (30 days), pH + Conductivity (7 days)	
Key: P-Plastic T-Tub DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.					

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a $425 \mu \mathrm{~m}$ sieve, in accordance with BS1377.
Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.
The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of $28^{\circ} \mathrm{C}+-2^{\circ} \mathrm{C}$.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-
Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

SOLMEK

GEOTECHNICAL TESTING LABORATORY

APPENDIX E:
 Gas Monitoring Results

SOLMEK

Project number	S230311
Project name	Whitby Maritime Hub, Whitby
Client	Fairhurst
Visit no	1
Date	$20 / 11 / 2023$
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Cloudy
Ground Conditions	Wet
Ambient Atmospheric Pressure	1003
Regional Pressure Trend	Falling

Position	Flow	Pressure	CH4		CO2		O2 (\% v/v)	$\begin{array}{\|c\|} \hline \text { PID } \\ (\mathrm{ppm}) \end{array}$	$\begin{array}{\|c} \hline \mathrm{CO} \\ (\mathrm{ppm}) \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{H} 2 \mathrm{~S} \\ (\mathrm{ppm}) \end{array}$	Groundwater Level (mbgl)	$\begin{gathered} \text { Depth to } \\ \text { Base (mbgl) } \\ \hline \end{gathered}$	Notes
			(\% v/v)	GSV (1/hr)	(\% v/v)	GSV (1/hr)							
BH101	0.1	1003	8.0	0.0080	0.3	0.0003	14.0	0.2	0.0	0.0	1.28	12.30	
BH102	0.1	1003	6.7	0.0067	0.3	0.0003	16.2	0.1	0.0	0.0	1.82	17.00	
BH103	0.1	1003	6.7	0.0067	0.2	0.0002	17.9	0.3	0.0	0.0	1.23	12.40	
BH105	0.1	1003	0.0	0.0000	0.2	0.0002	19.4	0.0	0.0	0.0	2.10	8.70	
WS101	0.1	1003	0.0	0.0000	2.2	0.0022	18.0	0.0	0.0	0.0	2.20	3.70	
WS104	0.1	1003	0.0	0.0000	0.0	0.0000	20.4	0.0	0.0	0.0	1.28	5.00	
WS105	0.1	1003	0.0	0.0000	0.8	0.0008	19.1	0.0	0.0	0.0	2.05	3.00	

KEY

$\mathbf{C H}_{4}=$ Methane, $\mathbf{C O}_{2}=$ Carbon Dioxide, $\mathbf{O}_{2}=$ Oxygen, $\mathbf{C O}=$ Carbon Monoxide, $\mathbf{H}_{\mathbf{2}} \mathbf{S}=$ Hydrogen Sulphide, $\mathbf{G S V}=$ Gas Screening Value (If no flow is recorded a value of 0.1 is assumed), ND $=$ Not Detected, ${ }^{*}=$ not measured, $\mathrm{N} / \mathrm{A}=\mathrm{Not}$ applicable, $\%=\%$ by volume, $\mathrm{mbgl}=\mathrm{m}$ below ground level, ppm = parts per million

SOLMEK

Project number	S230311
Project name	Whitby Maritime Hub, Whitby
Client	Fairhurst
Visit no	2
Date	$27 / 11 / 2023$
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Cloudy
Ground Conditions	Wet
Ambient Atmospheric Pressure	999
Regional Pressure Trend	Falling

Position	Flow	Pressure	CH4		CO 2		$\mathrm{O} 2(\% \mathrm{v} / \mathrm{v})$	$\begin{array}{\|c} \hline \text { PID } \\ \text { (ppm) }) \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{CO} \\ (\mathrm{ppm}) \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{H} 2 \mathrm{~S} \\ \mathrm{gppm}) \end{array}$	Groundwater Level (mbgl)	$\begin{gathered} \hline \text { Depth to } \\ \text { Base (mbgl) } \end{gathered}$	Notes
			(\% v/v)	GSV (1/hr)	(\% v/v)	GSV (l/hr)							
BH101	0.1	999	3.0	0.0030	0.0	0.0000	18.4	0.4	0.0	0.0	3.07	12.30	Water sample retrieved
BH102	0.1	999	9.4	0.0094	0.5	0.0005	14.3	0.8	0.0	0.0	1.86	17.00	Water sample retrieved
BH103	0.1	999	7.3	0.0073	0.2	0.0002	18.0	0.6	0.0	0.0	1.45	12.40	Water sample retrieved
BH105	0.1	999	0.0	0.0000	0.2	0.0002	19.2	0.0	0.0	0.0	2.10	8.70	Water sample retrieved (partia
WS101	0.1	999	0.0	0.0000	4.9	0.0049	3.9	0.0	0.0	0.0	2.30	3.70	Water sample retrieved (partia
WS104	0.1	999	0.0	0.0000	0.0	0.0000	20.0	0.0	0.0	0.0	2.60	5.00	Insufficient water
WS105	0.1	999	0.0	0.0000	0.7	0.0007	19.4	0.0	0.0	0.0	2.00	3.00	Insufficient water

KEY

$\mathbf{C H}_{4}=$ Methane $\mathbf{C O}_{2}=$ Carbon Dioxide, $\mathbf{O}_{2}=$ Oxygen, $\mathbf{C O}=$ Carbon Monoxide, $\mathbf{H}_{\mathbf{2}} \mathbf{S}=$ Hydrogen Sulphide, $\mathbf{G S V}=$ Gas Screening Value (lf no flow is recorded a value of 0.1 is assumed), $\mathrm{ND}=\mathrm{Not} \mathrm{Detected},{ }^{*}=$ not measured, $\mathrm{N} / \mathrm{A}=$ Not applicable, $\%=\%$ by volume, $\mathrm{mbgl}=\mathrm{m}$ below ground level, ppm = parts per million

SOLMEK

Project number	S230311
Project name	Whitby Maritime Hub, Whitby
Client	Fairhurst
Visit no	3
Date	$15 / 12 / 2023$
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Sunny
Ground Conditions	Damp
Ambient Atmospheric Pressure	1031
Regional Pressure Trend	Steady

Position	Flow	Pressure	CH4		CO2		O2 (\% v/v)	$\begin{array}{\|c\|} \hline \text { PID } \\ (\mathrm{ppm}) \end{array}$	$\begin{array}{\|c} \hline \mathrm{CO} \\ (\mathrm{ppm}) \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{H} 2 \mathrm{~S} \\ (\mathrm{ppm}) \end{array}$	Groundwater Level (mbgl)	$\begin{gathered} \text { Depth to } \\ \text { Base (mbgl) } \\ \hline \end{gathered}$	Notes
			(\% v/v)	GSV (1/hr)	(\% v/v)	GSV (1/hr)							
BH101	0.1	1031	1.2	0.0012	0.0	0.0000	19.2	0.2	0.0	0.0	1.90	12.30	
BH102	0.1	1031	2.6	0.0026	0.5	0.0005	18.0	0.3	0.0	0.0	1.79	17.00	
BH103	0.1	1031	4.8	0.0048	0.2	0.0002	18.6	0.3	0.0	0.0	1.54	12.40	
BH105	0.1	1031	0.0	0.0000	0.3	0.0003	18.5	0.0	0.0	0.0	0.99	8.70	
WS101	0.1	1031	0.0	0.0000	3.0	0.0030	11.9	0.0	0.0	0.0	2.22	3.70	
WS104	0.1	1031	0.0	0.0000	0.0	0.0000	20.1	0.0	0.0	0.0	2.00	5.00	
WS105	0.1	1031	0.0	0.0000	0.7	0.0007	19.1	0.0	0.0	0.0	2.02	3.00	

KEY

$\mathbf{C H}_{4}=$ Methane, $\mathbf{C O}_{2}=$ Carbon Dioxide, $\mathbf{O}_{2}=$ Oxygen, $\mathbf{C O}=$ Carbon Monoxide, $\mathbf{H}_{\mathbf{2}} \mathbf{S}=$ Hydrogen Sulphide, $\mathbf{G S V}=$ Gas Screening Value (If no flow is recorded a value of 0.1 is assumed), ND $=$ Not Detected, ${ }^{*}=$ not measured, $\mathrm{N} / \mathrm{A}=\mathrm{Not}$ applicable, $\%=\%$ by volume, $\mathrm{mbgl}=\mathrm{m}$ below ground level, ppm = parts per million

APPENDIX F:

Notes on Limitations \& Contamination Guidance

UK BACKGROUND

Environmental Protection Act 1990: Part 2A Revised Statutory Guidance (April 2012)

This revised document explains how the Local Authority should decide if land, based on a legal interpretation, is contaminated. The document replaces the previous guidance given in Annex 3 of DEFRA Circular 01/2006, issued in accordance with section 78YA of the 1990 Environmental Protection Act.

The main objectives of the Part 2A regime are to "identify and remove unacceptable risks to human health and the environment" and to "seek to ensure that contaminated land is made suitable for its current use".

Part 2A uses a risk based approach to defining contaminated land whereby the "risk" is interpreted as "the likelihood that harm, or pollution of water, will occur as a result of contaminants in, on or under the land" and by "the scale and seriousness of such harm or pollution if it did occur".

For a relevant risk to exist a contaminant, pathway and receptor linkage must be present before the land can be considered to be contaminated. The document explains that "for a risk to exist there must be contaminants present in, on or under the land in a form and quantity that poses a hazard, and one or more pathways by which they might significantly harm people, the environment, or property; or significantly pollute controlled waters."

A conceptual model is used to develop and communicate the risks associated with a particular site.
To determine if land is contaminated the local authority use various categories from 1 to 4 . Categories 1 and 2 include "land which is capable of being determined as contaminated land on grounds of significant possibility of significant harm to human health."

Categories 3 and 4 "encompass land which is not capable of being determined on such grounds".

PRELIMINARY CONCEPTUAL MODEL

Preliminary Conceptual Models are undertaken in accordance with CIRIA C552. The Preliminary Conceptual Model assesses the consequence and the likelihood of a risk being realised to provide a risk classification, using the tables detailed below.

CONSEQUENCE OF RISK BEING REALISED (Based on C552 CIRIA, 2001)

Classification	Definition	Example
Severe	Short-term (acute) risk to human health, the environment, an element of the development or other aspect with is likely to result in significant harm, damage or both.	High concentrations of cyanide on the surface of an informal recreational area. Major spills of contaminants from site into controlled water. High concentrations of explosive gas in the subsurface environment that have a clear unobstructed pathway into buildings.
Moderate	Chronic damage to human health, a plausible chance that an event will occur, although the timeline is not immediate to be in the short-term.	Appreciable concentration of contamination that over the longer- topsoil. cause significant harm i.e. high lead concentration in may remain in a matisfactory or stable conditions for a number of years.
Mild	Low level pollution of non-sensitive water, a feasible hazardous scenario although the timeline of such occurring can probably be considered in 10's of years.	The effect of high sulphate concentrations on structural concrete. Pollution of non-classified groundwater.
Minor	Harm, although not necessarily significant to human health, or with respect to other aspects of the development, which are considered implausible in terms of occurrence, or will have little consequential impact.	The presence of contaminants at such low concentrations that protective equipment is required during site works. Any damage to structures is minimal and will not be structural in characteristics.

Classification	Definition
High Likelihood	There is a viable pollutant linkage and an event that either appears very likely in the short term and almost inevitable over the long term, or there is evidence that the receptor has been harmed or polluted.
Likely	There is a viable pollutant linkage and all elements are present and in the right place, which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short term and likely over the long term.
Low Likelihood	There is a viable pollutant linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a longer period such event would take place, and is less likely in the shorter term.
Unlikely	There is a viable pollutant linkage but circumstances are such that it is improbable that an event would occur even in the very long term.

RISK CLASSIFICATION MATRIX (C552 CIRIA, 2001)

Risk = Probability \mathbf{x} Consequence		Consequence			
		Severe	Moderate	Mild	Minor
Probability	High likelihood	Very high risk	High risk	Moderate risk	Moderate/low risk
	Likely	High risk	Moderate risk	Moderate/low risk	Low risk
	Low likelihood	Moderate risk	Moderate/low risk	Low risk	Very low risk
	Unlikely	Moderate/low risk	Low risk	Very low risk	Very low risk

HUMAN RECEPTORS

Human exposure to contaminants present in soils can occur via several pathways. Direct exposure pathways include dermal absorption after contact with contaminated ground, inhalation of soil or dust, inhalation of volatised compounds, and inadvertent soil ingestion (or deliberate soil ingestion in the case of some children). Other indirect pathways include human ingestion of plants grown in contaminated soil or contaminated ground or surface water. Contaminants associated with wind blown dust can affect humans on surrounding sites.

VEGETATION

Plants can be affected by soil contamination in a number of ways resulting in growth inhibition, nutrient deficiencies and yellowing of leaves. Contaminants are taken up by plants through the roots and through foliage. Contaminants identified as being highly phytotoxic include boron, cadmium, copper, lead, nickel, and zinc.

To establish if the levels of contaminants present on a site may pose a risk to vegetation the results of the contamination testing are compared to a series of threshold values published in 'Code of Good Agricultural Practice for the Protection of Soil'.

GROUNDWATER AND SURFACE WATER RECEPTORS

The principal pathway by which soil contamination may reach the water environment is through a slow seepage or leaching to groundwater or surface water. The potential for contaminants to migrate along such pathways is dependent on the chemical and physical characteristics of the contaminants and the local hydrogeology. Surface watercourses may also accumulate contamination as contaminated sediments are deposited within the water body.

Where the site investigated overlies major/principal aquifers (and in some cases minor/secondary aquifers depending on certain conditions), groundwater Source Protection Zones and areas in close proximity to groundwater abstractions, contamination test results have been compared with the Water Supply (Water Quality) Regulations 1989 and The Water Supply (Water Quality) Regulations 2000.

Should a surface water receptor, such as a fresh water environment (river, canal, stream, lake etc), or marine environment be considered sensitive in relation to a site, then test results are compared with DEFRA \& SEPA Environmental Quality Standards (2004). Many of the Environmental Quality Standards are hardness $\left(\mathrm{CaCO}_{3}\right)$ depended. Where no hardness values are available, Solmek assume conservative values (of between 0 and $50 \mathrm{mg} / \mathrm{l}$).

In the absence of vulnerable ground and surface water environments, Solmek may compare any test results with the Environment Agency Leachate Quality Threshold Values.

DETAILED QUANTITATIVE RISK ASSESSMENT (DQRA)

In line with Environment Agency's guidance document Environment Agency Land Contamination Risk Management, which replaced the now-withdrawn Contaminated Land Report 11 - Model Procedures for the Management of Land Contamination (2004), a DQRA for groundwater/human health may be required following a Phase 2 investigation and before the preparation of a Phase 3 Remediation Strategy. For human health DQRA, a site specific assessment criteria is undertaken using CLEA Software Version 1.06. For groundwater DQRA, the Environment Agency Remedial Targets Worksheet Version 3.1 is used.

WASTE CLASSIFICATION AND WASTE ACCEPTANCE CRITERIA

During the site strip and construction activities, material may be required to be removed from site. Any such material would require classification, in line with Environment Agency Technical Guidance Waste Classification: Guidance on the classification and assessment of waste (2015). This would classify the material as either Non-Hazardous or Hazardous Waste.

Once the material has been classified, determining the suitable landfill for disposal is governed by landfill directive Waste Acceptance Criteria (WAC) testing, with landfills categorized as Inert Waste, Stable Non-Reactive Hazardous Waste and Hazardous Waste. The WAC testing relates to materials that are to be exported from a site/development to landfill, and do not directly relate to human health specifically. The testing results are generally presented as certificates which can be used by site owners/contractors etc, which should be presented to the accepting waste facility or waste contractor.

If waste classification and/or WAC testing are not undertaken, material taken off site may be subject to WAC testing by the appropriate waste disposal company. The decision on whether or not to accept waste, or whether further testing is required, is at the discretion of the waste disposal company.

The below flow chart provides further information on the waste classification process.

CONSTRUCTION MATERIALS

Materials at risk from possible soil contaminants include inorganic matrices such as cement and concrete and also organic material such as plastics and rubbers. Acid ground conditions and high levels of sulphates can accelerate the corrosion of building materials. Where pH and soluble sulphate analysis has been undertaken, Solmek compare the test results with the guidelines presented within BRE Special Digest 1, 2005 ($3^{\text {rd }}$ Edition) 'Concrete in Aggressive Ground'. Plastics and rubbers are generally used for piping and service ducts and are potentially attacked by a range of chemicals, most of which are organic, particularly petroleum based substances. Drinking water supplies can be tainted by substances that can penetrate piping and water companies enforce stringent threshold values.

The levels of potential contaminants should be compared to thresholds supplied in the UK Water Industry Research (UKWIR) publication "Guidance for the selection of Water Supply Pipes to be used in Brownfield Sites" (January 2011). A Brownfield Site is defined in the document as "Land or premises that have not previously been used or developed that may be vacant or derelict". It should be noted that Brownfield sites may not be contaminated. The guidance does not apply to Greenfield Sites however water companies may have their own assessment criteria which should be checked by the developer. The table below outlines the pipe material selection threshold concentrations.

	Pipe Material (Threshold concentrations in mg/kg)					
Parameter group	PE	PVC	Barrier pipe (PE-AL-PE)	Wrapped Steel	Wrapped Ductile Iron	Copper
Extended VOC suite by purge and trap or head space and GC-MS with TIC	0.5	0.125	Pass	Pass	Pass	Pass
+ BTEX + MTBE	0.1	0.03	Pass	Pass	Pass	Pass
SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic C5-C10)	2	1.4	Pass	Pass	Pass	Pass
+ Phenols	2	0.4	Pass	Pass	Pass	Pass
+ Cresols and chlorinated phenols	2	0.04	Pass	Pass	Pass	Pass
Mineral oil C11-C20	10	Pass	Pass	Pass	Pass	Pass
Mineral oil C21-C40	500	Pass	Pass	Pass	Pass	Pass
Corrosive (Conductivity, Redox and pH)	Pass	Pass	Pass	Corrosive if $\mathrm{pH}<7$ and conductivity $>400 \mu \mathrm{~S} / \mathrm{cm}$	Corrosive if pH <5, Eh not neutral and conductivity $>400 \mu \mathrm{~S} / \mathrm{cm}$	Corrosive if $\mathrm{pH}<5$ or >8 and Eh positive
Specific suite identified as relevant following site investigation						
Ethers	0.5	1	Pass	Pass	Pass	Pass
Nitrobenzene	0.5	0.4	Pass	Pass	Pass	Pass
Ketones	0.5	0.02	Pass	Pass	Pass	Pass
Aldehydes	0.5	0.02	Pass	Pass	Pass	Pass
Amines	Fail	Pass	Pass	Pass	Pass	Pass

REQUIREMENTS OF PARTIES WITHIN THE DEVELOPMENT PROCESS

Interested parties involved in the development process may use the data in different ways and there may be varying views and interpretation of the factual data. Local Authority staff may have a view on contamination and human health and the wider environment. The Environment Agency are concerned principally with the protection of Controlled waters. Building insurers, funders and purchasers may be primarily concerned with issues of potential commercial blight. Purchasers are also not always fully informed, and perceptions on issues associated with risk can affect the decision to purchase. Developers and construction organisations will focus on financial aspects of dealing with the contamination in the context of the development and construction programme.

RISKS \& LIABILITIES FROM CONTAMINATION

In simple terms, risks associated with contamination may be considered in terms of 1) statutory risks and 2) development related risks. If contamination is severe or forms a potential hazard based on its potential to affect groundwater, surface water or human health, a statutory risk may be present, and as such, if the risk is not reduced, criminal proceedings may be instigated by a government body or local authority.

If the contamination is less severe or not considered to be mobile, it may be considered a commercial liability which could, in theory remain untreated, but which may at a later date affect the value of the property, or, with changing legislation, become a statutory risk. Commercial liabilities could give rise to civil proceedings by third parties if there are grounds for action.

These conditions accompany our tender and supercede any previous conditions issued. Solmek will prepare a report solely for the use of the Client (the party invoiced) and its agent(s). No reliance should be placed on the contents of this report, in whole or in part by 3rd parties. The report, its content and format and associated data are copyright, and the property of Solmek. Photocopying of part or all of the contents, transfer or reproduction of any kind is forbidden without written permission from Solmek. A charge may be levied against such approval, the same to be made at the discretion of Solmek.

Solmek cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. Solmek are not responsible for the action negligent of otherwise of subcontractors or third parties.

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, ground gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Solmek cannot be held liable for any unrecorded or unforeseen obstructions between exploratory boreholes and trial pits. This includes instances where previous structures on the site (buried man made structures) or the presence of boulder clay (cobbles and/or boulder obstructions) have been anticipated. All types of piling operations should make allowance for obstructions within the construction budget to accommodate this. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.4 of BS 10175:2011 in order to confirm the conceptual assumptions. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, Solmek cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

All information acquired by Solmek in the course of investigation is the property of Solmek, and, only also becomes the joint property of the Client only on the complete settlement of all invoices relating to the project. Solmek reserve the right to use the information in commercial tendering and marketing, unless the Client expressly wishes otherwise in writing. The quoted rates do not include VAT, and payment terms are 30 days from dispatch of invoice from our offices. Quotes are subject to a site visit.

We have allowed for 1 mobilisation and normal working hours unless otherwise stated. The scope of the investigation may be reviewed following the desk study and/or fieldwork. The presence or otherwise of Japanese Knotweed or other invasive plants can be difficult to identify especially during winter months. If Japanese Knotweed or other invasive species are suspect, it should be confirmed by an ecologist. We have not allowed for acquiring services information, and cannot be responsible for damage to underground services or pipes not shown to us or not clearly shown on plans. Costs incurred will be passed on to you, and in commissioning Solmek you understand and accept that you/your agent have a contractual relationship with Solmek \& you accept this. Our rates assume unobstructed, reasonably level and firm access to the exploratory positions and adequate clear working areas and headroom. We have priced on the basis that you or your client have the necessary permissions, wayleaves and approvals to access land. All boreholes and pits are backfilled with arisings except where gas monitoring pipes are installed with stopcock covers. Solmek are not responsible for any uneven surfaces as a result of siteworks and rutting and backfilled excavations may require re-levelling and/or making good by others after fieldwork is complete, and Solmek has not allowed for this. No price has been provided or requested for a return visit to remove pipework and covers. Hourly rates apply to consultancy only and do not include expenses unless otherwise shown. If warranties are required, legal costs incurred will be passed on to you assuming Solmek agree to complete such warranties, modified or otherwise and you understand and agree to pay all costs.

We reserve the right to pursue full payment of the invoice prior to release of any information including reports. We advise you/your client that we may elect to pursue our statutory rights under late payment legislation, and will apply 8% to the base rate for unreasonably late payments. Solmek are exempt from the CIS Scheme. Solmek offer to undertake work only in strict accordance with conditions covered by our current insurances, which are available for inspection. Solmek are not responsible for acts, negligent or otherwise of subcontractors and as a matter of policy cannot indemnify any other parties. Professional indemnity Insurance is limited to ten times the invoice net total except where stated otherwise by Solmek. Solmek give notice that consequential loss as a direct or indirect result of Solmek's activities or omission of the same are excluded.

Appendix 2b

Supplementary Gas and Groundwater Monitoring

SOLMEK

Project number	S230311
Project name	Whitby Maritime Hub, Whitby
Client	Fairhurst
Visit no	4
Date	$08 / 01 / 2024$
Equipment	GFM 435 Gas Analyser
Operator	LO

Weather Conditions	Cloudy
Ground Conditions	Wet
Ambient Atmospheric P ressure	1038
Regional Pressure Trend	Rising

Position	Flow	Pressure	CH4		CO2		$02(\% \mathrm{v} / \mathrm{v})$	$\begin{array}{\|c\|} \hline \text { PID } \\ (\mathrm{ppm}) \end{array}$	$\begin{gathered} \mathrm{CO} \\ (\mathrm{ppm}) \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{H} 2 \mathrm{~S} \\ (\mathrm{ppm}) \end{array}$	Groundwater Level (mbgl)	Depth toBase (mbgl)	Notes
			(\% v/v)	GSV (l/hr)	(\% v/v)	GSV (l/hr)							
BH101	0.1	1038	1.6	0.0016	0.0	0.0000	17.6	0.1	0.0	0.0	2.00	12.30	
BH102	0.1	1038	24.5	0.0245	0.5	0.0005	9.9	1.0	0.0	0.0	0.01	17.00	
BH103	0.1	1038	7.2	0.0072	0.4	0.0004	17.6	0.6	0.0	0.0	1.30	12.40	
BH105	0.1	1038	0.0	0.0000	0.2	0.0002	18.6	0.0	0.0	0.0	0.98	8.70	
WS101	0.1	1038	0.0	0.0000	3.1	0.0031	11.0	0.0	0.0	0.0	1.60	3.70	
WS104	0.1	1038	0.0	0.0000	0.0	0.0000	20.5	0.0	0.0	0.0	N/A	5.00	
WS 105	0.1	1038	0.0	0.0000	0.7	0.0007	19.7	0.0	0.0	0.0	2.09	3.00	

KEY
$\mathrm{CH}_{4}=$ Methane, $\mathrm{CO}_{2}=$ Carbon Dioxide, $\mathrm{O}_{2}=$ Oxygen, $\mathrm{CO}=$ Carbon Monoxide, $\mathrm{H}_{2} \mathrm{~S}=$ Hydrogen Sulphide, $\mathrm{GSV}=\mathrm{G}$ as Screening Value (If no flow is recorded a value of 0.1 is assumed), $\mathrm{ND}=\mathrm{Not} \mathrm{Detected} *=$, not measured, $\mathrm{N} / \mathrm{A}=\mathrm{N}$ ot applicable, $\%=\%$ by volume, $\mathrm{mbgl}=\mathrm{m}$ below ground level, $\mathrm{ppm}=$ parts per million .

Appendix 3

Contamination Summary

everminand		Test	$\mathrm{c}_{\substack{\text { Min } \\ \text { value }}}$	$\operatorname{lax}_{\substack{\text { max } \\ \text { value }}}$	$\underset{\substack{\text { Menn } \\ \text { value }}}{\text { a }}$	${ }_{\text {Us95 }}^{\substack{\text { value }}}$	${ }^{\text {nn }}$ Healu	(tandsapins		$\begin{aligned} & \text { Human } \\ & \text { Health } \\ & \text { Source } \end{aligned}$		$\underset{\substack{\text { Oner } \\ \text { surre }}}{\substack{\text { a }}}$	WSIII	wsil	ws102	WS104	WST05		${ }^{\text {BrinoI }}$ 2302023				${ }^{\text {BH104 }} 104$	${ }^{\text {Brin01 }}$	${ }^{\text {B4105 }}$	${ }^{\text {erin03 }}$	${ }_{\text {W } 5102}$		Ws101	${ }^{84102}$	${ }^{\text {Br105 }}$	
		${ }^{\text {Es }}$											${ }_{\text {ES }}$	${ }_{\text {Es }}$	${ }_{\text {es }}^{5}$	${ }_{\text {Es }}$	${ }_{\text {ES }}$	${ }^{\text {ES }}$	${ }^{\text {Es }}$	${ }^{\text {ES }}$	${ }_{\text {ES }}$	${ }^{\text {ES }}$	${ }^{\text {Es }}$	Es	${ }_{\text {ES }}$	Es	${ }_{\text {ckine }}$					
							MG. Clar						MG. CLA	M6.clar	${ }_{\text {M } 6 \text { clar }}$	M6. CLAr	M6. StIT	${ }^{\text {M } 6.5 \text { Sit }}$	6. GRave	6.6Rave	6. GRRVE	M6 C Chalk	n6. GRave	. GRave	M 6 - Gavavel	Sano	${ }_{\text {SaNO }}$	Sano	sult			
								- $\frac{0.80}{2129976}$					${ }^{0.60}$		${ }^{0.600}$	${ }^{\frac{1220}{20292}}$			${ }^{0.500}$	${ }_{\text {201104 }}^{1200}$	${ }^{0.030}$	${ }_{\text {203832 }}^{100}$	${ }^{0.850} 206$	${ }^{2251106}$	${ }^{\frac{0,70}{226824}}$	$\xrightarrow{3.300}$			${ }_{\substack{1.50 \\ 225105}}$			
$\frac{\text { Melis }}{\text { Matmon }}$																																
Antimony			16	${ }_{\substack{1.10 \\ 3.60}}$	${ }_{\substack{5.30 \\ 1500}}$	${ }^{\frac{188}{8.93}}$	${ }_{5}^{5.90}$		50			${ }_{\text {ctea }}^{\text {Clilos }}$	MAF [1998)			-1.2	$\frac{1.6}{9.1}$	1.8 15 15	- ${ }^{\frac{11}{1,3}}$	-		-	${ }_{\substack{150 \\ 3.80}}^{\text {a }}$	${ }_{\substack{1.60 \\ 3.60}}$	-12	-	- 2.4	$\stackrel{\text { c10 }}{12}$	${ }_{-1.0}^{8.9}$	$\stackrel{\text { c1.0 }}{1.8}$		$\stackrel{\text { c10 }}{13}$
			${ }^{16}$	${ }^{4500}$	${ }^{220.00}$	${ }^{111288}$	${ }^{24,529}$	22,00			${ }_{\text {ctame }}^{\text {Clame }}$	${ }_{\text {cteavine }}$		${ }^{220}$				${ }_{88}^{88}$						${ }^{45.00}$	${ }^{110}$							
Maer sowbel			${ }_{0}^{0.60}$	${ }_{5.49}^{5.49}$		${ }_{6}^{1.29}$	$\stackrel{12000}{24000}$	3.0		Lomicth suus	${ }_{\text {LeA } 1.0}$	MAF [1998)	${ }^{1,1}$		${ }^{2.7}$	${ }_{24}^{2.4}$	${ }_{12}^{12}$	$\stackrel{5}{5.4}$	${ }^{3.4}$		${ }_{23}$	${ }^{0.80}$	${ }_{0}^{0.60}$	${ }_{4.4}^{4}$	$\stackrel{2}{2}$		${ }_{4}{ }^{17}$	1.9	${ }^{1.6}$			
										Cle																						
		${ }^{\frac{16}{16}}$		${ }^{17,00}$		${ }_{12,62}^{10}$	${ }_{8}^{8.000}$	400		Lowleh suls	Leavio	Maf (1998)			${ }^{15}$	${ }^{16}$						${ }_{4.50}$	4.00									
		${ }^{\frac{16}{16}}$	${ }^{12,00}$	210000	${ }^{163.38}$	${ }^{2,382,7.7}$	${ }^{\text {63,000 }}$	200			(tea Mion	MAF (1998)	${ }_{9}{ }_{9}$		${ }^{28}$	${ }_{3}{ }^{32}$	${ }_{2}{ }_{2}$	${ }^{-10}$	${ }^{120}$		$\stackrel{110}{12}$	${ }^{13.00}$	${ }^{\frac{2}{1200}}$	${ }^{\text {¢ }}$	${ }^{\frac{120}{32}}$	$\stackrel{2100}{2}$	${ }_{1}^{13}$	${ }_{2}^{29}$	${ }^{\text {L10 }}$		${ }_{1}^{12}$	
	$\underset{\substack{\text { mon } \\ \operatorname{mon}}}{ }$	${ }^{16}$	7.50000	${ }_{\substack{41.0000 \\ 370.00}}^{\substack{\text { and }}}$	${ }_{\text {23,43,7, }}^{11.69}$	${ }_{\text {4, } 412.15}^{40.36}$	${ }_{2,3}{ }^{3}$	${ }_{30}$		$\mathrm{c}_{\text {clain }}^{\text {cast }}$	Clea	${ }^{\text {MAF [1998) }}$	(inco		${ }^{41000}$	${ }_{\substack{34000 \\ 100}}$	${ }^{36000}$	${ }_{\text {10000 }}^{120}$	(1900		(1600	$\xrightarrow{\substack{1,800.00 \\ 5400}}$	$\xrightarrow{1.50000}$	${ }_{\substack{2500 \\ 110}}^{\text {che }}$	3000	20000	${ }^{2000}$	${ }^{18000} 180$	${ }^{19000}$			
$\begin{array}{\|l} \left\lvert\, \frac{\text { Lead }}{}\right. \\ \hline \text { Manganese } \\ \hline \text { Mercury (Elemental) } \\ \hline \text { Moluhdonum } \end{array}$		16	18000	580.00	365.00	${ }^{690,85}$							${ }_{5}^{50}$		${ }^{230}$	+190	${ }^{\frac{250}{350}}$	${ }^{\frac{120}{50}}$	${ }^{\frac{150}{50}}$		${ }^{\frac{180}{10}}$	${ }^{548000}$	${ }^{\text {20,00 }}$	${ }^{360}$	${ }_{5}{ }_{50}$	${ }_{4}^{230}$	${ }^{260}$	${ }^{1100}$	${ }_{4}^{450}$		$\stackrel{20}{20}$	
		${ }^{16}$	${ }_{0}^{0.05}$	${ }^{0.33^{2}}$	${ }^{\frac{0.21}{1.01}}$	${ }_{\text {\% }}^{\text {O.19 }}$	¢17.000	${ }_{4} .0$			${ }_{\text {cte }}^{\text {cteavion }}$	MaF	- ${ }^{\text {O.12 }}$		¢	0.2 0.8 0.8	- ${ }^{0.15}$	- ${ }_{\text {0,16 }}^{1.1}$	-O., $\substack{1.4}$		${ }_{\substack{\text { c.0. } \\ 1.6 \\ 1.6}}$	${ }^{0.08} 0$	${ }_{0}^{0.07} 0$	${ }^{\frac{0.38}{1.1}}$	-0.13 1.6	0.1 1.1	- ${ }_{\text {0.08 }}^{1.1}$	+0.38	0.41 0.5 0.5		${ }^{\frac{0.0 .}{1.1}}$	
			${ }^{160}$	${ }^{47,00}$		${ }_{51,17}^{512}$	${ }^{980}$			${ }_{\text {L }}^{\text {LOMCC E S Suls }}$					${ }_{-47}^{4}$		${ }^{18}$	${ }^{15}$				${ }^{8.90}$	$\stackrel{1}{1.60}$					10				
$\underbrace{\text { Sedenim }}$,000	${ }_{3.0}$		LomMCEF S Suls	为	Maf (1998)						- ${ }^{\frac{1.1}{31}}$							${ }^{0.5}$		${ }^{\frac{205}{20}}$					
			${ }^{37,00}$		${ }_{81,50}$	- 11.92	\%30,00	300		ComClit Sulus	CLEA M M O 71	${ }_{\text {MAF }}(1998)$	${ }_{2} 20$		${ }_{58}$	${ }^{100}$	${ }_{58}^{58}$	${ }^{100}$	${ }^{100}$		12		${ }_{3} 3.00$	${ }_{81}$	12	${ }^{100}$	${ }_{63}$	${ }^{37}$	${ }_{8} 8$			
	${ }_{\text {mo }}^{\text {mo }}$	${ }^{\frac{16}{16}}$	${ }_{0}^{1.40}$	${ }^{4.000}$	5.69	${ }^{4,42}$							$\stackrel{2.4}{0.4}$		- ${ }_{\text {4, }}^{4.0}$	${ }^{4.5}$	4, 0.5 0	- ${ }_{\text {L }}^{15}$	${ }_{\text {- }}^{102}$		${ }_{-1.4}^{<0.2}$	${ }^{2} 000$	${ }_{2}^{2.40}$	${ }^{1.6}$	${ }^{\frac{4}{802}}$	${ }_{-0,2}^{15}$	$\stackrel{6 .}{80}$	${ }^{50.2}$	${ }^{\frac{3}{80.2}}$		${ }_{4}^{4.8}$	
	${ }_{\text {man }}^{\text {man }}$	${ }^{16}$					${ }_{3}$			${ }_{\text {ATKNS S ATRLSK S Sov }}$	${ }_{\text {Clean } 1.04}$					${ }^{20.1}$		$\stackrel{1}{ }$				<0,2	-0,1	${ }_{0}^{0.1}$								
	\%	- ${ }^{16}$	${ }^{820}$	${ }^{9.90}$	${ }^{8.87}$	${ }^{10.14}$		${ }^{50}$	-				${ }^{\frac{9.9}{0.16}}$		-8.8. ${ }^{8.04}$	- ${ }^{\frac{8.7}{0.1}}$	${ }^{\frac{9.6}{0.14}}$	9,4 0.17 0.17	${ }^{8.9}$		${ }^{9.6}$	${ }^{8.00}$	${ }^{8.20}$	$\frac{9,2}{0 .}$	${ }^{8,3}$	9,1	8.6	${ }^{8.4}$	${ }_{8,2}^{8,2}$		${ }^{8.6}$	
$\begin{array}{\|l} \hline \text { Sulphate Total (SO4) } \\ \hline \text { Sulphate Water Soluble (SO4) } \\ \hline \text { Thiocyanate } \\ \hline \text { Total Sula } \\ \hline \end{array}$	m9	近	${ }^{3200}$	1.0000	${ }^{30575}$				${ }_{\text {c }}^{5}$			${ }_{\text {BRE [2005 }}$			${ }^{32}$	${ }^{1.10}$	${ }_{20}^{260}$	${ }_{5} 5$	${ }_{5}^{53}$		${ }_{1000}$	${ }^{20000}$	${ }^{170.00}$			${ }^{820}$	${ }^{360}$		${ }^{210}$			
	mol	${ }^{\frac{16}{16}}$	${ }_{0}^{0.0}$	${ }_{\text {4.50 }}^{0.95}$	${ }^{1.86}$	${ }_{\text {che }}^{\substack{\text { S.35 } \\ 1.05}}$			5,000			EREE 2 2009	${ }_{\text {coid }}^{0.11}$		-	0,7 0.07 0.0	${ }_{\text {co. }}^{\text {co. }}$	$\stackrel{1}{0.29}$	${ }_{\substack{\text { co. } \\ 0.32}}$		${ }_{\text {co. }}^{0.0 .6}$	${ }^{\text {4.50 }}$	${ }_{\text {c }}^{\substack{\text { 4.30 } \\ 0.04}}$	${ }^{\frac{3.8}{0.05}}$	0.9 0.13	${ }^{\frac{21}{0.1}}$	${ }^{0.39}$	${ }^{0.8}{ }_{0}^{0.95}$	018			
Total Sulphur as S Misc M is																																
	${ }_{\text {min }}$	$\stackrel{4}{4}$	${ }^{1.40}$	3.20	${ }^{208}$	${ }_{4}^{4.12}$			${ }^{20}$			cract iote bleat				${ }^{\frac{19}{11.0}}$		$\stackrel{14}{4.0}$						${ }^{18}$						${ }^{3,2}$		
Calorific Value Asbestos (See Separate Sheet) Asbestos (See Separate Sheet)	\%	$\stackrel{13}{2}$					${ }_{\text {NaO }}^{\text {N }}$						NAO	NAO		${ }^{\text {NaO }}$	${ }^{\text {NAD }}$	${ }_{0} 0.001$		NAD	${ }^{\text {NaO }}$	${ }^{\text {NAO }}$	NaD	NAO	${ }^{\text {NaO }}$	0.002					${ }_{\text {Nad }}$	
		${ }_{5}^{5}$					${ }^{27}$			OMCICH Suls			\%oin					co.01	,		${ }^{\text {c0,0] }}$						co.el					
		\% ${ }_{5}^{5}$					$\underset{\substack{\text { s.,00 } \\ 5,500}}{ }$											${ }_{\substack{\text { <0.01 } \\<0.01}}$	$\stackrel{\text { co.01 }}{\substack{\text { co. }}}$		¢0.011											
										Cith Sulu																						
	mon	$\frac{16}{16}$	0.40	${ }_{0}^{0.43}$	0.42	0.52	(3,200						${ }_{\substack{0.01 \\<0.01}}$		${ }_{<0}^{20.01}$	${ }_{0}^{00.01}$	${ }_{<0}^{20.01}$	${ }_{<0}^{20.01}$	\bigcirc		${ }_{<0}^{20.01}$	O.4.	${ }^{0.43}$	${ }_{20.0}^{20}$	co.	<0.0	${ }_{<0}^{20.01}$		co.			
		${ }^{16}$	0.07	0.99	${ }_{0}^{0.33}$	3.89	${ }_{2} .2000$			LOMCEEH S4ULS	${ }_{\text {ctea }}$ Ciol		$\stackrel{0}{60.01}$		$\stackrel{-0.01}{\substack{20}}$	${ }_{<0}^{20.01}$	${ }_{0}^{80.01}$	${ }_{-0.01}^{201}$	$\stackrel{20.0}{2}$		$\stackrel{-0.01}{ }$	${ }_{0}^{0.99}$	${ }^{0.07}$		$\stackrel{\text { coin }}{ }$	400	- 80.0	$\stackrel{0}{<0.01}$	-			
		${ }^{\frac{1}{16}}$	${ }_{\text {L }}^{1.51}$	${ }_{27}^{2745}$	${ }_{\substack{7,31}}^{\substack{\text { a }}}$		59,00			Lommict Stuls	${ }^{\text {ctemviol }}$				$\xrightarrow{207}$	$\stackrel{1}{1.51}$	${ }_{1}^{1.6}$	${ }_{-1.2}^{4}$	$\stackrel{4}{4}$		$\stackrel{-12}{ }$	${ }_{\text {-12 }}$	$\stackrel{\text {-12 }}{ }$	${ }_{\text {-12 }}$	${ }_{-1.2}^{4}$	${ }_{-12}^{<12}$	$\stackrel{-120}{<120}$	${ }_{\text {-120 }}^{120}$	${ }^{3,94}$			
		${ }^{\frac{1}{16}}$	${ }^{2.31}$	-	${ }_{\text {cose }}^{10.90}$		1.600,000						${ }_{\substack{25.92 \\ \hline 351.1}}$		- $\begin{array}{r}\text { 231 } \\ 6.5 \\ \hline\end{array}$							${ }_{<}^{\text {c15 }}$				${ }_{<}^{\text {< }}$						
	,	$\stackrel{10}{7}$	- $\begin{aligned} & \text { 3,90 } \\ & 0.00\end{aligned}$	$\stackrel{\substack{133.60 \\ 0.00}}{ }$	${ }_{\substack{50.25 \\ 0.00}}$	${ }_{\substack{25.55 \\ 0.00}}^{\substack{\text { a }}}$	1.60,000			LOMCECH S 5 ULS	Clea N1.071		${ }_{\substack{1336 \\ 3429}}^{\substack{\text { 3,2 }}}$								${ }^{<3,4}$				${ }^{-3,4}$			${ }_{\substack{3.40 \\<3.40}}^{\substack{\text { c. }}}$				
		$\stackrel{7}{7}$	${ }^{16,81}$	52.50	${ }^{20.18}$	${ }^{1.0077 .7}$							${ }_{5}^{5625}$		${ }_{16,81}^{16}$	$\stackrel{\text { c1000 }}{ }$	$\stackrel{\text { c10.00 }}{ }$										-10.00	$\stackrel{\text { - } 10.00}{ }$	${ }_{5122}$			
		${ }^{16}$					$\underset{\substack{26.000 \\ 56000}}{\substack{\text { a }}}$						$\underset{\substack{<0.01 \\<0.01}}{\substack{20}}$			c0.01	${ }_{\substack{\text { co.01 } \\ 0.01}}^{\text {coi }}$	${ }_{\substack{\text { co.0. } \\ \hline 0.01}}$	${ }_{\substack{\text { co.01 } \\ 60.01}}$		${ }_{\substack{20.01 \\ 00.01}}^{2}$	$\underset{\substack{<0.01}}{\substack{\text { coit }}}$	$\underset{\substack{\text { c0.01 } \\ 60.01}}{ }$	<0.6	$\stackrel{\text { c.0. }}{\substack{80.0}}$	$\stackrel{\text { c.0.] }}{\substack{\text { coit }}}$	<0.01		${ }^{2} 0.01$			
		${ }^{\frac{16}{16}}$	${ }^{4.20}$	${ }^{4.20}$	${ }^{4.20}$								-		${ }_{\substack{<0.01 \\ 00.90}}^{\text {cie }}$	$\xrightarrow[\substack{20.01 \\<0.90}]{\substack{\text { cos }}}$	-	${ }_{\text {co. }}^{\substack{\text { co1 } \\<0.9}}$	$\underset{\substack{\text { c0,01 } \\<0.9}}{0.9}$		$C0001 c0900$	${ }_{\substack{<0.01 \\<0.9}}^{\substack{\text { co }}}$	$\underset{\substack{\text { co.01 } \\<0.9}}{0.0}$	${ }_{\text {co.0] }}^{4.2}$	${ }_{\substack{\text { co.01 } \\<0.9}}^{0.9}$	-	-		coict		${ }^{6} 0.9$	
			${ }^{1.90}$	${ }_{\text {, }}^{1.97}$		${ }_{2}^{219}$	36000			LOMCCEFS SUuls			${ }^{1.97}$		${ }_{<0}^{0.50}$		${ }_{<0.50}$															
		${ }^{16}$	${ }^{\frac{3}{239}}$	${ }^{\text {10,16 }}$	${ }_{2}^{2.11}$	$\stackrel{\substack{\text { 25.54 } \\ 0.9}}{ }$	${ }_{2}^{28,00}$			Lommect ssuls	Clean		-		${ }^{\frac{1}{4.4}}$	${ }^{\frac{3.198}{3.9}}$			$\stackrel{\text { c, }}{\substack{1.4}}$			${ }_{\substack{\text { ci, }}}^{\substack{\text { c, }}}$	${ }_{\text {cis }}^{\substack{\text { c, }}}$			$\stackrel{\substack{\text { ci. }}}{\text { ci. }}$	$\stackrel{\text {-1.90 }}{\substack{\text { c.190 }}}$	+ ${ }_{\text {8. }}^{4.9}$	${ }^{\frac{1.45}{3,4}}$			
		${ }^{1}$	${ }^{228}$	${ }_{6}^{6.16}$	4.06	${ }_{9,47}$	28.00			Lemw																		${ }_{\substack{\text { < } 1.40 \\ 1.190}}$	${ }_{\substack{3.13 \\ \hline 1.40}}^{\substack{\text { che }}}$			
A romatic EC $>5-44$ Aliphatic + Aromatic EC >44-70 C5-C10 Gasoline Range Organics (GRO): HS_1D_T EPH (C6-C10): HS 1D Total		$\stackrel{7}{16}$	${ }^{11.69}{ }^{12.65}$	${ }_{\text {a }}^{60.50}$		${ }_{\text {ckis }}^{\substack{\text { gis.90 }}}$	28.00			LOMCICH S Suls	Clea 1.071		¢		(12.69	$\underset{\substack{\text { c10.00 } \\<1000}}{\text { cos }}$	$\underset{\substack{\text { <10,00 } \\<1000}}{\text { cos }}$	<10	<10		<10	<10	<10	<10	<10	<10	$\underset{\substack{\text { c10.00 } \\<1000}}{ }$	${ }_{\text {l }}^{12.53}$	${ }_{5122}$		<10	
		$\stackrel{9}{10}$	0.00 0.00	0.00 0		-0.00							${ }_{\substack{c 0.1 \\ 0.1}}^{\text {coid }}$		$\underset{\substack{\text { co.1 } \\ 0.1}}{ }$	${ }_{\substack{\text { < } 0.1 \\<0.1}}^{\substack{1}}$	-				$\stackrel{10}{ }$				$\stackrel{9}{9}$			${ }_{\substack{\text { co.1 } \\<0.1}}^{1}$			${ }^{<10}$	
		?	0.00 0.00	0.00 0.00	${ }^{0.00}$	0.00							$\xrightarrow{230}$		$\stackrel{<10}{<10}$	${ }^{\frac{99}{29}}$	¢										$\stackrel{<10}{<10}$	$\frac{87}{120}$	${ }^{<10}$			
	monn	${ }_{1}^{16}$	${ }_{0}^{0.00}$	${ }_{\text {L }}^{1.60}$	- 0.60	${ }_{\text {2, }}^{1.39}$	$\substack{\text { 8i3000 } \\ \hline 6.300}$						$\stackrel{0.0 .1}{\stackrel{0.1}{4}}$		¢	$\stackrel{.0 .1}{\stackrel{\circ}{4}}$			$\stackrel{c 0.1}{ }$		$\stackrel{C 0.1}{ }$	0.21	O. 0	${ }_{\text {coly }}^{20.1}$	0.4.	${ }_{\text {176 }}^{1.6}$	$\stackrel{c 0.1}{ }$	${ }_{<0}$	${ }_{<0}$		$\stackrel{\square}{<0}$	
		${ }^{\frac{16}{16}}$	${ }_{0}^{0.20}$	${ }_{1}^{12.00}$	${ }^{\text {3, }}$		(100						${ }^{12}$		¢	4.	¢	-			-	¢	-		-	-		$\begin{array}{r}\text { ¢ } \\ \hline 0.4 \\ \hline\end{array}$			$\stackrel{\square}{<0}$	
		${ }^{\frac{16}{16}}$	${ }_{0}^{0.20}$	${ }^{\text {c,000 }}$	${ }^{3.49}$	-	${ }_{44}$												${ }^{1.2}$													
		${ }^{\frac{16}{16}}$	0.20	${ }_{\substack{5.60 \\ \hline 1.0}}$		${ }^{\frac{6,97}{9,55}}$	(1,200			LomMCEH Squs	(teavol				co.	$\frac{21}{24}$ 	co.	-0.6 0.8	0.5 0.6 0.6		0.2 8.1 8.1	${ }_{\substack{\text { co.1. }}}^{\substack{0.1}}$	${ }_{\substack{\text { c0.1. }}}^{\substack{0.1}}$	${ }_{\text {coil }}^{\frac{<0.1}{801}}$	- ${ }_{\text {122 }}^{12}$	$\frac{1}{19}$	-	${ }_{\substack{\text { < } 0.1 \\<01}}^{101}$	${ }_{\text {coil }}^{50.1}$			
			${ }^{0.30}$	${ }^{13,00}$	${ }^{3.34}$	${ }_{15,52}^{1,2^{2}}$				LommCer fsuls	${ }^{\text {che v } 1.072}$		${ }^{\frac{13}{13}}$		${ }_{<0,1}$	$\frac{5.1}{5.1}$	$\stackrel{0}{8}$	$\stackrel{1.4}{1.4}$			0,3	-0,	- 6.1	<0.1	$\stackrel{25}{2.5}$	${ }_{2} 29$	- 0.1	-0.4	<0,		$\stackrel{-0.1}{ }$	
		${ }^{16}$	${ }^{0.00}$	${ }^{2400}$	${ }_{5}^{5.05}$	${ }^{17,92}$	$\stackrel{33,500}{2,00}$			${ }_{\text {cole }}$	${ }^{\text {cteA }}$		$\stackrel{1}{24}$		${ }_{60.1}$	-		8.9 3.9	 1.4		\bigcirc	$\stackrel{\square}{<0}$	$\underbrace{\substack{\text { coit }}}_{\text {coil }}$	${ }_{0}^{0.1}$	-	i. 1.4 12	$\stackrel{\substack{60.1}}{\substack{\text { coin }}}$	$\begin{array}{r}\text { - } 0.1 \\ 0.6 \\ \hline\end{array}$	${ }_{60.1}$		0.2	
		${ }^{\frac{16}{16}}$	- $\begin{aligned} & 0.20 \\ & 0.80\end{aligned}$		-	-3,45 10.38	63000 500			Lemmet ssuls			${ }_{8}^{\frac{1}{8,1}}$		(¢	0.2 0.9 0	O.3 0.8 0.8		-0	-0,	$\underset{\substack{<0.1 \\<0.1}}{\substack{\text { coid }}}$		(10.	+12	-	$\xrightarrow{<0.1}$	${ }_{\substack{<0.1 \\ 00.1}}^{\text {coin }}$			
		${ }^{16}$	0.20	0.80	0.43	${ }^{1.14}$	190			LOMCECH Suls			0.2		co.1	${ }^{0.8}$	<0.1						<0.1	<0.1			${ }^{20.1}$					
		${ }^{16}$	${ }_{0}^{0.10}$	${ }^{21.00}$	${ }_{4.45}$	${ }_{24,4{ }^{127}}$	$\xrightarrow[\substack{22000 \\ 54,000}]{\substack{\text { a }}}$			LomMcters	${ }^{\text {Leteaviolion }}$		${ }_{\text {1, }}^{1 .}$		${ }_{\text {coin }}^{\substack{20.1 \\ 00.1}}$	- ${ }_{\text {c, }}^{10}$	O.2 0.6	122 3.8			0.1 0.3 0.3	0.1 8.1 8.	${ }_{0}^{20.1}$	${ }^{0.1}$	${ }^{\frac{2 .}{3 .}}$	${ }_{6}{ }_{6}^{19}$		${ }^{0.8}$	$\stackrel{20.1}{\substack{0}}$		${ }^{0.2}$	
																													${ }^{\text {<1.6 }}$			
	9k	3					0.24			EAS SVV	CLEA 1.05		<0.01			${ }_{\text {c0,01 }}$					$\stackrel{20.01}{ }$											
	mon	16	0.30	0.70	0.50	0.89	440			OMICEH SUULS	(EA M1071		0.3		${ }^{20,3}$	${ }^{00} 3$	$\stackrel{\square}{ }$	0.7	0.7		<0	cos	0.5	${ }^{00,3}$	<0.3	${ }^{00,3}$	${ }^{00,3}$	${ }^{00,3}$	${ }^{20.3}$		${ }^{0.3}$	
	mon	5					1.900			clame			<0.01			<0.01		$\stackrel{0}{80.01}$	<001		- 80.01											

								Acceptance Criteria	8H101 2302	в H 101	8H102	${ }^{\text {BH103 }}$	вH104	${ }^{\text {BH105 }}$	WS 101	WS102	WS 104	WS 105	BH102	WS 102	8H101	8H102	вH103	BH105	WS 101
									231102023	${ }_{\text {E/ }}^{231012023}$ ES	${ }_{\text {16/10/2023 }}^{\text {ES }}$	${ }_{\text {23102023 }}^{\text {ES }}$	${ }_{\text {L }}^{\text {1910102023 }}$ ES	${ }_{\text {cher }}^{16 / 10 / 2023}$	${ }_{\text {ES }}^{15012323}$	${ }_{\text {E/4032023 }}$	${ }_{\text {140332023 }}$	${ }^{150032023}$	${ }_{\text {E }}^{6 / 1012023}$	${ }_{\text {Li03 }}^{\text {ES }}$	$\frac{77 / 1 / 2023}{}$	7/11/2023	7/1/2023	7/11/2023	Water
Determinand		${ }^{\text {Tests }}$	$\underset{\substack{\text { min } \\ \text { value }}}{\text { and }}$	$\underset{\substack{\text { Max } \\ \text { value }}}{\text { a }}$	$\underset{\substack{\text { Mean } \\ \text { Value }}}{ }$	${ }_{\text {US995 }}^{\text {Value }}$	Surface			${ }_{\text {MG SAAND }}^{\text {ES }}$	${ }_{\text {E }}^{\text {E. Cravel }}$	${ }_{\text {MG - } 6 \text { ravel }}^{\text {E }}$	${ }_{\text {MG COS }}^{\text {ESLES }}$		MG - CLAY	${ }_{\text {MG - CLAY }}^{\text {ES }}$	${ }_{\text {E. CLIAY }}^{\text {E }}$	$\frac{\text { ES }}{\text { E CLAY }}$	${ }_{\text {Peat }}^{\text {es }}$	${ }_{\text {ES }}^{\text {SAND }}$			Water		
								Source	0.80	3.10	1.00	0.70	0.80	2.20	0.80	1.50	0.60	1.20	7.50	3.80	2.07	1.86	1.86	2.00	2.30
									2256396	${ }^{2256397}$	2251104	${ }^{2684824}$	${ }^{2253351}$	2251106	2142976	142979	142981	2142982	25110	${ }^{122988}$	22888	268785	268786	268878	228878
Meats															0.81	<0.17	0.63				${ }_{1}^{1.10}$	019	<017		
Ansment	ugn	${ }_{16}^{16}$	${ }_{0}^{0.37}$	${ }_{\text {I. }}^{3.40}$	${ }_{\text {¢ }}^{1.80}$	${ }_{4}^{1.24}$	25	AnnexG EQS	${ }^{1.6}$	${ }_{1.8}^{1.8}$	${ }_{\text {2. }}^{1.7}$	${ }_{0}^{1.7}$	${ }_{1.3}^{2.3}$		${ }_{\text {¢ }}^{3.40}$	$\stackrel{<0.17}{0.47}$	${ }_{\text {coin }}^{1.40}$	${ }_{\text {O }}^{1.40}$	${ }^{1.5}$	${ }_{\text {O }}$	${ }_{2}^{1.80}$	${ }_{\text {cher }}$	$\stackrel{<0.17}{1.3}$	$\stackrel{0.68}{2}$	$\stackrel{0.89}{2.4}$
Barium	ugl	${ }^{16}$	2.00	${ }^{12.00}$	${ }^{1.08}$	14.95			3	18	${ }^{30}$	37	24		$\stackrel{5}{5.50}$	2.00	${ }^{7} .60$	5.40	12	10.00	${ }^{140.00}$	61.00	480	${ }^{350}$	290
Beylium	u9/	16							<0.1	<0,1	<0.1	<0.1	20.1		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.10	<0.1	<0.1	<0.1	<0.1
Boron (water soluble)	u911	16	28.00	130.00	${ }_{81.25}$	179.93	7.000	Annex 6 EQS	41	90	${ }^{71}$	32	27		<12	74.00	28.00	<12	${ }^{93}$	$\stackrel{130.00}{13}$	62.00	${ }^{144.00}$	${ }^{110}$	${ }^{130}$	880
Cadmium	u911	${ }^{16}$					0.20	EU Standard	$\stackrel{20.03}{5}$	<0.03	<0.03	$\stackrel{-0.03}{ }$	0.12		<0.03	<0.03	<0.03	<0.03	<0.03	$\stackrel{0}{<0.03}$	${ }^{0.13}$	${ }^{0.03}$	<0.03	<0.03	0.04
Chromium (III)	u911	${ }^{16}$	14.00	14.00	14.00				${ }_{5}^{5.6}$	$\stackrel{10}{10}$	${ }^{21}$	$\stackrel{4.3}{10}$	4		$\stackrel{1.0}{ }$	$\stackrel{1.0}{<1}$	$\stackrel{1.0}{10}$	$\stackrel{1.0}{ }$	14	$\stackrel{1.0}{10}$	12.00	${ }^{2.30}$	$\frac{7.9}{}$	${ }_{5}^{5.5}$	<1.0
Chromium (V)- hexavalent	u9/1	${ }^{16}$					0.60	Proposed UKTAG	<7.0	<1.0	< 7.0	<7.0	<7.0		<7.0	< 7.0	< 2.0	< 2.0	<7.0	< 7.0	<170	< 21.0	<1.0	<7.0	<7.0
Copper	u911	${ }^{16}$	\bigcirc	${ }^{9.000}$	${ }_{4}^{4.20}$	${ }^{11.65}$	${ }^{5.0}$	Annex GEES	$\stackrel{1.8}{1.8}$	-0.4	1.7	$\stackrel{1.8}{\text { 1.85 }}$	2.3		$\stackrel{9.00}{100}$	$\xrightarrow{7.00}$	-1.80	3.80 3 100	${ }_{0} 0.5$	${ }_{3.10}$	$\stackrel{11.00}{1200}$	$\stackrel{1.60}{27}$	1.2		0.9
ron	ugII	${ }_{16}^{16}$	${ }^{7} .30$	150.00	104.72	${ }^{197.37}$	1,000	Annex 6 Eas	100	$\stackrel{5.5}{<1}$	<5,5	<5,5	74		${ }^{140.00}$	150.00	${ }^{140.00}$	${ }^{130.00}$	7.3	${ }^{61.00}$	84.00	${ }^{27.00}$	${ }^{24}$	${ }^{32}$	110
Lead	u911	${ }^{16}$	${ }_{0}^{0.12}$	${ }^{2.20}$	${ }_{1}^{1.06}$	${ }^{2.96}$	7.2	EU standard	${ }^{1.5}$	$\begin{array}{r}0.1 \\ \hline\end{array}$	0.29	1	6		2.10	0.40	${ }^{2.20}$	${ }_{1}^{1.20}$	${ }^{0.31}$	${ }_{0}^{0.12}$	${ }^{1.60}$	-0.55	$\frac{1.1}{1.1}$	${ }_{0}^{0.46}$	${ }_{0}^{0.18}$
Manganese	u911	${ }^{16}$	${ }^{1.30}$	2.30	${ }^{1.60}$	${ }^{2.64}$			1.7	14	0.95	4	14		${ }^{1.30}$	${ }^{1.50}$	${ }^{1.90}$	${ }^{1.30}$	1.3	${ }^{2} .30$	${ }^{9.60}$	${ }^{520.00}$	${ }^{210}$	51	4500
Mercur) (Elemental)	u911	${ }^{16}$	0.01	0.01	0.01		0.05	EU Standard	0.01	<0.01	<0.01	<0.01	0.03		<0.01	<0.01	0.01	<0.01	<0.01	<0.01	0.03	0.01	<0.01	<0.01	<0.01
Molydenum	u911	16	1.20	7.20	3.70	10.49			3	6.2	3.4	2.1	6		1.20	<1.1	1.70	<1.1	4.7	7.20	21.00	14.00	5.6		
Nickel	u911	${ }^{16}$					20	EU Standard	0.6	<0.5	<0.5	<0.5	1.7		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	${ }_{2}^{2.10}$	0.70	0.6	1.8	5.3
Selenium	u911	${ }^{16}$	0.25	0.38	0.32	0.45			0.83	0.53	0.46	0.61	1.9		${ }_{0}^{0.38}$	0.35	0.25	0.31	<0.25	<0.25	2.10	0.63	0.33	0.45	0.35
Vanadium	u911	${ }^{16}$	${ }^{1.30}$	7.10	${ }^{2.67}$	8.95	100	Annex G EQS	2.9	2.9	${ }^{4.3}$	0.8	2.6		7.10	${ }^{1.40}$	1.40	${ }^{1.30}$	2.9	1.90	$\stackrel{5}{5.80}$	${ }_{4}^{40.06}$	${ }^{2} 0.06$	${ }^{20.06}$	0.6
Zinc	ugI	16	1.90	1.90	1.90		40	Annex 6 E0S	${ }_{<1,3}$	$\stackrel{1}{ } \times$	${ }^{11.3}$	4	36		1.90	${ }^{<1.3}$	${ }^{<1,3}$	${ }^{<1.3}$	$\stackrel{11}{ }$	<1.3	20.00	${ }^{55.00}$	${ }^{76}$	${ }^{95}$	${ }^{84}$
	ugI	${ }^{16}$	0.07	0.66	0.22	0.90	${ }^{21}$	Proposed UKTAG	0.019	<0.015	<0.015	<0.015	0.07		0.07	0.10	0.12	0.14	<0.015	0.66	0.21	0.45	${ }_{0}^{0.43}$	${ }^{1.3}$	${ }^{1.8}$
Cranide Complex	บ911	${ }^{16}$							$\stackrel{40}{ }$	$\stackrel{40}{ }$	-40	440	<40		$\stackrel{40}{ }$	$\stackrel{40}{ }$	$\stackrel{40}{4}$	$\stackrel{40}{ }$	440	$\stackrel{40}{ }$	$\stackrel{40}{ }$	$\stackrel{4}{40}$	$\stackrel{4}{<40}$	$\stackrel{15}{ }$	$\stackrel{10}{ }$
Cavine Free	ugII	${ }^{15}$					1.0	Annex 6 EQS	<20	<20	<20	<20	<20			<20	<20	<20	<20	<20	<20	<20	$\stackrel{<20}{ }$	$\stackrel{<20}{ }$	
Cranid Toal	u911	${ }^{\frac{16}{16}}$	${ }^{7.40}$	${ }^{8.30}$	${ }^{7} .80$	${ }^{8.65}$			$\begin{array}{r}<40 \\ \hline 8.2\end{array}$	$\begin{array}{r}\text { < } 20 \\ \hline 7.8\end{array}$	$\begin{array}{r}<40 \\ \hline 8.1\end{array}$	<40	$\stackrel{<40}{6.6}$		-	<40 1.90	$\begin{array}{r}\text { < } 40 \\ \hline 7.40\end{array}$	$\begin{array}{r}<40 \\ \hline\end{array}$	$\begin{array}{r}<40 \\ 8.3 \\ \hline\end{array}$	<40 1.50	-	< 20 8.00	< 40 7.7	< 40 7.8	$\stackrel{40}{7.3}$
sulphate Total (504)	ugn	${ }^{16}$	${ }_{6}^{6.10}$	${ }_{20.00}$	${ }^{10.17}$	${ }_{24.42}$			${ }^{8}$	45	${ }^{130}$	${ }_{140}$	${ }_{28} 8$		$\stackrel{\text { c.40 }}{6}$	6.10	10.00	12.00	O	$\stackrel{6}{6.50}$	${ }^{76.00}$	${ }^{11.00}$	${ }_{5}^{5.1}$	110	610
Thiocyanate	u911	16	25.00	300.00	107.00	452.26			95	<20	<20	<20	<20		<20	300.00	59.00	44.00	${ }^{25}$	<20	<20	<20	<20	<20	<20
	บя						20	Etylbenzene EQS used as surroate	<0.1	<0.1				<0.1											
Aliphaicic E C >6.8 (toluene)	บ911	${ }^{16}$					20	Ethybenzene EQS us used as surrogate	$\stackrel{0.1}{4}$	$\stackrel{0.1}{<-2}$	$\stackrel{0.1}{ }$	$\stackrel{0.1}{<-2}$	$\stackrel{0.1}{<0.1}$	$\stackrel{20.1}{<0.1}$	$\stackrel{-0.1}{<0.1}$	$\stackrel{-0.1}{<0.1}$	$\stackrel{-0.1}{<0.1}$	$\stackrel{<0.1}{<0.1}$		$\stackrel{-0.1}{<0.1}$	$\stackrel{-0.1}{<0.1}$	$\stackrel{-0.1}{<0.1}$	$\stackrel{-0.1}{<0.1}$	$\stackrel{-0.1}{<0.1}$	-0.1
Aliphaic EC >8.10	ugI	${ }^{16}$					20	Ethybenzene EOS used a s surrogate	<0.1	<0,1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0,1		<0,1	<0.1	-0.1		<0.1	
Aliphaic EC $710 \cdot 12$	ugI	16	2.40	15.00	8.70	54.78	20	hylbenzene EQS used as surogate	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	15.00	<1.0	<1.0		2.40	<1.0	<1.0	<1.0	$\stackrel{1.0}{ }$	<1.0
Aliphatic EC 121.16	u911	${ }^{16}$	${ }_{5}^{5.50}$	100.00	52.75	398.34	20	Etyybenzene EQS used as surrogate	$\stackrel{1.0}{ }$	$\stackrel{10}{ }$	$\stackrel{1.0}{1.0}$	$\stackrel{1}{<1.0}$	$\stackrel{1.0}{<1.0}$	$\stackrel{1.0}{ }$	$\stackrel{1.0}{1.0}$	${ }_{\text {100.00 }}^{100}$	$\stackrel{1.0}{<1.0}$	$\stackrel{1.0}{ }$		${ }_{5}^{5.50}$	$\stackrel{1.0}{<1.0}$	$\stackrel{1.0}{<1.0}$	$\stackrel{1.0}{1.0}$	$\stackrel{1.0}{<1.0}$	$\stackrel{1}{1.0}$
	ugn	${ }_{1}^{16}$	14.00 1.40	$\xrightarrow{14.00}$	14.00 12.70	${ }^{95.35}$	$\frac{\mathrm{NV}}{\mathrm{NV}}$	${ }_{\text {TPHCWG }}^{\text {TPHCWG }}$	$\stackrel{1}{<1.0}$	$\stackrel{\text { ci.0 }}{<1.0}$	$\stackrel{1}{<1.0}$	$\stackrel{\text { ci.0 }}{\substack{<1.0}}$	<1.0 <1.0	$\stackrel{1}{<1.0}$	$\stackrel{1}{<1.0}$	$\xrightarrow{\frac{14.00}{24.00}}$	< <1.0 <1.0 1.0	< $\stackrel{<1.0}{1.0}$ <1.0		ci.0 1.40 1	$\stackrel{1}{<1.0}$		$\stackrel{1}{<1.0}$	$\stackrel{\text { ci.0 }}{\substack{<1.0}}$	
Aliphaic EC C >35-44	บ911	5	$\stackrel{1.00}{1.00}$	$\stackrel{\text { 24600 }}{ }$	${ }_{18.50}$	146.50	NV	TPHCWG							$\stackrel{1}{<1.0}$	${ }_{36.00}$	$\stackrel{1}{<1.0}$	$\stackrel{+1.0}{ }$		${ }^{1.00}$					
Aliphaic EC >5.44	ug/	5	${ }^{13.00}$	${ }^{13.00}$	${ }^{13.00}$										<1.0	13.00	<1.0	<1.0		<1.0					
	ugn	$\stackrel{16}{16}$					${ }_{8}^{8.0}$		<0.1 <0.1	<0.1 <0.1 <0	<0.1 <0.1 <0	$\begin{array}{r}<0.1 \\ \hline 0.1 \\ \hline 0.1 \\ \hline\end{array}$	$\begin{array}{r}<0.1 \\ <0.1 \\ <0.1 \\ \hline\end{array}$		< $\substack{\text { co.1 } \\ <0.1 \\ \hline}$	<0.1 <0.1	<0.1 <0.1	<	<	<0.1 <0.1					
Aromatic EC >8.10	u911	${ }^{16}$	20	Etlibenzene EQS as as a surogate	-0.1	$\stackrel{0.1}{ }$	-0.1	<0.1	<0.1	<0.1	-0.1	$\stackrel{0.1}{ }$	<0.1	<0.1		<0.1	$\stackrel{0.1}{ }$	$\stackrel{0.1}{ }$	$\stackrel{0.1}{ }$	$\stackrel{0.1}{ }$	<0.1
Aromatic C C 70.12	ug/	${ }^{16}$					20	Etlybenzene EQS as a surrogate	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	$\stackrel{1.0}{ }$	<1.0	<1.0		<1.0	<1.0	<1.0	$\stackrel{1.0}{ }$	$\stackrel{1.0}{ }$	<1.0
Aromaic EC >12.12	u91	16				.	20	Ethlybenzene EQS EOS as a surrogate	$\stackrel{1.0}{ }$	$\stackrel{1.0}{ }$	$\stackrel{1.0}{1.0}$	$\stackrel{1.0}{ }$	<1.0	-1.0	$\stackrel{1.0}{ }$	$\stackrel{1.0}{<1}$	$\stackrel{1.0}{ }$	$\stackrel{1.0}{ }$		$\stackrel{1}{1.0}$	$\stackrel{1}{1.0}$	$\stackrel{1.0}{ }$	$\stackrel{1}{1.0}$	$\stackrel{1.0}{<1}$	$\stackrel{1.0}{ }$
Aromatic Ec >16.21	$\stackrel{4911}{901}$	$\frac{16}{16}$.	$\frac{20}{20}$		$\stackrel{\text { c1.0 }}{10}$	$\stackrel{<1.0}{<10}$	$\stackrel{\text { c1.0 }}{<10}$	$\stackrel{<1.0}{<10}$	$\stackrel{1.0}{<10}$	$\stackrel{<1.0}{<10}$	$\stackrel{1.0}{<10}$	$\stackrel{\text { c1.0 }}{10}$	$\stackrel{<1.0}{<10}$	$\stackrel{<1.0}{<10}$		$\stackrel{1.0}{<10}$	$\stackrel{<1.0}{<10}$	-	$\stackrel{\text { < }}{\substack{\text { < } \\<10}}$	$\stackrel{\text { <1.0 }}{<10}$	$\stackrel{<1.0}{<10}$
Aromaic EC $\operatorname{355.44}$	ugn	${ }_{5}$.	.	.	\cdots	20	Ethlybenzene E EOS as as asurovate							$\stackrel{1}{<1.0}$	$\stackrel{1}{<1.0}$		$\stackrel{1}{<1.0}$		$\stackrel{1}{1.0}$					
Aromaic EC >5.44	u911	5													$\stackrel{1.0}{ }$	<1.0	<1.0	$\stackrel{1.0}{ }$		$\stackrel{1.0}{ }$					
$\frac{\text { Aliphaic } C \text { Aromaic } \text { CC } \times 44.70}{\text { PAHS }}$	u911	16	5.50	100.00	${ }_{52.75}$	${ }^{398.34}$			<10	10	<10	<10	<10	<10	<1.0	100.00	<1.0	<1.0		5.50	<10	<10	<10	<10	<10
Acenaphtene	u911	${ }^{16}$	0.03	0.04	0.04	0.07	NV		<0.01	0.07	0.02	0.02	0.01	0.27	0.03	<0.01	0.04	<0.01		<0.01	0.01	0.01	<0.01	0.01	
Acenaphtylvene	ugn	${ }^{16}$	0.02	0.05	0.03	0.06	NV		<0.01	0.01	<0.01	0.03	<0.01	0.09	0.05	<0.01	0.02	0.03		0.03	<0.01	<0.01	<0.01	<0.01	
Anturaene	$\frac{\text { ugl }}{\text { u911 }}$	$\frac{16}{16}$	0.02 0.02 0	${ }_{0}^{0.14}$	0.07 0.13 0	0.25 0.60 0	0.10 0.05		$001 c001$	O. 0.04	0.04 0.06 0	0.03 0.09	<0.01 <0.01	0.19 0.34	- $\begin{aligned} & 0.14 \\ & 0.43\end{aligned}$	$\stackrel{<0.01}{0.02}$	0.04 0.13 0	0.02 0.03		<0.01 0.02	$\underset{\substack{<0.01 \\<0.01}}{ }$	-		-	
Benzo(a) yrene	u911	16	0.02	0.50	0.17	0.70	0.05	Eu standard	<0.01	0.1	$\stackrel{0.06}{ }$	$\stackrel{0.13}{ }$	<0.01	$\stackrel{0}{0.39}$	$\stackrel{.050}{ }$	${ }_{0} 0.02$	$\stackrel{0}{0.28}$	0.05		$\stackrel{0}{0}$	$\stackrel{+0.01}{ }$	<0.01		<0.01	
Benzo(b)flurarantene	ugI	${ }^{16}$	${ }_{0}^{0.02}$	${ }^{0.58}$	0.20	0.81	sum	EU standard	<0.01	0.12	0.07	0.14	<0.01	0.49	0.58	0.04	0.30	0.07		0.02	<0.01	<0.01	<0.01	<0.01	0.20
Benzo (k)flurarantene	u911	${ }^{16}$	${ }^{0.02}$	${ }^{0.23}$	-0.13	0.41		EU standard	<0.01	${ }^{0.05}$	${ }^{0.03}$	${ }^{0.05}$	<0.01	0.24	${ }^{0.23}$	<0.01	${ }^{0.13}$	0.02		<0.01	$\stackrel{0.01}{\ll 01}$	<0.01	<0.01	<0.01	0.07
	ugn	${ }_{16}^{16}$	0.01 0.01 0.	- 0.42	0.15 0.15 0.6	0.59 0.61	0.002 sum	EUS standard	-	0.07 0.07	0.05 0.04	0.08 0.09	$\stackrel{0.01}{<0.01}$	0.26 0.31	- $\begin{aligned} & 0.42 \\ & 0.43\end{aligned}$	0.03 0.02	0.25 0.25	0.05 0.05		-	<	<		-	
Chrsene	u911	${ }^{16}$	${ }^{0.03}$	0.52	0.16	0.72	NV		<0.01	0.1	0.06	${ }_{0} 0.1$	<0.01	0.37	$\stackrel{0.52}{ }$	$\stackrel{0}{0.03}$	$\stackrel{0.18}{0 .}$	${ }_{0} 0.04$		$\stackrel{0.03}{ }$	<0.01	<0.01	<0.01	$\stackrel{-011}{ }$	$\stackrel{0.14}{ }$
Dibenzo(ah)antracene	u911	${ }^{16}$	${ }^{0.03}$	${ }^{0.08}$	0.06	0.24	0.05	Benzo(al) yrene treshold	<0.01	0.02	${ }^{2} 0.01$	0.01	<0.01	0.05	0.08	<0.01	0.03	<0.01		<0.01	<0.01	<0.01	<0.01	<0.01	0.03
${ }^{\text {Flumantene }}$	$\frac{\text { ugn }}{\text { ug }}$	$\frac{16}{16}$	$\stackrel{0.02}{0.01}$	- 0.76	0.22 0.02 0	$\stackrel{1.06}{0.09}$	$\frac{0.10}{\text { NV }}$	EU standard	0.01 <0.01	-0.22 0.04	0.11 0.02	0.17 0.03 0	0.02 <0.01	0.79 0.17	0.76 0.03 0	-0.04 0.01	0.23 0.01 0.0	O.04 0.01 0.0		O.02 0.01 0.0		<0.01		-	
Naphtalene	u911	16	0.06	0.06	0.06		1.20	EU Standard	0.07	<0.05	<0.05	<0.05	0.07	<0.05	0.06	<0.05	<0.05	<0.05		<0.05	0.07	0.08	<0.05	<0.05	<0.05
Phenantrene	ugI	${ }^{16}$	0.01	${ }_{0}^{0.21}$	0.07	0.32	NV		0.01	0.1	0.12	0.07	0.02	0.46	0.21	0.03	0.04	0.01		<0.01	0.03	0.02	0.01	<0.01	0.1
Prepe	ugn	16 16	$\stackrel{0.03}{0.29}$	$\frac{0.65}{5.10}$	$\stackrel{\text { O.20 }}{ } \stackrel{0}{2.01}$	$\stackrel{0.91}{\square}$			$\stackrel{0.01}{<0.20}$	${ }^{0.19}$	-0.13	0.16 1.2	$\stackrel{0.02}{<0.20}$	$\frac{0.62}{5}$	$\stackrel{0.65}{5.10}$	-0.04	$\stackrel{0.26}{2.20}$	O.04 0.46		$\stackrel{0.03}{<0.20}$	O.02 <0.20	-	-	-	O.29 1.8
BTEX																									
Benzene	ugl	6						AnnexG EQS		${ }^{<1.0}$	${ }^{<1.0}$			<1.0							<1.0	${ }^{<1.0}$			$\stackrel{1.0}{1}$
Etatene	บ9॥	${ }^{6}$					${ }^{14}$			$\stackrel{1}{<1.0}$	$\stackrel{1}{<1.0}$			$\stackrel{1}{<1.0}$							$\stackrel{1}{<1.0}$	$\stackrel{\text { ¢ }}{\stackrel{1}{<1.0}}$			${ }_{<-1.0}^{\text {< } 1.0}$
Phenols							77	Pronosed UKTAG			$\stackrel{100}{ }$	$\stackrel{100}{ }$	<100	<10	$\stackrel{100}{ }$	$\stackrel{100}{ }$	<100	<100		$\stackrel{100}{ }$	<100	<100	<100	<100	100
Other (Unchlorinated)								Pooosed UKtab																	
Methyl tertbutyl ether (MT PE)	ug1	5									<1.0			<1.0							<1.0	<1.0			<1.0

Appendix 4

Assessment Criteria

Assessment Criteria Substance	Waters					
	Surface Waters (mg/l) Fresh Water	Source	Surface Waters (mg/l) Marine	Source	Groundwater (mg/l)	Source
METALS						
Aluminium					0.2	UK DWS
Antimony					0.005	EU DWS
Arsenic	0.05	Annex G EQS	0.025	Annex G EQS	0.01	EU DWS
Barium					0.7	WHO DW
Beryllium					0.004	US EPA
Boron	2	Annex G EQS	7	Annex G EQS	1	EU DWS
Cadmium	0.00008-0.00025(a)	EU standard	0.0002	EU standard	0.005	EU DWS
Chromium (III)	0.0047	proposed UKTAG	N/A		0.05 (total Cr)	EU DWS
Chromium (VI)	0.0034	proposed UKTAG	0.0006	proposed UKTAG		
Copper	0.001-0.028(a)	Annex G EQS	0.005	Annex G EQS	2	EU DWS
Iron	1	Annex G EQS	1	Annex G EQS	0.2	EU DWS
Lead	0.0072	EU standard	0.0072	EU standard	0.01	EU DWS
Manganese					0.05	UK DWS
Mercury (methyl)	0.00005	EU standard	0.00005	EU standard	0.001	EU DWS
Molybdenum						
Nickel	0.02	EU standard	0.02	EU standard	0.02	EU DWS
Selenium					0.01	EU DWS
Silver	0.00005	Annex G EQS	0.00005	Annex G EQS	0.01	UK DWS
Tin	0.025	Annex G EQS	0.01	Annex G EQS		
Vanadium	0.02	Annex G EQS	0.1	Annex G EQS		
Zinc	0.008-0.125(a)	Annex G EQS	0.04	Annex G EQS	3	WHO taste threshold
INORGANICS						
Free cyanide	0.001 (free)	Annex G EQS	0.001 (free)	Annex G EQS	0.05(total)	EU DWS
Ammonia	0.2-0.6 (akalinity dependant)	proposed UKTAG	0.021	proposed UKTAG	0.5	UK DWS
Bromate					0.01	UK DWS
Sulphate					250	UK DWS
Nitrates					50	EU DWS
Chlorine	0.002	proposed UKTAG	0.001 (short term)	proposed UKTAG	5	WHO
pH	6.0-9.0	Annex G EQS			6.5-8.5	US EPA (SDWR)
ORGANICS						
ORGANOMETALS						
Triphenyltin	0.00002	Annex G EQS	0.000008	Annex G EQS		
Tributyl tin (oxide)	0.0000002	EU standard	0.0000002	EU standard		
Hydrocarbons						
BTEX						
Benzene	0.01	Annex G EQS	0.008	Annex G EQS	0.001	UK DWS
Ethylbenzene	0.02	Annex G EQS	0.02	Annex G EQS	0.3	WHO DW
Toluene	0.074	proposed UKTAG	0.074	proposed UKTAG	0.7	WHO DW
P-xylene	0.03 (all isomers)	Annex G EQS	0.03 (all isomers)	Annex G EQS	0.5	WHO DW
Aliphatic 5-6	0.02	Ethylbenzene EQS used as surrogate	0.02	Ethylbenzene EQS used as surrogate	0.3	WHO DWS for C8-C16
Aliphatic 6-8	0.02		0.02		0.3	
Aliphatic 8-10	0.02		0.02		0.3	
Aliphatic 10-12	0.02		0.02		0.3	
Aliphatic 12-16	0.02		0.02		0.3	WHO DWS
Aliphatic 16-35	NV insoluble	TPHCWG	NV insoluble	TPHCWG	NV insoluble	TPHCWG
Aliphatic 35-44	NV insoluble	TPHCWG	NV insoluble	TPHCWG	NV insoluble	TPHCWG
Aromatic 5-7 (waters 6-7)	0.01	benzene EQS	0.008	benzene EQS	0.001	UK DWS for benzene
Aromatic 7-8 (waters7-8)	0.05	toluene EQS	0.04	toluene EQS	0.7	WHO DWS for toluene
Aromatic 8-10	0.02	ethlybenzene EQS as a surrogate	0.02	ethlybenzene EQS as a surrogate	0.3	WHO DWS for ethyl benzene
Aromatic 10-12	0.02		0.02		0.1	WHO DWS
Aromatic 12-16	0.02		0.02		0.1	WHO DWS
Aromatic 16-21	0.02		0.02		0.09	WHO DWS
Aromatic 21-35	0.02		0.02		0.09	WHO DWS
Aromatic 35-44	0.02		0.02		0.09	WHO DWS
PAH (US EPA-16)						
Acenaphthene	NV		NV			
Acenaphthylene	NV		NV			
Anthracene	0.0001	EU standard	0.0001	EU standard		
Benzo(a)anthracene	0.00005	$\mathrm{B}(\mathrm{a}) \mathrm{P}$ threshold	0.00005	$\mathrm{B}(\mathrm{a}) \mathrm{P}$ threshold		
Benzo(a)pyrene	0.00005	EU standard	0.00005	EU standard	0.00001	EU DWS
Benzo(b)fluoranthene	0.00003(sum)	EU standard	0.00003(sum)	EU standard	0.0001 (sum)	EU DWS
Benzo(k)fluoranthene						
Benzo(ghi)perylene	0.000002(sum)	EU standard	0.000002 (sum)	EU standard		
Indeno(123-cd)pyrene						
Chrysene	NV		NV			
Dibenzo(ah)anthracene	0.00005	$\mathrm{B}(\mathrm{a}) \mathrm{P}$ threshold	0.00005	$\mathrm{B}(\mathrm{a}) \mathrm{P}$ threshold		
Fluoranthene	0.0001	EU standard	0.0001	EU standard		
Fluorene	NV		NV			
Naphthalene	0.0024	EU standard	0.0012	EU standard		
Phenanthrene	NV		NV			
Pyrene						
OTHER (unchlorinated)						
Phenol	0.0077	proposed UK TAG	0.0077	proposed UK TAG		
MTBE Carbon disulphide Styrene	0.015	EA report MTBE			0.015	EA report MTBE
	0.05	Annex G EQS	0.05	Annex G EQS	0.02	WHO DW

Appendix 5

Geotechnical Figures

Fig 1 -Undrained Shear Strength vs Depth (Alluvial Silt) Whitby Maritime Hub

FAIRHURST

Fig 10 -Strength vs Elevation (Mudstone and Siltstone)
Whitby Maritime Training Hub

\square Mudstone Point Load \square Mudstone USC
Δ Siltstone Point Load
Δ Siltstone USC

FAIRHURST Fig 2 -Undrained Shear Strength vs Elevation (Alluvial Silt) Whitby Maritime Hub

Fig 3 -Mv Values vs Depth (Alluvial Silt)

Whitby Maritime Hub

FAIRHURST
Fig 4 -Mv Values vs Elevation (Alluvial Silt)
Whitby Maritime Hub

Fig 5 -SPT N Values vs Depth (Alluvial Sand and Gravel)
Whitby Maritime Hub

FAIRHURST

Fig 6 -SPT N Values vs Elevation (Alluvial Sand and Gravel) Whitby Maritime Hub

FAIRHURST

Fig 7 -SPT N Values vs Depth (Granular Glacial Deposits)
Whitby Maritime Hub

FAIRHURST

Fig 8 -SPT N Values vs Elevation (Granular Glacial Deposits) Whitby Maritime Hub

FAIRHURST

\square Mudstone Point Load \square Mudstone USC Δ Siltstone Point Load Δ Siltstone USC

CIVIL ENGINEERING•STRUCTURAL ENGINEERING•TRANSPORTATION•ROADS \& BRIDGES PORTS \& HARBOURS • GEOTECHNICAL \& ENVIRONMENTAL ENGINEERING•PLANNING \&

[^0]: * Assessment criteria based on $\mathrm{pH} \geq 7$

[^1]: Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.
 v.2.06 $\quad *$ DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

[^2]: Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.
 v.2.06 $\quad *$ DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

[^3]: Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.
 v.2.06 $\quad *$ DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

[^4]: Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions.

[^5]: Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.
 v.2.06 $\quad *$ DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

[^6]: Denotes test or material description outside of UKAS accreditation. \% asbestos in Asbestos Containing M aterials (ACM s) is determined by by reference to HSG 264.
 Recommended sample size for quantification is approximately 1 kg \#denotes deviating sample

[^7]: Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.
 V. 2.06

 * DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

[^8]: Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.
 V.2.06

 * DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

[^9]: Disclaimer: The WAC limit values are provided for guidance only. DETS does not accept responsibility for errors or omissions. Values are correct at time of issue.
 V.2.06

 * DETS are accredited for the testing of leachates and not the leachate preparation stage which is unaccredited.

[^10]: End of Report

[^11]: End of Report

