Site: Meikle whiterashes, Turiff, Aberdeenshire, AB53 5RA

The largest Pollution index is then used to calculate discharge stack height.

Calculation of Ub (uncorrected Discharge Stack Height for buoyancy)

Substituting the relevant values into the equation elbow, the heat release (Q) is calculated

$$
Q=\quad 0.060587 \mathrm{MW}
$$

*The ambitient temperature is assumed to be $10^{\circ} \mathrm{C}(283 \mathrm{~K})$

The uncorrected discharge stack height due to buoyancy Ub is determined by the fallowing equation
$\mathrm{Ub}=10^{\wedge} \mathrm{a}^{*} \mathrm{Pi}^{\wedge} \mathrm{b}$

	$\mathrm{Q}<=1 \mathrm{MW}$	$\mathrm{Q}>1 \mathrm{MW}$
a	-0.878651451	-0.99209
b	0.48391188	0.476537

Ub $\quad 2.804339 \mathrm{~m}$
Min Ub $1.144685 \mathrm{~m} \quad$ Ubmin $=1.95^{*} \mathrm{Q}^{\wedge} 0.19$

Calculation of Um (Uncorrected Discharge Stack Height for momentum)
The discharge momentum, M, is determined using the equation below:
$\mathrm{M}=283 / \mathrm{Td}^{*} \mathrm{~V}^{*} \mathrm{w} \quad=\quad 1.6160093 \mathrm{~m} 4 / \mathrm{s} 2$
$\log 10$ Um $=x+\left(y^{*}\right.$ LOG10*Pi+z)^0.5

$x=-3.7+(\log 10 \mathrm{M})^{\wedge} 0.9$	-3.45616829
$\mathrm{y}=5.9-0.624^{*} \log 10 \mathrm{M}$	5.769931037
$\mathrm{z}=4.24-9.7^{*} \log 10 \mathrm{M}+1.47(\log 10 \mathrm{M})^{\wedge} 2-0.07(\log 10 \mathrm{M})^{\wedge} 3$	2.281330476

log10Um	0.797966058
Um	6.280092754
Min Um	0.956127665

Reference Distance
(5*Um) 31.40046377

Buildings	H *	W	K	T	R
Rock Cliff	7.6	10.0	7.6	19	4.7
Agri Workshop	8.4	27.0	8.4		21

* Height from the boiler ground level.

Hm	8.4
Tm	21
U	2.804339
A	2.23942
C	$\mathbf{1 2 . 6 6} \mathrm{m}$

Total Flue height $10 \mathrm{~m}+2.7 \mathrm{~m}$ boiler height.

Total calculated Stack Height
12.7 m

