

Site: Meikle whiterashes, Turiff, Aberdeenshire, AB53 5RA

Required Parameters of Stack

Diameter of Vent at discharge point 0.25 m

Area of stack at discharge point 0.049087 m²

w b h

Building Dimensions Outside

Discharge gas temperature Td 250 523 - As per Guidline

Discharge volume of gases V 0.382882 m³/s
Gas discharge velocity w 7.8 m/s
Stack Oxygen (dry) (O2d) 10 %
Moisture in discharge (H2Od) 17 %

Measured emissions concentration limits are

Emmission certificate is prodeced using average of 3 Pm values and using average NOx value from the reader.

PM10, mg/m³ 47.6 56.5 55.3

 NO2, mg/m³
 Average 65.5
 Maximum 115.3
 Maximum at STP
 97

 PM
 mg/m³
 56.5

 NO2
 mg/m³
 97

 CO
 mg/m³
 n/a

At conditions of STP i.e. 273K, 101.3kPa, 11% O2 dry

Stack Height Calculation

<u>Pollutant Discharge Rates D</u> mg/m3 g/s

PM 56.5 0.021633 Nox 115.3 0.044146

CO 1000 0.382882 Assumed

Guideline Concentrations are as follows Gdmg/m3PM0.05Nox0.2

 Nox
 0.2

 CO
 10

Background Concentrations are as follows Bcmg/m3PM0.01074

Nox (0.00248) 0.00998 - As per Guidline

CO 0.124

To find the background concentrations I used nearest coordinate: N 846500 E 364500

Calculation of the pollution index

1 Pi(dust) 551.016 2 Pi(NO2) 232.3242 3 Pi(CO) 38.76889

The largest Pollution index is then used to calculate discharge stack height.

Pi(dust) 551.016

Calculation of Ub (uncorrected Discharge Stack Height for buoyancy)

Substituting the relevant values into the equation elbow, the heat release (Q) is calculated

Q= 0.060587 MW

The uncorrected discharge stack height due to buoyancy Ub is determined by the fallowing equation

 $Ub = 10^a*Pi^b \qquad \qquad Q<=1 \ MW \qquad Q>1MW$

a -0.878651451 -0.99209

b 0.48391188 0.476537

Ub 2.804339 m

Min Ub 1.144685 m Ubmin =1.95*Q^0.19

Ubmin =1.7+.25*Q^0.9

Calculation of Um (Uncorrected Discharge Stack Height for momentum) The discharge momentum, M, is determined using the equation below:

M= 283/Td*V*w = 1.6160093 m4/s2

 $log10 Um = x+(y*LOG10*Pi+z)^0.5$

x=-3.7+(log10M)^0.9 -3.45616829 y=5.9-0.624*log10M 5.769931037 z=4.24-9.7*log10M+1.47(log10M)^2-0.07(log10M)^3 2.281330476

 log10Um
 0.797966058

 Um
 6.280092754

 Min Um
 0.956127665

Reference Distance

(5*Um) 31.40046377

Buildings	H*	W	K	T	R
Rock Cliff	7.6	10.0	7.6	19	4.7
Agri Workshop	8.4	27.0	8.4	21	30.2
					_

* Height from the boiler ground level.

Hm 8.4 Tm 21 U 2.804339 A 2.23942 C **12.66** m

Total Flue height 10 m + 2.7 m boiler height.

Total calculated Stack Height 12.7 m

^{*}The ambitient temperature is assumed to be 10°C (283K)