Technical design note

Project name	North Star Academy		
Design note title	Cut-off Barrier Specification		
Document reference	23941-HYD-XX-XX-TN-GE-1004		
Author	Tim Hatrey \& Simon Calkin		
Revision	CO1	Approved	\checkmark
Date	15 March 2024		

1. Introduction

Hydrock has been commissioned by ISG Ltd to provide the specification for a slurry wall/ cut off trench which is to be installed at the North Star Academy site in Sea Mills, Bristol.

The slurry cut-off wall is required to act as an impermeable barrier to stop the movement of percolating surface waters moving through the Made Ground which underlies the existing school structure.

Elevated concentrations of sulphate were found to be pervasive within the recently deposited Made Ground. It is of note that no elevated sulphate concentrations were identified in the ground during ground investigation undertaken prior to demolition This Made Ground is considered to have been derived from the demolition of the previous structure on the site. Building materials such as plasterboard and plaster both contain Gypsum which is a sulphate mineral.

The characteristic value determined was a concentration of $900 \mathrm{mg} / \mathrm{l}$ of soluble sulphate. This is not considered a risk to human health or to the environment for this development. However, the high sulphate levels can create aggressive ground conditions with respect to the durability of buried concrete. The original concrete design was based on historical ground investigation information which yielded a DS-1-AC1 concrete classification. However, based on recent testing, DS-2-AC-2 concrete is recommended as the placed concrete is now in contact with Made Ground. The risk of sulphate attack is governed by the movement of water which mobilises the sulphate in solution. Groundwater is not recorded during previous investigations and is therefore expected to be at depth below 3.15 m bgl. Some water seepage was noted from the Made Ground but this is anticipated to be localised pockets of perched water. Even in unsaturated ground sulphate can migrate by diffusion provided there is sufficient water to coat particles of soil. It is considered unlikely that the groundwater below the site will mobilise the sulphate in solution and the key risk is percolating surface water entering through the unsaturated Made Ground.

The proposed solution is to provide a continuous containment wall around the building. This impermeable barrier is to be installed around the exterior of the building in order to break the pathway by cutting off the mobilisation of sulphates through groundwater solution. The containment wall will comprise of both a bentonite slurry wall and a sulphate resistant concrete wall, used to form retaining walls.

2. Extend of the Slurry Cut-off Wall

The containment wall needs to encircle the building as a continuous barrier. The wall needs to fully penetrate the Made Ground and extend a minimum of 300 mm into the underlying natural soils. The required depths of the slurry wall are provided on Hydrock drawing FSO779-HYD-XX-ZZ-DR-C-7010 and are based on the depths the of Made Ground encountered during the foundation inspection. No investigation has been undertaken to confirm the depths along the proposed slurry wall alignment. The slurry wall and concrete walls will be a minimum of 600 mm in width.

The wall will be formed from a bentonite slurry filled trench or a retaining wall formed with sulphate resistant concrete. The details of the external retaining walls are provided on Hydrock drawing FSO779-HYD-XX-ZZ-DR-S-2005.

The alignment of the slurry was is provided in drawing FS0779-STL-XX-ZZ-DR-L-9400 and will fully incircle the building. The alignment of the slurry cut-off wall has been refined based on the drainage and services design in order to minimise the number of drainage and service penetrations. A concrete wall will be used where there are a number of service penetrations such as on the north west of the structure. Where the containment barrier changes in composition between concrete and bentonite cement the join will need to be covered with a waterproof membrane - Coltex waterproof composite. The composite will need to cover the full length of the join and be extended 0.5 m either side. A detail of the composite is shown in Hydrock drawing FSO779-HYD-XX-ZZ-DR-C-7104.

Where there is risk of desiccation within the top 0.5 m of the curing slurry wall, The desiccated slurry will not provide a fully waterproof barrier and therefore the effects of desiccation shall be mitigated by installing a composite on the outside of the slurry wall (0.5 m deep) once the grout has hardened. The composite will be lapped over the slurry wall and up to the underside of the asphalt layer. This is required to prevent the percolation or draining of water through the granular sub-base to the inside of the containment wall We recommend the use of Voltex Waterproofing composite is used. The trench should be backfilled with cohesive or sand material to protect the integrity of the membrane. A detail is provided on Hydrock drawing FSO779-HYD-XX-ZZ-DR-C-7103. Between the wall and the structure, the ground shall be encapsulated by impermeable hardstanding with a fall in level that directs surface water away from the building. A general section of the proposed slurry wall is provided in Hydrock drawing FSO779-HYD-XX-ZZ-DR-C-7301 and a plan showing the slurry wall alignment is shown in drawing FSO779-HYD-XX-ZZ-DR-C-7200, which is appended to this document.

The slurry cut-off wall must be stiff enough to offer resistance to penetration by tree roots. It is recognised that nature has a capacity to grow roots into fractured rock in its search for nutrients and water. Roots are however less likely to penetrate through hard unfractured / un-fissured material that is low in moisture content and devoid of nutrients, such as this artificially cemented grout. Should a root penetrate into the cut-off wall, it is considered unlikely that it will cause major perforation, as a root will effectively fill the gap it generates. Any localised shrinkage or cracking of material around such a root within the wall would be regarded as negligible when considering the whole mass of the buried structure.

3. Slurry Wall Specification

The slurry wall must achieve the following criteria:
" Be relatively impermeable, with a permeability, k of less than $1 \times 10^{-8} \mathrm{~m} / \mathrm{s}$
» Must not be prone to desiccation (based on moisture contents, Atterberg Limit testing, and observations). Top 0.5 m of wall where desiccation is prone during curing shall be modified with membrane barrier to ensure impermeability within this zone.
» Be of High strength with a minimum undrained shear strength, Cu of 150kPa or equivalent to a UCS derived unconfined compressive strength of 300 kPa .
» Must have a design life of 60 years.

4. Compliance Testing

Hydrock must be provided with a method statement of installation and specification of the slurry wall by the supplier - Keller Group.

Base on the slurry wall alignment (approximately 190 m) and the average depth (1.65m) of Made Ground around the building it is estimated that the volume of slurry required will be approximately $190 \mathrm{~m}^{3}$.

Hydrock

Samples of the slurry should be collected in U100 or thin wall sample tubes and tested in an accredited geotechnical laboratory.

In order to confirm that the slurry used has achieved the required specification, a testing schedule has been set out in Table 4-1. The expectation is that suitable strength shall be achieved between 28 \& 90 days:

Table 4-1: Bentonite Slurry Testing Schedule.

Test	Testing frequency	Age of sample tested		
Moisture Content and Atterberg Limit Determination	1 per 40m³	8 days		
Compressive Strength Triaxial Test with Permeability Determination	1 per 40m³ days			Defined and tested in accordance with:
:---				
BS 1377: 1990 BS EN ISO 17892-12:2018 BS EN ISO 17892 The results of all the testing should be provided to Hydrock for review.				

5. Maintenance

During the lifespan of the slurry wall it is anticipated that sections of the wall will need to be excavated to allow for additional service connections or repair works. In this situation the contractor should be made aware of the slurry wall and the requirements for reinstatement.

Any excavations cutting though the slurry wall will need to be reinstated with low permeability and low shrinkage grout such as KM Readigrout or Fosroc Conbextra which are readily available.

Appendix A - Drawings

NORTH WALL ELEVATION ${ }^{1.50}$

.3 318002200 wean
siov2 200 veres
 Figued dimensions ony are to boe taten foom this drawing,
 Reinforcement Notes:

Lap			
BAR \square°		$\square^{12} 1{ }^{16}$	
${ }_{\text {coion }}^{\text {¢000 }}$			\|int
Anctorage			
Bara			
6000	300380	[0140 4080	20075090091200
Poor	420550	40650 880	860 1070 1230 1720

Hydrock

ISG
 Dingle-Bristol

FSO779-HYD-XX-ZZ-DR-S-2005

$\underset{\substack{\text { 94: } 100}}{\text { 940 Slurry Wall Layout }}$
$\underset{\substack{\text { Ne: } \\ \text { Ne } \\ \text { reat }}}{ }$ \qquad

\}	CDM 2015 Risk Summary Table
apply to this plan only Refer also to the ISG rolling risk register: North Star Academy rolling risk regist	
Ref	Risk oscripition
a01	Steep bankings sope tos ste
A02	Venices turings digeentto walkwy.
${ }^{\text {A08 }}$	Risko ftutuens simbing fening
A22	Risk of students climbing handrails or falling down stairwell height spaces.

STRIDE TREGLOWN

Maw.strideregiown.com
North Star Academy
Hallen Drive, Sea Mills, Bristol, BS9 2NT
drawing tite
External Slurry Wall Layout

$\square \square$ mectans

Hydrock
5
${ }_{1}^{\text {Client }}$
proier
North star academy

EXTERNAL DETALLS
SHEET 2

stausosescampon
SUITABLE FOR CONSTRUCTION

