

Technical design note

Project nam∈	North star Academ				
Design note title	Internal Foundations chec				
Document referenc	23941 - HYD- XX- XX-TN - GE-1002				
Author	Lynne Llewellyn BSc (Hon) CGeol FGS & Tim Hatrey BSc MSc FGS				
Revision	P3				
Date	29 January 2024	Approvec	✓		

1. Introduction

1.1 Terms of reference

In November 2022, Hydrock was commissioned by ISG Limited (the Client) to undertake a review of the pad foundations at the site of the proposed Northstar Academy building. The site is located at Hallen Drive, Sea Mills, Bristol.

The site has remained partially completed since February 2022 after the previous main works Contractor entered administration. The majority of the substructure had been completed.

Hydrock understands that the site has been acquired by North Star Academy. The proposed development is a school for those with special educational needs. A proposed development layout (DKA, August 2020, Drawing FS0779-DKA-00-ZZ-DR-A-1201), is presented in Appendix A.

This Technical Note should be read in conjunction with Hydrock Ground Investigation Report, referenced 23941-HYD-XX-XX-RP-GE-1001, dated 9th September 2022.

The investigation works have been undertaken in accordance with Hydrock's proposal referenced (23941-NSA-HYD-XX-XX-GE-FQ-1001, August 2022) and the Client's instructions to proceed (Email via Tim Thompson on 3rd August 2022).

1.2 Objectives

These works and the previous works undertaken by Hydrock have been commissioned to investigate the previous completed foundation works and compare this with the original design.

The object of the investigation was therefore to confirm the depth of every pad foundation on the perimeter of the building and the internal foundations of the single storey structure. A requirement to confirm the concrete classification of the underlying soils is also needed.

1.3 Available information

The following documents, reports etc have been provided to Hydrock by ISG for use in the preparation of this report:

Ruddlesden Geotechnical, September 2018. Geotechnical Investigation and Contamination Assessment Report, North Star Academy, Hallen Drive, Bristol. Report Ref: AC/ JW/ SR/ 18379/ GICAR.

- » CJ Associates, January 2022. Factual and Interpretative Report, North Star Academy. Report Ref: 2070787.
- » Clegg Associates, February 2021. North Star Academy, Foundations Tree Influence Zones. Drawing Ref: 2019-101-FS0779-CAL-00-ZZ-DR-S-009-C01.
- » Clegg Associates, May 2021. North Star Academy, Foundation Layout. Drawing Ref: 2019-101-FS0779-CAL-01-FD-DR-S-0100.
- » Clegg Associates, November 2019. North Star Academy, Cut & Fill. Ref: 2019-101-NSA-CAL-00-XX-DR-C-360-P2
- » Hydrock Ground Investigation Report, referenced 23941-HYD-XX-XX-RP-GE-1001, dated 9th September 2022.

It is understood that the Client defined in Section 1.1 has obtained assignment of the above documents and Hydrock has assumed full reliance can be placed upon their contents. Should this not be the case, Hydrock should be informed at the earliest opportunity.

2. Ground investigation records and data

2.1 Site works

The fieldwork took place between 19 December 2022 and 16 February 2023. The ground investigation locations were positioned based on the construction grid shown in the Clagg Associates foundation drawings and are shown on the Exploratory Hole Location Plan (Hydrock Drawing 23941-HYD-XX-XX-DR-GE-1001-S2-P2) in Appendix A.

Cross sections through the inspection pits are presented on Hydrock Drawings 23941-HYD-XX-XX-DR-GE-1003 to 1012 in Appendix A.

The logs, including details of ground conditions, soil sampling, in situ testing and any installations, are also presented in Appendix B.

Table 2-1: Summary of site works

Activity	Method	No	Name	Depth	Rationale
Foundation Inspections	Mechanical Excavation	39	FPA1- 13, FPB1 &13, C1- & 13, D1-3 & 10-12, F- L 5-9	0.50 – 3.00	To investigate the profile of the ground conditions and depth of pad foundations. To collect samples for testing.
Probes	Dynamic Probe	4	DP01 – DP04	2.9 - 3.9	To gain a strength profile of the ground conditions through the Made Ground for the single storey footprint.
Window Sample Boreholes	Window Sample Rig	3	WS01 – WS03	2.5 –3.0	To investigate the profile of the ground conditions and collect samples for testing for the single storey.

2.2 Strata Encountered

The ground conditions encountered during the investigation comprised as follows:

Made Ground was encountered from surface typically comprising greyish brown slightly clayey angular to subangular fine to coarse gravel of limestone and brick fragments. Occasional fragments of breeze blocks, plastic strapping and timber were also encountered. Made Ground is likely to have been derived from the demolition of the former structure of the site which has been spread out across the site. Made Ground on the west of the site around the two-storey section of the building ranges in depth between 0.5-1.3m in depth but is deeper below the single storey structure ranging between 0.5 –2.4m thick (typically 1.3m thick). On the east of the site the Made Ground has been used raise the original ground level to provide a level platform for the development. In some locations the Made Ground has been described as a reworked natural material where it predominantly comprises of a reddish-brown gravelly clay but contains some element of anthropogenic material. It is considered that the Made Ground has not been placed in accordance with an earthwork specification.

The Made Ground in underlain by the Mercia Mudstone Group which is encountered as a firm to stiff reddish brown clay with occasional mudstone lithorelicts.

2.3 Geotechnical laboratory testing and data

The geotechnical tests undertaken by Hydrock are summarised in Table 2-2 and the test certificates are provided in Appendix C. Wherever possible, UKAS accredited procedures have been used.

Table 2-2: Summary of sample numbers for geotechnical tests

Test	Made Ground	Mercia Mudstone
Moisture content	-	13
Atterberg limits	-	13
BRE SD1 (reduced)	11	-

2.3.1 Moisture content

The natural moisture contents of the materials ranged between 15% and 24%, with an average value of 19%.

2.3.2 Plasticity

The volume change potential in terms of BRE Digest 298 with respect to building near trees have been determined from the results of plasticity index tests on samples of soil. These are summarised in Table 2-3.

Table 2-3: Volume change potential

GI	No. of tests	Plasticity Index		Modified Plasticity Index			Plasticity designation	Volume Change Potentia	
		Min.	Max	Av.	Min.	Max.	Av.		
Ruddlesden Geotechnical	6	12	21	16	8	20	13	Intermediate -Medium	Low – Medium
C J Associates	9	13	19	15	10	18	13	Low	Low
Hydrock GI	1		19	19		19	19	Medium	Low

Hydrock	13	11	16	14	11	16	12	Low	Low
Supplementary GI									

2.3.3 Sulphate content

In accordance with BRE (Special Digest 1), the Design Sulphate (DS) classification and the Aggressive Chemical Environment for Concrete (ACEC) classification are presented in Table 2-4. The assessment summary sheet is presented in Appendix C.

Table 2-4: Aggressive chemical environment concrete classification

Stratum	No. tests	DS	ACEC
Made Ground	13	DS-2	AC-2

Hydrock drawing 23941-HYD-XX-XX-DR-GE-1013 shows the locations that samples were collected from the Made Ground and the concentration of water-soluble sulphate (2:1 extract). A simplistic approach based on the concentration of water soluble sulphate is shown on the drawing. Concentrations over 500mg/l a concrete class of DS-2 is required. The drawing shows that sulphate concentrations are elevated within the Made Ground across the whole of the site including the two storey and single storey sections of the building.

It is likely that the elevated sulphate concentrations are the results of the demolition of the former structures which are likely to have contained plaster (containing gypsum).

2.4 Obstructions

A number of obstructions were encountered during the investigation, preventing the base of the foundations to be identified. These are summarised in Table 2-5.

Table 2-5: Summary of obstructions encountered

Location	Depth (m bgl)	Obstruction Detail
FPA5	1.00	Concrete obstruction associated with adjacent drainage.
FPA6	0.50	Concrete obstruction.
FPA7	1.00	Concrete obstruction associated with adjacent drainage.

3. Geotechnical assessment

The intrusive ground investigation by Ruddlesden determined that all foundations were to be placed below any Made Ground within the firm to stiff silty natural clay at a minimum depth of 0.90m bgl, deepened within the influence of trees (and where Made Ground is prevalent).

The report advised that an allowable bearing capacity of 150kN/m² could be achieved within the firm to stiff natural clays and recommended that any pads would need to be founded with a minimum embedment depth of KLLmm into the Mercia Mudstone Formation.

A second ground investigation was undertaken by CJ Associated revised the volume change potential to low and recommended a minimum foundation depth of M.Lm and would provide an allowable bearing capacity of MNOkN/m².

The existing foundations were inspected using a mechanical excavator to investigate the depth of the base of the pads and the founding stratum. For the purposes of this assessment the pads have

been labelled according to the grid layout as shown on the extract of the Foundation GA plan (FSLQQR-HYD-XX-FM-DR-S-MLLL, rev PLK) presented in Appendix A.

3.1 External foundations

To calculate the actual bottom of the foundation (BOF) depth of the external foundations within the assessment we have assumed that the top of foundation (TOF) level was achieved at NS.MLm AOD (QTLmm below Finished Floor Level) as per the foundation drawings provided by Clegg Associates.

The following table summarises the proposed founding depths vs. the actual founding depths, the founding stratum and whether the amount of embedment achieved.

Table 3-1: Summary of inspected external foundations

Location	Proposed Bottom of Foundation Depth (m) AOD	Actual Bottom of Foundation Depth (m) AOD	Formation level achieved (Y/ N)	Founding Stratum	Bearing 200mm into natural? (Y/ N)
A1	35.30	35.50	N	Mercia Mudstone	N
B1	35.30	35.60	N	Mercia Mudstone	N
C1	35.30	35.20	Υ	Mercia Mudstone	Υ
D1	35.00	35.24	N	Mercia Mudstone	N
D2	35.30	35.60	N	Mercia Mudstone	Υ
A3	35.65	35.60	Υ	Mercia Mudstone	Υ
D3	35.65	35.63	Υ	Mercia Mudstone	Υ
A4	35.65	35.48	Υ	Made Ground	N
A5	35.65	*Unknown (Concrete recorded to 35.10)	Y	** Mercia Mudstone Unknown	N/ A
D5	35.65	36.65	Υ	Mercia Mudstone	Υ
E5	35.65	35.65	Υ	Mercia Mudstone	Υ
F5***	35.65	35.65	Υ	Made Ground	N
G5	35.05	35.58	N	Made Ground	N
H5	34.75	35.48	N	Made Ground	N
J5	34.75	35.57	N	Made Ground	N
K5	34.15	34.75	N	Made Ground	N
L5	34.15	35.27	N	Mercia Mudstone	N
A6	35.65	*Unknown (Concrete recorded to 35.10)	Y	**Mercia Mudstone Unknown	N/ A

F6	35.65	35.60	Υ	Mercia Mudstone / Made Ground	N
J6	33.45	34.5	N	Made Ground	N
G6	34.75	35.67	N	Mercia Mudstone	N
Н6	34.75	35.35	N	Mercia Mudstone	Υ
A7	35.65	*Unknown (Concrete recorded to 35.10)	Y	**Mercia Mudstone Unknown*	N/ A
G7	34.75	35.19	N	Mercia Mudstone	N
F7	35.05	35.65	N	Mercia Mudstone	Υ
K7	33.60	35.60	N	Made Ground	N
A8	35.65	35.05	Υ	Mercia Mudstone	Υ
D9	35.65	35.58	Υ	Mercia Mudstone	Υ
E9	35.65	35.57	Υ	Mercia Mudstone	Υ
G9	34.10	35.40	N	Made Ground	N
A9	35.65	35.40	Υ	Mercia Mudstone	Υ
F9	35.05	35.00	Υ	Mercia Mudstone	Υ
J9	33.30	34.16	N	Made Ground	N
A10***	35.65	35.57	Υ	Mercia Mudstone	N
D10	35.65	35.70	N	Mercia Mudstone	Υ
A11	35.40	35.50	N	Mercia Mudstone	Υ
D11	34.65	34.57	Υ	Mercia Mudstone	Υ
A12	35.40	35.64	N	Mercia Mudstone	Υ
C12	35.10	35.66	N	Mercia Mudstone	N
D12	34.60	35.66	N	Mercia Mudstone	N
A13	35.10	35.60	N	Mercia Mudstone	Υ
B13	34.60	35.66	N	Mercia Mudstone	N
C13	34.60	35.20	N	Mercia Mudstone	N

^{*}Refused on Concrete at these depths

Key:

^{**}Currently assumed to be founded on top of Mercia Mudstone

^{***} Further assessment bearing capacity check undertaken on pad location. See Table 3-2.

Founding depth and depth to embedment achieved
Founding depth and depth to embedment not achieved
Unknown –Requires further investigation

*A concrete obstruction was encountered within A5, A6 and A7. This is thought to have been associated with the installed drainage. During the works a hydraulic breaker was not available to allow the progression of the excavation in order to confirm the founding strata. Therefore, While the required formation was achieved it has not been possible to confirm the founding material is suitable. It is likely that these foundations will be within the Mercia Mudstone material (natural) and may not require additional remediation, however for costing purposes it should be assumed that these locations required remediation.

The following pad locations were not investigated;

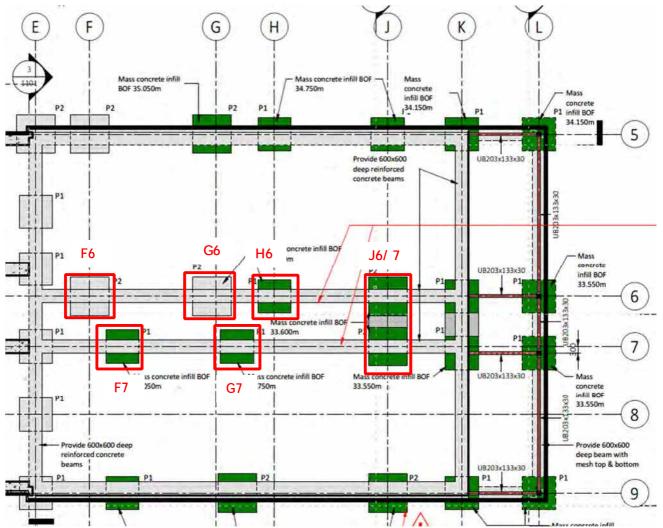
- » Pad locations A2 was not investigated due to the location of an underground electrical cable. It should be assumed that this location requires remediation.
- » Pad Location B2, C2 and B12 were located inside the existing structure. However, based on the surrounding investigated locations it should be assumed that these have not adequate and require remediation.
- » Pad locations D4 and D9.5 were obstructed by a drainage manhole and were not investigated.
- » Pad location K6 and J7 are pads which are shown on plans to be joined (J6-J7 and K6-K7) therefore the pad has only be investigated on one side but assumed to be the same across the foundation.
- Pad Locations K9 and L6-9 were obstructed by a boundary fence and therefore these locations could not be investigated but based on the investigation of pad L5 it is likely that these pads will not have achieve the required depth and remediation is likely to be required. In addition, it would be recommended that foundations are piled to minimise potential differential settlement.
- » No access was possible for internal pits on grid lines B-C 3-10. However, these locations are outside tree influence. No remedial action proposed.

The pad foundation on grid line A10 has achieved the required bearing depth but the embedment of the foundation within the natural strata has not been achieved (minimum 200mm embedment). Where this occurs the bearing capacity of the pad may be reduced.

Pad foundation F5 is founded within the Made Ground but has achieved the required founding depth. Based on the dynamic probes the bearing capacity of the Made Ground has been assessed. The Made Ground is considered to provide adequate bearing capacity with minimal settlement <10mm.

Table 3-2: Summary of bearing capacity for external pads that have not achieved the minimum embedment.

Pad	Proposed Loads kN (SLS)	Pad size (m)	Foundation pressure (kN m ^e)
AAB	MN T	M.TL x M.TL	ML Q
FC	NLL	M.QT x M.QT	RO


The foundation pressure is less than the 150kN/m² recommended in the ground investigation report and Hydrock assessment indicates that the pad foundation is adequate.

3.2 Internal foundations

As above, for the purposes of this assessment the internal pads have been labelled according to the grid layout as shown on the extract of the Foundation GA plan (FSLQQR-HYD-XX-FM-DR-S-MLLL, rev PLK) presented in Appendix A. Therefore, the pads have been labelled FS, GS, HS, JS, FQ GQ and JQ

Figure 3-1: Extract of foundation GA plan

For the internal foundations, the formation level was calculated using the structural slab level (SSL) at a level of NS.OTm AOD, and the corresponding top of the formation (TOF) being taken as NS.MLm AOD as before.

Where the foundations were influenced by trees the pads were to sit on mass concrete of varying depths. This information including the achieved formation levels and the stratum they were founded in is tabulated below.

Table 3-3: Internal Pad summary and achieved formation levels

Pad	Mass concrete mm	Anticipated bottom of formation (BOF) m AOD	Formation level achieved m AOD	Formation level achieved (Y/ N)	Stratum at achieved BOF	Bearing 200mm into natural? (Y/ N)
-----	------------------------	---	---	--	----------------------------	--

FD	SXL	NT.ST	NT.SK	Y	MG: Grey Gravel	N
GD	RLL	NX.QT	NT.ST	N	Firm-stiff clay (MMG)	N
HD	RLL	NX.QT	NT.NS	N	Firm-stiff clay (MMG)	Υ
JD	KKLL	NN.XT	NX.KL	N	MG: Former slab	N
FE	SLL	NT.L T	NT.ST	N	Firm clay (MMG)	Υ
GE	SLL	NX.QT	NT.MR	N	Firm clay (MMG)	N)
JE	KKLL	NN.XT	NX.KL	N	MG: Former slab	N

Key:

Founding depth and depth to embedment achieved
Founding depth and depth to embedment not achieved

It should be noted that internal foundations below the two-storey building have not been investigated as part of our assessment. However, where these foundations are within the influence of trees it should be assumed that the foundations have not achieved the require depths and require remediation.

3.2.1 Bearing Capacity

Based on the various pad sizes and their proposed loadings the actual foundation pressures have been calculated for each pad and are shown in Table NK below.

Table 3-4: Summary of loads, pad size and foundation pressures

Pad	Proposed Loads kN (SLS)	Pad size (m)	Foundation pressure (kN m ^e)
FD	N ML	M.QT x M.QT	ML M
GD	NKL	M.QT x M.QT	MLX
HD	NLL	M.TL x M.TL	MN N
JD	NMT	M.QT x M.QT	MLN
FE	NTL	M.TL x M.TL	MT S
GE	XLL	M.TL x M.TL	MQO
JE	NRL	M.QT x M.QT	MK Q
KE	KLL	M.TL x M.TL	OR

The hand shear vanes undertaken within the firm, stiff and very stiff clays during the Hydrock investigation show a range of values of between TL and MXOkPa with an average value of RNkPa. The dynamic probe data show similar ranges and suggests and average shear strength value of ~QL kPa. These values therefore support an allowable bearing capacity of MTLkN/m^K.

Of the seven internal pads, FQ and GQ slightly exceed the allowable bearing capacity quoted by the Ruddlesden report for the Mercia Mudstone. Therefore, Hydrock have undertaken a bearing capacity check of these foundations which has shown that foundation pressures of MTSkN/m^k and MOOKN/ m^K for FQ and GQ respectively are acceptable within the achieved bearing stratum.

Pads GS, HS, FQ and GQ have been founded within the Mercia Mudstone Group, however GQ and GS did not achieve the minimum embedment as stated within the Ruddlesden report of at least KLLmm. In addition, none of these foundations with the exception of FS (in Made Ground) achieved their proposed bottom of formation (BOF) depth which was the minimum required in order to account for the removal of trees.

The remainder of the foundations (FS, JS, KQ and JQ) have been founded within either granular Made Ground (FS) or on a former concrete slab (JS and JQ). In addition, the inspection of FS pad indicates a plastic drainage pipe which underlies the base of the foundation. For JS and JQ the inspections appeared to indicate that the former concrete slab was in fact founded within natural materials of the firm to stiff clay.

3.2.2 Settlement

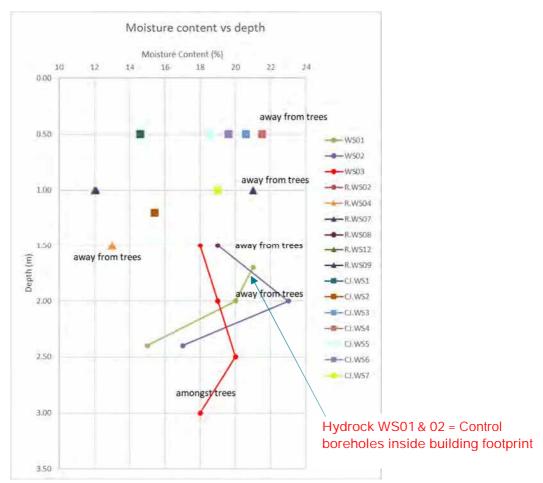
The intrusive dynamic probe data has been used to create stiffness profiles of the bearing soils. Following this exercise an assessment of the potential total settlement has been undertaken using Simple Elastic Theory applying a Boussinesq type distribution of stress increase to the ground from the expected range of loads. The results of this are summarised below

Pad	Proposed	Pad size	Foundation pressure

Table 3-5: Summary of loads, pad size, foundation pressures and calculated settlement

Pad	Proposed Loads kN (SLS)	Pad size (m)	Foundation pressure (kN m [@])	Settlement (mm)
FD	N ML	M.QT x M.QT	ML M	T.L
GD	NKL	M.QT x M.QT	MLX	T.L
HD	NLL	M.TL x M.TL	MN N	N.T
JD	NMT	M.QT x M.QT	MLN	K.T
FE	NTL	M.TL x M.TL	MT S	R.T
GE	XLL	M.TL x M.TL	MQO	Q.T
JE	NRL	M.QT x M.QT	MK Q	N.L
KE	KLL	M.TL x M.TL	OR	M.Q

3.2.3 Heave / Shrinkage Potential


The samples tested have a modified plasticity index range of 6-20% with an average value of 11%. The results indicate that the clay beneath the site has predominantly a low volume change potential with one sample from the Ruddlesden report indicating medium volume change.

This investigation undertook two window samples (WS01 & WS02) within the footprint of the single storey building (both being outside the influence of trees) and a third window sample hole (WS03 outside the footprint within the influence of trees. The purpose being to gain information on any differences in the moisture content with depth between the areas sampled.

Previous shallow moisture content results were also taken into account. Any indication that there is a deficit of moisture from an equilibrium value would infer a clay layer could have the potential to heave and vice-versa; should there be a heightened moisture compared to the equilibrium, then a clay layer has the potential to shrink in the summer (and/or due to tree influence).

A graphical summary of the laboratory Natural Moisture Content test results against depth are plotted below.

The plot of natural moisture content against depth indicates that the two window samples within the footprint of the building contain higher moisture contents between founding depth and 2m than that of the Hydrock borehole situated within the influence of trees (WS03) located outside the building footprint.

With the exception of one (1.5m deep) sample of weathered Mercia Mudstone tested from the previous Ruddlesden borehole WS04, the moisture content of natural clay soils beneath the founding level within the building to 2m depth are similar to those previously sampled from shallow positions away from trees. Towards 2.5m depth under the building; the moisture content tends to a slightly drier value than that sampled from deep soils situated amongst trees. This would suggest that the moisture content of deeper material beneath the building is influenced more by its extremely heavily over-consolidated nature than seasonal effects i.e a moisture more representative of a non-shrinkable Mudstone Rock than a susceptible clay. The more weathered materials above rockhead appear to have been encapsulated below the building at a wet equilibrium and are unlikely to swell and would show little shrinkage from seasonal effects over time given the cover provided by the building. There could however be shrinkage from any tree root influence in the Spring & Summer months where foundations are not deep enough and within the influence of tree roots.

Pad A11 has been recorded as not achieving the required founding depth, however the current depth of the foundation is 100mm above the required depth. Therefore, an assessment has been undertaken to estimate the heave and settlement potential of this thickness of material. The moisture content of the material is likely to be wet of the equilibrium moisture content and the possible heave as a result of a 3% raise in moisture content would be 1mm however, if the material dries out as a result of tree influence a reduction of 8% moisture content, then the possible settlement would be in the range of 3.5-6.0mm. Therefore, a total range of settlement of 7mm is possible which is negligible but does not account for a differential settlement.

4. Geo-environmental Assessment

The Made Ground encountered during this investigation is considered to have been derived from the demolition of the former school building. Therefore, this material has not been screened for its risk to human health as part of the original investigation.

4.1 Human Health risk assessment

The recent Made Ground is a plausible contaminant source. The Made Ground comprised of demolition crush material and has been used below the building and the immediate vicinity. The majority of the Made Ground will be below hardstanding.

The potential receptors are considered to be the end site users, people (staff and students) attending the school.

Pathways to the end users are ingestion, skin contact, inhalation of dush and outdoor air.

4.1.1 Generic Assessment Criteria

The soil screening values used are generic assessment criteria (GAC) (i.e. derived in accordance with EA CLEA guidance (KLLR) using the updated exposure model detailed in Defra SPMLML (KLMX), with the exception of published CXSLs. The term 'GAC' used in this report is inclusive of all generic soil screening values.

Based on the proposed development, generic assessment criteria (GAC) based on a default residential with homegrown produce for both the ELP and WLP and Public Open Space (Resi) for the ELP, CLEA land use scenarios have been adopted.

- » GAC are selected based on the following hierarchy:
- » Category 4 Screening Levels (C4SL), where available.
- » SoBRA Acute GAC for free cyanide, as acute dose toxicity is the primary risk driver.
- » Hydrock GAC.

4.1.2 Assessment Results

A total of six samples of Made Ground have been screened. The individual results have been compared against the GAC for Human Health without home-grown produce (M% SOM) scenario which is considered to be a conservative representative for the site.

There was no concentration of substances at above the GAC with the exception of 1 exceedance from a sample collected from Trial Pit TP0106 at 0.5m bgl. This was a marginal exceedance of Dibenz(ah)anthracene at 0.40mg/kg compared to a GAC of 0.32mg/kg. This concentration is minimal and not considered to be a significant risk.

The Made Ground is not considered to pose a risk to human health and no further consideration is required. However, it should be noted that this material is not considered to be an appropriate growing medium and is therefore unlikely to be exposed at surface.

The laboratory testing results and screened chemical data are provided in Appendix C.

5. Conclusions and recommendations

5.1 External foundations

Of the 39 external foundations inspected A3,A8, A9, C1, D3 D10,D11 and F9 are the only pads which achieved both founding depth together with the required depth of embedment (200mm) into the correct founding stratum and have therefore been adequately constructed.

The assessment has therefore shown that 31 pads did not achieve either the founding depth or the depth of embedment (or both) and therefore the foundations are not considered wholly adequate.

Following further assessment presented above indicate that the pad foundations F6,A10 and A11 have also been considered to be acceptable. For the 3 remaining founding pads (A5, A6 and A7) the foundation stratum could not be proven as the inspection terminated upon a concrete obstruction associated with the adjacent drainage. At this time, it is assumed that that they just sit upon the top of natural deposits without embedment. Although bearing is found to be adequate on this assumption for A5, A6 & A7, it would be prudent to assume that these foundations did not achieve their appropriate founding depth and may therefore be susceptible to tree influence were situated within root zones.

Hydrock drawing 23941-HYD-XX-XX-DR-GE-1001-S2-P4 provided in Appendix A provides a plan showing which pads are acceptable and which require further assessment.

5.2 Internal foundations

The investigation has proven that the bearing capacity of the soils is as stated within the Ruddlesden GI report and settlements due to the proposed loadings on the individual pads are within tolerable levels.

However, the investigation has confirmed that the soils exhibit the potential for tree influence in the form of shrinkage from this point at the start of Spring. None of the seven internal pads, achieved either the design founding depth or the depth of embedment (or both) and therefore the foundations are not considered adequate.

In addition to the above foundation pad F6, is constructed over a plastic drainage pipe which is unacceptable. Pads J6 and J7, are currently founded on a former concrete slab, which based on its depth is the remnant of the former school building which occupied the site. However, the extents of this slab are currently unknown. If it does not underlie the entirety of either of these pads there is the potential for differential settlement and therefore failure of these foundations. If the extents of the slab were proven it may be possible to calculate whether the former slab can act as the founding layer for the new pads and therefore these pads could remain in-situ subject to further investigation or remedial action.

5.3 Recommendations

5.3.1 Elevated sulphates

Sulphate concentrations are elevated across the site and based on the testing results DS-2 and AC-2 concrete should be used where in contact with Made Ground. The existing concrete used on the scheme is design classification DS-1 and AC-1 based on the recommendations of the original ground investigations.

The elevated sulphate could potentially attack the buried concrete causing it to degrade. In time this may result in the exposure of the reinforcement. Under higher sulphate conditions the pad foundations could degrade resulting in a reduced bearing capacity or corrosion of reinforcement. A reduced life span is likely. The Made Ground in which the sulphates have been identified is typically

granular in nature and therefore permeable, having the ability to allow any water ingress to flow (and disperse sulphates).

The risk of sulphate attack is governed by the movement of water which mobilises the sulphate ions in solution. Groundwater was not recorded during the previous investigations and is therefore expected to be below the deepest investigation location 3.15m bgl. Some water seepage was noted from the Made Ground but this is anticipated to be perched groundwater. Even in unsaturated ground sulphate can migrate by diffusion provided there is sufficient water to coat particles of soil. It is considered unlikely that the groundwater below the site will mobilise sulphate in solution and the key risk is from percolating surface water through the unsaturated Made Ground.

An impermeable barrier could be installed around the exterior of the building in order to break the pathway by minimising the mobilisation of sulphates within any percolating water. A barrier would need to extent into the underlying natural material, cover over any shallow horizontal potential pathways and comprise a material with a permeability of less than 10⁻⁷ m/s. This could be a root barrier membrane or bentonite grout mix. Details of the proposed impermeable barrier are provided in the Hydrock cut-off barrier specification ref. 23941-HYD-XX-XX-TN-GE-1004. This approach is subject to approval by building control.

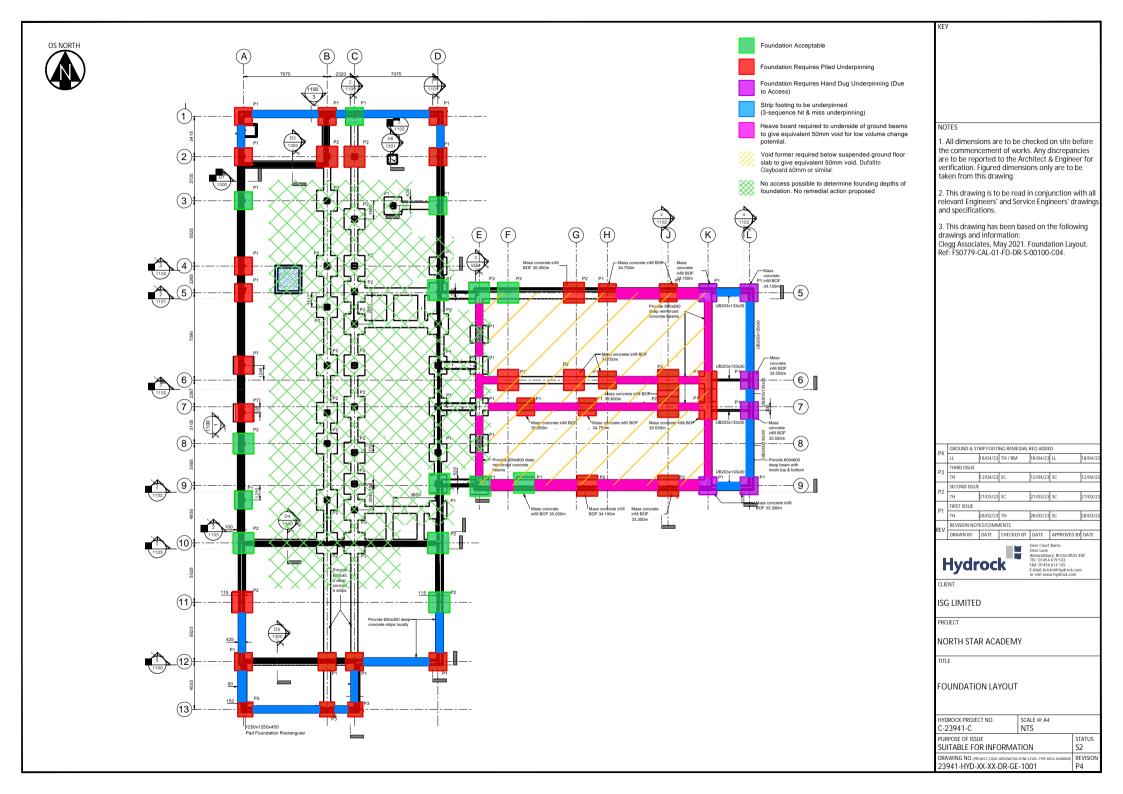
5.3.2 Underpinning Foundations

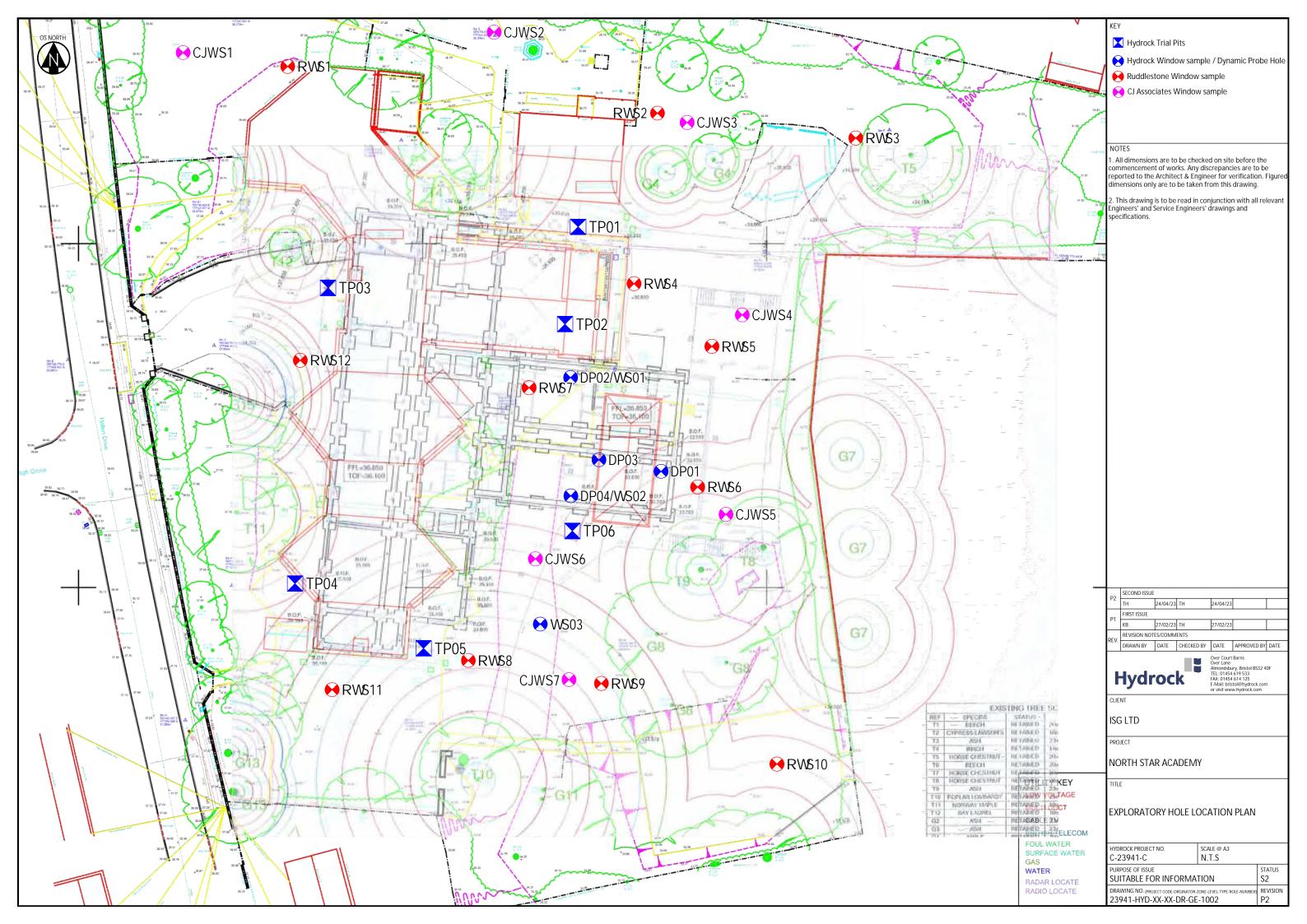
Where foundations have been proven not to be adequate, further remedial works are required. It is recommended that inadequate pad and strip foundations are underpinned to achieve suitable founding depths or, where tree influence alone is the aggravating issue, protection by a root barrier system could be employed. Underpinning of pad and strip foundations would need to be undertaken in sequence to allow sufficient support to the existing structure. Replacement below each pad will be progressed in segments. Further details of the underpinning phasing is provided in Hydrock structures drawings (23941-HYD-XX-F1-SK-S-1400). Access to all sides of the pad it likely to be necessary during the underpinning and is likely to require the removal of the floor slab in sections. Alternatively, highlighted inadequate pads could be supported on mini-piles driven around their perimeter and connected by a dowelled ring beam.

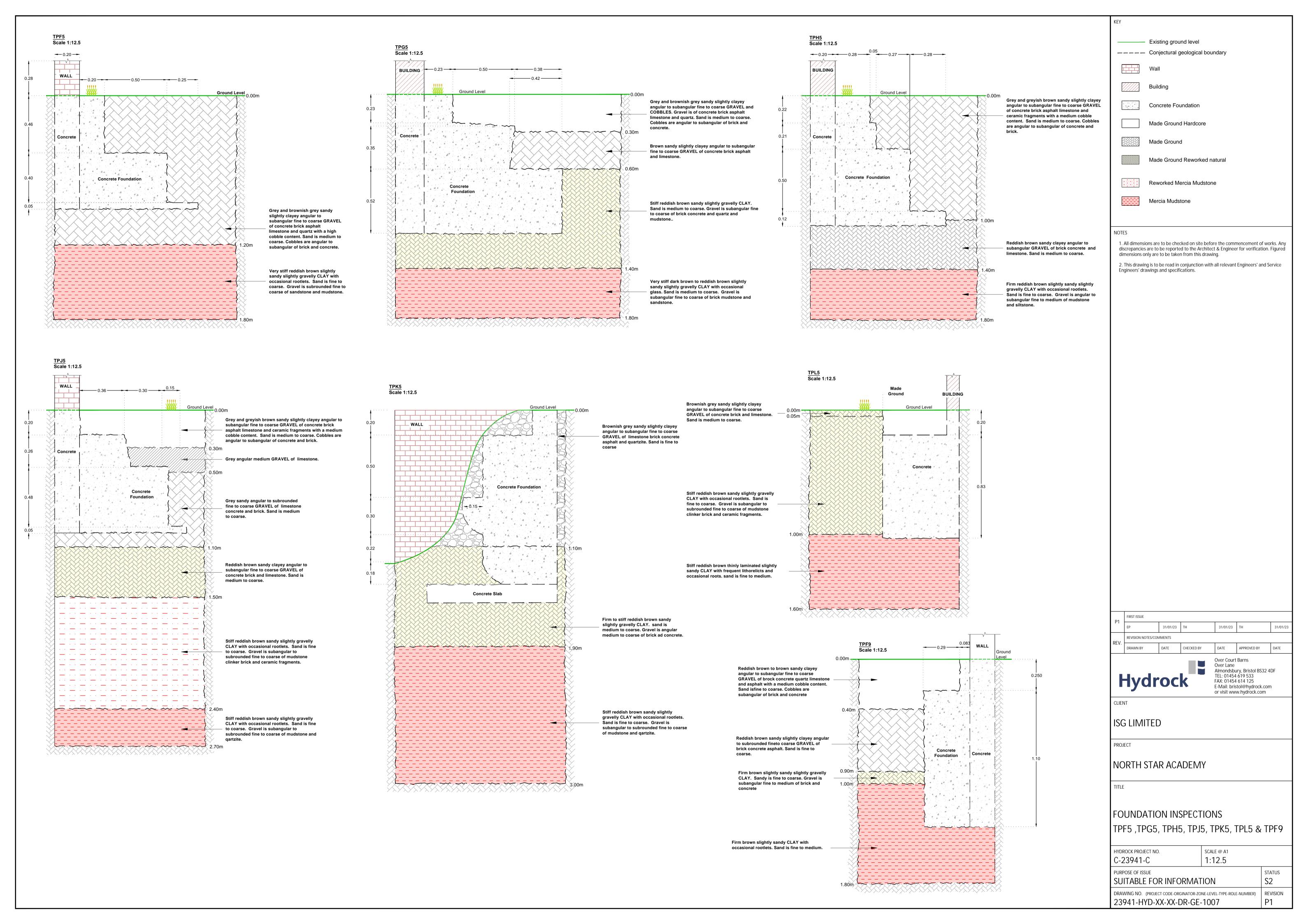
A plan showing the pads which require hand dug underpinning is provided in Appendix A.

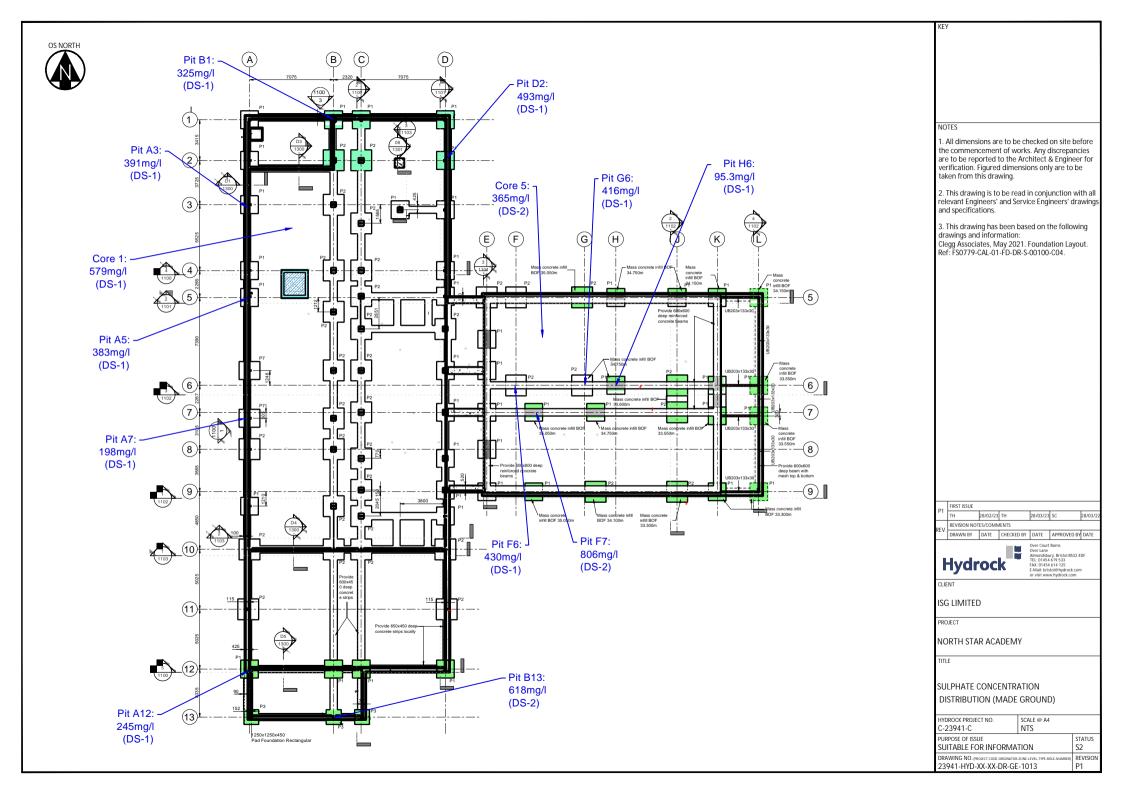
Underpinning should use a concrete with a design classification of DS-2 and AC-2.

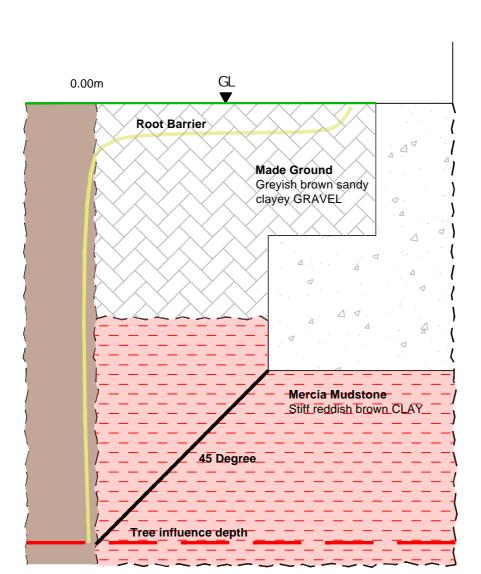
5.3.3 Root Barrier


As it is found that soils beneath internal parts of the building are currently at a wet equilibrium, where pads are not deep enough to combat the effects of tree influence alone, they could only be affected by future shrinkage. The introduction of a root barrier (impervious to root and water) at this moment before Spring could therefore inhibit this influence and be a consideration as an alternative to underpinning the single storey foundations. The barrier would need to be installed away from the building to avoid undermining the existing pad foundations and extend to a depth below the tree influence depths. A possible detail is provided in Hydrock sketch 23941-HYD-XX-XX-SK-GE-1001 provided in Appendix A. This approach would be subject to agreement by building control.


It may be possible to utilise this approach on the north and south of the two-storey building. Where foundation depth have achieved the minimal foundation depths for foundations outside the influence of trees (0.75m for low volume change). However, further testing would be necessary in order to confirm the moisture content profile but based on the existing information it is likely to be considered a viable option.




Appendix A Drawings

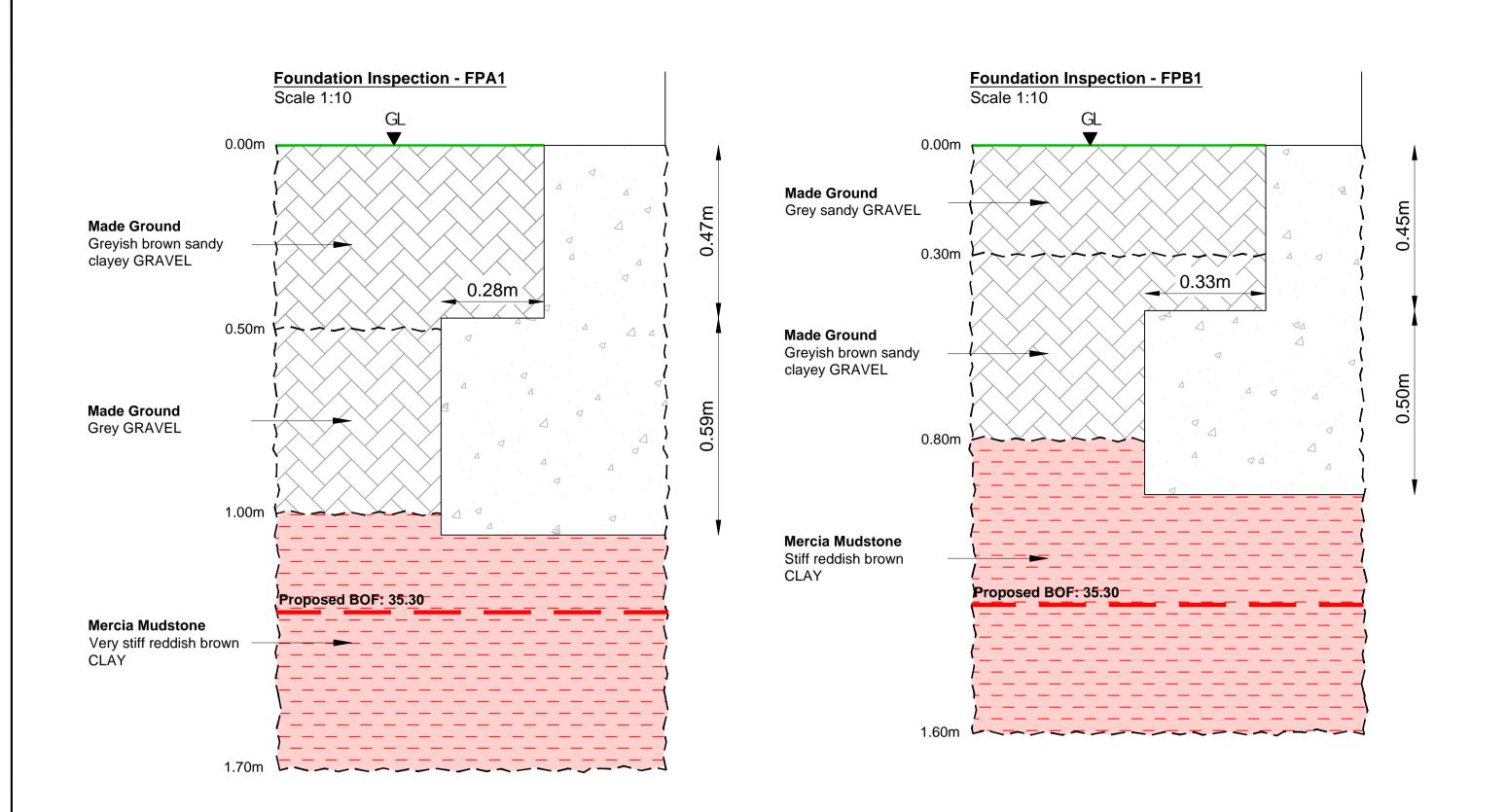


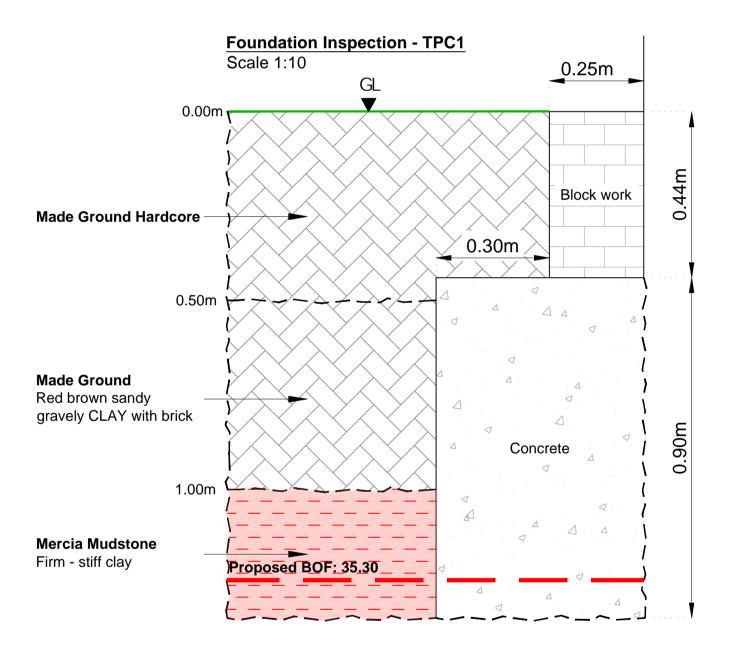
NOTES

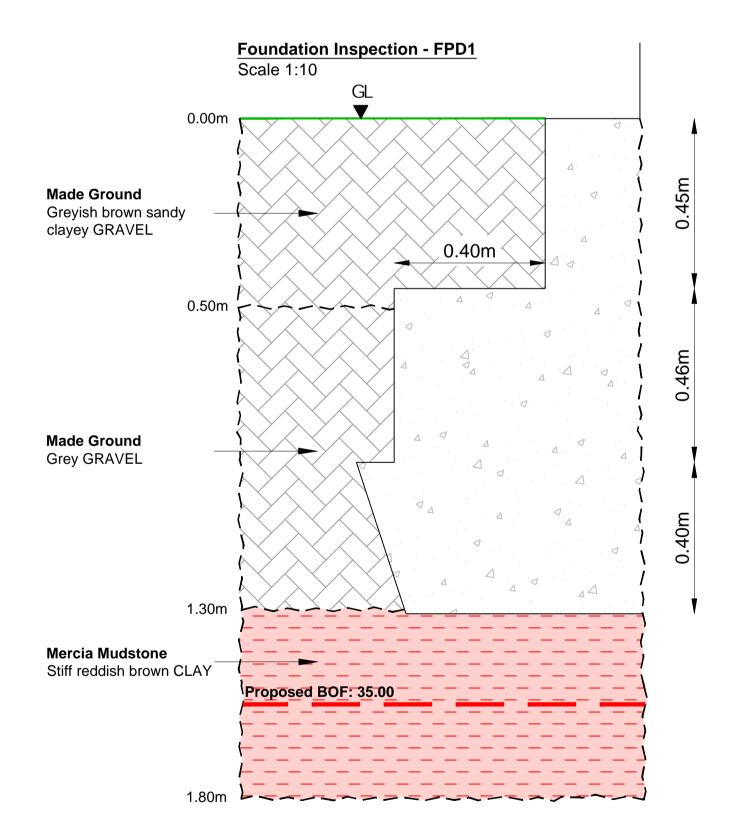
1. All dimensions are to be checked on site before the commencement of works. Any discrepancies are to be reported to the Architect & Engineer for verification. Figured dimensions only are to be taken from this drawing.

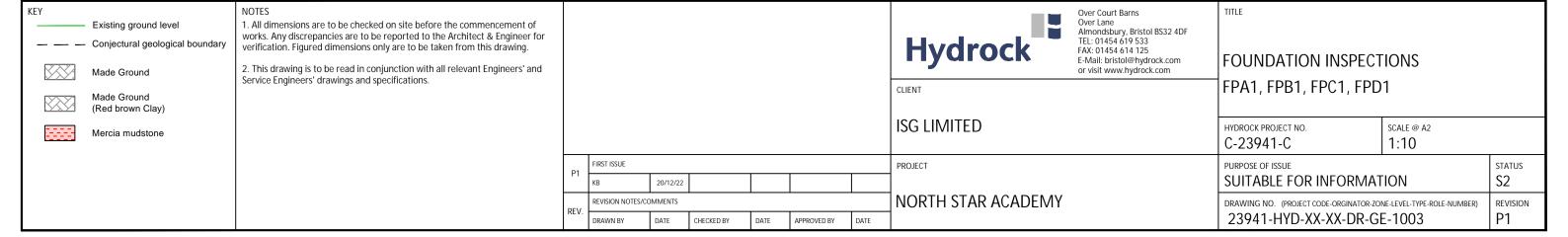
This drawing is to be read in conjunction with all relevant Engineers' and Service Engineers' drawings and specifications.

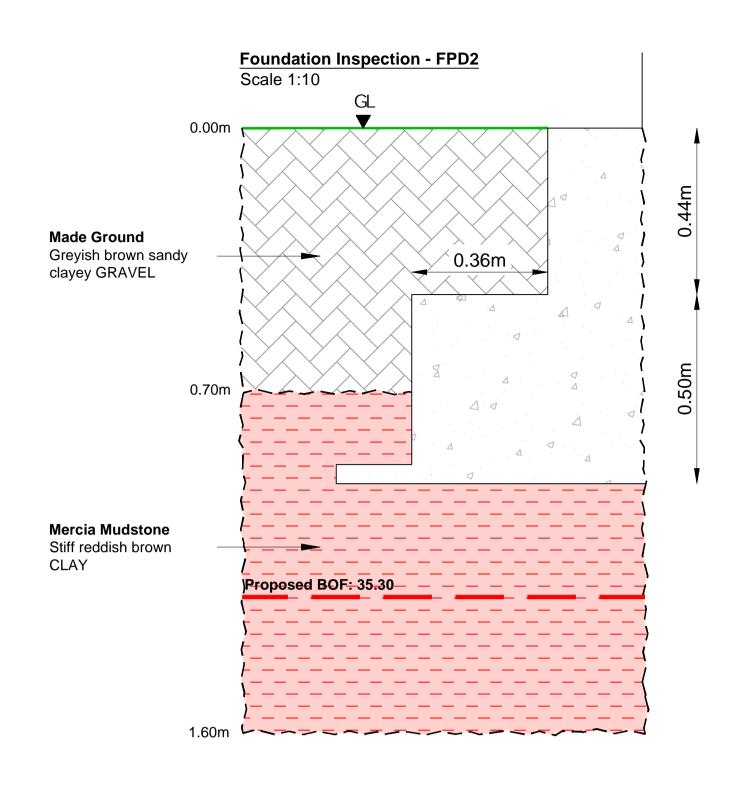
ISG LIMITED

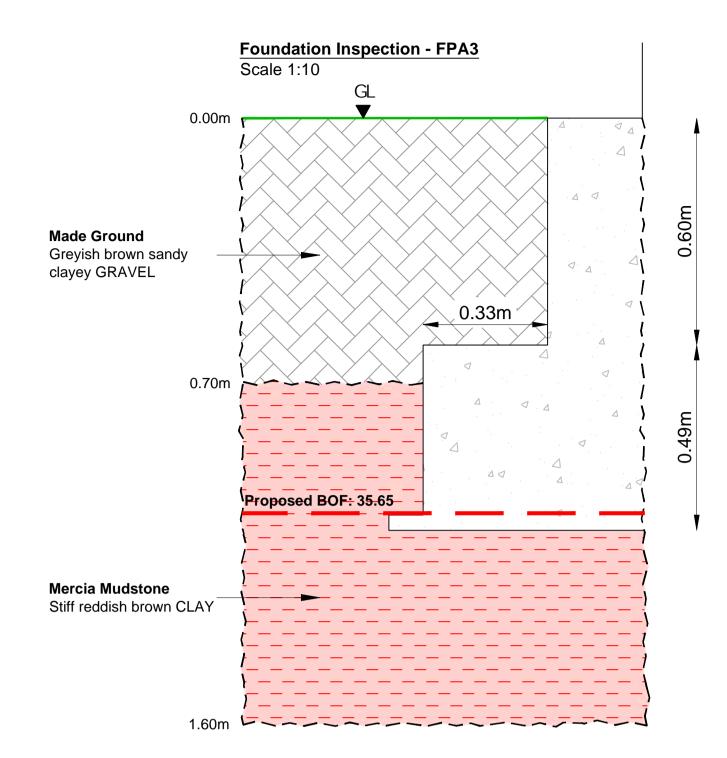

PROJECT

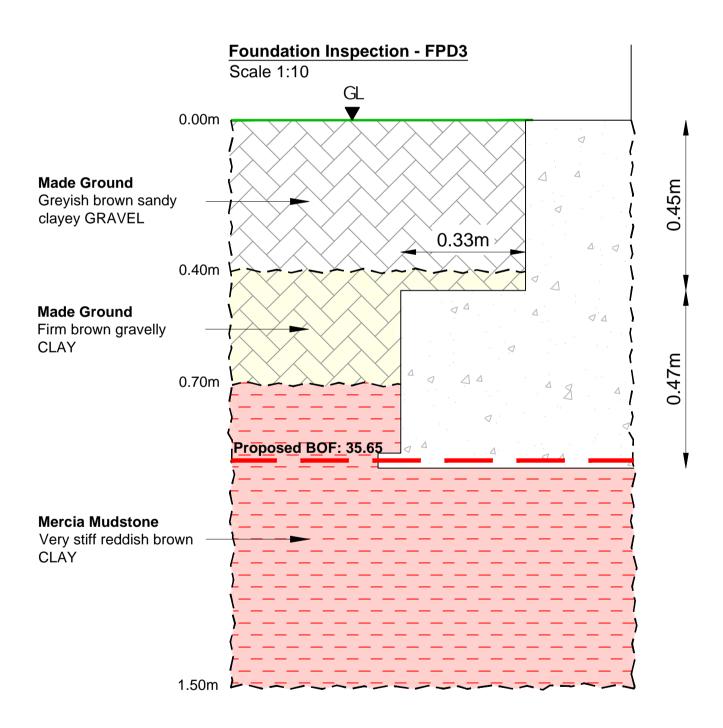

NORTH STAR ACADEMY

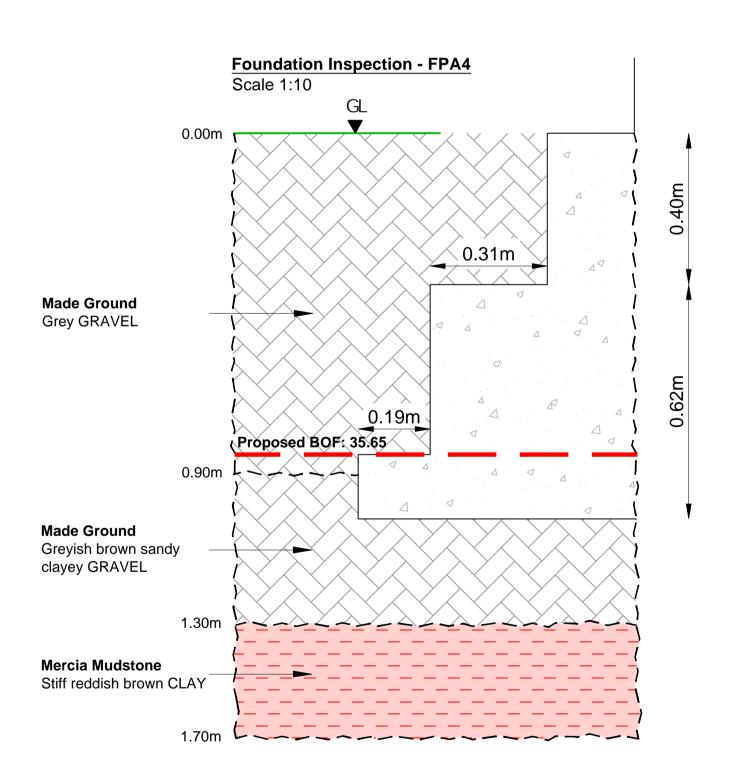

TITLE EXAMPLE

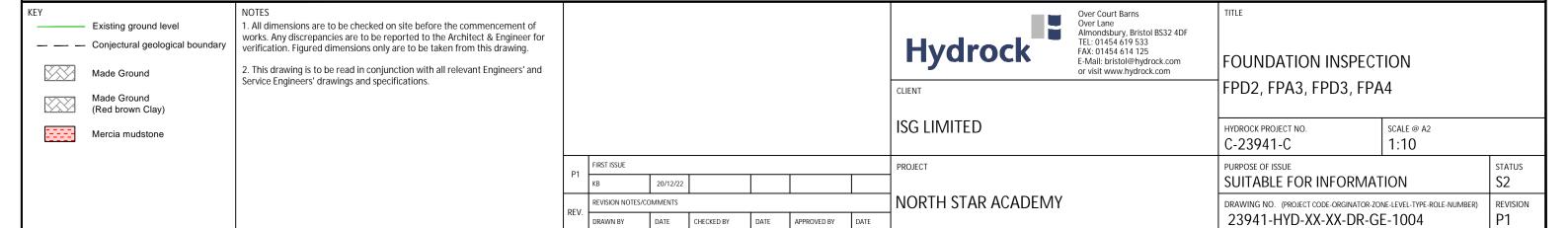

ROOT BARRIER DETAILS

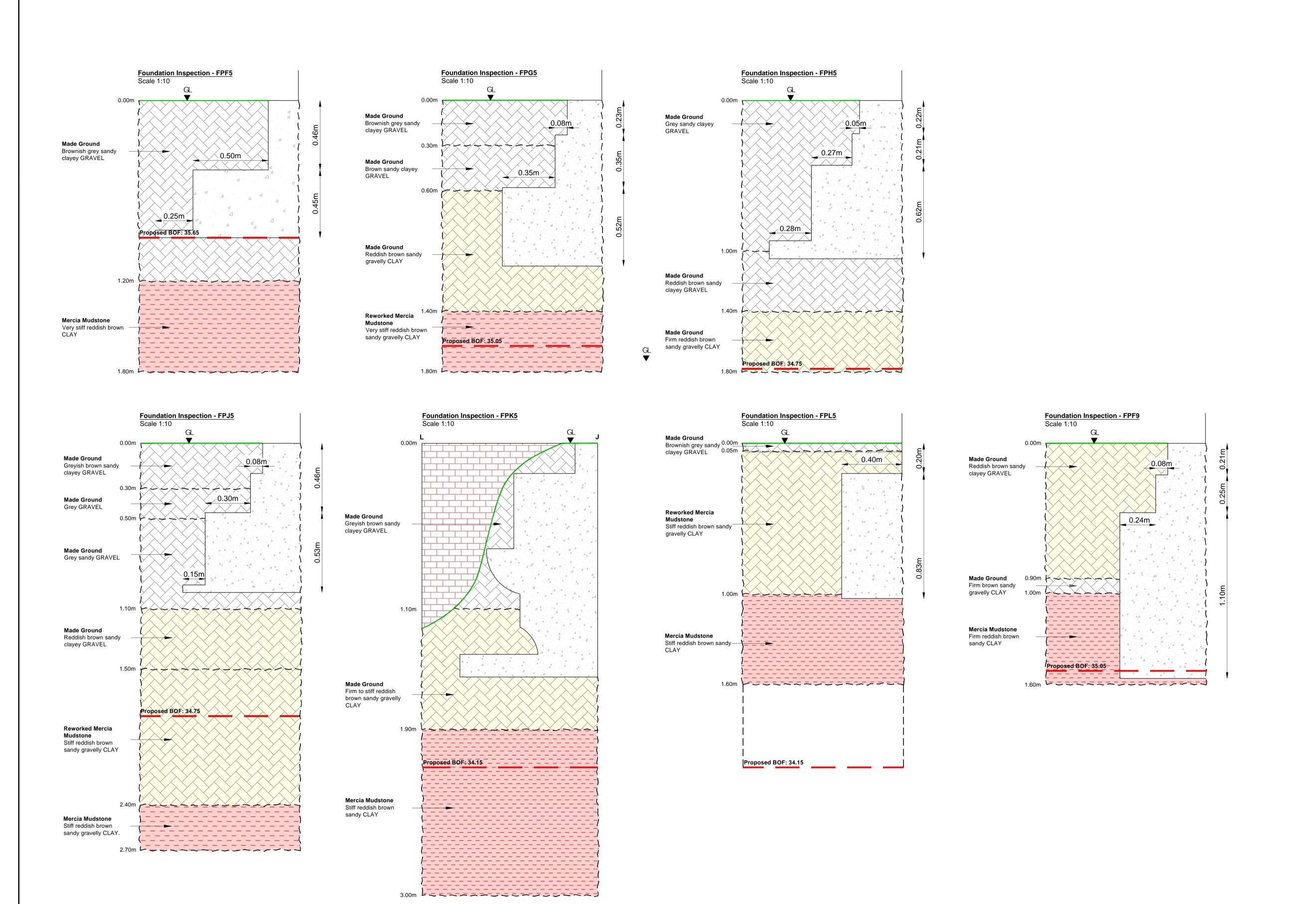

YDROCK PROJECT NO. SCALE @ A4		
223941-C NTS		
URPOSE OF ISSUE		STATUS
SUITABLE FOR INFORMATION		S2
PRAWING NO. (PROJECT - ORIGINATOR-VOLUME-LEVEL-TYPE-ROLE-NUMBER)		REVISION
2041 HVD VV VV CV CE	1001	D1











EXISTING ground level

— — Existing ground level

— — Conjectural geological boundary

Made Ground

Made Ground

(Red brown Clay)

Mercia mudstone

NOTES

1. All dimensions are to be checked on site before the commencement of works. Any discrepancies are to be reported to the Architect & Engineer for verification. Figured dimensions only are to be taken from this drawing.

2. This drawing is to be read in conjunction with all relevant Engineers' and Service Engineers' drawings and specifications.

P1 -	FIRST ISSUE								
	EP	31/01/23	тн	31/01/23	ТН	31/01/23			
REV.	REVISION NOTES/COMMENTS								
	DRAWN BY	DATE	CHECKED BY	DATE	APPROVED BY	DATE			
	Over Court Barns								

Over Court Barns
Over Lane
Almondsbury, Bristol BS32 4DF
TEL: 01454 619 533
FAX: 01454 614 125
E-Mail: bristol@hydrock.com
or visit www.hydrock.com

CLIENT

ISG LIMITED

PROJECT

NORTH STAR ACADEMY

TITLE

FOUNDATION INSPECTIONS
FPF5 ,FPG5, FPH5, FPJ5, FPK5, FPL5 & FPF9

HYDROCK PROJECT NO.

C-23941-C

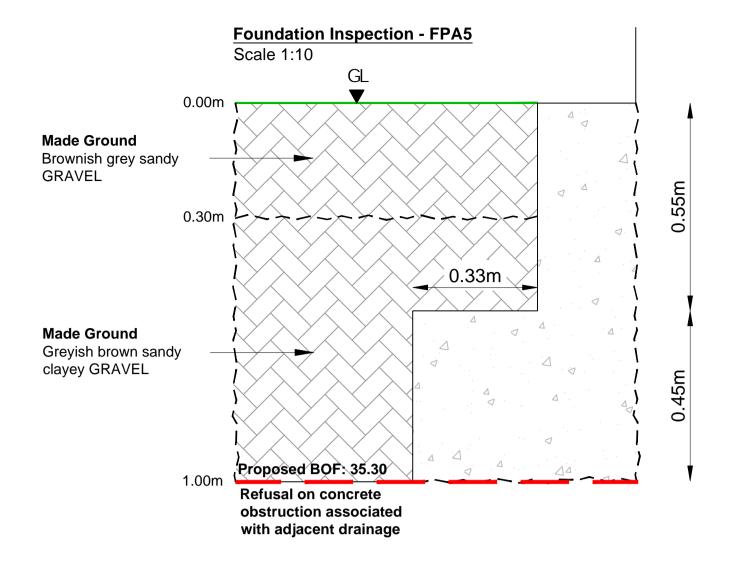
PURPOSE OF ISSUE

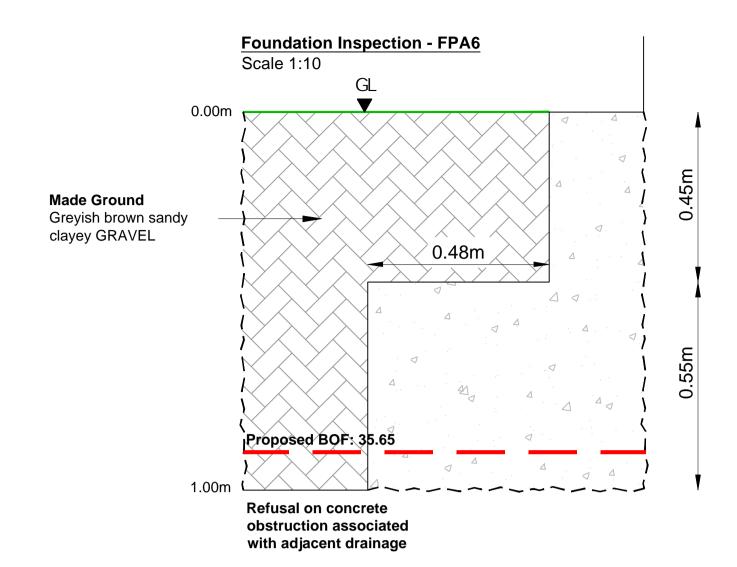
SUITABLE FOR INFORMATION

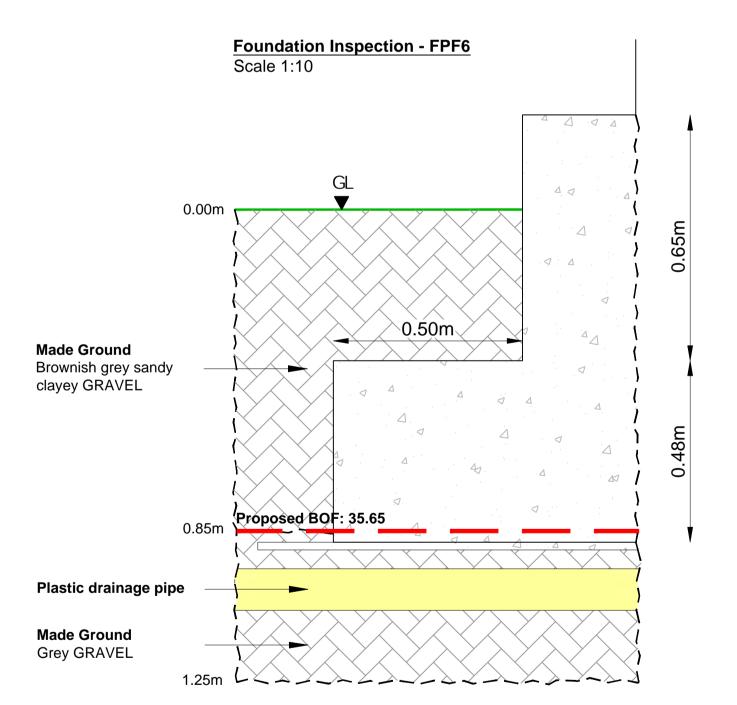
SCALE @ A1

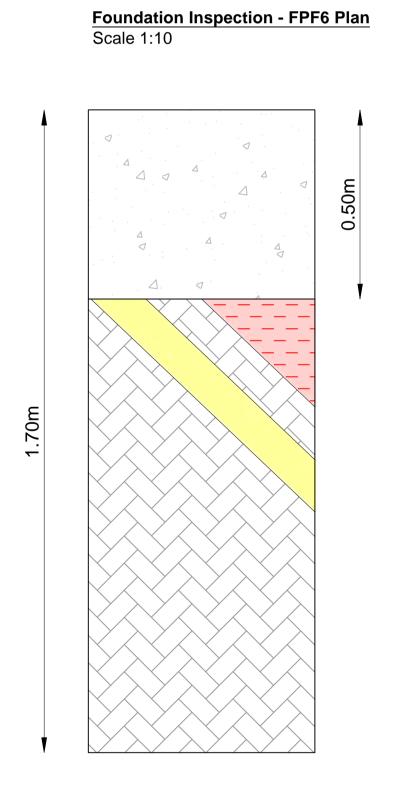
1:12.5

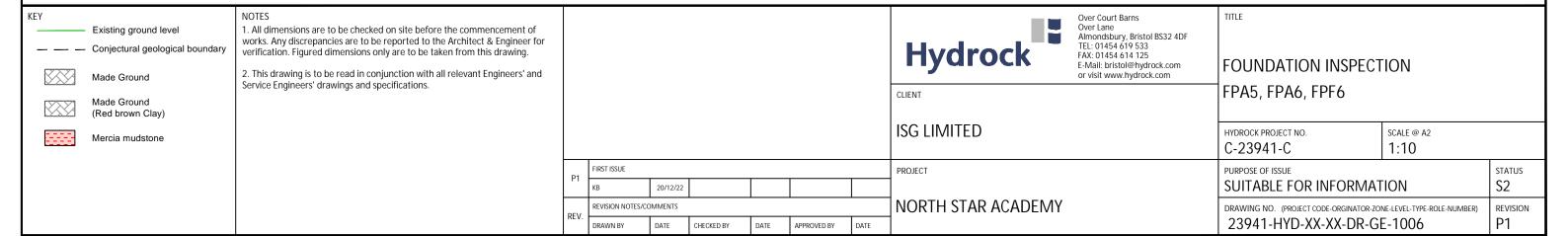
PURPOSE OF ISSUE

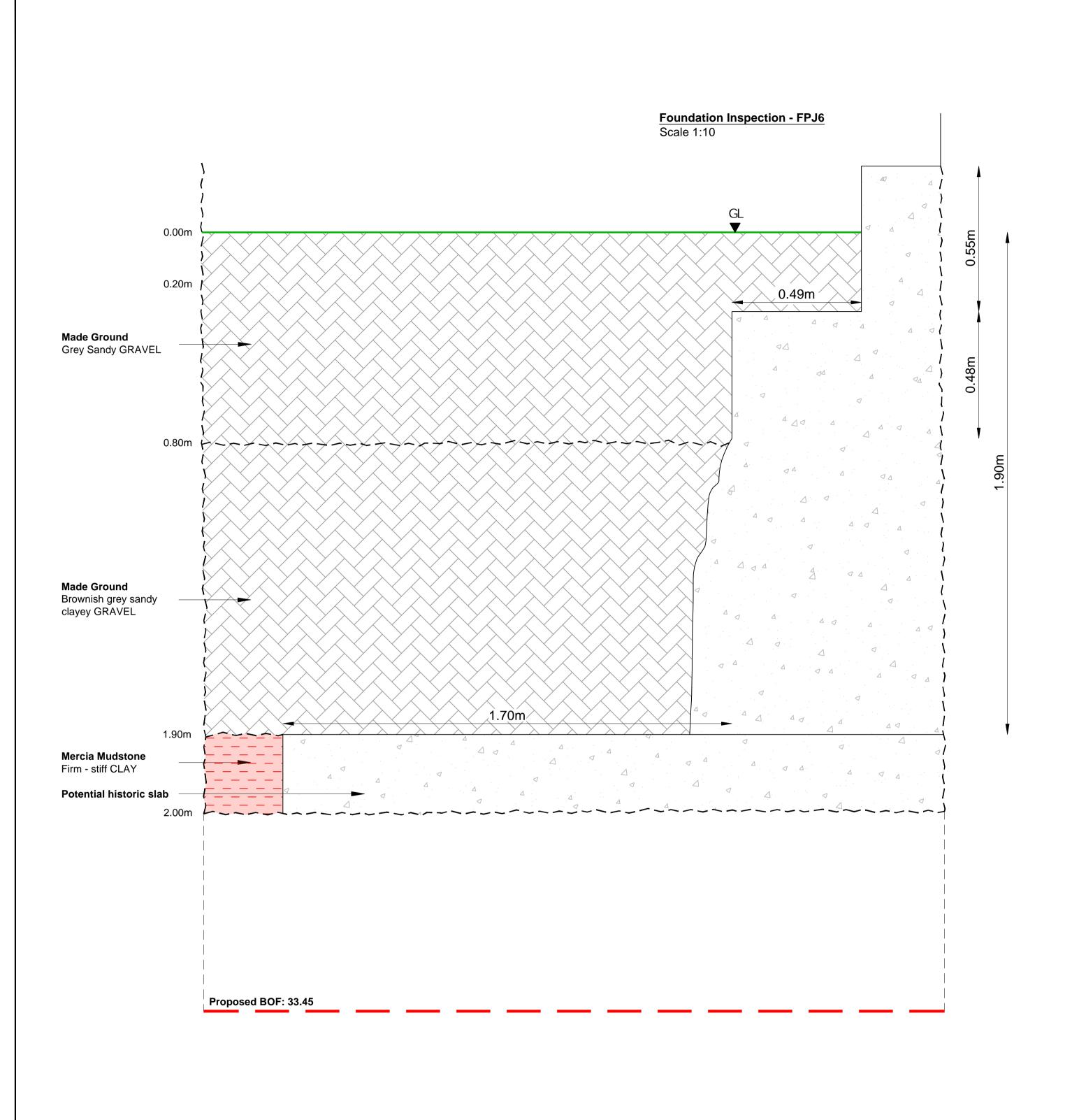

STATUS

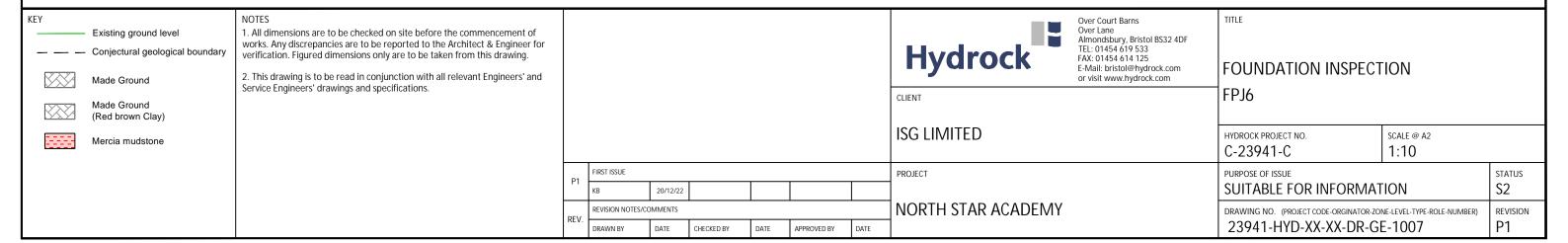

S2

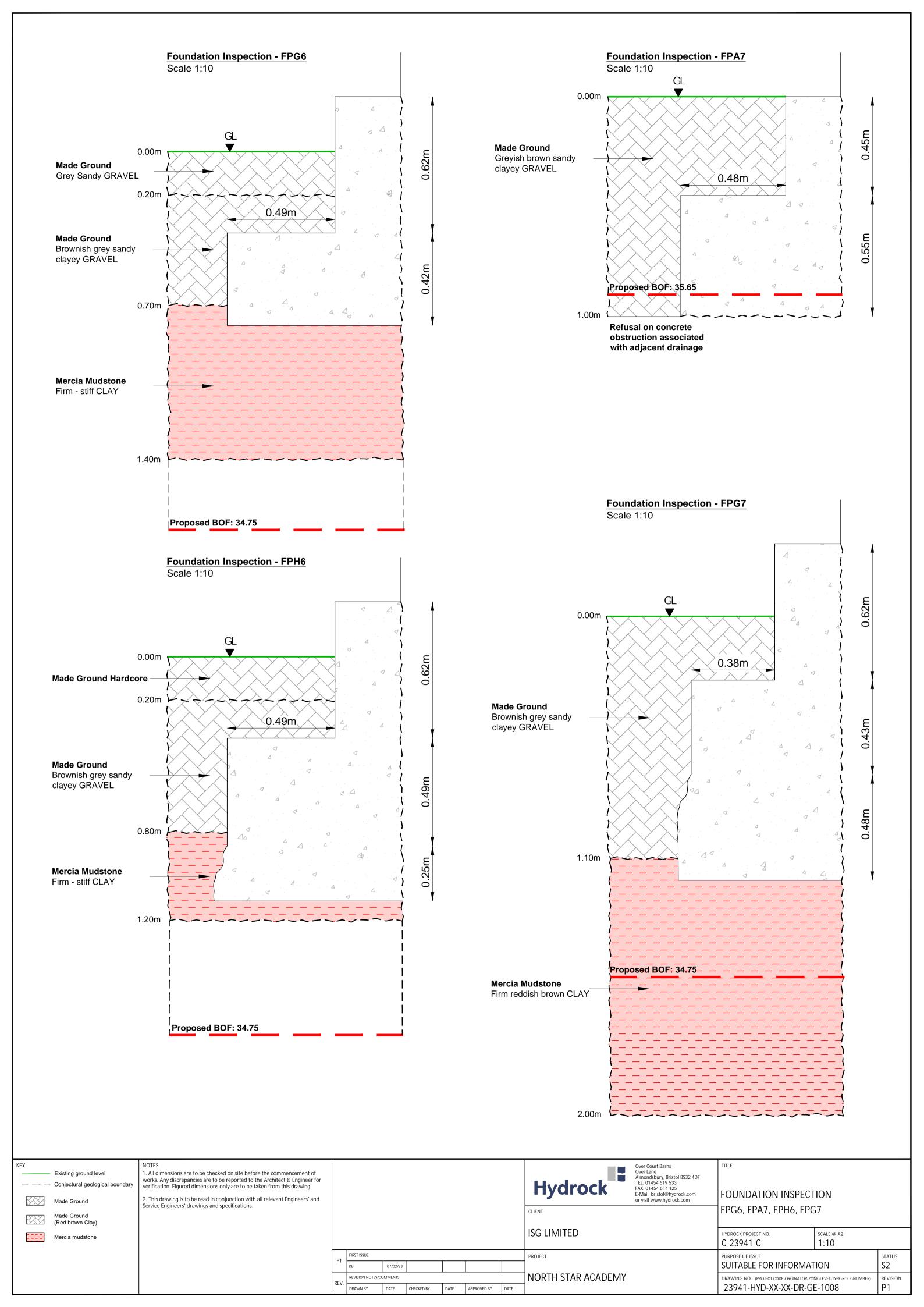

DRAWING NO. (PROJECT CODE-ORGINATOR-ZONE-LEVEL-TYPE-ROLE-NUMBER)

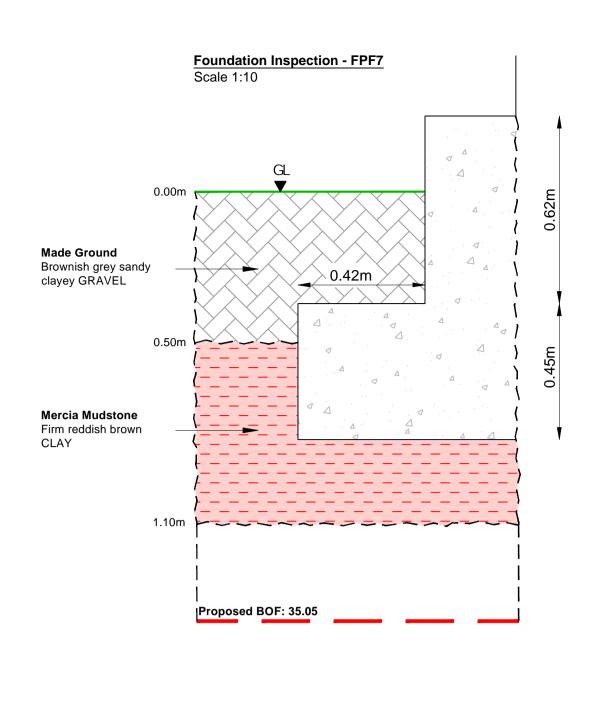

23941-HYD-XX-XX-DR-GE-1006

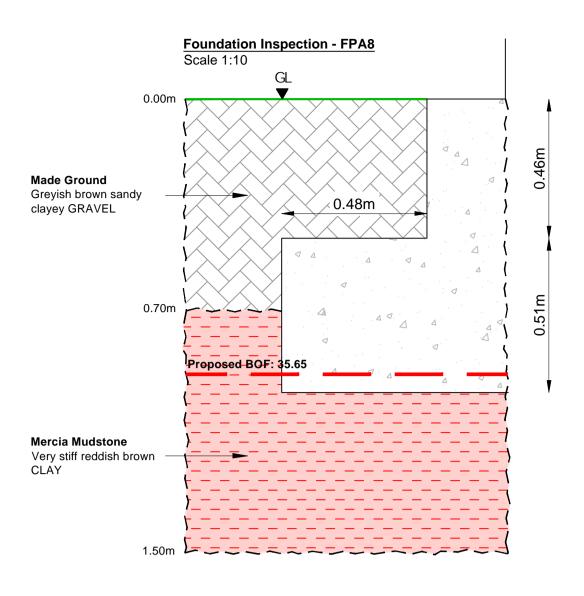

P1

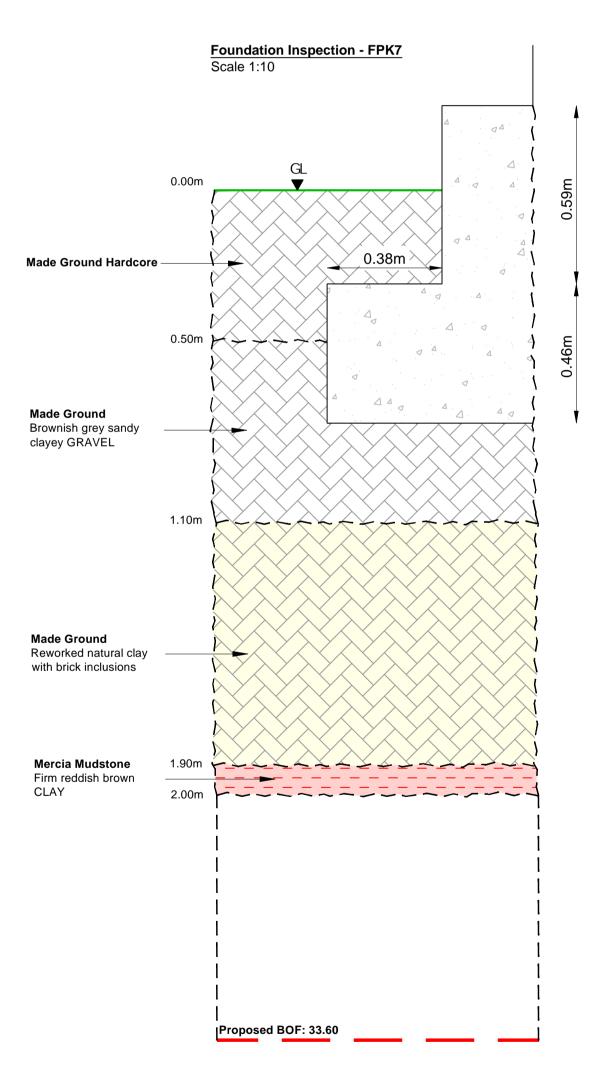


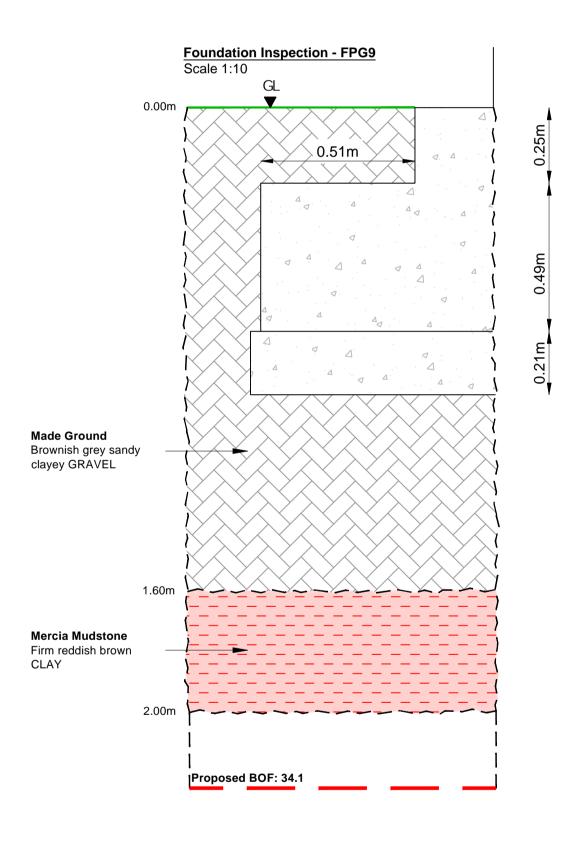


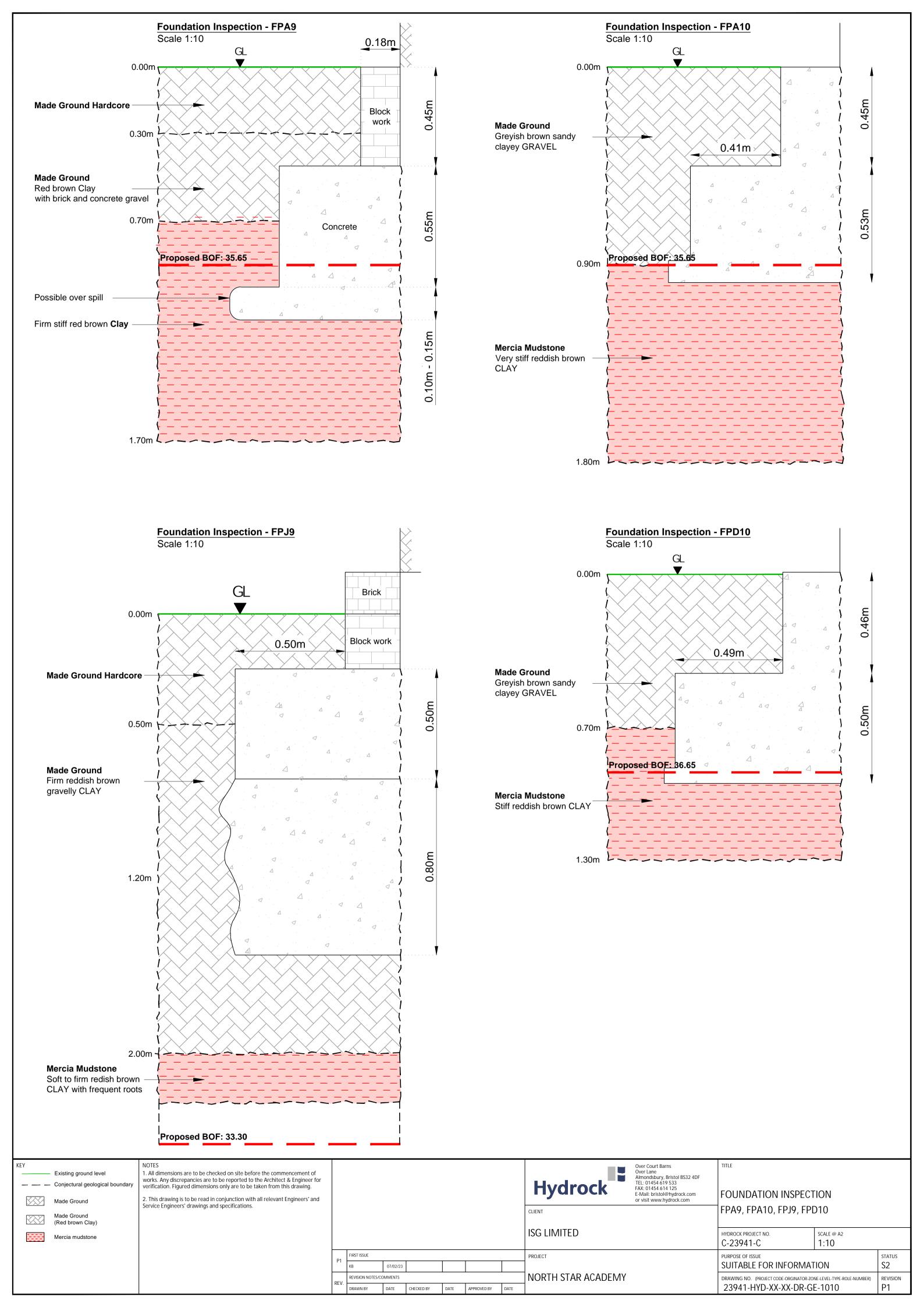


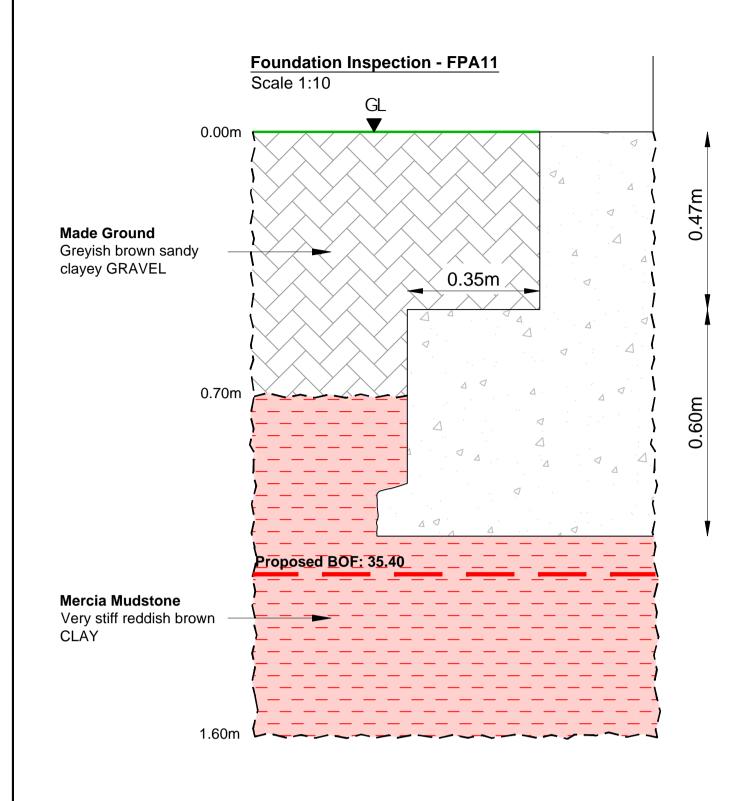


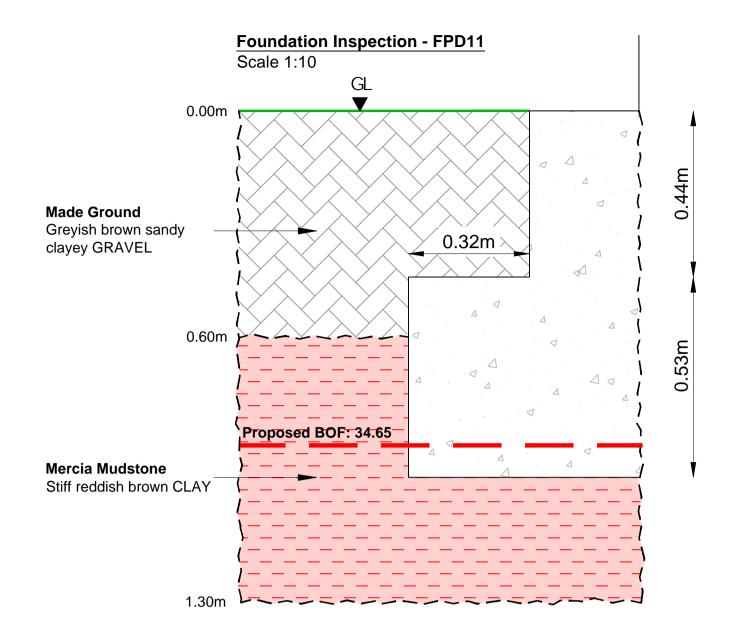


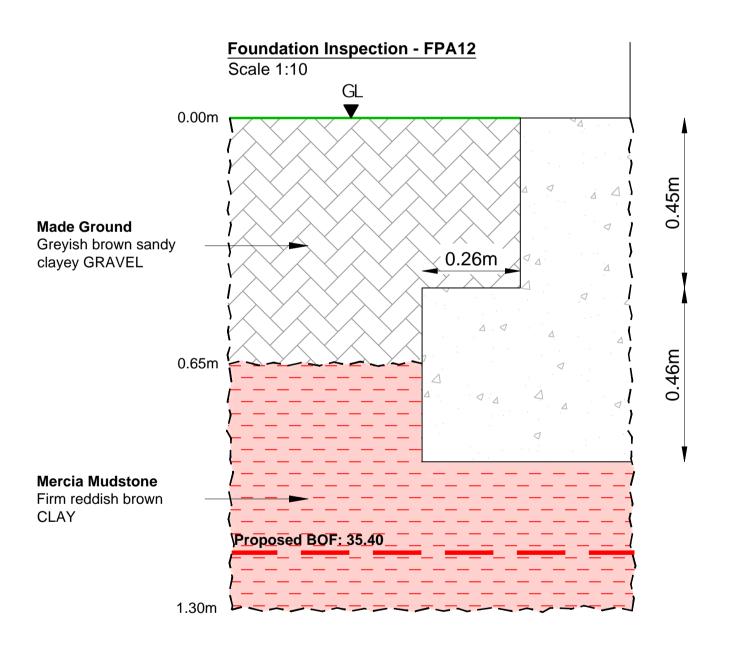


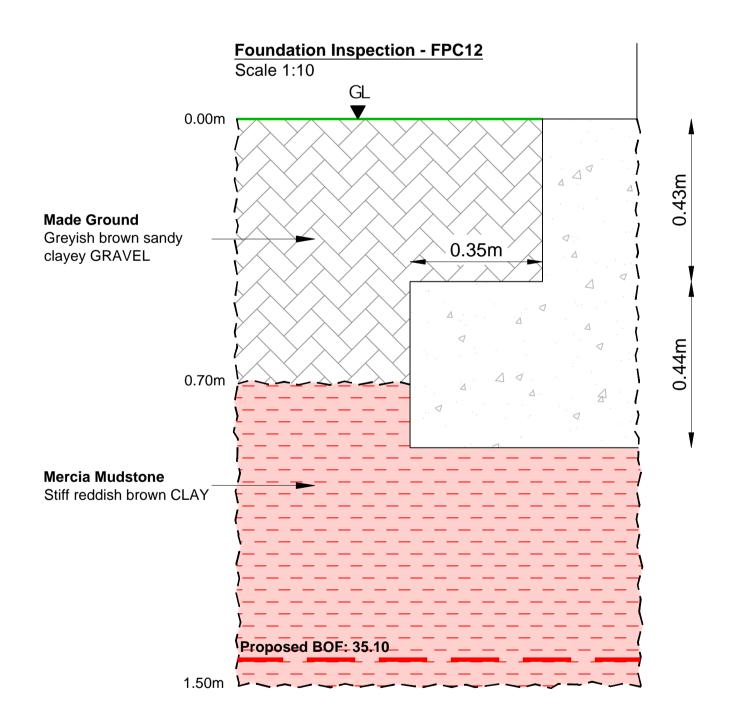


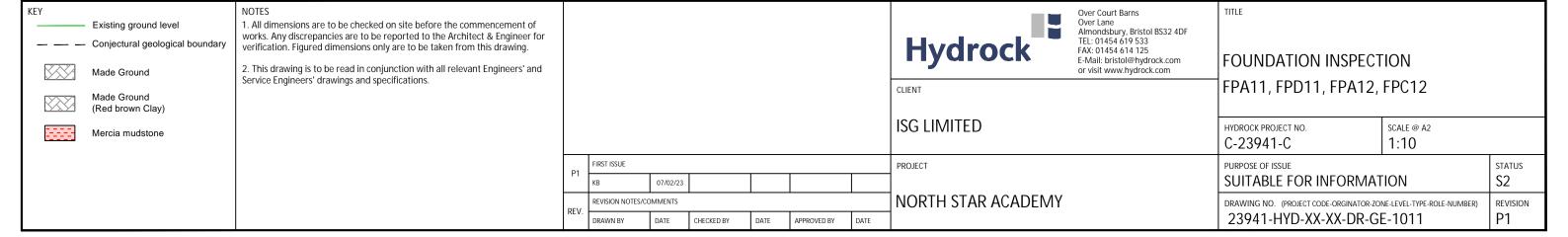

23941-HYD-XX-XX-DR-GE-1009

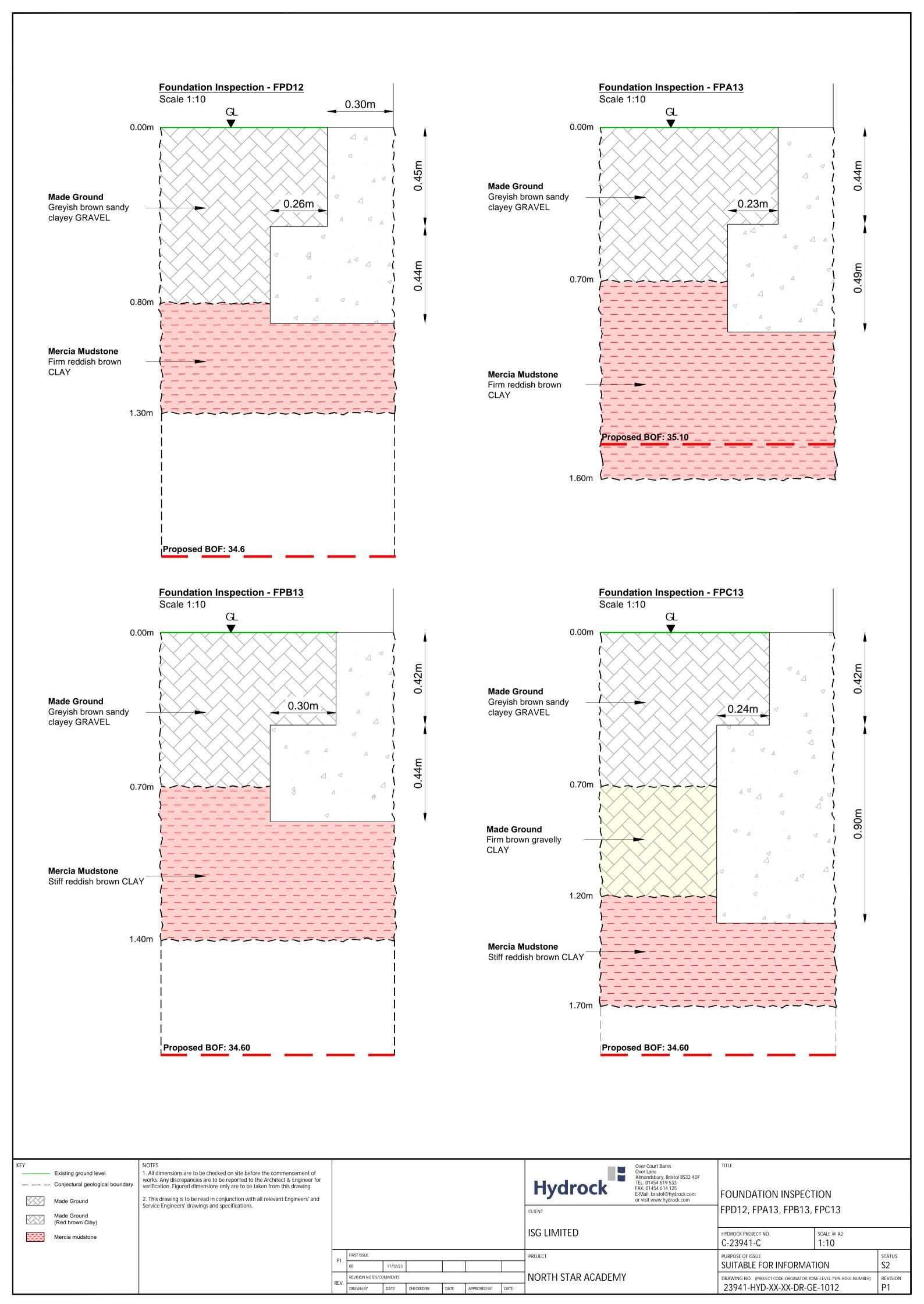

P1

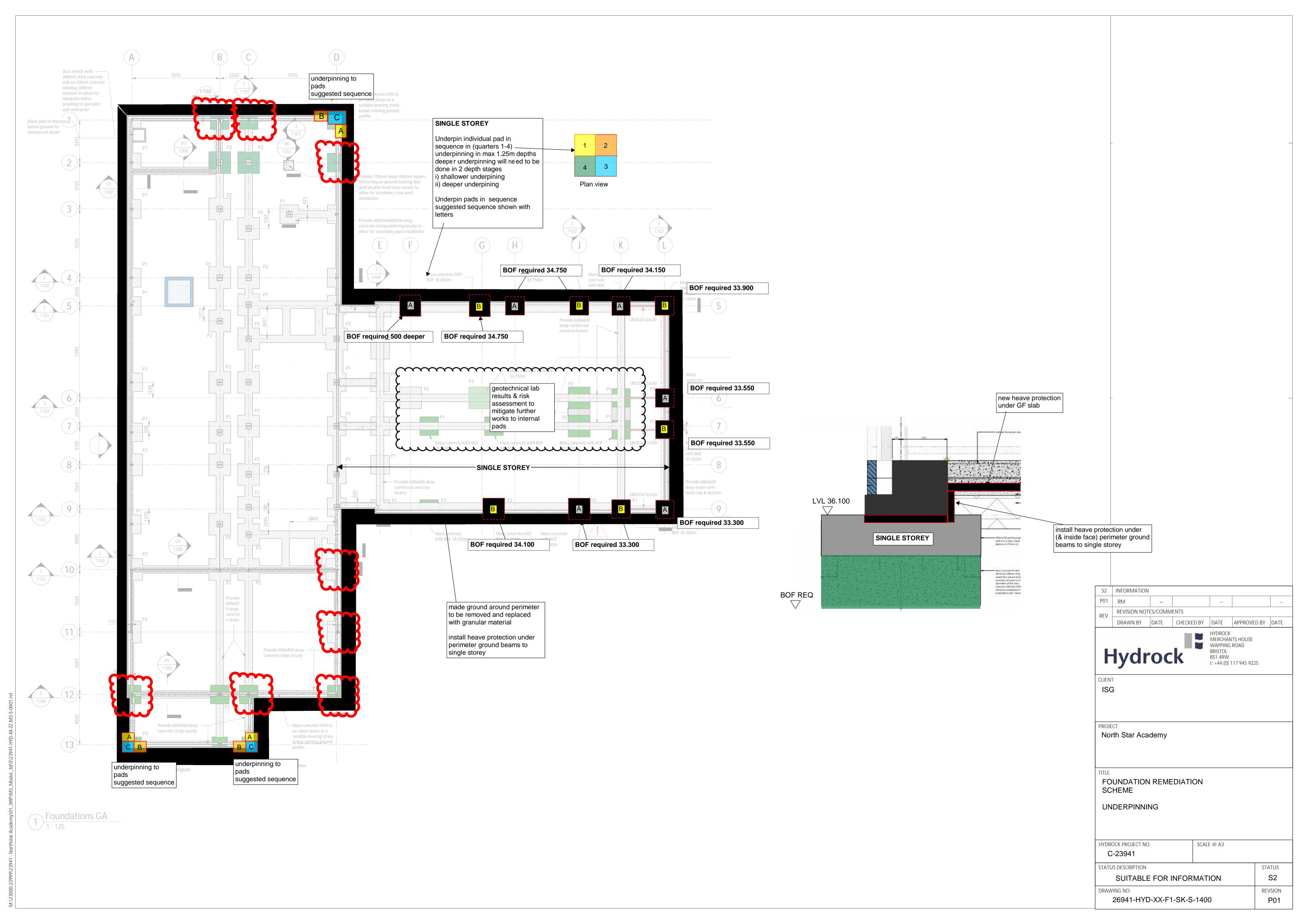

KEY — Existing ground level — — Conjectural geological boundary Made Ground Made Ground (Red brown Clay)	NOTES 1. All dimensions are to be checked on site before the commencement of works. Any discrepancies are to be reported to the Architect & Engineer for verification. Figured dimensions only are to be taken from this drawing. 2. This drawing is to be read in conjunction with all relevant Engineers' and Service Engineers' drawings and specifications.			Hydrock	or visit www.hydrock.com	FOUNDATION INSPEC		
Mercia mudstone				ISG LIMITED		HYDROCK PROJECT NO. C-23941-C	SCALE @ A2 1:12.5	
		P1 -	FIRST ISSUE KB 07/02/23 REVISION NOTES/COMMENTS	PROJECT NORTH STAR ACADEMY		PURPOSE OF ISSUE SUITABLE FOR INFORMA DRAWING NO. (PROJECT CODE-ORGINATOR-)		STATUS S2 REVISION

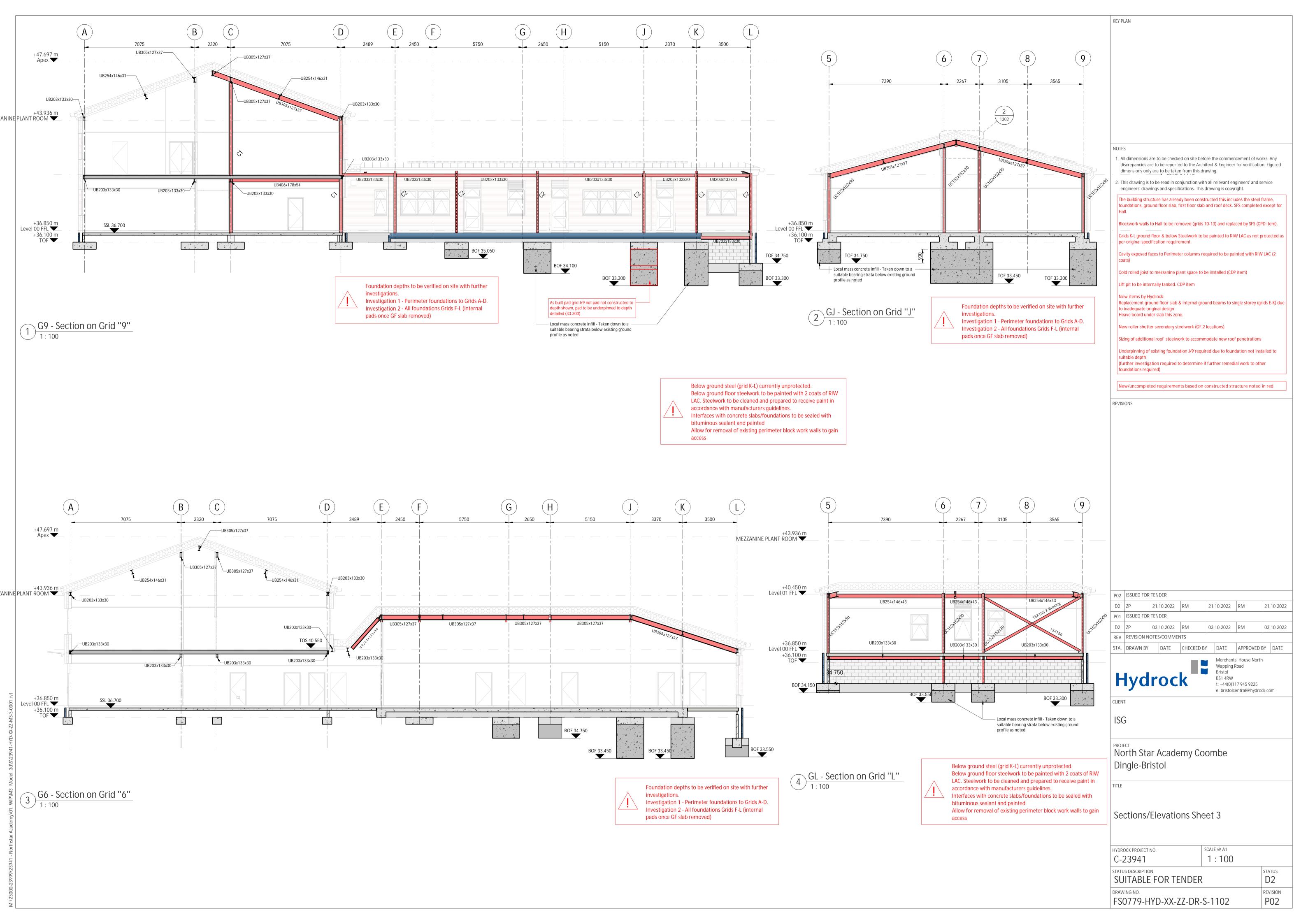

CHECKED BY


APPROVED BY DATE









Appendix B Exploratory Holes Logs

Samp	le Run	Info	Test	ting	Water-	Charles December 1	_	ness		
Sample Run	Run Ø Recovery Depth (m) Type Results Strikes Grey and brownish grey sandy slightly clayey angular to subangular fine to coarse GRAVEL and COBBLES. Gravel is of concrete brick asphalt limestone and quartz. Sand is medium to coarse. Cobbles are angular to subangular of brick and concrete. (MADE GROUND) Brown sandy slightly clayey angular to subangular fine to coarse GRAVEL of concrete brick asphalt and limestone. (MADE GROUND) Stiff reddish brown sandy slightly gravelly CLAY. Sand is medium to coarse. Gravel is subangular fine to coarse of brick concrete and quartz and mudstone. (MADE GROUND) Tomm 100% Very stiff reddish brown slightly sandy slightly gravelly CLAY. Sand is		Depth mbgl	Thickness (m)	Level m OD					
Run		-				fine to coarse GRAVEL and COBBLES. Gravel is of concrete brick asphalt limestone and quartz. Sand is medium to coarse. Cobbles are angular to subangular of brick and concrete. \((MADE GROUND) \)	0.30	(0.30)	n n	
0.50 - 1.00	85mm	90%				GRAVEL of concrete brick asphalt and limestone.	0.60	(0.30)		
						Stiff reddish brown sandy slightly gravelly CLAY. Sand is medium to coarse. Gravel is subangular fine to coarse of brick concrete and quartz and mudstone.				
1.00 - 2.00	75mm	100%				1.		(1.00)		
						Very stiff raddish brown alightly conductionable gravelly CLAV Sand in	1.60			
						medium to coarse. Gravel is subangular fine to coarse of mudstone and sandstone.	-			
2.00 - 2.50	65mm	100%				2 ·	-	(0.90)		
						End of Borehole at 2.50m	2.50			
						3				
							-			
							-			
						4-				
							-			
							-			
							-			
						5 -				
							-			
							-			

escription ==	mbgl	1 = 5	. I ≲
	윈돈	(m) Level	Legend
/ angular to subangular fine to l is fine to coarse.	<u> </u>	= 15	
	(1.5	0)	
1 -			
1.5 wn CLAY.	0		
2 -	(1.0	0)	
25	.0		
ole at 2.50m			
3 -			
4 -			
5 -			
	vn CLAY. 2 - 2.5 2.5 4 -	vn CLAY. 2 - (1.0 2 - (3.0) 4 - (4 - (4 - (4 - (4 - (4 - (4 - (4 -	vn CLAY. 2 - (1.00) 2.50 3 - (1.00)

Samp	ole Run	Info		Test	ting	Water-	S		ssəu		σ
Sample Run	1		Depth (m)	Туре	Results	Strikes	Stratum Description	Depth	Thickr (m)	Level m OD	Legend
							Greyish brown sandy slightly clayey angular to subangular fine to coarse GRAVEL of limestone and brick. Sand is fine to coarse. (MADE GROUND)		1 0		
0.50 - 1.00	85mm	80%							(1.20)		
1.00 - 2.00	75mm	100%					1 -	1.20			
							Stiff becoming very stiff reddish brown slightly sandy CLAY. Sand is fine to coarse. (MERCIA MUDSTONE)				
2.00 - 3.00	65mm	90%					2 -	-	(1.80)		
								-			
							End of Borehole at 3.00m 3	3.00			
							4.				
								-			
							5 -	-			
								-			
							6	-			

Appendix C Laboratory Test Results

Timothy Hatrey

Hydrock Consultants Ltd Over Court Barns Over Lane Bristol BS32 4DF

t: 01454 619533 **f:** 01454 614125

e: Group Bristol cc engineer

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 22-81009

Project / Site name: North Star Academy Samples received on: 26/08/2022

Your job number: 13941 Samples instructed on/ 31/08/2022

Analysis started on:

Your order number: PO19397 Analysis completed by: 08/09/2022

Report Issue Number: 1 Report issued on: 08/09/2022

Samples Analysed: 2 soil samples

Adam Fenwick Technical Reviewer

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 22-81009 Project / Site name: North Star Academy Your Order No: PO19397

Lab Sample Number				2406642	2406643
Sample Reference	CORE-1	CORE-5			
Sample Number	None Supplied	None Supplied			
Depth (m)	0.25-0.50	0.50-0.90			
Date Sampled	Deviating	Deviating			
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	:				
Stone Content	%	0.1	NONE	69	42
Moisture Content	%	0.01	NONE	5.1	5.8
Total mass of sample received	kg	0.001	NONE	0.6	0.6

General Inorganics

3					
pH - Automated	pH Units	N/A	MCERTS	9.9	11.2
Total Sulphate as SO4	mg/kg	50	MCERTS	4300	5200
Total Sulphate as SO4	%	0.005	MCERTS	0.431	0.52
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/I	0.00125	MCERTS	0.58	0.36
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	579	365
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	810	210
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	410	110
Total Sulphur	mg/kg	50	MCERTS	3000	2300
Total Sulphur	%	0.005	MCERTS	0.295	0.229
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	3.9	2
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	0.39	0.2
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	5.5	4.1
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5

Analytical Report Number : 22-81009 Project / Site name: North Star Academy

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2406642	CORE-1	None Supplied	0.25-0.50	Brown clay and sand with stones.
2406643	CORE-5	None Supplied	0.50-0.90	Brown loam and clay with gravel and vegetation.

Analytical Report Number: 22-81009 Project / Site name: North Star Academy

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

		•		T	T
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	L038-PL	D	NONE	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivaler	t) Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
					L

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number : 22-81009 Project / Site name: North Star Academy

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID		Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
CORE-1	None Supplied	S	2406642	a	None Supplied	None Supplied	None Supplied
CORE-5	None Supplied	S	2406643	а	None Supplied	None Supplied	None Supplied

Kieran Bayley

Hydrock Consultants Ltd Over Court Barns Over Lane Bristol BS32 4DF

t: 01454 619533 **f:** 01454 614125

e: Group Bristol cc engineer

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-11013

Project / Site name: North Star Academy Samples received on: 10/01/2023

Your job number: 23941 Samples instructed on/ 10/01/2023

Analysis started on:

Your order number: PO23349 Analysis completed by: 16/01/2023

Report Issue Number: 1 Report issued on: 17/01/2023

Samples Analysed: 4 soil samples

Izabela Wójcik Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-11013 Project / Site name: North Star Academy

Lab Sample Number				2549758	2549759	2549760	2549761
Sample Reference		FP01	FP02	FP03	FP05		
Sample Number		FPF6	FPG6	FPH6	FPF7		
Depth (m)		0.50	0.40	0.50	0.40		
Date Sampled			19/12/2022	19/12/2022	19/12/2022	19/12/2022	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	:						
Stone Content	%	0.1	NONE	52	< 0.1	60	32
Moisture Content	%	0.01	NONE	7	16	5.6	11
Total mass of sample received	kg	0.001	NONE	0.5	0.5	0.5	0.5

General Inorganics

General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	11.1	10.8	11.4	10.7
Total Sulphate as SO4	mg/kg	50	MCERTS	4600	3900	4300	7100
Total Sulphate as SO4	%	0.005	MCERTS	0.464	0.385	0.43	0.707
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/I	0.00125	MCERTS	0.43	0.42	0.095	0.81
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	430	416	95.3	806
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	53	86	96	46
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	27	43	48	23
Total Sulphur	mg/kg	50	MCERTS	1800	1500	1800	2600
Total Sulphur	%	0.005	MCERTS	0.183	0.149	0.18	0.262
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	0.9	< 0.5	1.6
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	0.09	< 0.05	0.16
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	11	13	25	4.7
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	5.3	6.3	12	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5	< 2.5	< 2.5

Analytical Report Number : 23-11013 Project / Site name: North Star Academy

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2549758	FP01	FPF6	0.5	Brown clay and sand with brick and stones.
2549759	FP02	FPG6	0.4	Brown clay and sand with gravel.
2549760	FP03	FPH6	0.5	Brown gravelly sand with stones.
2549761	FP05	FPF7	0.4	Brown gravelly sand with stones.

Analytical Report Number: 23-11013 Project / Site name: North Star Academy

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

					I
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	um, water soluble, in soil Determination of water soluble magnesium by extraction In-house method with water followed by ICP-OES.		L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soll by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in "PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined cravimetrically using the moisture content which is carried out at a maximum of 30oC Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

Plastic Limit

[Wp]%

17

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

31

Client Reference: 23941 Job Number: 23-12069

Date Sampled: 10/01/2023 Date Received: 17/01/2023

Date Tested: 23/01/2023 Sampled By: Not Given

Test Results:

Laboratory Reference: 2555748 FPK7 Hole No.: Sample Reference: Not Given

As Received Water

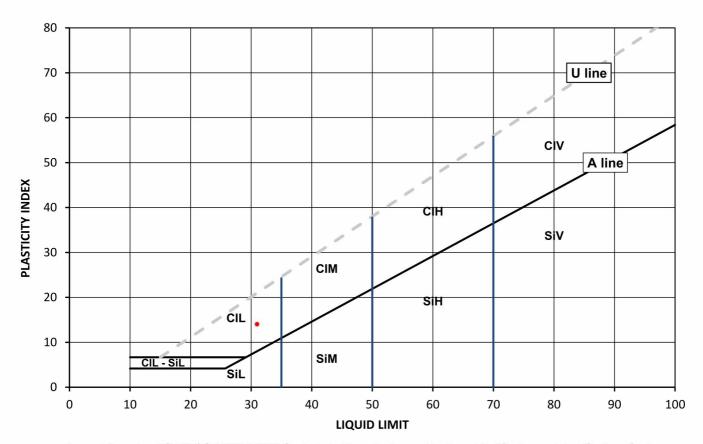
Content [W]%

18

Brown slightly gravelly very sandy CLAY Sample Description:

Tested after >425um removed by hand Sample Preparation:

T	Plasticity Index	% Passing 425µm
	[lp] %	BS Test Sieve
_		


89

14

Depth Top [m]: 2.00

Sample Type: D

Depth Base [m]: Not Given

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L 35 to 50 Si Silt M Medium Н High 50 to 70 V Very high exceeding 70

> Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Date Reported: 31/01/2023 GF 232.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 23941

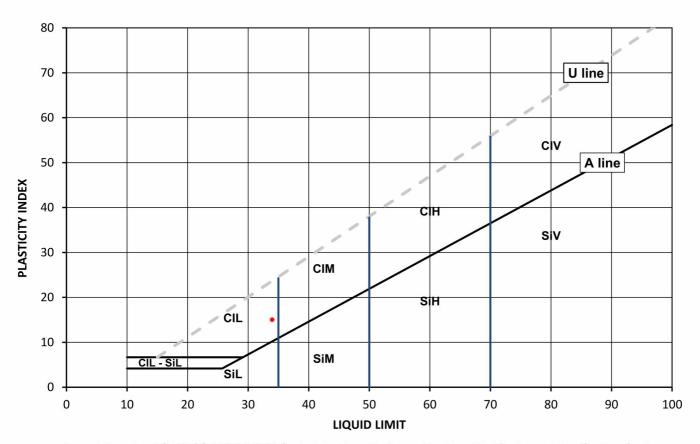
Depth Top [m]: 1.80

Sample Type: D

Depth Base [m]: Not Given

Job Number: 23-12069 Date Sampled: 10/01/2023 Date Received: 17/01/2023

Date Tested: 23/01/2023 Sampled By: Not Given


Test Results:

Laboratory Reference: 2555749 FPG9 Hole No.: Sample Reference: Not Given

Orangish brown slightly gravelly very sandy CLAY Sample Description:

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
24	34	19	15	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Date Reported: 31/01/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.4 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

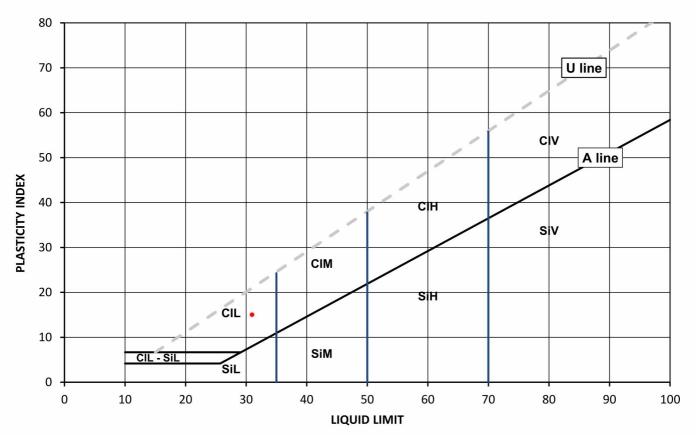
Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: 23941 Job Number: 23-12069

> Date Sampled: 10/01/2023 Date Received: 17/01/2023

Date Tested: 23/01/2023 Sampled By: Not Given

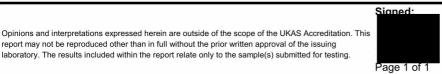

Test Results:

Laboratory Reference: 2555750 Depth Top [m]: 2.00 FP01 Depth Base [m]: Not Given Hole No.: Sample Reference: FPF6 Sample Type: D

Orangish brown slightly gravelly very sandy CLAY Sample Description:

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
18	31	16	15	99


Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Date Reported: 31/01/2023

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

GF 232.12

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Water Content by BS 1377-2:1990: Clause 3.2; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2:

1990: Clause 8.2

Client Reference: 23941

Job Number: 23-12069

Date Sampled: 10/01/2023 Date Received: 17/01/2023

Date Tested: 23/01/2023

Sampled By: Not Given

Client Address: Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley

Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2				tent W]	ontent 17892-1		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Water Content BS 1377-2 [W]	Water Content BS EN ISO 17892-	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	1
2555748	FPK7	Not Given	2.00	Not Given	D	Brown slightly gravelly very sandy CLAY	Atterberg 1 Point	18		89	31	17	14					
2555749	FPG9	Not Given	1.80	Not Given	D	Orangish brown slightly gravelly very sandy CLAY	Atterberg 1 Point	24		99	34	19	15					
2555750	FP01	FPF6	2.00	Not Given	D	Orangish brown slightly gravelly very sandy CLAY	Atterberg 1 Point	18		99	31	16	15					

Note: # Non accredited; NP - Non plastic

Comments:

Monika Siewior
Reporting Specialist
for and on behalf of i2 Analytical Ltd

Date Reported: 31/01/2023

SUMMARY REPORT

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 23941

Job Number: 23-12069 Date Sampled: 10/01/2023

Date Received: 17/01/2023 Date Tested: 23/01/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley

Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
		ļ	m	m				%			
2555748	FPK7	Not Given	2.00	Not Given	D	Brown slightly gravelly very sandy CLAY		18	Sample was quartered, oven dried at 106 °C		
2555749	FPG9	Not Given	1.80	Not Given	D	Orangish brown slightly gravelly very sandy CLAY		24	Sample was quartered, oven dried at 106 °C		
2555750	FP01	FPF6	2.00	Not Given	D	Orangish brown slightly gravelly very sandy CLAY		18	Sample was quartered, oven dried at 106 °C		

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1

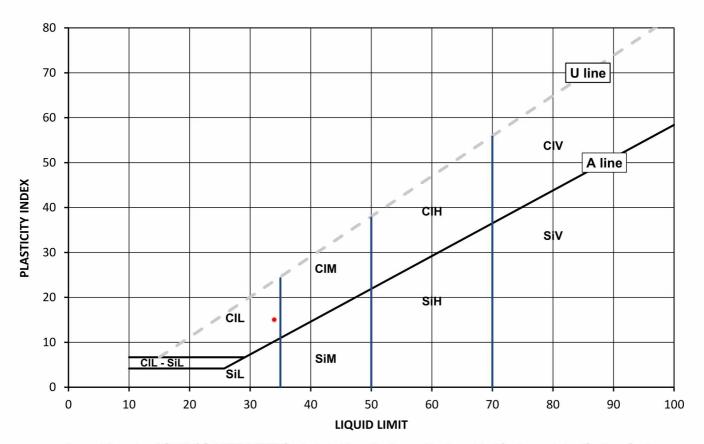
Date Sampled: 01/02/2023 Date Received: 06/02/2023

Date Tested: 13/02/2023 Sampled By: Not Given

Depth Top [m]: 1.70

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2578652 WS01 Hole No.: Sample Reference: Not Given

Orangish brown very sandy CLAY Sample Description:

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
21	34	19	15	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Sianed: Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 21/02/2023

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1

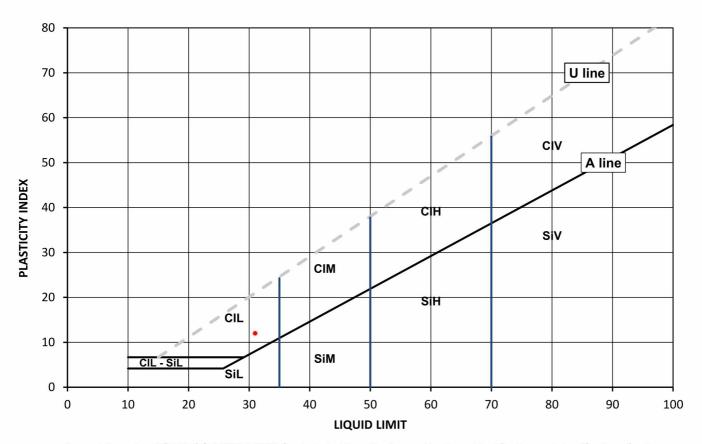
Date Sampled: 01/02/2023 Date Received: 06/02/2023 Date Tested: 13/02/2023

Sampled By: Not Given

Depth Top [m]: 2.00

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2578653 WS01 Hole No.: Sample Reference: Not Given

Orangish brown slightly gravelly very sandy CLAY Sample Description:

Sample Preparation: Tested after >425um removed by hand

As Received Water			Plasticity Index	% Passing 425μm
Content [W] %			[lp]%	BS Test Sieve
20	31	19	12	98

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Page 1 of 1 Date Reported: 21/02/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

Plastic Limit

[Wp]%

21

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

34

Client Reference: C-23941-C Job Number: 23-16494-1

Date Sampled: 01/02/2023 Date Received: 06/02/2023

Date Tested: 13/02/2023 Sampled By: Not Given

Depth Top [m]: 2.40

Sample Type: D

Plasti

[lp]%

13

Depth Base [m]: Not Given

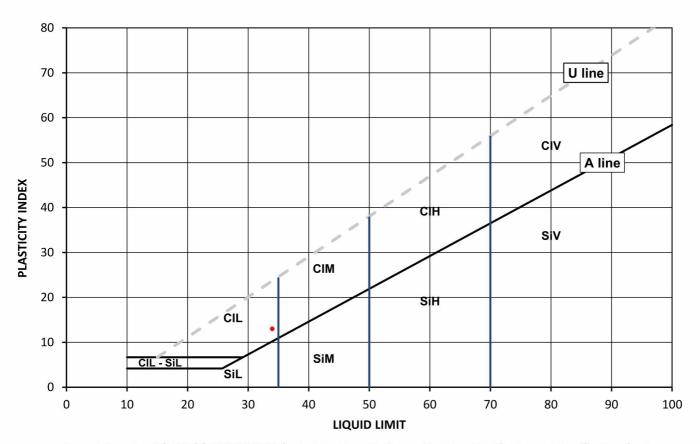
Test Results:

Laboratory Reference: 2578654 WS01 Hole No.: Sample Reference: Not Given

As Received Water

Content [W]%

15


Orangish brown gravelly very sandy CLAY Sample Description:

Sample Preparation: Tested after washing to remove >425um

icity Index	% Passing 425μm

BS Test Sieve

45

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Silt 35 to 50 Si M Medium Н High 50 to 70 V Very high exceeding 70

Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Signed: Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. Th

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 21/02/2023

Page 1 of 1

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

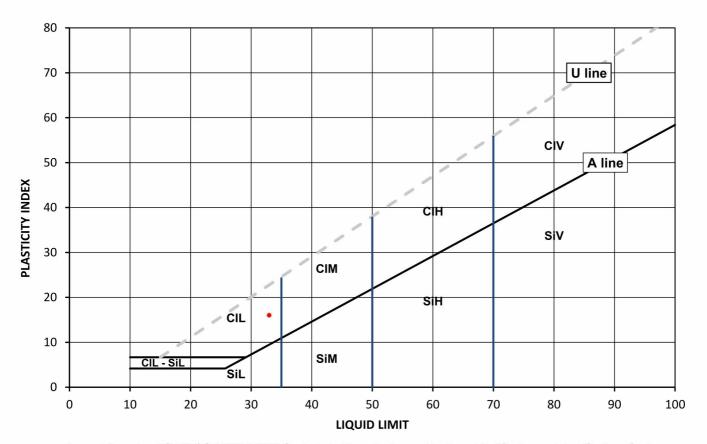
Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1

Date Sampled: 01/02/2023 Date Received: 06/02/2023

Date Tested: 13/02/2023 Sampled By: Not Given


Test Results:

Laboratory Reference: 2578655 Depth Top [m]: 1.50 WS02 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: D

Brown slightly gravelly very sandy CLAY Sample Description:

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
19	33	17	16	97

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Page 1 of 1

Date Reported: 21/02/2023 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Site Address: Kieran Bayley North Star Academy

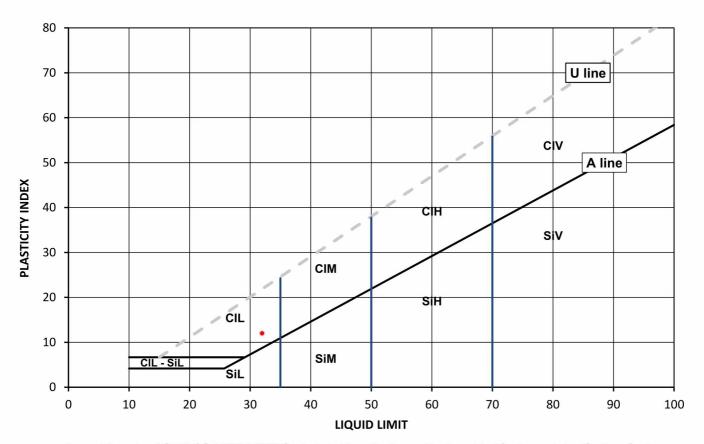
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1

Date Sampled: 01/02/2023 Date Received: 06/02/2023

Date Tested: 13/02/2023 Sampled By: Not Given

Test Results:


Laboratory Reference: 2578656 WS02 Hole No.: Sample Reference: Not Given

Brown very sandy CLAY Sample Description:

Sample Preparation: Tested in natural condition

Depth Top [m]:	2.00
Depth Base [m]:	Not Given
Sample Type:	D

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
23	32	20	12	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L 35 to 50 Si Silt M Medium Н High 50 to 70 V Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 21/02/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1

Date Sampled: 01/02/2023 Date Received: 06/02/2023

Date Tested: 13/02/2023 Sampled By: Not Given

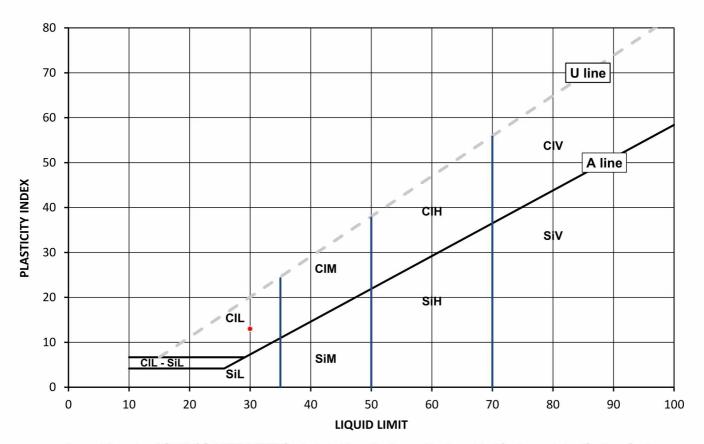
Depth Top [m]: 2.40

Sample Type: D

Depth Base [m]: Not Given

Test Results:

Laboratory Reference: 2578657


Hole No.: Sample Reference: Not Given

Brown slightly gravelly very sandy CLAY with fragments of gypsum crystals Sample Description:

Sample Preparation: Tested after >425um removed by hand

WS02

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
17	30	17	13	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Page 1 of 1 Date Reported: 21/02/2023 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley Site Address:

North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1

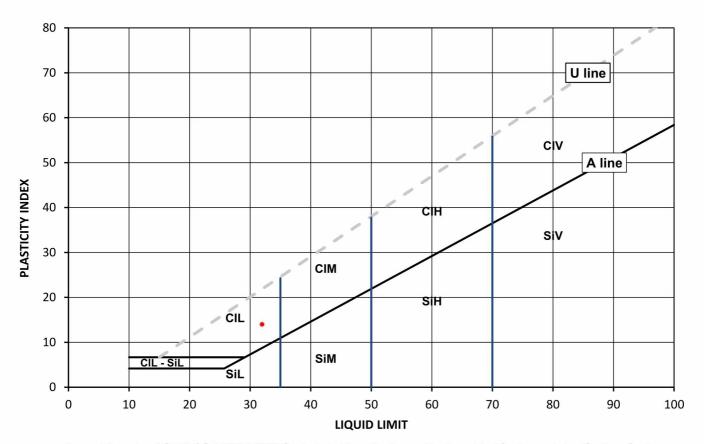
Date Sampled: 01/02/2023 Date Received: 06/02/2023

Date Tested: 13/02/2023 Sampled By: Not Given

Depth Top [m]: 1.50

Sample Type: D

Depth Base [m]: Not Given


Test Results:

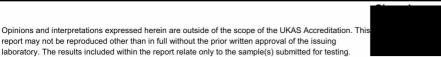
Laboratory Reference: 2578658 WS03 Hole No.: Sample Reference: Not Given

Brown very sandy CLAY Sample Description:

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
18	32	18	14	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil


Plasticity Liquid Limit below 35 CI Clay Low L 35 to 50 Si Silt M Medium Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 Date Reported: 21/02/2023 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Site Address: Kieran Bayley North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1

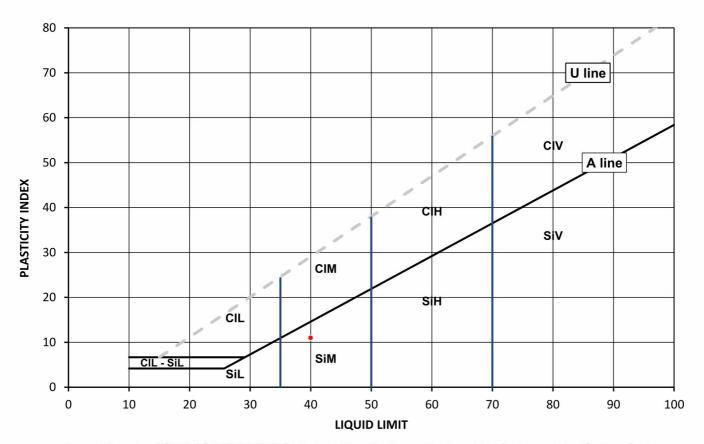
Date Sampled: 01/02/2023 Date Received: 06/02/2023

Date Tested: 13/02/2023 Sampled By: Not Given

Depth Top [m]: 2.00

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 2578659 WS03 Hole No.: Sample Reference: Not Given

Brown slightly gravelly sandy CLAY Sample Description:

Sample Preparation: Tested after >425um removed by hand

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
19	40	29	11	99

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 21/02/2023

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Site Address: Kieran Bayley North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

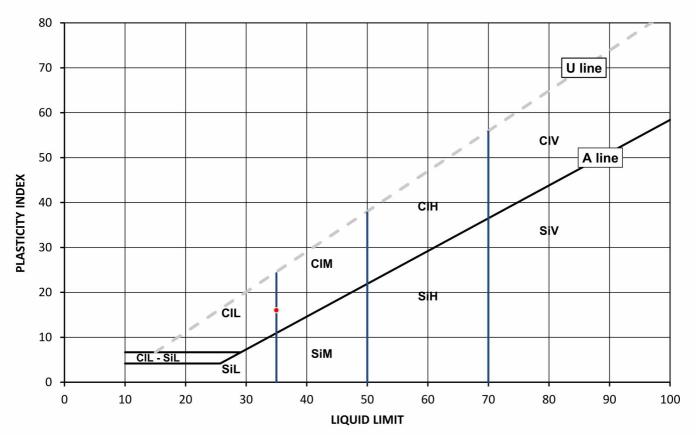
Client Reference: C-23941-C Job Number: 23-16494-1

Date Sampled: 01/02/2023

Date Received: 06/02/2023 Date Tested: 13/02/2023

Sampled By: Not Given

Test Results:


Laboratory Reference: 2578660 WS03 Hole No.: Sample Reference: Not Given

Brown sandy CLAY Sample Description:

Sample Preparation: Tested in natural condition

Depth Top [m]:	2.50
Depth Base [m]:	Not Given
Sample Type:	D

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
20	35	19	16	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

> > Page 1 of 1

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 21/02/2023 GF 236.12

Tested in Accordance with:BS 1377-2:1990:Clause 4.3 and 5

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Hydrock Consultants Ltd Client:

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1

Date Sampled: 01/02/2023 Date Received: 06/02/2023

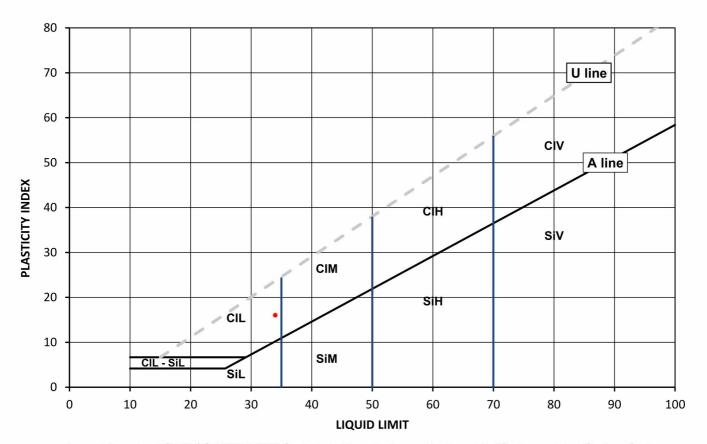
Date Tested: 13/02/2023 Sampled By: Not Given

Depth Top [m]: 3.00

Sample Type: D

Depth Base [m]: Not Given

Test Results:


Laboratory Reference: 2578661 WS03 Hole No.:

Sample Reference: Not Given

Brown very sandy CLAY with fragments of gypsum crystals Sample Description:

Sample Preparation: Tested in natural condition

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
18	34	18	16	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay Low L Medium 35 to 50 Si Silt M Н High 50 to 70 V Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Water Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. Th Page 1 of 1

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 21/02/2023

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

SUMMARY OF CLASSIFICATION TEST RESULTS

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041

Client: Hydrock Consultants Ltd

Water Content by BS 1377-2:1990: Clause 3.2Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Contact: Kieran Bayley

Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: C-23941-C Job Number: 23-16494-1 Date Sampled: 01/02/2023

Date Received: 06/02/2023 Date Tested: 13/02/2023

Sampled By: Not Given

Test results

			Sample	2				tent W]	ontent 17892-2		Atte	berg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks		Water Cont BS EN ISO 17: [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
2578652	WS01	Not Given	1.70	Not Given	D	Orangish brown very sandy CLAY	Atterberg 4 Point	21		100	34	19	15					
2578653	WS01	Not Given	2.00	Not Given	D	Orangish brown slightly gravelly very sandy CLAY	Atterberg 4 Point	20		98	31	19	12					
2578654	WS01	Not Given	2.40	Not Given	D	Orangish brown gravelly very sandy CLAY	Atterberg 4 Point	15		45	34	21	13					
2578655	WS02	Not Given	1.50	Not Given	D	Brown slightly gravelly very sandy CLAY	Atterberg 4 Point	19		97	33	17	16					
2578656	WS02	Not Given	2.00	Not Given	D	Brown very sandy CLAY	Atterberg 4 Point	23		100	32	20	12					
2578657	WS02	Not Given	2.40	Not Given	D	Brown slightly gravelly very sandy CLAY with fragments of gypsum crystals	Atterberg 4 Point	17		99	30	17	13					
2578658	WS03	Not Given	1.50	Not Given	D	Brown very sandy CLAY	Atterberg 4 Point	18		100	32	18	14					
2578659	WS03	Not Given	2.00	Not Given	D	Brown slightly gravelly sandy CLAY	Atterberg 4 Point	19		99	40	29	11					
2578660	WS03	Not Given	2.50	Not Given	D	Brown sandy CLAY	Atterberg 4 Point	20		100	35	19	16					
2578661	WS03	Not Given	3.00	Not Given	D	Brown very sandy CLAY with fragments of gypsum crystals	Atterberg 4 Point	18		100	34	18	16					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Monika Siewior
Reporting Specialist
for and on behalf of i2 Analytical Ltd

Date Reported: 21/02/2023

DETERMINATION OF WATER CONTENT

Tested in Accordance with: BS 1377-2: 1990: Clause 3.2

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: C-23941-C

Job Number: 23-16494-1 Date Sampled: 01/02/2023

Date Received: 06/02/2023 Date Tested: 13/02/2023

Sampled By: Not Given

4041

Client: Hydrock Consultants Ltd

Client Address:

Over Court Barns, Over Lane,

Bristol, BS32 4DF

Kieran Bayley Contact:

Site Address: North Star Academy

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written

approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Test results

			Sample	•							
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	wc	Sample preparation / Oven temperature at the time of testing		
			m	m				%			
2578652	WS01	Not Given	1.70	Not Given	D	Orangish brown very sandy CLAY		21	Sample was quartered, oven dried at 108.7 °C		
2578653	WS01	Not Given	2.00	Not Given	D	Orangish brown slightly gravelly very sandy CLAY		20	Sample was quartered, oven dried at 108.7 °C		
2578654	WS01	Not Given	2.40	Not Given	D	Orangish brown gravelly very sandy CLAY		15	Sample was quartered, oven dried at 108.7 °C		
2578655	WS02	Not Given	1.50	Not Given	D	Brown slightly gravelly very sandy CLAY		19	Sample was quartered, oven dried at 108.7 °C		
2578656	WS02	Not Given	2.00	Not Given	D	Brown very sandy CLAY		23	Sample was quartered, oven dried at 108.7 °C		
2578657	WS02	Not Given	2.40	Not Given	D	Brown slightly gravelly very sandy CLAY with fragments of gypsum crystals		17	Sample was quartered, oven dried at 60.0 °C		
2578658	WS03	Not Given	1.50	Not Given	D	Brown very sandy CLAY		18	Sample was quartered, oven dried at 108.7 °C		
2578659	WS03	Not Given	2.00	Not Given	D	Brown slightly gravelly sandy CLAY		19	Sample was quartered, oven dried at 108.7 °C		
2578660	WS03	Not Given	2.50	Not Given	D	Brown sandy CLAY		20	Sample was quartered, oven dried at 108.7 °C		
2578661	WS03	Not Given	3.00	Not Given	D	Brown very sandy CLAY with fragments of gypsum crystals		18	Sample was quartered, oven dried at 60.0 °C		

Comments:

Signed:

Monika Siewior Reporting Specialist for and on behalf of i2 Analytical Ltd

Date Reported: 21/02/2023

Kieran Bayley

Hydrock Consultants Ltd Over Court Barns Over Lane Bristol BS32 4DF

t: 01454 619533 **f:** 01454 614125

e: Group Bristol cc engineer

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-18575

Project / Site name: North Star Academy Samples received on: 17/02/2023

Your job number: 23941 Samples instructed on/ 20/02/2023

Analysis started on:

Your order number: PO24354 Analysis completed by: 24/02/2023

Report Issue Number: 1 **Report issued on:** 27/02/2023

Samples Analysed: 7 soil samples

Dominika Warjan Junior Reporting Specialist **For & on behalf of i2 Analytical Ltd.**

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-18575 Project / Site name: North Star Academy

Lab Sample Number				2591548	2591549	2591550	2591551	2591552
Sample Reference				FPA3	FPA5	FPA7	FPA12	FPB1
Sample Number				None Supplied				
Depth (m)				0.40	0.60	0.50	0.40	0.50
Date Sampled				16/02/2023	16/02/2023	16/02/2023	16/02/2023	16/02/2023
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)			******					
Stone Content	%	0.1	NONE	44	< 0.1	63	45	49
Moisture Content	%	0.01	NONE	7.8	12	8.5	9.2	5.7
Total mass of sample received	kg	0.001	NONE	0.6	0.6	0.6	0.6	0.6

General Inorganics

General morganics								
pH - Automated	pH Units	N/A	MCERTS	11.1	10.9	11	11.1	10
Total Sulphate as SO4	mg/kg	50	MCERTS	7000	4600	3100	5800	2700
Total Sulphate as SO4	%	0.005	MCERTS	0.701	0.455	0.308	0.584	0.272
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/I	0.00125	MCERTS	0.39	0.38	0.2	0.24	0.32
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	391	383	198	245	325
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	240	130	78	14	41
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	120	65	39	7	20
Total Sulphur	mg/kg	50	MCERTS	3000	1900	1400	2800	1700
Total Sulphur	%	0.005	MCERTS	0.304	0.193	0.138	0.283	0.173
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	2.8	2.1	2.4	6.8	27
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	13

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Magnesium (leachate equivalent)	mg/l	2.5	NONE	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

Analytical Report Number: 23-18575 Project / Site name: North Star Academy

Lab Sample Number				2591553	2591554
Sample Reference				FPB13	FPB2
Sample Number	None Supplied	None Supplied			
Depth (m)				0.50	0.50
Date Sampled				16/02/2023	16/02/2023
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	:				
Stone Content	%	0.1	NONE	< 0.1	59
Moisture Content	%	0.01	NONE	15	7.2
Total mass of sample received	kg	0.001	NONE	0.6	0.6

General Inorganics

Control and The games					
pH - Automated	pH Units	N/A	MCERTS	10	10.6
Total Sulphate as SO4	mg/kg	50	MCERTS	4500	4600
Total Sulphate as SO4	%	0.005	MCERTS	0.447	0.461
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/I	0.00125	MCERTS	0.62	0.49
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	618	493
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	260	970
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	130	490
Total Sulphur	mg/kg	50	MCERTS	1700	2000
Total Sulphur	%	0.005	MCERTS	0.17	0.2
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5	1.7
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05	0.17
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	4.9	3.2
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)		5	NONE	< 5.0	< 5.0
Magnesium (leachate equivalent)		2.5	NONE	< 2.5	< 2.5

Analytical Report Number : 23-18575 Project / Site name: North Star Academy

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2591548	FPA3	None Supplied	0.4	Brown loam and sand with gravel and brick.
2591549	FPA5	None Supplied	0.6	Brown gravelly clay.
2591550	FPA7	None Supplied	0.5	Brown clay and sand with gravel and brick.
2591551	FPA12	None Supplied	0.4	Brown loam and sand with brick and stones.
2591552	FPB1	None Supplied	0.5	Brown clay and sand with gravel and stones.
2591553	FPB13	None Supplied	0.5	Brown clay and sand with gravel.
2591554	FPB2	None Supplied	0.5	Brown loam and sand with gravel and brick.

Analytical Report Number: 23-18575 Project / Site name: North Star Academy

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soll by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in "PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined cravimetrically using the moisture content which is carried out at a maximum of 30oC Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Kieran Bayley

Hydrock Consultants Ltd Over Court Barns Over Lane Bristol BS32 4DF

t: 01454 619533 **f:** 01454 614125

e: Group Bristol cc engineer

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-27743

Project / Site name:North Star AcademySamples received on:06/04/2023

Your job number: 23941 Samples instructed on/ 12/04/2023

Analysis started on:

Your order number: PO25444 Analysis completed by: 18/04/2023

Report Issue Number: 1 **Report issued on:** 18/04/2023

Samples Analysed: 6 soil samples

Anna Goc Junior Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-27743 Project / Site name: North Star Academy

Lab Sample Number				2644589	2644590	2644591	2644592	2644593
Sample Reference		TP106	TP105	TP104	TP103	TP101		
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)	0.50	0.40	0.30	0.40	0.20			
Date Sampled		04/04/2023	04/04/2023	04/04/2023	04/04/2023	04/04/2023		
Time Taken				None Supplied				
		:						
		Ė						
Analytical Parameter								
(Soil Analysis)	1							
Stana Contant	%	0.1	NONE	< 0.1	. 0.1	28	. 0.1	< 0.1
Stone Content Moisture Content	%	0.01	NONE	< 0.1 9	< 0.1 7.9	9.5	< 0.1	
	kg	0.001	NONE				6.2	14
Total mass of sample received	''9	0.001	HOHE	1.3	1.4	1.3	1.4	1.4
Ashashas in Call	Туре	N/A	ISO 17025	Not detected	Not detected	NI-A d-A-A-d	Not detected	Not detected
Ashestos in Soil	N/A	N/A	N/A	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	1477		1071	MLO	MLO	MLO	MLO	MLO
C								
General Inorganics	pH Units	N/A	MCERTS	10.0	11.	11.0	11.5	0.5
bH - Automated	mg/kg	N/A 1	MCERTS	10.8	11.6	11.2	11.5	8.5
Free Cyanide				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Fotal Sulphate as SO4	mg/kg %	50 0.005	MCERTS MCERTS	-	-	-	-	730
Fotal Sulphate as SO4 Nater Soluble SO4 16hr extraction (2:1 Leachate	%	0.005	MICERIS	-	-	-	-	0.073
Equivalent)	g/l	0.00125	MCERTS	0.96	0.23	0.5	0.31	0.24
Water Soluble SO4 16hr extraction (2:1 Leachate					_		_	244
Equivalent)	mg/l	1.25	MCERTS	-	-	-	-	244
Nater Soluble Chloride (2:1)	mg/kg	1	MCERTS	-	-	-	-	10
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	-	-	5.1
Fotal Sulphur	mg/kg	50	MCERTS	-	-	-	-	320
Total Sulphur	%	0.005	MCERTS	-	-	-	-	0.032
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	-	-	-	-	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	-	-	-	-	< 0.05
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.01	0.009	0.0067	0.0035	0.0042
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	-	-	-	-	2.4
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	-	-	-	-	< 5.0
	3.							
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	0.1	0.09	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.23	0.08	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	0.28	0.11	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	3.2	1.1	0.85	0.35	0.08
Anthracene	mg/kg	0.05	MCERTS	0.9	0.37	0.35	0.14	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	5.9	2.7	3.3	1.1	0.2
Pyrene	mg/kg	0.05	MCERTS	4.8	3	3.8	1.2	0.21
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.5	1.5	1.9	0.56	0.12
Chrysene	mg/kg	0.05	MCERTS	2.3	1.3	1.7	0.52	0.14
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	2.8	1.8	2.3	0.63	0.21
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	1.1	0.58	0.89	0.24	0.06
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.1	1.6	2	0.52	0.18
ndeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.3	0.79	1	0.3	0.12
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.4	0.19	0.25	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.4	0.19	1.2	0.37	0.13
(3/poi/joilo	- 0			1.9	0.07	1.2	0.37	0.13
Fotal PAH								

Lab Sample Number				2644589	2644590	2644591	2644592	2644593
Sample Reference	TP106	TP105	TP104	TP103	TP101			
Sample Number				None Supplied				
Depth (m)				0.50	0.40	0.30	0.40	0.20
Date Sampled				04/04/2023	04/04/2023	04/04/2023	04/04/2023	04/04/2023
Time Taken				None Supplied				
		;						
		:	. :					
Analytical Parameter								
(Soil Analysis)								
Heavy Metals / Metalloids	1			<u> </u>				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	13	16	14	36
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.55	0.54	0.63	0.55	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	1.7	1	1.4	0.7	0.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.7	0.6	0.7	0.9	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	14	14	15	11	22
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	14	14	16	11	22
Copper (aqua regia extractable)	mg/kg	1	MCERTS	12	14	9.3	12	21
Lead (aqua regia extractable)	mg/kg	1	MCERTS	38	24	24	42	41
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	13	14	12	8.8	25
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	23	22	24	20	30
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	83	60	63	87	130
Magnesium (water soluble)	mg/kg	5	NONE	-	-	•	-	18
Magnesium (leachate equivalent)	mg/l	2.5	NONE	=	=	-	=	9.2
Monoaromatics & Oxygenates Benzene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
Toluene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
Ethylbenzene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
p & m-xylene	μg/kg	5	MCERTS	-	-	< 5.0	-	-
o-xylene	μg/kg	5	MCERTS	-	-	< 5.0	=	=
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	-	-	< 5.0	=	=
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg	0.001	NONE	I -		< 0.001	_	=
TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	NONE			< 0.001	-	
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	-		< 0.001	-	-
TPH-CWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	-		< 1.0	-	-
TPH-CWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	-	-	4.8	-	-
TPH-CWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	_	-	15	-	-
TPH-CWG - Aliphatic >EC21 - EC35 _{EH_CU_ID_AL}	mg/kg	8	MCERTS	-	-	110	-	-
TPH-CWG - Aliphatic > EC16 - EC35 _{EH_CU_1D_AL}	mg/kg	10	MCERTS	-	-	130	-	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	8.4	NONE	-	-	91	-	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	130	-	-
TPH-CWG - Aliphatic (EC5 - EC44) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	-	-	220	-	=
	-					-		-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	-	-	< 0.001	-	-
TPH-CWG - Aromatic >EC7 - EC8 _{HS 1D AR}	mg/kg	0.001	NONE	-	-	< 0.001	=	=
TPH-CWG - Aromatic >EC8 - EC10 _{HS_1D_AR}	mg/kg	0.001	NONE	-	-	< 0.001	-	=
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	-	-	< 1.0	-	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	-	-	2.7	-	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	21	-	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	-	-	140	-	-
TPH-CWG - Aromatic > EC35 - EC44 EH_CU_1D_AR	mg/kg	8.4	NONE	-	-	120	-	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	NONE	-	-	160	-	-
		10	NONE					
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	-	-	280	-	-
TPH-CWG - Aromatic (EC5 - EC44) _{EH_CU+HS_1D_AR} TPH Total C5 - C44 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	-	-	280	F	<u>-</u>

Lab Sample Number				2644589	2644590	2644591	2644592	2644593
Sample Reference				TP106	TP105	TP104	TP103	TP101
Sample Number				None Supplied				
Depth (m)			0.50	0.40	0.30	0.40	0.20	
Date Sampled			04/04/2023	04/04/2023	04/04/2023	04/04/2023	04/04/2023	
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Lab Sample Number	2644594			
Sample Reference	TP102			
Sample Number	None Supplied			
Depth (m)	0.50			
Date Sampled	04/04/2023			
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	:			
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	9.6
Total mass of sample received	kg	0.001	NONE	1.3

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	MLO

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	10.7
Free Cyanide	mg/kg	1	MCERTS	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	-
Total Sulphate as SO4	%	0.005	MCERTS	-
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/I	0.00125	MCERTS	1.7
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	-
Water Soluble Chloride (2:1)	mg/kg	1	MCERTS	-
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-
Total Sulphur	mg/kg	50	MCERTS	-
Total Sulphur	%	0.005	MCERTS	-
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	-
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	-
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.0064
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	-
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	÷

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0
----------------------------	-------	---	--------	-------

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	0.13
Fluorene	mg/kg	0.05	MCERTS	0.12
Phenanthrene	mg/kg	0.05	MCERTS	1.9
Anthracene	mg/kg	0.05	MCERTS	0.61
Fluoranthene	mg/kg	0.05	MCERTS	4
Pyrene	mg/kg	0.05	MCERTS	3.8
Benzo(a)anthracene	mg/kg	0.05	MCERTS	1.6
Chrysene	mg/kg	0.05	MCERTS	1.4
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	1.7
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.54
Benzo(a)pyrene	mg/kg	0.05	MCERTS	1.4
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.72
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.88

Total PAH

Speciated Total EPA-16 PAHs mg/	g/kg	8.0	ISO 17025	18.8
---------------------------------	------	-----	-----------	------

				2644594
Sample Reference				TP102
Sample Number				None Supplied
Depth (m)				0.50
Date Sampled				04/04/2023
Time Taken	-			None Supplied
		1	:	
Analytical Parameter				
(Soil Analysis)	1	- 1		
		- :		
Heavy Metals / Metalloids			MOEDTO	
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	17
Beryllium (aqua regia extractable)	mg/kg mg/kg	0.06	MCERTS MCERTS	0.61
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3
Cadmium (aqua regia extractable)	mg/kg	1.8	MCERTS	1
Chromium (hexavalent)	mg/kg	1.0	NONE	< 1.8 15
Chromium (III)	mg/kg	1	MCERTS	15
Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	1	MCERTS	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	38
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	14
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	23
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	84
,				
Magnesium (water soluble)	mg/kg	5	NONE	-
Magnesium (leachate equivalent)	mg/l	2.5	NONE	_
Toluene Ethylbenzene p & m-xylene o-xylene	µg/kg µg/kg µg/kg µg/kg	5 5 5	MCERTS MCERTS MCERTS MCERTS	- - - -
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	=
Petroleum Hydrocarbons				
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	=
TPH-CWG - Aliphatic > EC8 - EC10 _{HS_1D_AL}	mg/kg	0.001	NONE	=
TPH-CWG - Aliphatic > EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	2	MCERTS MCERTS	-
TPH-CWG - Aliphatic > EC12 - EC16 _{EH_CU_1D_AL} TPH-CWG - Aliphatic > EC16 - EC21 _{EH_CU_1D_AL}	mg/kg mg/kg	8	MCERTS	-
	mg/kg	8	MCERTS	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL			mount	
TPH_CWG - Alinhatic >EC16 EC35			MCFRTS	_
	mg/kg	10	MCERTS NONE	-
TPH-CWG - Aliphatic >EC16 - EC35 _{EH_CU_1D_AL} TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg mg/kg	10 8.4	NONE	-
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL}	mg/kg	10		- - -
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg mg/kg mg/kg	10 8.4 10	NONE NONE	-
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL	mg/kg mg/kg mg/kg	10 8.4 10	NONE NONE	-
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR	mg/kg mg/kg mg/kg mg/kg	10 8.4 10 10	NONE NONE NONE	-
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_ID_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 + IS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 + IS_1D_AR TPH-CWG - Aromatic > EC7 - EC8 + IS_1D_AR	mg/kg mg/kg mg/kg mg/kg	10 8.4 10 10	NONE NONE NONE	
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_ID_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 8.4 10 10 0.001 0.001	NONE NONE NONE NONE	- - -
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC5 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 ES_1D_AR TPH-CWG - Aromatic > EC10 - EC12 EH_CU_1D_AR	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 8.4 10 10 0.001 0.001 0.001	NONE NONE NONE NONE NONE	- - -
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 8.4 10 10 0.001 0.001 0.001	NONE NONE NONE NONE NONE NONE NONE MCERTS	
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	10 8.4 10 10 0.001 0.001 0.001 1	NONE NONE NONE NONE NONE NONE NONE MCERTS	
TPH-CWG - Aliphatic > EC35 - EC44 _{EH_CU_1D_AL} TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10 8.4 10 10 0.001 0.001 0.001 1 2	NONE NONE NONE NONE NONE NONE MCERTS MCERTS	
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 EH_CU_1D_AR TPH-CWG - Aromatic > EC10 - EC12 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR TPH-CWG - Aromatic > EC16 - EC21 EH_CU_1D_AR TPH-CWG - Aromatic > EC21 - EC35 EH_CU_1D_AR TPH-CWG - Aromatic > EC21 - EC35 EH_CU_1D_AR TPH-CWG - Aromatic > EC35 - EC44 EH_CU_1D_AR	mg/kg	10 8.4 10 10 0.001 0.001 0.001 1 2 10	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS	
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL TPH-CWG - Aromatic > EC5 - EC7 HS_1D_AR TPH-CWG - Aromatic > EC7 - EC8 HS_1D_AR TPH-CWG - Aromatic > EC8 - EC10 HS_1D_AR TPH-CWG - Aromatic > EC10 - EC12 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC16 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC15 EH_CU_1D_AR TPH-CWG - Aromatic > EC12 - EC35 EH_CU_1D_AR TPH-CWG - Aromatic > EC14 - EC21 EH_CU_1D_AR	mg/kg	10 8.4 10 10 0.001 0.001 0.001 1 2 10 10 8.4	NONE NONE NONE NONE NONE NONE MCERTS MCERTS MCERTS MCERTS NONE	

Lab Sample Number			·	2644594
Sample Reference				TP102
Sample Number				None Supplied
Depth (m)				0.50
Date Sampled				04/04/2023
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)				
U/S = Unsuitable Sample I/S = Insufficie	ent Sample ND = Not d	tected		

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2644589	TP106	None Supplied	0.5	Brown loam and sand with rubble and brick.
2644590	TP105	None Supplied	0.4	Brown loam and sand with rubble and brick.
2644591	TP104	None Supplied	0.3	Brown loam and sand with gravel and stones.
2644592	TP103	None Supplied	0.4	Brown loam and sand with rubble and vegetation.
2644593	TP101	None Supplied	0.2	Brown loam and clay with gravel and vegetation.
2644594	TP102	None Supplied	0.5	Brown loam and sand with rubble and brick.

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPH Chromatogram in Soil	TPH Chromatogram in Soil.	In-house method	L064-PL	D	NONE
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	w	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method	L009	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

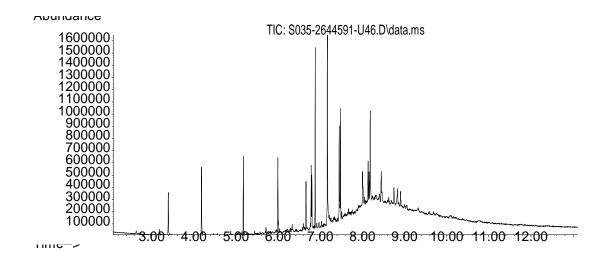
For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators


Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
#1	EH_2D_Total but with humics mathematically	subtracted			
#2	EH_2D_Total but with fatty acids mathematical	ally subtracted			
_	Operator - understore to separate acronyms (exception for +)			
+	Operator to indicate cumulative e.g. EH+HS_T	otal or EH_CU+HS_Total			

Sample Deviation Report

Analytical Report Number: 23-27743 Project / Site name: North Star Academy

 $This deviation \ report \ indicates \ the \ sample \ and \ test \ deviations \ that \ apply \ to \ the \ samples \ submitted \ for \ analysis. Please \ note \ that \ the \ associated \ result(s) \ may \ be \ unreliable \ and \ should \ be \ interpreted \ with \ care.$

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
TP101	None Supplied	S	2644593	С	Free cyanide in soil	L080-PL	С
TP102	None Supplied	S	2644594	С	Free cyanide in soil	L080-PL	С
TP103	None Supplied	S	2644592	С	Free cyanide in soil	L080-PL	С
TP104	None Supplied	S	2644591	С	Free cyanide in soil	L080-PL	С
TP105	None Supplied	S	2644590	С	Free cyanide in soil	L080-PL	С
TP106	None Supplied	S	2644589	С	Free cyanide in soil	L080-PL	C

Client			
SG Ltd		Location or materia	al to which this assessment applies
Project		Made Ground	
lorth Star Academy			
ob number			
3941			
Concrete in	aggressive	e groun	After BRE Special Digest 1, 2005
Soil data			
			Water
	(Adjusted) water	Total potential	soluble
	soluble sulfate	sulfate	magnesium
	(mg/l)	(%)	(mg/l)
Number of tests	13		
		13 3	0
No. tests in 20% data set	3		
No. tests with suspected pyrite	110/ 05	1	
Maximum value	1136.35	0.9	
Mean of highest two values	971	1	
Mean of highest 20%	900	1	
Characteristic Value	900	0.9	
	[no pyrite]	[pyrite suspected	
DS Class	DS-2	DS-3	
If pyrite suspected, D	S Class limited t	DS-3	_
If pyrite suspected, D	S Class limited t	DS-3	_
If pyrite suspected, D		DS-3 O Adopted DS Class	= DS-2
			= DS-2
			= DS-2
Is pyrite assumed to	be present N	o Adopted DS Class	= DS-2
Is pyrite assumed to	be present N (Adjusted) soluble	Adopted DS Class Soluble	= DS-2
Is pyrite assumed to	be present N (Adjusted) soluble sulfate	Adopted DS Class Soluble magnesium	= DS-2
Is pyrite assumed to	be present N (Adjusted) soluble	Adopted DS Class Soluble	= DS-2
Is pyrite assumed to Water data Characteristic Value	be present N (Adjusted) soluble sulfate	Adopted DS Class Soluble magnesium	= DS-2
Water data Characteristic Value (Maximum Level)	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2
Is pyrite assumed to Water data Characteristic Value	(Adjusted) soluble sulfate (mg/l)	Soluble magnesium (mg/l)	= DS-2
Water data Characteristic Value (Maximum Level)	be present N (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	= DS-2
Characteristic Value (Maximum Level) DS Class pH data	be present N (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	= DS-2
Characteristic Value (Maximum Level) DS Class pH data Number of tests	be present N (Adjusted) soluble sulfate (mg/l) 0	Soluble magnesium (mg/l)	= DS-2
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set	Soil 13 3	Soluble magnesium (mg/l) 0 Water	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH	be present N (Adjusted) soluble sulfate (mg/l) 0 Soil 13 3 9.9	Soluble magnesium (mg/l) 0 Water	= DS-2
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	be present N (Adjusted) soluble sulfate (mg/l) 0 Soil 13 3 9.9 10.0	Soluble magnesium (mg/l) 0 Water	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH	be present N (Adjusted) soluble sulfate (mg/l) 0 Soil 13 3 9.9	Soluble magnesium (mg/l) 0 Water	= DS-2
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20%	Soil 13 3 9.9 10.0 10.0	Soluble magnesium (mg/l) 0 Water	= DS-2
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value	Soil 13 3 9.9 10.0 10.0	Soluble magnesium (mg/l) 0 Water	= DS-2
Characteristic Value (Maximum Level) DS Class PH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value	Soil 13 3 9.9 10.0 10.0	Soluble magnesium (mg/l) 0 Water	ACEC Class design value
Characteristic Value (Maximum Level) DS Class pH data Number of tests No. tests in 20% data set Lowest pH Mean of lowest 20% Characteristic value Design value Number of soil pH results less than 5.5	Soil 13 3 9.9 10.0 10.0 0 Un Value	Soluble magnesium (mg/l) 0 Water	

Assessment of Chemicals of Potential Concern to Human Health

Control Cont		Risk parameter:	Default	t - Human	Health -	resident	ial withou	ıt home-	grown p	roduce (1%S	SOM)					TP106 @ 0.5			TP103 @ 0.4			@
Part		Client:	ISG							Data Filters				=	=							
Part		Site:	North S	Star						Zone	All				- -							
Part		Job no.:	23941							Strata	All		L =_	FEET E								
Part		Lab. report no(s).:	23-2774	43					De	pth Min (m bgl)	0.2		- 	<u>-</u>								
Part									De	pth Max (m bgl)	0.5				Date	04/04/2023	04/04/2023	04/04/2023	04/04/2023	04/04/2023	04/04/2023	
Part															Zone							
New Processors 1988 - 1989 - 1									Datas	et mean SOM%	1 14					TP106	TP105	TP104	TP103	TP101	TP102	
Control Portion	All values in me	a/ka unless atherwise stated																				
Part	7 III VAIAOS III III	gray unioss outlormse stateu								300114113 3 3 11173		Soll			z op (zg.)							
Monte Mont	CAS No / P Code	Chemical of Potential Concern	Units	LoD				Mean	Median		>= GAC & >	Limit @1%	GAC	GAC Source	Strata	MG	MG	MG	MG	MG	MG	
March Marc	-	Asbestos																				
More Configural S. 401 60 60 75 19 19 19 19 19 19 19 19 19 19 19 19 19	P1020	Asbestos Identified	text	Y/N	6	-	-	-	-	No. of detects:	0	-	-	-		N	N	N	N	N	N	
Monthe Section 1	P1889	Asbestos Screen Name	text		0	-	-	-	-	-		-		-								
More Confriguency 1	P1885	Asbestos Quant. (Stage 2)	%	0.001	0					No. > LOD:		-		-								
Manuskaller Manusk	P1935	Asbestos Quant. Total	%	0.001	0					No. > LOD:		-		-								
Marke Contention of the Conten	P1826	Asbestos Quant. (Stage 3)	%	0.001	0					No. > LOD:		-		-								
Manuse March	-	Asbestos Quant. Total (Stages 2+3)	%	0.001	0					No. > LOD:		-		-								
Page	P1880		text		0	-		-	_	-		-		-								
Process Proc	^		/-!!																			
Second S	D100E	-	, pn	0.001	4	0.004	0.010	0.007	0.007	0.00						0.01	0.000	0.0067	0.0035	0.0042	0.0064	
Property series with the property series of t	r 1085		U ov		_							-		-								
March Marc	-		%		-																	
March Marc	P1334		1	0.1	6	8.50	11.60	10./2	11.00	1.14		-	-	-		10.8	11.0	11.2	11.3	0.0	10.7	
		•									-					15	12	1/	14	2/	17	
Marche M																						
THE THE CONTROL STATE OF THE	7440-41-7	Beryllium	mg/kg		6																	
Marche M	7440-42-8	Boron	mg/ kg	0.2	6	0.40	1.70	1.08	1.15	0.48	0		11000	Hydrock Derived								
March Marc	7440-43-9	Cadmium	mg/ kg	0.2	6	0.20	1.00	0.68	0.70	0.28	0	NR	150	C4SL - CL:AIRE 2014								
Part	16 065-83-1	Chromium (III)	mg/kg	1	6	11.00	22.00	15.17	14.50	3.66	0	NR	890	Hydrock Derived								
Composition	18540-29-9	Chromium (VI)	mg/kg	1.8	6	1.80	1.80	1.80	1.80	0.00	0	NR	21	C4SL - CL:AIRE 2014		<1.8	<1.8	<1.8	<1.8		<1.8	
Market M	7440-47-3	Chromium (Total)	mg/kg	1	6	11.00	22.00	15.33	14.50	3.67			-			14	14	16	11	22	15	
Marchy Program Marc	7440-50-8	Copper	mg/ kg	1	6	9.30	21.00	13.72	13.00	3.97	0	NR	7100	Hydrock Derived		12	14	9.3	12	21	14	
New York Control No. 1	7439-92-1	Lead	mg/kg	1	6	24.00	42.00	34.50	38.00	8.29	0	NR	310	C4SL - CL:AIRE 2014		38	24	24	42	41	38	
Part	7439-97-6	Mercury, inorganic	mg/kg	0.3	6	0.30	0.30	0.30	0.30	0.00	0	NR	56	Hydrock Derived		<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	
Marke Mark	7440-02-0	Nickel	mg/kg	1	6	8.80	25.00	14.47	13.50	5.51	0	NR	180	Hydrock Derived		13	14	12	8.8	25	14	
Part Control Part	7782-49-2	Selenium	mg/ kg	1	6	1.00	1.00	1.00	1.00	0.00	0	NR	430	Hydrock Derived		<1	<1	<1	<1	<1	<1	
Printing Cymente (freed) mayles 1 6 100 100 100 100 100 000 0 0 188 24 Auto-Bis-SetBis 2000 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	7440-62-2	Vanadium	mg/ kg	1	6	20.00	30.00	23.67	23.00	3.39	0	NR	1200	Hydrock Derived		23	22	24	20	30	23	
Part	7440-66-6	Zinc	mg/kg	1	6	60.00	130.00	84.50	83.50	25.07	0	NR	40000	Hydrock Derived		83	60	63	87	130	84	
Secondary Seco	P1095	Cyanide (free)	mg/kg	1	6	1.00	1.00	1.00	1.00	0.00	0	NR	24	Acute Risk - SoBRA 2020		<1	<1	<1	<1	<1	<1	
Accompletifylemen	P1186	Total Phenols (Monohydric)	mg/kg	1	6	1.00	1.00	1.00	1.00	0.00	0	24237	440	Hydrock Derived		<1	<1	<1	<1	<1	<1	
Anthracore mg/kg 0.65 6 0.65 0.60 0.80 0.80 0.81 0.81 0.81 0.81 0.81 0.8	83-32-9	Acenaphthene	mg/ kg	0.05	6	0.05	0.23	0.10	0.07	0.07	0	57	6600	Hydrock Derived		0.23	0.08	<0.05	<0.05	<0.05	0.13	
Part	208-96-8	Acenaphthylene	mg/ kg	0.05	6	0.05	0.10	0.07	0.05	0.02	0	86	6600	Hydrock Derived		0.1	0.09	<0.05	<0.05	<0.05	<0.05	
Sec. 55-3 Benz(plantracene mg / kg 0.06 6 0.12 2.30 1.30 1.55 0.88 0 0.171 1.55 Hydrax Derived 2.5 1.5 1.9 0.56 0.12 1.6 0.15 0.10	120-12-7				_									-		0.9	0.37	0.35	0.14	<0.05	0.61	
Service between mg/kg	56-55-3															2.5	1.5	1.9	0.56	0.12	1.6	
Service Serv	50-32-8				_										1							
1912-42 Senzo(gh)piprylene mg/kg 0.05 6 0.13 1.40 0.81 0.88 0.48 0 0.02 360 Hydrock Derived 1.4 0.87 1.2 0.37 0.13 0.88 0.20 0.09 0.24 0.06 0.54 0.20 0.05 0.60 0.10 0.57 0.56 0.39 0.04 0.05 0					-																	
Semantic			-																			
216-01-9 Chrysene mg/kg 0.05 6 0.14 2.30 1.23 1.35 0.79 0 0.44 32 Hydrox Derived 2.3 1.3 1.7 0.52 0.14 1.4																						
Dibenz(ah)anthracene mg/ kg 0.05 6 0.05 0.40 0.17 0.12 0.14 1 0.004 0.32 Hydrox Derived 0.4 0.19 0.25 4.005					_																	
206-44-0 Fluoranthene mg/ kg 0.05 6 0.20 5.90 2.87 3.00 2.05 0 19 1600 Hydrock Derived 5.9 2.7 3.3 1.1 0.2 4 86-73-7 Fluorene mg/ kg 0.05 6 0.05 0.28 0.11 0.08 0.09 0 31 4700 Hydrock Derived 0 2.8 0.11 0.05 0.05 0.05 0.05 0.12 193-39-5 Indeno(123cd)pyrene mg/ kg 0.05 6 0.12 1.30 0.71 0.76 0.44 0 0.06 46 Hydrock Derived 1.13 0.79 1 0.3 0.12 0.72 193-39-5 Naphthalene mg/ kg 0.05 6 0.05 0.05 0.05 0.05 0.05 0.05 0.					_																	
86-73-7 Fluorene mg/ kg 0.05 6 0.05 0.28 0.11 0.08 0.09 0 31 4700 Hydrock Derived 0.28 0.11 0.05 0.05 0.05 0.05 0.02 193-39-5 Indeno(123cd)pyrene mg/ kg 0.05 6 0.12 1.30 0.71 0.76 0.44 0 0.066 46 Hydrock Derived 1.3 0.79 1 0.3 0.12 0.72 191-20-3 Naphthalene mg/ kg 0.05 6 0.05 0.05 0.05 0.05 0.05 0.05 0.					-									-								
193-39-5 Indeno(123cd)pyrene mg/kg 0.05 6 0.12 1.30 0.71 0.76 0.44 0 0.06 46 Hydrock Derived 1.3 0.79 1 0.3 0.12 0.72																						
Naphthalene mg/ kg 0.05 6 0.05 0.05 0.05 0.05 0.00 0 76 23 Hydrock Derived 0.05 0.05 0.05 0.05 0.08 1.9 Personantian mg/kg 0.05 6 0.08 3.20 1.25 0.98 1.15 0 36 1500 Hydrock Derived 3.2 1.1 0.85 0.35 0.08 1.9 Personantian mg/kg 0.05 6 0.21 4.80 2.80 3.40 1.75 0 2.2 3800 Hydrock Derived 4.8 3 3.8 1.2 0.21 3.8 Personantian mg/kg 0.8 6 1.45 29.10 15.11 17.40 10.00 0 2.2 3800 Hydrock Derived 4.8 3 3.8 1.2 0.21 3.8 Personantian mg/kg 0.8 6 1.45 29.10 15.11 17.40 10.00 0 3.04 4.2 Hydrock Derived 4.8 3 0.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4					_																	
Penalthrene mg/kg 0.05 6 0.08 3.20 1.25 0.98 1.15 0 36 1500 Hydrock Derived 3.2 1.1 0.85 0.35 0.08 1.9					-																	
Pyrene mg/kg 0.05 6 0.21 4.80 2.80 3.40 1.75 0 2.2 3800 Hydrock Derived 4.8 3 3.8 1.2 0.21 3.8 Pyrini principle in mg/kg 0.8 6 1.45 29.10 15.11 17.40 10.00																						
PAH 16 Total mg/kg 0.8 6 1.45 29.10 15.11 17.40 10.00	85-01-8				_																	
TPH fractions PH407 TPH ali EC05-EC06 mg/kg 0.001 1 0.00	129-00-0		_		_						0	2.2		Hydrock Derived								
P1407 TPH ali EC05-EC06 mg/kg 0.001 1 0.00 0.00 0.00 0.00 0.00 - 0 304 42 Hydrock Derived -0.001 -0.	P1310		mg/kg	0.8	6	1.45	29.10	15.11	17.40	10.00			-			29.1	16	19.4	5.91	1.45	18.8	
TPH 48 SEC06-EC08 mg/kg 0.001 1 0.00 0.	0																					
P1409 TPH ali >EC08-EC10 mg/kg 0.001 1 0.00 0.00 0.00 0.00 - 0 78 27 Hydrock Derived	P1407	TPH ali EC05-EC06	mg/kg	0.001	1		0.00	0.00	0.00	-	0		42	Hydrock Derived								
P1410 TPH ali >EC10-EC12 mg/kg 1 1 1 1.00 1.00 1.00 1.00 - 0 48 130 Hydrock Derived 4.8 4.8 P1411 TPH ali >C12-EC16 mg/kg 2 1 4.80 4.80 4.80 4.80 - 0 24 1100 Hydrock Derived 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8	P1408	TPH ali >EC06-EC08	mg/kg	0.001	1	0.00	0.00	0.00	0.00	-	0	144	100	Hydrock Derived								
P1411 TPH ali >EC12-EC16 mg/kg 2 1 4.80 4.80 4.80 - 0 24 1100 Hydrock Derived 4.8	P1409	TPH ali >EC08-EC10	mg/kg	0.001	1	0.00	0.00	0.00	0.00	-	0	78	27	Hydrock Derived				<0.001				
	P1410	TPH ali >EC10-EC12	mg/kg	1	1	1.00	1.00	1.00	1.00	-	0	48	130	Hydrock Derived				<1				
P1412 TPH ali >EC16-EC21 mg/kg 8 1 15.00 15.00 15.00 - - 15 15	P1411	TPH ali >EC12-EC16	mg/kg	2	1	4.80	4.80	4.80	4.80	-	0	24	1100	Hydrock Derived				4.8				
	P1412	TPH ali >EC16-EC21	mg/kg	8	1	15.00	15.00	15.00	15.00	-			- 1					15				

29/01/2024, 10:06

Assessment of Chemicals of Potential Concern to Human Health

2 of 2

	Risk parameter:	Defaul	t - Humar	Health -	resident	ial withou	ut home-	grown p	roduce (1%	SOM)					TP106 @ 0.5	TP105 @ 0.4	TP104 @ 0.3	TP103 @ 0.4	TP101 @ 0.2	TP102 @ 0.5	@
	Client:	ISG							Data Filters	;				=							
	Site:	North S	Star						Zone	All				<u>=</u>							
	Job no.:	23941							Strata	All		<u> </u>	FEE								
	Lab. report no(s).:	23-277	43					De	epth Min (m bgl)	0.2		- F									
								De	pth Max (m bgl)	0.5				Date	04/04/2023	04/04/2023	04/04/2023	04/04/2023	04/04/2023	04/04/2023	
														Zone							
								Datas	et mean SOM%	1.14				Location	TP106	TP105	TP104	TP103	TP101	TP102	
All values in m	ng/kg unless otherwise stated								Scenario SOM%	5 1				Depth (m bgl)	0.5	0.4	0.3	0.4	0.2	0.5	
CAS No / P Code	Chemical of Potential Concern	Units	LoD	No. Sam ples	Min. Value	Max. Value	Mean	Median	Standard Deviation	No. Samples >= GAC & > LoD	Soll Saturation Limit @1% SOM	GAC	GAC Source	Strata	MG	MG	MG	MG	MG	MG	
P1413	TPH ali >EC21-EC35	mg/kg	8	1	110.00	110.00	110.00	110.00	-			-					110				
P1938	TPH ali >EC16-EC35	mg/kg	10	1	130.00	130.00	130.00	130.00	-	0	8	65000	Hydrock Derived				130				
P1415	TPH ali >EC35-EC44	mg/kg	8.4	1	91.00	91.00	91.00	91.00	-	0	8	65000	Hydrock Derived				91				
P1418	TPH ali >EC5-EC35	mg/kg	10	1	130.00	130.00	130.00	130.00	-			-					130				
P1420	TPH ali >EC5-EC44	mg/kg	10	1	220.00	220.00	220.00	220.00	-			-					220				
P1441	TPH aro EC05-EC07	mg/kg	0.001	1	0.00	0.00	0.00	0.00	-	0	1218	370	Hydrock Derived				<0.001				
P1355	TPH aro >EC07-EC08	mg/kg	0.001	1	0.00	0.00	0.00	0.00	-	0	869	860	Hydrock Derived				<0.001				
P1356	TPH aro >EC08-EC10	mg/kg	0.001	1	0.00	0.00	0.00	0.00	-	0	613	47	Hydrock Derived				<0.001				
P1357	TPH aro >EC10-EC12	mg/kg	1	1	1.00	1.00	1.00	1.00	-	0	364	250	Hydrock Derived				<1				
P1358	TPH aro >EC12-EC16	mg/kg	2	1	2.70	2.70	2.70	2.70	-	0	169	1800	Hydrock Derived				2.7				
P1359	TPH aro >EC16-EC21	mg/kg	10	1	21.00	21.00	21.00	21.00	-	0	54	1900	Hydrock Derived				21				
P1360	TPH aro >EC21-EC35	mg/kg	10	1	140.00	140.00	140.00	140.00	-	0	5	1900	Hydrock Derived				140				
P1362	TPH aro >EC35-EC44	mg/kg	8.4	1	120.00	120.00	120.00	120.00	-	0	5	1900	Hydrock Derived				120				
P1365	TPH aro >EC5-EC35	mg/kg	10	1	160.00	160.00	160.00	160.00	-			-					160				
P1941	TPH aro >EC5-EC44	mg/kg	10	1	280.00	280.00	280.00	280.00	-			-					280				
P1373	Total TPH >EC5-EC44	mg/kg	10	1	500.00	500.00	500.00	500.00	-			-					500				

29/01/2024, 10:06