

Newberry Homes Ltd

# Proposed Development on Land off Garstang Road East, Poulton-le-Fylde FY6 7HL FRA & Drainage Strategy

D3941-R-01

**PSA Design Ltd** 

Consulting Engineers The Old Bank House 6 Berry Lane Longridge Preston PR3 3JA March 2023

Tel. 01772 786066 Fax. 01772 786265

www.psadesign.co.uk mail@psadesign.co.uk

# Proposed Development on Land off Garstang Road East, Poulton-le-Fylde FY6 7HL

## FRA & Drainage Strategy

| Job   | Date       | Issue    | Сору |
|-------|------------|----------|------|
| D3941 | March 2023 | Original |      |

Originator...... D Wallbank ..... Checker...... G Sanderson ..... Approver...... D Wallbank .....

© PSA Design Ltd. All rights reserved.

No part of this report may be copied or reproduced by any means without prior written permission from PSA Design. If you have received this report in error, please destroy all copies in your possession or control and notify PSA Design. This report has been prepared for the exclusive use of the commissioning party and unless otherwise agreed in writing by PSA Design, no other party may use, make use of or rely on contents of the report. No liability is accepted by PSA Design for any use of this report, other than for the purposes for which it was originally prepared and provided.

Opinions and information provided in the report are on the basis of PSA Design using due skill, care and diligence in the preparation of the same and no explicit warranty is provided as to their accuracy. It should be noted that and it is expressly stated that no independent verification of any of the documents or information supplied to PSA Design has been made.

# Contents

- 1.0 Introduction & Planning History
- 2.0 Flood Risk Assessment

# 3.0 Drainage Strategy

- 3.1 NW SuDS Pro-Forma
- 3.2 Existing Drainage Situation
- 3.3 Proposed Surface Water Management Strategy
- 3.4 Surface Water Summary
- 3.5 Proposed Foul Drainage System
- 3.6 Phasing
- 3.7 Maintenance of Proposed SuDS Systems

# 4.0 Conclusion

# Appendices

- A Existing Site and Location
- B Approved Drainage Scheme Extant Consent
- C Plans Proposed Site Layout Plan
- D EA Flood Mapping
- E NW SuDS Pro-Forma
- F United Utilities' Sewer Record
- G Percolation Test Pits
- H Qbar Greenfield Run-off Calculations
- I Proposed Drawings
- J Surface Water System Hydraulic Calculations

# 1. Introduction and Planning History

- 1.1. PSA Design Ltd have been commissioned to provide a Flood Risk Assessment (FRA) and Drainage Strategy to support the planning application for the erection of 21 residential dwellings.
- 1.2. The existing site and its location are illustrated at Appendix A. As can be seen, the site currently comprises predominantly 'greenfield' land. It is noted that the site has an extant planning consent for 21 dwellings (04/01484/FULMAJ) and the Council has confirmed in correspondence dated 10/04/2007 that the development was lawfully commenced. As part of the extant consent there was an approved Drainage Scheme (reproduced at Appendix B) with <u>unrestricted</u> discharge to the public surface water sewer located in Poulton Drive.
- 1.3. The Proposed Site Layout Plan reproduced at **Appendix C**.
- 1.4. This document sets of the issues relating to flood risk and seeks to set out the principles of the drainage strategy for the proposed development. Once these principles have been agreed with both the LPA, Council Drainage Engineer, LLFA and United Utilities via the planning application process, they will clearly be subject to subsequent detailed design and formal applications such as a part 1 s106 application to United Utilities for connection (direct or indirect) to the public sewer network.

# 2. Flood Risk Assessment

- 2.1. Although not specifically requested by the LPA, for completeness, consideration has been given to flood risk associated with the proposals.
- 2.2. The National Planning Policy Framework (NPPF) and Planning Practice Guidance (PPG) set out Government policy aims on development and flood risk for England. The aim is to ensure flood risk is taken into account at all stages of the planning process, to avoid inappropriate developments in areas at risk of flooding, and to direct development away from areas of highest risk.
- 2.3. Flood mapping from the EA website is reproduced at **Appendix D**. This clearly indicates that the site is located within Flood Zone 1 and is at very low risk of flooding. Accordingly, with reference to Table 2 from PPG, the proposed development would fall into the "less vulnerable" category and, in accordance with Table 3, the site proposals within Flood Zone 1 would be

deemed "appropriate".

# There will therefore be no requirement for a Sequential Test or Exception Test to be carried out for this development.

2.4. The EA mapping indicates there is a low risk of surface water flooding in a small, isolated area within the site. This is as expected and results from localised depressions within the existing greenfield areas which may collect shallow areas of water in more extreme storm events. These discrete areas are contained within the site so do not result in any flood risk off-site and in any event would be dealt with as part of the formal drainage system proposed for the site as set out below.

There are therefore no pre-existing risks associated with the site from a flood perspective.

# 3. Drainage Strategy

## 3.1. North West SuDS Pro-Forma

3.1.1. The LPA has requested that the North West SuDS Pro-Forma (NWSPF) be completed to demonstrate compliance of the proposed surface water scheme. The completed form is included at **Appendix E** with the relevant aspects and supporting information set out below with reference to the relevant section of NWSPF as appropriate.

## 3.2. **Existing Drainage Situation** (NWSPF – Section 2)

- 3.2.1. As noted above, the existing site currently comprises a predominantly 'greenfield' site. There are no existing formal drainage or watercourses on the site.
- 3.2.2. Off the site, there is an existing United Utilities' large diameter (1800mm) public SW sewer in Poulton Drive running across the site access road. There is also a 150mm diameter public foul sewer running alongside the SW sewer.
- 3.2.3. The UU sewer record is reproduced at **Appendix F**. The UU records confirm the sewer infrastructure as set out above.

#### 3.3. Proposed Surface Water Management Strategy

- 3.3.1. With respect to dealing with surface water, National Planning Policy Framework (NPPF, 2021), requires that, for the range of annual flow rate probabilities, up to and including the 1% annual probability (1 in 100-year event) the developed rate of run-off from a proposed site should be no greater than the undeveloped rate of run-off for the same event. Even when the site is brownfield, the site should be treated as greenfield.
- 3.3.2. It is also important to account for climate change (CC) when making assessment of surface water run-off. As the development site is located within the Wyre Management Catchment area, reference to the peak rainfall allowance map sets out the allowances below:

| Scenario               | Event | Central Allowance | Upper End Allowance |
|------------------------|-------|-------------------|---------------------|
| 3.3% annual exceedance | 2050s | 25%               | 35%                 |
| rainfall event         | 2070s | 30%               | 45%                 |
| 1% annual exceedance   | 2050s | 25%               | 40%                 |
| rainfall event         | 2070s | 35%               | 50%                 |

Catchment Peak Rainfall Allowances - Use '2050s' for development with a lifetime up 2060 and use the 2070s epoch for development with a lifetime between 2061 and 2125.

- 3.3.3. Therefore CC should be taken into account by increasing the proposed rainfall intensity by 45% when assessing against the 3.3% (1 in 30) storm event and 50% when assessing against the 1% (1 in 100) storm event.
- 3.3.4. Given the nature of the proposed residential development, an additional uplift of 10% has been applied to allow for Urban Creep (UC).
- 3.3.5. It is important to note that since the approved drainage scheme would not have included for either of the above CC or UC allowances, this approach is considered to be very robust.

#### Hierarchical Approach - Soakaways (NWSPF Section 7)

3.3.6. Taking cognisance of the above (and in accordance with the hierarchical approach), the preferred surface water solution is to discharge to ground via soakaways. Even when there

are alternative sewer connections or watercourses available, infiltration must still be utilised unless it is proved unfeasible.

3.3.7. To this end percolation test pits were dug on site on 14<sup>th</sup> February 2023 as illustrated at Appendix G. As indicated, in each of the 6 pits dug across the site, groundwater was encountered at depths of between 0.7m and 1.1m below ground level.

# 3.3.8. It can therefore be concluded that soakaways are not a feasible solution for dealing with surface water at this site.

#### Hierarchical Approach - Watercourse (NWSPF Section 7)

3.3.9. The second solution in the hierarchical approach would be discharge to a watercourse, however this would not be feasible at this location, as there are no watercourses within the ownership of the Applicant or immediately adjacent to the site. However, it should be noted that the public SW sewer into which it is proposed to discharge (see below) itself discharges to a culverted watercourse some 100m to the south west of the site.

#### Hierarchical Approach – Surface Water Sewer

- 3.3.10. The next hierarchical solution would therefore be discharge to a SW sewer. As noted above, there is a 1800mm diameter public SW sewer running in a westerly direction in Poulton Drive across the site access road. It is therefore proposed to discharge to this existing SW sewer but restricted to Greenfield run-off rates for all storm events up to (and including) a 1 in 100 year event plus 50% uplift for CC, and 10% for UC (NWSPF Section 5).
- 3.3.11. Given the nature of the ground conditions set out above, there is no scope to incorporate volume control/long term storage, consequently, the Qbar (Approach 2) has been adopted in accordance with Technical Standards S6 (NWSPF Section 2).
- 3.3.12. The Qbar (i.e. 1 in 2 year greenfield run-off rate) has been calculated for the site (See Appendix H) and is 6.71/s. Clearly, the restriction down to 6.71/s for all storm events would provide significant betterment for the extreme flood events for example, the existing greenfield run-off for the site in a 1 in 100 year storm event is currently 14.05 l/s (NWSPF Section 3 & 4) and more so when compared to the unrestricted discharge associated with the previously approved scheme which could have resulted in unrestricted discharges in excess of 200l/s for a 1 in 100 year storm event.

- 3.3.13. To restrict surface water run-off from the proposed development it would be necessary to provide some form of attenuation storage on site. There are numerous ways of providing this, however, given that the Developer is seeking to offer up the drainage system for adoption, oversized pipes are proposed in this instance. The design of the system should ensure that run-off is limited to 6.7I/s and that there is no flooding of the site up to and including the 1 in 100yr storm + 50% CC + 10% UC (NWSPF Section 5).
- 3.3.14. An outline design based on the above criteria has been modelled and illustrated on Drawing No. D3941-OD-01 reproduced at **Appendix I**. The supporting calculations are included as **Appendix J**. The calculations demonstrate that the above storm criteria base on a 6.7l/s restriction is adequately contained and maintained within the system (NWSPF Section 5).

#### Water Quality (NWSPF Section 6)

- 3.3.15. The SuDS design should seek to provide an appropriate management train of SuDS components to effectively mitigate the pollution risks associated with the different site uses.
- 3.3.16. In accordance with Table 4.3 of The SuDS Manual CIRIA C753, the pollution hazard level is considered to be 'Low' to 'Very Low' for the proposed development. Therefore, the requirements for discharge to surface waters state that the 'Simple index approach' should be used.
- 3.3.17. The first step of the simple index approach is to identify the pollution hazard indices for the proposed land use. Table 26.2 of The SuDS Manual states the following

| Land use                                                                                                                                                             | Pollution<br>hazard level | Total<br>suspended<br>solids (TSS) | Metals | Hydro-<br>carbons |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------|--------|-------------------|
| Residential Roofs                                                                                                                                                    | Very Low                  | 0.2                                | 0.2    | 0.05              |
| Individual property driveways,<br>residential car parks, low traffic<br>roads and non-residential car<br>parking with infrequent change<br>(i.e. <300 movements/day) | Low                       | 0.5                                | 0.4    | 0.4               |
| Total                                                                                                                                                                |                           | 0.7                                | 0.6    | 0.45              |

#### Total Pollution Hazard Indices

3.3.18. Suitable SuDS should then be selected with a total pollution mitigation index that equals or exceeds the pollution hazard index. Given that the highest pollution hazard level (Low) is

associated with property driveways, it is proposed that these be formed in permeable paving in order to provide a level of primary treatment.

3.3.19. Table 26.3 of The SuDS Manual sets out the indices for proposed SuDS features. Those features included on the proposed design presented are listed in the table below. Where treatment components are used together in series a factor of 0.5 is used to account for the reduced performance of the secondary or tertiary components.

| Type of SuDS Component | Total suspended solids (TSS) | Metals | Hydro-carbons |
|------------------------|------------------------------|--------|---------------|
| Permeable Pavement     | 0.7                          | 0.6    | 0.7           |
| Total                  | 0.7                          | 0.6    | 0.7           |

Total Pollution Hazard Indices – Proposed SuDS Features

3.3.20. It can be seen that the total mitigation index for the proposed SuDS features is greater or equal to the required pollution hazard index for the proposed land use. Therefore, the proposed system meets the water quality requirements.

# 3.3.21. It has therefore been demonstrated that a SuDS solution that meets with the requirements of current legislation is deliverable within the constraints of the site.

# 3.4. Surface Water Summary

- 3.4.1. Clearly the above approach represents a robust treatment of surface water attributable to the proposed development which would be in accordance with the 'hierarchical' approach and the NWSPF. Moreover, the proposals represent significant betterment to the unrestricted discharge previously approved for the site.
- 3.4.2. It is also clear that there will be ample capacity within the existing UU system downstream, as this was designed and constructed to accommodate unrestricted discharge from the previously approved scheme.

## 3.5. Proposed Foul Drainage System

- 3.5.1. As noted above, there is a 150mm diameter foul sewer running along Poulton Drive across the site frontage and it is therefore proposed to discharge foul drainage to this sewer. This is indicated on Drawing D3941-OD-01 reproduced at **Appendix I**.
- 3.5.2. Subject to United Utilities formal approval and formal s106 process, it is clear that there is a means of dealing with foul sewage from the proposed development.

## 3.6. Phasing

3.6.1. The drainage system will be constructed early in the construction phase and would be operational prior to occupation of any residential unit.

## 3.7. Maintenance of Proposed SuDS Systems (NWSPF Section 8)

- 3.7.1. It is important during any development process to consider the long-term maintenance of the proposed drainage system. The way this is processed will largely depend on how the system is taken forward at detailed design.
- 3.7.2. The SuDS will be reviewed and approved by the Local Planning Authority (LPA) in consultation with the Lead Local Flood Authority (LLFA) and United Utilities, to ensure it meets the relevant standards. It is understood that the system will be offered up for adoption by United Utilities. Failing this, the SuDS would remain private and be maintained and managed by the land owner in accordance with a SuDS management plan. This plan could also be secured through planning condition or legal agreement if necessary.

# 4. Conclusion

- 4.1. It has been demonstrated, that the proposed development would be deemed appropriate development in terms of flood risk and a SuDS solution that meets with the requirements of current legislation is deliverable within the constraints of the site and will ensure that flood risk both on and off site will not be exacerbated. Furthermore, the current proposals represent significant betterment when compared to the unrestricted discharge previously approved for the site.
- 4.2. The proposed strategy would therefore be in accordance with relevant Local Plan policy, NPPF and the North West SuDS Pro-Forma. Accordingly, there should be no flood risk or drainage reasons why the proposals should not be granted planning consent.

Appendix A

Existing Site and Location







© Crown Copyright. All rights reserved. Licence number AL100034996.

| <b>PSA</b> |   |   |   |   |   |  |
|------------|---|---|---|---|---|--|
| D          | Е | S | T | G | Ν |  |

| PSA Design              | Client |  |
|-------------------------|--------|--|
| 6 Berry Lane, Longridge | Job    |  |
| Tel. 01772 786066       | Title  |  |

| t | Newbury Homes Ltd                                     | Drawn    | HP  | Date  | ate 07/03/2023 |            | Drawing No. |  |  |   |   |   |
|---|-------------------------------------------------------|----------|-----|-------|----------------|------------|-------------|--|--|---|---|---|
|   | Garstang Road, Poulton                                | Checked  | DLW |       |                | _ Figure 1 |             |  |  |   |   |   |
|   | Site Location Plan (indicative site boundaries shown) | Approved | DLW | Scale | NTS            | Rev        |             |  |  | Τ | Τ | - |





| PSA Design              |   |
|-------------------------|---|
| The Old Bank House      | L |
| 6 Berry Lane, Longridge |   |
| Preston, PR3 3JA        | ┝ |
| Tel. 01772 786066       |   |
|                         |   |

----

| Client | Newbury Homes Ltd      | Drawn    | HP  | Date  | 07/03/2023 | Drawing No. |  |  |  |  |  |
|--------|------------------------|----------|-----|-------|------------|-------------|--|--|--|--|--|
| Job    | Garstang Road, Poulton | Checked  | DLW |       |            | Figure 2    |  |  |  |  |  |
| Title  | Site Area Plan         | Approved | DLW | Scale | NTS        | Rev         |  |  |  |  |  |

Ν

# Appendix B

Approved Drainage Scheme – Extant Consent



|                                                                                                                                                            |                                                                                                                                                                                           |                                                                                           |                                                                                                                                     | & surround 51                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| uare Access Gully<br>nnection Detail<br>13-P<br>Waste or RWP max od<br>58 mm dia or 65 square<br>Access Gully<br>4A12A<br>Polypropylene grid<br>(provided) | Paved Area Gully<br>Connection Detail<br>GC6-P<br>NB-<br>A Raising Piece code 4A17E<br>inserted between the Hopper &<br>the base can be used to increase<br>the gully depth to 600 mm max | Rodding Point<br>Installation Detail<br>AP1-P<br>Square Rodding<br>Point - code<br>4A10SA | Mini Access Chamber<br>Installation Detail<br>AP2-P<br>Minl Access Chamber<br>code SDAC1/1<br>max 600 mm deep<br>Topsoll<br>Topsoll | Polypropylene Inspection Chambe<br>Installation Detail<br>AP3-P<br>Round Ductile Iron cover & frame<br>code SPK8<br>Square otright cover & frame<br>code SPCR8<br>Topsoli |
| movable                                                                                                                                                    | G.L.<br>Paved Area<br>Gully<br>code 4A22A<br>Removable<br>Dip Tube                                                                                                                        | Concrete<br>bed<br>Short length<br>of pipe cut<br>to suit                                 | Sited In<br>landscaped<br>areas                                                                                                     | Sited In<br>landscoped<br>areas                                                                                                                                           |

Appendix C

Proposed Site Layout Plan



All project and associated works shall comply with the relevant statutory requirements including but not limited to the applicable planning and building control legislation whether or not specifically shown on this plan.

#### OVERALL SITE AREA

approx. 1.1067Ha (2.73a)

#### APPROVED EXTANT PERMISSION ref 04/01484 21 Dwellings = 2 affordable + 19 open market

| housetype<br>ref                    | description<br>type                         | number of<br>each housetype                | overall no o<br>open sale          | of bedrooms<br>affordable             |  |  |  |
|-------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------|---------------------------------------|--|--|--|
| open market housing                 |                                             |                                            |                                    |                                       |  |  |  |
| WD9A                                | 5 bed detached                              | 3                                          | 15                                 |                                       |  |  |  |
| WD8A                                | 5 bed detached                              | 3                                          | 15                                 |                                       |  |  |  |
| WD7A                                | 4 bed detached                              | 2                                          | 08                                 |                                       |  |  |  |
| WD6A                                | 3 bed detached                              | 5                                          | 15                                 |                                       |  |  |  |
| WD4A / 5A                           | 2 bed flat                                  | 6                                          | 12                                 |                                       |  |  |  |
|                                     | ket 19 units                                | 65 bedrooms                                |                                    |                                       |  |  |  |
| affordable housing                  |                                             |                                            |                                    |                                       |  |  |  |
| anoraabie i                         |                                             |                                            |                                    |                                       |  |  |  |
| WD4A                                | 1 bed flat                                  | 2                                          |                                    | 2                                     |  |  |  |
| WD4A                                | 1 bed flat<br>total affordable              | 2<br>e 2 units                             | – –<br>2 bedre                     | 2<br>poms                             |  |  |  |
| WD4A<br>overall total               | 1 bed flat<br>total affordable              | 2<br>e 2 units<br>21 units                 | – –<br>2 bedro<br>67 overa         | 2<br>coms<br>all bedrooms             |  |  |  |
| WD4A                                | 1 bed flat<br>total affordable              | 2<br>e 2 units<br>21 units                 | – –<br>2 bedro<br>67 overa         | 2<br>coms<br>all bedrooms             |  |  |  |
| WD4A<br>overall total<br>approved P | 1 bed flat<br>total affordable<br>OS 21 uni | 2<br>e 2 units<br>21 units<br>ts (67 beds) | <br>2 bedre<br>67 overa<br>0.084Ha | 2<br>coms<br>all bedrooms<br>a (0.2a) |  |  |  |

#### PROPOSED AMENDED LAYOUT HOUSETYPES 21 Dwellings = 6 affordable + 15 open market

| housetype                                       | description    | number of      | overall no c       | of bedrooms |  |  |  |
|-------------------------------------------------|----------------|----------------|--------------------|-------------|--|--|--|
| ici i                                           | type           | each nousetype | opensale           | alloluable  |  |  |  |
| open market housing                             |                |                |                    |             |  |  |  |
| WD                                              | 4 bed detached | 3              | 20                 |             |  |  |  |
| BL                                              | 4 bed detached | 4              | 16                 |             |  |  |  |
| F                                               | 3 bed detached | 3              | 09                 |             |  |  |  |
| W                                               | 3 bed detached | 3              | 09                 |             |  |  |  |
|                                                 | total open mai | rket 15 units  | 54 bedro           | ooms        |  |  |  |
| affordable h                                    | nousing        |                |                    |             |  |  |  |
| А                                               | 3 bed semi det | 2              |                    | 6           |  |  |  |
| В                                               | 2 bed mews     | 4              |                    | 8           |  |  |  |
|                                                 | 14 bedro       | ooms           |                    |             |  |  |  |
| overall total                                   |                | 21 units       | 68 overall bedroor |             |  |  |  |
|                                                 |                |                |                    |             |  |  |  |
| proposed POS 21 units (68 beds) 0.147Ha (0.36a) |                |                |                    |             |  |  |  |
|                                                 |                |                |                    |             |  |  |  |

increase in POS area of 75% above the current extant approval

# **JFYLDE** DESIGN

hello@fyldedesign.com telephone\_0773 954 2345 C Fylde Design Associates Ltd

| g       | PROP    | OSED AM   | IENDED SITE L | AYOUT    |
|---------|---------|-----------|---------------|----------|
| ject    | Resider | ntial Dev | elopment ad   | ljoining |
|         | Gar     | stang Ro  | ad, Poulton l | e Fylde  |
| nt      | TH      | E BAX     | KTER GR       | OUP      |
| e       | sheet   | scale     | drawing no    | revision |
| 07.2022 | A3L     | 1;500     | FD2102_10     | A        |

Appendix D

EA Flood Mapping



# Flood map for planning

Your reference <Unspecified>

Location (easting/northing) 335786/439361

Created **7 Mar 2023 11:46** 

Your selected location is in flood zone 1, an area with a low probability of flooding.

# You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

## Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms



© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

# Newberry Homes Ltd Proposed Development on Garstang Road East, Poulton-le-Fylde FY6 7HL FRA & Drainage Strategy





● High ● Medium ● Low ○ Very Low ◆ Location you selected

Appendix E

NW SuDS Pro-Forma

# **SECTION 1**. APPLICATION & DEVELOPMENT DETAILS

| Diagning Application Reference (if quailable)                                                                                                                                                                                                                                                            | TE                               | BC                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                          |                                  |                                                             |
| <b>State type of planning application</b> <i>i.e. Pre-application, Outline, Full, Hybrid, Reserved Matters</i> *<br>*Information only required if drainage is to be considered as part of reserved matters application                                                                                   | Full App                         | blication                                                   |
| Developer(s) Name:                                                                                                                                                                                                                                                                                       | Newberry                         | Homes Ltd                                                   |
| Consultant(s) Name:                                                                                                                                                                                                                                                                                      | PSA De                           | sign Ltd                                                    |
| Development Address (including postcode)                                                                                                                                                                                                                                                                 | Land off Garsta<br>Poulton-le-Fy | ang Road East,<br>/Ide FY6 7HL                              |
| Development Grid Reference (Eastings/Northings)                                                                                                                                                                                                                                                          | 335797                           | 439346                                                      |
| Total Development Site Area (Ha)                                                                                                                                                                                                                                                                         | 1.01                             | 1Ha                                                         |
| Drained Area (Ha)* of Development                                                                                                                                                                                                                                                                        | 0.5                              | Ha                                                          |
| <b>Please indicate the flood zone that your development is in. Tick all that apply.</b><br>Based on the Environment Agency Flood Map for Planning and the relevant Local Authority Strategic<br>Flood Risk Assessment (to identify Flood Zones 3a/3b).                                                   | Fl<br>Flo<br>Flo<br>Flo          | ood Zone 1 ✓<br>od Zone 2 □<br>od Zone 3a □<br>od Zone 3b □ |
| What is the surface water risk of the site? Tick all that apply.<br>Based on the Environment Agency Surface Water Flood Map.                                                                                                                                                                             |                                  | High □<br>Medium □<br>Low ✓                                 |
| Have you submitted a Site Specific Flood Risk Assessment (FRA)?<br>See separate guidance notes for clarification on when a FRA is required                                                                                                                                                               | Yes ✓                            | No 🗆                                                        |
| Have you submitted a Sustainable Drainage Strategy?                                                                                                                                                                                                                                                      | Yes ✓                            | No 🗆                                                        |
| Does your drainage proposal provide multi-functional benefits via SuDS?                                                                                                                                                                                                                                  | Yes ✓                            | No 🗆                                                        |
| <b>Expected Lifetime of Development (years)</b><br>Refer to Planning Practice Guidance "Flood Risk and Coastal Change" Paragraph 026                                                                                                                                                                     | 10                               | 00                                                          |
| Development Type:                                                                                                                                                                                                                                                                                        |                                  | State<br>Proposed<br>Number of<br>Units                     |
| Greenfield Site <ul> <li>Site is wholly undeveloped, and a new drainage system will be installed</li> </ul>                                                                                                                                                                                              | ~                                | 21                                                          |
| Previously Developed/ Brownfield Site                                                                                                                                                                                                                                                                    |                                  |                                                             |
| <ul> <li>Site is already developed, and the <u>entirety</u> of the existing surface water drainage system will<br/>be used to serve the new development (evidence must be provided to prove existing surface<br/>water drainage system is reusable); <u>OR</u></li> </ul>                                |                                  |                                                             |
| <ul> <li>Where records of the previously developed system are not available so that the hydraulic<br/>characteristics of the system cannot be determined or where the drainage system is not in<br/>reasonable working order i.e. broken, blocked or no longer operational for other reasons.</li> </ul> |                                  |                                                             |
| Please list any relevant document and or drawing numbers (including revision reference) to support your answers to Section 1.                                                                                                                                                                            | See FRA/ Draina<br>Appendices    | ge Strategy and                                             |

# **SECTION 2**: IMPERMEABLE AREA AND EXISTING DRAINAGE

|                                                                                                                     | Existing<br>(E) | Proposed<br>(P) | Change<br>(P – E) |
|---------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------|
| State Impermeable Area (Ha)                                                                                         | 0               | 0.5             | 0.5               |
| <b>Evidence Required:</b><br>Plans showing development layout of site with existing and proposed impermeable areas. |                 |                 | ~                 |

| Are there existing sewers, watercourses, water bodies, highway drains, soakaways or filter drains on the site? | Yes ✔No □ Don't Know □ |
|----------------------------------------------------------------------------------------------------------------|------------------------|
| Evidence Required:                                                                                             |                        |
| Plan(s) showing existing layout to include all:                                                                | $\checkmark$           |
| Watercourses, open and culverted                                                                               |                        |
| Water bodies – ponds, swales etc.                                                                              |                        |
| Sewers, including manholes                                                                                     |                        |
| Highway drains, include manholes, gullies etc.                                                                 |                        |
| Infiltration features - soakaways, filter drains etc.                                                          |                        |

#### **Drainage Design**

<u>Outline planning applications</u> should be able to demonstrate that a suitable drainage system is achievable. <u>All other type of planning application</u> should provide full details or reference to previous planning application where drainage details have been submitted or approved.

 $\checkmark$ 

Select which design approach you are taking to manage water quantity (refer to Section 3.3 SuDS Manual)

#### Approach 1 – Volume control / Long Term Storage (Technical Standards S2/3, S4/5)

| • | The attenuated runoff volume for the 1 in 100 year 6 hour event (plus climate change allowance) is limited |
|---|------------------------------------------------------------------------------------------------------------|
|   | to the greenfield runoff volume for the 1 in 100 year 6 hour event, with any additional runoff volume      |
|   | utilising long term storage and either infiltrated or released at 2 l/s/ha                                 |

- The discharge rate for the critical duration 1 in 1 year event is restricted to the 1 in 1 year greenfield runoff rate
- The discharge rate for the critical duration 1 in 100 year event (plus climate change allowance) is restricted to the 1 in 100 year greenfield runoff rate

#### Approach 2 – Qbar (Technical Standards S6)

• Justification has been provided that the provision of volume control/long term storage is not appropriate and an attenuation only approach is proposed. All events up to the critical duration 1 in 100 year event (plus climate change allowance) are limited to Qbar (1 in 2 year greenfield rate) or 2 l/s/ha, whichever is greater.

#### **Evidence Required:**

Plans showing:

- Existing flow routes and flood risks
- Modified flow routes
- Contributing and impermeable areas
- Current (if any) and proposed 'source control' and 'management train' locations of sustainable drainage components (C753 Chapter 7)
- Details of drainage ownership
- Details of exceedance routes (Technical Standards S9)
- Topographic survey
- Locations and number of existing and proposed discharge points

Note consideration should be given to manage surface water from both impermeable and permeable surfaces (including gardens and verges) likely to enter the drainage system.

| Please list any relevant document and or drawing numbers (including revision | See FRA/ Drainage Strategy and |
|------------------------------------------------------------------------------|--------------------------------|
| reference) to support your answers to Section 2.                             | Appendices                     |

# **SECTION 3**: PEAK RUNOFF <u>RATES</u> - TECHNICAL STANDARDS S2, S3 AND S6 (UNLESS S1 APPLIES)

| Rainfall Event                           | Existing Rate<br>(I/s) | Greenfield Rate<br>(l/s) | Proposed Rate<br>(I/s)<br>Previously developed sites - In line<br>with S3 should be equivalent to<br>Greenfield runoff rates – discuss<br>with LLFA if this is not achievable<br>pre-application |
|------------------------------------------|------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Qbar</b><br>(Approach 2)              |                        | 6.7                      | 6.7                                                                                                                                                                                              |
| <b>1 in 1 Year Event</b><br>(Approach 1) |                        | 5.9                      | 4.6                                                                                                                                                                                              |
| 1 in 30 Year Event                       |                        | 11.5                     | 4.81                                                                                                                                                                                             |
| 1 in 100 Year Event*<br>(Approach 1)     |                        | 14.1                     | 6.7                                                                                                                                                                                              |

\* Total discharge at the 1 in 100 year rate should be restricted to the greenfield runoff volume for the 1 in 100 Year 6 hour event with additional volumes (long-term storage volume) released at a rate no greater than 2 l/s/ha where infiltration is not possible. The climate change allowance should only be applied to the proposed rate and not the existing or greenfield rate.

| <b>Evidence Required:</b><br>Methodology used to calculate peak runoff rate clearly stated and justified. | $\checkmark$ |
|-----------------------------------------------------------------------------------------------------------|--------------|
| Impermeable areas plan, supported by topographical survey confirming positive drainage.                   | $\checkmark$ |
| Hydraulic calculations and details of software used.                                                      |              |

| State the hydraulic method used in your calculations<br>(Refer to Table 24.1 of The SuDS Manual) | IH124 |
|--------------------------------------------------------------------------------------------------|-------|
|--------------------------------------------------------------------------------------------------|-------|

| Please list any relevant document and or drawing numbers (including revision | See FRA/ Drainage Strategy and |  |
|------------------------------------------------------------------------------|--------------------------------|--|
| reference) to support your answers to Section 3.                             | Appendices                     |  |

# **SECTION 4**: DISCHARGE <u>VOLUME</u> – TECHNICAL STANDARDS S4, S5 AND S6 (UNLESS S1 APPLIES)

| Rainfall Event                                                                                                                                                                                                                                                                                                                           | Existing Volume<br>(m <sup>3</sup> ) | Greenfield Volume<br>(m <sup>3</sup> ) | Proposed Volume<br>(m³) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|-------------------------|
| 1 in 100 Year 6 Hour Event<br>(Approach 1)N/AN/A                                                                                                                                                                                                                                                                                         |                                      | N/A                                    |                         |
| <b>Does the below statement apply to your development proposal?</b><br>Long term storage is not achievable on this site and, in accordance with S6 of the Non Statutory Technical Standards for SuDS, the surface water discharge rates for events up to and including the 1 in 100 year critical event are limited to Qbar (Approach 2) |                                      |                                        | Yes ✔ No 🗆              |
| <b>Evidence Required:</b><br>Approach to managing the quantity of surface water leaving the site clearly stated and justified                                                                                                                                                                                                            |                                      |                                        |                         |
| Methodology used to calculate discharge volume clearly stated and justified.<br>Hydraulic calculations and details of software used.                                                                                                                                                                                                     |                                      |                                        |                         |

| Please list any relevant document and or drawing numbers (including revision reference) |  |
|-----------------------------------------------------------------------------------------|--|
| to support your answers to Section 4.                                                   |  |

# **SECTION 5**: STORAGE – TECHNICAL STANDARDS S 7 AND S 8

| State climate change allowance used (%)                                                                              | 50 |
|----------------------------------------------------------------------------------------------------------------------|----|
| State housing density (houses per ha)                                                                                | 21 |
| State urban creep allowance used (%)                                                                                 | 10 |
| <b>Evidence Required:</b><br>State / used in appropriate industry standard surface water management design software. | ✓  |

| State storage volume required (m <sup>3</sup> ) (excluding non-void spaces)                                                                                                                                                                                      | 260          |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| Must include an allowance for climate change and urban creep                                                                                                                                                                                                     |              |  |
| Have you incorporated interception into your design?<br>(Refer to Chapter 24 of The SuDS Manual C753)<br>Where possible, infiltration or other techniques are to be used to try and achieve zero discharge to<br>receiving waters for rainfall depths up to 5mm. | Yes 🗌 No 🗸   |  |
| <b>Evidence Required:</b><br>Drainage plans showing location of attenuation and all flow control devices and supporting calculations.                                                                                                                            | ✓ See Report |  |

| Summarise how storage will be provided for 1 in 30 year event on site.                                                                                                                                                                                                                                                                                                                                                                               | Within oversized pipe system |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Storage must be designed to ensure that at no flooding occurs onsite in a 1 in 30 year event except in designed areas <u>and</u> no flooding occurs offsite in a 1 in 100 year (plus climate change allowance) event.                                                                                                                                                                                                                                |                              |
| Summarise how storage will be provided for 1 in 100 year (plus climate change) event on site.                                                                                                                                                                                                                                                                                                                                                        | Within oversized pipe system |
| Where storage above the 1 in 30 year rainfall event is provided in designated areas designed to accommodate excess surface water volumes, plans showing storage locations and surface water depths and supported by calculations used in appropriate industry standard surface water management design software. It is important to run a range of duration events to ensure the worst case condition is found for each drainage element on the site |                              |
| <b>Evidence Required:</b><br>Plans showing size and location of storage and supporting calculations. Where there is controlled flooding, extents and depths must be indicated.                                                                                                                                                                                                                                                                       | ✓ See Report                 |

| Please list any relevant document and or drawing numbers (including revision | See FRA/ Drainage Strategy and |  |
|------------------------------------------------------------------------------|--------------------------------|--|
| reference) to support your answers to Section 5.                             | Appendices                     |  |

# SECTION 6: WATER QUALITY PROTECTION

Contaminated surface water run-off can have negative impacts on the quality of receiving water bodies. The potential level of contamination will influence final the design of an appropriate treatment train as part of your sustainable drainage system.

| Is the proposal site known to be or potentially contaminated? | Yes 🗆 | No√ |
|---------------------------------------------------------------|-------|-----|
| •••                                                           |       |     |

• If the site is contaminated, it should be demonstrated that the sustainable drainage system will not increase the risk of pollution to controlled waters though the mobilisation of contaminants and/or creation of new pollution pathways.

Confirm the Pollution Hazard Level of the proposed development - Tick ALL that apply

*Refer to Pollution Hazard Indices for different Land Use Classifications in Table 26.2 of The SuDS Manual C753 for further guidance.* 

| Pollution Hazard Level<br>Tick <u>ALL</u> that apply |              | Surface water run-off from the proposed development will drain from:                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| VERY LOW                                             | $\checkmark$ | Residential roofs                                                                                                                                                                                                                                                                                                                                                   |  |  |
| LOW                                                  | ~            | <ul> <li>Other roofs (typically commercial/industrial roofs)</li> <li>Individual property driveways, residential car parks, low traffic roads (e.g. cul de sacs, home-zones and general access roads)</li> <li>Non-residential car parking with infrequent change (e.g. schools, offices) i.e. &lt; 300 traffic movements/day</li> </ul>                            |  |  |
| MEDIUM                                               |              | <ul> <li>Commercial yard and delivery areas</li> <li>Non-residential car parking with frequent change (e.g. hospitals, retail)</li> <li>All roads except low traffic roads and trunk roads/motorways<sup>2</sup></li> </ul>                                                                                                                                         |  |  |
| нідн 🗆                                               |              | <ul> <li>Sites with heavy pollution (e.g. haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites)</li> <li>Sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured</li> <li>Industrial sites</li> <li>Trunk roads and motorways<sup>1</sup></li> </ul> |  |  |

If the development's Pollution Hazard Level is 'Very Low' or 'Low', has the sustainable drainage design been risk assessed and appropriate mitigation measures included? Yes ✓ No□

• If the proposed development has a very low or low polluting potential, you should design your sustainable drainage system to include an appropriate treatment train in accordance with The SuDS Manual (C753).

| lf t<br>su | he development's Pollution Hazard Level is 'Medium' or 'High', is the application<br>oported by a detailed water quality risk assessment? | Yes 🗆 | No□ |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--|
| •          | • If the proposed development has a high polluting potential, a detailed risk assessment will be required to identify an                  |       |     |  |

• If the proposed development has a high polluting potential, a detailed risk assessment <u>will</u> be required to identify an appropriate SuDS treatment train and ensure compliance with Paragraph 170 of the National Planning Policy Framework.

• If the proposed development has a medium polluting potential, a detailed risk assessment <u>may</u> be required depending on the nature, scale and location of the development.

| Has pre-application advice on water quality been obtained from the Environment Agency? |  |  | No√ |
|----------------------------------------------------------------------------------------|--|--|-----|
| If YES, provide details:                                                               |  |  |     |

<sup>&</sup>lt;sup>2</sup>Motorways and trunk roads should follow the guidance and risk assessment process set out in Highways Agency (2009).

| Please list any relevant document and or drawing numbers (including revision | See FRA/ Drainage Strategy and |  |
|------------------------------------------------------------------------------|--------------------------------|--|
| reference) to support your answers to Section 6.                             | Appendices                     |  |

# **SECTION 7** : DETAILS OF YOUR SUSTAINABLE DRAINAGE SYSTEM

# a) Function of your Sustainable Drainage System

| Do your proposals store rainwater for later use (as a resource)?                            | Yes 🗌 🛛 No 🗸 |
|---------------------------------------------------------------------------------------------|--------------|
| Evidence Required:                                                                          |              |
| Please provide a brief sentence in the adjacent white box to describe how this function has |              |
| been achieved.                                                                              |              |

| Do your proposals promote source control to manage rainfall close to where it falls?<br>(e.g. promoting natural losses through soakage, infiltration and evapotranspiration) | Yes 🗆 | No ✓ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Evidence Required:                                                                                                                                                           |       |      |
| Please provide a brief sentence in the adjacent white box to describe how this function has                                                                                  |       |      |
| been achieved.                                                                                                                                                               |       |      |

Please list any relevant document and or drawing numbers (including revision reference) to support your answers to Section 7a.

# b) Hierarchy of Drainage Options – Planning Practice Guidance

The proposed method of discharge are set out within order of priority. Generally, the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable.

| Proposed method of surface water discharge            |                                                                                                                                                                                                                                                            | Is this proposed?     |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hierarchy Level 1: Into the ground (via infiltration) |                                                                                                                                                                                                                                                            | Yes □ No ✓            |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                       | If YES - Evidence Required                                                                                                                                                                                                                                 |                       | If NO – Evidence Required<br>Tick <u>ALL</u> that apply                                                                                                                                                                                                                                                                                                                                                                               |
|                                                       | <ul> <li>A. Completed Infiltration Checklist from<br/>The SuDS Manual (C753) Appendix B<br/>An editable version of this form is available<br/>on <u>SusDrain website.</u></li> <li>B. British Geological Survey (BGS)<br/>Infiltration SuDS Map</li> </ul> | <ul> <li>✓</li> </ul> | <ul> <li>A Site investigation to demonstrate that the ground is not free draining.</li> <li>Test results to be provided in accordance with:         <ul> <li>The methodology within BRE 365 (2016), <u>OR</u></li> <li>Falling head permeability tests BS EN ISO 22282-2: 2012</li> </ul> </li> <li>B. NOTE: where an applicant is unable to access a site to undertake testing, e.g. where unable to access a site for an</li> </ul> |
|                                                       |                                                                                                                                                                                                                                                            |                       | outline application, they can submit a <u>SuDS GeoReport</u> or<br>similar.                                                                                                                                                                                                                                                                                                                                                           |
|                                                       | C. Infiltration testing to BRE 365 (2016)<br>or falling head permeability tests to BS<br>EN ISO 2228-2: 2012 (optional for<br>outline)                                                                                                                     |                       | C. Evidence to confirm that infiltration to ground would result in a risk of deterioration to ground water quality.                                                                                                                                                                                                                                                                                                                   |
|                                                       | 'Plan B' sustainable drainage plan and<br>statement of approach with an alternative<br>discharge method, in case infiltration<br>proposals are proven not feasible upon                                                                                    |                       | D. Geotechnical advice from a competent person* which<br>determines that infiltration of water to ground would pose an<br>unacceptable risk of geohazards to the site and/or local area.                                                                                                                                                                                                                                              |

| further site specific ground investigation |
|--------------------------------------------|
| e.g. to consider seasonal variations to    |
| groundwater                                |

| Proposed method of surface water discharge               |                                          | Is this proposed?                                                                                                          |                                                      |                                                                                                                                                     |                             |  |  |
|----------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
| Hierarchy Level 2: To a surface water body (select type) |                                          | Yes 🗆 No 🗸                                                                                                                 | N/A 🗆                                                |                                                                                                                                                     |                             |  |  |
| NOTE: Co                                                 | nsent from LLFA or Permit from Environme | nt Ager                                                                                                                    | ісу                                                  | Main river                                                                                                                                          | Canal                       |  |  |
| may be re                                                | equired – refer to guidance              |                                                                                                                            |                                                      | Ordinary watercourse                                                                                                                                | Other water body            |  |  |
| If YES - Evidence Required                               |                                          |                                                                                                                            | If NO – Evidence Requi<br>Tick <u>ALL</u> that apply | red                                                                                                                                                 |                             |  |  |
|                                                          | Surface water body / watercourse survey  |                                                                                                                            | Plan sho                                             | owing nearby watercourses and water                                                                                                                 | erbodies                    |  |  |
|                                                          | and report                               | AND                                                                                                                        |                                                      |                                                                                                                                                     |                             |  |  |
|                                                          |                                          | ~                                                                                                                          | Stateme                                              | ent providing justification in your Sus                                                                                                             | stainable Drainage Strategy |  |  |
|                                                          |                                          |                                                                                                                            | Note: W<br>applicar                                  | <b>Note:</b> Where discharge of any element in the hierarchy is discounted applicant should provide justification. If the reasoning for discounting |                             |  |  |
|                                                          |                                          | discharge of surface water to watercourse relates to issues associated                                                     |                                                      |                                                                                                                                                     |                             |  |  |
|                                                          |                                          | with third party who of the securing of any other required consent, it                                                     |                                                      |                                                                                                                                                     |                             |  |  |
|                                                          |                                          | may be necessary for the applicant to provide evidence to the local planning authority to support their proposed approach. |                                                      |                                                                                                                                                     |                             |  |  |

| Proposed method of surface water discharge                                 |                                                                                                                |                                                                  | Is this propo | sed?                                                   |                           |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|--------------------------------------------------------|---------------------------|
| Hierarchy Level 3: To a surface water sewer or highway drain (select type) |                                                                                                                |                                                                  | drain         | Yes ✔ No 🗆                                             | N/A 🗆                     |
|                                                                            |                                                                                                                |                                                                  |               | ✓ Surface water sewer                                  | 🗌 Highway drain           |
| If YES - Evidence Required                                                 |                                                                                                                |                                                                  |               | If NO — Evidence Require<br>Tick <u>ALL</u> that apply | ed                        |
|                                                                            | Written correspondence from Water and<br>Sewerage Company/ Highway Authority<br>regarding proposed connection. | Plan showing nearby sewers and highway drains AND                |               |                                                        | ins                       |
|                                                                            |                                                                                                                | Statement providing justification in your Sustainable Drainage S |               |                                                        | ainable Drainage Strategy |

| Proposed method of surface water discharge |                                                        | Is this propo            | osed? |  |
|--------------------------------------------|--------------------------------------------------------|--------------------------|-------|--|
| Hierarchy Level 4: To combined sewer       |                                                        | Yes 🗆 No 🗸               | N/A 🗆 |  |
| If YES - Evidence Required                 |                                                        | If NO – Evidence Require | ed    |  |
|                                            | Written correspondence from Water and Sewerage Company |                          | N/A   |  |

| Please list any relevant document and or drawing numbers (including revision reference) to support your answers to Section 7b. | See FRA/ Drainage Strategy and<br>Appendices |  |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
|                                                                                                                                |                                              |  |

# c) Proposed SuDS Component Types

|                             | Tick ALL that apply       |                     |                                              |            |                         |
|-----------------------------|---------------------------|---------------------|----------------------------------------------|------------|-------------------------|
| Within property<br>boundary | □ Rainwater<br>harvesting | □ Green/ blue roofs | ✓ Pervious<br>avements<br>[Type: A □ B □ C ✓ | 🗆 Soakaway | ☐ Bio retention systems |

|                                        | Tick ALL that apply         |                     |                        |                                                                          |                       |
|----------------------------------------|-----------------------------|---------------------|------------------------|--------------------------------------------------------------------------|-----------------------|
|                                        | □ Infiltration system       |                     | Filter string          | Filter drains                                                            |                       |
|                                        | [ <b>Type:</b> 🗌 Surface le | vel 🗌 Below ground] | L Filter strips        | Filter drains                                                            |                       |
| Within<br>development site<br>boundary | □ Bio retention system      | Detention basins    | Ponds and     wetlands | <ul> <li>Attenuation</li> <li>tanks/ Oversized</li> <li>pipes</li> </ul> | □ Other (state below) |
| (not property)                         | If 'Other' please state:    |                     |                        |                                                                          |                       |
|                                        |                             |                     |                        |                                                                          |                       |

| Off site        | Please state: |
|-----------------|---------------|
| (not within the |               |
| boundary of the |               |
| proposed        |               |
| development)    |               |

| I confirm that the above selected components have been designed in accordance with The SuDS Manual (C753).                                                                                                                                                                         | I confirm ✓ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| I confirm that the management of flows resulting from rainfall in excess of a 1 in 100 year plus climate change rainfall event, and their exceedance route(s), has been fully considered in order to minimise the risks to people, property (new and existing) and infrastructure. | I confirm ✓ |

| Please list any relevant document and or drawing numbers (including revision | See FRA/ Drainage Strategy and<br>Appendices |  |
|------------------------------------------------------------------------------|----------------------------------------------|--|
| reference) to support your answers to Section 7c.                            | , ppendicee                                  |  |

# **SECTION 8:**OPERATION AND MAINTENANCE – TECHNICAL STANDARD S 12 AND NATIONAL PLANNING POLICY FRAMEWORK

The applicant is responsible to ensure that ALL components selected in Section 7 can be maintained for the design life of the development. This information is required so the Local Planning Authority can ensure the maintenance and management of the sustainable drainage system. The Local Planning Authority will discuss how this will be secured (e.g. via planning condition or planning obligation).

|                                                                                                          | Information Provided? |
|----------------------------------------------------------------------------------------------------------|-----------------------|
| Management Plan                                                                                          | Yes □ No ✓ N/A        |
| Evidence Required:                                                                                       |                       |
| Plan/ drawing provided to show the position of the different SuDS components with:                       |                       |
| <ul> <li>Key included to identify any of the adopting bodies that you will be offering your</li> </ul>   |                       |
| sustainable drainage components for adoption (relates to maintenance and management arrangements below). |                       |
| Plan/ drawing to identify any areas where certain activities are prohibited, detailing                   |                       |
| reasons why.                                                                                             |                       |
| Action plan for accidental pollutant spillages.                                                          |                       |

|                                                                                            | Informati | on Provided? |
|--------------------------------------------------------------------------------------------|-----------|--------------|
| Maintenance Schedule                                                                       | Yes 🗆     | No ✓ N/A     |
| Evidence Required:                                                                         |           |              |
| A copy of the maintenance schedule including:                                              |           |              |
| 1. Proactive and preventative maintenance                                                  |           |              |
| Detailing regular, occasional and remedial maintenance activities including                |           |              |
| recommendations for inspection and monitoring. This should include recommended             |           |              |
| frequencies, advice on plant/ machinery required and an explanation of the objectives      |           |              |
| for the maintenance proposed and potential implications of not meeting them.               |           |              |
| 2. Reactive and corrective maintenance (e.g. product repair and replacement).              |           |              |
| Including advice on excavations, or similar works, in locations that could affect the SuDS |           |              |

|                                                                                                                                            | Information Provided? |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Maintenance and Management Arrangements                                                                                                    | Yes イ No 🗆            |
| <b>Evidence Required:</b><br>Evidence of formal agreement with the party responsible for undertaking maintenance.                          |                       |
| Please select any of the adopting bodies that you will be offering your sustainable drainage components for adoption. Tick all that apply. |                       |
| ✓ Water and Sewerage Company Section 104 agreement (Water Industry Act 1991)                                                               |                       |
| Local Authority Public Open Space [Refer to Local Authority Policy]                                                                        |                       |
| Please select the arrangement(s) for all non-adopted sustainable drainage components. Tick all that apply.                                 |                       |
| □ Management Company<br>✓ Property Owner (for SuDS components within property boundary only)                                               |                       |
| □ <b>Other</b> (please state)                                                                                                              |                       |
|                                                                                                                                            |                       |

| Please list any relevant document and or drawing numbers (including revision | See FRA/ Drainage Strategy and |  |
|------------------------------------------------------------------------------|--------------------------------|--|
| reference) to support your answers to Section 8.                             | Appendices                     |  |

# **DECLARATION AND SUBMISSION**

This pro-forma has been completed using evidence from information which has been submitted with the planning application.

The information submitted in the Sustainable Drainage Strategy and site-specific Flood Risk Assessment (FRA), where submitted, is proportionate to the site conditions, flood risks and magnitude of development and I agree that this information can be used as evidence to this sustainable drainage approach.

| Submitter Details    |             |                                                          |                                                |  |  |  |  |  |
|----------------------|-------------|----------------------------------------------------------|------------------------------------------------|--|--|--|--|--|
| Completed by         | G Sanderson | Email Address                                            | gs@psadesign.co.uk                             |  |  |  |  |  |
| <u>Completed</u> by  |             | Telephone Number(s)                                      | 01772 786066                                   |  |  |  |  |  |
| Signed off by        | D Wallbank  | Accreditation(s) and/or<br>Qualification(s) of Signatory | B.Eng (Hons) Civil Engineering, C Eng,<br>MICE |  |  |  |  |  |
| Date<br>(dd/mm/yyyy) | 7/3/2023    | Company                                                  | PSA Design Ltd                                 |  |  |  |  |  |

| Client Details |                |         |                    |
|----------------|----------------|---------|--------------------|
| Name           | Mr D Thornhill | Company | Newberry Homes Ltd |

Appendix F

United Utilities' Sewer Record



Appendix G

**Percolation Test Pits** 



Trial Pit 1: Water encountered at 0.8m BGL

Trial Pit 2: Water encountered at 0.9m BGL

Trial Pit 3: Water encountered at 0.7m BGL

Trial Pit 4: Water encountered at 0.9m BGL

Trial Pit 5: Water encountered at 1.1m BGL

Trial Pit 6: Water encountered at 0.7m BGL

| PSA                          | PSA Design<br>The Old Bank House | Client            | wberry Homes Ltd Draw                   |          | Drawn DW Da |       | February 2023 | Drawing No. |  |  |  |
|------------------------------|----------------------------------|-------------------|-----------------------------------------|----------|-------------|-------|---------------|-------------|--|--|--|
|                              | 6 Berry Lane, Longridge          | Job               | Land off the Blossoms, Poulton le Fylde | Checked  |             |       |               | Figure 1    |  |  |  |
| engineering your environment | Tel. 01772 786066                | 1772 786066 Title | Percolation Test Locations              | Approved |             | Scale | NTS           | Rev         |  |  |  |

| Trial Pit 1           | Trial Pit 2               | Trial Pit 3 | Trial Pit 4                                                                                                                                                                                                                                                                                        |
|-----------------------|---------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trial Pit 5           | Trial Pit 6               |             | Trial Pit 1: Water encountered<br>at 0.8m BGL<br>Trial Pit 2: Water encountered<br>at 0.9m BGL<br>Trial Pit 3: Water encountered<br>at 0.7m BGL<br>Trial Pit 4: Water encountered<br>at 0.9m BGL<br>Trial Pit 5: Water encountered<br>at 1.1m BGL<br>Trial Pit 6: Water encountered<br>at 0.7m BGL |
| <b>DCA</b> PSA Design | Client Nowberry Homes Ltd |             | Drawing No.                                                                                                                                                                                                                                                                                        |

| PSA                          | PSA Design<br>The Old Bank House | Client | Newberry Homes Ltd Drawn DW             |          | Newberry Homes Ltd Drawn DW Date February |     | February 2023 | Brawing No. |  |   |  |  |
|------------------------------|----------------------------------|--------|-----------------------------------------|----------|-------------------------------------------|-----|---------------|-------------|--|---|--|--|
|                              | 6 Berry Lane, Longridge          | Job    | Land off the Blossoms, Poulton le Fylde | Checked  |                                           |     | Figure 2      |             |  |   |  |  |
| engineering your environment | Tel. 01772 786066                | Title  | Percolation Test Pits                   | Approved | Scale                                     | NTS | Rev           |             |  | Τ |  |  |

Appendix H

Qbar Greenfield Run-off Calculations



# Greenfield runoff rate estimation for sites

# www.uksuds.com | Greenfield runoff tool

| Calculated by:                              | Graham Sanderson                                                               |                                                                                                           |            |                   |
|---------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------|-------------------|
| Site name:                                  | Land off Poulton Drive                                                         |                                                                                                           | Latitude:  | 53.84639° N       |
| Site location:                              | Poulton                                                                        |                                                                                                           | Longitude: | 2.97755° W        |
| This is an estimatio<br>with Environment Ag | n of the greenfield runoff rates that<br>gency guidance "Rainfall runoff mana  | Reference:                                                                                                | 214753685  |                   |
| SuDS Manual C753 (<br>greenfield runoff ra  | Ciria, 2015) and the non-statutory sta<br>tes may be the basis for setting con | ndards for SuDS (Defra, 2015). This information on<br>sents for the drainage of surface water runoff from | Date:      | Mar 06 2023 12:08 |

#### Runoff estimation approach IH124

| Site characteristics              |           |                |          | Notes                                                                                              |  |  |  |
|-----------------------------------|-----------|----------------|----------|----------------------------------------------------------------------------------------------------|--|--|--|
| Total site area (ha): 1           | .010      |                |          |                                                                                                    |  |  |  |
| Methodology                       |           |                |          | (1) IS Q <sub>BAR</sub> < 2.0 I/S/ha?                                                              |  |  |  |
| Q <sub>BAR</sub> estimation metho | d: Calcu  | ulate from SPF | and SAAR | When $Q_{BAR}$ is < 2.0 l/s/ha then limiting discharge rates                                       |  |  |  |
| SPR estimation method             | l: Calcu  | ulate from SOI | Ltype    | are set at 2.0 l/s/ha.                                                                             |  |  |  |
| Soil characteristics              |           | lt Edite       | ed       |                                                                                                    |  |  |  |
| SOIL type:                        | 4         | 4              |          | (2) Are flow rates < 5.0 l/s?                                                                      |  |  |  |
| HOST class:                       | N/A       | N/A            |          | Where flow rates are less than 5.01/2 someont for                                                  |  |  |  |
| SPR/SPRHOST:                      | 0.47      | 0.47           |          | discharge is usually set at 5.0 l/s if blockage from                                               |  |  |  |
| Hydrological charac               | teristics | Default        | Edited   | vegetation and other materials is possible. Lower consent flow rates may be set where the blockage |  |  |  |
| SAAR (mm):                        |           | 925            | 925      | risk is addressed by using appropriate drainage                                                    |  |  |  |
| Hydrological region:              |           | 10             | 10       | elements.                                                                                          |  |  |  |
| Growth curve factor 1 y           | vear:     | 0.87           | 0.87     | (3) Is SPR/SPRHOST ≤ 0.3?                                                                          |  |  |  |
| Growth curve factor 30            | years:    | 1.7            | 1.7      | Where are unductor levels are low analysis the use of                                              |  |  |  |
| Growth curve factor 10            | 0 years:  | 2.08           | 2.08     | soakaways to avoid discharge offsite would normally                                                |  |  |  |
| Growth curve factor 200 years:    |           | 2.37           | 2.37     | be preferred for disposal of surface water runoff.                                                 |  |  |  |

| Greenfield runoff rates | Default | Edited |
|-------------------------|---------|--------|
| Q <sub>BAR</sub> (I/s): | 6.76    | 6.76   |
| 1 in 1 year (l/s):      | 5.88    | 5.88   |
| 1 in 30 years (l/s):    | 11.49   | 11.49  |
| 1 in 100 year (l/s):    | 14.05   | 14.05  |
| 1 in 200 years (l/s):   | 16.01   | 16.01  |

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix I

Proposed Drawings D3566-OD-01 - Proposed Drainage Strategy D3566-OD-02 – Areas Drawing



# Notes

- 1. Do not scale from this drawing, work to levels and dimensions shown, if not available refer to notes, if in doubt, refer to Engineer.
- 2. The Engineer shall be notified immediately, in writing, should any errors or discrepancies be found prior to to be commencement or continuation of any works.
- 3. Drawing to be read in conjunction with all other scheme drawings and relevant specifications.
- 4. Contractor to be responsible for the location and protection of all existing services.
- 5. Work to be undertaken in accordance in accordance with Design and Construction Guidance for foul and surface water sewers (App Ver 2.0) and Building Regulations - Document H.
- 6. All existing land drains encountered on site during construction are to be re-connected/diverted as necessary (not connected into the new system without prior approval)
- 7. All drains to be laid soffit to soffit unless otherwise indicated.
- 8. Steeper gradients may be used instead of backdrops.
- 9. Cover levels shown are approximate only and should be altered to suit finished surface levels.
- 10. Minimum depth of cover to crown of pipe without protection should be as follows:
- 0.35m Gardens and Pathways with no vehicular loading
- 0.50m Driveways, Parking Areas and Narrow Accesses with height restrictions to prevent entry by vehicles with a gross weight in excess of 7.5 tonnes
- 0.9m Driveways, Parking Areas and Narrow Accesses with limited access to vehicles with a gross weight in excess of 7.5 tonnes. Agricultural land and public open space.
- 1.2m Other Highways and Parking Areas with unrestricted access to vehicles with a gross weight in excess of 7.5 tonnes
- 11. All rainwater pipes (RWP) to be terminated at roddable gullies connected to a minimum 100mm dia. drain.
- 12. Unless stipulated otherwise or invert levels are provided, all surface water pipes to be minimum 100mm dia. laid at 1 in 100. Foul sewers to be minimum 100mm dia laid at 1 in 80 (1 in 40 if no WC connected).
- 13. Proposed PCC Manholes & Inspection Chambers and access points are to be as those defined in Design and Construction Guidance for foul and surface water sewers (App Ver 2.0). MH & IC diameters specified are minimum diameters and if necessary should be increased to accommodate minimum benching widths.
- 14. 450Ø diameter IC's > 1,2m deep to include reducing ring to reduce opening to max 350mm Ø

- 15. Drainage under carriageways Pipes up to 300mmØ to be structured walled PVCu or Clay. Pipes greater than 300Ø to be Concrete in accordance with BS 5911-1 and BS EN 1916. All pipes to be in accordance with Design and Construction Guidance for foul and surface water sewers (App Ver 2.0).
- 16. All plot drainage to be in accordance with Building Regulations Document H.
- 17. Road gullies shall be trapped 450Ø x 900mm deep with Class D400 frame and grating to BS EN 124 (unless otherwise approved. Outlets to be minimum 150mm diameter.
- 18. All drains in the vicinity of existing or proposed trees to be constructed in accordance with the requirements of NHBC.
- 19. Any drains passing through brick footings are to have r.c. lintels over and flexible joints either side. All drainage passing through external walls to have cement fibre sheet collars provided either side of wall to prevent vermin entry. All drains running under building to be encased in 100mm granular fill.
- 20. Where drain is within 1m of a building, the trench is filled with concrete up to the underside of the foundations and where the trench is further away than 1m from the building, the trench is filled with concrete to a level below the lowest level for the building equal to the distance from the building, less 150mm.
- 21. Installation of threshold drains to be the responsibility of the contractor in consultation with the scheme Architect. Threshold drainage should be installed where appropriate to ensure no surface water migration into properties. Where possible the contractor should assure that all private driveways are laid to disperse surface water to adjoining landscaped areas.
- 22. Drainage indicated on drawing around buildings spaced out for illustrative purposes, exact positions of drains may be altered to suit and determined on site prior to commencement of work (subject to maintaining minimum gradients and cover). Any revisions are to be subject to the approval of the Local Building Inspector and Structural Engineer.
- 23. Not all soil & rainwater pipes may be shown. Additional connections to be approved with Engineer, subject to minimum gradients and diameters.
- 24. All outfall levels and existing pipe levels should be checked prior to construction to ensure the design is deliverable and no clashes occur. Contractor to report any discrepancies to Engineer immediately.
- 25. Condition of any existing drainage to be used as part of proposed system to be checked prior to construction and any defects remedied.
- 26. All building drainage up to connection into chambers shown to be as per Architects Building Regulations drawings.

|    |                                                                              | Outfall connec<br>Drainage sche | tion subject to S106 Part 1 and 2                                                                                                                     | Approval.                     |                        |        |                        |
|----|------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------|--------|------------------------|
| P1 | 07/03/23                                                                     | For Planning                    | 0                                                                                                                                                     | GS                            | DLW                    |        | GS                     |
|    |                                                                              | ľ                               | Newberry Homes Limte                                                                                                                                  | ed                            | 1-                     |        | Davi                   |
|    | Land off Garstang Road East<br>Poulton-le-Fylde<br>Outline Drainage Proposal |                                 |                                                                                                                                                       | Drwg F<br>D39                 | 941-OD-                | -01 P1 |                        |
|    |                                                                              |                                 |                                                                                                                                                       | Scale                         | ScaleSheet SAs ShownA1 |        |                        |
|    |                                                                              | <b>SA</b>                       | PSA Design Ltd<br>The Old Bank House, 6 Berry Lane<br>Longridge, Preston, PR3 3JA<br>Tel. 01772 786066<br>www.psadesign.co.uk<br>mail@psadesign.co.uk | e, Date<br>Drawn<br><b>GS</b> | 7 March<br>Checke      | n 20   | <b>023</b><br>Approved |





**Contributing Areas Drawing** 

Appendix J

Surface Water System Hydraulic Calculations









**Contributing Areas Drawing** 





#### Design Settings

| Rainfall Methodology  | FSR               | Maximum Time of Concentration (mins) | 30.00         |
|-----------------------|-------------------|--------------------------------------|---------------|
| Return Period (years) | 1                 | Maximum Rainfall (mm/hr)             | 50.0          |
| Additional Flow (%)   | 0                 | Minimum Velocity (m/s)               | 1.00          |
| FSR Region            | England and Wales | Connection Type                      | Level Soffits |
| M5-60 (mm)            | 17.000            | Minimum Backdrop Height (m)          | 0.200         |
| Ratio-R               | 0.400             | Preferred Cover Depth (m)            | 1.200         |
| CV                    | 0.750             | Include Intermediate Ground          | $\checkmark$  |
| Time of Entry (mins)  | 4.00              | Enforce best practice design rules   | $\checkmark$  |

#### <u>Nodes</u>

| Name | Area<br>(ha) | T of E<br>(mins) | Cover<br>Level<br>(m) | Diameter<br>(mm) | Easting<br>(m) | Northing<br>(m) | Depth<br>(m) |
|------|--------------|------------------|-----------------------|------------------|----------------|-----------------|--------------|
| MH1  | 0.062        | 4.00             | 14.200                | 1500             | 464.358        | 737.825         | 1.850        |
| MH2  | 0.087        | 4.00             | 14.200                | 1500             | 437.079        | 723.571         | 2.160        |
| MH3  | 0.068        | 4.00             | 13.700                | 1500             | 454.111        | 691.995         | 2.020        |
| MH4  | 0.035        | 4.00             | 13.700                | 2400             | 454.661        | 685.323         | 3.360        |
| MH5  | 0.052        | 4.00             | 13.700                | 2400             | 466.784        | 660.930         | 3.500        |
| MH6  | 0.018        | 4.00             | 13.900                | 2400             | 479.050        | 667.197         | 3.750        |
| MH7  | 0.062        | 4.00             | 14.200                | 2400             | 495.122        | 742.836         | 1.850        |
| MH8  | 0.030        | 4.00             | 14.200                | 1500             | 511.360        | 718.853         | 2.200        |
| MH9  | 0.007        | 4.00             | 14.200                | 1500             | 515.931        | 706.267         | 2.360        |
| MH10 | 0.030        | 4.00             | 14.200                | 2400             | 513.971        | 691.704         | 3.815        |
| MH11 | 0.010        | 4.00             | 14.200                | 2400             | 503.673        | 677.523         | 4.030        |
| MH12 | 0.036        | 4.00             | 14.000                | 3000             | 491.036        | 667.223         | 3.900        |
| UU   |              |                  | 13.710                | 1500             | 502.056        | 639.047         | 3.920        |

<u>Links</u>

| Name           | US<br>Node | DS<br>Node | Length<br>(m)    | ks (mm) /<br>n | US IL<br>(m)     | DS IL<br>(m)     | Fall<br>(m)    | Slope<br>(1:X) | Dia<br>(mm) | T of C<br>(mins) | Rain<br>(mm/hr) |
|----------------|------------|------------|------------------|----------------|------------------|------------------|----------------|----------------|-------------|------------------|-----------------|
| 1.000          | MH1        | MH2        | 30.779           | 0.600          | 12.350           | 12.040           | 0.310          | 99.3           | 225         | 4.39             | 49.3            |
| 1.001          | MH2        | MH3        | 35.877           | 0.600          | 12.040           | 11.680           | 0.360          | 99.7           | 225         | 4.85             | 47.3            |
| 1.002          | MH3        | MH4        | 6.695            | 0.600          | 11.680           | 11.610           | 0.070          | 95.6           | 225         | 4.93             | 47.0            |
| 1.003          | MH4        | MH5        | 27.239           | 0.600          | 10.340           | 10.200           | 0.140          | 194.6          | 1500        | 5.08             | 46.4            |
| 1.004          | MH5        | MH6        | 13.774           | 0.600          | 10.200           | 10.150           | 0.050          | 275.5          | 1500        | 5.17             | 46.0            |
| 1.005          | MH6        | MH12       | 11.986           | 0.600          | 10.150           | 10.100           | 0.050          | 239.7          | 1500        | 5.24             | 45.7            |
| 2.000<br>2.001 | MH7<br>MH8 | MH8<br>MH9 | 28.963<br>13.390 | 0.600<br>0.600 | 12.350<br>12.000 | 12.000<br>11.840 | 0.350<br>0.160 | 82.8<br>83.7   | 225<br>225  | 4.34<br>4.49     | 49.6<br>48.8    |

| Name  | Vel<br>(m/s) | Cap<br>(1/s) | Flow<br>(I/s) | US<br>Denth | DS<br>Denth | Σ Area<br>(ha) | Σ Add<br>Inflow | Pro<br>Denth | Pro<br>Velocity |
|-------|--------------|--------------|---------------|-------------|-------------|----------------|-----------------|--------------|-----------------|
|       | (1173)       | (1/3)        | (1/3)         | (m)         | (m)         | (na)           | (I/s)           | (mm)         | (m/s)           |
| 1.000 | 1.312        | 52.2         | 8.3           | 1.625       | 1.935       | 0.062          | 0.0             | 60           | 0.963           |
| 1.001 | 1.309        | 52.1         | 19.1          | 1.935       | 1.795       | 0.149          | 0.0             | 94           | 1.213           |
| 1.002 | 1.337        | 53.2         | 27.6          | 1.795       | 1.865       | 0.217          | 0.0             | 115          | 1.347           |
| 1.003 | 3.071        | 5427.4       | 31.7          | 1.860       | 2.000       | 0.252          | 0.0             | 79           | 0.884           |
| 1.004 | 2.579        | 4557.5       | 37.9          | 2.000       | 2.250       | 0.304          | 0.0             | 94           | 0.824           |
| 1.005 | 2.766        | 4887.3       | 39.9          | 2.250       | 2.400       | 0.322          | 0.0             | 93           | 0.880           |
|       |              |              |               |             |             |                |                 |              |                 |
| 2.000 | 1.438        | 57.2         | 8.3           | 1.625       | 1.975       | 0.062          | 0.0             | 58           | 1.030           |
| 2.001 | 1.430        | 56.9         | 12.2          | 1.975       | 2.135       | 0.092          | 0.0             | 71           | 1.146           |
|       |              |              |               |             |             |                |                 |              |                 |





| File: Outline SW Drainage Mod | Page 2 |
|-------------------------------|--------|
| Network: Storm Network        |        |
| Graham Sanderson              |        |
| 07/03/2023                    |        |

## <u>Links</u>

| Name  | US<br>Node | DS<br>Node | Length<br>(m) | ks (mm) /<br>n | US IL<br>(m) | DS IL<br>(m) | Fall<br>(m) | Slope<br>(1:X) | Dia<br>(mm) | T of C<br>(mins) | Rain<br>(mm/hr) |
|-------|------------|------------|---------------|----------------|--------------|--------------|-------------|----------------|-------------|------------------|-----------------|
| 2.002 | MH9        | MH10       | 14.694        | 0.600          | 11.840       | 11.660       | 0.180       | 81.6           | 225         | 4.66             | 48.1            |
| 2.003 | MH10       | MH11       | 17.526        | 0.600          | 10.385       | 10.170       | 0.215       | 81.5           | 1500        | 4.72             | 47.8            |
| 2.004 | MH11       | MH12       | 16.303        | 0.600          | 10.170       | 10.100       | 0.070       | 232.9          | 1500        | 4.82             | 47.4            |
|       |            |            |               |                |              |              |             |                |             |                  |                 |
| 1.006 | MH12       | UU         | 30.254        | 0.600          | 10.100       | 9.790        | 0.310       | 97.6           | 1500        | 5.36             | 45.3            |

| Name  | Vel<br>(m/s) | Cap<br>(l/s) | Flow<br>(I/s) | US<br>Depth<br>(m) | DS<br>Depth<br>(m) | Σ Area<br>(ha) | Σ Add<br>Inflow<br>(I/s) | Pro<br>Depth<br>(mm) | Pro<br>Velocity<br>(m/s) |
|-------|--------------|--------------|---------------|--------------------|--------------------|----------------|--------------------------|----------------------|--------------------------|
| 2.002 | 1.448        | 57.6         | 12.9          | 2.135              | 2.315              | 0.099          | 0.0                      | 73                   | 1.176                    |
| 2.003 | 4.752        | 8397.6       | 16.7          | 2.315              | 2.530              | 0.129          | 0.0                      | 48                   | 0.994                    |
| 2.004 | 2.806        | 4958.7       | 17.9          | 2.530              | 2.400              | 0.139          | 0.0                      | 63                   | 0.698                    |
| 1.006 | 4.342        | 7672.7       | 61.0          | 2.400              | 2.420              | 0.497          | 0.0                      | 92                   | 1.372                    |

#### **Pipeline Schedule**

| Link  | Length | Slope | Dia  | Link     | US CL  | US IL  | US Depth | DS CL  | DS IL  | DS Depth |
|-------|--------|-------|------|----------|--------|--------|----------|--------|--------|----------|
|       | (m)    | (1:X) | (mm) | Туре     | (m)    | (m)    | (m)      | (m)    | (m)    | (m)      |
| 1.000 | 30.779 | 99.3  | 225  | Circular | 14.200 | 12.350 | 1.625    | 14.200 | 12.040 | 1.935    |
| 1.001 | 35.877 | 99.7  | 225  | Circular | 14.200 | 12.040 | 1.935    | 13.700 | 11.680 | 1.795    |
| 1.002 | 6.695  | 95.6  | 225  | Circular | 13.700 | 11.680 | 1.795    | 13.700 | 11.610 | 1.865    |
| 1.003 | 27.239 | 194.6 | 1500 | Circular | 13.700 | 10.340 | 1.860    | 13.700 | 10.200 | 2.000    |
| 1.004 | 13.774 | 275.5 | 1500 | Circular | 13.700 | 10.200 | 2.000    | 13.900 | 10.150 | 2.250    |
| 1.005 | 11.986 | 239.7 | 1500 | Circular | 13.900 | 10.150 | 2.250    | 14.000 | 10.100 | 2.400    |
|       |        |       |      |          |        |        |          |        |        |          |
| 2.000 | 28.963 | 82.8  | 225  | Circular | 14.200 | 12.350 | 1.625    | 14.200 | 12.000 | 1.975    |
| 2.001 | 13.390 | 83.7  | 225  | Circular | 14.200 | 12.000 | 1.975    | 14.200 | 11.840 | 2.135    |
| 2.002 | 14.694 | 81.6  | 225  | Circular | 14.200 | 11.840 | 2.135    | 14.200 | 11.660 | 2.315    |
| 2.003 | 17.526 | 81.5  | 1500 | Circular | 14.200 | 10.385 | 2.315    | 14.200 | 10.170 | 2.530    |
| 2.004 | 16.303 | 232.9 | 1500 | Circular | 14.200 | 10.170 | 2.530    | 14.000 | 10.100 | 2.400    |
|       |        |       |      |          |        |        |          |        |        |          |
| 1.006 | 30.254 | 97.6  | 1500 | Circular | 14.000 | 10.100 | 2.400    | 13.710 | 9.790  | 2.420    |

| Link  | US<br>Node | Dia<br>(mm) | Node<br>Type | МН<br>Туре | DS<br>Node | Dia<br>(mm) | Node<br>Type | МН<br>Туре |
|-------|------------|-------------|--------------|------------|------------|-------------|--------------|------------|
| 1.000 | MH1        | 1500        | Manhole      | PCC        | MH2        | 1500        | Manhole      | PCC        |
| 1.001 | MH2        | 1500        | Manhole      | PCC        | MH3        | 1500        | Manhole      | PCC        |
| 1.002 | MH3        | 1500        | Manhole      | PCC        | MH4        | 2400        | Manhole      | PCC        |
| 1.003 | MH4        | 2400        | Manhole      | PCC        | MH5        | 2400        | Manhole      | PCC        |
| 1.004 | MH5        | 2400        | Manhole      | PCC        | MH6        | 2400        | Manhole      | PCC        |
| 1.005 | MH6        | 2400        | Manhole      | PCC        | MH12       | 3000        | Manhole      | PCC        |
|       |            |             |              |            |            |             |              |            |
| 2.000 | MH7        | 2400        | Manhole      | PCC        | MH8        | 1500        | Manhole      | PCC        |
| 2.001 | MH8        | 1500        | Manhole      | PCC        | MH9        | 1500        | Manhole      | PCC        |
| 2.002 | MH9        | 1500        | Manhole      | PCC        | MH10       | 2400        | Manhole      | PCC        |
| 2.003 | MH10       | 2400        | Manhole      | PCC        | MH11       | 2400        | Manhole      | PCC        |
| 2.004 | MH11       | 2400        | Manhole      | PCC        | MH12       | 3000        | Manhole      | PCC        |
|       |            |             |              |            |            |             |              |            |
| 1.006 | MH12       | 3000        | Manhole      | PCC        | UU         | 1500        | Manhole      | PCC        |





| File: Outline SW Drainage Mod | Page 3 |
|-------------------------------|--------|
| Network: Storm Network        |        |
| Graham Sanderson              |        |
| 07/03/2023                    |        |

#### Manhole Schedule

| Node  | Easting<br>(m) | Northing<br>(m) | CL<br>(m) | Depth<br>(m) | Dia<br>(mm) | Connections | 5 | Link  | IL<br>(m) | Dia<br>(mm) |
|-------|----------------|-----------------|-----------|--------------|-------------|-------------|---|-------|-----------|-------------|
| MH1   | 464.358        | 737.825         | 14.200    | 1.850        | 1500        |             |   |       |           |             |
|       |                |                 |           |              |             | 0           | 0 | 1 000 | 42.250    | 225         |
| N4112 | 427.070        | 772 574         | 14 200    | 2 1 6 0      | 1500        |             | 0 | 1.000 | 12.350    | 225         |
| IVIH2 | 437.079        | 723.571         | 14.200    | 2.160        | 1500        |             | 1 | 1.000 | 12.040    | 225         |
|       | 45 4 4 4 4     | 604.005         | 40.700    | 2 0 2 0      | 4500        | 0           | 0 | 1.001 | 12.040    | 225         |
| MH3   | 454.111        | 691.995         | 13.700    | 2.020        | 1500        |             | 1 | 1.001 | 11.680    | 225         |
|       |                |                 |           |              |             | Ŏ           | 0 | 1.002 | 11.680    | 225         |
| MH4   | 454.661        | 685.323         | 13.700    | 3.360        | 2400        |             | 1 | 1.002 | 11.610    | 225         |
|       |                |                 |           |              |             | 0           | 0 | 1.003 | 10.340    | 1500        |
| MH5   | 466.784        | 660.930         | 13.700    | 3.500        | 2400        | 1           | 1 | 1.003 | 10.200    | 1500        |
|       |                |                 |           |              |             |             | 0 | 1.004 | 10.200    | 1500        |
| MH6   | 479.050        | 667.197         | 13.900    | 3.750        | 2400        |             | 1 | 1.004 | 10.150    | 1500        |
|       |                |                 |           |              |             |             | 0 | 1.005 | 10.150    | 1500        |
| MH7   | 495.122        | 742.836         | 14.200    | 1.850        | 2400        | Q,          | 0 | 2 000 | 12 250    | 225         |
|       | 511 260        | 710 052         | 14 200    | 2 200        | 1500        |             | 1 | 2.000 | 12.350    | 225         |
| ΝΠΟ   | 511.500        | /10.005         | 14.200    | 2.200        | 1300        |             | 1 | 2.000 | 12.000    | 225         |
|       | E1E 021        | 706 267         | 14 200    | 2 260        | 1500        | 0           | 0 | 2.001 | 12.000    | 225         |
| WIT5  | 515.551        | /00.207         | 14.200    | 2.300        | 1300        | ,           | T | 2.001 | 11.840    | 223         |
|       | 542.074        | CO4 704         | 44.200    | 2.045        | 2400        | 0 d         | 0 | 2.002 | 11.840    | 225         |
| MH10  | 513.971        | 691.704         | 14.200    | 3.815        | 2400        | ý           | 1 | 2.002 | 11.660    | 225         |
|       |                |                 |           |              |             | 0           | 0 | 2.003 | 10.385    | 1500        |
| MH11  | 503.673        | 677.523         | 14.200    | 4.030        | 2400        |             | 1 | 2.003 | 10.170    | 1500        |
|       |                |                 |           |              |             |             | 0 | 2.004 | 10.170    | 1500        |
| MH12  | 491.036        | 667.223         | 14.000    | 3.900        | 3000        | ,1          | 1 | 2.004 | 10.100    | 1500        |
|       |                |                 |           |              |             | 2           | 2 | 1.005 | 10.100    | 1500        |
|       | F02 0FC        | 620.047         | 12 710    | 2 0 2 0      | 1500        | 0           | 0 | 1.006 | 10.100    | 1500        |
| UU    | 502.056        | 039.047         | 13./10    | 3.920        | 1200        |             | Ţ | 1.006 | 9.790     | 1200        |



# Simulation Settings

| Rainfall Methodology<br>FSR Region<br>M5-60 (mm)<br>Ratio-R<br>Summer CV<br>Winter CV | FSR<br>England and Wales<br>17.000<br>0.400<br>0.750<br>0.840 | A<br>Skip<br>Drain Down<br>Additional Sto<br>Check Disc<br>Check Disch | nalysis Speed<br>o Steady State<br>n Time (mins)<br>orage (m³/ha)<br>harge Rate(s)<br>narge Volume | Detailed<br>x<br>240<br>20.0<br>x<br>x |      |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|------|
| 15 30 60 120                                                                          | <b>Storm Dur</b><br>180 240 36                                | ations<br>50 480                                                       | 600 720                                                                                            | 960                                    | 1440 |
| Return Period<br>(years)<br>1<br>30<br>100                                            | Climate Change A<br>(CC %)<br>45<br>45<br>50                  | dditional Area<br>(A %)<br>10<br>10<br>10                              | Additional Flo<br>(Q %)                                                                            | <b>w</b><br>0<br>0<br>0                |      |
| Ν                                                                                     | ode MH12 Online Hv                                            | dro-Brake® Cont                                                        | rol                                                                                                |                                        |      |

| Flap Valve               | х            | Objective               | (HE) Minimise upstream storage |
|--------------------------|--------------|-------------------------|--------------------------------|
| Replaces Downstream Link | $\checkmark$ | Sump Available          | $\checkmark$                   |
| Invert Level (m)         | 10.100       | Product Number          | CTL-SHE-0096-6700-3100-6700    |
| Design Depth (m)         | 3.100        | Min Outlet Diameter (m) | 0.150                          |
| Design Flow (I/s)        | 6.7          | Min Node Diameter (mm)  | 1200                           |
|                          |              |                         |                                |

#### PSA Design Ltd



#### File: Outline SW Drainage Mod Network: Storm Network Graham Sanderson 07/03/2023

Page 5

Results for 1 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 99.81%

| Node Eve          | ent    | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Stat | us        |
|-------------------|--------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|------|-----------|
| 15 minute w       | inter  | MH1        | 10             | 12.424       | 0.074        | 12.5            | 0.1864           | 0.0000        | ОК   |           |
| 15 minute su      | ummer  | MH2        | 10             | 12.161       | 0.121        | 30.0            | 0.3220           | 0.0000        | ОК   |           |
| 15 minute winter  |        | MH3        | 10             | 11.858       | 0.178        | 43.6            | 0.4475           | 0.0000        | ОК   |           |
| 120 minute        | winter | MH4        | 118            | 10.713       | 0.373        | 15.5            | 1.7731           | 0.0000        | ОК   |           |
| 120 minute        | winter | MH5        | 114            | 10.714       | 0.514        | 17.3            | 2.4955           | 0.0000        | ОК   |           |
| 120 minute        | winter | MH6        | 114            | 10.714       | 0.564        | 16.9            | 2.6114           | 0.0000        | ОК   |           |
| 15 minute w       | inter  | MH7        | 10             | 12.421       | 0.071        | 12.5            | 0.3726           | 0.0000        | ОК   |           |
| 15 minute w       | inter  | MH8        | 10             | 12.093       | 0.093        | 18.4            | 0.1930           | 0.0000        | ОК   |           |
| 15 minute w       | inter  | MH9        | 10             | 11.936       | 0.096        | 19.7            | 0.1756           | 0.0000        | ОК   |           |
| 120 minute        | winter | MH10       | 114            | 10.715       | 0.330        | 7.9             | 1.5478           | 0.0000        | ОК   |           |
| 120 minute        | winter | MH11       | 112            | 10.713       | 0.543        | 8.9             | 2.4856           | 0.0000        | ОК   |           |
| 120 minute winter |        | MH12       | 118            | 10.715       | 0.615        | 13.8            | 4.4690           | 0.0000        | ОК   |           |
| 15 minute summer  |        | UU         | 1              | 9.790        | 0.000        | 4.6             | 0.0000           | 0.0000        | OK   |           |
| Link Event        | US     | Lin        | k              | DS           | Outflow      | Velocity        | Flow/Ca          | ap Lir        | nk   | Discharge |
| (Upstream Depth)  | Node   |            |                | Node         | (I/s)        | (m/s)           |                  | Vol (         | m³)  | Vol (m³)  |
| 15 minute winter  | MH1    | 1.000      |                | MH2          | 12.5         | 0.754           | 0.23             | 39 0.5        | 115  |           |
| 15 minute summer  | MH2    | 1.001      |                | MH3          | 30.0         | 1.069           | 0.57             | 76 0.9        | 961  |           |
| 15 minute winter  | MH3    | 1.002      |                | MH4          | 43.0         | 1.377           | 0.80             | 0.2           | 083  |           |
| 120 minute winter | MH4    | 1.003      |                | MH5          | 14.3         | 0.393           | 0.00             | 03 11.8       | 914  |           |
| 120 minute winter | MH5    | 1.004      |                | MH6          | 15.8         | 0.384           | 0.00             | 03 7.8        | 449  |           |
| 120 minute winter | MH6    | 1.005      |                | MH12         | 11.2         | 0.253           | 0.00             | 02 7.6        | 885  |           |
| 15 minute winter  | MH7    | 2.000      |                | MH8          | 12.4         | 0.950           | 0.22             | 17 0.3        | 801  |           |
| 15 minute winter  | MH8    | 2.001      |                | MH9          | 18.3         | 1.156           | 0.32             | 22 0.2        | 120  |           |
| 15 minute winter  | MH9    | 2.002      |                | MH10         | 19.4         | 1.262           | 0.33             | 37 0.2        | 261  |           |
| 120 minute winter | MH10   | 2.003      |                | MH11         | 8.3          | 0.370           | 0.00             | 01 7.5        | 350  |           |
| 120 minute winter | MH11   | 2.004      |                | MH12         | 6.3          | 0.128           | 0.00             | 01 10.2       | 175  |           |
| 120 minute winter | MH12   | Hydro-E    | Brake®         | UU           | 4.6          |                 |                  |               |      | 87.6      |





# File: Outline SW Drainage ModPage 6Network: Storm NetworkGraham Sanderson07/03/2023

Results for 30 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 99.81%

| Node Event        | US   | Peak   | Level  | Depth | Inflow | Node     | Flood  | Status     |  |
|-------------------|------|--------|--------|-------|--------|----------|--------|------------|--|
|                   | Node | (mins) | (m)    | (m)   | (I/s)  | Vol (m³) | (m³)   |            |  |
| 15 minute winter  | MH1  | 11     | 12.851 | 0.501 | 30.5   | 1.2548   | 0.0000 | SURCHARGED |  |
| 15 minute winter  | MH2  | 11     | 12.761 | 0.721 | 66.1   | 1.9128   | 0.0000 | SURCHARGED |  |
| 15 minute winter  | MH3  | 11     | 12.168 | 0.488 | 90.9   | 1.2248   | 0.0000 | SURCHARGED |  |
| 240 minute winter | MH4  | 236    | 11.635 | 1.295 | 22.3   | 6.1535   | 0.0000 | ОК         |  |
| 240 minute winter | MH5  | 236    | 11.635 | 1.435 | 21.0   | 6.9625   | 0.0000 | ОК         |  |
| 240 minute winter | MH6  | 236    | 11.635 | 1.485 | 15.1   | 6.8756   | 0.0000 | ОК         |  |
| 15 minute summer  | MH7  | 10     | 12.469 | 0.119 | 30.5   | 0.6249   | 0.0000 | ОК         |  |
| 15 minute winter  | MH8  | 10     | 12.173 | 0.173 | 45.2   | 0.3572   | 0.0000 | ОК         |  |
| 15 minute winter  | MH9  | 10     | 12.015 | 0.175 | 48.3   | 0.3202   | 0.0000 | ОК         |  |
| 240 minute winter | MH10 | 232    | 11.635 | 1.250 | 11.5   | 5.8702   | 0.0000 | ОК         |  |
| 240 minute winter | MH11 | 236    | 11.635 | 1.465 | 13.1   | 6.7065   | 0.0000 | ОК         |  |
| 240 minute winter | MH12 | 236    | 11.635 | 1.535 | 17.3   | 11.1641  | 0.0000 | SURCHARGED |  |
| 15 minute summer  | UU   | 1      | 9.790  | 0.000 | 4.6    | 0.0000   | 0.0000 | ОК         |  |
|                   |      |        |        |       |        |          |        |            |  |

| Link Event        | US   | Link                     | DS   | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|------|--------------------------|------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node |                          | Node | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | MH1  | 1.000                    | MH2  | 26.3    | 0.827    | 0.504    | 1.2241   |           |
| 15 minute winter  | MH2  | 1.001                    | MH3  | 61.7    | 1.550    | 1.184    | 1.4269   |           |
| 15 minute winter  | MH3  | 1.002                    | MH4  | 90.7    | 2.282    | 1.707    | 0.2636   |           |
| 240 minute winter | MH4  | 1.003                    | MH5  | 16.7    | 0.411    | 0.003    | 45.6338  |           |
| 240 minute winter | MH5  | 1.004                    | MH6  | 13.6    | 0.404    | 0.003    | 24.0532  |           |
| 240 minute winter | MH6  | 1.005                    | MH12 | 10.3    | 0.251    | 0.002    | 21.0869  |           |
| 15 minute summer  | MH7  | 2.000                    | MH8  | 30.5    | 1.125    | 0.534    | 0.7812   |           |
| 15 minute winter  | MH8  | 2.001                    | MH9  | 44.9    | 1.364    | 0.790    | 0.4407   |           |
| 15 minute winter  | MH9  | 2.002                    | MH10 | 47.7    | 1.537    | 0.829    | 0.4567   |           |
| 240 minute winter | MH10 | 2.003                    | MH11 | 9.8     | 0.392    | 0.001    | 29.0754  |           |
| 240 minute winter | MH11 | 2.004                    | MH12 | 3.9     | 0.126    | 0.001    | 28.6142  |           |
| 240 minute winter | MH12 | Hydro-Brake <sup>®</sup> | UU   | 4.8     |          |          |          | 122.9     |





#### File: Outline SW Drainage Mod Network: Storm Network Graham Sanderson 07/03/2023

Page 7

Results for 100 year +50% CC +10% A Critical Storm Duration. Lowest mass balance: 99.81%

| Node Event        | US<br>Node | Peak<br>(mins) | Level<br>(m) | Depth<br>(m) | Inflow<br>(I/s) | Node<br>Vol (m³) | Flood<br>(m³) | Status     |
|-------------------|------------|----------------|--------------|--------------|-----------------|------------------|---------------|------------|
| 15 minute winter  | MH1        | 11             | 13.496       | 1.146        | 40.6            | 2.8693           | 0.0000        | SURCHARGED |
| 15 minute winter  | MH2        | 11             | 13.355       | 1.315        | 84.9            | 3.4884           | 0.0000        | SURCHARGED |
| 240 minute winter | MH3        | 232            | 13.231       | 1.551        | 26.1            | 3.8911           | 0.0000        | SURCHARGED |
| 240 minute winter | MH4        | 232            | 13.231       | 2.891        | 30.3            | 13.7416          | 0.0000        | SURCHARGED |
| 240 minute winter | MH5        | 232            | 13.231       | 3.031        | 28.9            | 14.7041          | 0.0000        | SURCHARGED |
| 240 minute winter | MH6        | 232            | 13.231       | 3.081        | 25.9            | 14.2626          | 0.0000        | SURCHARGED |
| 240 minute winter | MH7        | 232            | 13.231       | 0.881        | 7.4             | 4.6374           | 0.0000        | SURCHARGED |
| 240 minute winter | MH8        | 232            | 13.231       | 1.231        | 11.0            | 2.5452           | 0.0000        | SURCHARGED |
| 240 minute winter | MH9        | 232            | 13.231       | 1.391        | 11.8            | 2.5488           | 0.0000        | SURCHARGED |
| 240 minute winter | MH10       | 232            | 13.231       | 2.846        | 15.4            | 13.3683          | 0.0000        | SURCHARGED |
| 240 minute winter | MH11       | 232            | 13.231       | 3.061        | 19.7            | 14.0139          | 0.0000        | SURCHARGED |
| 240 minute winter | MH12       | 232            | 13.231       | 3.131        | 23.2            | 22.7697          | 0.0000        | SURCHARGED |
| 15 minute summer  | UU         | 1              | 9.790        | 0.000        | 4.6             | 0.0000           | 0.0000        | ОК         |
|                   |            |                |              |              |                 |                  |               |            |

| Link Event        | US   | Link                     | DS   | Outflow | Velocity | Flow/Cap | Link     | Discharge |
|-------------------|------|--------------------------|------|---------|----------|----------|----------|-----------|
| (Upstream Depth)  | Node |                          | Node | (I/s)   | (m/s)    |          | Vol (m³) | Vol (m³)  |
| 15 minute winter  | MH1  | 1.000                    | MH2  | 33.7    | 0.847    | 0.646    | 1.2241   |           |
| 15 minute winter  | MH2  | 1.001                    | MH3  | 78.4    | 1.971    | 1.505    | 1.4269   |           |
| 240 minute winter | MH3  | 1.002                    | MH4  | 26.1    | 1.238    | 0.491    | 0.2663   |           |
| 240 minute winter | MH4  | 1.003                    | MH5  | 22.7    | 0.442    | 0.004    | 47.9538  |           |
| 240 minute winter | MH5  | 1.004                    | MH6  | 23.8    | 0.398    | 0.005    | 24.2489  |           |
| 240 minute winter | MH6  | 1.005                    | MH12 | 17.1    | 0.254    | 0.003    | 21.1011  |           |
| 240 minute winter | MH7  | 2.000                    | MH8  | 7.4     | 0.831    | 0.129    | 1.1519   |           |
| 240 minute winter | MH8  | 2.001                    | MH9  | 11.0    | 1.024    | 0.193    | 0.5325   |           |
| 240 minute winter | MH9  | 2.002                    | MH10 | 11.8    | 1.112    | 0.205    | 0.5844   |           |
| 240 minute winter | MH10 | 2.003                    | MH11 | 11.3    | 0.413    | 0.001    | 30.8542  |           |
| 240 minute winter | MH11 | 2.004                    | MH12 | -8.8    | 0.124    | -0.002   | 28.7012  |           |
| 240 minute winter | MH12 | Hydro-Brake <sup>®</sup> | UU   | 6.7     |          |          |          | 152.9     |