Hydrock 3E

Aldi, Colliery Lane, Hetton-le-Hole Phase II Geo-environmental Assessment

For Aldi Stores Limited

Date: 9 February 2023 Doc Ref: P18-474-3E-XX-XX-RP-G-9000

DOCUMENT CONTROL SHEET

Issued by	Hydrock 3E 2 Esh Plaza Sir Bobby Robson Way Great Park Newcastle upon Tyne NE13 9BA	Office contact Alex Middleton Email: <u>newcastle@3econsult.com</u> Tel: 0191 230 2993		
Client	Aldi Stores Limited			
Project name	Aldi, Colliery Lane, Hetton-le-Hole			
Title	Phase II Geo-environmental Assessment			
Doc ref	P18-474-3E-XX-XX-RP-G-9000			
Project no.	P18-474			
Status	Final			
Date	09/02/2023			

Document Production Record				
Issue Number	1	Name		
Prepared by		Alex Middleton (Senior Geo-environmental Engineer)		
Checked and Approved by		Christopher Brewster (Principal Geo-environmental Engineer)		

Document Revision Record					
Issue Number	Status	Date	Revision Details		

Hydrock 3E (3E) has prepared this report in accordance with the instructions of the above-named Client, under the terms of appointment for Hydrock 3E, for the sole and specific use of the Client and parties commissioned by them to undertake work where reliance is placed on this report. Any third parties who use the information contained herein do so at their own risk. Hydrock 3E shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared or for use of the report by any parties not defined in Hydrock 3E's appointment.

TABLE OF CONTENTS

1.	INTRODUCTION	3
2.	THE SITE	5
3.	SUMMARY OF AVAILABLE REPORTS	6
4.	METHOD OF INVESTIGATION	10
5.	RESULTS OF THE INVESTIGATION	11
6.	CONTAMINATION RISK ASSESSMENT	14
7.	MODIFIED CONCEPTUAL SITE MODEL	17
8.	DISCUSSION	19

Drawings

G0001	Site Location Plan
G0002	Exploratory Hole Location Plan

Appendices

Appendix A	Proposed Site Plan
Appendix B	Exploratory Hole Records
Appendix C	Cone Penetrometer Test Results Data Sheets
Appendix D	Chemical Laboratory Certificates
Appendix E	Geotechnical Laboratory Certificates
Appendix F	Combined Groundwater and Ground Gas Monitoring Sheets
Appendix G	Soakaway Calculation Sheets
Appendix H	Site Specific Radon Assessment Sheet (BGS)

Executive Summary

SITE INFORMATION AND SETTING				
Report title	Phase II Geo-environmental Assessment			
Client	Aldi Stores Limited			
Site name	Aldi, Colliery Lane, Hetton-le-Hole			
Location	Colliery Lane, Hetton-le-Hole, Tyne & Wear			
Proposed Development	Construction of a new Aldi store, car parking facilities and associated soft landscaping.			
PHASE II GEO-ENVIRO	NMENTAL ASSESSMENT			
Ground Conditions	Made Ground			
	Made ground was identified within all of the exploratory hole locations to depths of between 0.10m and 1.70m below ground level. These materials typically comprised an initial surfacing of grass over dark brown sandy soil recorded to depths of between 0.10m and 0.50m. Across the central and western site area, the initial surfacing was generally recorded to be underlain by disturbed brown clayey sand and gravel of sandstone and mudstone with occasional brick to depths of between 0.90m and 1.50m which were in turn generally underlain by a thin band of organic sand (possible relic topsoil layer) to a maximum recorded depth of 1.70m. The eastern site area was noted to record a limited thickness of made ground (i.e. initial topsoil surfacing and occasionally a possible relic topsoil layer).			
	Made ground across the site was noted to typically locally deepen from east to west, which concurs with the initial assessment undertaken as part of the Phase I assessment indicating that there was historical evidence of potential site reprofiling, raising the western extent of the site in order to create a level platform for former site usages (i.e. football field).			
	Natural (Superficial) Deposits			
	Variable superficial deposits were encountered across the site as a whole. Natural deposits encountered formed mixed clay, sand, gravel and silt deposits with the site showing no indication of uniformity, particularly within the initial 5.00m. In addition, at the location of WS07, a significant reduction in resistance of the sampling equipment along with no recovery was noted at a depth of between 3.00m and 4.00m. In order to further investigate this, a trial pit was excavated within the location of WS07, with running sand deposits encountered from the approximate depth (3.20m) to the termination depth of the pit at 3.65m.			
	Bedrock Deposits			
	From the CPT's which targeted the proposed building footprint, refusal of testing equipment occurred at depths of between 10.46m and 14.92m which is considered to be potentially associated with the underlying bedrock deposits (i.e. Limestone), which is recorded at a similar depth within nearby historical BGS borehole records. In addition, cone resistance was recorded to decrease at the majority of the CPT locations at an average depth of c.3.00m where water was typically encountered (Phreatic Groundwater Surface).			
	As previously noted, during completion of the CPT's, refusal of testing equipment occurred within the area of the proposed building at depths of between 10.46m and 14.92m which is considered to be potentially associated with the presence of Limestone bedrock deposits.			
Groundwater	During the investigation works, groundwater strikes were noted within the majority of the mini percussive borehole positions at depths of between 1.00m and 2.40m. In addition, at the location of TP07, groundwater was recorded at a depth of 3.20m, upon encountering running sand deposits, with slight water seepages noted within TP01 and TP02 at a depth of 0.50m.			
	From the findings of the CPT's, cone resistance was also indicated to decrease at the majority of the CPT locations at a depth of approximately of 3.00m where water was typically encountered (Phreatic Groundwater Surface).			
	The results of the groundwater monitoring undertaken to date recorded standing water levels ranging between 1.60m and 2.40m below ground level within WS01, WS02 and WS03, with only minor fluctuations noted during the initial monitoring period.			

	Hydrock 3E
Contamination	Based the findings of the contamination risk assessment no concentrations of contaminants have been identified, which exceed current assessment criteria, based upon a commercial end use. Therefore, these materials are considered suitable for continued use within a commercial setting without representing a potential risk to human health (i.e. future end users).
	In addition, when considering the very low levels of potential contaminants recorded below the site, there is no significant risk considered to controlled waters
Foundations	From the findings of the intrusive investigations, the use of conventional shallow foundation options and trench fill is considered unviable due to the variability of the natural deposits beneath the site.
	In view of this, the use of Controlled Modulus Columns CMC's may represent a potential viable option for the site, subject to confirmation from a specialist ground improvement contractor.
	Alternatively, a piled foundation solution presents a viable foundation solution for the site, with foundations taken down through the made ground and natural deposits, and based on limestone bedrock deposits. If this foundation option is to be adopted, the contents of this report should be made available to the appropriate design specialist.
	Taking into account the variable ground conditions beneath the site, a ground bearing floor slab will likely be unsuitable, therefore it is considered a suspended floor slab will likely be required for the proposed development
External Works	It is recommended that a CBR value of 2% be adopted for the design of any new hardstanding which would result in a preliminary requirement for the inclusion of 400mm sub-base within external hard-standing areas.
	This should be reviewed following the completion of in-situ plate load (CBR) tests during the initial stages of the development works when the final formation level has been confirmed.
Soakaways	From the results of the Soakaway test results, it is considered the natural shallow deposits below the site are not suitable for the use with soakaways.
Disposal of Materials	Following a review of the soil and WAC screening results increased levels of TOC were typically noted for the made ground materials which exceed acceptance criteria for disposal at an Inert landfill (3%), indicating that the majority of these materials will likely be characterised as Non-Hazardous for disposal.
	Natural soils below the site will likely be suitable for disposal to an Inert landfill site.
	Where offsite disposal of waste soils is required, the results of the investigation should be made available to the waste carrier/receiver in order to determine the waste classification, costs for disposal and the requirement for further testing. Sufficient time should be allowed in the site programme to effectively segregate soils based on material type, including the time allowed for any further laboratory classification analysis as required.
Sulphate Attack on Buried Concrete	The results of the chemical analyses indicate a BRE Special Digest 1:2005 Design Sulphate Class DS-1 with an ACEC classification AC-1.
Excavations	If man entry is proposed into excavations the use of support to excavation sides is recommended, in line with health and safety guidelines.
Dewatering	Significant groundwater ingress into shallow excavations is possible due to the presence of perched groundwater. As such appropriate groundwater control measures should be implemented for excavations and carefully monitored in order to prevent loss of fine/ground.

This Executive Summary forms part of Hydrock 3E report number P18-474-3E-XX-XX-RP-G-9000 and should not be used as a separate document.

1. INTRODUCTION

1.1 Commission

Hydrock 3E was commissioned by Aldi Stores Limited to carry out a Phase II Geo-Environmental Assessment for land located adjacent to Colliery Lane, Hetton Le Hole, Tyne & Wear.

This report highlights potential ground related environmental and geotechnical considerations in relation to the proposed development which it is understood to include the construction of a new Aldi Store with associated car parking and soft landscaping, as shown on the proposed site plan included in **Appendix A**.

1.2 Objectives

This assessment has been produced to provide an assessment of ground conditions along with potential geotechnical and environmental conditions and constraints at the site.

The primary objectives of this assessment were:

- To investigate near surface soil and groundwater conditions.
- To determine the potential risks posed by any ground or groundwater contamination and provide recommendations on remedial measures to manage such risks (if required).
- To assess the risk posed by hazardous ground gases.
- To provide advice relating to geotechnical issues associated with the site.
- To provide foundation recommendations.

1.3 Scope

The initial phase of fieldworks were undertaken on the 12th and 13th January 2023 and comprised of ten mini-percussive boreholes (referenced as WS01 to WS10) and three soakaway trial pits (referenced as TP01 to TP03).

Following the completion of the initial fieldworks, supplementary ground investigation works were undertaken on the site to further assess potential geotechnical constraints identified during the initial phase of works and to aid in future foundation design. The supplementary investigation works were undertaken on 27th January 2023 which comprised 4 no. trial pits (referenced as TP04 to TP07) and nine cone penetrometer tests (referenced as CPT01 to CPT09).

This report presents the factual information available during this appraisal, interpretation of the data obtained and recommendations relevant to the scope of works outlined above. For the purpose of this report a commercial end use has been adopted for this assessment.

The comments and opinions presented in this report are based on the findings of the Intrusive investigation carried out by Hydrock 3E. Responsibility cannot be accepted for any conditions not revealed by these reports and which have not been taken into account by this report.

1.4 Previous Reports

To aid in this assessment, where applicable reference has been made to a previous Phase I Geoenvironmental Assessment (Desk Study Report) produced for the site by 3e Consulting Engineers Limited. A summary of the Phase I report, referenced below is included in Section 3 of this assessment.

• 3e Consulting Engineers Limited (December 2018). Phase I Geo-Environmental Assessment for Aldi Stores Limited – Colliery Lane, Hetton-le-Hole, Tyne & Wear. Report Reference P18-474-3E-XX-XX-RP-G-9000, Issue 1.

It is recommended that the following report be read in conjunction with this report.

1.5 Uncertainties and Limitations

The report has been prepared by Hydrock 3E (which is a trading style of 3e Consulting Engineers Ltd) for the use of Aldi Stores Limited. Any third parties who use the information contained herein do so at their own risk. Hydrock 3E shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared or for use of the report by any parties not defined in Hydrock 3E's appointment. If any unauthorised third party comes into possession of this report, they rely on it entirely at their own risk and Hydrock 3E do not owe them any Duty of Care or Skill.

This report presents the factual information available during this appraisal, interpretation of the data obtained and recommendations relevant to the outlined scope of works. It has been assumed in the production of this report that the site is to be developed for a commercial end use.

This report provides the findings of the assessment carried out in February 2023. The report has been prepared by Hydrock 3E on the basis of available information obtained during the investigation period. Although every reasonable effort has been made to gather all relevant information, not all potential environmental constraints or liabilities associated with the site may have been revealed. Responsibility cannot be accepted for any conditions not revealed and which have not been taken into account by this report.

Any diagram or opinion relating to site geology, contamination or other spatially variable features between or beyond investigation positions is conjectural and provided for guidance only. Confirmation of ground conditions between exploratory holes should be undertaken if deemed necessary. Evaluation of groundwater is based on observations made at the time of the investigation, and it should be noted that levels may vary due to seasonal effects.

References to possible asbestos containing material made within this report do not constitute an asbestos survey. Hydrock 3E are not asbestos specialists and cannot provide specific asbestos risk assessment advice, it is recommended that the Client appoints an asbestos consultant to advise on any matters relating to asbestos.

This assessment has been carried out in general accordance with recognised best practice. Unless otherwise stated, no assessment has been made for the presence of radioactive substances or unexploded ordnance. Where the phrase 'suitable for use' is used in this report, it is in keeping with the terminology used in planning control and does not imply any specific warranty or guarantee offered by Hydrock 3E.

Please note that notwithstanding any site observations concerning the presence or otherwise of archaeological sites, asbestos-containing materials, ecology or invasive weeds, this report does not constitute a formal survey of these potential constraints and specialist advice should be sought.

Information provided by third parties has been used in good faith and is taken at face value; however, Hydrock 3E cannot guarantee its accuracy or completeness. Where the existing report(s) prepared by others have been provided by the Client, it is assumed that these have been either commissioned by the Client, or can be assigned to the Client, and can be relied upon by Hydrock 3E. Should this not be the case Hydrock 3E should be informed immediately as additional work may be required. Hydrock 3E is not responsible for any factual errors or omissions in the supplied data, or for the opinions and recommendations of others. It is possible that the conditions described may have since changed through natural processes or later activities.

Any site boundary line depicted on plans does not imply legal ownership of land.

2. THE SITE

2.1 Location and Description

The site, centred on National Grid Reference 435780, 546820 is located approximately 800m to the south east of Hetton-le-Hole town centre. A site location plan is included as **Drawing G0001**.

The site is approximately 0.81 Hectares (Ha) in size and generally rectangular in shape. The site is an area of public open space, absent of structural development. The northern boundary of the site is lined by a concrete post and metal pole permanent fence, with a double vehicular gate in a state of disrepair at the north western corner of the site. To the west and east, residential fences bound the site, with residential properties beyond. A wooden fence line is also shown along the southern boundary of the site with the Hetton Lyons Cricket and Football Club on the opposing side.

A topographical survey undertaken for the site by Castle Keep Surveys on the 23rd November 2022 (Drawing ref: CKS-1309-001, Rev. A) indicates a site level of approximately 97m AOD (above ordinance datum) at the north eastern corner of the site, reducing towards the west of the site where a level of 94.50m AOD is recorded. Along the western boundary, a sharp reduction of site level to approximately 93.50m AOD is recorded, indicating some extent of site reprofiling has likely occurred to accommodate a relatively level surface level across the majority of the site.

The adjacent land use is generally as follows:

- North: Colliery Lane with Hetton Lyons Industrial Estate beyond.
- South: Hetton Lyons Cricket and Football Club.
- West: Residential properties.
- East: Residential properties.

3. SUMMARY OF PHASE I GEO-ENVIRONMENTAL ASSESSMENT

3.1 Phase I Geo-environmental Assessment (3e Consulting Engineers Limited)

The following provides a summary of the Phase I report produced by for the site by 3e Consulting Engineers Limited as referenced in paragraph 1.4.

3.1.1 Site History

From the earliest OS plans, dated 1856 the site is recorded as absent of development. By 1974, a lined feature is shown across the western extent of the site, potentially indicating some level of site reprofiling. By 1980 the site is shown as a football field however by 2009 the site is no longer used as a football field and has allowed to become overgrown grassland.

The surrounding area has included collieries, quarries, sand pits, gas works and lime kilns form pre 1859's to the 1950's. By the 1960's, previous industrial land use has been replaced with factories, allotments and housing.

3.1.2 Environmental Setting

- From BGS data significant thicknesses of made ground are not recorded beneath the site, however nearby BGS borehole data record the presence of ash and brick fill to depths of between 0.75m and 1.70m within close proximity to the north western and north eastern boundary of the site.
- BGS plans record the site as being underlain by Glaciofluvial deposits (sand and gravel) and alluvial deposits (clay, silt, sand and gravel). Nearby BGS data identify medium dense gravelly sand to depths of between 3.80m and in excess of 6.00m.
- The bedrock beneath the site is indicated to be the Raisby Formation (dolomitic limestone).
- The superficial deposits are classified as a Secondary A Aquifer with the underlying bedrock deposits classified as a Principal Aquifer.
- The nearest surface water feature is an un-named feature located 300m east of the site.
- The site is recorded by the EA to lie within a Flood Zone I setting with regards to flooding from rivers or the sea.
- The site is located within a Source Protection Zone III (total catchment).
- There are no discharge consents recorded within 250m.
- There are no pollution incidents recorded within 250m.
- There are no groundwater abstractions recorded within 1km.
- There are no local authority landfill sites recorded within 250m of the site.
- There is 1 no. waste transfer site within 250 of the site.
- There are no IPC's or IPPC's within 250m.
- There area 3 no LAPPC's within 250m of the site.

3.1.3 Unexploded Ordnance

The regional unexploded bomb risk map obtained from Zetica UXO records the site as being located within a low risk area from possible unexploded ordnance (UXO) resulting from WWII bombing, indicating that works can progress without the requirement for special precautions in this regard.

3.1.4 Radon

From information obtained as part of the Phase I report the site is located within an intermediate probability radon area (between 1% to 3% of homes are estimated to be at or above the action level) indicating no Radon protection measures are required.

3.1.5 Coal Mining

From the findings of the Phase I assessment, the site is not considered to be at significant risk from historical shallow coal mining activities and therefore no further work was considered necessary in this regard.

3.1.6 Preliminary Ground Gas Risk Assessment

The preliminary ground gas risk assessment completed as part of the Phase I report identified a low to medium risk to the development from ground gas, with the primary sources considered to be made ground associated with possible former activities on the site (i.e. re-profiling activities) and the potential for organic Alluvium superficial deposits below the site.

3.1.7 Conceptual Site Model

Based on the information reviewed as part of the Phase I report potential sources of contamination identified for this site included the following:

Sources

Table 3.1: Sources of Contamination and Potential Contaminants of Concern (PCOC)

Potential Source	Potential Contaminative Processes	Potential Contaminants of Concern (PCOC)
On-site: Made Ground.	• Made ground associated with former site activities and potential site reprofiling.	 Metals Metalloids PAH's TPH's Asbestos
Off-site: Made Ground (former nearby land usages such as colliery and industrial land)	• Made ground/fill associated with former colliery site and industrial land to the north.	 Metals Metalloids PAH's TPH's Asbestos
Ground gas migration and/or production	 Made ground associated with site reprofiling. Potential for ground gases associated with the underlying Alluvium (i.e. possible degradation of organic matter). 	 Carbon Dioxide (CO₂) Methane (CH₄) Depleted Oxygen (O₂)

When considering the environmental site setting and nature of the proposed development the following potential pollution pathways and receptors were identified for this site:

3.1.8 Potential Pollution Pathways

- Human Health direct contact, soil ingestion, dust and vapour inhalation.
- Surface Water Feature Lateral migration into surface water features (considered low risk at this stage due to distance to the nearest surface water feature).
- Principal and Secondary A Aquifers leaching and vertical migration of contamination.

- Human Health Vertical and lateral migration, ingress and accumulation of ground gases and vapours into buildings and service entries (manholes).
- Direct contact of aggressive soils with building foundations and floor slabs.

3.1.9 Receptors

- Human Health site end users.
- Human Health construction workers.
- Surface water features.
- Underlying Principal and Secondary A Aquifers.
- Buildings, foundations and floor slabs.

3.1.10 Pollutant Linkage Assessment

From information gathered during the Phase I desk study a qualitative risk assessment was made of the likelihood of any pollutant linkages operating and their potential significance, as summarised in the table on the following page:

Table 3.2: Preliminary Conceptual Site Model (CSM)

Contamination Source	Pathway	Potential Receptors	Potential Severity	Potential Probability of Occurring	Risk Level	Comments
On-site: Made Ground	Direct contact, ingestion, dust and vapour inhalation	Human Health Risk - Construction workers	Medium	Likely / Low Likelihood	Low Risk	Contaminants may be present associated with likely historic site reprofiling which could represent a potential risk to construction workers. However, the risk could be mitigated by adopting appropriate measures, i.e. PPE, exposure times etc.
	Direct contact, ingestion and dust/vapour inhalation	Human Health Risk – End users	Medium	Likely / Low Likelihood	Low Risk	Contaminants may be present associated with the likely historic reprofiling works, which could represent a potential risk.
	Lateral and vertical migration	Pollution of Controlled Waters – surface water	Medium	Low Likelihood	Low Risk	Yes, potentially but would be largely mitigated by use of hard cover in development
	Lateral and vertical migration	Pollution of Controlled Waters – Principal and Secondary A Aquifer	Medium	Low Likelihood	Low Risk	Potentially, given the potential presence of ashy made ground soils. The proposed extensive hardcover will also reduce the presence of mobile groundwater.

Contaminants associated with off-site sources	Lateral migration	Human Health Risk - Site end users	Medium	Low Likelihood	Low Risk	Possible migration of contamination associated with nearby land uses (i.e. former colliery and industrial land).
Ground gas migration and/or production	Vertical migration into buildings or confined spaces	Site end users, construction workers and property	Medium	Low Likelihood	Low Risk	The potential sources identified for this site include made ground and Alluvium.

4. METHOD OF INVESTIGATION

4.1 General

An initial phase of fieldworks were undertaken on the 12th and 13th January 2023 and comprised of ten minipercussive boreholes (referenced as WS01 to WS10) and three soakaway trial pits (referenced as TP01 to TP03).

Following the finding as the initial phase of works, Hydrock 3E attended site on the 27th January 2023 to undertaken a supplementary phase of works to further inform potential geotechnical constraints identified as part of the initial phase of works along with ground investigation works to aid in future foundation design. The supplementary investigation works comprised 4 no. trial pits (referenced as TP04 to TP07) and nine cone penetrometer tests (CPT) (referenced as CPT01 to CPT09).

The locations of the exploratory holes can be seen on **Drawing G0002** with copies of the borehole and trial pit record sheets included in **Appendix B** and results of the CPT attached in **Appendix C**.

All depths recorded are taken from below existing ground level, with the exploratory holes positioned to provide a general coverage across the site, whilst also taking into account existing access constraints and making allowance for buried utilities. Fieldwork and soil descriptions were carried out in general accordance with BS5930:2015+A1:2020 'Code of Practice for Ground Investigations', BS EN ISO 14688-1, BS EN ISO 14689-1 and BS10175:2011+A2:2017 'Investigation of Potentially Contaminated Sites – Code of Practice'.

4.2 Investigation Rationale

The mini-percussive boreholes were positioned in order to determine the soil profile and target potential areas of contaminative concern. Disturbed samples were recovered as appropriate for soil descriptions and laboratory testing. In situ standard penetration tests (SPT's) were carried out to provide an assessment of the in-situ density of the made ground and natural deposits present at the exploratory hole locations.

The initial phase of trial pits were positioned in order to facilitate the completion of soakaway tests (BRE 365). However, supplementary trial pits were undertaken across the site to investigate a potential anomalous ground conditions recorded at WS07 and to allow for the recovery of samples from proposed road infrastructure routes for appropriate geotechnical laboratory testing.

In addition, from the findings of the initial phase of ground investigation works undertaken on the site. cone Penetration Tests (CPT) with pore water measurement were undertaken across the proposed store location in order to further aid in determining potential foundation options and foundation design for the site.

4.3 Laboratory Chemical Testing

The results of the chemical analysis are included as **Appendix D**. The analyses were carried out at an MCERTS registered and UKAS accredited laboratory.

4.3.1 Soils

In order to provide an assessment of potential contamination representative samples of made ground and natural soil recovered from across the site as part of the combined investigation works, were screened for the following range of determinands:

- 12 no. samples screened for Metals: Arsenic, Boron, Copper, Cadmium, Chromium (total), Lead, Mercury, Nickel, Selenium, Zinc and TOC.
- 8 no. samples screened for Cyanide (total) and Chromium (VI).
- 4 no. samples screened for Metals: Antimony, Barium and Molybdenum.
- 8 no. samples screened for Polycyclic Aromatic Hydrocarbons (USEPA 16 PAH's).

- 4 no. samples screened for Total Petroleum Hydrocarbons Criteria Working Group (TPH CWG).
- 8 no. samples screened for the presence of Asbestos.

In addition to the above, 3 no. samples of the made ground and 1 no. sample of the natural soil were screened for Waste Acceptance Criteria (WAC) analysis, including WAC metals.

4.4 Laboratory Geotechnical Testing

Geotechnical testing was carried out on selected samples in accordance with techniques outlined in BS 1377:1990, comprising the following:

- 4 no. Particle Size Distributions tests to aid in classifying the superficial soils.
- 6 no. Atterberg limit determination tests.
- 3 no. Remoulded California Bearing Ratio (CBR) tests.

In addition, 8 no. samples of the made ground and 3 no. samples of the natural soil were scheduled for water soluble sulphate and pH determinations to assess the potential for sulphate attack on buried concrete.

The results of the geotechnical testing are presented in **Appendix E** with the results of the water soluble sulphate and pH analysis contained within the chemical test certificates included in **Appendix D**.

5. RESULTS OF THE INVESTIGATION

5.1 Ground Conditions

Detailed descriptions of the materials encountered together with observations of groundwater, the results of in situ testing and sampling information are given on the exploratory hole record sheets included in **Appendix B** with locations shown on **Drawing G0002**. A generalised succession of the ground profile encountered during the investigation works is summarised below. However, it should be noted that there is a potential for some local variation across the site and reference should be made to individual exploratory hole records.

5.1.1 Made Ground

Made ground was identified within all of the exploratory hole locations to depths of between 0.10m and 1.70m below ground level. These materials typically comprised an initial surfacing of grass over dark brown sandy soil recorded to depths of between 0.10m and 0.50m. Across the central and western site area, the initial surfacing was generally recorded to be underlain by disturbed brown clayey sand and gravel of sandstone and mudstone with occasional brick to depths of between 0.90m and 1.50m which were in turn generally underlain by a thin band of organic sand (possible relic topsoil layer) to a maximum recorded depth of 1.70m. The eastern site area was noted to record a limited thickness of made ground (i.e. initial topsoil surfacing and occasionally a possible relic topsoil layer).

Made ground across the site was noted to typically locally deepen from east to west, which concurs with the initial assessment undertaken as part of the Phase I assessment indicating that there was historical evidence of potential site reprofiling, raising the western extent of the site in order to create a level platform for former site usages (i.e. football field).

5.1.2 Superficial (Drift) Deposits

Variable superficial deposits were encountered across the site as a whole. Natural deposits encountered formed mixed clay, sand, gravel and silt deposits with the site showing no indication of uniformity, particularly within the initial 5.00m. In addition, at the location of WS07, a significant reduction in resistance of the sampling equipment along with no recovery was noted at a depth of between 3.00m and 4.00m. In order to further investigate this, a trial pit was excavated within the location of WS07, with running sand deposits encountered from the approximate depth (3.20m) to the termination depth of the pit at 3.65m.

From the CPT's which targeted the proposed building footprint, refusal of testing equipment occurred at depths of between 10.46m and 14.92m which is considered to be potentially associated with the underlying bedrock deposits (i.e. Limestone), which is recorded at a similar depth within nearby historical BGS borehole records. In addition, cone resistance was recorded to decrease at the majority of the CPT locations at an average depth of c.3.00m where water was typically encountered (Phreatic Groundwater Surface).

5.1.3 Bedrock Deposits

As previously noted, during completion of the CPT's, refusal of testing equipment occurred within the area of the proposed building at depths of between 10.46m and 14.92m which is considered to be potentially associated with the presence of Limestone bedrock deposits.

5.2 Visual and / or Olfactory Evidence of Potential Contamination

During the investigation works, there was no significant visual and / or olfactory evidence of contamination encountered.

5.3 Groundwater

During the investigation works, groundwater strikes were noted within the majority of the mini percussive borehole positions at depths of between 1.00m and 2.40m. In addition, at the location of TP07, groundwater was recorded at a depth of 3.20m, upon encountering running sand deposits, with slight water seepages noted within TP01 and TP02 at a depth of 0.50m.

From the findings of the CPT's, cone resistance was also indicated to decrease at the majority of the CPT locations at a depth of approximately of 3.00m where water was typically encountered (Phreatic Groundwater Surface).

The results of the groundwater monitoring undertaken to date recorded standing water levels ranging between 1.60m and 2.40m below ground level within WS01, WS02 and WS03, with only minor fluctuations noted during the initial monitoring period. The results of the initial groundwater monitoring are presented in **Appendix F**. It should be noted that groundwater levels vary seasonally and that a higher water table than recorded could occur.

5.4 In situ Test Results

5.4.1 Standard Penetration Tests (SPT's)

SPT's undertaken within the natural clay and silt deposits recorded 'N' values of between 0 and 49, with these deposits typically noted to be soft or firm in consistency.

SPT's undertaken within the natural sand and gravel deposits recorded 'N' values of between 0 and 19, indicative of very loose to medium dense deposits.

5.4.2 Hand Shear Vane Test Results

Hand shear vane (HSV) readings carried out on undisturbed samples of the natural clay deposits varied between 2kPa and 89kPa. These results are indicative of extremely low to high strength cohesive deposits. However the majority of the tests undertaken on the natural cohesive deposits were noted to be typically very low to low strength.

5.4.3 Soakaway Tests (BRE 365)

In-situ soakaway test were completed at selected trial pit locations (TP01 to TP03) in accordance with BRE 365: Soakaway Design, to assess the suitability of the upper natural deposits for use with soakaways. The trial pits were excavated in order to target the potential locations of future soakaways, with copies of the trial pit records included in **Appendix B** and soakaway calculation sheets included as **Appendix G**. A summary of the findings are presented in the table below.

Table 5.1: Summary	of BRE	365 Soakaway	Results
--------------------	--------	--------------	---------

Location	Depth and Range of Test (m)	Principal Strata Type	Soil Infiltration Rate (m/s)	Drainage Characteristics
TP01	1.20m to 2.20m	Clayey gravelly SAND	Unable to Calculate ⁽¹⁾	N/A
TP02	1.70m to 2.30m	Clayey gravelly SAND	Unable to Calculate ⁽¹⁾	N/A
TP03	1.30m to 2.20m	Clayey gravelly SAND	Unable to Calculate ⁽¹⁾	N/A

Notes:

1. Unable to calculate due to insignificant or no change in water level during monitoring period.

From the results of the soakaway tests, no significant change in groundwater level occurred during the monitoring period, indicating the presence of practically impermeable deposits below the site. Therefore it is considered the natural shallow deposits below the site are not considered suitable for the use with soakaways.

5.5 Geotechnical Related Testing

5.5.1 Classification Tests

The results of the geotechnical testing are presented in Appendix E.

Atterberg limit determination analysis was undertaken on 4 no. representative samples of the underlying cohesive deposits below the site ranging from depths of between 1.00m and 2.50m. The results of the analysis recorded modified plasticity indices of between 4.4% and 14.56%, which is indicative of cohesive soils with a low volume change potential.

In addition to the above, 2 no. samples of the underlying possible relic topsoil materials were also subjected to Atterberg limit determination analysis in order to confirm the nature of these materials, with the testing confirming the materials as non-plastic.

5.5.2 Particle Size Distribution (PSD) Tests

Particle size distribution analysis was carried on 4 no. representative samples of the coarse superficial deposits recovered from WS03, WS05, WS06 and WS09 at depths of between 1.50m to 2.00m, to confirm field descriptions and classify these materials. From the results the deposits tested generally comprise well graded sand and gravel. These results generally concur with the field descriptions.

5.5.3 Remoulded California Bearing Ratio (CBR) Tests

Remoulded CBR tests were undertaken on 3 no. representative samples of materials taken form the locations of proposed road and car park infrastructure at depths of between 0.40m and 0.75m. The CBR results indicate average CBR values of between 2.15 and 18.5, indicative of highly variable deposits beneath the site. Taking this into consideration, it is recommended that a CBR value of 2% be adopted for the design of any new hardstanding which would result in a preliminary requirement for the inclusion of 400mm subbase within external hard-standing areas.

This should be reviewed following the completion of in-situ plate load (CBR) tests during the initial stages of the development works when the final formation level has been confirmed.

5.5.4 Sulphate and pH Determinations

The results of the chemical testing are presented in Appendix D.

Within the made ground, water soluble sulphate concentrations were recorded between <10mg/l and 53mg/l with pH values between 6.9 and 8.0. This indicates a BRE Design Special Digest 1:2005 Design Sulphate Class DS-1 with an ACEC site classification AC-1.

Within the natural ground, water soluble sulphate concentrations were recorded as between <10mg/l and 12mg/l with pH values between 6.7 and 7.4. This indicates a BRE Design Special Digest 1:2005 Design Sulphate Class DS-1 with an ACEC site classification AC-1.

6. CONTAMINATION RISK ASSESSMENT

6.1 Methodology

The results of the contamination related testing undertaken on samples of made ground and natural strata are included as **Appendix D**. In relation to human health risk the results have been assessed using the LQM/CIEH Suitable for Use Levels (S4UL's) for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3170; All rights reserved), which have been derived in accordance with current UK legislation, and national policy using the most recent version of the CLEA software (v1.06).

The derived S4UL's are based on the concept of minimal tolerable risk as described in SR2 (Environment Agency 2009a) which underpins all previous Environment Agency (EA) SGV's and other GAC's. As part of this assessment, it is noted that S4UL's do not incorporate any toxicological parameter changes to the CLEA base model, however recent toxicological data has been incorporated into the contaminant databases.

Furthermore, S4UL GAC's are considered to be equivalent to the previously published Environment agency SGV's, and previous iterations of LQM/CIEH GAC's and as such are suitable for use in generic quantitative risk assessments under both planning and Part IIa regimes. Taking this into account, it is considered that the modified exposure assumptions adopted in S4UL's are sufficiently conservative in relation to assessing the level of potential risk to human health for the development and future end users.

Where no S4UL is available, reference has been made to appropriate Category 4 Screening Levels (C4SL's), EIC/AGS:CL:AIRE GAC's, SoBRA AGAC for standard land uses, which are similarly considered to be sufficiently conservative in relation to assessing the level of potential risk to human health. For the purpose of this report, all S4UL's, C4SL's, EIC/AGS:CL:AIRE GAC's and SoBRA AGAC's have been referred to as Generic Assessment Criteria (GAC).

With respect to the assessment of the site proposals include the construction of a new Aldi store with car parking facilities and areas of soft landscaping. When considering the potential receptors, an assessment has been undertaken utilising GAC for a commercial end use. To provide a conservative assessment, a value of an SOM of 1.0% has been used in the assessment.

6.2 Human Health Risk Assessment

A summary of the human health contamination related testing is presented in the following table.

Determinand	Maximum Concentration (mg/kg)	No. of Samples Tested	Generic Assessment Criteria (GAC) ⁽¹⁾ mg/kg	No. of Samples Exceeding GAC
Metals and Metalloids				
Antimony	1.3	4	7500 ⁽⁴⁾	0
Arsenic	14	12	640	0
Barium	185	4	22000 ⁽⁴⁾	0
Boron	2.6	12	240000	0
Cadmium	0.4	12	190	0
Chromium (III)	36	12	86000	0
Chromium (VI)	<1	8	33	0
Cyanide	<1	8	24 ⁽²⁾	
Lead	266	12	2330 ⁽³⁾	0
Mercury	1.1	12	1100	0
Molybdenum	2.3	4	1700 ⁽⁴⁾	0
Selenium	1.1	12	12000	0
Copper	77	12	68000	0
Nickel	36	12	980	0
Zinc	182	12	730000	0

Table 6.1: Soil Analysis

Table 6.1: Soil Analysis

Determinand	Maximum Concentration (mg/kg)	No. of Samples Tested	Generic Assessment Criteria (GAC) ⁽¹⁾ mg/kg	No. of Samples Exceeding GAC
Polycyclic Aromatic Hydrocarbons	s (USEPA 16)			
Naphthalene	0.33	8	190	0
Acenaphthylene	0.07	8	83000	0
Acenaphthene	0.05	8	84000	0
Fluorene	0.08	8	63000	0
Phenanthrene	1.42	8	22000	0
Anthracene	0.28	8	520000	0
Fluoranthene	3.13	8	23000	0
Pyrene	2.47	8	54000	0
Benzo(a)anthracene	1.68	8	170	0
Chrysene	1.79	8	350	0
Benzo(b)fluoranthene	2.08	8	44	0
Benzo(k)fluoranthene	0.73	8	1200	0
Benzo(a)pyrene	1.39	8	35	0
Indeno(1,2,3-cd)pyrene	1.29	8	500	0
Dibenz(a,h)anthracene	0.25	8	3.5	0
Benzo(g,h,i)perylene	1.05	8	3900	0
Total Petroleum Hydrocarbons (T	PH CWG)			
Aliphatic TPH C5-C6	<0.1	4	3200	0
Aliphatic TPH C6-C8	<0.1	4	7800	0
Aliphatic TPH C8-C10	<0.1	4	2000	0
Aliphatic TPH C10-C12	<6	4	9700	0
Aliphatic TPH C12-C16	<6	4	59000	0
Aliphatic TPH C16-C35	16	4	1600000	0
Aliphatic TPH C35-C44	12	4	1600000	0
Aromatic TPH C5-C7	<0.01	4	26000	0
Aromatic TPH C7-C8	<0.01	4	56000	0
Aromatic TPH C8-C10	<0.01	4	3500	0
Aromatic TPH C10-C12	<10	4	16000	0
Aromatic TPH C12-C16	<10	4	36000	0
Aromatic TPH C16-C21	11	4	28000	0
Aromatic TPH C21-C35	132	4	28000	0
Aromatic TPH C35-C44	122	4	28000	0
Total Petroleum Hydrocarbons (T	PH C6-C40)			
TPH C10-C40	150	4	2000 ⁽⁵⁾	0

Notes:

1. LQM/CIEH S4UL for Commercial end use.

2. SOBRA AGAC

3. Category 4 Screening Level (C4SL) for Commercial end use.

4. EIC/AGS/CL:AIRE GAC for Commercial end use.

5. Category 4 Screening Level (C4SL) for most conservative Aliphatic/Aromatic hydrocarbon banding.

From the results of the laboratory chemical analysis, none of the determinands tested were elevated above the generic assessment criteria for a commercial end use.

In addition, when considering the very low levels of potential contaminants recorded below the site, there is no significant risk considered to controlled waters.

6.2.1 Asbestos

A total of 8 no. samples of made ground recovered were screened for asbestos fibres; none were detected.

7. GROUND GAS RISK ASSESSMENT

This ground gas risk assessment has been undertaken in general accordance with CIRIA C665 'Assessing risks posed by hazardous ground gases to buildings', BS8485:2015+A1:2019 'Code of practice for the design of protective measures for methane and carbon dioxide for ground gases in new buildings' and BS8576:2013 'Guidance on investigation for ground gas – permanent gases and Volatile Organic Compounds (VOC's)'.

7.1 Ground Gas

From the Phase I Geo-environmental assessment, it was considered a low to medium risk was present on the site due to the potential presence of made ground and alluvial soils. Therefore, in consideration of the proposed commercial end use, in accordance with CIRIA C665 an appropriate monitoring frequency and period of six readings over a minimum three month period is considered appropriate for this site, with monitoring also undertaken over periods of rising and falling atmospheric pressure, as recommended within BS8485:2015+A1:2019.

To aid in assessing the gas regime below the site, a total of 3 no. gas monitoring wells, comprising slotted 50mm diameter HDPE pipe set within a granular filter, were installed across the site at the locations of WS01, WS02 & WS03, to depths of between 4.00m and 5.00m below current ground levels. The locations of the monitoring wells are shown on **Drawing G0002** whilst further details relating to well construction at each borehole location can be seen on the exploratory hole record sheets included in **Appendix B**.

In total the wells have been monitored on two occasions on the 27th January and 1st February 2023, with the results of the monitoring presented in **Appendix F** along with copies of the gas analyser calibration certificates. The results of the monitoring are summarised in the following table:

Location	CH_4	CO_2	O_2	Maximum	Barometric	Maximum	GSV* (l/hr)
	(70 V/V)	(70 V/V)	(70 V/V)	(l/hr)	(mb)	CO2	CH4
WS01	0.0	1.00	20.40-20.70	<0.1			
WS02	0.0	1.50-2.60	19.20-20.10	<0.1	1007-1025	<0.07	<0.07
WS03	0.0	5.10-6.00	12.30-15.80	<0.1			

Table 7.1: Gas Monitoring Results

* CIRIA 665 Gas Screening Value

During the initial monitoring visits, no Methane (CH₄) was detected whilst Carbon Dioxide (CO₂) was recorded up to a maximum concentration of 6.00% v/v. Negligible flow rates were also recorded during the monitoring period (i.e. <0.1l/hr), whilst occasional slightly depleted Oxygen levels were also recorded to a minimum concentration of 12.30% v/v.

When considering the above, for the purposes of this preliminary assessment the risk to the site from ground gases has been evaluated by converting the results in the table above to a gas screening value (GSV), which is calculated by multiplying the typical maximum gas concentrations with the recorded maximum positive steady flow rate. As negligible concentrations of Methane were recorded during the monitoring period, only the preliminary GSV for Carbon Dioxide has been calculated, using the maximum recorded value of 6.00% v/v with a flow rate taken as 0.1l/hr.

The preliminary GSV has be calculated as follows:

• Carbon Dioxide GSV = 0.060 (6.00%) x 0.1 = 0.006l/hr

From the results of the ground gas monitoring carried out to date, the preliminary GSV for Carbon Dioxide does not exceed the GSV minimum assessment values for a Characteristic Situation 1 (CS1), as outlined in BS8485:2015+A1:2019 and CIRIA C665. However as concentrations of Carbon Dioxide are recorded above the 5% threshold, an initial assessment indicates the site to lie within a **Characteristic Situation 2 (CS2)** setting, indicating ground gas protection measures will be required for the site.

It should be noted a further 4 no. gas monitoring visits are planned and any conclusions may be subject to change until completion of the monitoring programme.

7.2 Radon

From the 1st December 2022, the UK Health Agency (UKHSA) and British Geological Survey published updated information pertaining to levels of risk posed by Radon. As such, the radon assessment for this site has been updated in accordance with the ukradon.org online interactive map.

In view of the above information, the site is recorded within an area where between 1%-3% of homes are at or above the action level. As such, in order to determine the potential risk, an updated envirocheck data sheet which includes a site specific radon risk assessment report was obtained and is attached in **Appendix H**. The results confirm the absence of risk and therefore no radon protection measures are required for this site.

8. MODIFIED CONCEPTUAL SITE MODEL

8.1 Sources of Contamination

From the findings of the contamination risk assessment, no concentrations of potential contaminants have been recorded which are considered to represent a potential risk to human health (i.e. future end users or construction workers). In addition, given the low levels of potential contaminants identified, the risk to controlled waters is also considered to be negligible.

From the results of the initial gas monitoring, increased levels of CO₂ have been recorded, with a preliminary assessment indicating this site could potentially fall within a CIRIA C665 and BS8485:2015+A1:2019 **Characteristic Situation 2 (CS2)** setting.

As gas monitoring is still ongoing for this site (a further 4 no visits still to be undertaken), the potential ground gas risk is subject to change following the completion of the programmed 6 visits.

When considering the above the following pathways and receptors are still considered applicable for this site:

8.2 Pathways

• Vertical and lateral migration, possible ingress and accumulation of ground gases into buildings and service entries (manholes).

8.3 Receptors

• Human Health – Site end Users

8.4 Pollutant Linkage Assessment

A qualitative risk assessment has been made of the likelihood of any pollutant linkage operating and its potential significance as summarised in the table below:

Contamination Source	Pathway	Hazard	Potential Receptors	Linkage Complete
Ground Gas	Vertical Migration into buildings and confined spaces	Human Health Risk, Fire Risk	Human Health and Properties	Elevated levels of Carbon Dioxide have been recorded above the 5% threshold during the initial ground gas monitoring visits undertaken on the site, indicating the site potentially falls within a Characteristic Situation 2 (CS2) . It should be noted a further 4 no. gas monitoring visits are planned and any conclusions may be subject to change until completion of the monitoring programme.

Table 8.1: Pollutant Linkage Model

9. DISCUSSION

Development proposals include the construction of a new Aldi store with associated car park facilities and soft landscaping. This investigation was carried out to provide contamination related testing to outline potential environmental constraints.

9.1 Contamination Assessment

Based the findings of the contamination risk assessment no concentrations of potential contaminants have been identified, which exceed current assessment criteria, based upon a commercial end use. Therefore, these materials are considered suitable for continued use within a commercial setting without representing a potential risk to human health (i.e. future end users).

In addition, when considering the very low levels of potential contaminants recorded below the site, there is no significant risk considered to controlled waters (i.e. underlying aquifers and surface water features).

9.2 Disposal of Materials

As part of the investigation, Waste Acceptance Criteria (WAC) testing was undertaken on representative samples of made ground, the results of which are included in **Appendix D**. In addition, the results of the chemical analyses has been reviewed to allow an initial assessment to be made in relation to potential off-site disposal characterisation of soils recovered during the investigation works.

Following a review of the soil and WAC screening results increased levels of TOC were typically noted for the made ground materials which exceed acceptance criteria for disposal at an Inert landfill (3%), indicating that the majority of these materials will likely be characterised as Non-Hazardous for disposal.

Natural soils below the site will likely be suitable for disposal to an Inert landfill site.

Where offsite disposal of waste soils is required, the results of the investigation should be made available to the waste carrier/receiver in order to determine the waste classification, costs for disposal and the requirement for further testing. Sufficient time should be allowed in the site programme to effectively segregate soils based on material type, including the time allowed for any further laboratory classification analysis as required.

9.3 Foundations and Floor Slabs

From the findings of the intrusive investigations, the use of conventional shallow foundation options and trench fill is considered unviable due to the variability of the natural deposits beneath the site.

In view of this, the use of Controlled Modulus Columns CMC's may represent a potential viable option for the site, subject to confirmation from a specialist ground improvement contractor.

Alternatively, a piled foundation solution presents a viable foundation solution for the site, with foundations taken down through the made ground and natural deposits, and based on limestone bedrock deposits. If this foundation option is to be adopted, the contents of this report should be made available to the appropriate design specialist.

Taking into account the variable ground conditions beneath the site, a ground bearing floor slab will likely be unsuitable, therefore it is considered a suspended floor slab will likely be required for the proposed development.

9.4 External Works

Remoulded CBR tests were undertaken on 3 no. samples of materials at depth of between 0.40m and 0.75m within areas of proposed road and car parking infrastructure. The CBR results indicate highly variable deposits beneath the site, and as such, it is recommended that a CBR value of 2% be adopted for the design of any new hardstanding which would result in a preliminary requirement for the inclusion of 400mm subbase within external hard-standing areas.

This should be reviewed following the completion of in-situ plate load (CBR) tests during the initial stages of the development works when the final formation level has been confirmed.

9.5 Gas Protection Measures

Radon protection measures are not required for the proposed development.

From the results of the initial gas monitoring elevated levels of CO_2 have been recorded indicating the site falling within a CIRIA C665 and BS8485:2015+A1:2019 Characteristic Situation 2 (CS2) setting. As a result gas protection measures are considered necessary for this site.

A further 4 no. gas monitoring visits are planned and any conclusions may be subject to change until completion of the monitoring programme.

9.6 Excavations and Dewatering

During the investigation works, natural ground beneath the site was recorded as variable, with materials ranging from clay, sand and silt, the stability of which was variable. Therefore, it is recommended that an allowance be included for appropriate trench support during future investigations, in line with health and safety guidelines.

From the findings of the investigation works, a continuous groundwater surface was noted as locally absent beneath the site, with perched groundwater recorded at depths of between 1.00m and 2.40m. In addition, at the location of TP07, groundwater was recorded at a depth of 3.20m, upon encountering running sand deposits.

During completion of the CPT's cone resistance was also indicated to decrease at the majority of the CPT locations at an average depth of 3m where water was typically encountered (Phreatic Groundwater Surface).

The results of the groundwater monitoring also recorded relatively consistent standing water levels ranging between 1.60m and 2.40m below ground level within WS01, WS02 and WS03, with only minor fluctuations noted during the monitoring period.

Taking the above into consideration, it is recommended that an allowance be included for groundwater control measures (i.e. localised pumping through sumps) should groundwater ingresses occur into future excavations.

9.7 Sulphate Attack on Buried Concrete

The results of the chemical analyses indicate a BRE Special Digest 1:2005 Design Sulphate Class DS-1 with an ACEC classification AC-1.

9.8 Soakaways

From the results of the Soakaway test results, it is considered the natural shallow deposits below the site are not suitable for the use with soakaways.

Drawings

Aldi, Colliery Lane, Hetton-le-Hole | Aldi Stores Limited | Phase II Geo-environmental Assessment | P18-474-3E-XX-XX-RP-G-9000 | 9 February 2023 22

Appendix A

Proposed Site Plan

Appendix B

Exploratory Hole Records

Aldi, Colliery Lane, Hetton-le-Hole | Aldi Stores Limited | Phase II Geo-environmental Assessment | P18-474-3E-XX-XX-RP-G-9000 | 9 February 2023 24

e: Aldi Hettor Hetton Le Aldi Stores Samples Depth (m) 0.20 0.50 1.00 1.00	n Le Ho Hole s Limite s and I Type ES	ed In Situ Testing Results	roject No. 18-474	DU	Co-ords:		Sheet 1 of Hole Type WLS Scale	f 1 e
e: Aldi Hettor Hetton Le Aldi Store: Sample: Depth (m) 0.20 0.50 1.00 1.00	n Le Ho Hole s Limite s and I Type ES	ed Results	roject No. 18-474 Depth		Co-ords: Level:	-	Hole Type WLS Scale	e
 Aldi Hettor Hetton Le Aldi Stores Samples Depth (m) 0.20 0.50 1.00 1.00 	Hole S Limite s and I Type ES	ed Results	Depth		Level:	-	WLS Scale	
Hetton Le Aldi Stores Samples Depth (m) 0.20 0.50 1.00 1.00	Hole s Limite s and I Type ES	ed I n Situ Testing Results	Depth		Level:		Scale	
Aldi Store: Sample: Depth (m) 0.20 0.50 1.00 1.00	s Limite s and I Type ES	ed I n Situ Testing Results	Depth				1:50	
 Sample: Depth (m) 0.20 0.50 1.00 1.00 	s and I Type ES	n Situ Testing Results	Depth Level (m) (m)		Dates:	12/01/2023 - 12/01/2023	Logged B AM	ý
0.20 0.50 1.00 1.00	ES	Results	(m)	Level (m)	Legend	Stratum Description	1	
0.20 0.50 1.00 1.00	ES		(,	()		MADE GROUND: Grass over dark l	brown sandy	+
0.50 1.00 1.00			0.25			clay with sandstone gravel and root Firm brown and grey friable sandy (lets. CLAY with	
1.00 1.00	D					occasional gravel and sand lens.		-
1.00								1 -
		N=9 (1,1/1,2,2,4)						:
1.00			1.50		****	Soft brown yory candy clayov SILT		
1.60					$\times \times \times \times \times$	Soft brown very sandy clayey SILT.		
2.00	D	N-7 (1 1/1 2 2 2)			$\times \times \times \times \times$			2 -
2.00		N = T(1, 1/1, 2, 2, 2)			$\begin{array}{c} \times \times \times \times \times \\ \times \times \times \times \end{array}$			
								-
3.00					$(\times \times $			3
3.00		N=3 (1,1/0,1,1,1)			$\begin{array}{c} \times \times \times \times \\ \times \times \times \end{array}$			
					$\times \times \times \times \times$			
			3.80		$\times \times \times \times \times$	Soft arou silty condy CLAV		
4.00	D	N=4(10/0112)	4.00		×— —× — × — —>	Solid drilling, no recovery.		4 -
4.00		HVP=20			— <u>×</u>			
					××			
5.00		N=7 (1 1/1 1 2 3)			$\times - \times -$			5
					×			
			5.45			End of borehole at 5.45 m		-
								6 -
								-
								7 -
								-
								8 -
								9 -
								-
								10 -
	erminated at a							

									Borehole N	No.
Нус	lroc	k 🗖				Bo	reho	ole Log	WS02	2
	2	E			Project No				Sheet 1 of Hole Type	f 1
Projec	t Name:	Aldi Hettor	n Le H	ole	P18-474		Co-ords:	-	WLS	C
Locatio	on:	Hetton Le	Hole				Level:		Scale	
Client:		Aldi Stores	s Limit	ed			Dates:	12/01/2023 - 12/01/2023	Logged B	By
	Water	Sample	s and	In Situ Testing	Denth	Level				
Well	Strikes	Depth (m)	Туре	Results	(m)	(m)	Legend	Stratum Descriptior	ו	
		0.20	ES		0.20			MADE GROUND: Grass over dark clay with sandstone gravel and root	brown sandy tlets.	-
		0.50	ES		0.30			Firm brown and grey friable sandy occasional gravel and sand lens.	CLAY with	-
										-
		1.00	D							1 -
		1.00		N=7 (1,2/1,1,2,3))					-
		1 60		HVP=31	1.50			Soft grey clayey SILT/ silty CLAY w	ith occasional	-
		1.00						gravel and sand lens.		
		2.00 2.00	D	N=5 (1,2/1,1,1,2))					2 -
				HVP=17						-
							$\begin{array}{c} \overline{\mathbf{x}} \times \overline{\mathbf{x}} \times \overline{\mathbf{x}} \\ \overline{\mathbf{x}} \times \overline{\mathbf{x}} \times \overline{\mathbf{x}} \end{array}$			-
		3.00	D				$\times \times $			3 -
		3.00		N=3 (0,0/0,0,1,2) HVP=14)					-
							$\begin{array}{c} \times \times \times \times \times \times \\ \times \times \times \times \times \times \end{array} $			-
										-
		4.00		N=6 (3,3/2,1,1,2))					4 -
							$\frac{\overline{\mathbf{x}} \times \overline{\mathbf{x}} \times \overline{\mathbf{x}}}{\overline{\mathbf{x}} \times \overline{\mathbf{x}} \times \overline{\mathbf{x}}}$			-
										-
		5.00	D							5-
		5.00		N=0 (0,0/0,0,0,0) HVP=21)					-
					5.45			End of borehole at 5.45 m		-
										-
										6 -
										-
										-
										7 -
										-
										-
										-
										8 -
										-
										9 -
										-
										-
										10 -
Remai 1. Bore 2. Gro	rks ehole te undwate	rminated at a er encountere	depth d at a	of 5.45m upon co depth of 2.40m.	ompletion.		I			

Hve	droc	k				Ro	roh		Borehole N	lo
, y	3	Ê				DU		JIE LUY	Sheet 1 of	, :1
Projec	t Name	Aldi Hetto	nleH		Project No.		Co-ords:		Hole Type	e
			LOII		P18-474				WLS Scale	
Locati	on:	Hetton Le	Hole				Level:		1:50	
Client	:	Aldi Stores	s Limit	ed			Dates:	12/01/2023 - 12/01/2023	Logged By AM	у
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	ı	
지분		Depth (m)	Туре	Results	(11)	()		MADE GROUND: Grass over dark	brown sandy	
		0.20 0.50	ES		0.30			clay with sandstone gravel and roo MADE GROUND: Brown sand and sandstone and mudstone with occa	tlets. gravel of asional brick.	
	0	1.00 1.10	ES	N=10 (1,2/1,3,2,4)) 1.00 1.20			MADE GROUND: Black clayey sar occasional rootlets (relic topsoil).	nd with	1 -
		1.50	D					slightly clayey SAND with occasion	ntiy siity al clay bands.	-
		2.00 2.00	D	N=8 (1,1/1,1,2,4)						2 -
		3.00 3.00	D	N=15 (1,1/2,3,5,5))					3 -
		4.00 4.00	D	N=13 (1,2/2,3,4,4) 4.45			Soft grey clayey SILT.		4 -
		5.00 5.00	D	N=12 (1,1/2,3,3,4 HVP=11) 5.45			End of borehole at 5.45 m		5 -
										6 -
										7 -
										8 -
										9 -
										10 -
Rema 1. Bor 2. Gro	rks ehole te oundwate	rminated at a	depth d at a	of 5.45m upon co depth of 1.70m.	mpletion.	1			AGS	

Hydrock 3E					WS04	No. 4				
	3	E		r	Droigot No			0	Sheet 1 o	of 1
Projec	t Name:	Aldi Hetto	n Le H	ole F	P18-474		Co-ords:	-	WLS	Je
Locatio	on:	Hetton Le	Hole				Level:		Scale	
Client:		Aldi Store	s Limite	ed			Dates:	12/01/2023 - 12/01/2023	Logged E AM	Ву
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	I	
	Suikes	Depth (m)	Туре	Results	(11)	(11)		MADE GROUND: Grass over dark	brown sandv	_
		0.20	D		0.35			clay with sandstone gravel and root	lets.	_
		0.50	ES		0.60			occasional rootlets (relic topsoil).		
								Gravel is fine to coarse, subrounded	d to	
	_	1.00 1.00		N=4 (1,0/1,1,1,1)				subangular of sandstone, mudstone limestone.	e and	1
		2 00		N=10 (1 2/2 1 3 4)	2.00					_ 2
		2.10	D		2.00			Loose grey slightly gravelly SAND. to coarse, subrounded to subangula	Gravel is fine ar of	2
					2.50			sandstone, mudstone and limestone	9.	_
		2.70	D					Loose brown SAND.		
		3.00		N=0 (1,0/0,0,0,0)	3.00			Loose arey slightly gravelly SAND	Gravel is fine	- 3
		3.10	D		3.20		× × × ×	to coarse, subrounded to subangula	ar of	
		3.50	D				× × × ×	Very loose brown silty sandy fine to	e. coarse,]
					2.00		× * × × *	subrounded to subangular GRAVEL mudstone, sandstone and limestone	. of e.	
		4.00	D	N=1 (1 1/1 0 0 0)	3.90 4.00			Soft grey clayey SILT.		4
		4.00		N-1 (1,1/1,0,0,0)				cond drining, no recovery.		
							$\frac{\overline{\times} \times \overline{\times} \times}{\times \underline{\times} \times \underline{\times} \times}$			
							$\frac{(\times \times \times \times}{\times \times \times}$			
		5.00		N=2 (1,1/1,0,0,1)						5
XX					5.45		XXXXX			
								End of borehole at 5.45 m		
										6
										7
										8
										9
										10
Remar	'ks		1			1				

łyc	lydrock 3E					Bo	reho	ole Log	WS05
Projec	t Name		nleH	Pr	oject No.		Co-ords:		Sheet 1 of 1 Hole Type
locati	on:	Hetton Le	Hole	P	18-474		Level:		WLS Scale
Client		Aldi Store	s Limite	ed			Dates:	12/01/2023 - 12/01/2023	Logged By
Wall	Water	Sample	s and I	n Situ Testing	Depth	Level	Logond	Stratum Doscription	
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Eegend (MADE GROUND: Grass over dark	prown sandy
		0.20			0.40			clay with sandstone gravel and root	lets.
		0.50	ES		0.65			MADE GROUND: Black clayey san occasional rootlets (relic topsoil).	d with
		1.00 1.00	D	N=11 (1,2/3,3,2,3)	0.00			Medium dense brown sandy clayey coarse subrounded to subangular C mudstone, sandstone and limestone	fine to GRAVEL of e.
		1.50	D						
	_	2.00 2.20	D	N=4 (0,0/1,1,1,1)	2.00		× × × × ×	Loose brown sandy fine to coarse, to subangular GRAVEL of sandston and limestone. Soft grey and brown sandy SILT.	subrounded e, mudstone
		3.00 3.00	D	N=4 (1,2/1,1,1,1)	3.10		× × × × × × × × × × × × × × × ×	Loose brown SAND.	
		3.20			3.30			Soft grey and brown sandy SILT.	
		4.00 4.00	D	N=10 (2,1/3,3,2,2)					
		5.00 5.00	D	N=8 (2,2/3,2,1,2)	4.60			Stiff grey slightly sandy slightly grav Gravel is fine to coarse, subrounder subangular of sandstone, mudstone limestone.	elly CLAY. d to e and
				1107 -03	5.45			End of borehole at 5.45 m	
									1

3E ame: Aldi Hetton Hetton Le Aldi Store: ater Sample Depth (m) 0.20	n Le Ho Hole s Limite s and I Type	ole Pr P1 ed	oject No. 8-474		Co-ords:	-	Sheet 1 of 1 Hole Type WLS Scale		
ame: Aldi Hettor Hetton Le Aldi Store: ater Sample kes Depth (m) 0.20	n Le Ho Hole s Limite s and I Type	ole Pr P1 ed In Situ Testing	oject No. 8-474		Co-ords:	-	Hole Type WLS Scale		
Hetton Le Aldi Store ater Sample kes Depth (m) 0.20	Hole s Limite s and I Type	ed In Situ Testing	8-474		l evel:		WLS Scale		
Hetton Le Aldi Store: ter Kes Depth (m) 0.20	Hole s Limite s and I Type	ed I n Situ Testing			l evel:				
Aldi Storer ater Sample kes Depth (m) 0.20	s Limite s and I Type	ed In Situ Testing					1:50		
ter Sample kes Depth (m) 0.20	s and I Type	In Situ Testing			Dates:	13/01/2023 - 13/01/2023	Logged By AM		
0.20	Type		Depth	Level	Legend	Stratum Description	ı		
0.20	FS	Results		(11)		MADE GROUND: Dark brown claye	ey sand with		
			0.50			with rootiets and wood.			
			0.50			Medium dense brown slightly claye gravelly SAND. Gravel is fine to coa	y slightly arse,		
1.00	D					subrounded to subangular of sands mudstone and limestone.	stone,		
1.00		N=19 (3,3/3,8,4,4)							
1.50	D								
2.00		N=4 (1,1/1,1,1,1)	2.00			Brown sandy fine to coarse, subrou	inded to 2		
2.10			2.20			subangular GRAVEL of sandstone, and limestone.	mudstone		
						Soft brown very sandy CLAY.			
2.00							2		
3.00		N=2 (3,0/0,0,1,1)					5		
		HVP=41							
4.00	D	HVP=27	4.00			Loose brown SAND	4		
4.00		N=6 (2,2/2,1,2,1)							
			4.60		x	Coff arou condu cilty CLAV			
					× × →	Solt grey sandy silty CLAF.			
5.00 5.00	D	N=7 (3,3/3,2,1,1)			××		5		
			5.45		×	Find of boundaries of 5.45 m			
						End of dorenole at 5.45 m			
							6		
							7		
							8		
							9		
1			I	1	1		1		
				5.45	5.45	5.45	5.45		
								Borehole N	۱o.
-----------------------	--	-------------------	--	--	--------------	----------	---	---	--------------------
Hydroc	k F				Bo	reho	ole Log	WS07	7
	L			Project No.				Sheet 1 of	[1
Project Name:	Aldi Hetto	n Le He	ole F	218-474		Co-ords:	-	WLS	е
Location:	Hetton Le	Hole						Scale	
	Hellon Le	TIOLE				Level.		1:50	
Client:	Aldi Store	s Limite	ed		1	Dates:	13/01/2023 - 13/01/2023	Logged B	iy
Well Water Strikes	Sample: Depth (m)	s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	I	
	0.30 0.50 1.00 1.50 2.00 2.50 3.00 4.00 4.50 5.00	ES D D D	N=15 (3,4/4,4,3,4) N=5 (2,2/2,1,1,1) HVP=30 HVP=9 N=0 (1,0/0,0,0,0) N=13 (2,3/3,3,4,3) HVP=70 N=7 (1,1/1,2,1,3) HVP=72	0.40 1.10 2.20 3.00 4.00 5.45			MADE GROUND: Dark brown claye with rootlets and wood. Brown slightly clayey slightly gravel Gravel is fine to coarse, subrounde subangular of sandstone, mudstone limestone. Firm brown friable sandy gravelly C is fine to coarse, subrounded to sub sandstone, mudstone and limestone Firm becoming soft brown and grey CLAY. Running SAND. (Confirmed via TPC Stiff grey silty sandy CLAY.	ey sand with ly SAND. d to a and LAY. Gravel wangular of e. silty sandy 07)	
Remarks	rminated at a	depth	of 5.45m upon cor	noletion					8 - 9 - 10 -

12							Borehole N	۱o.		
Нус	droc	k F				Bo	reho	ole Log	WS08	3
	2	L			Project No.				Sheet 1 of	f 1
Projec	t Name:	Aldi Hetto	n Le H	ole	P18-474		Co-ords:	-	WLS	e
Locati	on:	Hetton Le	Hole				Level:		Scale	
									1:50 Logged B	Sv.
Client		Aldi Store:	s Limit	ed		1	Dates:	13/01/2023 - 13/01/2023	AM	, ,
Well	Water Strikes	Sample: Depth (m)	s and	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	ı	
	Vater Strikes Samples and in stut results Depth (m) Type Results 0.20 ES 1.00 D 1.90 D 2.50 D HVP=13 3.00 D N=12 (3,2/3,3, HVP=40 3.50 D HVP=6 4.00 N=8 (0,0/0,2,3) HVP=50 4.50 D HVP=2 5.00 D N=17 (2,3/4,4, HVP=47		Results N=15 (4,4/4,3,4,4 N=8 (1,3/2,2,2,2) HVP=13 N=12 (3,2/3,3,2,4 HVP=40 HVP=6 N=8 (0,0/0,2,3,3) HVP=50 HVP=2 N=17 (2,3/4,4,5,4 HVP=47) 0.90) 2.00) 2.80) 5.45			MADE GROUND: Dark brown and sand with brick, glass, metal and co Firm brown friable sandy gravelly C is fine to coarse, subrounded to sul sandstone, mudstone and limeston Soft and firm brown very sandy CLAY Soft and firm grey silty sandy CLAY	black clayey bal.		
Rema 1. Bor	rks ehole te	rminated at a	depth	of 5.45m upon cc	ompletion.					10
2. No	groundv	vater encount	ered.						AGS	5

Hvo	ydrock					WS09	√o.)			
	3	Ê							Sheet 1 of	f 1
Projec	t Name:	Aldi Hetto	n Le H	ole	oject No.		Co-ords:	-	Hole Type	e
Locati	00.	Hotton Lo	Holo	P	8-474				Scale	
LUCall	011.	Hellon Le	noie				Level.		1:50	21/
Client:		Aldi Store:	s Limite	ed	I	1	Dates:	13/01/2023 - 13/01/2023	AM	, y
Well	Water Strikes	Sample:	s and I	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
XXX		Deptil (III)	Type	Results				MADE GROUND: Dark brown and b	black clayey	-
		0.50	ES					sand with blick, glass, metal and co	di.	
		0.00								
		1.00		N=8 (2,2/3,2,2,1)	1.00			MADE GROUND: Black clayey san	d with	- 1
		1.20	ES		1.35			occasional rootlets (relic topsoil).	to coarso	_
		1.50	D					subrounded to subangular of sands	tone,	
		2.00		N-10 (3 3/3 3 2 2)	2.00			mudstone and imestone.		
		2.00		11-10 (3,3/3,3,2,2)	2.00			Soft and firm grey and brown sandy CLAY. Gravel is fine to coarse, subr	gravelly ounded to	2
		2.50	D					subangular of sandstone, mudstone and coal.	, limestone	
		3.00 3.00	D	N=9 (1 1/2 3 2 2)	3.10			Soft brown candy SILT with occasio	nal cand	3
		0.00					$\times \times $	partings	nai sanu	
		3.50	D				$\times \times $			
		4.00		N=17 (4,4/4,4,5,4)	4.00		× × × × ×	Madium damas husun QAND		4
								Medium dense brown SAND.		
		4.50	D							
					4 90					
		5.00 5.00	D	N=6 (1,1/1,0,1,4)			$\times - \times \times$	Stiff grey silty sandy CLAY.		5
					5.45		××	End of horehole at 5.45 m		
										6
										_
										1
										8
										9
										10

	12							Borehole N	۱o.	
Нус	droc	k ⊑				Bo	reho	ole Log	WS10)
	2	C			Project No				Sheet 1 of	i 1
Projec	t Name:	Aldi Hetto	n Le H	ole	P10ject No. P18-474		Co-ords:	-	WLS	e
Locati	on:	Hetton Le	Hole	1			Level:		Scale	
									1:50	81/
Client	:	Aldi Store	s Limit	ed		1	Dates:	13/01/2023 - 13/01/2023	AM	- y
Well	Water Strikes	Sample Depth (m)	s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	ı	
		0.20 1.00 1.00	ES	N=13 (3,3/2,4,4,3	0.35) 1.10			MADE GROUND: Dark brown and sand with brick, glass, metal and co MADE GROUND: Brown and black sandstone, mudstone, brick and co Medium dense brown SAND.	black clayey bal. sand with al.	- - - - - - - - - - - - - - - - - - -
		1.50	D							-
		1.90 2.00	D	N=9 (6,1/2,2,2,3)	1.80 2.00			Black silty organic SAND. Loose to medium dense brown and gravelly SAND. Gravel is fine to co	l grey clayey arse,	- 2 -
		2.50	D					subrounded to subangular of sands mudstone and limestone.	stone,	-
		3.00		N=15 (3,3/3,4,4,4)					3 -
		4.00 4.00	D	N=49 (7,8/8,14,12,15) HVP=30	4.45			End of borehole at 4.45 m		4
Rema 1. Bor 2. No	rks ehole te	rminated at a	depth	of 4.45m upon re	fusal of sam	pling equi	pment.			

ater encou

								Trialpit	No	
Hyd	rock 3F						Tri	al Pit Log	TP0	1
	5	-			<u> </u>				Sheet 1	of 1
Project Name:	t Al	di Hett	on Le H	ole	Projec	21 NO. 74		Co-oras: -	Date 12/01/20	123
Locatio		ttop			1 10 4			Dimensions 1.3	Scale))
LUCALIC	л. пе							(m):	1:25	
Client:	Al	di Stor	es Limit	ed				2.20	Logge KRC	a
er (e	S	ample	es and I	n Situ Testing	Depth	Level	Logon	Stratum Departmen		
Wat Strij	Dep	oth	Туре	Results	(m)	(m)	Legend	MADE GROUND: Grass over topsoil		1
	0.5	0	ES		0.30			MADE GROUND: Brown gravelly clayey fine to sand. Gravel is fine to coarse subangular of mu concrete, brick and sandstone,	coarse dstone,	
	1.0	0	ES		0.90 1.30 1.50 2.20			MADE GROUND: Yellow brown slightly gravelly fine to coarse sand. Gravel is fine to coarse sub of sandstone, mudstone and quartz. MADE GROUND: Black slightly silty fine to coa with occasional rootlets. (Possible relic topsoil) odour noted). Yellow brown clayey gravelly fine to coarse SAN Gravel is fine to coarse subangular of sandston mudstone and quartz.	v clayey vangular rse sand (Organic ND. e,	2 -
Remark										3
Remar Stabilit	кs: :y:	 Trial pit complete at 2.20mbgl. Soakaway test completed at depth of 1.20m to 2.20m. Dry. All faces stable. 							AC	L S

								Trialpit I	No
Hyd	lrock 3F					Tri	al Pit Log	TP02	2
				Draiaa	4 N a			Sheet 1 o	of 1
Projec	t Aldi Heti	ton Le Ho	le	Projec	74		Level	12/01/20)23
Loooti	on: Hotton I			1			Dimensions 1.4	Scale	
LUCali							(m):	1:25	
Client:	Aldi Stor	res Limite	d				2.30	KRC	a
ke r	Sample	es and In	Situ Testing	Depth	Level	Legend	Stratum Description		
Wai Stri	Depth	Туре	Results	(m)	(m)	- Cogene			
	0.80		0.30			MADE GROUND: Yellow brown gravelly clayey coarse sand. Gravel is fine to coarse subangula sandstone, mudstone and quartz. MADE GROUND: Black slightly silty fine to coarse with occasional rootlets. (Possible relic topsoil) odour noted). Yellow brown clayey gravelly fine to coarse SAN Gravel is fine to coarse subangular of sandston mudstone and quartz. End of pit at 2.30 m	fine to r of	2	
Roma	rke: 1 Tria		lete at 2 30mbcl						5 -
Tema	2. Soa	akaway tes	st completed at depth of	1.70m to	o 2.30m.				
	3. Wa 	ter seepag	je at 0.50mbgl.					AC	S
Stabili	ty: Face	A unstabl	e between 0.50m and	1.50m.					

								Trialpit I	No
Нус	lrock 3F					Tri	al Pit Log	TP0	3
				Droine	4 N a		Co. osta	Sheet 1	of 1
Projec	t Aldi He	tton Le Ho	ble	Projec	t NO. 74		Co-oras: -	12/01/20)23
Locati	on: Hotton						Dimensions 1.5	Scale	
LUCall		Le l'Iole					(m):	1:25	4
Client	: Aldi Sto	ores Limite	ed				2.20	KRC	u
er Ke	Samp	les and Ir	n Situ Testing	Depth	Level	Logon	Stratum Description		
Wat Stri	Depth	Туре	Results	(m)	(m)	Legent			1
	0.50	ES		0.30			MADE GROUND: Grass over topsoli. MADE GROUND: Yellow brown gravelly clayey coarse sand. Gravel is fine to coarse subangula sandstone, mudstone and quartz.	fine to ar of	
	1.00	ES		0.90			MADE GROUND: Black slightly silty fine to coa with occasional rootlets. (Possible relic topsoil).	rse sand	1
	2.00	FS		1.30			Yellow brown clayey gravelly fine to coarse SAN Gravel is fine to coarse subangular of sandston mudstone and quartz.	ND. e,	
				2.20			End of pit at 2.20 m		3
Rema Stabili	emarks: 1. Inal pit complete at 2.20mgl. 2. Soakaway test completed at depth of 1.30m to 2.20m. 3. Water seepage at 0.50mbgl. tability: All faces stable.								L IS

	12							Trialpit	No
Hydr	ock 3F					Tri	al Pit Log	TP0	4
_	JL			Draina	4 N a			Sheet 1	of 1
Project Name:	Aldi Hett	on Le H	ole	Projec	t NO. 74		Level	27/01/20)23
Location	· Hotton I						Dimensions 1	Scale)
	. Hetton L						(m): 4	1:25	4
Client:	Aldi Stor	es Limite	ed				0.65	AM	u
Vater itrike	Sample Depth	es and li	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description		
<u>> 0</u>	Doput	турс	11030113				MADE GROUND: Grass over sandy soil.		-
	0.60	В		0.20			MADE GROUND: Yellow brown gravelly clayey coarse sand. Gravel is fine to coarse subangula sandstone, mudstone and quartz. End of pit at 0.65 m	fine to r of	2 -
									5 -
Remarks Stability:	s: 1. Tria 2. No All fac	al pit terr groundv	innated at a depth of 0 vater encountered. e.	.65m up	on enco	untering	target depth for sample recovery.	AC	I IS

	I U							Trialpit	No	
Нус	droc	k F					Tr	al Pit Log	TP0	5
<u> </u>					Droioo	4 N I a			Sheet 1	of 1
Projec	ct ∧ a: A	Idi Hetto	on Le H	ole	Project	74		Level:	27/01/20	023
Locati	ion [.] F	letton L						Dimensions 1	Scale)
Locat								(m):	1:25	d
Client	:: A	Idi Store	es Limit	ed				0.55	AM	u
ke r		Sample	s and I	n Situ Testing	Depth	Level	Legen	Stratum Description		
Wa Stri	De	pth	Туре	Results	(m)	(m)		MADE GROUND: Grass over sandy soil		_
								MADE ORCOND. Glass over sandy son.		-
	0.	40	В		0.35			Brown slightly clayey gravelly SAND. Gravel is	fine to	
					0.55			mudstone.		-
										-
										-
										-
										2
										-
1										
1										
1										
1										4 -
1										
1										
1										
1										-
1										
1										
Daire	where .	1 7	1	minated at a doubt of 2	FF			torget doubt for several resources		5 —
Rema	IIKS:	1. Tria 2. No	ground	water encountered.	.som up	ion enco	untering	i target deptri for sample recovery.		
Stabil	ity:	All fac	es stab	le.					AC	5

							Trialpit I	No	
Hyd	rock					Tri	al Pit Log	TP0	6
	JE							Sheet 1	of 1
Project Name:	Ald	i Hetton L	e Hole	Project P18-4	≿t No. 74		Co-ords: -	Date 27/01/20	123
Locatio	n. Ho	Hon Lo Ho		1104			Dimensions 1	Scale))
							(m):	1:25	4
Client:	Ald	i Stores L	imited				0.80	AM	a
ke r	Sa	amples ar	nd In Situ Testing	Depth	Level	Legenc	Stratum Description		
Wa Stri	Dept	h Ty	pe Results	s (m)	(m)		MADE GROUND: Grass over sandy soil		1
				0.10			Orange brown SAND.		=
									-
	0.75								-
	0.70		, 	0.80		<u></u>	End of pit at 0.80 m		
									1 -
									-
									-
									=
									-
									2 —
									-
									-
									-
									=
									-
									3 -
									=
									=
									-
									4 -
									-
									-
									-
									5 -
Remarl	ks:	1. Trial pit 2. No groι	terminated at a d undwater encount	epth of 0.80m up ered.	oon enco	untering	target depth for sample recovery.		
Stability	y:	All faces s	stable.					AG	IS

								Trialpit	No
Hyd	rock 3F					Tr	ial Pit Log	TP0	7
Ducient	32			Proioc	t No		Co. orde:	Sheet 1	of 1
Project Name:	Aldi He	tton Le Ho	le	P18-4	74		Level:	27/01/20	023
Locatio	n: Hetton	l e Hole					Dimensions 2	Scale	;
		2011010					(m): Depth	1:25	d
Client:	Aldi St	ores Limite	d			_	3.65	AM	u
Vater Strike	Samp Depth	les and In Type	Situ Testing Results	Depth (m)	Level (m)	Legen	d Stratum Description		
> 07		51					MADE GROUND: Grass over sandy soil.		
				0.20			Orange brown SAND.		1
				2.60			Grey silty sandy CLAY.		3 -
				3.20		×	Brown RUNNING SAND.		
							End of pit at 3.65 m		4
Remark Stability	ks: 1. T 2. G /: All f	rial pit term roundwate aces becor	inated at a depth of 3 r encountered at a de ne unstable from 3.20	3.65m upon 2007 apth of 3 2007 upon	pon com .20m. i encoun	npletion. Itering ru	unning sand.	AC	L IS

Appendix C

Cone Penetrometer Test Result Data Sheets

Aldi, Colliery Lane, Hetton-le-Hole | Aldi Stores Limited | Phase II Geo-environmental Assessment | P18-474-3E-XX-XX-RP-G-9000 | 9 February 2023 25

LANKELMA Limited Cold Harbour Barn, Cold Harbour Lane, Iden East Sussex, TN31 7UT T: +44 (0)1797 280050 E: info@lankelma.com www.lankelma.com

COLLIERY LANE, HETTON-LE-HOLE

SOIL INVESTIGATION

CPT REPORT

Cone penetration testing Parameter interpretation

Project Reference.: P-108244-1

Report Issue No.: 01 P-108244_01

PROJECT:	Colliery Lane, Hetton-le-Hole

CLIENT:	Hydrock
CLIENT:	Hydrock

FIELDWORK

CPT rig(s)	20.5-tonne track-truck mounted CPT unit (UK3)
Date fieldwork started	27 th January 2023
Date fieldwork completed	27 th January 2023
Lankelma's representative	Emma Stickland
Client's representative	Nicola Watson

DOCUMENT CHECKING

Action	Date	Name	
Completed	01/02/2023	Christopher Player	
Checked	01/02/2023	Joseph Hobbs	
Approved	01/02/2023	Joseph Hobbs	

lssue	Date	Status	
01_01	01/02/2023	Final	

CONTENTS

1	INTRODUCTION 1				
2	DISCLAIMER 1				
3	СС	OMPLETED WORKS	1		
4	FII	ELDWORK GENERAL	1		
5	СС	DNE PENETRATION TESTS	2		
	5.1	Glossary of CPT Terms and Symbols	2		
	5.2	CPT Data Reduction and Presentation	4		
	5.3	In-situ Stress Conditions	6		
	5.4	Soil Unit Weight	6		
	5.5	Soil Behaviour Type	7		
	5.6	Soil Behaviour Type Index – Ic	11		
	5.7	Relative Density	11		
	5.8	Undrained Shear Strength	12		
	5.9	Overconsolidation Ratio	13		
	5.10	SPT N60 Values	14		
	5.11	Friction Angle	15		
	5.12	Coefficient of Volume Change	16		
	5.13	Young's Modulus	17		
6	CP	T INTERPRETATION NOTES	17		
7	REFERENCES 20				

Appendix A	SUMMARY TABLES
Appendix B	GENERAL INFORMATION
Appendix C	CONE PENETRATION TEST RESULTS
Appendix D	SOIL BEHAVIOUR TYPE RESULTS
Appendix E	PARAMETER RESULTS 1 – su, mv, OCR, SBT, lc
Appendix F	PARAMETER RESULTS 2 – SPT N60, Phi, Dr, E, Ic
Appendix G	PENETROMETER TEMPERATURE RESULTS

1 INTRODUCTION

At the request of Hydrock, a soils investigation was carried out on project *Colliery Lane*, *Hetton-Ie-Hole*.

Site location:

(In the general region of)

Colliery Lane Hetton-le-Hole Durham DH5 0JA

2 DISCLAIMER

The investigation information, raw data and interpretations provided in this report are for the sole benefit of the Client identified at the front of the report.

Lankelma has exercised reasonable skill and care in the fieldwork and preparation of this report. This report has been completed based on information available to Lankelma at the time of preparation. The measurement and interpreted data in this report do not constitute recommendations for design purposes. An appropriately qualified person must review and interpret the data given in this report, together with any assumptions we have made that affect the data, before using the data for design or recommendation. Lankelma accepts no responsibility for the accuracy or suitability of any assumptions, derived soil parameters, soil classification descriptions or soil layer boundaries contained in this report.

3 COMPLETED WORKS

- 9 nr. cone penetration tests with pore pressure measurement (CPTu)
- Factual report including point data interpretation of selected parameters

Appendix A contains tabulated details of the works completed together with analysis results where applicable.

4 FIELDWORK GENERAL

Fieldwork was performed with a 20.5-tonne track-truck mounted CPT unit (UK3) equipped with a 17.0-tonne capacity hydraulic ram set.

The Client was responsible for the positioning and re-survey of all investigative locations.

The target depth for the investigation was until cone refusal was reached. Table 3 details the final test depths and reasons for test termination (*refusal factor*). Where required, each penetration refusal decision was verbally confirmed with the Client's on-site representative.

5 CONE PENETRATION TESTS

Cone penetration testing was carried out in general accordance with BS ISO 22476-1:2012.

Penetrometer measurements included cone tip resistance, friction sleeve resistance and dynamic pore water pressure sampled at a 10 mm resolution.

Penetrometers were calibrated in accordance with ISO 376:2011. The management of calibration records is in accordance with ISO 10012. Copies of all calibration certificates for the cones used are provided in Appendix B.

The penetrometer used was a digital model (down-hole digitisation) with internal measurement of load cell temperature. The temperature data was used for QA during the test and QC during processing. The test operative aimed to keep the rate of temperature change to less than 0.5° /min in low strength soils to maintain acceptable measurement error. The temperature data can be used to assess ground temperature at depths where the cone has paused for more than 10 minutes with an accuracy of ~+- 0.5° .

The piezometer filter element was in the u_2 position and was vacuum saturated in a > 99.9% vacuum under 1000 cSt silicone oil for > 7 days prior to mobilisation. The pore pressure system was vacuum saturated in the disassembled state under 500 cSt glycerine oil (dipropylene glycol or propylene glycol) and assembled under oil prior to each test.

5.1 GLOSSARY OF CPT TERMS AND SYMBOLS

SYMBOLS & ABBREVIATIONS

Bq	Pore pressure ratio. The net pore pressure normalized with respect to the net cone resistance: $B_q = (u_2 - u_0)/(q_t \cdot \sigma_v)$			
Fr	Normalised friction sleeve resistance: $F_r = f_s / (q_c - \sigma_v)$			
fs	Friction sleeve resistance: The total frictional force acting on the friction sleeve, F_s , divided by its surface area A_s : $f_s = F_s/A_{s}$.			
G	Shear modulus			
g	Gravitational constant: $g = 9.81 \text{ m/s}^2$			
G ₀	Small strain shear modulus			
Gs	Specific gravity of solids			
нос	Heavily overconsolidated			
I _c	Soil Behaviour Type Index: Continuous numerical representation of Robertson (1990) soil behaviour type classification chart.			
LOC	Lightly overconsolidated			
NC	Normally consolidated			
ос	Overconsolidated			
q c	Cone resistance: The total force acting on the cone Q_c , divided by the projected area of the cone, A_c : $q_c = Q_c/A_c$.			
Qt	Normalised cone resistance (Method 1): $Q_t = (q_c - \sigma_v)/\sigma'v$			
0				

2

qt	Corrected tip resistance: The cone tip resistance q_c corrected for pore water pressure effects on the cone shoulder.				
q t-net	Net cone resistance: $q_{t-net} = q_t - \sigma_v$. Where q_t is unavailable q_c is applied.				
q t1	Normalised cone resistance (Method 2): $q_{t1} = (q_t)/(\sigma'_v)^{0.5} (\frac{q_t}{\sigma_{atm}})/(\frac{\sigma_{v0}}{\sigma_{atm}})^{0.5}$				
R _f	Friction ratio: The ratio, expressed as a percentage, of the sleeve friction, f_s , to the cone resistance, q_c , at a given depth: $R_{f=}$ (f_s/q_c) · 100				
SBT or SBTn	Soil behaviour type classification				
SPT	Standard Penetration Test				
u _o	Equilibrium pore pressure				
U ₂	Pore pressure: Dynamic pore pressure measured at the shoulder position (u_2) during penetration and during dissipation tests. $u_2 = \Delta u_2 + u_0$				
Δu ₂	Excess pore pressure: $\Delta u_2 = u_2 - u_0$				
$V_{s,}V_{p}$	Shear wave velocity, V_s , and pressure wave velocity, V_p . Measured with use of a seismic receiver.				
Z	Depth below ground level: Depth as penetration length without correction for inclination, or true depth after correction for inclination.				
<u>Greek</u>					
γ	Unit weight of soil				
Υw	Unit weight of water				
ρ	Volumetric mass density (or specific mass) of soil: $\rho = \gamma/g$				
σ _v	Total overburden stress				
σ',	Effective overburden stress				
σ_{atm} , or, P_{a}	Reference atmospheric stress: σ_{atm} = 101.3 kPa				

<u>TERMS</u>

Cone or 'tip': The conical tip of the cone penetrometer.

Friction sleeve: The section of the cone penetrometer upon which the sleeve friction is measured, located behind the cone tip.

Piezocone: A cone penetrometer with a pore pressure sensor $(u_2 \text{ or } u_1)$

Seismic cone: A cone penetrometer with a seismic receiver incorporated inside or behind.

Dynamic pore pressure: The pore pressure measured during penetration $(u_2 \text{ or } u_1)$.

Soil behaviour type, or 'SBT': Soil classification scheme or classified soil type according to Robertson (1990, 2016) often abbreviated to SBT or according to normalised cone parameters SBTn.

Rod string: The series of hollow tube push rods that transmit force to the penetrometer.

5.2 CPT DATA REDUCTION AND PRESENTATION

The CPT results are presented in Appendix C. The corrected cone resistance (q_t) , local side friction (f_s) , dynamic pore water pressure (u_2) , friction ratio (R_f) and inclination are all presented against depth and elevation in accordance BS ISO 22476-1:2012. CPT data and the associated derived geotechnical parameters are included in the 4.0 data file provided.

The cone tip and sleeve force measurements were converted to pressure using the nominal dimensions of the penetrometer.

Zero load output values were recorded before and after each test. The set of zero values applied to the measurements (subtracted from the raw output measurement) were those deemed to be obtained at a temperature closest to ground temperature, or the average of the two sets where appropriate.

For tests performed with digital cones, the tip sleeve and pore pressure measurements were corrected for static and transient temperature effects using parameters obtained from the *TEMPERATURE EFFECTS* section of the calibration certificate. For each CPT, the dataset was first grouped into penetration strokes (max 1.2 m) and then locally sub-grouped by tip resistance above and below 2 MPa. For each sub-group of qc < 2 MPa, the slope of the temperature (T) profile with time (t) was determined by regression to obtain the rate of temperature change $\Delta T/\Delta t$. For each recorded value, the static and transient temperature error component (apparent sensor output due to change in temperature) was subtracted from the reading.

For subtraction type cones incorporating traditional temperature compensation wiring in the strain gauge circuit, the residual apparent cone tip resistance ($q_{c:a}$) and sleeve resistance ($f_{s:a}$) due to static and transient temperature effects can be approximated by

 $q_{c:a} = a(\Delta T/\Delta t) + b(\Delta T)$,

 $f_{s:a} = a(\Delta T / \Delta t) + b(\Delta T) - q_{c:a}$

and

 $u_a = b(\Delta T)$

Where $q_{c:a}$ is the apparent tip resistance, $f_{s:a}$ is the apparent sleeve resistance, a is the apparent resistance due to unit transient temperature change $\Delta T/\Delta t$, and b is the change in apparent resistance per unit static temperature change relative to the temperature of the penetrometer at the time of zero load output measurement. Note that for the piezometer sensor only the static temperature component is considered and is only applied to piezometer sensors without temperature compensation circuitry.

Parameter a is established by subjecting the cone to a positive and negative nominal temperature change ($\Delta T \sim +-9^{\circ}$) in water and measuring the apparent output corresponding to the maximum rate of temperature change at the load cells. Parameter b is established by measuring the apparent output after the cone has temperature stabilised.

The temperature corrected tip $(q_{c:c})$, sleeve resistance $(f_{s:c})$ and pore pressure $(u_{:c})$ are then found from

 $q_{c:c} = q_{c:m} - q_{c:a}$

 $f_{s:c} = f_{s:m} - f_{s:a}$

 $u_{:c} = u_{:m} - u_{:a}$

Where subscript ':m', denotes the field measured resistance/pressure as recorded in the raw data files.

Notes:

- 1. Depending on the temperature performance of the individual cone, temperature correction of the sleeve is often not warranted as it does not substantially improve accuracy. This is because for subtraction type cones the errors in the sleeve force largely cancel with errors in the tip force when they have the same sign.
- 2. There is currently no recognised nomenclature for CPT parameters with temperature correction applied during post processing. To avoid confusion the nomenclature is kept unchanged in the logs and AGS data (q_c/q_t , f_s , and u_2) and unless stated otherwise, temperature correction has been applied using the parameters reported in the calibration certificate.

For piezocone tests the total cone resistance (or 'corrected cone resistance') was calculated according to the formula

 $q_t = q_c + u_2 \times (1 - a)$

Where *a* is the 'area ratio' and (1 - a) is the proportion of cross-sectional area between the cone tip and penetrometer body where pore pressures (positive or negative) can act to add or subtract from the total external axial force on the tip. The difference between measured and corrected values is largest in low strength collapsible soils with large excess pore pressures. The percentage adjustment is described by the curves on the chart below for a = 0.8:

Figure 5-1 Uncorrected tip with measured tip resistance

Penetration length readings were corrected for inclination and sleeve readings were depth corrected for the dimensional offset between cone tip and sleeve during post processing. Rod spikes (artefacts of the pause for push rod addition) were filtered from the cone tip and sleeve data and replaced with an interpolated value. The data was re-sampled from 10 mm resolution to 20 mm to reduce the size of the data set to a more manageable size for end users. A 20 mm resolution is well within the intrinsic influence zone of the cone tip measurement and the loss of meaningful resolution is negligible.

The raw data is presented in Appendix C. For piezocone tests q_t is reported on all logs, and q_c only appears in the digital AGS data.

Geotechnical parameters appropriate for drained and undrained cone penetration conditions were derived for corresponding drained and undrained derived soil behaviour types (SBTs) respectively, however, to account for uncertainty in the SBT correlation with drainage behaviour, all parameters were derived over a range of transitional soils within the range 2.4 < lc < 2.7 (see section 6.3).

In general, the engineering parameters derived for fine grain soils (undrained) are suitable for soils of both silicate and carbonate composition, whereas parameters derived for coarse soils are intended for non-cemented silicate composition.

5.3 IN-SITU STRESS CONDITIONS

An estimate of the equilibrium pore pressure and total and effective vertical stress states is required for derivation of most soil parameters obtained from the CPT and dissipation test.

The total vertical stress with depth was calculated as the sum of the derived soil unit weight above a given depth. See section 5.4 for information on the empirical estimate of soil unit weight.

An arbitrary phreatic surface of 3.00 mBGL was applied in the calculation of effective stress.

Note: The term phreatic surface is used here, however when it is based on piezometer measurements (piezocone) it is assumed that the piezometric level (under hydrostatic conditions) and phreatic surface coincide. The phreatic or piezometric level reported is intended to provide information about pore pressure distribution assumed for calculation purposes and may not represent the true position of the groundwater table or perched water bodies. Complex groundwater pressure distributions will be applied if they are observed from the measurements and are sufficiently well defined.

5.4 SOIL UNIT WEIGHT

The soil unit weight was estimated using the following method proposed by Robertson (2010b).

$$\frac{y}{y_w} = 0.27 \, Log(R_f) + 0.36 \, (Log(q_t/R_f)) + 1.236$$

Throughout pre-drilled zones (inspection pits or drill-out) the soil was assigned a nominal unit weight of 17 kN/m^3 .

For depths where the friction sleeve resistance measurement was less than zero due to measurement limitations, the friction sleeve resistance input parameter was substituted with a nominal 1.0 kPa resistance for the purpose of obtaining an approximate soil unit weight necessary for estimation of total vertical stress over the entire profile.

5.5 SOIL BEHAVIOUR TYPE

The data have been interpreted using 4 soil behaviour type schemes: Robertson (1990, 2010, 2016) and Schneider et al, 2008. The Robertson (1990) scheme is widely used and forms the bases of the layer analysis whereby the profile is split into zones of common classification. The Robertson (2010 & 2016) and Schneider at al methods are less widely used but can provide better or more relevant classification in many instances. Differences in classification between the Robertson 1990, 2016 and Schneider et al schemes can also help to identify significant structure/cementation (Robertson 2016).

A dedicated soil behaviour type comparison log is provided in Appendix D.

Robertson (1990, 2010)

The soil behaviour type (SBT) was interpreted using the Robertson (1990) classification system based on the normalised cone resistance (Qt) and normalised friction sleeve resistance (Fr) for silicate and organic soils.

While the classification based on normalised parameters is more accurate, particularly for NC soils exceeding 15 m depth, the classification is often significantly in error (artificially granular/drained) at shallow depth (< 1-3 m). The error at shallow depth is associated with the potentially large difference between the estimated vertical effective stress (applied in normalisation) and the unknown horizontal stress influencing penetration resistance.

Robertson (2010) proposed a non-normalised version of the 1990 chart which uses dimensionless cone resistance (q_c /Pa) and friction ratio (Rf). The classification according to this chart can be more reliable at shallow depth.

It should be noted that:

- The SBT classification provides a general soil type and tends to show biased towards the soil fraction that dominates the mechanical behaviour.
- If fine cohesive soils are dry and overconsolidated, the classification tends to shift towards a coarser soil type (or lower l_c index)

While the repeatability and behavioural bias of the SBT is usually beneficial, the classification is not always an appropriate substitute for classification based on particle size and plasticity index tests.

Figure 5-2 Non-normalised SBT chart by Robertson et al. (2010) based on dimensionless cone resistance (qc/Pa) and friction ration, Rf, showing contours of SBT index ISBT (denoted Ic on the test plots). The chart is also applicable to normalised tip (Q_t) and sleeve (F_r) values.

Zone	Soil Behaviour Type (SBT)		
1	Sensitive fine-grained	6	Sands - clean sand to silty sand
2	Organic soils	7	Gravelly sand to sand
3	Clays – clay to silty clay	8*	Very stiff/dense sand to clayey sand ¹
4	Silt mixtures - clayey silt to silty clay	9*	Very stiff fine grained ¹
5	Sand mixtures – silty sand to sandy silt	*Heav	ily overconsolidated or cemented

Table 1 Robertson (1990, 2010) soil behaviour type zone descriptions

¹Note zones 8 and 9 appear as 'Very stiff/dense sand to clayey sand - HOC or cemented' and 'Very stiff fine grained - HOC or cemented' within the soil unit descriptions of plots in Appendix D.

Results are presented in Appendix D.

Robertson 2016

Using the same Q_t - F_r space as above, Robertson (2016) proposed an alternative purely behavioural classification system that places less emphasis on classification according to composition/textural properties and more emphasis on mechanical behaviour - namely the tendency of the soil to dilate or collapse during large strain shear, and sensitivity.

Zone	Soil Behaviour Type (SBT)				
CCS	Clay-like – contractive - sensitive				
CC	Clay-like – Contractive				
CD	Clay-like – Dilative				
TC	Transitional - Contractive				
TD	Transitional - Dilative				
SC	Sand-like - Contractive				
SD	Sand-like - Dilative				

Figure 5-3 Robertson 2016 soil behaviour type classification chart and zone descriptions

Schneider et al. (2008)

LANKELMA

Schneider *et al.* (2008) proposed a classification system based on the normalised pore pressure B_q and tip resistance Q_t . This system is particularly useful for soils of very low strength or that exhibit drainage behaviour or u_2 response inconsistent with the SBT derived from tip and sleeve measurements. However, when using this method for onshore CPT data, the u_2 piezometer response should be assessed for possible desaturation. Generally, it is safest to only use this method when the piezometer response is 'spikey' and responding dynamically to changes in tip resistance.

A set of logs showing both the Robertson and Schneider et al. classification results are provided for comparison in Appendix D.

Figure 5-4 Schneider 2008 soil behaviour type classification chart and zone descriptions

Layer Analysis

The layer boundaries are manually interpreted based on broad changes in Robertson 1990 SBT classification or variance with depth. Once layer boundaries are defined, the SBT zones classified within each layer are listed together with the corresponding percentage of data points within the layer (excluding null/filtered data). The modal classification is reported in full, with abbreviated short descriptions for all secondary zones, for example - '*Clays - clay to silty clay* [74%]; **Silt mixtures* [20%]', where the asterisk represents an abbreviation of the full description '*Silt mixtures - clayey silt to silty clay*'. It is important to consider that the classification zone boundaries do not exist in nature and small shifts in the cone response can lead to multiple classifications within layers of relatively uniform behaviour; especially were the layer data plot close to a zone junction and/or has spurious spikes or very thin layers. Therefore, some system is required to limit the number of classified zones that appear within each layer description. The following logic has been used to only retain high % constituent classification values:

For LT >= 1, C = 85 For 0.5 <= LT < 1, C = 75 For 0 < LT < 0.5, C = 65

Where

C = Minimum % SBT zone classification coverage within the layer description text LT = Layer thickness (m)

For layers having a thickness of less than 1 m, 10% of data at the top and bottom of the layer are excluded to limit the effect of transition zone data (measured resistance influenced by overlying or underlying strata) being included in the classification.

The continuous SBT index I_c should be used to assess the classification distribution and variation not accounted for by the layer description.

5.6 SOIL BEHAVIOUR TYPE INDEX - Ic

The principal trend in soil behaviour type (SBT) variation can be expressed by a continuous index, I_c , proposed by Robertson and Wride (1998) based on a similar index proposed by Jefferies and Davies (1993). The index provides a continuous profile of SBT variation with depth for end-user analysis of soil units and variation within units. The equivalent non-normalised version proposed by Robertson (2010) is provided for comparison.

The basis of I_c and its approximation of the original chart classification zones may be seen from Figure 5-2. The method does not identify zones 1 (*sensitive fine grained*) or zones 8 & 9 (*heavily overconsolidated or cemented*).

Normalised SBT index I_c (Robertson and Wride, 1998):

$$I_c = [(3.47 - \log Q_t)^2 + (\log F_r + 1.22)^2]^{0.5}$$

Non-normalised SBT index I_C (Robertson, 2010):

$$I_{c} = \left[\left(3.47 - \log \left(\frac{q_{c}}{\sigma_{atm}} \right) \right)^{2} + (logR_{f} + 1.22)^{2} \right]^{0.5}$$

The normalised version of I_c is generally more accurate, while the non-normalised version is intended for compatibility with the non-normalised Robertson's (2010) SBT chart and may be more accurate at shallow depths in overconsolidated soils.

The results are presented in Appendix D.

5.7 RELATIVE DENSITY

The relative density of sands was calculated based on an empirical relationship proposed by Jamiolkowski *et al.* (2001) based on a large database of undisturbed frozen samples and calibration chamber tests. The expected accuracy may be evaluated from the figures presented below.

$$D_r = 100 \left[0.268 \cdot \ln \left(\frac{q_t / \sigma_{atm}}{\sqrt{\sigma_{vo}' / \sigma_{atm}}} \right) - k \right]$$

k = Compressibility dependant constant can be taken as -0.675 for medium compressibility (applied value in our interpretation), <= 1 for high compressibility and >= 2 for compressible sands.

Figure 5-5 Relative density with normalised tip stress and sand compressibility from calibration chamber tests (left) and undisturbed frozen samples (right). Jamiolkowski *et al.* (2001). Reproduced from Mayne (2007).

The results are presented in Appendix F.

5.8 UNDRAINED SHEAR STRENGTH

The undrained shear strength s_u is usually estimated by the bearing capacity method, whereby the net tip resistance is divided by a factor N_k (Lunne *et al*, 1981):

$$s_u = \frac{q_c - \sigma_{v0}}{N_k}$$

Where N_k is an empirical factor which varies with soil type, stress history, structure/fabric, plasticity, and the mode of shear.

Mayne and Peuchen (2018) performed an evaluation of 407 high-quality undrained anisotropically consolidated triaxial compression tests (CAUC) with net tip resistance data pairs, resulting in N_{kt} factors with regression analysis details for five categories of clays shown in Table 2.

Clay Group	Number of sites	Nr Data	Correlation Coefficient r ²	Factor N _{kt}	Mean Pore Pressure Parameter B _q
Offshore NC-LOC	17	115	0.98	12.32	0.51
Onshore NC-LOC	30	191	0.867	12	0.53
Sensitive NC-LOC	5	43	0.507	10.33	0.84
OC Intact	5	36	0.862	13.57	0.49
OC Fissured	5	22	0.393	22.47	-0.01
All clays	62	407	0.923	13.33	0.55

Table 2 Summary of CAUC su versus qnet for clays. Reproduced from Mayne and Peuchen (2018).

Alternatively, a variable N_{kt} factor can be estimated for the profile as a function of the pore pressure parameter B_q , applicable for B_q values of > -0.01. The following equation proposed by Mayne and Peuchen is based on the same database evaluation:

 $N_{kt} = 10.5 - 4.6 \cdot \ln(B_q + 0.1)$

Where the pore pressure parameter B_q is the ratio of excess pore pressure to net tip resistance:

$$B_q = \frac{u_2 - u_0}{q_t - \sigma_{v0}}$$

The N_{kt} estimate has a standard error of 2.4 N_k and correlation coefficient of 0.645.

The estimate based on B_q is presented as ' s_u5 ' on the parameter plots and is only suitable for tests that have a high-quality pore pressure data, often indicated by a positive, repeatable, and dynamic response.

Note: N_{kt} (with subscript 't') indicates a N_k factor that has been established using the corrected tip resistance q_t . N_{kt} can be applied to the uncorrected tip resistance q_c (non-piezocone tests) but results in a slightly lower estimate of s_u depending on the correction magnitude ($q_c - q_t$) in lower strength soils.

Undrained shear strengths corresponding to selected values of N_k are presented on the plots of Appendix D. ' $s_u 3'$ on the logs ($N_k = 15$) has been included as a reference for comparison to traditionally applied N_k values of 15 and 20.

The results are presented in Appendix E.

5.9 OVERCONSOLIDATION RATIO

The preconsolidation stress σ'_p was calculated based on the method proposed by Mayne et al (2009):

$$\sigma'_{p} = k \cdot (q_{t} - \sigma_{vo})^{m'}$$
$$OCR = \sigma_{p}' / \sigma'_{v0}'$$

Mayne *et al* found that the trend with mean grain size followed a power law through the addition of exponent m' and that its value can be estimated by relation to soil behaviour type index I_c :

$$m' = 1 - \frac{0.28}{1 + \frac{l_c}{2.65}^{25}}$$

Figure 5-6 Preconsolidation stress with net cone resistance power law, reproduced from Mayne (2014).

An additional set of σ'_p and OCR values were calculated for m' = 1.1 to reflect the upper trend for over consolidated fissured clays not captured by the correlation with I_c .

The results are presented in Appendix E.

5.10 SPT N60 VALUES

Equivalent SPT N60 values, defined as the non-normalised SPT blow count over a 30 cm interval, were derived for two correlations.

Method 1 - Jefferies and Davies (1993) cited in Lunne et al. (1997):

$$N_{60} = \frac{q_t}{8.5 \cdot \sigma_{atm} \cdot \left(1 - \frac{I_c}{4.6}\right)}$$

Method 2 - Robertson (2012):

$$\frac{\left(\frac{q_t}{p_a}\right)}{N_{60}} = 10^{(1.268 - 0.2817I_c)}$$

The correlations are intended for clays, silts and sands and not for carbonates or cemented geomaterials.

The results are presented in Appendix F.

5.11 FRICTION ANGLE

<u>Sands</u>

The peak friction angle of granular materials was calculated using the Kulhawy and Mayne (1990) method. The relationship is based on a calibration chamber database from 24 sands of varying mineralogy and is found from:

 $\phi' = 17.6 + 11.0 \cdot \log{(q_{t1})}$

Where:

 ϕ' = Peak friction angle (degrees)

 q_{t1} = stress normalised cone resistance:

$$q_{t1} = \left(\frac{q_t}{\sigma_{atm}}\right) / \left(\frac{\sigma_{\nu 0'}}{\sigma_{atm}}\right)^{0.5}$$

The presence of compressible minerals tends to reduce tip resistance resulting in lower estimate of friction angle, while very coarse (sand) or larger grain size tends to increase tip resistance resulting in higher estimate. Increased penetration resistance due to high k_0 conditions also results in an overestimate of friction angle.

Figure 5-7 Peak triaxial friction angle from undisturbed sands with normalised cone resistance.

Fine grained soils

The effective friction angle for fine grained soils was calculated based on the Senneset *et al.* (1988, 1989) method by applying the approximate closed form solution by Mayne & Campanella (2005) as a direct function of the pore pressure parameter Bq and normalised tip resistance Q. The method is applicable where $0.1 < B_q < 1.0$ and $20^\circ < \phi' < 45^\circ$ and generally appropriate for non-cemented normally consolidated to lightly overconsolidated soils.

 $\phi' = 29.5^{\circ} B_{q^{0.121}}[0.256 + 0.336 B_q + \log Q]$

Figure 5-8 [Left] Theoretical curves with function approximation (dots) overlay [Right] calibration data from geotechnical centrifuge tests for a variety of soils. Redrawn from Ouyang & Mayne (2018).

The results are presented in Appendix F.

5.12 COEFFICIENT OF VOLUME CHANGE

Coefficient of volume change m_v defined as the inverse of the constrained modulus M, is evaluated for all soil types using the constrained modulus method proposed by Mayne (2006) cited in Mayne (2007). The value may be used to predict settlement at the end of primary consolidation and is applicable to the present state of vertical effective stress up to the preconsolidation stress for overconsolidated soils.

$$m_v = \frac{1}{M}$$

Where:

 $M = \alpha \cdot (q_t - \sigma_v)$

$$\alpha = 5$$

An alpha factor of 8.25 reported by Kulhawy & Mayne (1990) for fine grained soils appears to provide a better fit through the data for intact non-organic clays, reducing to around 1 to 2 for organic plastic clays.

Figure 5-9 Constrained modulus of Mayne (2006). Annotated/redrawn from NCHRP Synthesis 368 (2007).

The results are presented in Appendix E.

5.13 YOUNG'S MODULUS

The secant Young's modulus E' at 25% mobilised shear strength (FOS = 4) was calculated according to the method proposed by Robertson (2009):

 $E' = \alpha(q_t - \sigma_v)$ Where:

 $\alpha = 0.015(10^{0.55Ic + 1.68})$

The method described by Robertson may be adapted to estimate E' for loading at different percentages of mobilised shear strength.

The results are presented in Appendix F.

6 CPT INTERPRETATION NOTES

Provided below is a non-exhaustive set of notes on interpretation of the acquired CPT data with reference to examples within the dataset where appropriate.

DRAINED AND UNDRAINED SOIL BEHAVIOUR

Geotechnical parameters appropriate for drained and undrained cone penetration conditions are derived for drained and undrained soil behaviour types (SBTs) respectively, however, to help mitigate the uncertainty in the SBT correlation with drainage behaviour, all parameters are derived over the Soil Behaviour Type range $2.4 < I_c < 2.7$. For partially drained conditions, error will be introduced within derived parameters.

Piezocone dynamic pore pressure and dissipation tests may be used to identify drainage conditions. Dissipation t_{50} values exceeding 50 seconds indicate undrained penetration behaviour based on the findings of Kim *et al.* (2008).

In partially drained materials the friction sleeve resistance may rise significantly immediately following a pause in penetration due to consolidation and increased effective stress on the friction sleeve.

DYNAMIC PORE PRESSURE u₂ (CPTu)

While the piezo system is saturated before use, testing through unsaturated soils may result in some degree of desaturation leading to a less accurate and more 'sluggish' pore pressure response. Desaturation can also occur during penetration due to suction pressure causing cavitation during dilative shear at the cone shoulder. Dissipation tests that are undertaken following desaturation are likely to have a more pronounced initial rise and the results of analysis may have some degree of error.

If the piezometer system becomes desaturated it may re-saturate at higher excess pressures later in the test as gas dissolves under pressure. The pore pressure response in saturated contractive soils should normally have a dynamic 'peaky' appearance.

The tip resistance in lower strength contractive soils <u>without</u> pore pressure measurement in the u_2 position is likely to be significantly lower (up to 20%, typically ~10%) than the equivalent corrected tip resistance depending on the magnitude of excess pore pressure generated during penetration.

CONE TIP AND SLEEVE OFFSET

The accuracy of the SBT over thin layers and at layer boundaries is sensitive to offset error in the friction ratio often resulting in sharp peaks or troughs at boundaries. The friction ratio is often inaccurate in heavily disturbed soils with a 'blocky' macro fabric. The last ~8 cm of data is also not included in the SBT material description as no friction sleeve measurements are recorded.

FRICTION SLEEVE DATA

There are three common causes of friction sleeve measurement error; 1) unequal pore pressure acting on the sleeve end areas as the sleeve passes though materials of different permeability and hence excess pore pressure Δu_2 , often resulting in a negative/positive spike, 2) Accuracy limitations and temperature effects in very low strength or sensitive soils, and 3) error associated with bending strain that occurs while the cone inclination deviates rapidly. Temperature effects

are generally mitigated by temperature stabilisation during the test and at the time of zero output measurement.

CONE TYPE

The reference cone type has a 10 cm² projected cone tip area and 150 cm² friction sleeve area, however it is common to use a larger 15 cm² cone with a 225 cm² friction sleeve area for improved sensitivity, temperature stability, damage prevention and penetration depth potential due to the higher bending strength. Use of a 15 cm² cone does however require higher penetration force (reaction force) for a given penetration pressure and produces more pronounced transitions zones and thin layer effects due to the larger influence zone.

TRANSITION ZONES AND THIN LAYER EFFECTS

During penetration at the boundary between soils of contrasting stiffness, a transition zone is often evident prior to mobilisation of the true soil stiffness. These should be cautiously ignored in assessment of soil behaviour type and parameter evaluation. Where the stiff layer is thin (<~1 m) mobilised resistance may be significantly less than that of an equivalent thick layer. The effect for thin low stiffness layers is less significant. Procedures for thin-layer effect correction are provided by Robertson and Wride (1998) and Boulanger & DeJong (2018).

GRAVELS

The presence of gravel or larger clasts in a soil is often characterised by short peaks in the CPT tip and sleeve readings, possibly with associate inclinometer 'shake' and/or short sharp reductions in pore water readings due to dilation effects. Frequent gravels in soft or loose soils may generate localised erroneous friction ratio values.

7 REFERENCES

ASTM E74-13a (2013), Standard Practice of Calibration of Force-Measuring Instruments for Verifying the Force Indication of Testing Machines, ASTM International, West Conshohocken, PA.

Boulanger, R.W. and DeJong J.T. (2018) "Inverse filtering procedure to correct cone penetration data for thin-layer effects" Proceedings, 4th International Symposium on Cone Penetration Testing (CPT'18), 21-22 June 2018, Delft, The Netherlands. CRC Press. pp. 25-44.

British Standards Institution (2003) BS 8422:2003, Force measurement - Strain gauge load cell systems - Calibration method. London: British Standards Institution.

Houlsby, G.T. and Teh, C.I. (1988). Analysis of the Piezocone in Clay. Proceedings of the International Symposium on Penetration Testing (ISOPT-1), Orlando, Vol. 2, pp. 777-783. Balkema Pub., Rotterdam.

ISO 376:201. Metallic materials – Calibration of force-proving instruments used for the verification of uniaxial testing machines (2011).

ISO 10012:2003 Measurement management systems - Requirements for measurement processes and measuring equipment. New Delhi: Bureau of Indian Standards (2003).

ISO 22476-1:2012 Geotechnical investigation and testing - Field testing - Part 1: Electrical cone and piezocone penetration test. New Delhi: Bureau of Indian Standards (2012).

ISSMGE, 1999. International reference test procedure for the cone penetrometer test CPT and the cone penetration test CPTU, Report of ISSMGE TC16 on Ground Property Characterisation for in situ Testing, In Proceedings of the 12th European conference on Soil Mechanics and Geotechnical Engineering 3:2195-222 (1999).

Idriss, I. M., and Boulanger, R. W. (2008) "Soil liquefaction during earthquakes". Monograph MNO-12, Earthquake Engineering Research Institute, Oakland, CA, pp. 261.

Jamiolkowski, M., LoPresti, D.C.F., and Manassero, M. (2001) "Evaluation of Relative Density and Shear Strength of Sands from Cone Penetration Test and Flat Dilatometer Test". Soil Behaviour and Soft Ground Construction (GSP119), American Society of Civil Engineers, pp. 201-238. Reston, Va. 2001

Jefferies, M.G. and Davies M.P. (1993), "Use of CPTu to estimate equivalent SPT N60", Geotechnical Testing Journal, 16(4), pp. 458-467.

Kim, K., Prezzi, M., Salgado, R., and Lee, W. (2008) "Effect of Penetration Rate on Cone Penetration Resistance in Saturated Clayey Soils", Journal of Geotech. Geoenviron. Eng., Vol. 134(8), pp. 1142-1153.

Kulhawy, F.H. and Mayne, P.W. (1990) "Manual on Estimating Soil Properties for Foundation Design". Report EPRI EL-6800 Research Project 1493-6, Electric Power Research Institute, Palo Alto, CA, pp. 306.

Ladd, C.C. and DeGroot, D.J. (2003) "Recommended Practice for Soft Ground Site Characterization: Arthur Casagrande Lecture". Soil & Rock America 2003 (Proceedings. 12th Pan American Conference on Soil Mechanics and Geotechnical Engineering, Boston, MA). Verlag Glückauf, Essen, Germany. pp. 3-57.

Lunne, T., Robertson, P.K. and Powell, J.J.M. (1997) "Cone Penetration Testing in Geotechnical Practice" Blackie Academic, New York 1997. (Robertson, 2009)

Lunne, T. and Kleven, A. (1981) "Role of CPT in North Sea Foundation Engineering". Session at the ASCE National Convention: Cone Penetration Testing and Materials. pp. 76-107. American Society of Engineers (ASCE).

Mayne, P.W. and Campanella, R.G. (2005) "Versatile Site Characterisation by Seismic Piezocone". Proceedings, 16th International Conference on Soil Mechanics and Geotechnical Engineering, Vol. 2. Millpress, Rotterdam, The Netherlands 2005. pp 721-724.

Mayne, P.W. and Peuchen J. (2018), "Evaluation of CPTU Nkt cone factor for undrained strength of clays". Proceedings, 4th International Symposium on Cone Penetration Testing (CPT'18), 21-22 June 2018, Delft, The Netherlands. CRC Press. pp. 423-429.

Mayne, P.W. (2007) "Cone Penetration Testing - A Synthesis of Highway Practice". NCHRP Synthesis 368, Transportation Research Board, Washington, D.C.

Mayne, P.W. (2014). KN2: "Interpretation of geotechnical parameters from seismic piezocone tests". Proceedings, 3rd International Symposium on Cone Penetration Testing (CPT'14), June 2014, ISSMGE Technical Committee TC 102, Edited by P.K. Robertson and K.I. Cabal: pp. 47-73.

Parez, L. and Fauriel, R. (1988). "Le piézocône. Améliorations apportées à la reconnaissance de sols". Revue Française de Géotech, Vol. 33, pp. 13-27.

Robertson, P.K. (2009). Cited in "Guide to Cone Penetration Testing - 6th edition (2015)", pp. 36, pp. 58, Gregg Drilling & Testing, Inc.

Robertson, P.K. (2009). Interpretation of cone penetration tests - a unified approach. Canadian Geotechnical Journal, 46, pp. 1337-1355.

Robertson, P.K. (2010a) "Soil Behaviour Type from the CPT: an update". Proceedings, 2nd International Symposium on Cone Penetration Testing. Huntingdon Beach, CA, USA.

Robertson, P.K. (2010b) "Estimating soil unit weight from CPT". Proceedings, 2nd International Symposium on Cone Penetration Testing. Huntingdon Beach, CA, USA.

Robertson, P.K. (2012). "Interpretation of in-situ tests - some insights", Proceedings, 4th Int. Conf. on Geotechnical & Geophysical Site Characterization, ISC'4, Brazil, 1.

Robertson, P.K (2014) "Estimating in-situ soil permeability from CPT & CPTu". Proceedings, 3rd International Symposium on Cone Penetration Testing (CPT'14), June, 2014, ISSMGE Technical Committee TC 102.

Senneset, K., R. Sandven, and N. Janbu (1989), "Evaluation of Soil Parameters from Piezocone Tests," Transportation Research Record 1235, Transportation Research Board, National Research Council, Washington D.C, pp. 24-37.

Sully, J.P., Robertson, P.K., Campanella, R.G. and Woeller, D.J. (1999) "An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils". Canadian Geotechnical Journal. Vol. 36, pp. 369-381.

APPENDICES

Appendix A	SUMMARY TABLES
Appendix B	GENERAL INFORMATION
Appendix C	CONE PENETRATION TEST RESULTS
Appendix D	SOIL BEHAVIOUR TYPE RESULTS
Appendix E	PARAMETER RESULTS 1 – s_u , m_v , OCR, SBT, I_c
Appendix F	PARAMETER RESULTS 2 – SPT N60, Phi, Dr, E, I
Appendix G	PENETROMETER TEMPERATURE RESULTS

APPENDIX A SUMMARY TABLES

Table 3 CPT summary

Location ID	Stroke number	Final depth (m)	Cone ID	Piezocone test	Pre-drilled (m) Pre-drilling details	Rig	Primary refusal factor	Applied zero values: qc, fs, u2	Tip zero drift (kPa)	Sleeve zero drift (subtraction) (kPa)	Piezo zero drift (kPa)	Nr dissipation tests	Raw File Name	Easting (m)	Northing (m)	Date	Remarks
CPT01	1	12.60	S15-CFIPTT.2117	YES		UK3	Total cone load	pre, pre, pre	-82.40	0.30	-7.50		108244-V1-270123-UK03-LP62.L01	435774	546829	27/01/2023	
CPT02	1	12.46	S15-CFIPTT.2117	YES		UK3	Total cone load	pre, pre, pre	-29.80	1.60	-9.00		108244-V1-270123-UK03-LP62.L02	435801	546827	27/01/2023	
CPT03	1	10.46	S15-CFIPTT.2117	YES		UK3	Total cone load	pre, pre, pre	-86.00	1.40	-4.50		108244-V1-270123-UK03-LP62.L03	435827	546827	27/01/2023	
CPT04	1	11.44	S15-CFIPTT.2117	YES		UK3	Inclination	pre, pre, pre	-57.40	12.70	-7.70		108244-V1-270123-UK03-LP62.L04	435827	546815	27/01/2023	
CPT05	1	13.28	S15-CFIPTT.2117	YES		UK3	Total cone load	pre, pre, pre	-57.80	0.80	-1.90		108244-V1-270123-UK03-LP62.L05	435800	546815	27/01/2023	
CPT06	1	14.84	S15-CFIPTT.2117	YES		UK3	Inclination	pre, pre, pre	-85.00	1.30	-5.20		108244-V1-270123-UK03-LP62.L06	435775	546815	27/01/2023	
CPT07	1	14.92	S15-CFIPTT.2117	YES		UK3	Total cone load	pre, pre, pre	-6.00	-0.40	-5.70		108244-V1-270123-UK03-LP62.L07	435775	546802	27/01/2023	
CPT08	1	13.52	S15-CFIPTT.2117	YES		UK3	Total cone load	pre, pre, pre	-65.00	0.90	-8.40		108244-V1-270123-UK03-LP62.L08	435799	546803	27/01/2023	
CPT09	1	12.36	S15-CFIPTT.2117	YES		UK3	Total cone load	pre, pre, pre	-59.00	1.00	-6.80		108244-V1-270123-UK03-LP62.L09	435827	546804	27/01/2023	

Note: Coordinates and levels have been provided by the Client for inclusion in this report.

CPT test plots are presented in Appendix C.

APPENDIX B GENERAL INFORMATION

LIST OF FIGURES

Cone calibration certificate: S15-CFIIP.2117

Data sheet: 20.5-tonne track-truck mounted CPT unit (UK3)

<u></u>	MA	Certificat	e Number: 1471	S15-CFIIPTT.2117		
Instrument:	Digital-Ge	eopoint-S15-150kN-5MPa	Location:	Lankelma Calibration Laborato		
Serial number:	S	15-CFIIPTT.2117	Temperature (°C):	18.5		
Manufacturer:		Geopoint	Temperature change (°C):	0.02		
Calibration standard:	Conforms to ISC	O 376:2011 & ISO 22476-1:2012	Calibration engineer:	P Metcalf		
22476-1:2012 application class	:	Class 1	Date of calibration:	22/12/2022		
			Calibration expiry:	22/06/2023		
calibration certificate is valid for	r 6 months.					
Calibration signed and	lated by:	Calibration che	cked and dated by:	Calibration verification signed and date		
P Matci	lf	A H	arman			
	e					
	.					
AM DSCCHA-100kN Load C		66914	0.02%	29/04/2021		
AM DSCCHA-5kN Load Ce	1	61065	0.05%	29/04/2021		
Omega MMG750V		502273	0.01%	01/09/2022		
Keithley 3706A Multimeter		4067652	10ppm	11/08/2022		
LD Solar2-45		168558	0.04°	01/08/2022		
ETI Ref Thermometer		D20345255	0.01°C	08/09/2022		
The cal	bration tests were n	hade in the Lankelma force standa	ards machine. The applied forces of v	hich are within an uncertainty of:		
The combined expanded uncertain The coefficients of a third order equilibrium on the close	ty of deflection U for uation relating a give	or each force is shown as a percer on applied force to the estimate of t are a combination of the resisten	tage of the recorded value and in un the mean deflection were also calcu	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3.		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slee the sever friction value. The re- he combined expanded uncertaint e calibration uncertainty is the uncertaint e calibration uncertainty is the uncertaint e calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^2}$ d d = k × uc here is the standard uncertainty associ- is the standard uncertainty associ- tis the	ty of deflection U fc aation relating a give ve load cell elemen sultant error values i es shown are to k=2 ertainty in the force standard uncertaint ated with the applie ated with the repoor ated with the creep ated with the creep	d calibration force. tucibility of the calibration results. tability of the calibration results. to differing tip and sleeve values with a 95% coverage factor. value calculated from the interpol y uc is calculated from the reading d calibration force. tucibility of the calibration results. tion and noise of the system. of the instrument. zero output. re of the instrument. on best fit of the linear or 3rd orde	the estimate of the mean deflection tage of the recorded value and in ur the mean deflection were also calcu ce and sleeve friction, with the tip res are shown in Table 4.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtraction		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slee e the sleeve friction value. The re- he combined expanded uncertaint e calibration uncertainty is the unc- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^2}$ d $= k \times uc$ here is the standard uncertainty associ is the standard uncertainty associ	ty of deflection U for aation relating a give ve load cell elemen sultant error values t es shown are to k=2 ertainty in the force standard uncertaint ated with the applie ated with the repro- ated with the repeat ated with the repeat ated with the creep ated with the creep ated with the crep ated with the terpeat ated with the terpeat ated with the terpeat ated with the terpeat ated with the terpeat	d calibration force. ucibility of the calibration results. tability of the calibration results. tability of the calibration results. tability of the calibration results. tability of the calibration results. to an onise of the system. of the instrument. zero output. tre of the instrument. on best fit of the linear or 3rd order Symbols and	In estimate of the recorded value and in un the mean deflection were also calcu- ce and sleeve friction, with the tip res are shown in Table 4. ation equation at any deflection. gs obtained during the calibration.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtraction		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slee a the sleeve friction value. The re- the combined expanded uncertaint e calibration uncertainty is the uncertaint e calibration uncertainty is the uncertaint e calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^{2}}$ d $= k \times uc$ here is the standard uncertainty associ is the standard uncertainty associ	ty of deflection U for aution relating a give ve load cell elemen sultant error values t es shown are to k=2 ertainty in the force standard uncertaint at dwith the applie ated with the repro- ated with the repeat ated with the repeat ated with the creep ated with the creep ated with the creep ated with the creep ated with the terpeat ated with the terpeat ated with the terpeat ated with the terpeat ated with the terpeat	d calibration force. lucibility of the calibration results. tability of the calibration results. tability of the calibration results. to an onise of the system. of the instrument. Symbols and the Symbols and the Symbols and the system of the system. on best fit of the linear or 3rd order Symbols and the Symbols and the Symbols and the system of the system. Symbols and the Symbols and the Symbols and the system of the system. Symbols and the Symbols and the system of the system of the Symbols and the Symbols and the Symbols and the system of the system of the Symbols and the Symbols an	The estimate of the mean deflection tage of the recorded value and in ur the mean deflection were also calcu- ce and sleeve friction, with the tip res are shown in Table 4. ation equation at any deflection. gs obtained during the calibration. gs obtained during the calibration. the calibration at any deflection. the calibration at any deflection at any deflection.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtrace		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slere a the sleeve friction value. The re- te combined expanded uncertaint e calibration uncertainty is the uncer- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^2}$ d $= k \times uc$ here is the standard uncertainty associ- is the standard uncertainty associ- and the standard uncertainty associ- and the standard uncertainty associ- and the standard uncertainty associ- bilder and the standard uncertainty associ- bilder and the standard uncertainty associ- bilder and the standard uncertainty associ- tion and the standard uncertainty associ- bilder and the standard uncertainty associ- bilder and the standard uncertainty associ- tion and the standard uncertainty associ- and the standard uncertainty associ- tion and the standard uncertainty ass	ty of deflection U for aation relating a give ve load cell elemen sultant error values t es shown are to k=2 ertainty in the force standard uncertaint ated with the applie ated with the repro- ated with the repeat ated with the repeat ated with the creep ated with the creep ated with the crep ated with the crep ated with the to drift in ated with the to drift in ated with the to drift in ated with interpolati	d calibration force. tability of the calibration results. tability of the calibration results. to differing tip and sleeve values. 2 with a 95% coverage factor. value calculated from the interpol y uc is calculated from the reading d calibration force. tucibility of the calibration results. tability of the calibration results. tion and noise of the system. of the instrument. zero output. re of the instrument. on best fit of the linear or 3rd order Symbols and the force in kN	In estimate of the recorded value and in un the mean deflection were also calcu- ce and sleeve friction, with the tip res are shown in Table 4.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtrace		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slere a the sleeve friction value. The re- te combined expanded uncertaint e calibration uncertainty is the uncer- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^{2}}$ d $= k \times uc$ the standard uncertainty associated to the standard uncertainty associat	ty of deflection U for aation relating a give ve load cell elemen sultant error values f es shown are to k=2 ertainty in the force standard uncertaint at d with the applie ated with the repeat ated with the repeat ated with the repeat ated with the crepeat ated wi	d calibration force. uci is calculated from the interpol y uc is calculated from the interpol y uc is calculated from the reading d calibration force. lucibility of the calibration results. tion and noise of the system. of the instrument. cer output. re of the instrument. on best fit of the linear or 3rd order Symbols and force in kN	the estimate of the mean deflection tage of the recorded value and in ur the mean deflection were also calcu- ce and sleeve friction, with the tip res- are shown in Table 4. ation equation at any deflection. gs obtained during the calibration. gs obtained during the calibration. their designations Designation	as a function of the applied calibration force were ts of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtrace 		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the sleve a the sleeve friction value. The re- te combined expanded uncertaint e calibration uncertainty is the uncer- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^{2}}$ d $= k \times uc$ tere is the standard uncertainty associ is the standard	ty of deflection U for aation relating a give ve load cell elemen sultant error values f es shown are to k=2 ertainty in the force standard uncertaint ated with the force ated with the repeat ated w	d calibration force. ucibility of the calibration results. to the instrument. or differing tip and sleeve values with a 95% coverage factor. value calculated from the interpol y uc is calculated from the reading d calibration force. lucibility of the calibration results. tability of the calibration results. tion and noise of the system. of the instrument. zero output. the of the instrument. Symbols and the force in kN counts	In estimate of the recorded value and in un the mean deflection were also calcu- ce and sleeve friction, with the tip res are shown in Table 4. ation equation at any deflection. gs obtained during the calibration. so obtained during the calibration.	as a function of the applied calibration force were ts of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtrace 		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slee a the sleeve friction value. The re- te combined expanded uncertaint e calibration uncertainty is the uncer- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^2}$ d d = $k \times uc$ where is the standard uncertainty associ- is the standard uncertainty associ- b the sta	ty of deflection U for aation relating a give ve load cell elemen sultant error values i es shown are to k=2 ertainty in the force standard uncertaint ated with the ropoor ated with the repoor ated with the ropoor ated with the crep ated with the crep ate	d calibration force. lucibility of the calibration results. to and noise of the system. of the instrument. con	r polynomial equation.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtraction		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slee a the sleeve friction value. The re- te combined expanded uncertaint e calibration uncertainty is the uncer- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} u^{i^2}}$ d d = $k \times uc$ here is the standard uncertainty association is the standard unc	ty of deflection U for aution relating a give ve load cell elemen sultant error values f es shown are to k=2 ertainty in the force standard uncertaint at d with the applie ated with the repeat ated with the repeat ated with the creep ated with the creep ated with the creep ated with the creep ated with the terpeat ated with the terpeat ated with the terpeat ated with the terpeat ated with the creep ated with the creep ated with the terpeat ated with terpeat aterpeat ated with ter	d calibration force. tucibility of the calibration results. taro and noise of the system. of the instrument. zero output. re of the instrument. Symbols and force in kN counts	r polynomial equation.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtraction		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slee a the sleeve friction value. The re- the combined expanded uncertaint e calibration uncertainty is the uncer- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^{2}}$ d d = $k \times uc$ here is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard	ty of deflection U for aution relating a give ve load cell elemen sultant error values t es shown are to k=2 ertainty in the force standard uncertaint ated with the repro- ated with the repeat ated with the repeat ated with the repeat ated with the crepe ated with t	d calibration force. ture is calculated from the interpol y uc is calculated from the interpol y uc is calculated from the reading d calibration force. tucibility of the calibration results. tability of the calibration results. tion and noise of the system. of the instrument. zero output. re of the instrument. on best fit of the linear or 3rd order Symbols and the force in kN counts	The estimate of the recorded value and in ure the mean deflection were also calculate and sleeve friction, with the tip restare shown in Table 4. ation equation at any deflection. gs obtained during the calibration. gs obtained during the calibration. the calibration of the calibration.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtrace 		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slere a the sleeve friction value. The re- te combined expanded uncertaint e calibration uncertainty is the uncertaint e calibration uncertainty account is the standard uncertainty associated is the standard uncertainty associated to the standard uncertainty associated is the standard uncertainty associated to the standard uncertainty associate	ty of deflection U for aution relating a give ve load cell elemen sultant error values f es shown are to k=2 ertainty in the force standard uncertaint ated with the roport ated with the repeat ated with the repeat ated with the repeat ated with the crepp ated with the crept ated with t	d calibration force. lucibility of the calibration results. to differing tip and sleeve values. 2 with a 95% coverage factor. value calculated from the interpol y uc is calculated from the reading d calibration force. lucibility of the calibration results. tability of the calibration results. tion and noise of the system. of the instrument. zero output. re of the instrument. on best fit of the linear or 3rd order Symbols and the force in kN counts	r polynomial equation.	as a function of the applied calibration force were ts of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtrace 		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the sleve a the sleve friction value. The re- te combined expanded uncertaint e calibration uncertainty is the uncer- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^2}$ d $= k \times uc$ here is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard uncerta	ty of deflection U for aation relating a give ve load cell elemen sultant error values f es shown are to k=2 ertainty in the force standard uncertaint at d with the applie ated with the repeat ated	d calibration force. uci is calculated from the interpol y uc is calculated from the interpol y uc is calculated from the reading d calibration force. lucibility of the calibration results. tion and noise of the system. of the instrument. zero output. tre of the instrument. on best fit of the linear or 3rd order Symbols and the force in kN counts uding sleeve subtraction	r polynomial equation. r polynomial equation. their designations Designation	as a function of the applied calibration force were ts of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtrace 		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slee the seleve friction value. The re- he combined expanded uncertaint e calibration uncertainty is the uncertaint e calibration uncertainty is the uncertaint e calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^2}$ d d = k × uc here is the standard uncertainty association is the standard uncertainty association is the standard uncertainty association is the standard unc	ty of deflection U for aation relating a give ve load cell elemen sultant error values i es shown are to k=2 ertainty in the force standard uncertaint ated with the force ated with the report ated w	d calibration force. lucibility of the calibration results. to differing tip and sleeve values with a 95% coverage factor. value calculated from the interpol y uc is calculated from the reading d calibration force. lucibility of the calibration results. tability of the calibration results. tion and noise of the system. of the instrument. zero output. tre of the instrument. on best fit of the linear or 3rd order Symbols and the force in kN counts uding sleeve subtraction	r polynomial equation.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtract		
The combined expanded uncertair The coefficients of a third order eq n use the forces acting on the slee e the sleeve friction value. The re- he combined expanded uncertaint e calibration uncertainty is the unc- each calibration point a combined $= \sqrt{\sum_{i=1}^{8} ui^{2}}$ d $= k \times uc$ here is the standard uncertainty assoc- is the standard uncertainty assoc- ational the standard uncertainty assoc- base of the standard uncertainty assoc- base of the standard uncertainty assoc- is the standard uncertainty assoc- ational the standard uncertainty assoc- base of the standard uncertainty a	ty of deflection U for aation relating a give ve load cell elemen sultant error values f es shown are to k=2 ertainty in the force standard uncertaint at d with the applie ated with the repeat ated with the repeat ated with the repeat ated with the repeat ated with the crepeat ated wit	d calibration force. uci is calculated from the interpol y uc is calculated from the interpol y uc is calculated from the reading d calibration force. lucibility of the calibration results. tion and noise of the system. of the instrument. zero output. tre of the instrument. on best fit of the linear or 3rd order Symbols and t force in kN counts uding sleeve subtraction	the estimate of the recorded value and in un- the mean deflection were also calcu- ce and sleeve friction, with the tip res are shown in Table 4. ation equation at any deflection. gs obtained during the calibration. gs obtained during the calibration.	as a function of the applied calibration force were its of pressure MPa. ated. The coefficients are given in Table 3. Istance from the tip load cell element being subtract		

Certificate Number: 1471

Cone Serial Number:

S15-CFIIPTT.2117

Table 1-	ble 1-a. CONE END RESISTANCE CALIBRATION															
			Low range	calibration							High	range calibr	ation			
		Tip change li	n output (cts)		Reprod	ucibility	Revers	sibility		Tip ch	ange in outp	ut (cts)	Reprodu	ucibility	Revers	sibility
Ref LC	1	2	3	4	erro	or b	error	U_rev	Ref LC	1	2	3	erro	or b	error	U_rev
(kN)	0°	120°	240°	240°	MPa	%	MPa	%	(kN)	0°	120°	240°	MPa	%	MPa	%
0.100	1.082E+05	1.104E+05	1.112E+05	1.112E+05	0.001	0.83			5.000	5.499E+06	5.495E+06	5.497E+06	0.001	0.02		
0.500	5.498E+05	5.500E+05	5.539E+05	5.523E+05	0.001	0.24			10.000	1.100E+07	1.099E+07	1.099E+07	0.001	0.01		
1.000	1.102E+06	1.101E+06	1.107E+06	1.105E+06	0.001	0.18			15.000	1.649E+07	1.649E+07	1.649E+07	0.001	0.01		
1.500	1.655E+06	1.652E+06	1.659E+06	1.657E+06	0.001	0.11			20.000	2.198E+07	2.198E+07	2.198E+07	0.001	0.01		
2.000	2.204E+06	2.200E+06	2.210E+06	2.210E+06	0.002	0.14			30.000	3.296E+07	3.296E+07	3.296E+07	0.001	0.00		
2.500	2.756E+06	2.752E+06	2.761E+06	2.760E+06	0.002	0.09			40.000	4.393E+07	4.393E+07	4.393E+07	0.001	0.00		
3.000	3.307E+06	3.302E+06	3.313E+06	3.311E+06	0.002	0.10			50.000	5.489E+07	5.489E+07	5.489E+07	0.001	0.00		
3.500	3.860E+06	3.853E+06	3.863E+06	3.864E+06	0.002	0.08			60.000	6.585E+07	6.584E+07	6.584E+07	0.001	0.00		
4.000	4.410E+06	4.401E+06	4.415E+06	4.414E+06	0.002	0.09			80.000	8.772E+07	8.771E+07	8.771E+07	0.001	0.00		
5.000	5.512E+06	5.505E+06	5.519E+06	5.517E+06	0.003	0.08			100.000	1.096E+08	1.095E+08	1.095E+08	0.002	0.00		
4.000	4.407E+06	4.398E+06			0.002	0.07	0.001	0.04	80.000	8.771E+07	8.771E+07		0.001	0.00	0.002	0.00
3.500	3.855E+06	3.853E+06			0.000	0.02	0.001	0.03	60.000	6.582E+07	6.582E+07		0.000	0.00	0.007	0.02
3.000	3.306E+06	3.300E+06			0.001	0.07	0.001	0.03	50.000	5.487E+07	5.486E+07		0.001	0.00	0.009	0.03
2.500	2.755E+06	2.748E+06			0.001	0.09	0.001	0.05	40.000	4.390E+07	4.390E+07		0.000	0.00	0.010	0.04
2.000	2.202E+06	2.200E+06			0.000	0.03	0.000	0.03	30.000	3.293E+07	3.293E+07		0.000	0.00	0.009	0.04
1.500	1.654E+06	1.648E+06			0.001	0.13	0.001	0.09	20.000	2.196E+07	2.196E+07		0.001	0.00	0.007	0.06
1.000	1.103E+06	1.100E+06			0.001	0.11	0.000	-0.01	15.000	1.647E+07	1.647E+07		0.000	0.00	0.006	0.06
0.500	5.508E+05	5.495E+05			0.000	0.09	0.000	-0.03	10.000	1.098E+07	1.098E+07		0.000	0.00	0.004	0.07
0.100	1.074E+05	1.105E+05			0.001	0.98	0.000	0.18	5.000	5.490E+06	5.489E+06		0.000	0.01	0.003	0.08

Table 2-a.

		Low I	range calil	oration						High i	range cali	bration			
Referen	ce output	Line	ar equatio	n	3rd or	der equat	ion	Referen	ce output	Line	ar equatio	n	3rd ord	ler equati	ion
Ref Load Cell Nom.	Ref Load	Cone output	Expa uncerta	nded inty <i>U</i> *	Equation output	Expa uncerta	nded ainty U*	Ref Load Cell Nom.	Ref Load	Cone output	Expa uncerta	nded iinty U*	Equation output	Expa uncerta	nded iinty <i>U</i> *
(MPa)	Cell (0.1N)	(0.1N)	MPa	%	(0.1N)	MPa	%	(MPa)	Cell (0.1N)	(0.1N)	MPa	%	(0.1N)	MPa	%
0.067	1000	1003	0.001	1.78	1005	0.001	1.91	3.333	50000	50142	0.020	0.59	50005	0.006	0.18
0.333	5000	5028	0.005	1.36	5018	0.003	0.92	6.667	100000	100280	0.039	0.58	100018	0.011	0.16
0.667	10000	10061	0.009	1.39	10036	0.006	0.83	10.000	150000	150385	0.053	0.53	150017	0.016	0.16
1.000	15000	15098	0.014	1.40	15058	0.008	0.83	13.333	200000	200497	0.069	0.52	200042	0.021	0.16
1.333	20000	20110	0.017	1.25	20055	0.008	0.64	20.000	300000	300629	0.089	0.44	300054	0.031	0.16
1.667	25000	25141	0.020	1.22	25072	0.010	0.62	26.667	400000	400711	0.102	0.38	400092	0.041	0.15
2.000	30000	30168	0.024	1.21	30085	0.012	0.62	33.333	500000	500686	0.103	0.31	500098	0.050	0.15
2.333	35000	35197	0.028	1.21	35100	0.014	0.61	40.000	600000	600579	0.097	0.24	600100	0.060	0.15
2.667	40000	40215	0.031	1.16	40104	0.015	0.57	53.333	800000	800068	0.078	0.15	800043	0.078	0.15
3.333	50000	50281	0.040	1.19	50143	0.021	0.62	66.667	1000000	999240	0.140	0.21	999990	0.097	0.15
2.667	40000	40160	0.022	0.83	40049	0.009	0.32	53.333	800000	800041	0.077	0.14	800016	0.077	0.14
2.333	35000	35157	0.021	0.91	35060	0.009	0.38	40.000	600000	600408	0.079	0.20	599929	0.058	0.15
2.000	30000	30128	0.018	0.88	30045	0.007	0.36	33.333	500000	500452	0.077	0.23	499865	0.051	0.15
1.667	25000	25099	0.014	0.83	25030	0.006	0.33	26.667	400000	400444	0.070	0.26	399824	0.045	0.17
1.333	20000	20074	0.010	0.76	20019	0.003	0.25	20.000	300000	300406	0.061	0.31	299831	0.037	0.18
1.000	15000	15059	0.008	0.84	15019	0.004	0.39	13.333	200000	200314	0.046	0.35	199859	0.027	0.20
0.667	10000	10047	0.006	0.97	10021	0.003	0.50	10.000	150000	150240	0.035	0.35	149873	0.022	0.22
0.333	5000	5018	0.003	0.79	5008	0.001	0.40	6.667	100000	100171	0.025	0.37	99909	0.016	0.23
0.067	1000	994	0.002	2 62	995	0.001	2 17	3 333	50000	50071	0.011	0.33	49933	0.010	0.31

Table 3-a. Third order equation

Even in the second distributed in the CD (0.4M and b). We are used at				Maximum tip zero drift during the calibration (MPa) =	0.002
For a given cone indicated output of D (0.1N units), the corrected applied force	a0	=	4.69892	Maximum load cell zero drift during the calibration (MPa) =	0.000
	a1	=	0.99698	Factor used to convert from counts to 0.1N units =	0.0091216
F (in 0.1N units) is calculated from :	a2	=	3.55987E-09	Maximum tip full scale reading (MPa) =	100.00
$F = (a_3 \times D^3) + (a_2 \times D^2) + (a_1 \times D) + a_0$	a3	=	2.05163E-16	Tip resolution (Pa) =	66.7
				Tip area (cm ²) =	15
				Tip area ratio factor =	0.795

COMBINED EXPANDED UNCERTAINTY TIP

Certificate Number: 1471

SLEEVE FRICTION CALIBRATION

Cone Serial Number: S15-CFIIPTT.2117

Table1-b. Low range calibration High range calibration Sleeve change In output (cts) Sleeve change in output (cts) Reproducibility Reversibility Reproducibility Reversibility error b error U_rev 2 3 error b error U_rev Ref LC 1 2 3 4 1 Ref LC (kN) ٥° 120° 240° 240° kPa % kPa % (kN) Ô٩ 120° 240° kPa % kPa % 1.144E+05 1.173E+05 1.140E+05 5.700E+06 5.701E+06 5.700E+06 0.100 1.140E+05 0.039 0.89 5.000 0.018 0.01 0 500 5 718E+05 5714E+05 5732E+05 5 714E+05 0.020 0.09 10 000 1 140E+07 1 140E+07 1 140F+07 0 009 0.00 1.000 1.142E+06 1.140E+06 1.143E+06 1.141E+06 0.042 0.10 15.000 1.709E+07 1.708E+07 1.708E+07 0.029 0.00 1 500 1711E+06 1 707E+06 1 710E+06 1 710E+06 0.043 0.07 20 000 2 278E+07 2 277E+07 2 277E+07 0.023 0.00 2.000 2.282E+06 2.276E+06 2.283E+06 2.283E+06 0.083 3.415E+07 3.414E+07 0.034 0.09 30.000 3.414E+07 0.00 0.059 2.851E+06 2.846E+06 2.850E+06 2.850E+06 4.551E+07 2.500 0.05 40.000 4.551E+07 4.551E+07 0.002 0.00 3.419E+06 3.415E+06 3.421E+06 3.420E+06 0.068 50.000 5.686E+07 5.686E+07 5.686E+07 3.000 0.05 0.033 0.00 0.082 3.988E+06 3.990E+06 3.983E+06 3.990E+06 0.05 60.000 6.820E+07 6.820E+07 6.820E+07 0.055 3.500 0.00 4.000 4.558E+06 4.550E+06 4.559E+06 4.559E+06 0.114 0.06 80.000 9.086E+07 9.085E+07 9.085E+07 0.057 0.00 5.000 5.693E+06 5.684E+06 5.698E+06 5.699E+06 0.163 0.07 100.000 1.135E+08 1.135E+08 1.135E+08 0.086 0.00 4.000 4.557E+06 4.544E+06 0.172 0.10 0.078 0.04 80.000 9.088E+07 9.087E+07 0.064 0.00 -0.442 -0.01 3.987E+06 0.121 3.500 3.978E+06 0.08 0.057 0.04 60.000 6.823E+07 6.823E+07 0.011 0.00 -0.654 -0.02 3.000 3.419E+06 3.411E+06 0.103 0.08 0.046 0.03 50.000 5.689E+07 5.689E+07 0.009 0.00 -0.727 -0.03 2.500 2.850E+06 2.845E+06 0.066 0.06 0.022 0.02 40.000 4.554E+07 4.554E+07 0.025 0.00 -0.742 -0.04 2.000 2.281E+06 2.275E+06 0.082 0.09 0.011 0.01 30 000 3 417E+07 3.417E+07 0.006 0.00 -0.660 -0.05 1.500 1.712E+06 1.706E+06 0.087 0.13 0.001 0.00 20.000 2.279E+07 2.279E+07 0.023 0.00 -0.422 -0.05 1.000 1.142E+06 1 138E+06 0.050 0.11 0.026 0.06 15 000 1.710E+07 1 710E+07 0.062 0.01 -0.351 -0.05 0.500 5.715E+05 5.698E+05 0.023 0.10 0.022 0.10 10.000 1.140E+07 1.141E+07 0.053 0.01 -0.164 -0.04 1.143E+05 0.100 1.137E+05 0.009 0.20 0.041 0.93 5.000 5.701E+06 5.703E+06 0.023 0.01 -0.028 -0.01

Table 2-b.

Low range calibration											High i	range calil	bration			
Referen	ce output	Linear	factor out	put	3rd ord	der equat	ion		Referen	ce output	Linear	factor out	put	3rd ord	ler equati	ion
Ref Load Cell Nom.	Ref Load	Cone output	Expa uncerta	nded inty <i>U</i> *	Equation output	Expa uncerta	nded inty U*		Ref Load Cell Nom.	Ref Load	Cone output	Expar uncerta	nded inty <i>U</i> *	Equation output	Expa uncerta	nded ainty U*
(kPa)	Cell (0.1N)	(0.1N)	kPa	%	(0.1N)	kPa	%		(kPa)	Cell (0.1N)	(0.1N)	kPa	%	(0.1N)	kPa	%
4	1000	1015	0.154	3.50	1006	0.097	2.21	1	220	50000	50187	1.694	0.77	50006	0.383	0.17
22	5000	5037	0.339	1.54	5013	0.147	0.67		441	100000	100333	3.004	0.68	99999	0.662	0.08
44	10000	10052	0.473	1.07	10009	0.153	0.35		661	150000	150414	3.784	0.57	149952	1.079	0.08
66	15000	15051	0.471	0.71	14991	0.155	0.23		881	200000	200504	4.633	0.53	199936	1.448	0.08
88	20000	20073	0.679	0.77	19995	0.217	0.25		1322	300000	300606	5.690	0.43	299901	2.145	0.08
110	25000	25080	0.733	0.67	24984	0.249	0.23		1762	400000	400629	6.095	0.35	399881	2.744	0.08
132	30000	30093	0.857	0.65	29980	0.299	0.23		2203	500000	500573	5.948	0.27	499878	3.328	0.08
154	35000	35100	0.926	0.60	34969	0.390	0.25		2643	600000	600436	5.386	0.20	599891	3.896	0.07
176	40000	40108	1.011	0.57	39960	0.497	0.28		3524	800000	799878	5.147	0.15	799923	5.079	0.07
220	50000	50109	1.081	0.49	49928	0.803	0.36		4405	1000000	998984	10.925	0.25	1000008	6.268	0.07
176	40000	40063	0.703	0.40	39915	0.861	0.49		3524	800000	800063	4.988	0.14	800109	5.048	0.07
154	35000	35063	0.647	0.42	34932	0.681	0.44		2643	600000	600701	7.211	0.27	600157	3.964	0.07
132	30000	30064	0.632	0.48	29951	0.518	0.39		2203	500000	500855	8.150	0.37	500161	3.414	0.08
110	25000	25067	0.623	0.57	24970	0.331	0.30		1762	400000	400921	8.485	0.48	400173	2.911	0.08
88	20000	20058	0.550	0.62	19979	0.277	0.31		1322	300000	300864	7.840	0.59	300158	2.330	0.09
66	15000	15047	0.462	0.70	14987	0.229	0.35		881	200000	200673	6.059	0.69	200105	1.555	0.09
44	10000	10034	0.327	0.74	9992	0.140	0.32		661	150000	150556	4.991	0.76	150093	1.256	0.10
22	5000	5024	0.220	1.00	5000	0.058	0.26		441	100000	100399	3.574	0.81	100065	0.864	0.10
4	1000	1003	0.046	1.05	994	0.060	1.36		220	50000	50198	1.785	0.81	50017	0.386	0.09

Table 3-b. Third order equation

Even in the second distribution in the first of the second state				Maximum sleeve zero drift during the calibration (kPa) =	0.085
For a given cone indicated output of D (0.1N units), the corrected applied force	a0	=	-5.27699	Maximum load cell zero drift during the calibration (kPa) =	0.003
	a1	=	0.99625	Factor used to convert from counts to 0.1N units =	0.0088040
F (in 0.1N units) is calculated from :	a2	=	4.68849E-09	Physical strength limited maximum sleeve reading (MPa) =	1.333
$F = (a_3 \times D^3) + (a_2 \times D^2) + (a_1 \times D) + a_0$	a3	=	9.52751E-17	Sleeve resolution (Pa) =	4.4
				Sleeve area (cm ²) =	227
				Sleeve area ratio factor =	-0.001

Certificate Number: 1471

Cone Serial Number: S15-CFIIPTT.2117

Table 4-b Sleeve friction - tip subtraction combined standard uncertainty Uc_sub

LANKELMA

			Slee	ve linear	equatior	n subtrac	tion erro	r (%)	
		Sleeve I	kPa —						
		4	22	44	66	110	154	220	661
o MPa	0.07	3.4	1.1	0.7	0.5	0.4	0.3	0.3	0.3
Ē	0.33	7.0	1.8	1.0	0.7	0.5	0.4	0.4	0.4
	0.67	11.6	2.7	1.5	1.1	0.7	0.6	0.5	0.4
	1.00	14.8	3.4	1.8	1.3	0.9	0.6	0.5	0.4
•	1.67	21.6	4.7	2.5	1.7	1.1	0.8	0.7	0.4
	2.33	28.7	6.1	3.2	2.2	1.4	1.0	0.8	0.4
	3.33	43.2	9.0	4.7	3.2	2.0	1.5	1.1	0.5
	10.00	84.2	17.2	8.8	5.9	3.6	2.6	1.9	0.7
	13.33	105.1	21.4	10.8	9.2	4.5	3.2	2.9	1.0

		Sleeve 3rd order equation subtraction error (%)													
		Sleeve k	Pa —		→										
		4	22	44	66	110	154	220	661						
р МРа	0.07	2.8	0.6	0.4	0.3	0.2	0.2	0.2	0.1						
E I	0.33	3.7	0.8	0.4	0.3	0.2	0.3	0.2	0.1						
	0.67	5.9	1.2	0.7	0.5	0.3	0.3	0.3	0.1						
	1.00	7.7	1.6	0.8	0.6	0.4	0.4	0.3	0.1						
•	1.67	10.2	2.1	1.1	0.8	0.5	0.4	0.4	0.2						
	2.33	15.6	3.2	1.6	1.1	0.7	0.6	0.5	0.2						
	3.33	25.4	5.1	2.6	1.8	1.1	0.9	0.7	0.3						
	10.00	28.4	5.7	2.9	2.0	1.2	1.0	0.7	0.3						
	13.33	36.1	7.3	3.7	3.5	1.5	1.2	0.9	0.3						

PORE PRESSURE CALIBRATION

Table 2 a

								TUDICE							
Table1-	.							Refer	ence output	Linear	factor out	tput	3rd ord	ler equati	on
	PWP cl	hange in outp	out (cts)	Reprod	ucibility	Revers	sibility	Ref	Ref	Cone	Expa	nded	Equation	Expa	nded
Ref PR	1	2	3	erre	or b	error	U_rev	Pressur	e Pressure	output	uncerta	ainty U*	output	uncerta	inty U*
(kPa)	0°	120°	240°	kPa	%	kPa	%	(kPa)	(0.1Pa)	(0.1Pa)	kPa	%	(0.1N)	kPa	%
100	2.085E+07	2.083E+07	2.084E+07	0.0	0.03			100	1000000	1000506	0.221	0.22	1001986	0.442	0.44
200	4.165E+07	4.162E+07	4.161E+07	0.1	0.03			200	2000000	1998744	0.431	0.22	2002385	0.591	0.30
400	8.322E+07	8.322E+07	8.322E+07	0.0	0.00			400	4000000	3995788	0.991	0.25	4002907	0.775	0.19
600	1.249E+08	1.249E+08	1.248E+08	0.0	0.01			600	6000000	5995002	1.252	0.21	6004567	1.181	0.20
800	1.665E+08	1.665E+08	1.665E+08	0.0	0.00			800	8000000	7994335	1.450	0.18	8005433	1.411	0.18
1000	2.082E+08	2.081E+08	2.082E+08	0.1	0.01			1000	1000000	9994000	1.654	0.17	10005838	1.626	0.16
1500	3.123E+08	3.123E+08	3.122E+08	0.1	0.01			1500	15000000	14993260	1.991	0.13	15004263	1.691	0.11
2000	4.165E+08	4.165E+08	4.164E+08	0.2	0.01			2000	2000000	19996924	1.915	0.10	20004761	2.048	0.10
2500	5.206E+08	5.206E+08	5.206E+08	0.1	0.00			2500	25000000	24995599	2.335	0.09	24999828	2.161	0.09
3000	6.248E+08	6.248E+08	6.247E+08	0.2	0.01			3000	3000000	29996766	2.698	0.09	29998822	2.629	0.09
2500	5.205E+08	5.206E+08		0.2	0.01	0.2	0.01	2500	25000000	24993394	2.552	0.10	24997624	2.231	0.09
2000	4.162E+08	4.163E+08		0.1	0.00	0.7	0.04	2000	2000000	19986463	3.256	0.16	19994308	2.118	0.11
1500	3.119E+08	3.119E+08		0.0	0.00	1.0	0.07	1500	15000000	14976486	4.945	0.33	14987497	2.892	0.19
1000	2.078E+08	2.078E+08		0.0	0.00	1.0	0.10	1000	1000000	9976001	4.949	0.49	9987835	2.669	0.27
800	1.662E+08	1.662E+08		0.1	0.01	0.9	0.11	800	8000000	7979479	4.232	0.53	7990569	2.093	0.26
600	1.246E+08	1.246E+08		0.0	0.00	0.8	0.13	600	6000000	5981427	3.821	0.64	5990978	1.952	0.33
400	8.301E+07	8.302E+07		0.0	0.00	0.6	0.14	400	4000000	3986024	2.876	0.72	3993128	1.467	0.37
200	4.149E+07	4.149E+07		0.0	0.00	0.4	0.20	200	2000000	1992230	1.613	0.81	1995859	0.890	0.44
100	2.075E+07	2.076E+07		0.0	0.03	0.2	0.23	100	1000000	996544	0.738	0.74	998014	0.444	0.44

Table 3-c. Third order equation

Even of the second station in the D (D (D (D) - Station)) the second state				Maximum PWP zero drift during the calibration (kPa) =	0.05
For a given cone indicated output of D (0.1N units), the corrected applied force	a0	=	-991.64742	Maximum reference zero drift during the calibration (kPa) =	0.05
	a1	=	1.00263	Factor used to convert from counts to 0.1Pa units =	0.0480138
F (in 0.1N units) is calculated from :	a2	=	-1.59473E-10	Maximum PWP full scale reading (kPa) =	5000
F = (a3 x D ³) + (a2 x D ²) + (a1 x D) + a0	a3	=	2.50999E-18	PWP resolution (Pa) =	0.1

COMBINED EXPANDED UNCERTAINTY PORE PRESSURE

Certificate Number: 1471

Cone Serial Number: S15-CFIIPTT.2117

INCLINATION CALIBRATION

Ref Inclination	Cone inclina	ation output
(°C)	X Inc (cts)	Y Inc (cts)
-25	-29973	25988
0	-3656	121
25	22357	-25537

Ref Inclination	Cone inclina	ation output
(°)	X Inc (°)	Y Inc (°)
-25	-25.1	-25.1
0	0.0	0.0
25	24.9	24.9

	X inc	Y inc
Factor used to convert from counts to 0.1m° units =	9.55464123	-9.703974
Inclination error (°) =	0.1	0.1

TEMPERATURE CALIBRATION

Recorded temp (°C)	Cone output 1 FS (cts)	Cone output 2 QC (cts)	Recorded temp (°C)	Cone output 1 FS (°C)	Cone outp QC (°C
7.15	3068458	3058595	7.15	7.24	7.19
10.35	3121384	3113492	10.35	10.28	10.33
15.27	3208108	3198934	15.27	15.26	15.22
20.28	3293912	3286642	20.28	20.18	20.24
25.16	3382194	3373567	25.16	25.25	25.21
25.16	3382194	3373567	25.16	25.25	2
			Factor used to convert from counts to 0.00001°C units =	0.574113529	0.57208
			Temperature error (°C) =	0.10	0.05

CONE TEMPERATURE EFFECT

	Cooling	Heating
Tip maximum rate of change (MPa/°C/min) =	0.050	0.050
Tip end change (MPa/°C) =	-0.002	-0.001
Adjusted tip end change (MPa/°C) =	0.001	0.003
Sleeve maximum rate of change (kPa/°C/min) =	2.32	2.31
Sleeve end change (kPa/°C) =	0.12	-0.18
Adjusted sleeve end change (kPa/°C) =	0.15	-0.21
PWP end change (kPa/°C) =	0.68	-0.75
Adjusted PWP end change (kPa/°C) =	0.03	-0.04

Cooling

19.96

9.87

-10.09

Start temperature =

End temperature =

Temperature change =

Heating

20.38

31.31

10.92

Rig weight	20.5 T
Max. operating ram capacity	17 T
Max. travelling speed	86 km/h
Track material	Steel
Track length	3300 mm
Track width	650 mm
Jack plate dimensions	Tracks act as jacks
Jack arrangements	1nr. on each side
Max. ground clearance on jacks	210 mm
Max. ground bearing pressure	Tracking/pushing – 47 kPa Pulling – 88 kPa
Max. testing gradient	10 degrees
Max. traversing gradient	20 degrees (operator assessed)
Noise output at 2 m	Testing - 74 dBA Driving – 87 dBA
Clamp arrangement	36/55 push-pull clamp
Ram stroke	1.2 m
Max. casing size	55 mm

Lankelma's versatile track-truck is suitable for most geotechnical sites. The rig is driven to site as a self-contained HGV with tracks that can be deployed to cope with soft or uneven terrain. Fitted with a chalwyn valve and spark arrestor.

Typical production

An expected 100m+ of standard CPTu testing can be executed in a day (depending on conditions and access).

Specialist testing
Seismic
Pressuremeter
Magnetometer
Video cone
Wing cone
Push-in shear vane

Installations VWP Piezometer Inclinometer Sampling MOSTAP Shelby

APPENDIX C CONE PENETRATION TEST RESULTS

Measured CPT parameters

intermediate parameters $R_{\rm f}$ and $B_{\rm q}$

Project: COLLIERY LANE, HETTON-LE-HOLE LANKELMA Client: HYDROCK Cone Resistance q_t (MPa) Internal QC Diss. Pore Pressure Ratio, Bq 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Assumed In-situ Pore Pressure **u**₀ (kPa) Dissipation ELEVATION (m) -0.5 0 0.5 0.4 qt (small scale) 0.6 ____ 0.8 1 1.2 0.2 1.3 Test Dynamic Pore Water Pressure u₂ (kPa) Inclination (degrees) DEPTH (m) Friction Sleeve Resistance f (kPa) 100 150 200 250 300 350 Friction Ratio (%) 50 100 400 450 500 550 600 650 0 2 4 6 0 100 200 300 400 500 600 10 -100 2-Phreatic Surface 3.00 m -3-____ ___ <u>_____</u> 4 <= ____ 5------_ 6-7-8-9-10-3 Terminated at 10.46 m 11-12-13-14-Zero drift (Pre/post test) Lankelma Project Ref: Cone area (mm2): Remarks: Date of plot: Location: Tyne & Wear, UK *Phreatic surface origin: Arbitrary value 31-01-23 P-108244-1 **TEST ID: CPT03** Cone ID: S15-CFIPTT.2117 q_c (kPa): -86.0 Coordinates: 435827, 546827 Operator: Walter Geddes Checked by: f_s (kPa): 1.4 (f_{s drift} - q_{c drift}) Elevation: Rig Used: UK3 Page 1 of 1 Chris Player Coordinate system: Date of test: 27/01/2023 09:52:17 u₂ (kPa): -4.5 Termination Remark: Total cone load

Client: HYDROCK

J	LA	NK	ELM	A	Proje Client	ct: COI t: HYDI	lliery Rock	LANE,	HETT	ON-LE	-HOLE																					
		0	2	Cone Re	sistance	q t (MPa)	10		14	16	10	20	22	24	26	Po	re Pressure	Ratio, B	Bq				Accumo	d la citu	Poro Pr		u (kDo)	Int Q	ernal C Diss.			
	NOL	0		4 0.2		0.4 q _t (si	mall scale)	0.6 <u> </u>		0.8	10	1		1.2	-1 1.3	-0.	5 0	C).5	1		,					u ₀ (кга)	베 Dis Te	sipation st	· .		
НТН	EVAT			Friction S	Sleeve Re	esistance	f _s (kPa)										Friction R	atio (%)				I	Dynami	c Pore V	Vater Pre	essure u	J₂ (kPa)			Ir	nclination	1 (degrees)
۳Ę	- ±5	0	50	100 1	150	200	250	300	350	400	450	500	550	600 6	50 0	2	4.		6	. 8	-100	····	100		200	300	400		500	600 C	<u>)</u>	10 20
		l i i i	erminaled	at 14.04 r	m																											
16-	-																														++++	
17-	-														_																	
18-																									Í							
10-		<u>i</u> ii																														
15																																
20																																
20-																																
21-																			Į.									1				
22-																																
		i i i																									i l					
23-											-																				++++	
		l i i i																														
24-	-																														+++++	
25-	-														_																	
26-											_				_					_											++++	
27-	-																	-		_							-				++++	
																											i i					
28-	-														_																	
		l i i i																	l i						i i		Ì					
29-	-														_					$- \ $										-+		
0				70	ft (Dec /= - '	(test)		_				D '							D-1	of -1			ma Dati	at D-fi								
Cone	ID: S15-	CFIPTT.2	117	∠ero drif q _c (kPa):	: -85.0	iest)	Locatio Coordir	n: Tyne & W ates: 43577	/ear, UK 75, 546815			*Phreati	s. ic surface o	origin: Arbitr	rary value	e			31-0)1-23	JC	P-1082	111a Proje 244-1	ECT KET:	TE	STI	D: C	СРТО	6			
Opera Rig U	ator: Wal Jsed: UK3	ter Gedde 3	6	f _s (kPa):	1.3 (f _{s drift} -	q _{c drift})	Elevatio	on:											Chec	cked b	oy:				Page	- 2 of 2		-				
Date	of test: 2	7/01/2023	12:10:26	u ₂ (kPa)	: -5.2		Coordir	ate system:				Termina	tion Rema	rk: Inclinatio	on					s may	el				raye	2012						

Client: HYDROCK

J	LA	NK	ELM	A	Projec Client	ct: COI :: HYDI	lliery Rock	LANE,	HETTO	ON-LE	-HOLE																			
		0	2	Cone Re	sistance	q t (MPa)	10	10	14	16	10	20	22	24	26	Pore	Pressure	Ratio, B	q		^	Seumod	In citu E	ore Pre		(kPa)	Inter	nal)iss.		
	NOL	0	 (ф <u></u> 0.2		0.4 q _t (s	mall scale)	0.6	(0.8		1 1		1.2 '	-1 1.3	-0.5	0	0.	.5 1		~					(KFa)	Dissi Test	pation		
EPTH	EVAL			Friction S	Sleeve Re	esistance	f _s (kPa)									F	riction Ra	tio (%)			L	Jynamic	Pore Wa	ater Pre	ssure u ₂	(кРа)			inclinat	ion (degrees
۳Ę	ш£.	0	50 1	100 1	150 :	200	250	300	350 4	100	450	500	550	600 6	50 0	2	4	•••••	6 8	-100	⁰	100	20	0	300	400	500	600	<u> </u>	10 2
			minateu	at 14.921	11															l i										1 1 1 1 1
16-							_																							+++++
17-															_															<u></u>
18-																		Ì		i										
10-																		Ì		İ									111	
15																														
20																														
20-																														
21-																														
22-																														
																		ľ												
23-																														
																														1 1 1 1 1
24-																		1												
25-											_																			
26-																														+ + + + + + + + + + + + + + + + + + + +
27-																													+++	+++++
																		l l												
28-																														
29-																														
	1	2)		Zoro della	t (Dro/ng - t	toot)			<u> </u>			Derre	rko						Data of -		Lank-	Droi	at Dofi							
Cone	ID: S15-0	CFIPTT.211	7	q _c (kPa):	: -6.0	lest)	Locatio Coordir	n: Tyne & W ates: 43577	'ear, UK '5, 546802			*Phrea	atic surface	e origin: Arbitr	ary value				31-01-23	101: 3	P-1082	na Projec 44-1	a Ket:	TE	ST IC	D: C	РТ07	,		
Opera Rig U	ator: Walt sed: UK3	er Geddes		f _s (kPa):	-0.4 (f _{s drift} -	q _{c drift})	Elevatio	on:											Checked	by:				Page	2 of 2					
Date	of test: 27	7/01/2023 1	2:55:23	u ₂ (kPa)	: -5.7		Coordir	ate system:				Termir	nation Rem	ark: Total cor	ne load				Unris Pla	yer				гауел	2 UI 2					

Project: COLLIERY LANE, HETTON-LE-HOLE Client: HYDROCK

۲	LA	NKELM	A Project: COL Client: HYDR	LIERY LANE, HE OCK	TTON-LE-HOLE									
т	ATION	0 2 0 0	Cone Resistance q _t (MPa) 4 6 8 1 .2 0.4 q _t (sm	0 12 14 14 11 scale) 0.6	16 18 2 0.8	0 22	24 26 1.2 1.3	P(ore Pressure Ratio	D, Bq 0.5 1	Assumed In- Dynamic Po	situ Pore Pressure \mathbf{u}_0 (kP	a) Internal QC Diss. Ull Dissipation Test	Inclination (degrees)
DEPT (m)	(m) ELEV	0 50 1	Friction Sleeve Resistance f	s (kPa) 50 300350	400 450 50	00 550	600 650	0	Friction Ratio ($\frac{1}{2}$	%) 6 8 -	00 0 100	200 300 4	00 500 600	0 10 20
	ELEVAT (m)		Friction Sleeve Resistance f 00 150 200 2 Phreatic Surface 3	s (kPa) 300 350					Friction Ratio (*		Dynamic Po	re <u>Water Pressure u₂ (kP</u>	a) 500 600	Inclination (degrees) 0 10 20 10 10 20 10 10 20 1
9				-										
11- 12-		- War								M M M				
13-		Terminated	at 12,36 m											
Cone Cone Opera Rig Us Date o	area (mm ID: S15-C tor: Walte sed: UK3 of test: 27	h2): CFIPTT.2117 er Geddes /01/2023 14:24:05	Zero drift (Pre/post test) q _c (kPa): -59.0 f _s (kPa): 1.0 (f _{s drift} - q _{c drift}) u ₂ (kPa): -6.8	Location: Tyne & Wear, U Coordinates: 435827, 546 Elevation: Coordinate system:	K 804	Remarks: *Phreatic surf	face origin: Arbitrar	y value		Date of plot 31-01-23 Checked by Chris Player	Lankelma Project R P-108244-1	ef: TEST ID: Page 1 of 1	CPT09	

APPENDIX D SOIL BEHAVIOUR TYPE RESULTS

Soil behaviour type (SBT) point data evaluation according to:

Schneider et al (2008)

Robertson (2016)

Robertson (2010) with aggregate layer descriptions

Robertson (1990) with aggregate layer descriptions

Lankelma Project Ref: P-108244-1 Project: COLLIERY LANE, HETTON-LE-HOLE LANKELMA Client: HYDROCK Cone Resistance q, (MPa) Soil Behaviour Type Index - I. SBT Material Description SBT Material Description In-situ Pore Pressure (Comparison only) SBT Zone 10 20 ₆ ₆ (Non-normalised) ELEVATION (m) Inclination SBT Zone SBT Zone SBT Zone Robertson (2010) Robertson (1990) Robertson (1990) (Stress normalised) Graphic I Graphic I 0.4 0.8 (Stress-normalised) (Basis of layer analysis) Robertson (2010) From dissination tests (q Small Scale) Porewater Pressure, u₂ (kPa) Schneider et al. (2008) Robertson (2016) DEPTH (m) (degrees) (Basis of layer analysis) (Non-normalised) (Comparison only) Equiv. $I_c - K_1 - \text{Robertson}$ (2014) Equiv. $I_c - K_2 - \text{Robertson}$ (2014) **. ___** CCS CC CD TC TD SC SD Sleeve Resistance fs (kPa) * = Abbreviation * = Abbreviation 600 100 0 100 300 500 700 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 400 1 2 3 4 5 2 3 200 20 1 2 3 4 5 6 7 Silt mixtures - clayey silt Verv stiff/dense sand to × clayey sand - HOC or cemented [89%] ⁽¹⁾ to silty clay [56%] 150 Silt mixtures - clayey silt ʻx × to silty clay [76%]; *Sand Sand mixtures - silty mixtures [22%] sand to sandy silt [76%]; *Sands [16%] ⁽¹⁾ × 'x × 1.86 2-× Sand mixtures - silty sand Sands - clean sand to 2.28 to sandy silt [94%] 2.28 silty sand [62%] ⁽¹⁾ $\overline{\mathbf{v}}$ Silt mixtures - clayey silt to silty clay [79%]; *Clay _[21%] ⁽¹⁾ _____ Clay - clay to silty clay L X [90%] Phreatic Surface 3.00 m ×× -3 3.32 3.32 ' o ' Sands - clean sand to Gravelly sand to sand silty sand [86%] [62%]; *Sands [38%] 4-1.32 1.32 × × Sand mixtures - silty sand Sand mixtures - silty sand to sandy silt [90%] to sandy silt [77%] 5-'х Sands - clean sand to Sands - clean sand to silty sand [97%] silty sand [97%] 6 11/11 Clay - clay to silty clay Clay - clay to silty clay [99%] [99%] 7_ 8 Sand mixtures - silty sand Sand mixtures - silty sand to sandy silt [43%]; *Silt mixtures [43%]; null × × 8.42 to sandy silt [43%]; *Silt mixtures [43%]; null (filtered data) 29% (filtered data) 29% 9.12 Clay - clay to silty clay 9.12 Clay - clay to silty clay 9-9.42 [100%] × 9.42 [100%] ×. Sand mixtures - silty sand Sand mixtures - silty sand to sandy silt [75%] to sandy silt [75%] 10-Clay - clay to silty clay Clay - clay to silty clay 10.40 [89%] 10.40 [94%] × × Sand mixtures - silty sand Sand mixtures - silty sand 10.92 to sandy silt [100%] 10.92 to sandy silt [89%] 11 Clay - clay to silty clay Clay - clay to silty clay 11.40 [76%] 1.40 [100%] ×. 11.60 Sand mixtures - silty sand r Sand mixtures - silty sand to sandy silt [71%] to sandy silt [57%] 12-Clay - clay to silty clay Clay - clay to silty clay 12.38 12.50 [87%] 12.38 12.38 [57%]; *Silt mixtures 44 Very stiff fine grained san Terminated at 12.60 r Very stiff fine grained -HOC or cemented [75%] 13mixtures: silty HOC or cemented [50%] *Very stiff/dense sand to clayey sand [50%] 2 14-Sands: Sand 22 6 Schneider et al. (2008) Material Type Robertson (2016) Material Type Robertson (1990 & 2010) Material Type Cone area (mm2): Remarks: *Phreatic surface origin: Arbitrary value (1) 0-3 m: Normalised SBT often - CCS - Clay-like - Contractive - Sensitive 1 - (1c) Sensitive clays **TEST ID: CPT01** ConeID: S15-CFIPTT.2117 - Sensitive fine-grained 6 - Sands - clean sand to silty sand artificially coarse/stiff at very low in-situ 2 - CC - Clay-like - Contractive 3 - CD - Clay-like - Dilative 4 - TC - Transitional - Contractive 2 - (1b) Clays 2 - Organic soils 7 - Gravelly sand to sand stresses Location: Tyne & Wear, UK 3 - (1a) Silts & low I, clays 3 - Clavs - clav to silty clav Internal 8 - Very stiff/dense sand to clayey sand 네 Dissipation Test 5 - TD - Transitional - Dilative 6 - SC - Sand-like - Contractive 7 - SD - Sand-like - Dilative Rig Used: UK3 4 - (3) Transitional soils Coordinates: 435774, 546829 4 - Silt mixtures - clavev silt to silty clav Page 1 of 1 OA Diss 5 - Sand mixtures - silty sand to sandy silt 9 - Very stiff fine grained Date of test: 27/01/2023 08:08:43 Elevation: 5 - (2) Essentially drained sands

Lankelma Project Ref: P-108244-1 Project: COLLIERY LANE, HETTON-LE-HOLE LANKELMA Client: HYDROCK Cone Resistance q, (MPa) SBT Material Description Soil Behaviour Type Index - I. SBT Material Description In-situ Pore Pressure (Comparison only) SBT Zone 10 20 Graphic Log ₆ (Non-normalised) Inclination SBT Zone SBT Zone SBT Zone ELEVATION (m) Robertson (2010) Robertson (1990) Robertson (1990) (Stress normalised) Graphic I 0.4 0.8 (Stress-normalised) (Basis of layer analysis) Robertson (2010) From dissination tests (q Small Scale) Porewater Pressure, u₂ (kPa) Schneider et al. (2008) Robertson (2016) (degrees) (Basis of layer analysis) Equiv. I_c - 'K₁ - Robertson (2014) Equiv. I_c - 'K₂ - Robertson (2014) (Non-normalised) (Comparison only) DEPT (m) CCS CC CD TC TD SC SD Sleeve Resistance fs (kPa) * = Abbreviation * = Abbreviation 600 100 0 100 300 500 700 0 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 200 400 1 2 3 4 5 2 3 20 1 2 3 4 5 6 7).20 Clay - clay to silty clay Very stiff/dense sand to \[100%] clayey sand - HOC or cemented [57%] ⁽¹⁾ Sand mixtures - silty sand to sandy silt [65%]; *Sands [19%]; *Silt Sands - clean sand to × silty sand [100%] mixtures [15%] × 2-× × Silt mixtures - clayey silt Sand mixtures - silty × sand to sandy silt [72%]; *Silt mixtures [15%] ⁽¹⁾ to silty clay [59%]; *Sand mixtures [31%] Phreatic Surface 3.00 m ┉╦┈╳┙ -3-·≁ 2 3.30 3.30 Silt mixtures - clayey silt to silty clay [56%]; *Sand × Sand mixtures - silty sand × to sandy silt [44%]; *Silt mixtures [36%] 98 mixtures [40%] 98 4. Clay - clay to silty clay Clay - clay to silty clay [92%] [88%] 5-< 6 Sands - clean sand to Sands - clean sand to silty sand [70%]; *Sand silty sand [73%]; *Sand mixtures [30%] mixtures [27%] 7-Clay - clay to silty clay Clay - clay to silty clay [50%]; *Silt mixtures [28%]; *Sand mixture [50%]; *Sand mixtures [25%]; *Silt mixtures *Sand mixtures 22%] 20% 8-8 24 8.24 Clay - clay to silty clay Clay - clay to silty clay [96%] [96%] ---- 9.04 9-Clay - clay to silty clay Clay - clay to silty clay 9.36 [50%] 9.36 [50%] 9.58 Clay - clay to silty clay 9.58 Clay - clay to silty clay [92%] [100%] 10.0 10-Clay - clay to silty clay [38%]; *Silt mixtures Clay - clay to silty clay 10.36 -10.36 [38%]; *Silt mixtures 38% - - - - - -[38%] — · — — · Terminated at 10.46 r Clay - clay to silty clay Clay - clay to silty clay 11 [88%] [100%] Very stiff fine grained -HOC or cemented [42%] Very stiff fine grained -HOC or cemented [33%] sandy silt 12sar sand to silty sand to 13-Sand mixtures: silty 14-Sands: 22 6 Schneider et al. (2008) Material Type Robertson (2016) Material Type Robertson (1990 & 2010) Material Type Cone area (mm2): Remarks: *Phreatic surface origin: Arbitrary value (1) 0-3 m: Normalised SBT often - CCS - Clay-like - Contractive - Sensitive 1 - (1c) Sensitive clays **TEST ID: CPT03** ConeID: S15-CFIPTT.2117 - Sensitive fine-grained 6 - Sands - clean sand to silty sand artificially coarse/stiff at very low in-situ 2 - CC - Clay-like - Contractive 3 - CD - Clay-like - Dilative 4 - TC - Transitional - Contractive 2 - (1b) Clays 2 - Organic soils 7 - Gravelly sand to sand stresses Location: Tyne & Wear, UK 3 - (1a) Silts & low I, clays 3 - Clays - clay to silty clay Internal 네 Dissipation Test 5 - TD - Transitional - Dilative 6 - SC - Sand-like - Contractive 7 - SD - Sand-like - Dilative 8 - Very stiff/dense sand to clayey sand Rig Used: UK3 4 - (3) Transitional soils Coordinates: 435827, 546827 4 - Silt mixtures - clavev silt to silty clav Page 1 of 1 OA Diss 5 - Sand mixtures - silty sand to sandy silt 9 - Very stiff fine grained Date of test: 27/01/2023 09:52:17 Elevation: 5 - (2) Essentially drained sands

Project: COLLIERY LANE, HETTON-LE-HOLE Client: HYDROCK

LANKELMA

DEPTH (m)	ELEVATION (m)	Cone Resistance q, (M 0 10 2 0 0.4 (q, s) Sleeve Resistance f _a (k 0 200 4	Pa)	Ir Pore -100 0 1	ewater Press	Pressure sure, u ₂ (kPa)	Inclination (degrees)	20	SBT 2 Schneider ei 1 2 3	Zone t al. (2008) 4 5	Rol ccs cc 1 2	SBT Zone bertson (2 CD TC TD 3 4 5	e 016) sc sp 6 7	(1)	Comparis SBT 2 Robertsc (Non-nor 2 3 4 5	son only) Zone malised) 6 7 8 9	Graphic Log	SBT Material Description Robertson (2010) (Comparison only) * = Abbreviation	(; (Ba	SBT 2 Robertso Stress-no isis of lay 3 4 5	Cone n (1990) rmalised) er analysis 6 7 8	Graphic Log	SBT Material Description Robertson (1990) (Basis of layer analysis) * = Abbreviation	Soil Beha (Non-norm (Stress nor From dissipa Equiv. I _c - 'H Equiv. I _c - 'H	viour Type alised) = malised) = tion tests; 1 - Robertso 2 - Robertso	n (2014) *
16-		Terminated	at 14.84 m														_									
17-																										
18-																										
20-																										
21-														_												
22–																						_				
23-																										
24-																										
26-																										
27—																								sand Ity sand	nd to sandy sil	
28-																								and to gravelly lean sand to s	ctures: silty sar es: clayey <mark>silt t</mark>	ay to silty clay anic soil
29-																Det		0.000 Matrix Tara						(7) Dense sa (6) Sands: <mark>c</mark>	(5) Sand mix (4) Silt Mixtun	(3) Clays - cla (2) Clay - org
Cone Conel Locati Rig U:	area (mr D: S15-C ion: Tyne sed: UK3 of test: 2	n2): CFIPTT.2117 9 & Wear, UK 3 7/01/2023 12:10:26	Coordinates	Phreatic s s: 435775,	urface origin 546815	Arbitrary value	Schneider et al 1 - (1c) Sensitive 2 - (1b) Clays 3 - (1a) Silts & Ic 4 - (3) Transition 5 - (2) Essential	vl. (2008) M e clays ow I, clays nal soils ly drained :	Vaterial Type	Ro 1 - CCS - (2 - CC - Cl 3 - CD - Cl 4 - TC - Tr 5 - TD - Tr 6 - SC - Se 7 - SC - Se	bertson (2016 Clay-like - Contr lay-like - Contr lay-like - Dilativ ansitional - Co ansitional - Dil and-like - Contr and-like - Contr) Material T tractive - S ractive ve ontractive lative ractive	ype ensitive	1 - Se 2 - Or 3 - Cl 4 - Sil 5 - Se	ensitive fine rganic soils ays - clay t It mixtures and mixture	Rober e-grained o silty clay - clayey silt to s - silty sand	son (1990 silty clay	2 & 2010) Material Type 6 - Sands - clean sand to silty sand 7 - Gravelly sand to sand 8 - Very stiff/dense sand to clayey sand 9 - Very stiff fine grained	(1) artific	0-3 m: l ially coa	Normalise rse/stiff at stresses nal Diss.	d SBT often very low in- Dissipation Test	TEST ID: CP Page 2 of 2	т06		

LANKELMA Client: HYDROCK Cone Resistance q, (MPa) SBT Material Description Soil Behaviour Type Index - I. SBT Material Description In-situ Pore Pressure (Comparison only) SBT Zone 10 20 Log ₆ (Non-normalised) ELEVATION (m) Inclination SBT Zone SBT Zone SBT Zone Robertson (2010) Robertson (1990) Robertson (1990) (Stress normalised) Graphic I Graphic I 0.4 0.8 1 (Stress-normalised) (Basis of layer analysis) Robertson (2010) From dissination tests (q Small Scale) Porewater Pressure, u₂ (kPa) Schneider et al. (2008) Robertson (2016) (degrees) DEPTH (m) (Basis of layer analysis) (Non-normalised) (Comparison only) Equiv. $I_c - K_1 - \text{Robertson}$ (2014) Equiv. $I_c - K_2 - \text{Robertson}$ (2014) CCS CC CD TC TD SC SD Sleeve Resistance fs (kPa) * = Abbreviation * = Abbreviation 600 100 0 100 300 500 700 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 400 1 2 3 4 5 2 200 20 1 2 3 4 5 6 7 ্ব × Sand mixtures - silty sand Very stiff/dense sand to clayey sand - HOC or cemented [97%] ⁽¹⁾ to sandy silt [81%] .84 Silt mixtures - clayey silt Ϊ×. Sand mixtures - silty sand to sandy silt [96%] to silty clay [83%] 144 .44 Sands - clean sand to Sands - clean sand to 1.96 silty sand [63%]; *Sand mixtures [37%] 1.96 silty sand [100%] ⁽¹⁾ 2-× ` × Sand mixtures - siltv Silt mixtures - clayey silt 2.62 sand to sandy silt [83%] 2.62 to silty clay [79%] X _____2.80 z Phreatic Surface 3.00 m Clay - clay to silty clay ×. Silt-mixtures - clayey silt ×. -3 _/[83%]_ 3.30 3.30 to silty clay [100%] Sand mixtures - silty sand Sand mixtures - silty to sandy silt [89%] sand to sandy silt [56%] Clay - clay to silty clay [98%] Clay - clay to silty clay 4.54 [98%] - 4.54 i 🔀 . 4.90 Sand mixtures - silty sand × 4.90 Sand mixtures - silty sand to sandy silt [62%] \to sandy silt [92%] 5-7 Clay - clay to silty clay [100%] Clay - clay to silty clay [100%] ₫ 5.96 5.96 6 . Х × Sand mixtures - silty sand Sand mixtures - silty sand to sandy silt [59%]; *Silt mixtures [20%]; *Sands to sandy silt [66%]; *Silt mixtures [22%] × Γ×. [12%] 104 7-Clay - clay to silty clay Clay - clay to silty clay ____ [100%] [100%] 7 88 8 Ϊ×. × Sand mixtures - silty sand Sand mixtures - silty sand 3.36 to sandy silt [67%] 3.36 to sandy silt [67%] Clay - clay to silty clay [96%] Clay - clay to silty clay [100%] 9-10-10.60 10.60 10.86 Silt mixtures - clayey silt 10.86 Clay - clay to silty clay to silty clay [40%]; *Clay [40%] **\[60%]** 11 Clay - clay to silty clay Clay - clay to silty clay [94%] NAMA [90%] ð 12sar nd to silty 13silty 14-P 14 58 14 58 Sar 14.82 Very stiff fine grained -14.82 Clay - clay to silty clay Schneider et al. (2008) Material Type Robertson (2016) Material Type Robertson (1990 & 2010) Material Type Cone area (mm2): Remarks: *Phreatic surface origin: Arbitrary value (1) 0-3 m: Normalised SBT often 1 - (1c) Sensitive clays - CCS - Clay-like - Contractive - Sensitive **TEST ID: CPT07** ConeID: S15-CFIPTT.2117 - Sensitive fine-grained 6 - Sands - clean sand to silty sand artificially coarse/stiff at very low in-situ 2 - CC - Clay-like - Contractive 3 - CD - Clay-like - Dilative 4 - TC - Transitional - Contractive 2 - (1b) Clays 2 - Organic soils 7 - Gravelly sand to sand stresses Location: Tyne & Wear, UK 3 - (1a) Silts & low I, clays 3 - Clays - clay to silty clay Internal 네 Dissipation Test 5 - TD - Transitional - Dilative 6 - SC - Sand-like - Contractive 7 - SD - Sand-like - Dilative 8 - Very stiff/dense sand to clayey sand Rig Used: UK3 4 - (3) Transitional soils Coordinates: 435775, 546802 4 - Silt mixtures - clavev silt to silty clav Page 1 of 2 OA Diss 5 - Sand mixtures - silty sand to sandy silt 9 - Very stiff fine grained Date of test: 27/01/2023 12:55:23 Elevation: 5 - (2) Essentially drained sands

Project: COLLIERY LANE, HETTON-LE-HOLE

Lankelma Project Ref: P-108244-1

Lankelma Project Ref: P-108244-1

LANKELMA Client: HYDROCK Cone Resistance qt (MPa) Soil Behaviour Type Index - I. SBT Material Description SBT Material Description In-situ Pore Pressure (Comparison only) SBT Zone 30 10 20 Graphic Log Бо-(Non-normalised) ELEVATION (m) Inclination SBT Zone SBT Zone SBT Zone Robertson (2010) Robertson (1990) Robertson (1990) (Stress normalised) Graphic I 0.4 0.8 ____ 1.2 (Stress-normalised) (Basis of layer analysis) Robertson (2010) From dissination tests Porewater Pressure, u₂ (kPa) Schneider et al. (2008) Robertson (2016) DEPTH (m) (degrees) (Comparison only) (Basis of layer analysis) (Non-normalised) Equiv. I_c - 'K₁ - Robertson (2014) Equiv. I_c - 'K₂ - Robertson (2014) CCS CC CD TC TD SC SD Sleeve Resistance f_s (kPa) * = Abbreviation * = Abbreviation 600 100 0 100 300 500 700 10 1 2 3 4 5 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 2 3 20 1 2 3 4 5 6 7 HOC or cemented [33%]; *Clay [33%] [67%] Terminated at 14.92 m 16-17-18-19-20-21-22-23-24-25-26sandy silt 27σ silty sand sand to s sand to 28-(5) Sand mixtures: silty an ő 29-Mixtu Sands: 6 Robertson (1990 & 2010) Material Type Schneider et al. (2008) Material Type Robertson (2016) Material Type Cone area (mm2): Remarks: *Phreatic surface origin: Arbitrary value (1) 0-3 m: Normalised SBT often - CCS - Clay-like - Contractive - Sensitive 1 - (1c) Sensitive clays **TEST ID: CPT07** ConeID: S15-CFIPTT.2117 - Sensitive fine-grained 6 - Sands - clean sand to silty sand artificially coarse/stiff at very low in-situ 2 - CC - Clay-like - Contractive 3 - CD - Clay-like - Dilative 4 - TC - Transitional - Contractive 2 - (1b) Clays 2 - Organic soils 7 - Gravelly sand to sand stresses Location: Tyne & Wear, UK 3 - (1a) Silts & low I, clays 3 - Clays - clay to silty clay A Diss. 8 - Very stiff/dense sand to clayey sand 5 - TD - Transitional - Dilative 6 - SC - Sand-like - Contractive 7 - SD - Sand-like - Dilative Rig Used: UK3 4 - (3) Transitional soils Coordinates: 435775, 546802 4 - Silt mixtures - clayey silt to silty clay Page 2 of 2 5 - Sand mixtures - silty sand to sandy silt 9 - Very stiff fine grained Date of test: 27/01/2023 12:55:23 Elevation: 5 - (2) Essentially drained sands

Project: COLLIERY LANE, HETTON-LE-HOLE LANKELMA Client: HYDROCK Cone Resistance q, (MPa) SBT Material Description Soil Behaviour Type Index - I. SBT Material Description In-situ Pore Pressure (Comparison only) SBT Zone 10 20 Log ₆ (Non-normalised) ELEVATION (m) Inclination SBT Zone SBT Zone SBT Zone Robertson (2010) Robertson (1990) Robertson (1990) (Stress normalised) Graphic I Graphic I 0.4 0.8 (Stress-normalised) (Basis of layer analysis) Robertson (2010) From dissination tests (q Small Scale) Porewater Pressure, u₂ (kPa) Schneider et al. (2008) Robertson (2016) (degrees) DEPTH (m) (Basis of layer analysis) (Non-normalised (Comparison only) Equiv. I_c - 'K₁ - Robertson (2014) Equiv. I_c - 'K₂ - Robertson (2014) **. ___** CCS CC CD TC TD SC SD Sleeve Resistance fs (kPa) * = Abbreviation * = Abbreviation 600 100 0 100 300 500 700 10 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 400 1 2 3 4 5 2 200 20 1 2 3 4 5 6 7 ্ব Silt mixtures - clayey silt to silty clay [59%]; *Sand mixtures [31%] Very stiff/dense sand to clayey sand - HOC or cemented [84%] ⁽¹⁾ × 0.86 1.12 Clay - clay to silty clay ·χ 1.12 Sand mixtures - silty × **\[90%]** × sand to sandy silt [60%] Sand mixtures - silty sand .92 Sand mixtures - silty .92 to sandy silt [52%]; *Silt ľχ sand to sandy silt [38%]; *Sands [38%] ⁽¹⁾ mixtures [41%] 2-Clay - clay to silty clay <u>+</u>5 Clay - clay to silty clay [90%] [55%]; *Silt mixtures [41%] (1) < - \rightarrow Phreatic Surface 3.00 m -3-____ 3.24 3.24 × × Sand mixtures - silty sand Sand mixtures - silty sand to sandy silt [100%] to sandy silt [82%]; *Sands [18%] 4. × Γ×. Clay - clay to silty clay Clay - clay to silty clay [84%]; *Silt mixtures [16%] [80%]; *Silt mixtures [20%] 5-6 - 6.30 6.30 Sands - clean sand to Sands - clean sand to silty sand [74%]; *Sand silty sand [80%]; *Sand mixtures [26%] mixtures [20%] 7-8 Clay - clay to silty clay Clay - clay to silty clay [100%] [100%] 9-.<u>...</u> Sand mixtures - silty sand Sand mixtures - silty sand × 9.84 9.84 to sandy silt [77%] to sandy silt [69%] 10-Clay - clay to silty clay Clay - clay to silty clay [97%] [97%] 10.68 10 68 ¥ X-Æ 1.00 Silt mixtures - clayey silt 11.00 Silt mixtures - clayey silt 11 to silty clay [58%] to silty clay [75%] Clay - clay to silty clay 11.76 [100%] Clay - clay to silty clay 1.76 [100%] Very stiff fine grained -12.20 HOC or cemented [53%] Very stiff fine grained -12.20 HOC or cemented [53%] 12-Clay - clay to silty clay Clay - clay to silty clay [48%]; *Very stiff fine [85%]; *Silt mixtures [15%] grained [46%] 13silt 13.42 13.42 ğ mixture Terminated at 13.52 r 14-Sand 22 6 Schneider et al. (2008) Material Type Robertson (2016) Material Type Robertson (1990 & 2010) Material Type Cone area (mm2): Remarks: *Phreatic surface origin: Arbitrary value (1) 0-3 m: Normalised SBT often - CCS - Clay-like - Contractive - Sensitive 1 - (1c) Sensitive clays **TEST ID: CPT08** ConeID: S15-CFIPTT.2117 - Sensitive fine-grained 6 - Sands - clean sand to silty sand artificially coarse/stiff at very low in-situ 2 - CC - Clay-like - Contractive 3 - CD - Clay-like - Dilative 4 - TC - Transitional - Contractive 2 - (1b) Clays 2 - Organic soils 7 - Gravelly sand to sand stresses Location: Tyne & Wear, UK 3 - (1a) Silts & low I, clays 3 - Clays - clay to silty clay Internal USSIDATION 5 - TD - Transitional - Dilative 6 - SC - Sand-like - Contractive 7 - SD - Sand-like - Dilative 8 - Very stiff/dense sand to clayey sand Rig Used: UK3 4 - (3) Transitional soils Coordinates: 435799, 546803 4 - Silt mixtures - clavev silt to silty clav Page 1 of 1 OA Diss 5 - Sand mixtures - silty sand to sandy silt 9 - Very stiff fine grained Date of test: 27/01/2023 13:37:03 Elevation: 5 - (2) Essentially drained sands

Lankelma Project Ref: P-108244-1

🥮 LANKELMA	Client: HYDROCK								
L Cone Resistance q. (MPa) 0 10 20 0 10 20 0	30 In-situ Pore Pressure 1.2 Porewater Pressure, u2 (kPa) 00 -100 300 500 700	Inclination SBT Zone (degrees) Schneider et al. (2008) 0 10 20 1 2 3 4	SBT Zone Robertson (2016) ccs cc cc rc rc rs cs so 1 2 3 4 5 6 7	(Comparison only) SBT Zone Robertson (2010) (Non-normalised)	Graphic Log	SBT Material Description Robertson (2010) (Comparison only) * = Abbreviation	SBT Zone Robertson (1990) (Stress-normalised) (Basis of layer analysis)	SBT Material Description Robertson (1990) (Basis of layer analysis) SBT Material Description (Basis of layer analysis) * = Abbreviation	Soil Behaviour Type Index - Ic (Non-normalised) (Stress normalised) From dissipation tests; Equiv. L, - YK, - Robertson (2014) Equiv. L, - K, - Robertson (2014) 1 2 3 4
1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 10- 11- 12- 13- 14- Cone area (mm2): R	Phreatic Surface 3.00 m			Robertsor		0.14y - Clay to sitty clay 0.54 [42%]: Sand mixtures 1.06 Sitt mixtures - clayey sitt to sinty clay [68%]; *Clay [32%] Sand mixtures - sitty sand to sandy sitt [73%]; *Sands [23%] 2.36 Clay - clay to sitty clay [100%] 3.32 Clay - clay to sitty clay [100%] 3.32 Clay - clay to sitty clay [100%] 3.32 Clay - clay to sitty clay [100%] 3.42 Clay - clay to sitty clay [100%] Clay - clay to sitty clay [100%] 6.06 6.61 Silt mixtures - clayey silt to sandy silt [94%] Clay - clay to silty clay [100%] 7.46 Silt mixtures - clayey silt Sands - clean sand to silty clay [55%] 7.46 Silt mixtures - slay sand to silty clay [100%] 9.22 Clay - clay to silty clay [100%] 10.56 10.88 Sand mixtures - silty sand to sandy silt [73%] Clay - clay to silty clay		 Very stiff/dense sand to clayey sand - HOC or cemented [53%]; "Very stiff fine grained [26%]] Sand mixtures - silty sand to sandy silt [68%]; "Sands [21%] (?) Sands - clean sand to 2.36 silty sand [15%]; "Sand [21%] (?) Sands - clean sand to 2.36 silty sand [15%]; "Sand mixtures [19%] (?) Clay - clay to silty clay [68%]; "Sands [47%] (?) Sand mixtures - silty sand to sandy silt [50%]; "Sands [47%] (?) Sand mixtures - silty sand to sandy silt [50%]; "Sands [47%] (?) Sand mixtures - silty sand to sandy silt [50%]; "Sands [47%] (?) Clay - clay to silty clay [100%] Sand mixtures - silty sand to sandy silt [94%] Clay - clay to silty clay [100%] 6.06 Sands - clean sand to silty clay [100%] Clay - clay to silty clay [100%] Sands - clean sand to silty clay [64%]; "Sand mixtures - clayey silt to silty clay [64%]; "Sand mixtures [36%] Sands - clean sand to silty clay [100%] 9.22 Clay - clay to silty clay [100%] 10.56 10.88 Sand mixtures - silty sand to sandy silt [73%] Clay - clay to silty clay [100%] 12.26 	 (1) Dense sand to gravely sand (2) Sand mixtures: sity sand to sity sind (3) Sand mixtures: sity sand to sity sith (4) Sith Mixtures: clayery sith to sith day Amount (5) Sand mixtures: clayery sith to sith day Amount (6) Sand mixtures: clayery sith to sith day Amount (7) Clays - clay to sith clay (8) Clays - organic soil
ConeID: \$15-CFIPTT.2117 Location: Tyne & Wear, UK Rig Used: UK3 C Date of test: 27/01/2023 14:24:05 E	Coordinates: 435827, 546804 Elevation:	1 - (1c) Sensitive clays 2 - CC - 2 - (1b) Clays 2 - CC - 3 - (1a) Sitts & low I, clays 4 - TC - 4 - (3) Transitional soils 5 - TD - 5 - (2) Essentially drained sands 7 - SD -	Clay-like - Contractive Clay-like - Dilative Transitional - Contractive Fransitional - Dilative Sand-like - Contractive Sand-like - Dilative	1 - Sensitive fine-grained 2 - Organic soils 3 - Clays - clay to silty clay 4 - Silt mixtures - clayey silt to silt; 5 - Sand mixtures - silty sand to s	ty clay	6 - Sands - clean sand to silty sand 7 - Gravelly sand to sand 8 - Very stiff/dense sand to clayey sand 9 - Very stiff fine grained	artificially coarse/stiff at verses stresses QA Diss.	y low in-situ Dissipation est Page 1 of 1	709

· 700

Lankelma Project Ref: P-108244-1

$\label{eq:appendix} \textbf{APPENDIX E} \qquad \text{PARAMETER RESULTS 1} - S_U, \ M_V, \ OCR, \ SBT, \ I_C$

Undrained shear strength

Coefficient of volume change

Overconsolidation ratio

Robertson 1990 SBT descriptions & SBT index I_c

		Our Duit			·			-									-11-									1	
		0 5 10	ance q _t (MPa) 15 20 25	30	In-s	itu Pore Pr	essure	s.1 (N	Undrained k.12.00) (CAUC	Shear Stre	ength s u (kF	Pa)	Coeffic	ient of Volu	me Co	mpressibili 2006)	ty	Overco	nsolid	lation Rati	0	Soil Beh	naviour 1	ype Index	к I с 🛛 🕫	Material Description	
	TION	0 0.2 0.4	0.6 0.8 _1_	1.2				s,2 (N s,3 (N	k,13.57) (CAUC k,15.00) (Refere	C) OC Intact ence)		_		0 0 1		•		M	ayne ((2009)			(Non-	normalise	hic L	Robertson (1990)	
)	EVA.	Friction Sleeve Re	(q, Smal	all Scale)	Porewa	ater Pressure	е, u ₂ (кРа)	s _u 4 (N	k,22.47) (CAUC	C) OC Fissure	i				12 0	.0 2 	2.4	OCI	Fissur	red Clays			- (Stress	normalise	ed) (be	* = Abbreviation	
۳£	ЩĘ	0 100 200	300 400 500	600	-100 0 100	300	500 700	0	50 100	150	200	250 300	0 0.04	0.08 0.	.12 0.	0.20	0	10) 	20	30	1	2	3	4		
		Terminated at 14.	.84 m																								
		iiii				i l	i i	1111	i i			i i		i li	i i			i i i	i	i i i	i.						
16-																											
																				i i i							
17-																					_	_		_			
. 1														i l i						i i i							
18-																			Ţ	ŢŢŢ							
19-								++++											+		+	_	_	_			
20-																											
20							i i	1111	l i l					i l i	i i				i	i i i	i						
21-																											
22-																											
														i i i						i i i							
23-																											
							i i	i i i i	i i					i l i					i	i i i	i						
24-																			++					_			
																				i i i i							
25-																											
								1111						i i i					i	i i i							
26-																											
																							y silt				
27-								++++												i i i	-i	clay sandy s					
																						sand ty sa	d to	silty			
28_																						velly to sil	/ san	<mark>silt to</mark> lay			
20																						o grav sand	s: silt	<mark>ayey</mark> silty c	ē		
																						and to ean :	ctures	es: cl iy to s	anics		
29-																			+		- 	se sé ds: cl	d mix	Aixtur s - cla	- org		
																						San	San	Clay:	Clay		
-						*Dharati																<mark>) ()</mark>	(5)	3 <mark>(</mark>	(2)		
Cone a ConelE	rea (mm): S15-Cl	2): Loca FIPTT.2117	ation: Tyne & Wear, UK		Remarks	: Phreatic su	mace origin: Arb	urary val	le	페	Internal QA Diss.	Both	drained ar	nd undraine	ed para	imeters ar	e calcu	lated for	1	Date of p 31-01-23	iot: L I F	Lankelma P-108244-	Project F		EST I	ID: CPT06	
Operat	or: Walte	r Geddes	rumates. 430773, 340813							예	Dissipation Test	mixed	SBTs = lo disc	2.40-2.70 ussion of p	. See r	eport text ter evalua	for met tion.	thods and	d	Checked	bv:						
Rig Us Date of	ed: UK3 test: 27	/01/2023 12:10:26 Cool	rdinate system:		Terminati Inclinatio	ion Remark: n				0	Penetratior Pause (<10	n cm/s)		F					Ì	Chris Pla	yer			Page	e 2 of 2		

			onona n		.		i																		.		
		0 5 1	esistance q t (MPa) 0 15 20	25 30	In-	situ Pore Pi	ressure	s.1 (N	Undrained S	hear Stre	ength s , (kPa	a)	Coef	ficient o	f Volume	e Compre	ssibility	Overco	nsolidati	on Ratio	Soil B	ehavi	iour Typ	e Index I _c	ß	Material Desc	iption
	NOI	0.2 0	.4 0.6 0.8	11.2				s_2 (N	k,13.57) (CAUC) (k,15.00) (Beferen	DC Intact		_		m _v (m	/MIN) Ma	yne (2006	, II	IVI8	ayne (20	09)		_ ,	(NI	meelie ed)	hic Li	Robertson (1	990)
PTH	EVAT	Friction Sle	ave Resistance f (kPa)	(q, Small Scale)	Porev	water Pressur	re, u ₂ (kPa)	s _u 4 (N	lk,22.47) (CAUC)	OC Fissure	d			.4 0.1	8 1.2	1.6	2 2.4	OC	Fissured	Clays		(S	Stress n	ormalised)	Grap	* = Abbrevia	tion
ЩŰ	(m)	0 100 20	20 300 400	500 600	-100 0 10	0 300	500 700	0	50 100	150	200 2	50 300		04 0.0	8 0.12	0.16	0.2 0.24	0 10)	20 3	1	`		3 4			
		Terminated	at 14.92 m																								
						i l	i i	1111	i i		i li	i	l i	i	i l	ii		ilil	ili	li li							
16-																						_					
17-							i i									i i			iii								
18-																											
19-																					-						
20-																											
20													ll i	i i	i I	i i		i i i	ili	li li							
21-																											
														i				i i i									
22-																											
-							i i							i i													
23-																											
							i i	1111				l i	l i	i	i	i i		i i i	i l i	li li							
24-																					-	_					
25-																											
							i i						l i	i				i i i									
26-																											
																							y silt				
27-							i	++++					l –	L i								2	sand clay				
																					sand	ry sa	d to silty				
28-																					velly		y san <mark>silt to</mark>	ay			
20																					o gra	nups	s: silt	silty c			
																					and to	Gal	kture es: cl	ay to s anic s			
29-															·						se se	s s	d mix lixtun	s - cla - orga			
																					Den	00	San Silt M	Clay Clay			
	,				Bamcit	au *Bhraoti	urface origin: A-t	itron u:-!														0	(5) (4)	(3)			
Cone a ConelD	rea (mm): S15-Cl	∠): FIPTT.2117	Location: Tyne & Wear, U	UK	Remark	.sPhreatic st	unace origin: Arb	urary val	ue	에	Internal QA Diss.	Both	drained	and un	drained	paramet	ers are cal	culated for	Da 31	leo1-23 P-108244-1 TEST ID: CPT07							
Operate	or: Walte	r Geddes	Elevation:	0002						페	Dissipation Test	mixed	SBTs =	Ic 2.40	-2.70. S	ee repor	t text for m valuation.	nethods and	d Ch	ecked bv [.]							
Rig Use Date of	ed: UK3 test: 27	01/2023 12:55:23	Coordinate system:		Termina Total co	ation Remark: one load				0	Penetration Pause (<1cr	m/s)			1.00				Ch	ris Player				Page 2 o	π∠		

APPENDIX F PARAMETER RESULTS 2 – SPT N60, PHI, D_R, E, I_C

Equivalent SPT N60

Peak friction angle

Relative density

Young's modulus

SBT index $\ensuremath{\mathsf{I}_{\mathsf{c}}}$

LANKELMA

РТН	EVATION	0	Cone Resistance of 5 10 1 0.2 0.4 0	q. (MPa)	SPT Ne Lunne e Robert	60' Values <i>t al.</i> (1997) son (2012)	Peak Frict Kulhaw	ion Angle phi' (deg) ^y ay & Mayne (1990)		Relative Der Jamiolkowsk	nsity Dr' (%) ^{(i et al.} (2001)		```	′oung's M Robe	odulus E ' rtson (2009	' (MPa) 9)			Soil Bel	naviour Ty (Non- (Stres	pe Index normalise s normalis	I _c ed)
Ű.	ELE) o	100 200 30	00 400 500 600	0 10 20	30 40 50 60	20 25 30	35 40 45 50	0	20 40	60	30 100	0 40	80	120 1	60 20	00 240	1	2	· · · · · · · · · ·	3	, 4
16—			Terminated at 14.84 m																			
17—																						
18—																						
19-																						
20																						
20-																						
21-																						
22-																						
23-																						
24-																						
25—																						
26-																				±		
27—																		P	sand	to sandy si It <mark>y clay</mark>		
28—																		gravelly sa	ind to silty	silty sand t ev silt to si	ty clay	
29-																		e sand to	ls: clean se	l mixtures: xtures: clay	- clay to sil	organic so
																		(6) Dens	(5) Sand	(4) Sand (3) Silt Mi	(2) Clays	(1) Clay -
Cone	area (r	mm2):	: DTT 0117	Location: Tyne & Wear, UK		Both drained and	undrained			Date of plot: 31-01-23	La P-	nkelma Pro 108244-1	ject Ref:	TES	חו ד	· CF	ЭТЛ	6				
Opera Date c	וט: S1 itor: W of test:	o-C⊢li alter 0 27/01	Geddes 1/2023 12:10:26	Coordinates: 435775, 546815 Elevation: Coordinate system:		sBTs = Ic 2.40-2.70.3 for methods and di parameter eva	See report text iscussion of aluation.			Checked by: Chris Player				Page 2	of 2	. 01	10					

LANKELMA

тн	EVATION	Cone Resistance e 0 5 10 1 0 0.2 0.4 0	qr (MPa)		S L	PT N60	Value al. (1997 on (2012	es 7) !)			Peak Fr _{Kulh}	iction A	ngle pl Mayne (1	hi' (dea	g)		Relat Jami	tive Dens iolkowski e	sity Dr' (%) et al. (2001)			Your	ng's Moo Roberts	dulus E son (200	" (MPa) 9)			Soil Be	ehaviour ── (N	Type Ind	lex I _c lised) nalised)
Ű.	(m)	0 100 200 30	ance f _s (KPa) 00 400 500 600	0 1	0 2	0 3	0 4	0 50	60	20 2	25 3	0 3	35 4	40	45 50	0	20	40	60	80 100	0	40	80 1	20 1	160 2	200 240	D 1	2	· · · · · · ·	3	
		Terminated at 14.92 m	n l																												
							÷.																								
16-																											_				
17-																															
18-					1		1															i i				, i					
19-							_																								
					i	i	i	i		i	l i			i					i i		i	i		i		l i					
20-																															
21-																															
							i																								
22_																															
							i																								
23-							-																								
24-							_																								
25-					, i		İ	i			İ			1	1		Ì					İ		i i		İ					
26-							_																								
				İ	i i	i	i	i		i	i i		i					i i				i i		i	i i				ii.		
27																												-	ndy s	A B	
21-									-																		P	sand	to sa	Ity cl	
																											ly sa	silty	and	t to si	
28-							_																				rave	nd to	silty s	ey sil	
							i				l i																l to g	n sai	res: s	clay	c soil
29-																						1					sanc	clea	lixtu	nres:	rgani
																											ense	spue:	u pue	t Mixt	ays - o
							İ		ĺ																		6) De	5) Sé	4) Sé	3) Sil	1) Cla
Cone a	irea (mm	12):	Location: Tyne & Wear, UK	1				Dethe day 1		<u>ا ا</u>							Date	of plot:	L	ankelma P	roject R	ef:			-						
Cone I	D: S15-C	, CFIPTT.2117	Coordinates: 435775, 546802				para	Both drain ameters ar	ned and re calcu	undrain	ed mixed						31-0	1-23	P	-108244-1		-	TEST ID: CPT07								
Operat	or: Walte	er Geddes	Elevation:				SBT	s = Ic 2.4	u-2.70. ds and d	See rep liscussio	ort text n of						Chec	ked by:				P	ade 2 of	f2							
Date o	f test: 27	/01/2023 12:55:23	Coordinate system:					param	elei, ens	ສເບລເປິດກີ.							Chris	Player				``		-							

APPENDIX G PENETROMETER TEMPERATURE RESULTS

The temperature values in these logs represent the internal load cell temperature of the penetrometer and are used for QC purposes by comparison to the measured temperature response indicated on the calibration certificate. The CPT results have been corrected for transient and static temperature effects during post processing.

Ground temperature is only represented following a penetration pause of > 11 minutes.

Plots are provided for locations performed with a digital penetrometer measuring internal load cell temperature.

		0	2	Cone Resistan	ce q t (MPa) 8	10	12	14	16	18	20	22	24 26	5											Inte QC	ernal Diss.		
_	NOIL	0	0	 .2 	0.4 q _t (sm	all scale) (D.6		0.8		1		1.2 1.3	8				Lo	ad Cell Te	emperature	(°C)				₩ Disa Tes	sipation st	Inclinatio	on (deare
m) DEPT	m)	0	50 1	Friction Sleeve	Resistance f	s (kPa)	300	350	400	450	500	550	600 650		 5 6	. 7 9	0 10	11 12	13 14	15 16 17	19 10	20 21	22 22	24 25	26 27	7 29 20		10
		Τe	erminated	at 14.84 m											 · · · ·				13 14		10 19	20 21	22 23	24 23	20 21	20 29		
16-																												, + + + +
17-																												
4.0																												
10-																												
10_																												
20-																												,
21																												
22-														-														
23-															_				_									+ + + +
24																												
25-																												
26-																												
27-																												-+-+-
28-																												
-																												,
29-																												
-																												
Cone ar	ea (mm	12):	17	Zero drift (Pre/p	post test)	Location	n: Tyne & W	/ear, UK	1		Remark *Phreat	s: ic surface o	rigin: Arbitrar	v value			Date of p 31-01-23	lot:	Lankel	ma Project	Ref:	TEA	-		ото	c		
Operato	: S15-C	FIPTI.211 er Geddes	17	q _c (kPa): -85.0	, D-	Coordina	ates: 43577	75, 546815					giii. / iibiudi	, 10100			Checked	by:	1 1002			IES): Cl	P10	O		
Rig Use Date of	d: UK3 test: 27	/01/2023 1	2:10:26	u ₂ (kPa): -5.2	initt Mic drift/	Coordina	n. ate system:				Termina	ation Remar	k: Inclination				Chris Pla	yer				Page 2	of 2					

	Z	0	2	Cone Resistance	e q t (MPa)	10	12 12	14 1	16 18	2	20	22	24 26							Loa	d Cell Te	mperatur	e (°C)				الله الله	Internal QC Diss. Dissipation			
TH	CVATIO	0	0	.2 Eriction Sloovo E	0.4 q _t (sr	nall scale)	0.6	0	0.8	1	1		1.2 1.3							200		mporatar	0(0)				, III	Test	Inclinat	ion (deo	grees
Û,	Ű.EL	0	50 1	20 150	200	250 :	300	350 40	00 450		00	550	600 650	. 1 . :	2 3	4 5	6 7	8 9	9 10 1	1 12 1	3 14	15 16	17 18 1	20 2	1 22	23 24	25 26	27 28 29	<u>.</u>	10	2
		Te	erminated	at 14.92 m																											
16-																														++++	
17-														-																	
18-																															
19-																															+ + +
20-																		_												++++	++++
21-																															
22-														-				_													
23-																				_										++++	+++
24-																														+++-	+++
25-																															
26-																															
27-																															++++
28-																															
29-																															
Cone	area (mm	12): CEIPTT 211	7	Zero drift (Pre/po	st test)	Location	n: Tyne & V	Vear, UK			Remar *Phrea	rks: atic surface	origin: Arbitrar	y value				D. 3	ate of plo 1-01-23	ot:	Lankel P-1082	ma Proje 44-1	ect Ref:	TE	ст	יחו	срт	07			
Opera	ator: Walt	er Geddes		q _c (kPa): -6.0 f₀ (kPa): -0.4 (f	_# - q _{c dif})	Coordin Elevatio	nates: 4357 on:	75, 546802					-					c	hecked b	oy:					31	י. טו	0-1	07			
Date	of test: 27	7/01/2023 1	2:55:23	u ₂ (kPa): -5.7	o unit	Coordin	ate system	1:			Termin	nation Rem	ark: Total cone	load				c	hris Play	er				Page	2 of 2						

Appendix D

Ground Gas and Groundwater Monitoring Record Sheets

Ground Gas and Water Monitoring Certificate

 Site:
 Aldi, Hetton Le Hole

 Project No.
 P18-474

 Date:
 27.01.2023

Borehole	Gas Flo	ow (l/hr)	Time	Atmospheric Pressure	Methar	ie (%v/v)	Methan	e (% LEL*)	Carbon (%)	Dioxide v/v)	Oxy (%)	/gen v/v)		Other Gase (ppm)	S	Depth to Water
	Initial	Steady		(mB)	Initial	Steady	Initial	Steady	Initial	Steady	Initial	Steady	PID	H ₂ S	со	(mBGL)
WS01	<0.1	<0.1	-	1025	0.0	0.0	000	000	1.00	1.00	20.70	20.70	-	0.0	0.0	1.60
WS02	<0.1	<0.1	-	1025	0.0	0.0	000	000	2.60	2.60	19.20	19.20	-	0.0	0.0	2.00
WS03	<0.1	<0.1	-	1025	0.0	0.0	000	000	5.10	5.10	15.80	15.80	-	0.0	0.0	2.40
	Notes: Monitoring * LEL = Low	should be for er Explosive L	n ot less imit = 5%	than 3 minutes. v/v. mBGL = met	However, i res Below G	f high conce round Level.	ntrations of	gases initial	ly recorded,	monitoring	should be f	or up to 10	minutes			

Relev	ant Information At Time Of Monit	oring		
Monitored by:	AM			
Atmospheric Pressure (mB):	1025			
Weather:	Dry and Sunny			
Atmospheric Pressure Trend:				
Equipment Used:	Infra-red Gas Analyser	Yes	Last calibrated:	23.06.2022
	Mass Balance Transducer	~	Last calibrated:	~
	Tiger PID	~	Last calibrated:	~
Visible Signs of Vegetation Stress:	None of significance noted			
Other Comments / Observations:	~			
Boreholes Sampled For Laboratory Analysis:	~			

Ground Gas and Water Monitoring Certificate

 Site:
 Aldi, Hetton Le Hole

 Project No.
 P18-474

 Date:
 01.02.2023

Carbon Dioxide Oxygen Other Gases Atmospheric Depth to Gas Flow (l/hr) Time Methane (%v/v) Methane (% LEL*) Borehole (%v/v) (%v/v) (ppm) Water Pressure Initial Steady (mB) Initial Steady Initial Steady Initial Steady Initial Steady PID H₂S со (mBGL) WS01 0.0 000 000 20.4 20.4 0.0 1.67 < 0.1 < 0.1 1007 0.0 0.1 1.0 0.0 --WS02 < 0.1 < 0.1 -1007 0.0 0.0 000 000 0.0 1.50 20.1 20.1 0.0 0.0 2.12 -WS03 < 0.1 0.0 0.0 000 000 12.3 12.3 0.0 2.40 < 0.1 -1007 0.1 6.0 -0.0 Notes: Monitoring should be for not less than 3 minutes. However, if high concentrations of gases initially recorded, monitoring should be for up to 10 minutes * LEL = Lower Explosive Limit = 5%v/v. mBGL = metres Below Ground Level.

Relev	ant Information At Time Of Moni	itoring		
Monitored by:	KRC			
Atmospheric Pressure (mB):	1007			
Weather:	Dry and Sunny			
Atmospheric Pressure Trend:				
Equipment Used:	Infra-red Gas Analyser	Yes	Last calibrated:	23.06.2022
	Mass Balance Transducer	~	Last calibrated:	~
	Tiger PID	~	Last calibrated:	~
Visible Signs of Vegetation Stress:	None of significance noted			
Other Comments / Observations:	~			
Boreholes Sampled For Laboratory Analysis:	~			

Appendix E

Soakaway Record Sheets

Aldi, Colliery Lane, Hetton-le-Hole | Aldi Stores Limited | Phase II Geo-environmental Assessment | P18-474-3E-XX-XX-RP-G-9000 | 9 February 2023 27

Time (mins)	Water Depth (bgl)
0	1.20
1	1.20
2	1.25
3	1.25
4	1.25
5	1.25
6	1.25
7	1.25
8	1.25
9	1.25
10	1.27
15	1.27
20	1.30
25	1.30
30	1.30
40 50	1.30
50 60	1.30
00	1:50
Trial Bit Dopth	2.20
Total Fall (m):	2.20
75% Depth (m) [from ground level]	1.00
50% Depth (m) [from ground level]	1.40
25% Depth (m) [from ground level]	1.70
Effective Range 75% - 25% (m)	0.50

Time to fall to 75% Depth (mins)	0
Time to fall to 25% Depth (mins)	0
Time from 75% to 25% Depth (mins)	0

Trial Pit:	TP02
Time (mins)	Water Depth (bgl)
0	1.70
1	1.72
2	1.73
3	1.74
4	1.74
5	1.74
6	1.74
7	1.74
8	1.74
9	1.74
10	1.74
15	1.74
20	1.75
20	1.75
	1.75
50	1.75
60	1.75
	1.70
Trial Pit Depth	2 30
Total Fall (m):	0.60
75% Depth (m) [from ground level]	1.85
50% Depth (m) [from ground level]	2.00
25% Depth (m) [from around level]	2.15
Effective Range 75% - 25% (m)	0.30

Time to fall to 75% Depth (mins)	0
Time to fall to 25% Depth (mins)	0
Time from 75% to 25% Depth (mins)	0

Trial Pit:	TP03
Time (mins)	Water Depth (bgl)
0	1.30
1	1.30
2	1.30
3	1.30
4	1.30
5	1.30
6	1.33
7	1.35
8	1.35
9	1.36
10	1.36
15	1.40
20	1.42
25	1.42
30	1.43
40	1.45
50	1.45
60	1.45
Trial Pit Depth	2.20
	2.20
75% Depth (m) [from ground love]]	0.90
50% Depth (m) [from ground level]	1.55
25% Depth (m) [from ground level]	1.75
Effective Range 75% - 25% (m)	0.45
	0.70

Effective Range 75% - 25% (m)	0.45
Time to fall to 75% Depth (mins)	0
Time to fall to 25% Depth (mins)	0
Time from 75% to 25% Depth (mins)	0

Appendix F

Chemical Laboratory Result Sheets

Aldi, Colliery Lane, Hetton-le-Hole | Aldi Stores Limited | Phase II Geo-environmental Assessment | P18-474-3E-XX-XX-RP-G-9000 | 9 February 2023 28

ANALYTICAL TEST REPORT

Contract no:	118334
Contract name:	Hetton-le-Hole
Client reference:	P18-474
Clients name:	Hydrock 3E
Clients address:	2 Esh Plaza Sir Bobby Robson Way Great Park, Newcastle NE13 9BA
Samples received:	27 January 2023
Analysis started:	27 January 2023
Analysis completed	:14 February 2023
Report issued:	14 February 2023

Key

- U UKAS accredited test
- M MCERTS & UKAS accredited test
- \$ Test carried out by an approved subcontractor
- I/S Insufficient sample to carry out test
- N/S Sample not suitable for testing
- NAD No Asbestos Detected

Approved by:

Will Fardon

Technical Director

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
118334-1	WS01	0.20	Loam with Gravel	-	-	15.8
118334-2	WS01	0.50	Loam with Gravel	-	-	12.0
118334-3	WS02	0.30	Sandy Loam	-	-	12.7
118334-4	WS03	0.50	Sandy Loam with Gravel	-	-	15.3
118334-5	WS03	1.50	Sand with Gravel	-	-	12.6
118334-6	WS04	0.50	Loam with Gravel	-	-	24.8
118334-7	WS05	0.50	Sandy Loam with Gravel	-	-	17.2
118334-8	WS05	1.50	Loamy Sand	-	-	14.2
118334-9	WS06	0.20	Loam with Roots	-	-	21.0
118334-10	WS06	1.00	Sand with Gravel	-	-	11.7
118334-11	WS07	0.30	Loam	-	-	22.5
118334-12	WS08	0.50	Sandy Loam with Gravel	-	-	9.2
118334-13	WS09	0.50	Loamy Sand with Gravel	-	-	12.6
118334-14	WS09	1.20	Loam with Gravel	-	-	20.7
118334-15	WS10	0.20	Loamy Sand	-	-	16.4
118334-16	WS10	1.00	Loamy Clay with Gravel & Roots	-	-	17.9

Lab number			118334-1	118334-2	118334-3	118334-4	118334-5	118334-6
Sample id			WS01	WS01	WS02	WS03	WS03	WS04
Depth (m)			0.20	0.50	0.30	0.50	1.50	0.50
Date sampled	Mothod	Unite	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023
Antimony (total)	CF127 ^U	ma/ka Sb	-	-	0.4	1.1	-	1.3
Arsenic (total)	CF127 M	ma/ka As	12	-	5.1	11	-	14
Barium (total)	CE127 ^M	mg/kg Ba	-	-	92	88	-	185
Boron (water soluble)	CE063 ^U	mg/kg B	0.8		_			_
Cadmium (total)	CE127 M	mg/kg Cd	0.4	-	0.2	0.3	-	0.4
Chromium (total)	CE127 ^M	mg/kg Cr	33	-	30	27	-	34
Chromium (VI)	CE146	mg/kg CrVI	<1	-	-	-	-	-
Copper (total)	CE127 ^M	mg/kg Cu	42	-	16	39	-	77
Lead (total)	CE127 ^M	mg/kg Pb	94	-	24	61	-	266
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5	-	<0.5	<0.5	-	1.1
Molybdenum (total)	CE127 ^M	mg/kg Mo	-	-	<1	2.0	-	2.3
Nickel (total)	CE127 ^M	mg/kg Ni	29	-	23	24	-	36
Selenium (total)	CE127 ^M	mg/kg Se	1.1	-	1.0	0.9	-	1.1
Zinc (total)	CE127 ^M	mg/kg Zn	154	-	65	123	-	182
рН	CEOO4 M	units	6.9	6.7	-	-	7.0	-
Sulphate (2:1 water soluble)	CE061 ^U	mg/I SO ₄	53	<10	-	-	12	-
Cyanide (total)	CE077	mg/kg CN	<1	-	-	-	-	-
Total Organic Carbon (TOC)	CE197	% w/w C	5.1	-	0.9	-	-	-
Estimate of OMC (calculated from TOC)	CE197	% w/w	8.8	-	-	-	-	-
РАН								
Naphthalene	CE087 ^M	mg/kg	0.12	-	-	-	-	-
Acenaphthylene	CE087 ^M	mg/kg	0.07	-	-	-	-	-
Acenaphthene	CE087 M	mg/kg	0.05	-	-	-	-	-
Fluorene	CE087 ^U	mg/kg	0.08	-	-	-	-	-
Phenanthrene	CE087 M	mg/kg	1.39	-	-	-	-	-
Anthracene	CE087 ^U	mg/kg	0.28	-	-	-	-	-
Fluoranthene	CE087 M	mg/kg	3.13	-	-	-	-	-
Pyrene	CE087 ^M	mg/kg	2.47	-	-	-	-	-
Benzo(a)anthracene	CEO87 ^U	mg/kg	1.68	-	-	-	-	-
Chrysene	CE087 ^M	mg/kg	1.79	-	-	-	-	-
Benzo(b)fluoranthene	CE087 ^M	mg/kg	2.08	-	-	-	-	-
Benzo(k)fluoranthene	CEO87 ^M	mg/kg	0.73	-	-	-	-	-
Benzo(a)pyrene	CEO87 ^U	mg/kg	1.39	-	-	-	-	-
Indeno(123cd)pyrene	CE087 ^M	mg/kg	1.29	-	-	-	-	-
Dibenz(ah)anthracene	CE087 ^M	mg/kg	0.25	-	-	-	-	-
Benzo(ghi)perylene	CEO87 ^M	mg/kg	1.05	-	-	-	-	-
PAH (total of USEPA 16)	CE087	mg/kg	17.83	-	-	-	-	-
ТРН								
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	<0.01	-	-	-	-	-
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	< 0.01	-	-	-	-	-
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	< 0.01	-	-	-	-	-

Lab number			118334-1	118334-2	118334-3	118334-4	118334-5	118334-6
Sample id			WS01	WS01	WS02	WS03	WS03	WS04
Depth (m)			0.20	0.50	0.30	0.50	1.50	0.50
Date sampled			13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023
Test	Method	Units						
EPH Aromatic (>EC10-EC12)	CE250	mg/kg	<10	-	-	-	-	-
EPH Aromatic (>EC12-EC16)	CE250	mg/kg	<10	-	-	-	-	-
EPH Aromatic (>EC16-EC21)	CE250	mg/kg	11	-	-	-	-	-
EPH Aromatic (>EC21-EC35)	CE250	mg/kg	132	-	-	-	-	-
EPH Aromatic (>EC35-EC44)	CE250	mg/kg	122	-	-	-	-	-
VPH Aliphatic (>C5-C6)	CE067	mg/kg	<0.1	-	-	-	-	-
VPH Aliphatic (>C6-C8)	CE067	mg/kg	<0.1	-	-	-	-	-
VPH Aliphatic (>C8-C10)	CE067	mg/kg	<0.1	-	-	-	-	-
EPH Aliphatic (>C10-C12)	CE250	mg/kg	<6	-	-	-	-	-
EPH Aliphatic (>C12-C16)	CE250	mg/kg	<6	-	-	-	-	-
EPH Aliphatic (>C16-C35)	CE250	mg/kg	16	-	-	-	-	-
EPH Aliphatic (>C35-C44)	CE250	mg/kg	12	-	-	-	-	-
Subcontracted analysis								
Asbestos (qualitative)	\$	-	NAD	-	-	-	-	-

Lab number			118334-7	118334-8	118334-9	118334-10	118334-11	118334-12
Sample id			WS05	WS05	WS06	WS06	WS07	WS08
Depth (m)			0.50	1.50	0.20	1.00	0.30	0.50
Date sampled	Mothod	Upite	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023
Antimony (total)	CF127 U	ma/ka Sh	_	-	-	_	-	0.4
Arsenic (total)	CE127 M	ma/ka As	12	-	12	_	11	4 5
Barium (total)	CE127 M	mg/kg Ba	-	-	-	_	-	177
Boron (water soluble)		ma/ka B	0.8	-	1 1	_		<0.5
Cadmium (total)	CE127 M	ma/ka Cd	0.3	-	0.3	_	0.4	0.2
Chromium (total)	CE127 M	ma/ka Cr	31	-	29	_	34	28
Chromium (VI)	CE146	mg/kg CrVI	<1	-	<1	-	<1	-
Copper (total)	CF127 M	ma/ka Cu	34	-	36	_	37	12
Lead (total)	CE127 ^M	ma/ka Pb	66	-	104	-	71	19
Mercury (total)	CE127 M	ma/ka Ha	< 0.5	-	< 0.5	-	< 0.5	< 0.5
Molybdenum (total)	CE127 M	ma/ka Mo	-	-	-	-	-	1.1
Nickel (total)	CE127 M	ma/ka Ni	23	-	23	-	23	22
Selenium (total)	CE127 M	ma/ka Se	1.1	-	1.0	-	1.1	0.5
Zinc (total)	CE127 M	ma/ka Zn	103	-	104	-	106	56
pH	CE004 ^M	units	8.0		7.2	7.4	7.2	-
Sulphate (2:1 water soluble)	CE061 ^U	ma/l SO4	<10	<10	15	<10	33	_
Cyanide (total)	CE077	mg/kg CN	<1	-	<1	_	<1	_
Total Organic Carbon (TOC)	CE197	% w/w C	5.8	-	7.2	_	9.8	_
Estimate of OMC (calculated from TOC)	CE197	% w/w	10.1	-	12.4	_	16.8	_
			-					
Naphthalene	CE087 ^M	mg/kg	0.19	-	0.28	-	0.33	-
Acenaphthylene	CE087 ^M	mg/kg	< 0.02	-	<0.02	_	<0.02	_
Acenaphthene	CE087 ^M	mg/kg	0.02	-	0.03	-	0.04	-
Fluorene	CE087 ^U	mg/kg	0.03	-	0.04	-	0.07	-
Phenanthrene	CE087 ^M	mg/kg	0.71	-	0.95	-	1.42	-
Anthracene	CE087 ^U	mg/kg	0.09	-	0.13	-	0.18	-
Fluoranthene	CE087 ^M	mg/kg	0.46	-	0.60	-	1.74	-
Pyrene	CE087 ^M	mg/kg	0.38	-	0.49	-	1.31	-
Benzo(a)anthracene	CE087 ^U	mg/kg	0.36	-	0.37	-	0.93	-
Chrysene	CE087 ^M	mg/kg	0.43	-	0.48	-	1.14	-
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.44	-	0.49	-	1.27	-
Benzo(k)fluoranthene	CE087 ^M	mg/kg	0.14	-	0.17	-	0.41	-
Benzo(a)pyrene	CEO87 ^U	mg/kg	0.28	-	0.36	-	0.95	-
Indeno(123cd)pyrene	CE087 ^M	mg/kg	0.19	-	0.23	-	0.72	-
Dibenz(ah)anthracene	CE087 ^M	mg/kg	0.03	-	0.04	-	0.13	-
Benzo(ghi)perylene	CE087 ^M	mg/kg	0.15	-	0.22	-	0.57	-
PAH (total of USEPA 16)	CE087	mg/kg	3.91	-	4.88	-	11.20	-
ТРН	•							
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	<0.01	-	-	-	-	-
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	<0.01	-	-	-	-	-
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	<0.01	-	-	-	-	-

Lab number			118334-7	118334-8	118334-9	118334-10	118334-11	118334-12
Sample id			WS05	WS05	WS06	WS06	WS07	WS08
Depth (m)			0.50	1.50	0.20	1.00	0.30	0.50
Date sampled			13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023	13/01/2023
Test	Method	Units						
EPH Aromatic (>EC10-EC12)	CE250	mg/kg	<10	-	-	-	-	-
EPH Aromatic (>EC12-EC16)	CE250	mg/kg	<10	-	-	-	-	-
EPH Aromatic (>EC16-EC21)	CE250	mg/kg	<1	-	-	-	-	-
EPH Aromatic (>EC21-EC35)	CE250	mg/kg	<1	-	-	-	-	-
EPH Aromatic (>EC35-EC44)	CE250	mg/kg	12	-	-	-	-	-
VPH Aliphatic (>C5-C6)	CE067	mg/kg	<0.1	-	-	-	-	-
VPH Aliphatic (>C6-C8)	CE067	mg/kg	<0.1	-	-	-	-	-
VPH Aliphatic (>C8-C10)	CE067	mg/kg	<0.1	-	-	-	-	-
EPH Aliphatic (>C10-C12)	CE250	mg/kg	<6	-	-	-	-	-
EPH Aliphatic (>C12-C16)	CE250	mg/kg	<6	-	-	-	-	-
EPH Aliphatic (>C16-C35)	CE250	mg/kg	<15	-	-	-	-	-
EPH Aliphatic (>C35-C44)	CE250	mg/kg	<10	-	-	-	-	-
Subcontracted analysis								
Asbestos (qualitative)	\$	-	NAD	-	NAD	-	-	-

Lab number			118334-13	118334-14	118334-15	118334-16
Sample id		WS09	WS09	WS10	WS10	
Depth (m)			0.50	1.20	0.20	1.00
Date sampled			13/01/2023	13/01/2023	13/01/2023	13/01/2023
lest		Units				
	CEI27	mg/kg Sb	-	-	-	-
	CE127 ···	mg/kg As	6.6		9.5	
Barium (total)	CE127 M	mg/kg Ba	-	-	-	-
Boron (water soluble)	CE063 0	mg/kg B	0.6	2.6	0.7	0.8
Cadmium (total)	CE127 ™	mg/kg Cd	0.2	0.4	0.3	0.3
Chromium (total)	CE127 ™	mg/kg Cr	31	29	33	36
Chromium (VI)	CE146	mg/kg CrVI	<1	<1	<1	<1
Copper (total)	CE127 [™]	mg/kg Cu	20	33	36	31
Lead (total)	CE127 ^M	mg/kg Pb	33	68	47	45
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5	<0.5	<0.5	< 0.5
Molybdenum (total)	CE127 ^M	mg/kg Mo	-	-	-	-
Nickel (total)	CE127 ^M	mg/kg Ni	25	22	28	30
Selenium (total)	CE127 ^M	mg/kg Se	0.7	1.0	1.0	0.9
Zinc (total)	CE127 ^M	mg/kg Zn	74	111	101	105
рН	CEOO4 M	units	7.9	7.0	7.8	7.8
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	11	36	11	<10
Cyanide (total)	CE077	mg/kg CN	<1	<1	<1	<1
Total Organic Carbon (TOC)	CE197	% w/w C	2.8	8.8	4.2	3.4
Estimate of OMC (calculated from TOC)	CE197	% w/w	4.8	15.2	7.3	5.9
РАН						
Naphthalene	CE087 ^M	mg/kg	<0.02	0.26	0.08	0.05
Acenaphthylene	CE087 M	mg/kg	<0.02	< 0.02	<0.02	<0.02
Acenaphthene	CE087 ^M	mg/kg	<0.02	0.02	<0.02	<0.02
Fluorene	CE087 ^U	mg/kg	<0.02	0.05	<0.02	<0.02
Phenanthrene	CE087 ^M	mg/kg	0.12	0.90	0.24	0.22
Anthracene	CEO87 ^U	mg/kg	<0.02	0.14	0.02	0.04
Fluoranthene	CE087 ^M	mg/kg	0.10	0.75	0.21	0.28
Pyrene	CE087 ^M	mg/kg	0.08	0.61	0.18	0.26
Benzo(a)anthracene	CE087 ^U	mg/kg	0.05	0.40	0.13	0.18
Chrysene	CE087 ^M	mg/kg	0.05	0.43	0.15	0.21
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.06	0.56	0.15	0.25
Benzo(k)fluoranthene	CE087 ^M	mg/kg	<0.03	0.16	0.05	0.09
Benzo(a)pyrene	CE087 ^U	mg/kg	0.04	0.38	0.10	0.22
Indeno(123cd)pyrene	CE087 ^M	mg/kg	<0.02	0.25	0.06	0.13
Dibenz(ah)anthracene	CE087 ^M	mg/kg	<0.02	0.04	<0.02	<0.02
Benzo(ghi)perylene	CE087 ^M	mg/kg	<0.02	0.21	0.05	0.12
PAH (total of USEPA 16)	CE087	mg/kg	0.50	5.17	1.42	2.04
ТРН						
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	<0.01	-	<0.01	-
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	<0.01	-	<0.01	-
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	<0.01	-	<0.01	-

Lab number	118334-13	118334-14	118334-15	118334-16		
Sample id	WS09	WS09	WS10	WS10		
Depth (m)	0.50	1.20	0.20	1.00		
Date sampled	13/01/2023	13/01/2023	13/01/2023	13/01/2023		
Test	Method	Units				
EPH Aromatic (>EC10-EC12)	CE250	mg/kg	<10	-	<10	-
EPH Aromatic (>EC12-EC16)	CE250	mg/kg	<10	-	<10	-
EPH Aromatic (>EC16-EC21)	CE250	mg/kg	<1	-	<1	-
EPH Aromatic (>EC21-EC35)	CE250	mg/kg	<1	-	<1	-
EPH Aromatic (>EC35-EC44)	CE250	mg/kg	<1	-	<1	-
VPH Aliphatic (>C5-C6)	CE067	mg/kg	<0.1	-	<0.1	-
VPH Aliphatic (>C6-C8)	CE067	mg/kg	<0.1	-	<0.1	-
VPH Aliphatic (>C8-C10)	CE067	mg/kg	<0.1	-	<0.1	-
EPH Aliphatic (>C10-C12)	CE250	mg/kg	<6	-	<6	-
EPH Aliphatic (>C12-C16)	CE250	mg/kg	<6	-	<6	-
EPH Aliphatic (>C16-C35)	CE250	mg/kg	<15	-	<15	-
EPH Aliphatic (>C35-C44)	CE250	mg/kg	<10	-	<10	-
Subcontracted analysis						
Asbestos (qualitative)	\$	-	NAD	NAD	NAD	NAD

METHOD DETAILS

METHOD	SOLLS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE127	Antimony (total)	Aqua regia digest, ICP-MS	Dry	U	0.2	mg/kg Sb
CE127	Arsenic (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg As
CE127	Barium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ba
CE063	Boron (water soluble)	Hot water extract, ICP-OES	Dry	U	0.5	mg/kg B
CE127	Cadmium (total)	Aqua regia digest, ICP-MS	Dry	М	0.2	mg/kg Cd
CE127	Chromium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cr
CE146	Chromium (VI)	Acid extraction, Colorimetry	Dry		1	mg/kg CrVI
CE127	Copper (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cu
CE127	Lead (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Pb
CE127	Mercury (total)	Aqua regia digest, ICP-MS	Dry	М	0.5	mg/kg Hg
CE127	Molybdenum (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Mo
CE127	Nickel (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ni
CE127	Selenium (total)	Aqua regia digest, ICP-MS	Dry	М	0.3	mg/kg Se
CE127	Zinc (total)	Aqua regia digest, ICP-MS	Dry	М	5	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	As received	М	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	U	10	mg/I SO ₄
CE077	Cyanide (total)	Extraction, Continuous Flow Colorimetry	As received		1	mg/kg CN
CE197	Total Organic Carbon (TOC)	Carbon Analyser	Dry		0.1	% w/w C
CE197	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry		0.1	% w/w
CE087	Naphthalene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Fluorene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Phenanthrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(a)anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Chrysene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Benzo(b)fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(k)fluoranthene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Benzo(a)pyrene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Indeno(123cd)pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Dibenz(ah)anthracene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(ghi)perylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	PAH (total of USEPA 16)	Solvent extraction, GC-MS	As received		0.34	mg/kg
CE067	VPH Aromatic (>EC5-EC7)	Headspace GC-FID	As received		0.01	mg/kg
CE067	VPH Aromatic (>EC7-EC8)	Headspace GC-FID	As received		0.01	mg/kg
CE067	VPH Aromatic (>EC8-EC10)	Headspace GC-FID	As received		0.01	mg/kg
CE250	EPH Aromatic (>EC10-EC12)	Solvent extraction, GCxGC-FID	As received		1	mg/kg
CE250	EPH Aromatic (>EC12-EC16)	Solvent extraction, GCxGC-FID	As received		1	mg/kg
CE250	EPH Aromatic (>EC16-EC21)	Solvent extraction, GCxGC-FID	As received		1	mg/kg
CE250	EPH Aromatic (>EC21-EC35)	Solvent extraction, GCxGC-FID	As received		1	mg/kg
CE250	EPH Aromatic (>EC35-EC44)	Solvent extraction, GCxGC-FID	As received		1	mg/kg

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE067	VPH Aliphatic (>C5-C6)	Headspace GC-FID	As received		0.1	mg/kg
CE067	VPH Aliphatic (>C6-C8)	Headspace GC-FID	As received		0.1	mg/kg
CE067	VPH Aliphatic (>C8-C10)	Headspace GC-FID	As received		0.1	mg/kg
CE250	EPH Aliphatic (>C10-C12)	Solvent extraction, GCxGC-FID	As received		6	mg/kg
CE250	EPH Aliphatic (>C12-C16)	Solvent extraction, GCxGC-FID	As received		6	mg/kg
CE250	EPH Aliphatic (>C16-C35)	Solvent extraction, GCxGC-FID	As received		15	mg/kg
CE250	EPH Aliphatic (>C35-C44)	Solvent extraction, GCxGC-FID	As received		10	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Кеу

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
118334-1	WS01	0.20	Ν	
118334-2	WS01	0.50	Ν	
118334-3	WS02	0.30	Ν	
118334-4	WS03	0.50	Ν	
118334-5	WS03	1.50	Ν	
118334-6	WS04	0.50	Ν	
118334-7	WS05	0.50	Ν	
118334-8	WS05	1.50	Ν	
118334-9	WS06	0.20	Ν	
118334-10	WS06	1.00	Ν	
118334-11	WS07	0.30	Ν	
118334-12	WS08	0.50	Ν	
118334-13	WS09	0.50	Ν	
118334-14	WS09	1.20	Ν	
118334-15	WS10	0.20	Ν	
118334-16	WS10	1.00	N	

Chemtech Environmental Limited ADDITIONAL INFORMATION

Notes

Opinions and interpretations expressed herein are outside the UKAS accreditation scope. Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling. All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing. Methods, procedures and performance data are available on request. Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 4 weeks from initial receipt unless otherwise instructed. For soils and solids, all results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. For soils and solids, analytical results are inclusive of stones, where applicable.

Sample Details		
Contract Name	Hetton-I	e-Hole
Lab Number	118334-	3
Sample ID	WS02	0.30m
Date Sampled	13 Janua	ary 2023
Date Received	27 Janua	ary 2023
Particle Size (<4mm)	-	
Method of size reduction	N/A	
Non-crushable matter	N/A	

Test Values

0.200
0.175
14.54
87.30
0.325
1.400
0.100
1.080

Eluate Analysis	Conc In	n Eluate	Amount	Amount Leached		Council Decision 2003/33/EC			
Liquid : Waste Ratio	2:1	8:1		-	Limit Valu	ies mg/kg a	at L:S 10:1		
pH (units)	6.4	6.8			Inert	Non-reactive	Hazardous		
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste		
Conductivity (µS/cm)	74	24	mg/kg	mg/kg		Waste			
Antimony (µg/I Sb)	0.86	0.22	0.002	0.003	0.06	0.7	5		
Arsenic (µg/I As)	0.75	0.37	0.002	0.004	0.5	2	25		
Barium (µg/I Ba)	4.2	1.0	0.008	0.012	20	100	300		
Cadmium (µg/l Cd)	<0.07	<0.07	< 0.0002	< 0.0007	0.04	1	5		
Chromium (µg/l Cr)	0.3	0.5	0.001	0.005	0.5	10	70		
Copper (µg/l Cu)	1.5	1.3	0.003	0.014	2	50	100		
Lead (µg/I Pb)	< 0.2	0.6	< 0.0004	< 0.006	0.5	10	50		
Mercury (µg/I Hg)	<0.008	<0.008	< 0.00002	< 0.00008	0.01	0.2	2		
Molybdenum (µg/l Mo)	1.0	0.5	0.002	0.006	0.5	10	30		
Nickel (µg/l Ni)	< 0.5	< 0.5	< 0.001	< 0.005	0.4	10	40		
Selenium (µg/l Se)	0.33	< 0.07	0.001	< 0.0009	0.1	0.5	7		
Zinc (µg/I Zn)	<1	2	< 0.002	< 0.021	4	50	200		
Chloride (mg/I Cl)	4.1	0.9	8.2	11	800	15000	25000		
Fluoride (mg/l F)	0.1	< 0.1	0.3	< 1.0	10	150	500		
Sulphate (mg/l SO ₄)	3.1	<1.7	6	<18	1000	20000	50000		
Total Dissolved Solids (mg/I TDS)	55	20	110	220	4000	60000	100000		
Phenol Index (µg/I PhOH)	<10	<10	< 0.02	< 0.1	1				
Dissolved Organic Carbon (mg/I C)	6.8	<5	14	<51	500	800	1000		
Waste Analysis			Units	Result					
Total Organic Carbon			% w/w	0.9	3%	5%	6%		
Loss on Ignition			% w/w	3.0			10%		
BTEX			mg/kg	< 0.06	6				
PCBs (7 congeners)			mg/kg	< 0.045	1				
Mineral Oil (C10 - C40)			mg/kg	< 10	500				
PAH (total)			mg/kg	< 0.36	100				
рН			pH units	7.0		>6			
Acid Neutralisation Capacity (pH4)			mol/kg	0.02		To be ev	/aluated		
Acid Neutralisation Capacity (pH7)			mol/kg	0.02		To be ev	/aluated		

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only and values are transcribed from the Council Decision annex 2003/33/EC Chemtech Environmental Ltd does not take responsibility for any errors or omissions in the transcription, and all data should be verified by the end user. Results will be colour flagged to the lowest threshold value breached. Any assessments made are based on the published results from the Laboratory and make no assessment of uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. Method uncertainty levels can be provided Waste Acceptance Criteria assessment is outside the scope of the laboratory's UKAS accreditation.

Comments

Name:

Will Fardon

Report date:

Authorised by:

14 February 2023

Position:

Technical Director

Sample Details	
Contract Name	Hetton-le-Hole
Lab Number	118334-4
Sample ID	WS03 0.50m
Date Sampled	13 January 2023
Date Received	27 January 2023
Particle Size (<4mm)	-
Method of size reduction	N/A
Non-crushable matter	N/A

Test Values

Mass of Raw Test Portion (MW) kg	0.207
Mass of Dried Test Portion (MD) kg (0.175
Moisture Content Ratio (MC) %	18.13
Dry Matter Content Ratio (DR) %	84.65
Leachant Volume (1) (L2) Litre	0.318
Leachant Volume (2) (L8) Litre	1.400
Eluate Volume (1) (VE1) Litre	0.205
Eluate Volume (2) (VE2) Litre	1.140

Eluate Analysis	Conc ir	i Eluate	Amount	Amount Leached		Council Decision 2003/33/EC			
Liquid : Waste Ratio	2:1	8:1			Limit Valu	ies mg/kg a	at L:S 10:1		
pH (units)	6.6	7.1			Inert	Non-reactive	Hazardous		
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste		
Conductivity (µS/cm)	117	59	mg/kg	mg/kg		Waste			
Antimony (µg/I Sb)	0.87	0.35	0.002	0.004	0.06	<i>O.</i> 7	5		
Arsenic (µg/I As)	1.32	1.07	0.003	0.011	0.5	2	25		
Barium (µg/I Ba)	7.8	3.6	0.016	0.041	20	100	300		
Cadmium (µg/l Cd)	< 0.07	< 0.07	< 0.0002	< 0.0007	0.04	1	5		
Chromium (µg/l Cr)	0.5	0.6	0.001	0.006	0.5	10	70		
Copper (µg/l Cu)	5.1	3.5	0.010	0.037	2	50	100		
Lead (µg/I Pb)	4.5	4.7	0.009	0.046	0.5	10	50		
Mercury (µg/I Hg)	0.026	0.010	0.00005	0.00012	0.01	0.2	2		
Molybdenum (µg/l Mo)	2.5	1.5	0.005	0.016	0.5	10	30		
Nickel (µg/l Ni)	0.8	0.6	0.002	0.007	0.4	10	40		
Selenium (µg/l Se)	0.53	0.24	0.001	0.003	<i>O.</i> 1	0.5	7		
Zinc (μg/l Zn)	4	4	0.007	0.043	4	50	200		
Chloride (mg/I Cl)	2.0	0.9	3.9	10	800	15000	25000		
Fluoride (mg/l F)	0.5	0.3	1.0	3.1	10	150	500		
Sulphate (mg/l SO ₄)	3.2	<1.7	6	< 19	1000	20000	50000		
Total Dissolved Solids (mg/I TDS)	90	45	180	503	4000	60000	100000		
Phenol Index (µg/I PhOH)	<10	< 10	< 0.02	< 0.1	1				
Dissolved Organic Carbon (mg/I C)	11	6.7	22	72	500	800	1000		
Waste Analysis			Units	Result					
Total Organic Carbon			% w/w	4.5	3%	5%	6%		
Loss on Ignition			% w/w	6.4			10%		
BTEX			mg/kg	< 0.06	6				
PCBs (7 congeners)			mg/kg	< 0.045	1				
Mineral Oil (C10 - C40)			mg/kg	33	500				
PAH (total)			mg/kg	1.61	100				
рН			pH units	7.2		>6			
Acid Neutralisation Capacity (pH4)	mol/kg	0.04		To be ev	valuated				
Acid Neutralisation Capacity (pH7)			mol/kg	0.02		To be ev	valuated		

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only and values are transcribed from the Council Decision annex 2003/33/EC Chemtech Environmental Ltd does not take responsibility for any errors or omissions in the transcription, and all data should be verified by the end user. Results will be colour flagged to the lowest threshold value breached. Any assessments made are based on the published results from the Laboratory and make no assessment of uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. Method uncertainty levels can be provided Waste Acceptance Criteria assessment is outside the scope of the laboratory's UKAS accreditation.

Comments

Name:

Will Fardon

Report date:

Authorised by:

14 February 2023

Position:

Technical Director

Sample Details	
Contract Name	Hetton-le-Hole
Lab Number	118334-6
Sample ID	WS04 0.50m
Date Sampled	13 January 2023
Date Received	27 January 2023
Particle Size (<4mm)	-
Method of size reduction	N/A
Non-crushable matter	N/A

Test Values

Mass of Raw Test Portion (MW) kg	0.233
Mass of Dried Test Portion (MD) kg	0.175
Moisture Content Ratio (MC) %	32.92
Dry Matter Content Ratio (DR) %	75.23
Leachant Volume (1) (L2) Litre	0.292
Leachant Volume (2) (L8) Litre	1.400
Eluate Volume (1) (VE1) Litre	0.150
Eluate Volume (2) (VE2) Litre	1.100

Eluate Analysis	Conc ir	n Eluate	Amount	Leached	Council E	Decision 200	D3/33/EC
Liquid : Waste Ratio	2:1	8:1			Limit Valu	ies mg/kg a	at L:S 10:1
pH (units)	7.2	7.4			Inert	Non-reactive	Hazardous
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste
Conductivity (µS/cm)	199	99	mg/kg	mg/kg		Waste	
Antimony (µg/I Sb)	1.00	0.57	0.002	0.006	0.06	<i>O.</i> 7	5
Arsenic (µg/I As)	0.83	0.66	0.002	0.007	0.5	2	25
Barium (µg/I Ba)	10.1	6.9	0.020	0.072	20	100	300
Cadmium (µg/l Cd)	< 0.07	<0.07	< 0.0002	< 0.0007	0.04	1	5
Chromium (µg/l Cr)	0.3	0.4	0.001	0.004	0.5	10	70
Copper (µg/l Cu)	7.2	4.3	0.014	0.046	2	50	100
Lead (µg/I Pb)	3.7	4.9	0.007	0.048	0.5	10	50
Mercury (µg/I Hg)	0.087	0.053	0.00017	0.00056	0.01	0.2	2
Molybdenum (µg/l Mo)	4.3	2.6	0.009	0.028	0.5	10	30
Nickel (µg/l Ni)	1.0	0.6	0.002	0.007	0.4	10	40
Selenium (µg/l Se)	1.05	0.50	0.002	0.005	<i>O.</i> 1	0.5	7
Zinc (µg/l Zn)	2	3	0.005	0.029	4	50	200
Chloride (mg/I Cl)	3.1	1.0	6.1	12	800	15000	25000
Fluoride (mg/l F)	0.8	0.4	1.7	4.4	10	150	500
Sulphate (mg/I SO ₄)	5.0	<1.7	10	< 20	1000	20000	50000
Total Dissolved Solids (mg/I TDS)	150	75	300	814	4000	60000	100000
Phenol Index (µg/I PhOH)	<10	<10	< 0.02	< 0.1	1		
Dissolved Organic Carbon (mg/I C)	22	12	43	125	500	800	1000
Waste Analysis			Units	Result			
Total Organic Carbon			% w/w	6.8	3%	5%	6%
Loss on Ignition			% w/w	9.8			10%
BTEX			mg/kg	<0.06	6		
PCBs (7 congeners)			mg/kg	< 0.045	1		
Mineral Oil (C10 - C40)			mg/kg	150	500		
PAH (total)			mg/kg	6.55	100		
рН			pH units	7.7		>6	
Acid Neutralisation Capacity (pH4)			mol/kg	0.16		To be ev	valuated
Acid Neutralisation Capacity (pH7)			mol/kg	0.02		To be ev	valuated

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only and values are transcribed from the Council Decision annex 2003/33/EC Chemtech Environmental Ltd does not take responsibility for any errors or omissions in the transcription, and all data should be verified by the end user. Results will be colour flagged to the lowest threshold value breached. Any assessments made are based on the published results from the Laboratory and make no assessment of uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. Method uncertainty levels can be provided Waste Acceptance Criteria assessment is outside the scope of the laboratory's UKAS accreditation.

Comments

Name:

Will Fardon

Report date:

Authorised by:

14 February 2023

Position:

Technical Director

Sample Details	
Contract Name	Hetton-le-Hole
Lab Number	118334-12
Sample ID	WS08 0.50m
Date Sampled	13 January 2023
Date Received	27 January 2023
Particle Size (<4mm)	-
Method of size reduction	N/A
Non-crushable matter	N/A

Test Values

Mass of Raw Test Portion (MW) kg	0.226
Mass of Dried Test Portion (MD) kg	0.175
Moisture Content Ratio (MC) %	29.11
Dry Matter Content Ratio (DR) %	77.45
Leachant Volume (1) (L2) Litre	0.299
Leachant Volume (2) (L8) Litre	1.400
Eluate Volume (1) (VE1) Litre	0.265
Eluate Volume (2) (VE2) Litre	1.300

Eluate Analysis	Conc in	Eluate	Amount	Leached	Council E	Decision 200)3/33/EC
Liquid : Waste Ratio	2:1	8:1			Limit Valu	ies mg/kg a	at L:S 10:1
pH (units)	7.7	8.3			Inert	Non-reactive	Hazardous
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste
Conductivity (µS/cm)	144	70	mg/kg	mg/kg		Waste	
Antimony (µg/I Sb)	0.28	0.11	0.001	0.001	0.06	<i>O.</i> 7	5
Arsenic (µg/I As)	0.46	0.33	0.001	0.003	0.5	2	25
Barium (µg/I Ba)	26.0	7.2	0.052	0.101	20	100	300
Cadmium (µg/l Cd)	< 0.07	<0.07	< 0.0002	< 0.0007	0.04	1	5
Chromium (µg/l Cr)	0.3	< 0.2	0.001	< 0.002	0.5	10	70
Copper (µg/l Cu)	3.3	0.9	0.007	0.013	2	50	100
Lead (µg/I Pb)	0.5	< 0.2	0.001	< 0.002	0.5	10	50
Mercury (µg/I Hg)	<0.008	<0.008	< 0.00002	< 0.00008	0.01	0.2	2
Molybdenum (µg/l Mo)	2.6	1.4	0.005	0.016	0.5	10	30
Nickel (µg/l Ni)	1.1	< 0.5	0.002	< 0.006	<i>O.</i> 4	10	40
Selenium (µg/l Se)	0.78	0.44	0.002	0.005	O. 1	0.5	7
Zinc (μg/l Zn)	1	<1	0.003	< 0.011	4	50	200
Chloride (mg/l Cl)	2.8	1.2	5.7	15	800	15000	25000
Fluoride (mg/l F)	0.2	< 0.1	0.4	< 1.2	10	150	500
Sulphate (mg/l SO ₄)	2.5	<1.7	5	<18	1000	20000	50000
Total Dissolved Solids (mg/I TDS)	110	55	220	633	4000	60000	100000
Phenol Index (µg/I PhOH)	<10	<10	< 0.02	< 0.1	1		
Dissolved Organic Carbon (mg/I C)	14	6.1	29	74	500	800	1000
Waste Analysis			Units	Result			
Total Organic Carbon			% w/w	1.2	3%	5%	6%
Loss on Ignition			% w/w	2.6			10%
BTEX			mg/kg	< 0.06	6		
PCBs (7 congeners)			mg/kg	< 0.045	1		
Mineral Oil (C10 - C40)			mg/kg	28	500		
PAH (total)			mg/kg	< 0.36	100		
рН			pH units	8.2		>6	
Acid Neutralisation Capacity (pH4)			mol/kg	1.10		To be ev	/aluated
Acid Neutralisation Capacity (pH7)			mol/kg	0.06		To be ev	/aluated

Disclaimer: The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only and values are transcribed from the Council Decision annex 2003/33/EC Chemtech Environmental Ltd does not take responsibility for any errors or omissions in the transcription, and all data should be verified by the end user. Results will be colour flagged to the lowest threshold value breached. Any assessments made are based on the published results from the Laboratory and make no assessment of uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. Method uncertainty levels can be provided Waste Acceptance Criteria assessment is outside the scope of the laboratory's UKAS accreditation.

Comments

Name:

Will Fardon

Report date:

Authorised by:

14 February 2023

Position:

Technical Director

Statement of Conformity

Where Chemtech reports a statement of conformity to a specification, the decision rules applied are derived from the Ilac document ILAC G8:09/2019.

Acceptance limits (AL), applied are derived from the tolerance limits (TL) by you the client or applicable standard (e.g. 2003.33.EC Council Decision, BS3882, BS8601)

Agreed and reported Decision Rule:

"PASS" if the result < TL, and the bias / precision values for the process meet the targets defined within the methodology and/or applied accreditation.

Reported Decisions:

Result < TL for determinands: PASS Result > TL for determinands: FAIL

Definitions Used:

Acceptance limit (AL) Specified upper or lower bounds of permissible measured quantity values. Tolerance limit (TL) Specified upper or lower bound of permissible values of a property.

Appendix G

Geotechnical Laboratory Result Sheets

Aldi, Colliery Lane, Hetton-le-Hole | Aldi Stores Limited | Phase II Geo-environmental Assessment | P18-474-3E-XX-XX-RP-G-9000 | 9 February 2023 29

TEST REPORT

Client:	3E Consulting Engineers Ltd, 2 Esh Plaza, Great Park, Newcastle, NE13 9
Engineer:	Alex Middleton
Project:	P18-474 - Hetton-le-Hole
Supplier/Source:	Site
Date Sampled:	12/01/2023
Date Received:	25/01/2023
Sampled By:	Clients Staff
SampleSpec:	Sampled by Site Staff/Client
Remarks:	None

[M. Newton, Laboratory Manager Signed: _____ [] P. Fletcher. Senior Technician

ADDITIONAL INFORMATION

Notes:

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

- If Northumberland County Council carried out the sampling then all sampling was carried out at the named project above. All testing is carried out at Northumberland County Council Laboratory, except for subcontracted testing.
- Uncertainty of measurement available on request.. Results reported herein relate only to the material supplied to the laboratory.

No decision rule will be given This report shall not be reproduced except in full, without prior written approval.

Samples will be disposed of 4 weeks from initial receipt unless otherwise instructed.

CLASSIFICATION OF SOILS

Tests according to B.S. 1377: 1990

Location: WS01 at 1.00m

Material Type: Grey, brown very sandy CLAY with very occasional gravel.

	Test Results	<u>Specification</u>
Water Content (%)	22.0	BS EN ISO 17892-1;2014
Liquid Limit (%):	33	Part 2 Clause 4.4 (One point method)
Plastic Limit (%):	18	Part 2 Clause 5.3
Plasticity Index (%):	15	Part 2 Clause 5.4
Passing 425mic (%):	76	
Soil Classification:	CL	

Remarks: None

Start of Test Date: 26/01/2023

End of Test Date: 01/02/2023

Report Date: 01/02/2023

CLASSIFICATION OF SOILS

Tests according to B.S. 1377: 1990

Location: WS02 at 1.60m

Material Type: Grey CLAY with sand inclusions.

	Test Results	Specification
Water Content (%)	28.3	BS EN ISO 17892-1;2014
Liquid and Plastic Limit Ter	sts Carried out	in Accordance with BS 1377-Part 2:1990
	Test Results	Specification
Liquid Limit (%):	27	Part 2 Clause 4.4 (One point method)
Plastic Limit (%):	18	Part 2 Clause 5.3
Plasticity Index (%):	9	Part 2 Clause 5.4
Passing 425mic (%):	95	
Soil Classification:	CL	

Remarks: None

Start of Test Date: 26/01/2023

End of Test Date: 01/02/2023

Report Date: 01/02/2023

CLASSIFICATION OF SOILS

Particle Size Distribution carried out in accordance with B.S. 1377 : Part 2 Clause 9.2 :1990 Sedimentation Hydrometer carried out in accordance with B.S. 1377 : Part 2 Clause 9.5 :1990

Location: WS03 at 2.00m

Material Type: Brown clayey SAND and GRAVEL

Date Sampled: 12/01/2023 Date Received: 25/01/2023

Natural Water Content (%): 15.9 F

.9 Part 2 Clause 3.2

PSD Sleving		PSD Sed im	entation
Size (mm)	% Passing	Size (num)	% Passing
75	100		
63	100		
50	100		
37.5	100		
.30	68		
20	98	No sedimentation fest	
14	48		
10	97		
53	94		
5	92		
3.35	89		
2	87		
1.18	-84	Gravel %	13
26	78	Sand %	61
0,425	74	Sit/Chiy	-
0.300	69		×0
D 212	59		
0.150	44		
0.063	26		

Start of Test Date: 26/01/2023

End of Test Date: 01/02/2023

CLASSIFICATION OF SOILS

Tests according to B.S. 1377: 1990

Location: WS04 at 1.00m

Material Type: Brown, very sandy CLAY with very occasional gravel.

	Test Results	Specification
Water Content (%)	19.0	BS EN ISO 17892-1;2014
Liquid and Plastic Limit Te	sts Carried out	in Accordance with BS 1377-Part 2:1990
	Test Results	Specification
Liquid Limit (%):	28	Part 2 Clause 4.4 (One point method)
Plastic Limit (%):	20	Part 2 Clause 5.3
Plasticity Index (%):	8	Part 2 Clause 5.4
Passing 425mic (%):	55	
Soil Classification:	CL	

Remarks: None

Start of Test Date: 26/01/2023

End of Test Date: 01/02/2023

Report Date: 01/02/2023

CLASSIFICATION OF SOILS

Particle Size Distribution carried out in accordance with B.S. 1377 : Part 2 Clause 9.2 :1990 Sedimentation Hydrometer carried out in accordance with B.S. 1377 : Part 2 Clause 9.5 :1990

Location: WS05 at 1.50m

Material Type: Brown clayey SAND with occasional gravel

Date Sampled: 12/01/2023 Date Received: 25/01/2023

Natural Water Content (%): 17.8

17.8 Part 2 Clause 3.2

PSD Sleving		PSD Sed im	entation
Size (mm) % Passing		% Passing Size (num) % Pass	
万	100		
品	100		
50	100		
37.5	100		
28	99		
20	97	No sedimentation fest	
14	97		
10	96		
53	92		
5	90		
3.35	85		
2	BU		
1.18	76	Gravel %	20
0.0	67	Sand %	62
0.425	00	Sit/Lby	
0.300	52	*	3.8
0,212	41		
0.150	28		
0.063	18		

Start of Test Date: 26/01/2023

End of Test Date: 01/02/2023

CLASSIFICATION OF SOILS

Particle Size Distribution carried out in accordance with B.S. 1377 : Part 2 Clause 9.2 :1990 Sedimentation Hydrometer carried out in accordance with B.S. 1377 : Part 2 Clause 9.5 :1990

Location: WS06 at 1.50m

Material Type: Brown, orange SAND with occasional gravel

Date Sampled: 13/01/2023 Date Received: 25/01/2023

Natural Water Content (%): 14.2

14.2 Part 2 Clause 3.2

PSD Sieving		PSD Sed im	entation
Size (mm)	% Passing	Size (num)	% Passing
万	100		
母	100		
50	100		
37.5	100		
28	100		
20	99	No sedimentation fest	
14	99		
10	.98		
63	92		
5	37		
3.35	81		
2	78		
1.18	71	Gravel %	22
00	64	Sand %	66
0,425	59	Sit/Cay	
0.300	52	*	12
0.212	38		
0.158	24		
0.063	12		

Start of Test Date: 26/01/2023

End of Test Date: 01/02/2023

Report Date: 01/02/2023

CLASSIFICATION OF SOILS

Tests according to B.S. 1377: 1990

Location: WS08 at 2.50m

Material Type: Brown sandy CLAY with very occasional gravel.

Test Results	Specification				
26.7	BS EN ISO 17892-1;2014				
Liquid and Plastic Limit Tests Carried out in Accordance with BS 1377-Part 2:1990					
Test Results	Specification				
35	Part 2 Clause 4.4 (One point method)				
19	Part 2 Clause 5.3				
16	Part 2 Clause 5.4				
91					
CL/CI					
	Test Results 26.7 sts Carried out Test Results 35 19 16 91 CL/CI				

Remarks: None

Start of Test Date: 26/01/2023

End of Test Date: 01/02/2023

Report Date: 01/02/2023

CLASSIFICATION OF SOILS

Particle Size Distribution carried out in accordance with B.S. 1377 : Part 2 Clause 9.2 :1990 Sedimentation Hydrometer carried out in accordance with B.S. 1377 : Part 2 Clause 9.5 :1990

Location: WS09 at 1.50m

Material Type: Brown SAND and GRAVEL

Date Sampled: 13/01/2023 Date Received: 26/01/2023

Natural Water Content (%):

Part 2 Clause 3.2

PSD Sleving		PSD Sed imentation		
Size (mm) % Passing		Size (num) % Passir		
75	100			
母	100			
50	100			
37.5	100			
.00	99			
20	90	No sedimen	fation fest	
14	15			
10	83			
53	73			
5	69			
3.35	61			
2	54			
1.18	50	50 Gravel % 46		
0.0	38	38 Sand %		
0.425	31	Sit/Chy		
0.300	24	*	44	
0.212	19			
0.150	15			
0.063	11			

12.7

Start of Test Date: 26/01/2023

End of Test Date: 01/02/2023

CLASSIFICATION OF SOILS

Tests according to B.S. 1377: 1990

Location: **TP02 at 1.60m** Material Type: **Dark brown loamy PEAT.**

Test ResultsSpecificationWater Content (%)52.7BS EN ISO 17892-1;2014Liquid and Plastic Limit Tests Carried out in Accordance with BS 1377-E

 Liquid and Plastic Limit Tests Carried out in Accordance with BS 1377-Part 2:1990

 Test Results
 Specification

Passing 425mic (%): 50

Remarks: Material found to be Non-Plastic

Start of Test Date: 26/01/2023	End of Test Date: 01/02/2023	Report Date: 01/02/2023
--------------------------------	------------------------------	-------------------------

CLASSIFICATION OF SOILS

Tests according to B.S. 1377: 1990

Location: **TP03 at 1.00m** Material Type: **Dark brown loamy PEAT.**

Test ResultsSpecificationWater Content (%)38.5BS EN ISO 17892-1;2014

 Liquid and Plastic Limit Tests Carried out in Accordance with BS 1377-Part 2:1990

 Test Results
 Specification

Passing 425mic (%): 40

Remarks: Material found to be Non-Plastic

Start of Test Date: 26/01/2023	End of Test Date: 01/02/2023	Report Date: 01/02/2023
		1

DEVIATING SAMPLE INFORMATION

Comments:

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards. For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling. If Northumberland County Council Laboratory did not undertake the sampling. Such samples may be deviating.

Lab ID	Client ID	Deviating	Tests (Reason for deviation)
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	
		N	

Appendix H

Site Specific Radon Assessment Sheet (Envirocheck)

Envirocheck® Report:

Datasheet

Order Details:

Order Number: 307849427_1_1

Customer Reference: P18-474

National Grid Reference: 435770, 546820

Slice:

Site Area (Ha): 0.83

Search Buffer (m): 1000

Site Details:

land adjacent to Colliery Lane Hetton-le-Hole Houghton le Spring DH5 0AD

Client Details:

Mrs N Watson Hydrock 3E 2 Esh Plaza Sir Bobby Robson Way Great Park Newcastle upon Tyne NE13 9BA

Contents

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	16
Hazardous Substances	-
Geological	18
Industrial Land Use	20
Sensitive Land Use	26
Data Currency	27
Data Suppliers	32
Useful Contacts	33

Introduction

Hydrock

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread,

and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client. In this datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2023. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer. A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark,

subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

© Environment Agency & United Kingdom Research and Innovation 2023. © Natural Resources Wales & United Kingdom Research and Innovation 2023.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Scottish Natural Heritage Copyright

Contains SNH information licensed under the Open Government Licence v3.0.

Ove Arup Copyright Notice

The Mining Instability data was obtained on licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The supplied Mining Instability data is derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Stantec Copyright Notice

The cavity data presented has been extracted from the PBA (now Stantec UK Ltd) enhanced version of the original DEFRA national cavity databases. Stantec UK Ltd retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by Stantec UK Ltd. In no event shall Stantec UK Ltd or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Natural Resources Wales Copyright Notice

Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Contains Ordnance Survey Data. Ordnance Survey Licence number 100019741. Crown Copyright and Database Right. Contains Natural Resources Wales information © Natural Resources Wales and Database Right. All rights Reserved. Some features of this information are based on digital spatial data licensed from the Centre for Ecology & Hydrology © NERC (CEH). Defra, Met Office and DARD Rivers Agency © Crown copyright. © Cranifield University. © James Hutton Institute. Contains OS data © Crown copyright and detabase right. database right 2023. Land & Property Services © Crown copyright and database right.

Report Version v53.0

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes	Yes	Yes	n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 2			6	9
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls					
Integrated Pollution Prevention And Control					
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 5		6	1	
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 6			Yes	
Pollution Incidents to Controlled Waters	pg 6			2	4
Prosecutions Relating to Authorised Processes					
Registered Radioactive Substances					
River Quality					
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register	pg 7				1
Water Abstractions					
Water Industry Act Referrals					
Groundwater Vulnerability Map	pg 8	Yes	n/a	n/a	n/a
Groundwater Vulnerability - Soluble Rock Risk	pg 8	1	n/a	n/a	n/a
Bedrock Aquifer Designations	pg 8	Yes	n/a	n/a	n/a
Superficial Aquifer Designations	pg 8	Yes	n/a	n/a	n/a
Source Protection Zones	pg 8	1			
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
OS Water Network Lines	pg 8			14	46

Summary

Hydrock 3E

Summary

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites					
Historical Landfill Sites	pg 16			2	1
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)	pg 16		1	1	
Local Authority Landfill Coverage	pg 17	1	n/a	n/a	n/a
Local Authority Recorded Landfill Sites	pg 17			1	1
Registered Landfill Sites					
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites					
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					
Geological					
BGS 1:625,000 Solid Geology	pg 18	Yes	n/a	n/a	n/a
BGS Recorded Mineral Sites	pg 18		2	1	
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas	pg 18	Yes	n/a	n/a	n/a
Mining Instability	pg 18	Yes	n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 18	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards	pg 18	Yes	Yes	n/a	n/a
Potential for Ground Dissolution Stability Hazards	pg 19	Yes		n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 19	Yes		n/a	n/a
Potential for Running Sand Ground Stability Hazards	pg 19	Yes	Yes	n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 19	Yes	Yes	n/a	n/a
Radon Potential - Radon Affected Areas			n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Industrial Land Use					
Contemporary Trade Directory Entries	pg 20		19	14	22
Fuel Station Entries	pg 25			1	1
Gas Pipelines					
Underground Electrical Cables					
Sensitive Land Use					
Ancient Woodland					
Areas of Adopted Green Belt					
Areas of Unadopted Green Belt					
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves	pg 26				1
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones	pg 26	2			
Ramsar Sites					
Sites of Special Scientific Interest	pg 26				1
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (W)	0	1	435750 546818
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (E)	0	1	435771 546818
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (E)	16	1	435850 546850
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (W)	53	1	435650 546818
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (W)	154	1	435550 546818
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13SW (W)	253	1	435450 546800
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A13NW (W)	258	1	435450 546850
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A12NE (W)	304	1	435400 546818
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A14NW (E)	312	1	436150 546818
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (NW)	325	1	435500 547100
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A13NW (NW)	360	1	435450 547100
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A13NW (NW)	365	1	435500 547150
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A14NW (E)	378	1	436200 546950
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A14NW (NE)	400	1	436150 547100
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A14SW (E)	414	1	436250 546750
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Limited Potential for Groundwater Flooding to Occur	A18SE (NE)	430	1	436000 547250
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A18SW (N)	452	1	435650 547300
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A18SE (NE)	476	1	436000 547300
	BGS Groundwater Flooding Susceptibility				
	Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A14SW (E)	482	1	436300 546650

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Northumbrian Water Limited WASTE COLLECTION/TREATMENT/DISPOSAL/MATERIALS RECOVERY Hetton Lyons Stw, Hetton-Le-Hole Environment Agency, North East Region Wear (Lower) 245/0931 1 28th September 1989 28th September 1989 Not Supplied Sewage Discharges - Final/Treated Effluent - Water Company Freshwater Stream/River Hetton Burn, Tributary Of Transferred from Water Act 1989 Located by supplier to within 100m	A13NE (E)	270	2	436100 546900
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S Mr R Scott Undefined Or Other Claude Street, A New Dwelling, HETTON-LE-HOLE Environment Agency, North East Region Not Given 245/0090 Not Supplied Not Supplied Not Supplied Not Supplied Surface Water Onto Land Land Not Supplied Located by supplier to within 100m	A13NW (NW)	322	2	435500 547095
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S Unknown, DOMESTIC PROPERTY (SINGLE) (INCL FARM HOUSE) Claude Street, A New Dwelling, Hetton-Le-Hole, Tyne And Wear Environment Agency, North East Region Not Supplied 245/0090 1 3rd July 1985 3rd July 1985 28th October 1993 Sewage Discharges - Final/Treated Effluent - Not Water Company Freshwater Stream/River Land Authorisation revoked Located by supplier to within 100m	A13NW (NW)	325	2	435500 547100
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Issued Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S Unknown, DOMESTIC PROPERTY (SINGLE) (INCL FARM HOUSE) Claude Street, A New Dwelling, Hetton-Le-Hole, Tyne And Wear Environment Agency, North East Region Not Given 245/0090 1 3rd July 1985 3rd July 1985 28th October 1993 Trade Discharges - Site Drainage Freshwater Stream/River Land Authorisation revoked Located by supplier to within 100m	A13NW (NW)	325	2	435500 547100

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
3	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Issued Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Redundant - Northumbrian Water Ltd PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Hetton Lyons Pumping Station, Hetton Le Hole, County Durham Environment Agency, North East Region Not Supplied 245/A/0585 1 26th February 1980 26th February 1980 26th February 1980 26th February 1980 20th September 1991 Unspecified Freshwater Stream/River Hetton Burn Authorisation revoked Located by supplier to within 10m	A14SW (E)	362	2	436200 546800
4	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Redundant - Northumbrian Water Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Four Lane Ends Sso, Hetton-Le-Hole Environment Agency, North East Region Not Supplied 245/C/0296 1 22nd February 1974 22nd February 1974 28th February 1974 28th February 1991 Unspecified Freshwater Stream/River Hetton Burn, Tributary Of Authorisation revoked Located by supplier to within 10m	A12SE (W)	404	2	435300 546800
5	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	City Of Sunderland PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Hetton Lyons Indust Est Ps Hetton Lyons Industrial Estate, Hetton Lyons, Hetton Le Hole, Tyne And Wear Environment Agency, North East Region Wear (Lower) 245/1072 1 25th November 1993 25th November 1993 25th November 1993 5th March 2012 Sewage Discharges - Pumping Station - Not Water Company Freshwater Stream/River Hetton Burn Surrendered under EPR 2010 Located by supplier to within 10m	A19SW (NE)	514	2	436150 547260
6	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S Unknown, WWTW (NOT WATER CO) (NOT STP AT A PRIVATE PREMISES) Urwin Street, 2 Properties S.W. Of, Hetton-Le-Hole Environment Agency, North East Region Wear (Lower) 245/0691 1 7th October 1988 7th October 1988 30th September 1996 Sewage Discharges - Final/Treated Effluent - Not Water Company Onto Land Land Land Lapsed (under Environment Act 1995, Schedule 23) Located by supplier to within 100m	A18SW (NW)	536	2	435540 547360

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
7	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Redundant - Northumbrian Water Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Frederick Terrace Sso, Hetton-Le-Hole Environment Agency, North East Region Not Supplied 245/C/0297 1 22nd February 1974 22nd February 1974 21st May 1994 Unspecified Freshwater Stream/River Hetton Burn, Tributary Of Authorisation revoked Located by supplier to within 10m	A8NE (SE)	645	2	436100 546200
8	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	S Unknown, CONSTRUCTION OF BUILDINGS Station Road, A Housing Development, Hetton-Le-Hole, Tyne And Wear Environment Agency, North East Region Not Supplied 245/0732 1 7th November 1988 7th November 1988 25th November 1991 Trade Discharges - Site Drainage Freshwater Stream/River Hetton Burn Transferred from COPA 1974 Located by supplier to within 10m	A17SE (NW)	654	2	435170 547220
9	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Type: Discharge Type: Discharge Type: Status: Positional Accuracy:	Northumbrian Water Limited PUMPING STATION ON SEWERAGE NETWORK (WATER COMPANY) Hartside Gardens Ps, Easington Lane, Sunderland Environment Agency, North East Region Wear (Lower) 245/0967 1 3rd March 1992 3rd March 1992 29th December 2017 Sewage Discharges - Pumping Station - Water Company Freshwater Stream/River Rainton Burn Tributary (Wear) Surrendered under EPR 2010 Located by supplier to within 10m	A9NW (SE)	688	2	436290 546270
10	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Issued Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Northumbrian Water Limited STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Hetton-Le-Hole Sso No. 1, Hetton-Le-Hole, Co. Durham Environment Agency, North East Region Not Supplied 245/1365 1 31st March 2005 28th February 2005 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Hetton Burn Consent without application (Water Resources Act 1991, Schedule 10) Located by supplier to within 10m	A17SW (NW)	726	2	435090 547230

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consents	······				
10	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Northumbrian Water Limited STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Hetton-Le-Hole Sso No. 1, Hetton-Le-Hole, Co. Durham Environment Agency, North East Region Not Supplied 245/1365 1 31st March 2005 28th February 2005 Not Supplied Sewage Discharges - Stw Storm Overflow/Storm Tank - Water Company Freshwater Stream/River Hetton Burn Consent without application (Water Resources Act 1991, Schedule 10) Located by supplier to within 10m	A17SW (NW)	752	2	435060 547230
	Discharge Consents	•				
11	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Redundant - Northumbrian Water Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Murton Lane Sso, Hetton-Le-Hole Environment Agency, North East Region Not Supplied 245/C/0298 1 22nd February 1974 22nd February 1974 28th February 1974 28th February 1991 Unspecified Freshwater Stream/River Hetton Burn, Tributary Of Authorisation revoked Located by supplier to within 10m	A9NW (SE)	749	2	436300 546200
	Discharge Consents					
12	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Environment: Receiving Water: Status: Positional Accuracy: Local Authority: Positional Accuracy: Positional Accuracy: Local Authority: Positional Accuracy: Positional	Redundant - Northumbrian Water Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Brickgarth Sso, West End, Hetton-Le-Hole Environment Agency, North East Region Not Supplied 245/C/0299 1 22nd February 1974 22nd February 1974 22nd February 1974 28th February 1991 Unspecified Freshwater Stream/River Hetton Burn, Tributary Of Authorisation revoked Located by supplier to within 10m	A8SW (S)	790	2	435600 546000
	Local Authority Poll	ution Prevention and Controls			-	
13	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Friskies Pet Care Hetton Lyons Industrial Estate, Hetton le Hole, HOUGHTON LE SPRING, Tyne and Wear, DH5 0RH Sunderland City Metropolitan Borough Council, Environmental Health Department 0058 Not Supplied Local Authority Air Pollution Control PG6/24 Pet food manufacturing Authorisation has varied Manually positioned within the geographical locality	A13NE (NE)	11	3	435791 546863
	Local Authority Poll	ution Prevention and Controls				
14	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Altrac Waste Recycling (Mobile Crusher) Unit 6 Hetton Lyons Industrial Estate, Hetton, DH5 0RH Sunderland City Metropolitan Borough Council, Environmental Health Department 1034/1 Not Supplied Local Authority Pollution Prevention and Control PG3/16 Mobile screening and crushing processes Permitted Manually positioned to the address or location	A13NE (N)	157	3	435778 547009
	Positional Accuracy:	Manually positioned to the address or location				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Local Authority Poll	ution Prevention and Controls				
14	Name: Location:	Coleman Cabinets Ltd 6 Hetton Lyons Industrial Estate, Hetton Le Hole, SUNDERLAND, Tyne and Wear, DH5 ORH	A13NW (N)	169	3	435742 547021
	Permit Reference:	Department 0069				
	Dated: Process Type: Description:	Not Supplied Local Authority Air Pollution Control PG6/2 Manufacture of timber and wood-based products				
	Status: Positional Accuracy:	Authorisation revoked Manually positioned within the geographical locality				
	Local Authority Poll	ution Prevention and Controls				
14	Name: Location:	Coleman Cabinets Ltd 6 Hetton Lyons Industrial Estate, Hetton Le Hole, SUNDERLAND, Tyne and Wear, DH5 ORH	A13NW (N)	169	3	435742 547021
	Authority:	Sunderland City Metropolitan Borough Council, Environmental Health Department				
	Permit Reference: Dated: Process Type:	Not Supplied Local Authority Air Pollution Control				
	Description: Status: Positional Accuracy:	PG6/33 Wood coating Authorisation revoked Manually positioned within the geographical locality				
	Local Authority Poll	ution Prevention and Controls				
15	Name: Location:	Rose Cabinets 6 Hetton Lyons Industrial Estate, Hetton le Hole, HOUGHTON LE SPRING,	A13NE (N)	233	3	435812 547086
	Authority:	Tyne and Wear, DH5 0RH Sunderland City Metropolitan Borough Council, Environmental Health Department				
	Permit Reference: Dated: Process Type:	Not Supplied				
	Description: Status:	PG6/2 Manufacture of timber and wood-based products Authorisation revoked				
	Positional Accuracy:	Manually positioned within the geographical locality				
10	Local Authority Poll	ution Prevention and Controls				
16	Name: Location:	Reg Vardy Vehicle Preparation Centre, Hetton Lyons Industrial Estate, Hetton Le Hole, DH5 0RN	A13NE (NE)	237	3	435935 547068
	Authority:	Sunderland City Metropolitan Borough Council, Environmental Health Department 0147				
	Dated: Process Type:	Not Supplied Local Authority Pollution Prevention and Control				
	Status: Positional Accuracy:	PG6/34 Respraying of road venicles Permitted Manually positioned within the geographical locality				
	Local Authority Poll	ution Prevention and Controls				
16	Name: Location: Authority:	Reg Vardy Vehicel Preparation Centre Hetton Lyons Industrial Estate, Hetton Le Hole, Dh5 0rn Sunderland City Metropolitan Borough Council, Environmental Health	A13NE (NE)	262	3	435940 547094
	Permit Reference: Dated: Process Type:	0147 Not Supplied Local Authority Pollution Prevention and Control				
	Description: Status: Positional Accuracy:	PG6/34 Respraying of road vehicles Permitted Manually positioned within the geographical locality				
	Nearest Surface Wa	ter Feature				
			A12NE (W)	297	-	435411 546848
	Pollution Incidents	to Controlled Waters				
17	Property Type: Location: Authority:	Cattle (Dairy) Farming: Other Hetton Lyons Environment Agency, North East Region	A14NW (NE)	441	2	436200 547100
	Pollutant: Note: Incident Date:	Organic Wastes: Other slurry Biology Affected; Fisheries Affected; 201 - 500 Fish Killed 10th Sentember 1995				
	Incident Reference: Catchment Area:	NW950099 Lower Wear				
	Receiving Water: Cause of Incident: Incident Severity:	Pong/Lake Not Given Category 1 - Major Incident				
	Positional Accuracy:	Located by supplier to within 100m				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
18	Pollution Incidents of Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accurracy:	to Controlled Waters Contaminated Land Hetton Lyons Environment Agency, North East Region Not Given Pollution Found; Biology Affected; No Fish Killed 6th January 1996 NW960004 Lower Wear Pond/Lake Unknown Category 3 - Minor Incident Located by supplier to within 100m	A19SW (NE)	500	2	436200 547195
18	Pollution Incidents f Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Contaminated Land Hetton Lyons Environment Agency, North East Region Unknown Biology Affected; No Fish Killed 6th January 1996 NW960004 Lower Wear Pond/Lake Not Given Category 3 - Minor Incident Located by supplier to within 100m	A19SW (NE)	504	2	436200 547200
19	Pollution Incidents of Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Industrial: Other Hetton Le Hole Environment Agency, North East Region Oils - Diesel (Including Agricultural) Biology Affected; Geology Affected; No Fish Killed 20th March 1995 NW950187 Lower Wear Freshwater Stream/River Not Given Category 2 - Significant Incident Located by supplier to within 100m	A17SE (NW)	545	2	435400 547300
20	Pollution Incidents of Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy:	to Controlled Waters Other General Premises HETTON-LE-HOLE Environment Agency, North East Region Not Given Hetton Lyons Pond 23rd April 1994 245/004188 Not Given Pond/Lake Other Cause Category 3 - Minor Incident Located by supplier to within 100m	A19SW (NE)	577	2	436200 547300
21	Pollution Incidents of Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity: Positional Accuracy: Substantiated Pollu	to Controlled Waters Highway/Car Park HETTON-LE-HOLE Environment Agency, North East Region Not Given Wear 21st April 1992 245/002425 Not Given No Pollution Other Oil Category 3 - Minor Incident Located by supplier to within 100m tion Incident Register Environment Agency - North East Pagion North East Agency	A12SE (W)	631	2	435100 546600
22	Incident Date: Incident Reference: Water Impact: Air Impact: Land Impact: Positional Accuracy: Pollutant:	1306785 Category 1 - Major Incident Category 4 - No Impact Category 4 - No Impact Located by supplier to within 10m Oils - Diesel (Including Agricultural)	(N)	511	2	430007 547340

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Groundwater Vulne	rability Map				
	Combined Classification:	Secondary Superficial Aquifer - Medium Vulnerability	A13NW (E)	0	4	435771 546818
	Combined Vulnerability:	Medium				
	Combined Aquifer: Pollutant Speed:	Productive Bedrock Aquifer, Productive Superficial Aquifer Intermediate				
	Bedrock Flow: Dilution:	Well Connected Fractures 300-550 mm/year				
	Baseflow Index: Superficial	<40% >90%				
	Patchiness: Superficial	3-10m				
	Thickness: Superficial	Low				
	Recharge:					
	Groundwater Vulne	rability - Soluble Rock Risk	A13NW	0	4	435771
			(E)	Ŭ	•	546818
	Bedrock Aquifer De Aquifer Designation:	signations Principal Aquifer	A13NW	0	4	435771
	Superficial Aquifer	Designations	(E)	-		546818
	Aquifer Designation:	Secondary Aquifer - A	A13NW	0	4	435771
	Source Protection 7	Zones	(E)			546818
23	Name:	Not Supplied	A13NW	0	2	435771
	Reference:	Not Supplied	(E)			546818
	Туре:	from the protected groundwater source.				
	Extreme Flooding fi	rom Rivers or Sea without Defences				
	Flooding from River	rs or Sea without Defences				
	None					
	Areas Benefiting fro	om Flood Defences				
	None	ο Δroas				
	None					
	Flood Defences					
	OS Water Network I	ines				
24	Watercourse Form:	Inland river	A14NW	339	5	436177
	Watercourse Length: Watercourse Level:	On ground surface	(E)			546837
	Watercourse Name:	Not Supplied				
	Primacy:	vear 1				
	OS Water Network I	Lines			_	100170
25	Watercourse Form: Watercourse Length:	Inland river 140.7	A14NVV (E)	342	5	436179 546848
	Watercourse Level: Permanent:	On ground surface True				
	vvatercourse Name: Catchment Name:	Not Supplied Wear				
	OS Water Network I	Lines				
26	Watercourse Form:	Inland river	A14NW	342	5	436179
	Watercourse Length: Watercourse Level:	On ground surface	(E)			546848
	Watercourse Name:	Not Supplied				
	Primacy:	vvear 1				

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
27	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 25.4 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A14NW (E)	358	5	436186 546919
28	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 190.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A14NW (E)	366	5	436189 546945
29	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 41.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A14NW (NE)	453	5	436207 547111
30	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 121.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A14SW (SE)	462	5	436240 546561
31	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 25.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Stephenson Lake Catchment Name: Wear Primacy: 1	A14NW (NE)	465	5	436201 547140
32	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 91.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Stephenson Lake Catchment Name: Wear Primacy: 1	A14NW (NE)	465	5	436201 547140
33	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 15.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Stephenson Lake Catchment Name: Wear Primacy: 1	A19SW (NE)	485	5	436154 547218
34	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 162.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A14NW (NE)	487	5	436226 547144
35	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 363.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A14SW (E)	493	5	436312 546653

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
36	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 3.2 Watercourse Level: Underground Permanent: True Watercourse Name: Stephenson Lake Catchment Name: Wear Primacy: 1	A19SW (NE)	496	5	436153 547234
37	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Stephenson Lake Catchment Name: Wear Primacy: 1	A19SW (NE)	499	5	436153 547237
38	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 111.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Stephenson Lake Catchment Name: Wear Primacy: 1	A19SW (NE)	505	5	436153 547246
39	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 485.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Hetton Burn Catchment Name: Wear Primacy: 1	A18SW (N)	510	5	435556 547338
40	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 344.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Hetton Burn Catchment Name: Wear Primacy: 1	A18SW (N)	510	5	435556 547338
41	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 167.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Blossom Pond Catchment Name: Wear Primacy: 1	A18SE (NE)	512	5	436024 547329
42	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A8NW (S)	546	5	435580 546250
43	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A8NW (S)	560	5	435667 546224
44	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 12.0 Watercourse Level: Underground Permanent: True Watercourse Name: Blossom Pond Catchment Name: Wear Primacy: 1	A18SE (N)	571	5	435965 547409

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
45	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 231.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Lyons Lake Catchment Name: Wear Primacy: 1	A18SE (N)	581	5	435960 547420
46	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 21.6 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A19SW (NE)	626	5	436339 547225
47	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 115.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	628	5	435234 546366
48	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 56.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	628	5	435234 546366
49	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 142.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A19SW (NE)	638	5	436337 547246
50	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 856.0 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	649	5	435185 546394
51	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A17SE (NW)	668	5	435140 547202
52	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Hetton Burn Catchment Name: Wear Primacy: 1	A17SE (NW)	674	5	435138 547209
53	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 19.1 Watercourse Level: Underground Permanent: True Watercourse Name: Hetton Burn Catchment Name: Wear Primacy: 1	A17SE (NW)	711	5	435109 547232

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
54	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 362.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Hetton Burn Catchment Name: Wear Primacy: 1	A17SW (NW)	730	5	435091 547239
55	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 11.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	732	5	435178 546274
56	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.7 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	743	5	435168 546269
57	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 15.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	745	5	435166 546268
58	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.6 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	760	5	435152 546261
59	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 769.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A19SE (NE)	761	5	436473 547268
60	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 230.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A19SE (NE)	761	5	436473 547268
61	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 6.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	768	5	435144 546258
62	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 33.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	773	5	435138 546256

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
63	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 52.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	773	5	435138 546256
64	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	781	5	435182 546202
65	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 56.7 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	781	5	435182 546202
66	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 46.0 Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NE (SW)	824	5	435099 546225
67	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 19.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A14SE (E)	834	5	436639 546553
68	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 28.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A14SE (E)	834	5	436639 546553
69	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 8.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A8SW (S)	845	5	435685 545937
70	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A8SW (S)	845	5	435685 545937
71	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 154.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A8SW (S)	850	5	435679 545932

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
72	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 43.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A8SW (S)	850	5	435679 545932
73	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NW (SW)	869	5	435069 546189
74	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 63.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NW (SW)	872	5	435068 546188
75	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 16.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7NW (SW)	872	5	435068 546188
76	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 90.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7SW (SW)	909	5	435076 546126
77	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 18.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A7SW (SW)	909	5	435076 546126
78	OS Water Network Lines Watercourse Form: Lake Watercourse Length: 5.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A18NW (N)	920	5	435740 547773
79	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 25.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A18NW (N)	921	5	435746 547773
80	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 94.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Hetton Burn Catchment Name: Wear Primacy: 1	A17NW (NW)	977	5	435013 547535

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
81	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: 346.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A19SE (NE)	985	5	436629 547434
82	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 55.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A19SE (NE)	985	5	436629 547434
83	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 227.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Wear Primacy: 1	A3NW (S)	986	5	435632 545799

Waste

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Historical Landfill S	ites				
84	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Not Supplied Hetton-le-Hole, Sunderland Hetton Lyons Not Supplied As Supplied EAHLD06724 Not Supplied Not Supplied Not Supplied 0 Not Supplied 4500/0252 Not Supplied SL 014	A14NW (E)	345	2	436182 546834
	Historical Landfill S	ites				
85	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Not Supplied Hetton-le-Hole, Sunderland Back Richard Street Not Supplied As Supplied EAHLD06647 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied TW 318 SL	A18SW (N)	498	2	435586 547335
	Historical Landfill S	ites				
86	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:	Not Supplied Easington Lane, Sunderland Dorset Street Not Supplied As Supplied EAHLD06725 Not Supplied Not Supplied Not Supplied 0 Not Supplied 4500/0243 Not Supplied SL 006	A8SE (S)	823	2	436026 545989
	Licensed Waste Ma	nagement Facilities (Locations)				
87	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IIPPC Reference: Positional Accuracy:	100412 Unit 19, Former Pearsons Yard, Colliery Lane, Hetton Lyons Ind Est, Houghton Le Spring, Tyne & Wear, DH5 0BG Michael OBrien, Sarah Jane OBrien, Michael Johnny OBrien and Davis Cole OBrien Not Supplied Environment Agency - North East Region, North East Area HCI Waste TS + treatment Transferred Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A13NW (NW)	235	2	435536 547010

Waste

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
88	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	64139 Unit 6, Hetton Lyons Industrial Estate, Hetton-le- Hole, Houghton Le Spring, Tyne & Wear, DH5 0RH Green Energy Power Ltd Not Supplied Environment Agency - North East Region, North East Area HCI Waste TS + treatment Revoked 10th February 2005 23rd June 2011 Not Supplied Not Supplied 3rd November 2015 Not Supplied Not Supplied Located by supplier to within 10m	A13NE (N)	297	2	435845 547150
	Local Authority Lan	dfill Coverage				
	Name:	Sunderland City Council - Has supplied landfill data		0	3	435771 546818
	Local Authority Rec	orded Landfill Sites				
89	Location: Reference: Authority: Last Reported Status: Types of Waste: Date of Closure: Positional Accuracy: Boundary Quality:	Hetton Lyons O Sunderland City Metropolitan Borough Council, Environmental Health Department Closed Not Supplied Not Supplied Positioned by the supplier Moderate	A14NW (E)	342	3	436180 546833
	Local Authority Rec	orded Landfill Sites				
90	Location: Reference: Authority: Last Reported Status: Types of Waste:	Dorset Street (North) Q Sunderland City Metropolitan Borough Council, Environmental Health Department Closed Not Supplied	A8SE (S)	892	3	435900 545900
	Date of Closure: Positional Accuracy: Boundary Quality:	Not Supplied Manually positioned within the geographical locality Not Applicable				

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid	l Geology Dermine Decke (Undifferentiated)	A 1 2 NIVA/	0	4	425700
	Description:		(NW)	0	1	435768 546820
	BGS 1:625,000 Solid Description:	I Geology Zechstein Group	A13NW (E)	0	1	435771 546818
	BGS Recorded Mine	eral Sites				
91	Site Name: Location: Source: Reference: Type: Status: Operator: Operator: Operator Location: Periodic Type: Geology: Commodity:	Lyons Colliery Quarry Lyons, Hetton Le Hole, Houghton-Le-Spring, Tyne And Wear British Geological Survey, National Geoscience Information Service 104098 Opencast Ceased Unknown Operator Not Supplied Permian Raisby Formation (Lower Magnesian Limestone) Dolomite	A13NE (N)	145	1	435779 546997
	Positional Accuracy:	Located by supplier to within 10m				
92	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator: Operator: Operator: Deprator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	eral Sites Lyons Sand Pit Lyons, Hetton Le Hole, Houghton-Le-Spring, Tyne And Wear British Geological Survey, National Geoscience Information Service 104099 Opencast Ceased Unknown Operator Not Supplied Permian Raisby Formation (Lower Magnesian Limestone) Sand and Gravel Located by supplier to within 10m	A13SE (SE)	172	1	435994 546717
	BGS Recorded Mine	eral Sites				
93	Site Name: Location: Source: Reference: Type: Status: Operator: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Pemberton Quarry Moorsley, Hetton Le Hole, Houghton-Le-Spring, Tyne And Wear British Geological Survey, National Geoscience Information Service 104034 Opencast Ceased Unknown Operator Not Supplied Permian Raisby Formation (Lower Magnesian Limestone) Dolomite Located by supplier to within 10m	A13SW (SW)	331	1	435530 546502
	Coal Mining Affecte	d Areas				
	Description:	In an area which may be affected by coal mining activity. It is recommended that a coal mining report is obtained from the Coal Authority. Contact details are included in the Useful Contacts section of this report.	(E)	0	6	435771 546818
	Mining Instability Mining Evidence: Source: Boundary Quality:	Inconclusive Coal Mining Ove Arup & Partners As Supplied	A13NW (E)	0	-	435771 546818
	Non Coal Mining Are	eas of Great Britain				
	Potential for Collaps	sible Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	435763 546800
	Potential for Collaps	sible Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (E)	0	1	435771 546818
	Potential for Collaps Hazard Potential: Source:	sible Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SE (SE)	185	1	435913 546620
	Potential for Compr Hazard Potential: Source:	essible Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13NW (E)	0	1	435771 546818
	Potential for Compr Hazard Potential: Source:	essible Ground Stability Hazards Moderate British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	435763 546800

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Comp	ressible Ground Stability Hazards				
	Hazard Potential: Source:	Moderate British Geological Survey, National Geoscience Information Service	A13SE (SE)	185	1	435913 546620
	Potential for Groun	d Dissolution Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (E)	0	1	435771 546818
	Potential for Groun	d Dissolution Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (W)	157	1	435551 546849
	Potential for Lands	lide Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (E)	0	1	435771 546818
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	435763 546800
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (E)	0	1	435771 546818
	Potential for Runni	ng Sand Ground Stability Hazards				
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13SE (SE)	185	1	435913 546620
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NW (E)	0	1	435771 546818
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	435763 546800
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (SE)	185	1	435913 546620
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NW (W)	242	1	435469 546881
	Radon Potential - R	adon Affected Areas				
	Affected Area:	The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A13NW (E)	0	1	435771 546818
	Radon Potential - P	adon Protection Measures				
	Protection Measure: Source:	No radon protective measures are necessary in the construction of new dwellings or extensions British Geological Survey, National Geoscience Information Service	A13NW (E)	0	1	435771 546818

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
94	Name: Location: Classification: Status: Positional Accuracy:	Cathedral Garden Furniture Colliery La, Hetton-le-Hole, Houghton Le Spring, Tyne & Wear, DH5 0BD Garden & Patio Furniture Manufacturers & Distributors Inactive Manually positioned to the road within the address or location	A13NW (NW)	17	-	435694 546858
	Contemporary Trad	e Directory Entries				
94	Name: Location: Classification: Status: Positional Accuracy:	Houghton Colliery Lane, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0BG Trailers & Towing Equipment Inactive Automatically positioned in the proximity of the address	A13NW (NW)	58	-	435662 546884
	Contemporary Trad	e Directory Entries				
95	Name: Location: Classification:	L & H Clothing Ltd Unit 2/3, Hetton Lyons Industrial Estate, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0RH Clothing & Fabrics - Manufacturers	A13NE (N)	22	-	435792 546874
	Positional Accuracy:	Automatically positioned in the proximity of the address				
	Contemporary Trad	e Directory Entries				
96	Name: Location: Classification: Status:	Moguntia Hetton Lyons Industrial Estate, Hetton-le-Hole, HOUGHTON LE SPRING, Tyne and Wear, DH5 0RH Food Colouring, Flavouring & Additive Manufacturers & Distributors Active	A13NW (N)	52	-	435737 546904
	Positional Accuracy:	Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
96	Name: Location: Classification:	Oris Ltd Hetton Lyons Indust Est, Hetton Le Hole, Houghton Le Spring, Tyne & Wear, DH5 0RG Food Products - Manufacturers	A13NW (N)	99	-	435738 546952
	Positional Accuracy:	Manually positioned to the address or location				
	Contemporary Trad	e Directory Entries				
97	Name: Location: Classification:	Pallet Furniture Uk Unit 3v Colliery Lane, Hetton-Le-Hole, Houghton le Spring, Tyne And Wear, DH5 0BG Garden & Patio Furniture Manufacturers & Distributors	A13NW (N)	167	-	435725 547020
	Status: Positional Accuracy:	Active Manually positioned to the address or location				
	Contemporary Trad	e Directory Entries				
98	Name: Location:	Cisco Cleaning Solutions Unit 5, Colliery Lane, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0BG	A13NW (NW)	182	-	435546 546931
	Classification: Status:	Commercial Cleaning Services Inactive				
	Positional Accuracy:	Automatically positioned to the address				
00	Contemporary Trad	e Directory Entries	A 4 0 N 11 A /	400		405540
98	Location:	Unit 5, Colliery Lane, Hetton-le-Hole, HOUGHTON LE SPRING, Tyne and Wear, DH5 0BG	(NW)	182	-	435546 546931
	Status: Positional Accuracy:	Inactive Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
98	Name: Location: Classification: Status:	Cummings & Pattison North East Ltd Unit 11, Colliery Lane, Hetton-le-hole, Houghton Le Spring, DH5 0BG Wallpapers & Wall Coverings Active	A13NW (NW)	182	-	435546 546931
	Positional Accuracy:	Automatically positioned to the address				
98	Name:	e Directory Entries North East Garden Machinery	A13NW	220	-	435506
	Location:	Unit 16 Colliery Lane, Hetton-Le-Hole, Houghton le Spring, Tyne And Wear, DH5 0BG	(NW)			546934
	Status: Positional Accuracy:	Active Manually positioned to the address or location				
	Contemporary Trad	e Directory Entries	A (01 P ***			10
99	Name: Location: Classification: Status:	Cygnal Unit 1, Hetton Lyons Industrial Estate, Houghton-le-Spring, DH5 0RH Radio Communication Equipment Active	A13NW (N)	187	-	435723 547040
	Positional Accuracy:	Automatically positioned to the address				

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
99	Contemporary Trad Name: Location: Classification: Status:	e Directory Entries J T Dove Ltd Unit 1, Hetton Lyons Industrial Estate, Houghton-le-Spring, DH5 0RH Builders' Merchants Active	A13NW (N)	187	-	435723 547040
99	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Automatically positioned to the address e Directory Entries Braketech Northern Houghton-le-Spring, DH5 0RH Brake & Clutch Service Centres Active Automatically positioned to the address	A13NW (N)	187	-	435723 547040
99	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Friskies Pet Care Hetton Lyons Industrial Estate, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0RH Pet Foods & Animal Feeds Inactive Automatically positioned to the address	A13NW (N)	217	-	435761 547069
99	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries B M Stafford & Sons Ltd Milburn House, Hetton Lyons Industrial Estate, Hetton-le-Hole, Houghton le Spring, DH5 0RH Road Haulage Services Active Automatically positioned to the address	A13NW (N)	227	-	435761 547079
99	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Gillboon Ltd Hetton Lyons Indust Est, Hetton Le Hole, Houghton Le Spring, Tyne & Wear, DH5 0RH Clothing & Fabrics - Manufacturers Inactive Manually positioned within the geographical locality	A13NW (N)	251	-	435728 547104
100	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Roxbys Kenton House, Station Road, Hetton-le-Hole, Houghton le Spring, DH5 0AX Garage Services Active Automatically positioned to the address	A13NW (W)	218	-	435497 546902
100	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Roxby'S Garage Kenton House, Station Road, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0AX Garage Services Inactive Automatically positioned to the address	A13NW (W)	221	-	435496 546907
101	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Guys Coatings Ltd Hetton Lyons Industrial Estate, Hetton-le-Hole, HOUGHTON LE SPRING, Tyne and Wear, DH5 0RH Coating Specialists Active Automatically positioned to the address	A13NE (NE)	228	-	436042 546946
102	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries G & G Travel Montrose, Lyons Avenue, Easington Lane, Houghton le Spring, Tyne and Wear, DH5 0HR Bus & Coach Operators & Stations Inactive Automatically positioned to the address	A13SE (SE)	230	-	436047 546691
103	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries J J Transport Unit 3, Colliery Lane, Hetton-le-Hole, HOUGHTON LE SPRING, Tyne and Wear, DH5 0BG Mot Testing Centres Active Automatically positioned to the address	A13NW (NW)	280	-	435507 547044
104	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Sparrow Station Road, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0AX Garage Services Inactive Automatically positioned to the address	A13NW (W)	281	-	435434 546905

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
105	Contemporary Trad Name: Location:	e Directory Entries Hetton Body Repair Centre Unit 1a, Colliery Lane, Hetton-le-Hole, HOUGHTON LE SPRING, Tyne and Wear, DH5 DBG Car Body Renairs	A13NW (NW)	287	-	435579 547108
	Status: Positional Accuracy:	Inactive Automatically positioned to the address				
105	Contemporary Trad	e Directory Entries				105550
105	Name: Location:	H B R C Unit 20b, Colliery Lane, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0BG Car Body Renairs	A13NW (NW)	287	-	435579 547108
	Status: Positional Accuracy:	Active Automatically positioned to the address				
100	Contemporary Trad	e Directory Entries	4.400.004	005		105110
106	Name: Location:	Ward Catering Services Ltd 31, Station Road, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0AT	(NW)	295	-	435442 546976
	Status:	Catering Equipment - Servicing & Repairs				
	Positional Accuracy:	Automatically positioned to the address				
107	Contemporary Trad	e Directory Entries	A13NE	298	-	435938
101	Location:	8, Hetton Lyons Industrial Estate, Hetton-le-Hole, Houghton le Spring, Tyne	(NE)	200		547133
	Classification: Status: Positional Accuracy:	Wood Products, Except Furniture - Manufacturers Inactive Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
108	Name: Location:	R & R Motors Pearons Industrial Estate, Hetton-Le-Hole, Houghton le Spring, Tyne And	A13SE (SE)	323	-	436063 546558
	Classification: Status: Positional Accuracy:	Garage Services Active Manually positioned to the road within the address or location				
	Contemporary Trad	e Directory Entries				
109	Name: Location: Classification:	Eazi Clean Hetton-Le-Hole, Houghton le Spring, Tyne And Wear, DH5 0EW Cleaning Services - Domestic	A12SE (SW)	375	-	435371 546610
	Positional Accuracy:	Manually positioned within the geographical locality				
	Contemporary Trad	e Directory Entries				
110	Name: Location:	Pro Clean Plus Ltd 7, Seymour Terrace, Easington Lane, Houghton le Spring, Tyne and Wear, DH5 0JE	A8NE (S)	383	-	435802 546407
	Classification: Status: Positional Accuracy:	Commercial Cleaning Services Inactive Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
111	Name: Location:	Durham Cars 4 U Imperial House, Station Road, Hetton-Le-Hole, Houghton le Spring, Tyne And Wear, DH5 9JB	A12NE (NW)	457	-	435351 547135
	Classification: Status: Positional Accuracy:	Car Dealers - Used Active Manually positioned to the address or location				
	Contemporary Trad	e Directory Entries				
112	Name: Location: Classification: Status:	Hetton Car Sprays Logan Street, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 0AS Car Body Repairs Inactive	A12NE (NW)	464	-	435304 547076
	Positional Accuracy:	Automatically positioned to the address				
113	Name: Location:	e Directory Entries Norman Hall Imperial House, Station Road. Hetton-le-Hole, Houghton le Spring. Type and	A17SE (NW)	471	-	435382 547190
	Classification: Status:	Wear, DH5 9JB Garage Services Inactive	(····)			
	Positional Accuracy:	Automatically positioned to the address				

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
114	Name: Location:	Sydney Sparrow Ltd BACK SMITHS TERRACE, EASINGTON LANE, HOUGHTON LE SPRING, DH5 0JQ	A8NE (S)	476	-	435876 546315
	Classification: Status: Positional Accuracy:	Garage Services Active Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
115	Name: Location:	George Vardy Ltd REAR OF, RICHARD STREET, HETTON-LE-HOLE, HOUGHTON LE	A18SW (N)	514	-	435595 547353
	Classification: Status:	SPRING, DH5 9HN Road Haulage Services Active				
	Positional Accuracy:	Automatically positioned to the address				
116	Name: Location:	Fotocoll 2, Station Road North, Hetton-le-Hole, Houghton le Spring, Tyne and Wear,	A17SE (NW)	535	-	435357 547254
	Classification: Status:	Photographic Processors Inactive				
	Positional Accuracy:	Automatically positioned to the address				
116	Name: Location:	E & N Ritchie Triumph Garage, Station Road, Hetton-le-Hole, Houghton le Spring, Tyne and	A17SE (NW)	569	-	435348 547290
	Classification: Status:	Wear, DH5 9JB Garage Services Inactive				
	Contomporary Trad	Automatically positioned to the address				
116	Name:	Ritchie Transport & Hetton Le Hole Ltd	A17SE	572	-	435351
	Location: Classification: Status: Positional Accuracy:	Triumph Garage, Station Road, Hetton-le-Hole, Houghton le Spring, DH5 9JB Road Haulage Services Active	(NW)			547297
	Contemporary Trad	a Directory Entries				
117	Name: Location:	Mobile Car Van Servicing 18, Mardale Street, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5	A12SW (W)	626	-	435090 546659
	Classification: Status:	0DJ Garage Services Inactive				
	Positional Accuracy:	Automatically positioned to the address				
110	Contemporary Trad	e Directory Entries	A 40 C \A/	607		405504
110	Location:	Pavilion Works, Pavilion Terrace, Hetton-le-Hole, Houghton le Spring, DH5 9HP	(N)	637	-	435531 547463
	Classification: Status: Positional Accuracy:	Builders' Merchants Inactive Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
119	Name: Location: Classification:	Energy Save Solutions Ltd Flat 2, Houghton Le Spring, Tyne And Wear, DH5 9NF Heat Exchangers	A17SE (NW)	666	-	435247 547330
	Status: Positional Accuracy:	Inactive Manually positioned within the geographical locality				
	Contemporary Trad	e Directory Entries				
119	Name: Location:	Scott'S Joinery Services Flat 1, Wesleyan House, Front Street, Hetton-le-Hole, Houghton le Spring,	A17SE (NW)	666	-	435247 547330
	Classification: Status:	Architectural Woodwork Inactive				
	Contorna Accuracy:	Automatically positioned to the address				
119	Name:	Heatpack Healthcare	A17SE	666	-	435248
	Location: Classification:	Wesleyan House, Front Street, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 9NF Medical Equipment Manufacturers	(NW)			547330
	Status: Positional Accuracy:	Inactive Automatically positioned in the proximity of the address				

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trade	e Directory Entries				
120	Name: Location:	Ashcroft'S Auto Repairs 71-75, High Street, Easington Lane, Houghton le Spring, Tyne and Wear, DH5 0JR	A9NW (SE)	666	-	436169 546211
	Classification: Status: Positional Accuracy:	Mot Testing Centres Inactive Automatically positioned to the address				
	Contemporary Trade	e Directory Entries				
121	Name: Location: Classification: Status: Positional Accuracy:	North East Cutting Service The Avenue, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 9DH Clothing & Fabrics - Manufacturers Inactive Automatically positioned in the proximity of the address	A18NW (N)	686	-	435561 547521
	Contomporary Trad					
122	Name: Location: Classification: Status:	Office Place Garage Office Place, Houghton-le-Spring, DH5 9JG Garage Services Inactive	A17SE (NW)	705	-	435193 547331
	Positional Accuracy:	Automatically positioned to the address				
123	Name: Location: Classification: Status: Positional Accuracy:	Bog Row Garage Bog Row, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 9JN Garage Services Inactive Automatically positioned in the proximity of the address	A17SW (NW)	736	-	435043 547163
	Contemporary Trade	e Directory Entries				
124	Name: Location: Classification: Status: Positional Accuracy:	Danbys Auto Repairs 103-104, Brickgarth, Easington Lane, Houghton le Spring, DH5 0LE Garage Services Active Automatically positioned to the address	A9SW (SE)	781	-	436154 546076
	Contomporery Tred					
125	Name: Location:	G W Wright Park View, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 9JH	A17SE (NW)	791	-	435119 547377
	Status: Positional Accuracy:	Active Automatically positioned to the address				
100	Contemporary Trade	e Directory Entries	4.01.11.4	===		100050
126	Name: Location:	Lyids Mot 32a, Murton Lane, Easington Lane, Houghton le Spring, Tyne and Wear, DH5 0NB	(SE)	792	-	436359 546192
	Status:	Active				
	Positional Accuracy:	Automatically positioned to the address				
107	Contemporary Trade	e Directory Entries	ARCE	700		126019
121	Location: Classification: Status:	72, Brickgarth, Easington Lane, Houghton le Spring, DH5 0LB Pet Foods & Animal Feeds Inactive	(S)	133		546011
	Positional Accuracy:	Automatically positioned to the address				
100	Contemporary Trade	e Directory Entries	4005	040		405000
128	Name: Location:	Howden'S Joinery 14, Brickgarth, Easington Lane, Houghton le Spring, Tyne and Wear, DH5 0LA	A8SE (S)	816	-	435860 545974
	Classification: Status: Positional Accuracy:	Kitchen Furniture Manufacturers Active Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
129	Name: Location:	Mcmurchie Meat Ltd Caroline Street, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 9DB	A17NE (NW)	879	-	435326 547642
	Classification: Status: Positional Accuracy:	Meat - Wholesale Inactive Automatically positioned to the address				
	Contemporary Trade	e Directory Entries				
130	Name: Location:	W Christer & Son 8, Houghton Road, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 9PG	A17NE (NW)	919	-	435264 547655
	Classification: Status:	Printers Inactive				
	i usilional Accuracy.	Automatioally positioned to the audiess				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
131	Name: Location: Classification:	Fb Glass 68, Caroline Street, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 9DE Leaded Lights & Windows	A18NW (N)	955	-	435486 547781
	Positional Accuracy:	Automatically positioned to the address				
	Contemporary Trad	e Directory Entries				
132	Name: Location:	Hetton Cemetery Houghton Road, Hetton-le-Hole, Houghton le Spring, Tyne and Wear, DH5 9PH	A17NE (NW)	990	-	435196 547698
	Classification:	Cemeteries & Crematoria				
	Positional Accuracy:	Automatically positioned to the address				
	Fuel Station Entries					
133	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Sydney Sparrow Ltd Station Road , Hetton-Le-Hole , Houghton-Le-Spring, Tyne And Wear, DH5 0AX Wcf Not Applicable Obsolete Manually positioned to the address or location	A13NW (W)	281	-	435434 546905
	Fuel Station Entries					
134	Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Triumph Garage Station Road , Hetton-Le-Hole , Houghton-Le-Spring, Tyne And Wear, DH5 9JB UNBRANDED Not Applicable Obsolete Automatically positioned to the address	A17SE (NW)	595	-	435329 547308

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
135	Local Nature Reservent Name: Multiple Area: Area (m2): Source: Designation Date:	ves Hetton Bogs N 189394.9 Natural England 15th August 2003	A17NW (NW)	968	7	435089 547594
136	Nitrate Vulnerable Z Name: Description: Source:	Zones Lumley Park Burn From Herrington Burn To R Wear Nvz Surface Water Environment Agency, Head Office	A13NW (E)	0	4	435771 546818
137	Nitrate Vulnerable Z Name: Description: Source:	Zones Durham Groundwater Environment Agency, Head Office	A13NW (E)	0	4	435771 546818
138	Sites of Special Sci Name: Multiple Areas: Total Area (m2): Source: Reference: Designation Details: Designation Date: Date Type:	entific Interest Eppleton Grassland N 130418.21 Natural England 2000735 Site Of Special Scientific Interest 27th April 2012 Notified	A19SW (NE)	707	7	436421 547248

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
Environment Agency - Head Office	June 2020	Annually
Durham City Council (now part of Durham County Council) - Environmental Health Department	November 2008	
Chester-le-Street District Council (now part of Durham County Council) - Environmental Health Department	October 2008	
Easington District Council (now part of Durham County Council) - Environmental Health Department	October 2008	
Durham County Council (Unitary) - Environmental Health Department	October 2017	Annually
Sunderland City Metropolitan Borough Council - Environmental Health Department	October 2017	Annually
Discharge Consents		
Environment Agency - North East Region	January 2023	Quarterly
Enforcement and Prohibition Notices		
Environment Agency - North East Region	March 2013	
Integrated Pollution Controls		
Environment Agency - North East Region	January 2009	
Integrated Pollution Prevention And Control		
Environment Agency - North East Region	January 2023	Quarterly
Local Authority Integrated Pollution Prevention And Control		
Durham County Council (Unitary) - Environmental Health Department	April 2015	Variable
Chester-le-Street District Council (now part of Durham County Council) - Environmental Health Department	December 2008	Not Applicable
Durham City Council (now part of Durham County Council) - Environmental Health Department	March 2009	Not Applicable
Sunderland City Metropolitan Borough Council - Environmental Health Department	May 2016	Variable
Easington District Council (now part of Durham County Council) - Environmental Health Department	October 2008	Not Applicable
Local Authority Pollution Prevention and Controls		
Durham County Council (Unitary) - Environmental Health Department	April 2015	Annually
Chester-le-Street District Council (now part of Durham County Council) - Environmental Health Department	December 2008	Not Applicable
Durham City Council (now part of Durham County Council) - Environmental Health Department	March 2009	Not Applicable
Sunderland City Metropolitan Borough Council - Environmental Health Department	May 2016	Annual Rolling Update
Easington District Council (now part of Durham County Council) - Environmental Health Department	October 2008	Not Applicable
Local Authority Pollution Prevention and Control Enforcements		
Durham County Council (Unitary) - Environmental Health Department	April 2015	Variable
Chester-le-Street District Council (now part of Durham County Council) - Environmental Health Department	December 2008	Not Applicable
Durham City Council (now part of Durham County Council) - Environmental Health Department	March 2009	Not Applicable
Sunderland City Metropolitan Borough Council - Environmental Health Department	May 2016	Variable
Easington District Council (now part of Durham County Council) - Environmental Health Department	October 2008	Not Applicable
Nearest Surface Water Feature		
Ordnance Survey	December 2022	
Pollution Incidents to Controlled Waters		
Environment Agency - North East Region	December 1998	
Prosecutions Relating to Authorised Processes		
Environment Agency - North East Region	July 2015	
Prosecutions Relating to Controlled Waters		
Environment Agency - North East Region	March 2013	
Registered Radioactive Substances		
Environment Agency - North East Region	June 2016	As notified

Agency & Hydrological	Version	Update Cycle
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		
Environment Agency - Head Office	April 2012	
River Quality Chemistry Sampling Points		
Environment Agency - Head Office	April 2012	
Substantiated Pollution Incident Register		
Environment Agency - North East Region - North East Area	January 2023	Quarterly
Environment Agency - North East Region - Northumbria Area	January 2023	Quarterly
Water Abstractions		
Environment Agency - North East Region	January 2023	Quarterly
Water Industry Act Referrals		
Environment Agency - North East Region	October 2017	
Groundwater Vulnerability Map		
Environment Agency - Head Office	June 2018	As notified
Groundwater Vulnerability - Soluble Rock Risk		
Environment Agency - Head Office	June 2018	As notified
Bedrock Aquifer Designations		
Environment Agency - Head Office	January 2018	Annually
Superficial Aquifer Designations		
Environment Agency - Head Office	January 2018	Annually
Source Protection Zones		
Environment Agency - Head Office	September 2022	Bi-Annually
Extreme Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	November 2022	Quarterly
Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	November 2022	Quarterly
Areas Benefiting from Flood Defences		
Environment Agency - Head Office	November 2022	Quarterly
Flood Water Storage Areas		
Environment Agency - Head Office	August 2022	Quarterly
Flood Defences		
Environment Agency - Head Office	August 2022	Quarterly
OS Water Network Lines		
Ordnance Survey	January 2023	Quarterly
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	As notified

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	November 2002	As notified
Historical Landfill Sites		
Environment Agency - Head Office	November 2022	Quarterly
Integrated Pollution Control Registered Waste Sites		
Environment Agency - North East Region	January 2009	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency - North East Region - North East Area	January 2023	Quarterly
Environment Agency - North East Region - Northumbria Area	January 2023	Quarterly
Licensed Waste Management Facilities (Locations)		
Environment Agency - North East Region - North East Area	January 2023	Quarterly
Environment Agency - North East Region - Northumbria Area	January 2023	Quarterly
Local Authority Landfill Coverage		
Chester-le-Street District Council (now part of Durham County Council)	February 2003	Not Applicable
Durham City Council (now part of Durham County Council)	February 2003	Not Applicable
Durham County Council - Economic Development and Planning Department	February 2003	Not Applicable
Easington District Council (now part of Durham County Council) - Environmental Health Department	February 2003	Not Applicable
Sunderland City Metropolitan Borough Council - Environmental Health Department	February 2003	Not Applicable
Local Authority Recorded Landfill Sites		
Chester-le-Street District Council (now part of Durham County Council)	October 2018	
Durham City Council (now part of Durham County Council)	October 2018	
Durham County Council - Economic Development and Planning Department	October 2018	
Easington District Council (now part of Durham County Council) - Environmental Health Department	October 2018	
Sunderland City Metropolitan Borough Council - Environmental Health Department	October 2018	
Registered Landfill Sites		
Environment Agency - North East Region - North East Area	March 2006	Not Applicable
Environment Agency - North East Region - Northumbria Area	March 2006	Not Applicable
Registered Waste Transfer Sites		
Environment Agency - North East Region - North East Area	April 2018	
Environment Agency - North East Region - Northumbria Area	April 2018	
Registered Waste Treatment or Disposal Sites		
Environment Agency - North East Region - North East Area	June 2015	
Environment Agency - North East Region - Northumbria Area	June 2015	

Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)		
Health and Safety Executive	January 2022	Bi-Annually
Explosive Sites		
Health and Safety Executive	March 2017	Annually
Notification of Installations Handling Hazardous Substances (NIHHS)		
Health and Safety Executive	August 2001	
Planning Hazardous Substance Enforcements		
Durham City Council (now part of Durham County Council)	December 2008	Not Applicable
Durham County Council (Unitary) - Planning Department	February 2016	Variable
Sunderland City Metropolitan Borough Council - Planning	February 2016	Variable
Durham County Council - Economic Development and Planning Department	July 2007	Annual Rolling Update
Easington District Council (now part of Durham County Council)	July 2008 March 2009	Not Applicable
	March 2009	
Planning Hazardous Substance Consents	December 2008	Not Appliable
Durham County Council (I bitary) - Planning Department	Eebruary 2016	
Sunderland City Metropolitan Borough Council - Planning	February 2016	Variable
Durham County Council - Economic Development and Planning Department	July 2007	Annual Rolling Update
Easington District Council (now part of Durham County Council)	July 2008	Not Applicable
Chester-le-Street District Council (now part of Durham County Council)	March 2009	Not Applicable
Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	January 2009	As notified
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	November 2022	Bi-Annually
CBSCB Compensation District		
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	
Cheshire Brine Subsidence Compensation Board (CBSCB)	November 2020	As notified
Coal Mining Affected Areas		
The Coal Authority - Property Searches	February 2023	Annual Rolling Update
Mining Instability		
Ove Arup & Partners	June 1998	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	April 2020	As notified
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Ground Dissolution Stability Hazards British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Punning Sand Cround Stability Hazarda		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	January 2019	As notified
Radon Potential - Radon Affected Areas	2010	
British Geological Survey - National Geoscience Information Service	September 2022	Annually
Radon Potential - Radon Protection Measures		
British Geological Survey - National Geoscience Information Service	September 2022	Annually

Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries Thomson Directories	January 2023	Quarterly
Fuel Station Entries Catalist Ltd - Experian	January 2023	Quarterly
Gas Pipelines National Grid	October 2021	Bi-Annually
Underground Electrical Cables National Grid	February 2023	Bi-Annually
Sensitive Land Use	Version	Update Cycle
Ancient Woodland Natural England	February 2021	Bi-Annually
Areas of Adopted Green Belt Chester-le-Street District Council (now part of Durham County Council) Durham City Council (now part of Durham County Council) Durham County Council (Unitary) - Planning Department Easington District Council (now part of Durham County Council) Sunderland City Metropolitan Borough Council - Planning	July 2022 July 2022 July 2022 July 2022 July 2022 July 2022	Quarterly Quarterly Quarterly Quarterly Quarterly
Areas of Unadopted Green Belt Chester-le-Street District Council (now part of Durham County Council) Durham City Council (now part of Durham County Council) Durham County Council (Unitary) - Planning Department Easington District Council (now part of Durham County Council) Sunderland City Metropolitan Borough Council - Planning	July 2022 July 2022 July 2022 July 2022 July 2022 July 2022	Quarterly Quarterly Quarterly Quarterly Quarterly
Areas of Outstanding Natural Beauty Natural England	August 2022	Bi-Annually
Environmentally Sensitive Areas Natural England	January 2017	
Forest Parks Forestry Commission	April 1997	Not Applicable
Local Nature Reserves Natural England	February 2021	Bi-Annually
Marine Nature Reserves Natural England	July 2019	Bi-Annually
National Nature Reserves Natural England	February 2023	Bi-Annually
National Parks Natural England	February 2018	Bi-Annually
Nitrate Sensitive Areas Natural England	April 2016	Not Applicable
Nitrate Vulnerable Zones Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA) Environment Agency - Head Office	April 2016 June 2017	Bi-Annually
Ramsar Sites Natural England	August 2020	Bi-Annually
Natural England	February 2021	Bi-Annually
Special Areas of Conservation Natural England	July 2020	Bi-Annually
Special Protection Areas Natural England	February 2021	Bi-Annually

A selection of organisations who provide data within this report

Data Supplier	Data Supplier Logo
Ordnance Survey	Map data
Environment Agency	Rivitzonement. Agency
Scottish Environment Protection Agency	SEPÂ
The Coal Authority	都 The Goal Authority
British Geological Survey	British Geological Survey
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology
Natural Resources Wales	Cydodt Grandid Dirachal Meisodi ran Weisodi ran Uniget
Scottish Natural Heritage	SCOTTISH NATURAL HEHITAGE
Natural England	EH4GE ANIO
Public Health England	Public Health England
Ove Arup	ARUP
Stantec UK Ltd	Stantec

Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website: www.bgs.ac.uk
2	Environment Agency - National Customer Contact Centre (NCCC) PO Box 544, Templeborough, Rotherham, S60 1BY	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
3	Sunderland City Metropolitan Borough Council - Environmental Health Department Civic Centre, P O Box 107, Burden Road, Sunderland, Tyne And Wear, SR2 7DN	Telephone: 0191 553 1699 Fax: 0191 553 1660 Website: www.sunderland.gov.uk
4	Environment Agency - Head Office Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, Avon, BS32 4UD	Telephone: 01454 624400 Fax: 01454 624409
5	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 03456 05 05 05 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
6	The Coal Authority - Property Searches 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG	Telephone: 0345 762 6848 Fax: 01623 637 338 Email: groundstability@coal.gov.uk Website: www2.groundstability.com
7	Natural England County Hall, Spetchley Road, Worcester, WR5 2NP	Telephone: 0300 060 3900 Email: enquiries@naturalengland.org.uk Website: www.naturalengland.org.uk
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website: www.ukradon.org
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website: www.landmarkinfo.co.uk

Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.