Druk Limited

# Assessment of the Existing Noise Climate in the Vicinity of the Proposed New Residential Accommodation at 57 - 59 Leicester Road, Wigston

# **Report Prepared for:**

Mr. D. Singh c/o Wigston Garage and MOT Centre 104 -108 Leicester Road Wigston LE18 1DS

# **Report Prepared By:**

**Robert Smith** 

Report Reference:

DRUK/ACC/RS/DSLRW/3271

Date: 28<sup>th</sup> February 2024

# <u>Contents</u>

- 1.0 Summary
- 2.0 Introduction
- 3.0 Site Description

### 4.0 Assessment Criteria

- 4.1 National Planning Policy Framework (NPPF), the Noise Policy Statement for England (NPSE) and the National Planning Practice Guidance (NPPG)
- 4.2 BS 8233:2014 "Guidance on Sound Insulation and Noise Reduction for Buildings"
- 4.3 Planning and Noise: Professional Guidance on Planning and Noise (ProPG)
- 4.4 Acoustics, Ventilation and Overheating Residential Design Guide
- 4.5 Ventilation Approved Document F (ADF)

### 5.0 Survey Details

- 5.1 Survey Times and Personnel
- 5.2 Weather
- 5.3 Equipment
- 5.4 Measurement Procedure

#### 6.0 Noise Survey Results

- 6.1 Qualitative Assessment Front Elevation
- 6.2 Qualitative Assessment Rear Elevation
- 6.3 Basic Results and Discussion

#### 7.0 Noise Transmission Calculations

- 7.1 Construction Specification
- 7.2 Calculation Results and Discussion

#### 8.0 Conclusion

**Appendix 1**: Existing Noise Climate Survey, Measured Sound Levels **Appendix 2**: Break-in Noise Calculations

#### 1.0 Summary

Planning permission is being sought to permit the conversion of the first floor space, above the vacant ground floor retail premises at 57 - 59 Leicester Road in Wigston, to form two new residential flats. In support of the application for planning permission, Druk Limited was commissioned to undertake an assessment of the existing noise climate in the immediate vicinity of 57 - 59 Leicester Road to assess what effect it may have on the proposed residential flats within the existing building.

The existing noise climate in the vicinity of 57 - 59 Leicester Road in Wigston was characteristic of an urban environment, subject to noise contributions primarily from road traffic, although some occasional noise contributions were made by the surrounding commercial enterprises including very infrequent contributions from the patrons of the William Wygston public house standing outside to smoke. Despite being an urban environment, the existing noise climate was not regarded as being particularly noisy.

Applying the assumptions stated within this report, relating to the sound insulation of the façade elements, calculations have been undertaken to assess the likely internal noise levels within the proposed residential flats. The calculations have demonstrated that the sound insulation of the proposed building elements would ensure that the calculated break-in sound levels within the proposed first floor flats would not exceed the adopted design guide values assuming the windows closed and ventilation openings open, scenario.

Despite this it is recognised that opening the windows for ventilation purposes, purge ventilation excepted, would result in the internal noise levels exceeding the design guide levels. As a result it is suggested that alternative means of ventilation, to permit the internal spaces to be ventilated without requiring the windows to be opened, should be considered. In this case a system 3 or 4, as detailed within Approved Document F, would be appropriate. As with any ventilation installation it is essential that the emission of sound from the ventilation system is adequately controlled to ensure that this element does not detrimentally affect the internal noise climate. In addition it is essential that the occupants must also be provided with the option to open windows as they choose.

As a consequence of the foregoing, it is suggested the sound insulation of the proposed façade elements and proposed alternative ventilation provision, would be sufficient to limit the ingress of external noise to the proposed first floor flats in compliance with the adopted design guidance. As such, it is suggested that the proposed flats could be integrated into the existing environment without the potential for "unreasonable restrictions" to be placed upon already established businesses in the vicinity. Consequently, it is suggested that the existing noise climate should not be regarded as an impediment to the granting of planning permission.

Report Prepared by:

Robert Smith

### 2.0 Introduction

Planning permission is being sought to permit the conversion of the first floor space, above the vacant ground floor retail premises at 57 - 59 Leicester Road in Wigston, to form two residential flats. In support of the application for planning permission, Druk Limited was commissioned to undertake an assessment of the existing noise climate in the immediate vicinity of 57 - 59 Leicester Road to assess what effect it may have on the proposed residential flats within the existing building.

# 3.0 Site Description

The proposed residential flats will be formed from a conversion of the first floor space above the vacant ground floor retail space at 57 - 59 Leicester Road in Wigston (figure 1 below and photograph 1 overleaf), to form two new residential flats. To the North of the application site are the existing mainly commercial premises on Leicester Road (photograph 2 overleaf) including: Lloyds Bank, an appliance and fireplace showroom, a turf accountants etc. (photograph 2 overleaf). To the South of the application site are more existing commercial premises on Leicester Road including a cafe, an Indian restaurant, beauty shop etc. (photograph 3 overleaf). To the East of the application site is the rear access road with the car park and residential dwellings beyond (photograph 4 overleaf). To the West of the development site is Leicester Road itself with further commercial properties, including the William Wygston public house (photograph 5 overleaf).



Figure 1. Site of the proposed residential flats (edged in red), 57 - 59 Leicester Road, Wigston



Photograph 1. Existing premises at 57 - 59 Leicester Road in Wigston

Photograph 2. Commercial premises on Leicester Road to the North of the application site





Photograph 3. Commercial premises on Leicester Road to the South of the application site

Photograph 4. Car park and residential dwellings to the East of the application site





Photograph 5. Leicester Road and the existing commercial premises to the West of the application site

### 4.0 Assessment Criteria

As a new planning application has been made, no planning conditions currently exist. Consequently, the aims of this assessment are to evaluate the existing noise climate in the vicinity of the proposed residential flats at 57 - 59 Leicester Road in Wigston and to quantify what effect it may have on the proposed development. With reference to these aims, the proposed development will be assessed with reference to the guidance contained within: the National Planning Policy Framework (NPPF), the Noise Policy Statement for England (NPSE) and the National Planning Practice Guidance (NPPG), British Standard (BS) 8233:2014 "Guidance on sound insulation and noise reduction for buildings" and the Planning and Noise: Professional Guidance on Planning and Noise (ProPG), May 2017, document, the guidance contained within the Acoustics, Ventilation and Overheating - Residential Design Guide.

4.1 <u>National Planning Policy Framework (NPPF), the Noise Policy Statement for England</u> (NPSE) and the National Planning Practice Guidance (NPPG)

The National Planning Policy Framework (NPPF), the Noise Policy Statement for England (NPSE), originally released in 2010, and the National Planning Practice Guidance (NPPG) do not provide quantitative criteria for assessment purposes. Instead the documents detail general policy aims, statements as well as providing some guidance on how certain situations can be interpreted.

The main statement on noise contained within the revised NPPF, issued in December 2023, is to be found in paragraph 185:

**185.** Planning policies and decisions should also ensure that new development is

appropriate for its location taking into account the likely effects (including cumulative effects) of pollution on health, living conditions and the natural environment, as well as the potential sensitivity of the site or the wider area to impacts that could arise from the development. In doing so they should:

- a) mitigate and reduce to a minimum potential adverse impacts resulting from noise from new development – and avoid noise giving rise to significant adverse impacts on health and the quality of life;
- b) identify and protect tranquil areas which have remained relatively undisturbed by noise and are prized for their recreational and amenity value for this reason; and
- c) limit the impact of light pollution from artificial light on local amenity, intrinsically dark landscapes and nature conservation.

In addition, paragraph 187 of the NPPF is also relevant and states:

**187.** Planning policies and decisions should ensure that new development can be integrated effectively with existing businesses and community facilities (such as places of worship, pubs, music venues and sports clubs). Existing businesses and facilities should not have unreasonable restrictions placed on them as a result of development permitted after they were established. Where the operation of an existing business or community facility could have a significant adverse effect on new development (including changes of use) in its vicinity, the applicant (or 'agent of change') should be required to provide suitable mitigation before the development has been completed.

The NPPF also refers to the NPSE and as such details the following aims:

- 1. The avoidance of significant adverse impacts on health and quality of life;
- 2. Mitigate and minimise adverse impacts on health and quality of life; and
- 3. Where possible, contribute to the improvement of health and quality of life.

In order to reflect these objectives the NPSE referenced concepts utilised by the World Health Organisation, which in turn employed concepts from toxicology and applied them to noise impacts. These concepts are:

- NOEL No Observed Effect Level. In simple terms, below this level, there is no detectable effect on health and quality of life due to the noise.
- LOAEL Lowest Observed Adverse Effect Level. This is the level above which adverse effects on health and quality of life can be detected.
- SOAEL Significant Observed Adverse Effect Level. This is the level above which significant adverse effects on health and quality of life occur.

SOAEL is clearly something the policy seeks to avoid in aim 1. Aim 2 represents situations between SOAEL and LOAEL, and seeks to minimise and mitigate the possible effects.

The NPPG section on noise adds some further detail, much of it reproducing the NPPF and NPSE, but some useful qualitative guidance is provided in the noise exposure hierarchy table and this is reproduced in table 1 below and overleaf.

The NPPG also highlights that the subjective nature of noise means that there is not a simple relationship between noise levels and the possible impact on those affected. It recognises that any effects will depend on how various factors combine in any particular situation, including absolute noise levels and how they may compare with the underlying background noise, the impulsiveness or intermittence pattern of the noise, its spectral content, and the time of day. It discusses in very general terms the issues to consider when introducing noise sources to existing noise sources (most of which have their own specific guidance, such as BS 4142, BS 8233, etc.) and the potential impact on wildlife.

| Perception                         | Examples of Outcomes                                                                                                                                                                                                                                                                                                                                                                                                             | Increasing<br>effect level                         | Action                                 |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|
| Not<br>noticeable                  | No effect                                                                                                                                                                                                                                                                                                                                                                                                                        | No Observed<br>Effect                              | No specific<br>measures<br>required    |
| Noticeable<br>and not<br>intrusive | Noise can be heard, but does not cause any<br>change in behaviour or attitude. Can slightly affect<br>the acoustic character of the area but not such that<br>there is a perceived change in the quality of life.                                                                                                                                                                                                                | No Observed<br>Adverse Effect                      | No specific<br>measures<br>required    |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lowest<br>Observed<br>Adverse Effect<br>Level      |                                        |
| Noticeable<br>and<br>intrusive     | Noise can be heard and causes small changes in<br>behaviour and/or attitude, e.g. turning up volume of<br>television; speaking more loudly; where there is no<br>alternative ventilation, having to close windows for<br>some of the time because of the noise. Potential for<br>some reported sleep disturbance. Affects the<br>acoustic character of the area such that there is a<br>perceived change in the quality of life. | Observed<br>Adverse Effect                         | Mitigate and<br>reduce to a<br>minimum |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                  | Significant<br>Observed<br>Adverse Effect<br>Level |                                        |

| Table 1. | Noise exposure | hierarchy table | è |
|----------|----------------|-----------------|---|
|----------|----------------|-----------------|---|

| Perception                           | Examples of Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Increasing<br>effect level                | Action  |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------|
| Noticeable<br>and<br>disruptive      | The noise causes a material change in behaviour<br>and/or attitude, e.g. avoiding certain activities<br>during periods of intrusion; where there is no<br>alternative ventilation, having to keep windows<br>closed most of the time because of the noise.<br>Potential for sleep disturbance resulting in difficulty<br>in getting to sleep, premature awakening and<br>difficulty in getting back to sleep. Quality of life<br>diminished due to change in acoustic character of<br>the area. | Significant<br>Observed<br>Adverse Effect | Avoid   |
| Noticeable<br>and very<br>disruptive | Extensive and regular changes in behaviour and/or<br>an inability to mitigate effect of noise leading to<br>psychological stress or physiological effects, e.g.<br>regular sleep deprivation/awakening; loss of<br>appetite, significant, medically definable harm, e.g.<br>auditory and non-auditory                                                                                                                                                                                           | Unacceptable<br>Adverse Effect            | Prevent |

#### Table 1, continued. Noise exposure hierarchy table

# 4.2 BS 8233:2014 "Guidance on Sound Insulation and Noise Reduction for Buildings"

BS 8233:2014 draws together research and best practice relating to building design, providing guidance to facilitate the development of buildings that have internal noise environments that are consistent with and appropriate for their intended use. The Standard states that the guidance it contains is applicable to the design of new buildings, or refurbished buildings undergoing a change of use and as such it is deemed applicable to this proposal.

The British Standard highlights methods for the control of noise from a number of sources including external noise and building services etc., as well as evaluating the effect that noise from these sources may have on the acoustics of the internal spaces. With reference to the design guidance relating to the internal noise climate of dwelling houses flats and rooms in residential use, it is suggested that the guidance is applicable to 'anonymous' noise without a '*specific*' character, and this is typically the situation where road traffic type noise is the dominant or principal contributor to the existing noise climate. This being the case BS 8233:2014 indicates that it would be desirable for the internal noise levels, resulting from the break-in of external noise, not to exceed the guide values detailed within table 4 of section 7.7.2 of BS 8233:2014 are reproduced in table 2 below.

| Activity                   | Location         | 0700 to 2300                   | 2300 to 0700              |
|----------------------------|------------------|--------------------------------|---------------------------|
| Resting                    | Living room      | 35dB L <sub>Aeq, 16 hour</sub> | -                         |
| Dining                     | Dining room/area | 40dB L <sub>Aeq, 16 hour</sub> | -                         |
| Sleeping (daytime resting) | Bedroom          | 35dB L <sub>Aeq, 16 hour</sub> | 30dB <i>L</i> Aeq, 8 hour |

Table 2. Indoor ambient noise levels for dwellings (reproduced from table 4 of BS8233:2014)

It should also be noted that BS8233:2014 applies the frequently quoted 'rule of thumb' that where a window is partially open for ventilation purposes etc., the sound levels just outside the window will be around 15dB higher than the levels just inside the window. Despite this, a number other documents indicate that the sound insulation provided by a partially open window would be in the region of 9 - 13dB.

In addition to the internal noise design guidance detailed above, supplementary notes 4, 5 and 7 to table 4 of section 7.7.2 are deemed appropriate to this assessment and state the following:

**Note 4**. Regular individual noise events (for example scheduled aircraft or passing trains) can cause sleep disturbance. A guideline value may be set in terms of SEL or LAmax, *F*, depending on the character and number of events per night. Sporadic noise events could require separate values.

**Note 5**. If relying on closed windows to meet the guide values, there needs to be an appropriate alternative ventilation that does not compromise the façade insulation or the resulting sound level.

**Note 7**. Where development is considered as necessary or desirable, despite external noise levels above WHO guidelines, the internal target levels may be relaxed by up to 5dB and reasonable internal conditions still achieved.

With reference to note 4, the design guidance detailed within the previous 1999 version of BS 8233 relating to individual noise events, expressed as  $L_{Amax}$  levels, will be adopted for this assessment. This guidance stated: "*for a reasonable standard for bedrooms at night, individual noise events (measured with the fast time-weighting) should not normally exceed 45 dB L<sub>Amax</sub>", and this guidance complies with the provisions contained within the WHO document.* 

It must however be stated that many regard the 45dB  $L_{Amax}$  criterion as stringent. Additionally, it must be remembered that all of the above criteria are design guidance, they do not represent a set of rigid criteria, below which a development 'passes' and above which a development 'fails'.

## 4.3 <u>Planning and Noise: Professional Guidance on Planning and Noise (ProPG)</u>

This document was published in May 2017 and was produced jointly by representatives of the Chartered Institute of Environmental Health (CIEH), the Institute of Acoustics (IoA) and the Association of Noise Consultants (ANC). The ProPG document seeks to provide guidance on and complement the wider aims contained within the Noise Policy Statement for England (NPSE) and the additional guidance contained within the National Planning Policy Framework( NPPF). In addition the ProPG document acknowledges the contribution made by existing guidance contained within both the World Heath Organisations (WHO) "Guidelines for Community Noise" and (BS) 8233:2014 "Guidance on sound insulation and noise reduction for buildings".

The ProPG document guidance is restricted to the consideration of new residential developments and the potential implications for these developments arising from predominantly airborne noise that typical emanates from transportation noise sources. The document utilises a risk assessment based two stage approach to: Stage 1 -

undertake an "initial noise risk assessment of the proposed development site" and Stage 2 - undertake a "systematic consideration of four key elements". With reference to the four key elements, these are defined as:

- Element 1 demonstrating a "Good Acoustic Design Process".
- Element 2 observing internal "Noise Level Guidelines".
- Element 3 undertaking an "External Amenity Area Noise Assessment, and.
- Element 4 consideration of "Other Relevant Issues".

With reference to Stage 1, the requirement to undertake a noise risk assessment of the proposed development site, the site 'risk' category boundaries are described with reference to the external free field noise levels that would affect a proposed development and these are contained within figure 1 of Section 2 of the document. Whilst the ProPG document does not attribute specific noise levels to the 'risk' categories, an interpretation of the noise levels presented within figure 1 of the ProPG document is contained in table 3 below. Again, the guidance relates primarily to 'anonymous' type noise.

| Indicative                                        |                                                     |                         |
|---------------------------------------------------|-----------------------------------------------------|-------------------------|
| Daytime (07:00 - 23:00) L <sub>Aeq, 16 hour</sub> | Night time (23:00 - 07:00) L <sub>Aeq, 8 hour</sub> | Noise 'risk' assessment |
| ≤ 50dB                                            | ≤ 40dB                                              | Negligible              |
| > 50 and ≤ 63dB                                   | > 40 and ≤ 53dB                                     | Low                     |
| > 63 and ≤ 68dB                                   | > 53 and ≤ 58dB                                     | Medium                  |
| > 68dB                                            | > 58dB                                              | High                    |

Table 3. Level 1 assessment 'risk' boundary noise levels (derived from figure 1 of the ProPG document)

The guiding principle of the ProPG document with reference to the existing noise climate is that once the potential impact on a development has been quantified, good acoustic design should be implemented to mitigate the potential effects that the existing noise climate may have on the proposed resident of any new residential development. In this case the good design principle relates to both the internal acoustic environment within dwellings and any external amenity areas serving those dwellings. With reference to good acoustic design ProPG does recognise that this does not mean "overdesign or gold plating", but it does mean delivering "the optimum acoustic outcome for a particular site".

With respect to the internal noise level guidelines, ProPG makes reference to the guidance contained within table 4 of section 7.7.2BS 8233:2014, reproduced in section 4.2 above. Whilst recognising that it is preferable to achieve the internal noise guidelines ProPG does, at paragraph 2.30, recognise that national planning and noise policy does not always require that these levels are achieved. This is particularly the case where to do so would "*disproportionately increase the cost of the development*".

Remaining with the issue of internal noise level guidance and the proposed levels for individual noise events, expressed as an  $L_{max}$ , the guidance contained within Appendix A of the ProPG is instructive. The Appendix contains a short summary of research into

the effects of individual noise events and the effect that these can have on sleep. In the light of this summary the document, at paragraph A.20, states the following, "...therefore, it is considered that if, in bedrooms at night, the L<sub>Amax,F</sub> from individual noise events (from all sources) would not normally exceed 45dB more than 10 times a night, then this represents a reasonable threshold below which the events on sleep can be regarded as negligible".

The potential impact of ventilation on the acoustic integrity of the façade of a dwelling is also addressed by the ProPG document. The document suggests that good acoustic design should be used to achieve the internal design targets in noise sensitive rooms with windows partially open for ventilation purposes. Despite this the ProPG document also recognises the limitations of acoustic design an highlights that internal noise levels may only be achievable with window closed in certain environments such as urban areas or sites adjacent to transportation noise sources. In these situations it is suggested that internal noise levels are assessed with windows closed but with any façade openings used for ventilation purposes in their open position. Finally and with reference to ventilation ProPG at paragraph 2.35 states that "*internal noise level guidance are generally not applicable under purge ventilation conditions*".

### 4.4 Acoustics, Ventilation and Overheating - Residential Design Guide

There is an increasing recognition that in addition to securing an acceptable internal noise climate, there needs to be a degree of integration between acoustic design and the requirement to address both the ventilation and thermal comfort of a dwelling. Typically, achieving a good internal acoustic environment has been achieved by requiring dwelling windows to remain closed, but most ventilation and overheating assessments look to the ability to open windows to permit both adequate ventilation and the management of the internal thermal environment. In many locations, particularly urban environments, it is recognised that opening windows will typically have negative impacts on the internal acoustic environment within a dwelling.

In an attempt to provide additional guidance on the interplay between suitable ventilation to address potential overheating within a noisy environment, The "Acoustics Ventilation and Overheating Residential Design Guidance", hereafter referred to as the AVO Guide, has been formulated by the Association of Noise Consultants (ANC). This comprehensive document seeks to strike a balance between the often competing requirements relating to both good acoustic conditions within a residential dwelling and the provision of ventilation to mitigate potential overheating.

In its simplest form the AVO Guide provides for a two stage assessment procedure. The first stage, level 1, may be considered as a 'site risk' assessment and is based on the external noise levels to which a residential dwelling may be exposed. A level 2 assessment seeks to assess the potential adverse effects that may result and would be based on a combination of the internal ambient noise levels the duration, times and the frequency when open windows would be required etc. It should however be remembered that this report will restrict itself to a level 1, 'site risk', assessment. A level 2 assessment is considered to be beyond the remit of this report.

A level 1 assessment is predicated on the adoption of partially open windows as the primary method of internal temperature control. The various site 'risk' categories have been described according to the external free field noise levels that are likely to affect a

proposed development and these are detailed in table 3.2 of the Guide. Although the AVO Guide does not attribute specific noise levels to the various 'risk' categories, an interpretation of the noise levels presented within table 3.2 of the AVO Guide and the likely 'risk' categories to which they correspond, is produced in table 4 overleaf. As with the guidance contained within BS 8233:2014 and the ProPG document, the guidance relates primarily to 'anonymous' type noise.

| External free - field                             |                         |            |
|---------------------------------------------------|-------------------------|------------|
| Daytime (07:00 - 23:00) L <sub>Aeq, 16 hour</sub> | Level 1 'risk' category |            |
| ≤ 52dB                                            | ≤ 47dB                  | Negligible |
| > 52 and ≤ 57dB                                   | > 47 and ≤ 52dB         | Low        |
| > 57 and ≤ 62dB                                   | > 52 and ≤ 55dB         | Medium     |
| > 62dB                                            | > 55dB                  | High       |

Table 4. Level 1 assessment 'risk' boundary noise levels (derived from table 3.2 of the AVO Guide)

**Note 4**. Where 78dB  $L_{AFmax}$  is normally exceed during the night time period a level 2 assessment is recommended.

The guidance also recognises that there may be instances where occupants may 'trade' the internal acoustic environment by accepting higher noise levels for a period of time in order to maintain control over the thermal environment.

The document relates primarily to residential developments that are subject to airborne noise from transportation noise sources. Despite its focus on new residential dwellings, predominantly flats and houses, the AVO Guide does suggest that it may also be applicable to other forms of residential dwellings such as care homes and residential institutions.

The potential implications of opening windows on the internal acoustic environment and the possible outcomes for the occupants of the ventilated spaces are summarised in table 5 overleaf, which combines the guidance contained within table 3.3 and figures B-2 and B-3 from the AVO Guide.

In essence, the higher the external noise level the more likely it is that the internal noise levels would exceed the guide values detailed within BS 8233:2014 and summarised in table 2 above, with windows partially open for ventilation purposes. As a consequence, as the external noise levels increase it is more than likely that additional or alternative ventilation requirements will be required in order to ensure the internal areas can be effectively ventilated, in all but purge ventilation conditions, without prejudicing the façade sound insulation and so the internal noise climate. It must however be remembered that where alternative mechanical ventilation is specified, the emission of noise from such systems must not lead to an unnecessary increase in the internal noise climate.

**Table 5.** Guidelines for a level 2 assessment (derived from table 3.3 and figures B.2 and B.3 of the AVO Guide)

| Internal a                                                                                       | mbient noise level (fr |                                                       |                                                                                         |
|--------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------|
| LAeq,TduringLAeq,TIndividual noise events,07:00 - 23:0023:00 - 07:00LAFmax, during 23:00 - 07:00 |                        |                                                       | Potential outcome                                                                       |
| ≤ 35dB                                                                                           | ≤ 30dB                 | 45dB not normally exceeded more than 10 times a night | LOAEL: Noise can be heard but does not cause any change in behaviour                    |
| > 35 and ≤ 40dB                                                                                  | > 30 and ≤ 35dB        | Increasing                                            | Increasing                                                                              |
| > 40 and ≤ 50dB                                                                                  | > 35 and ≤ 42dB        | adverse effect                                        | adverse effect                                                                          |
| > 50dB                                                                                           | > 42dB                 | Normally exceeds 65dB                                 | Exceeds SOAEL: Noise causes a material change in behaviour, e.g. keeping windows closed |

### 4.5 <u>Ventilation - Approved Document F (ADF)</u>

With reference to the relevant guidance relating to the ventilation of dwellings, this is contained within Approved Document F (ADF) guidance to the Building Regulations 2010, currently in the 2021 edition as it relates to dwellings.

In summary the ventilation strategies outlined in ADF relies on a combination of approaches, including: Extract ventilation to remove water vapour or pollutants; whole dwelling ventilation to provide fresh air to the building and to dilute, disperse and remove water vapour and pollutants not removed by extract ventilation and purge ventilation to remove high concentrations of pollutants and water vapour. With reference to extract ventilation this is typically achieved via intermittent extraction fans, whole house ventilation is often achieved through a combination of background (trickle) ventilators or continuous supply fans and purge ventilation is typically achieved through the opening of windows. ADF also states that "*Other ventilation systems may be acceptable if they can be shown to meet an equal level of performance*".

Additionally, ADF details four main types of ventilation systems that can be used to provide ventilation to dwellings and these are described as systems 1 to 4. A summary of these systems is provided within table 6 overleaf and this table also provides additional annotation that is expands upon the details provided within ADF.

Typically systems 1, 3 and 4 are most commonly found within the majority of dwellings. With reference to purge ventilation, this can and is often used to address the thermal comfort of occupants, although this element is not 'controlled' by the Building Regulations.

It should however be borne in mind that any reference to the various types of ventilation provision contained within this report relate to an assessment of the interaction of the ventilation provision with the internal noise levels and any adopted internal noise design targets. It is not intended as a detailed ventilation design statement and a full evaluation of any ventilation provision is beyond the remit of this report.

**Table 6.** Summary of the ADF ventilation systems 1 - 4

| Ventilation system                                                                               | Purge ventilation                     |
|--------------------------------------------------------------------------------------------------|---------------------------------------|
| <b>System 1</b> : background ventilation (trickle ventilators) and intermittent extraction fans  | Typically provided by opening windows |
| System 2: passive stack (natural)                                                                | Typically provided by opening windows |
| <b>System 3</b> : Continuous mechanical extraction (MEV) (Trickle ventilators provide inlet air) | Typically provided by opening windows |
| <b>System 4</b> : Continuous mechanical supply and extract with heat recovery (MVHR)             | Typically provided by opening windows |

### 5.0 Survey Details

#### 5.1 Survey Times and Personnel

The noise survey, to evaluate the existing noise climate in the vicinity of 57 - 59 Leicester Road in Wigston, was undertaken between 17:00 hours on the 26<sup>th</sup> February until 09:45 hours on the 27<sup>th</sup> February 2024. This time period was selected as it encompassed both the afternoon and morning peak periods, with respect to road traffic, as well as the full night time period.

As a consequence it is suggested that the adopted measurement period was representative of the existing noise climate and would include contributions from all the potential noise sources within the immediate vicinity. During the course of the existing noise climate survey the measurements were attended, between 17:00 - 01:00 hours and again between 08:00 - 09:45 hours. All measurements were conducted by Mr. R Smith of Druk Limited.

#### 5.2 <u>Weather</u>

Throughout the existing noise climate survey the weather conditions were as follows:

# <u>26<sup>th</sup> – 27<sup>th</sup> February 2024</u>

All surfaces were essentially dry throughout the survey period, cloud cover was around 50 - 70%, the temperature ranged between 8 -  $4^{\circ}$ C throughout the survey, the wind speed was approximately 0.5m/s, the barometric pressure ranged between approximately 1007 - 1003mb.

## 5.3 Equipment

All the noise surveys and measurements were conducted using the equipment detailed in the table 7 below. The sound level meters were field calibrated before, after and during the surveys as necessary, during which time no significant deviations in the calibrated levels were observed. For the duration of the surveys the sound level meter microphones were mounted with weather protection enclosures.

| Equipment description                    | Manufacturer | Model number | Serial number |
|------------------------------------------|--------------|--------------|---------------|
| Sound level meter                        | NTI Audio    | XL2-TA       | A2A-10232-E   |
| Microphone pre-amplifier                 | NTI Audio    | MA220        | 5537          |
| Microphone                               | NTI Audio    | M2230        | 8636          |
| Sound level meter                        | NTI Audio    | XL2-TA       | A2A-23832-E1  |
| Microphone pre-amplifier                 | NTI Audio    | MA220        | 141157        |
| Microphone                               | NTI Audio    | M2230        | A26843        |
| Acoustic calibrator                      | Norsonic AS  | Nor 1251     | 31522         |
| Microphone weather protection enclosures | NTI Audio    | WP30 (x 2)   | -             |

| Table 7. | Equipment used | during the existing | noise climate measurements |  |
|----------|----------------|---------------------|----------------------------|--|
|          |                | 5 5                 |                            |  |

## 5.4 Measurement Procedure

The location of the proposed development suggested that the principal contributors to the existing noise climate would be road traffic from vehicles on Leicester Road and the service road and car park to the rear of the existing building. As a consequence measurements of the existing noise climate were obtained from positions on the front and rear elevations of the existing building at 57 - 59 Leicester Road.

In both positions the measurements were made continuously over the survey period. In both positions the microphones, in the weather protection enclosures, were extended on booms from first floor windows on the front and rear elevations. In these positions the microphones were approximately 1 metre from the existing façades and approximately 4.5 metres above ground level. The approximate location of the measurement positions is as detailed on figure 2 overleaf. Throughout the surveys all measurements were made with the 'fast' time weighting engaged, the measurement time interval was 5 minutes, all the measurements were made consecutively and the measurements were attended between 17:00 - 01:00 hours and between 08:00 - 09:45 hours.

Front position Position Position Position

Figure 2. Approximate location of the noise survey measurement positions

### 6.0 Noise Survey Results

The existing noise climate in the vicinity of 57 - 59 Leicester Road in Wigston was characteristic of an urban environment, subject to noise contributions primarily from road traffic, although some occasional noise contributions were made by the surrounding commercial enterprises including very infrequent contributions from the patrons of the William Wygston public house standing outside to smoke. Despite being an urban environment, the existing noise climate was not regarded as being particularly noisy.

During the course of the survey it was noted that many of the ground floor commercial premises on Leicester Road included residential accommodation on the first floors of the buildings. This 'living above the shop' arrangement appeared to be quite common in the immediate vicinity and suggested that the local noise climate should be regarded as being conducive to further residential development.

The following paragraphs contain brief subjective descriptions of the noise sources noted during the survey periods.

#### 6.1 Qualitative Assessment: Front Elevation

During the survey the principal contributor to the existing noise climate was road traffic on Leicester Road, with the majority of the vehicles comprising private cars and taxis. Despite this a number of vans and light goods vehicles were also observed and relatively frequent buses were also observed. With reference to the buses these appeared to stop around 23:30 - 00:00 hours and did not commence again until the morning period.

The numbers of vehicles on Leicester Road remained relatively steady until around 22:00 hours after which a slow reduction in traffic volume was noted. The volume of traffic reduced gradually through the night time period reaching its lowest point around 02:30 - 03:00 hours. The general level of traffic noise began to increase again from around 05:00 hours after which it appeared to stabilise around 07:00 hours.

With reference to the additional noise sources, these included: contributions form pedestrians walking along Leicester Road whilst talking, some noise from the nearby commercial premises, occasional cars with loud music playing and some patrons of the William Wygston public house standing outside to smoke and talking with fellow smokers as they did. Remaining with the noise contribution from the William Wygston public house, although the patrons were occasionally audible during the relatively infrequent lulls in the road traffic, the contribution from this source did not appear to have a significant effect on the measured levels.

#### 6.2 Qualitative Assessment: Rear Elevation

The noise climate on the rear elevation was similar in character to the front elevation except the overall noise climate was a little quieter. Again, the principal contributor to the noise climate was road traffic from Leicester Road itself but also from vehicles on the rear service road and the large car park. The overall noise climate displayed a similar pattern to the front elevation although the noise climate began to reduce at an earlier hour before increasing again at both a slightly slower rate and at a slightly later time that was the case on the front elevation.

Additional sources of noise in this position included shoppers returning tot heir vehicles on the car park and talking as they walked, pedestrians walking down the alley ways either side of 57 - 59 and talking as they walked and the occasional sound of car alarms from cars on the car park. One event that was particular to the rear elevation was a large vehicle making deliveries to Dominos Pizza, which occurred around 23:30 hours.

#### 6.3 Basic Results and Discussion

By virtue of the significant amounts of measured noise data collected from the front and rear measurement positions during the noise survey, tables 8 and 9 overleaf and graphs 1 and 2 overleaf contain summaries of the noise data from the afternoon and night time measurement surveys. With reference to the measured noise levels from the from both the front and rear positions, as these were obtained from position approximately 1 metre from the existing building façade, a 3dB façade correction has been applied in order to establish representative free field noise levels. A summary of the measured noise data are presented in Appendix 1.

|                                       | L <sub>Aeq,T</sub> | L <sub>Amax,T</sub> | L <sub>A10,T</sub> | L <sub>A90,T</sub> |
|---------------------------------------|--------------------|---------------------|--------------------|--------------------|
| Standard deviation, daytime period    | 2.43               | 3.39                | 1.81               | 6.32               |
| Standard deviation, night time period | 7.78               | 8.77                | 10.26              | 4.98               |
| Mean (log), daytime period            | 66                 | 80                  | 69                 | 55                 |
| Mean (log), night time period         | 59                 | 73                  | 63                 | 41                 |
| Modal value, daytime period           | 66                 | 74                  | 70                 | 56                 |
| Modal value, night time period        | 56                 | 73                  | 64                 | 33                 |
| Maximum value daytime period          | 72                 | 97                  | 72                 | 62                 |
| Minimum value daytime period          | 59                 | 72                  | 63                 | 36                 |
| Maximum value night time period       | 68                 | 80                  | 74                 | 54                 |
| Minimum value night time period       | 33                 | 36                  | 33                 | 31                 |

Table 8. Measured sound level summary, front elevation, 53 - 59 Leicester Road

 Table 9.
 Measured sound level summary, rear elevation, 53 - 59 Leicester Road

|                                       | L <sub>Aeq,T</sub> | L <sub>Amax,T</sub> | L <sub>A10,T</sub> | L <sub>A90,T</sub> |
|---------------------------------------|--------------------|---------------------|--------------------|--------------------|
| Standard deviation, daytime period    | 3.27               | 5.05                | 3.63               | 3.04               |
| Standard deviation, night time period | 7.33               | 9.06                | 7.48               | 4.60               |
| Mean (log), daytime period            | 54                 | 72                  | 56                 | 46                 |
| Mean (log), night time period         | 51                 | 65                  | 53                 | 37                 |
| Modal value, daytime period           | 54                 | 68                  | 57                 | 47                 |
| Modal value, night time period        | 39                 | 54                  | 42                 | 33                 |
| Maximum value daytime period          | 62                 | 85                  | 65                 | 51                 |
| Minimum value daytime period          | 43                 | 55                  | 45                 | 36                 |
| Maximum value night time period       | 64                 | 77                  | 69                 | 48                 |
| Minimum value night time period       | 30                 | 37                  | 31                 | 28                 |

#### Graph1. Measured sound level summary, front elevation, 57 - 59 Leicester Road



57 Leicester Road, Wigston. Existing Nosie Climate Survey (front position)

Time of day

Graph 2. Measured sound level summary, rear elevation, 57 - 59 Leicester Road





As can be seen from tables 8 and 9 the noise climate on the front elevation was a little steadier during the daytime period, but the noise climate during the night time period was a little steadier on the rear elevation. Reference to Graphs 1 and 2 reveal a similar reducing trend in the measured noise levels from the late evening, through the earlier to middle part of the night before increasing again from around 05:00 hours on the front elevation.

During the survey period the mean (log) and modal values for the  $L_{eq}$  parameter on the front elevation were 66 and 59dB respectively during the daytime and night time periods, with the mean (log) values on the rear elevation being 54 and 51dB respectively for the day and night time periods on the rear elevation. It should be remembered that although the full night time 8 hour period was surveyed, it will be assumed that the daytime measured levels were representative of the wider 16 hour  $L_{eq}$  daytime period.

With reference to the ProPG document, again, assuming the obtained noise levels would be representative of the mean 16 hour  $L_{eq}$  values, the mean (log) levels on the front elevation would fall within the 'medium' and 'high' noise risk categories for the day and night time periods. With reference to the situation on the rear elevation the mean (log) levels would again fall within the 'low' category for the day and night time periods.

Consequently and as suggested, it is likely that suitable measures would need to be employed to mitigate and minimise the potential ingress of external noise levels to the rooms within the proposed development, particularly during the night time period. With reference to these suitable measures, the guidance contained within the ProPG document, at paragraph 2.34, suggests:

"Where the LPA accepts that there is a justification that the internal target noise levels can only be practically achieved with windows closed, which may be the case in urban areas and at sites adjacent to transportation noise sources... In such circumstances, internal noise levels can be assessed with windows closed but with any façade openings used to provide "whole building ventilation" in accordance with Building Regulations Approved Document F (e.g. trickle ventilation) in the open position".

With reference to the AVO Guide, again using the initial assessment procedure to provide context to the assessment, again assuming the obtained levels would be representative of levels measured over a full 16 hour daytime period, the mean (log) and modal values for the  $L_{eq}$  parameter on the front elevation would fall into the 'high' risk category for the day and night time periods. With reference to the noise climate on the rear elevation, this would fall within the 'low' risk category for the day and night time periods. With reference to the measured  $L_{Amax}$  values from the night time period, the 78dB level was exceeded in only five of the measurement periods during the night on the front elevation only.

The measured noise levels would have implications for the potential ventilation proposals for the proposed dwelling. Applying the 9 - 15dB 'rule of thumb' for the sound attenuation offered by a partially open window, it is suggested that where a window was partially open for ventilation purposes the internal noise levels detailed in table 2 above would very probably be exceeded on both the front and rear elevations. As a result it is likely that an alternative means of ventilating the proposed flats, to permit the internal

spaces to be ventilated without recourse to opening windows and so increasing the internal noise levels, should be considered.

## 7.0 Noise Transmission Calculations

Using the measured noise levels from the existing noise climate survey, calculations have been performed to assess the likely internal noise levels within the proposed flats. As the existing noise climate was dominated by noise that predominantly lacked specific character and so was regarded as being 'anonymous' in nature, the assessment of the likely internal noise levels within the proposed residential development will be undertaken with reference to the design guide values detailed within BS8233:2014 and reproduced in table 2 above.

The subsequent assessment of the potential internal noise levels within the proposed flats have been undertaken using the highest measured levels from the noise surveys and these levels are detailed in tables 11 and 12 below. By applying the highest measured noise levels from the surveys, it is suggested that the following calculations may be regarded as worst case assessments using noise levels that are unlikely to persist for all but very short periods of time.

| OBCF, Hz*                                                    | 63 | 125 | 250 | 500 | 1k | 2k | 4k | 8k | Overall,<br>dB(A) |
|--------------------------------------------------------------|----|-----|-----|-----|----|----|----|----|-------------------|
| Daytime, <i>L</i> <sub>Aeq</sub> , (17:00 - 17:05 hours)     | 47 | 48  | 57  | 60  | 65 | 62 | 52 | 43 | 68                |
| Night time, <i>L</i> <sub>Aeq.</sub> (06:25 - 06:30 hours)   | 41 | 49  | 55  | 60  | 63 | 60 | 53 | 43 | 66                |
| Night time, <i>L</i> <sub>Amax</sub> , (06:25 - 06:30 hours) | 60 | 70  | 70  | 76  | 76 | 74 | 70 | 59 | 80                |

| Tabla 11  | Highest measured | sound lovals  | front alovation |
|-----------|------------------|---------------|-----------------|
| Table II. | nignest measured | sound levels, | noni elevation  |

| <b>Table 12</b> . Highest measured sound levels, rear elevation |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

| OBCF, Hz*                                                   | 63 | 125 | 250 | 500 | 1k | 2k | 4k | 8k | Overall,<br>dB(A) |
|-------------------------------------------------------------|----|-----|-----|-----|----|----|----|----|-------------------|
| Daytime, <i>L</i> <sub>Aeq</sub> , (09:00 - 19:05 hours)    | 41 | 46  | 50  | 53  | 58 | 57 | 51 | 48 | 62                |
| Night time, <i>L</i> <sub>Aeq,</sub> (06:35 - 06:40 hours)  | 35 | 42  | 55  | 59  | 59 | 58 | 55 | 42 | 64                |
| Night time, <i>L</i> <sub>Amax.</sub> (06:00 - 06:05 hours) | 55 | 55  | 60  | 68  | 72 | 72 | 67 | 59 | 77                |

The sound insulation provided by a building envelope is calculated from the sound insulation provided by the various façade elements, such as the glazing, external walls etc., and the areas they cover. In the majority of cases it is the glazing and ventilation provision that can be considered as the 'weak' links acoustically, therefore increasing the sound insulation of these elements will improve the overall sound insulation of the façade. The result of the calculation is a composite sound insulation value for the whole façade.

The following assessments of the likely internal noise levels within the proposed residential flat have been undertaken according to the room and façade dimensions detailed on the drawings issued by Architecture 365 of Lynmouth Road, Leicester. To facilitate the calculations to be made the following assumptions have been employed:

- The reverberation times within the flats will be 0.5 seconds.
- The floor to ceiling height will be approximately 2.4 metres.
- The calculations have been produced assuming the windows would be closed but the ventilation openings would be open.
- The highest measured noise levels detailed in tables 11 and 12 above would be equally incident upon the front and rear elevations of the proposed development.

### 7.1 Construction Specification

The external walls of the proposed development is likely to be of cavity masonry construction around 300 mm thick and the following general composition has been assumed: an external brick leaf, a 75 - 100mm cavity and a 100mm thick aggregate block inner leaf lined with one layer of 12.5mm plasterboard on adhesive dabs. Test results for a similar construction suggest that external walls of this type should provide an overall sound insulation of around 52dB  $R_w$ , with the octave band sound insulation values being as detailed in table 13 below.

| OBCF, Hz*            | 125 | 250 | 500 | 1k | 2k | 4k | Overall, <i>R</i> <sub>w</sub> dB(A) |
|----------------------|-----|-----|-----|----|----|----|--------------------------------------|
| Sound Insulation, dB | 38  | 42  | 51  | 59 | 63 | 63 | 52                                   |

\* Octave Band Centre Frequency

## <u>Glazing</u>

The suggested glazing for the proposed residential development would be of the sealed unit type and would be of the following nominal specification: 4mm pane, 16/20mm cavity, 4mm pane and this is equivalent to the existing glazing at first floor level. Laboratory test data obtained from Pilkington Glass indicate that this configuration should provide a sound insulation value of 29dB  $R_w$ . The octave band sound insulation values are as detailed in table 14 below.

Alternative glazing configurations would be acceptable providing the sound insulation performances are at least equivalent to the specifications detailed in table 14 below.

| Table 14. Gla | azing, octave | band sound | insulation | values |
|---------------|---------------|------------|------------|--------|
|---------------|---------------|------------|------------|--------|

| OBCF, Hz*         | 125 | 250 | 500 | 1k | 2k | 4k | Overall, <i>R</i> <sub>w</sub> ( <i>C</i> <sub>tr</sub> ) dB |
|-------------------|-----|-----|-----|----|----|----|--------------------------------------------------------------|
| 4mm, 16/20mm, 4mm | 24  | 20  | 25  | 35 | 38 | 35 | 29 (-4)                                                      |

\* Octave Band Centre Frequency

# **Ventilation**

The initial assessments will be undertaken assuming the provision of input air via window frame mounted 'background' (trickle) ventilators. In this case the selected window frame mounted background ventilators of the Greenwood 4000EAV and Titan V75/C50 and V75/C50 types have been selected. The Titan ventilators may be regarded as an 'acoustic' type ventilators, but units offering equivalent sound insulation performance to those selected would be acceptable.

Laboratory test data indicates that the Green wood window frame mounted ventilator should provide a sound insulation value of 33dB  $D_{n,e,w}$  in its open position, whereas the two Titan acoustic ventilators would provide sound insulation values of 42 and 44dB  $D_{n,e,w}$  in their open positions. The octave band sound insulation values for the selected window frame mounted ventilators are detailed in table 15 overleaf. Alternative ventilator configurations would be acceptable providing the sound insulation performance of the units is at least equivalent to the specification detailed in table 15 below.

| OBCF, Hz*          | 125 | 250 | 500 | 1k | 2k | 4k   | Overall, <i>D</i> <sub>n,e,w</sub> dB |
|--------------------|-----|-----|-----|----|----|------|---------------------------------------|
| Greenwood 40000EAV | 36  | 37  | 34  | 30 | 33 | 38** | 33                                    |
| Titan V75/C50      | 40  | 37  | 34  | 43 | 50 | 53   | 42                                    |
| Titan V75/C75      | 37  | 37  | 36  | 47 | 49 | 55   | 44                                    |

**Table 15.** Background ventilation, octave band sound insulation values

\* Octave Band Centre Frequency.

## 7.2 Calculation Results and Discussion

For the purposes of the calculations the highest measured noise levels detailed in tables 11 and 12 above were used. Calculations have been performed for the proposed two flats on the first floor of the existing building at 57 - 59 Leicester Road. For the purposes of the calculations it has been assumed that the windows would remain closed but the background ventilation would be in its open position.

The results of the break-in noise calculations, including the assumptions relating to the proposed façade elements detailed above, are presented with reference to the design guidance contained within section 4.0 above, in tables 16 and 17 overleaf. With respect to the presentation of the results of the calculations, with respect to the night time  $L_{Aeq}$  and  $L_{Amax}$  results these are presented in the same columns with the  $L_{Amax}$  results being contained within brackets. Full data are available in Appendix 2.

| Location             | Design target,<br>daytime, dB<br>L <sub>Aeq</sub> | Calculated<br>level, daytime,<br>dB L <sub>Aeq</sub> | Design target,<br>night time, dB<br>L <sub>Aeq</sub> | Calculated<br>levels, night<br>time, dB L <sub>Aeq</sub><br>and (L <sub>Amax</sub> ) |  |
|----------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Living room/kitchen* | 35                                                | 33                                                   | -                                                    | -                                                                                    |  |
| Bedroom**            | 35                                                | 31                                                   | 30 (45)                                              | 30 (45)                                                                              |  |

| Table 16. | Calculated r | noise levels. | proposed flat 1 | . first floor |
|-----------|--------------|---------------|-----------------|---------------|
|           | ••••••••     |               |                 | ,             |

\*Titan V75/C50 ventilator \*\* Titan V75/C75 ventilator

| Table 17. | Calculated noise   | e levels, pro    | posed flat 2.        | first floor |
|-----------|--------------------|------------------|----------------------|-------------|
| 14610 111 | o aloulato a holot | , io i olo, pi o | poooa nat <u>-</u> , |             |

| Location               | Design target,<br>daytime, dB<br>L <sub>Aeq</sub> | Calculated<br>level, daytime,<br>dB L <sub>Aeq</sub> | Design target,<br>night time, dB<br>L <sub>Aeq</sub> | Calculated<br>levels, night<br>time, dB $L_{Aeq}$<br>and ( $L_{Amax}$ ) |
|------------------------|---------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------|
| Living room/kitchen*** | 35                                                | 32                                                   | -                                                    | -                                                                       |
| Bedroom*               | 35                                                | 25                                                   | 30 (45)                                              | 29 (40)                                                                 |

\*\*\* Greenwood 4000EAV ventilator \* Titan V75/C50 ventilator

As can be seen from tables 16 and 17 above, based on the stated assumptions relating to the sound insulation of the proposed façade elements and under the windows closed but ventilation openings open scenario, the calculated internal noise levels within the proposed residential flats resulting from external noise break-in would not exceed the design guidance contained within BS 8233:2014. It should however be remembered that the results presented in tables 16 and 17 above must be considered as a worst case using the highest measured noise levels. With this in mind it is suggested that the internal levels within the proposed accommodation would, for the majority of the time, be below the levels presented within tables 16 and 17.

The results presented within tables 16 and 17 highlight that the adopted guidance relating to the internal noise levels within the proposed first flats can be achieved with closed windows and background ventilation openings in their open positions. It is however recognised that opening the windows for ventilation purposes, purge ventilation purposes excepted, would result in the internal noise levels exceeding the design guide levels detailed in BS 8233:2014. Assuming a level difference in the outside to inside sound levels of between 9 - 15dB proposed in the AVO guide and other documents, it can be seen from both the measured noise levels obtained during the existing noise climate survey and the results presented within tables 16 and 17 above, that partially opening the windows for ventilation purposes would result in the internal noise levels exceeding the design guide levels. As a result it is suggested that alternative means of ventilation, to permit the internal spaces to be ventilated without requiring the windows to be opened should be considered.

Two ventilation options that would be capable of meeting the above brief would fall under the description of what are termed systems 3 and 4 as defined within Approved Document F, guidance to the Building Regulations. System 3 relates to a continuous mechanical extraction (MEV) system which operates to remove air from the building with the 'make-up' air being drawn in via background ventilators. System 4 refers to a fully mechanical system incorporating heat recovery and is typically used in noisy environments etc. In both cases the requirement to ventilate to internal spaces would need to be carefully considered as the benefit to the occupants should be balanced with the possible disincentives to use, such as the perceived complexity of the installation and running costs.

In this case and with reference to the ventilation options presented within table 6 above, bearing in mind the existing noise climate was not regarded as being particularly noisy, the alternative ventilation strategy could take the form of a system 3 provision. With reference to the alternative ventilation, as with any ventilation installation it is essential that the emission of sound from the ventilation system is adequately controlled to ensure that this element does not detrimentally affect the internal noise climate. In addition it is essential that the occupants must also be provided with the option to open windows as they choose.

Consequently, the existing noise climate should not be regarded as an impediment to the granting of planning permission providing the suggested sound insulation measures, or alternative no less effective measures, are applied to the proposed flats. In addition, the foregoing has indicated that the proposed flats could be integrated into the existing environment without the potential for "unreasonable restrictions" to be placed upon already established businesses in the vicinity.

# 8.0 Conclusion

The existing noise climate in the vicinity of 57 - 59 Leicester Road in Wigston was characteristic of an urban environment, subject to noise contributions primarily from road traffic, although some occasional noise contributions were made by the surrounding commercial enterprises including very infrequent contributions from the patrons of the William Wygston public house standing outside to smoke. Despite being an urban environment, the existing noise climate was not regarded as being particularly noisy.

Applying the assumptions stated above, relating to the sound insulation of the façade elements, calculations have been undertaken to assess the likely internal noise levels within the proposed residential flats. The calculations have demonstrated that the sound insulation of the proposed building elements would ensure that the calculated break-in sound levels within the proposed first floor flats would not exceed the adopted design guide values assuming the windows closed and ventilation openings open, scenario.

Despite this it is recognised that opening the windows for ventilation purposes, purge ventilation excepted, would result in the internal noise levels exceeding the design guide levels. As a result it is suggested that alternative means of ventilation, to permit the internal spaces to be ventilated without requiring the windows to be opened, should be considered. In this case a system 3 or 4, as detailed within Approved Document F, should be considered. As with any ventilation installation it is essential that the emission of sound from the ventilation system is adequately controlled to ensure that this element does not detrimentally affect the internal noise climate. In addition it is

essential that the occupants must also be provided with the option to open windows as they choose.

As a consequence of the foregoing, it is suggested the sound insulation of the proposed façade elements and proposed alternative ventilation provision, would be sufficient to limit the ingress of external noise to the proposed first floor flats in compliance with the adopted design guidance. As such, it is suggested that the proposed flats could be integrated into the existing environment without the potential for "unreasonable restrictions" to be placed upon already established businesses in the vicinity. Consequently, it is suggested that the existing noise climate should not be regarded as an impediment to the granting of planning permission.

# Appendix 1: Existing Noise Climate Survey, Measured Sound Levels

Front elevation, 57 - 59 Leicester Road, Wigston, 26<sup>th –</sup> 27<sup>th</sup> February 2024

| Time  | L <sub>Aeq 5 mins</sub> | $L_{\rm Amax, 5 mins}$ | LA10, 5 mins | $L_{A90, 5 mins}$ | Time  | L <sub>Aeq 5 mins</sub> | $L_{Amax, 5 mins}$ | LA10, 5 mins | $L_{A90, 5 mins}$ |
|-------|-------------------------|------------------------|--------------|-------------------|-------|-------------------------|--------------------|--------------|-------------------|
| 17:00 | 68                      | 80                     | 69           | 62                | 19:00 | 65                      | 82                 | 68           | 56                |
| 17:05 | 66                      | 74                     | 68           | 57                | 19:05 | 66                      | 74                 | 69           | 59                |
| 17:10 | 66                      | 73                     | 68           | 59                | 19:10 | 65                      | 77                 | 68           | 55                |
| 17:15 | 67                      | 73                     | 69           | 62                | 19:15 | 67                      | 97                 | 70           | 57                |
| 17:20 | 67                      | 75                     | 70           | 56                | 19:20 | 66                      | 76                 | 69           | 56                |
| 17:25 | 66                      | 73                     | 68           | 57                | 19:25 | 66                      | 79                 | 69           | 54                |
| 17:30 | 65                      | 74                     | 68           | 56                | 19:30 | 66                      | 78                 | 69           | 54                |
| 17:35 | 64                      | 74                     | 66           | 56                | 19:35 | 65                      | 74                 | 67           | 56                |
| 17:40 | 66                      | 75                     | 68           | 60                | 19:40 | 66                      | 87                 | 69           | 53                |
| 17:45 | 66                      | 74                     | 70           | 52                | 19:45 | 66                      | 74                 | 69           | 55                |
| 17:50 | 67                      | 77                     | 69           | 59                | 19:50 | 64                      | 75                 | 67           | 51                |
| 17:55 | 67                      | 76                     | 70           | 55                | 19:55 | 64                      | 78                 | 68           | 53                |
| 18:00 | 66                      | 78                     | 69           | 58                | 20:00 | 64                      | 74                 | 68           | 46                |
| 18:05 | 65                      | 75                     | 68           | 56                | 20:05 | 65                      | 78                 | 67           | 51                |
| 18:10 | 67                      | 78                     | 70           | 59                | 20:10 | 64                      | 75                 | 68           | 49                |
| 18:15 | 65                      | 74                     | 68           | 57                | 20:15 | 66                      | 78                 | 68           | 51                |
| 18:20 | 66                      | 75                     | 69           | 55                | 20:20 | 65                      | 79                 | 68           | 51                |
| 18:25 | 67                      | 78                     | 70           | 59                | 20:25 | 64                      | 74                 | 68           | 50                |
| 18:30 | 66                      | 74                     | 69           | 57                | 20:30 | 64                      | 77                 | 68           | 49                |
| 18:35 | 66                      | 73                     | 69           | 55                | 20:35 | 64                      | 84                 | 67           | 48                |
| 18:40 | 66                      | 74                     | 69           | 55                | 20:40 | 66                      | 80                 | 69           | 50                |
| 18:45 | 65                      | 74                     | 69           | 55                | 20:45 | 64                      | 74                 | 67           | 48                |
| 18:50 | 66                      | 74                     | 69           | 54                | 20:50 | 62                      | 74                 | 66           | 49                |
| 18:55 | 66                      | 78                     | 69           | 56                | 20:55 | 63                      | 73                 | 67           | 52                |

Front measurement position, measured sound levels

| Time  | $L_{Aeq 5 mins}$ | <b>L</b> Amax, 5 mins | LA10, 5 mins | LA90, 5 mins | Time  | LAeq 5 mins | LAmax, 5 mins | LA10, 5 mins | LA90, 5 mins |
|-------|------------------|-----------------------|--------------|--------------|-------|-------------|---------------|--------------|--------------|
| 21:00 | 65               | 75                    | 68           | 50           | 23:00 | 61          | 76            | 64           | 37           |
| 21:05 | 65               | 74                    | 69           | 53           | 23:05 | 59          | 73            | 62           | 36           |
| 21:10 | 64               | 74                    | 68           | 48           | 23:10 | 60          | 72            | 64           | 38           |
| 21:15 | 62               | 74                    | 66           | 50           | 23:15 | 60          | 76            | 64           | 36           |
| 21:20 | 64               | 75                    | 68           | 48           | 23:20 | 56          | 71            | 60           | 38           |
| 21:25 | 62               | 74                    | 67           | 46           | 23:25 | 52          | 66            | 55           | 39           |
| 21:30 | 62               | 73                    | 66           | 44           | 23:30 | 58          | 74            | 62           | 37           |
| 21:35 | 62               | 75                    | 67           | 44           | 23:35 | 59          | 73            | 64           | 37           |
| 21:40 | 62               | 72                    | 66           | 45           | 23:40 | 56          | 69            | 61           | 36           |
| 21:45 | 61               | 75                    | 65           | 44           | 23:45 | 59          | 75            | 63           | 36           |
| 21:50 | 64               | 74                    | 67           | 46           | 23:50 | 56          | 70            | 60           | 34           |
| 21:55 | 63               | 74                    | 67           | 49           | 23:55 | 54          | 70            | 56           | 35           |
| 22:00 | 61               | 72                    | 66           | 45           | 00:00 | 51          | 65            | 53           | 35           |
| 22:05 | 63               | 73                    | 67           | 44           | 00:05 | 57          | 71            | 61           | 35           |
| 22:10 | 63               | 76                    | 67           | 43           | 00:10 | 56          | 71            | 58           | 35           |
| 22:15 | 62               | 74                    | 66           | 48           | 00:15 | 52          | 67            | 54           | 35           |
| 22:20 | 60               | 72                    | 65           | 38           | 00:20 | 56          | 72            | 58           | 34           |
| 22:25 | 61               | 74                    | 66           | 40           | 00:25 | 50          | 68            | 46           | 33           |
| 22:30 | 63               | 80                    | 67           | 39           | 00:30 | 53          | 71            | 50           | 33           |
| 22:35 | 60               | 73                    | 64           | 38           | 00:35 | 54          | 70            | 56           | 34           |
| 22:40 | 60               | 76                    | 64           | 36           | 00:40 | 58          | 78            | 59           | 34           |
| 22:45 | 59               | 72                    | 63           | 37           | 00:45 | 48          | 68            | 43           | 33           |
| 22:50 | 62               | 73                    | 66           | 38           | 00:50 | 55          | 72            | 56           | 33           |
| 22:55 | 59               | 72                    | 64           | 36           | 00:55 | 55          | 71            | 58           | 33           |

| Time  | <b>L</b> Aeq 5 mins | <b>L</b> Amax, 5 mins | LA10, 5 mins | LA90, 5 mins | т  | ime  | L <sub>Aeq 5 mins</sub> | LAmax, 5 mins | LA10, 5 mins | $L_{A90, 5 mins}$ |
|-------|---------------------|-----------------------|--------------|--------------|----|------|-------------------------|---------------|--------------|-------------------|
| 01:00 | 55                  | 73                    | 57           | 34           | 0  | 3:00 | 52                      | 68            | 53           | 32                |
| 01:05 | 58                  | 71                    | 63           | 33           | 0  | 3:05 | 36                      | 49            | 38           | 32                |
| 01:10 | 56                  | 74                    | 56           | 33           | 0  | 3:10 | 56                      | 75            | 55           | 33                |
| 01:15 | 54                  | 70                    | 54           | 33           | 0  | 3:15 | 52                      | 68            | 52           | 32                |
| 01:20 | 56                  | 73                    | 57           | 33           | 0  | 3:20 | 56                      | 70            | 59           | 33                |
| 01:25 | 52                  | 70                    | 49           | 33           | 0  | 3:25 | 55                      | 73            | 53           | 32                |
| 01:30 | 50                  | 69                    | 42           | 32           | 0  | 3:30 | 55                      | 75            | 53           | 32                |
| 01:35 | 52                  | 69                    | 51           | 33           | 0  | 3:35 | 49                      | 69            | 36           | 32                |
| 01:40 | 36                  | 53                    | 36           | 33           | 0  | 3:40 | 57                      | 74            | 54           | 32                |
| 01:45 | 54                  | 72                    | 54           | 33           | 0  | 3:45 | 33                      | 38            | 33           | 31                |
| 01:50 | 57                  | 72                    | 60           | 33           | 0  | 3:50 | 45                      | 66            | 40           | 32                |
| 01:55 | 52                  | 69                    | 53           | 33           | 0  | 3:55 | 54                      | 72            | 50           | 32                |
| 02:00 | 49                  | 64                    | 49           | 33           | 04 | 4:00 | 51                      | 68            | 49           | 32                |
| 02:05 | 48                  | 66                    | 42           | 38           | 04 | 4:05 | 33                      | 36            | 33           | 32                |
| 02:10 | 50                  | 70                    | 42           | 39           | 04 | 4:10 | 33                      | 37            | 33           | 31                |
| 02:15 | 42                  | 56                    | 43           | 39           | 04 | 4:15 | 34                      | 44            | 33           | 31                |
| 02:20 | 55                  | 73                    | 56           | 36           | 04 | 4:20 | 57                      | 72            | 58           | 32                |
| 02:25 | 55                  | 72                    | 56           | 36           | 04 | 4:25 | 56                      | 72            | 59           | 32                |
| 02:30 | 51                  | 68                    | 49           | 33           | 04 | 4:30 | 56                      | 71            | 58           | 32                |
| 02:35 | 52                  | 72                    | 38           | 32           | 04 | 4:35 | 59                      | 75            | 60           | 32                |
| 02:40 | 34                  | 42                    | 35           | 33           | 04 | 4:40 | 54                      | 73            | 52           | 32                |
| 02:45 | 59                  | 77                    | 61           | 33           | 04 | 4:45 | 59                      | 76            | 62           | 32                |
| 02:50 | 40                  | 65                    | 35           | 32           | 04 | 4:50 | 57                      | 74            | 58           | 32                |
| 02:55 | 51                  | 70                    | 40           | 33           | 04 | 4:55 | 58                      | 76            | 61           | 33                |

| Time  | $L_{Aeq 5 mins}$ | <b>L</b> Amax, 5 mins | LA10, 5 mins | LA90, 5 mins | Time  | LAeq 5 mins | LAmax, 5 mins | LA10, 5 mins | LA90, 5 mins |
|-------|------------------|-----------------------|--------------|--------------|-------|-------------|---------------|--------------|--------------|
| 05:00 | 60               | 74                    | 64           | 37           | 07:00 | 65          | 77            | 70           | 43           |
| 05:05 | 60               | 75                    | 65           | 36           | 07:05 | 65          | 78            | 69           | 45           |
| 05:10 | 59               | 73                    | 62           | 34           | 07:10 | 67          | 77            | 70           | 53           |
| 05:15 | 61               | 76                    | 66           | 40           | 07:15 | 68          | 79            | 71           | 53           |
| 05:20 | 58               | 73                    | 61           | 34           | 07:20 | 67          | 76            | 70           | 54           |
| 05:25 | 60               | 76                    | 64           | 34           | 07:25 | 67          | 79            | 70           | 54           |
| 05:30 | 62               | 74                    | 67           | 36           | 07:30 | 68          | 78            | 71           | 57           |
| 05:35 | 59               | 74                    | 62           | 36           | 07:35 | 68          | 79            | 70           | 58           |
| 05:40 | 63               | 79                    | 66           | 36           | 07:40 | 68          | 75            | 70           | 61           |
| 05:45 | 63               | 77                    | 67           | 38           | 07:45 | 68          | 78            | 71           | 54           |
| 05:50 | 61               | 73                    | 66           | 37           | 07:50 | 68          | 77            | 70           | 56           |
| 05:55 | 64               | 75                    | 68           | 43           | 07:55 | 68          | 75            | 70           | 56           |
| 06:00 | 64               | 74                    | 68           | 46           | 08:00 | 68          | 77            | 72           | 56           |
| 06:05 | 64               | 76                    | 68           | 45           | 08:05 | 68          | 77            | 71           | 53           |
| 06:10 | 63               | 76                    | 67           | 43           | 08:10 | 68          | 76            | 71           | 55           |
| 06:15 | 62               | 75                    | 66           | 42           | 08:15 | 68          | 81            | 71           | 57           |
| 06:20 | 68               | 80                    | 74           | 54           | 08:20 | 68          | 76            | 71           | 56           |
| 06:25 | 66               | 80                    | 70           | 46           | 08:25 | 68          | 76            | 71           | 56           |
| 06:30 | 64               | 79                    | 68           | 51           | 08:30 | 67          | 76            | 70           | 58           |
| 06:35 | 65               | 79                    | 69           | 49           | 08:35 | 69          | 82            | 71           | 59           |
| 06:40 | 65               | 74                    | 69           | 41           | 08:40 | 67          | 75            | 70           | 59           |
| 06:45 | 63               | 74                    | 68           | 42           | 08:45 | 68          | 79            | 71           | 50           |
| 06:50 | 65               | 77                    | 68           | 50           | 08:50 | 68          | 75            | 70           | 58           |
| 06:55 | 65               | 78                    | 69           | 52           | 08:55 | 68          | 79            | 70           | 58           |

| Time  | $L_{Aeq 5 mins}$ | L <sub>Amax, 5 mins</sub> | $L_{A10, 5 mins}$ | $L_{A90, 5 mins}$ |
|-------|------------------|---------------------------|-------------------|-------------------|
| 09:00 | 68               | 80                        | 70                | 59                |
| 09:05 | 67               | 80                        | 69                | 61                |
| 09:10 | 67               | 76                        | 70                | 56                |
| 09:15 | 67               | 76                        | 70                | 58                |
| 09:20 | 67               | 76                        | 69                | 61                |
| 09:25 | 67               | 77                        | 70                | 58                |
| 09:30 | 67               | 76                        | 70                | 59                |
| 09:35 | 67               | 74                        | 69                | 51                |
| 09:40 | 68               | 74                        | 70                | 56                |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |
|       |                  |                           |                   |                   |

Rear measurement position, measured sound levels

| Time  | $L_{Aeq 5 mins}$ | <b>L</b> <sub>Amax, 5 mins</sub> | $L_{A10, 5 mins}$ | L <sub>A90, 5 mins</sub> | Time  | L <sub>Aeq 5 mins</sub> | L <sub>Amax, 5 mins</sub> | L <sub>A10, 5 mins</sub> | $L_{A90, 5 mins}$ |
|-------|------------------|----------------------------------|-------------------|--------------------------|-------|-------------------------|---------------------------|--------------------------|-------------------|
| 17:00 | 55               | 68                               | 57                | 48                       | 19:00 | 53                      | 68                        | 54                       | 47                |
| 17:05 | 53               | 65                               | 57                | 47                       | 19:05 | 55                      | 75                        | 58                       | 46                |
| 17:10 | 54               | 67                               | 56                | 48                       | 19:10 | 56                      | 69                        | 60                       | 46                |
| 17:15 | 54               | 65                               | 57                | 47                       | 19:15 | 54                      | 71                        | 57                       | 45                |
| 17:20 | 54               | 66                               | 58                | 47                       | 19:20 | 54                      | 67                        | 56                       | 48                |
| 17:25 | 56               | 69                               | 60                | 48                       | 19:25 | 56                      | 79                        | 59                       | 48                |
| 17:30 | 56               | 68                               | 60                | 47                       | 19:30 | 56                      | 65                        | 56                       | 48                |
| 17:35 | 55               | 72                               | 56                | 47                       | 19:35 | 52                      | 67                        | 54                       | 45                |
| 17:40 | 53               | 63                               | 55                | 47                       | 19:40 | 54                      | 65                        | 56                       | 47                |
| 17:45 | 55               | 68                               | 59                | 46                       | 19:45 | 53                      | 75                        | 56                       | 46                |
| 17:50 | 51               | 62                               | 53                | 46                       | 19:50 | 54                      | 67                        | 55                       | 45                |
| 17:55 | 56               | 70                               | 59                | 49                       | 19:55 | 53                      | 69                        | 56                       | 44                |
| 18:00 | 62               | 61                               | 65                | 48                       | 20:00 | 53                      | 67                        | 55                       | 45                |
| 18:05 | 57               | 66                               | 59                | 51                       | 20:05 | 52                      | 63                        | 54                       | 44                |
| 18:10 | 53               | 68                               | 55                | 46                       | 20:10 | 50                      | 64                        | 52                       | 44                |
| 18:15 | 56               | 67                               | 60                | 48                       | 20:15 | 51                      | 69                        | 53                       | 44                |
| 18:20 | 54               | 68                               | 57                | 47                       | 20:20 | 52                      | 64                        | 52                       | 44                |
| 18:25 | 56               | 71                               | 59                | 47                       | 20:25 | 53                      | 67                        | 56                       | 45                |
| 18:30 | 54               | 68                               | 57                | 48                       | 20:30 | 51                      | 75                        | 53                       | 44                |
| 18:35 | 53               | 75                               | 57                | 47                       | 20:35 | 54                      | 65                        | 56                       | 43                |
| 18:40 | 56               | 68                               | 59                | 47                       | 20:40 | 49                      | 76                        | 50                       | 43                |
| 18:45 | 54               | 71                               | 58                | 47                       | 20:45 | 54                      | 56                        | 55                       | 43                |
| 18:50 | 54               | 70                               | 57                | 46                       | 20:50 | 47                      | 59                        | 49                       | 43                |
| 18:55 | 54               | 69                               | 57                | 46                       | 20:55 | 47                      | 71                        | 49                       | 43                |

| Time  | L <sub>Aeq 5 mins</sub> | <b>L</b> Amax, 5 mins | $L_{A10, 5 mins}$ | LA90, 5 mins | Time  | L <sub>Aeq 5 mins</sub> | LAmax, 5 mins | LA10, 5 mins | LA90, 5 mins |
|-------|-------------------------|-----------------------|-------------------|--------------|-------|-------------------------|---------------|--------------|--------------|
| 21:00 | 55                      | 65                    | 58                | 44           | 23:00 | 49                      | 66            | 47           | 36           |
| 21:05 | 51                      | 65                    | 53                | 44           | 23:05 | 50                      | 60            | 51           | 42           |
| 21:10 | 50                      | 63                    | 52                | 45           | 23:10 | 46                      | 62            | 47           | 42           |
| 21:15 | 50                      | 70                    | 52                | 43           | 23:15 | 47                      | 64            | 49           | 43           |
| 21:20 | 52                      | 71                    | 55                | 43           | 23:20 | 48                      | 51            | 48           | 42           |
| 21:25 | 50                      | 64                    | 52                | 42           | 23:25 | 44                      | 65            | 45           | 42           |
| 21:30 | 49                      | 71                    | 49                | 41           | 23:30 | 49                      | 71            | 48           | 42           |
| 21:35 | 52                      | 67                    | 54                | 41           | 23:35 | 51                      | 54            | 49           | 36           |
| 21:40 | 49                      | 58                    | 50                | 41           | 23:40 | 42                      | 65            | 45           | 36           |
| 21:45 | 46                      | 60                    | 48                | 40           | 23:45 | 49                      | 70            | 47           | 35           |
| 21:50 | 48                      | 74                    | 51                | 40           | 23:50 | 52                      | 61            | 52           | 35           |
| 21:55 | 50                      | 63                    | 51                | 41           | 23:55 | 45                      | 55            | 47           | 36           |
| 22:00 | 49                      | 65                    | 51                | 42           | 00:00 | 39                      | 66            | 42           | 34           |
| 22:05 | 52                      | 72                    | 55                | 43           | 00:05 | 47                      | 58            | 49           | 35           |
| 22:10 | 54                      | 68                    | 57                | 40           | 00:10 | 44                      | 61            | 47           | 34           |
| 22:15 | 50                      | 62                    | 51                | 41           | 00:15 | 44                      | 63            | 43           | 34           |
| 22:20 | 47                      | 70                    | 49                | 39           | 00:20 | 40                      | 58            | 40           | 33           |
| 22:25 | 49                      | 65                    | 49                | 39           | 00:25 | 40                      | 57            | 42           | 34           |
| 22:30 | 50                      | 55                    | 52                | 39           | 00:30 | 41                      | 49            | 41           | 33           |
| 22:35 | 43                      | 73                    | 46                | 37           | 00:35 | 37                      | 62            | 39           | 32           |
| 22:40 | 51                      | 61                    | 49                | 38           | 00:40 | 43                      | 59            | 42           | 33           |
| 22:45 | 44                      | 64                    | 45                | 36           | 00:45 | 42                      | 61            | 41           | 32           |
| 22:50 | 47                      | 63                    | 48                | 37           | 00:50 | 42                      | 60            | 41           | 32           |
| 22:55 | 47                      | 70                    | 49                | 38           | 00:55 | 43                      | 54            | 42           | 32           |

| Time  | <b>L</b> Aeq 5 mins | LAmax, 5 mins | LA10, 5 mins | LA90, 5 mins |   | Time  | LAeq 5 mins | L <sub>Amax, 5 mins</sub> | LA10, 5 mins | $L_{A90, 5 mins}$ |
|-------|---------------------|---------------|--------------|--------------|---|-------|-------------|---------------------------|--------------|-------------------|
| 01:00 | 39                  | 65            | 41           | 32           | ( | 03:00 | 34          | 47                        | 36           | 31                |
| 01:05 | 46                  | 54            | 47           | 32           | ( | 03:05 | 35          | 56                        | 37           | 31                |
| 01:10 | 41                  | 56            | 43           | 32           | ( | 03:10 | 36          | 54                        | 34           | 30                |
| 01:15 | 38                  | 53            | 38           | 32           | ( | 03:15 | 39          | 51                        | 42           | 30                |
| 01:20 | 38                  | 56            | 39           | 32           | ( | 03:20 | 37          | 48                        | 39           | 29                |
| 01:25 | 39                  | 59            | 41           | 32           | ( | 03:25 | 36          | 52                        | 38           | 29                |
| 01:30 | 42                  | 45            | 41           | 33           | ( | 03:30 | 37          | 57                        | 38           | 29                |
| 01:35 | 34                  | 45            | 35           | 31           | ( | 03:35 | 39          | 38                        | 40           | 29                |
| 01:40 | 35                  | 48            | 36           | 32           | ( | 03:40 | 31          | 60                        | 31           | 29                |
| 01:45 | 35                  | 56            | 36           | 32           | ( | 03:45 | 44          | 38                        | 42           | 29                |
| 01:50 | 38                  | 54            | 38           | 33           | ( | 03:50 | 31          | 45                        | 32           | 29                |
| 01:55 | 39                  | 52            | 40           | 33           | ( | 03:55 | 33          | 61                        | 33           | 29                |
| 02:00 | 37                  | 44            | 38           | 33           | ( | 04:00 | 42          | 50                        | 39           | 29                |
| 02:05 | 35                  | 58            | 36           | 33           | ( | 04:05 | 34          | 38                        | 36           | 29                |
| 02:10 | 42                  | 52            | 42           | 33           | ( | 04:10 | 31          | 39                        | 32           | 29                |
| 02:15 | 37                  | 42            | 37           | 32           | ( | 04:15 | 30          | 43                        | 31           | 28                |
| 02:20 | 34                  | 57            | 35           | 32           | ( | 04:20 | 32          | 54                        | 34           | 28                |
| 02:25 | 39                  | 53            | 40           | 30           | ( | 04:25 | 40          | 54                        | 42           | 28                |
| 02:30 | 36                  | 54            | 38           | 30           | ( | 04:30 | 37          | 55                        | 39           | 29                |
| 02:35 | 35                  | 55            | 35           | 29           | ( | 04:35 | 41          | 67                        | 44           | 31                |
| 02:40 | 36                  | 60            | 35           | 29           | ( | 04:40 | 47          | 55                        | 45           | 30                |
| 02:45 | 39                  | 56            | 35           | 30           | ( | 04:45 | 38          | 59                        | 38           | 30                |
| 02:50 | 39                  | 37            | 39           | 31           | ( | 04:50 | 41          | 54                        | 42           | 30                |
| 02:55 | 31                  | 47            | 32           | 30           | ( | 04:55 | 40          | 56                        | 42           | 30                |

| Time  | L <sub>Aeq 5 mins</sub> | <b>L</b> Amax, 5 mins | LA10, 5 mins | LA90, 5 mins | Time  | L <sub>Aeq 5 mins</sub> | LAmax, 5 mins | LA10, 5 mins | LA90, 5 mins |
|-------|-------------------------|-----------------------|--------------|--------------|-------|-------------------------|---------------|--------------|--------------|
| 05:00 | 42                      | 56                    | 45           | 32           | 07:00 | 50                      | 58            | 52           | 42           |
| 05:05 | 43                      | 63                    | 45           | 33           | 07:05 | 47                      | 73            | 50           | 40           |
| 05:10 | 43                      | 60                    | 45           | 33           | 07:10 | 54                      | 72            | 55           | 42           |
| 05:15 | 44                      | 71                    | 48           | 34           | 07:15 | 55                      | 66            | 54           | 44           |
| 05:20 | 51                      | 57                    | 50           | 33           | 07:20 | 52                      | 62            | 55           | 45           |
| 05:25 | 43                      | 66                    | 45           | 33           | 07:25 | 51                      | 62            | 53           | 46           |
| 05:30 | 48                      | 56                    | 49           | 33           | 07:30 | 51                      | 80            | 54           | 46           |
| 05:35 | 43                      | 66                    | 47           | 33           | 07:35 | 59                      | 69            | 61           | 46           |
| 05:40 | 47                      | 72                    | 46           | 33           | 07:40 | 56                      | 66            | 58           | 47           |
| 05:45 | 46                      | 65                    | 47           | 36           | 07:45 | 52                      | 67            | 53           | 46           |
| 05:50 | 48                      | 58                    | 50           | 36           | 07:50 | 52                      | 66            | 53           | 45           |
| 05:55 | 44                      | 62                    | 47           | 35           | 07:55 | 53                      | 85            | 54           | 46           |
| 06:00 | 47                      | 77                    | 51           | 38           | 08:00 | 58                      | 66            | 59           | 48           |
| 06:05 | 55                      | 60                    | 51           | 40           | 08:05 | 53                      | 70            | 55           | 47           |
| 06:10 | 47                      | 75                    | 51           | 39           | 08:10 | 53                      | 61            | 53           | 46           |
| 06:15 | 55                      | 63                    | 53           | 41           | 08:15 | 51                      | 68            | 53           | 46           |
| 06:20 | 49                      | 68                    | 50           | 42           | 08:20 | 55                      | 67            | 58           | 47           |
| 06:25 | 52                      | 74                    | 54           | 43           | 08:25 | 53                      | 66            | 55           | 46           |
| 06:30 | 63                      | 74                    | 67           | 45           | 08:30 | 54                      | 65            | 58           | 46           |
| 06:35 | 64                      | 71                    | 69           | 48           | 08:35 | 51                      | 69            | 52           | 46           |
| 06:40 | 61                      | 73                    | 65           | 44           | 08:40 | 54                      | 71            | 57           | 48           |
| 06:45 | 61                      | 74                    | 58           | 40           | 08:45 | 54                      | 67            | 55           | 46           |
| 06:50 | 60                      | 71                    | 60           | 42           | 08:50 | 54                      | 66            | 56           | 47           |
| 06:55 | 51                      | 65                    | 52           | 42           | 08:55 | 54                      | 82            | 57           | 47           |

| Time  | $L_{Aeq 5 mins}$ | $L_{Amax, 5 mins}$ | $L_{A10, 5 mins}$ | $L_{A90, 5 mins}$ |
|-------|------------------|--------------------|-------------------|-------------------|
| 09:00 | 62               | 70                 | 61                | 47                |
| 09:05 | 55               | 69                 | 58                | 47                |
| 09:10 | 54               | 79                 | 57                | 47                |
| 09:15 | 60               | 68                 | 59                | 47                |
| 09:20 | 55               | 68                 | 58                | 46                |
| 09:25 | 54               | 67                 | 57                | 46                |
| 09:30 | 55               | 73                 | 59                | 48                |
| 09:35 | 56               | 67                 | 59                | 49                |
| 09:40 | 54               | 68                 | 57                | 48                |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |
|       |                  |                    |                   |                   |

# Appendix 2: Break-in Noise Calculations

| Flat 1, first flo                           | or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |       |             |             |             |       |       |          |         |       |       |    |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------|-------------|-------------|-------------|-------|-------|----------|---------|-------|-------|----|
| <u>L <sub>Aeq</sub> Assessme</u>            | ent, daytime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       |             |             |             |       |       |          |         |       |       |    |
| Electric Contraction of the                 | and the state of the sector of |      |       |             |             |             |       |       |          |         |       |       | -  |
| Flat 1, kitchen/livin                       | g room - front elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |       | 24 E*       | 62*         | 105*        | 250*  | 500*  | 11.*     | 26*     | 46*   | 01.*  | -  |
| Octave Band Ce                              | Management /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |       | 31.5        | 47          | 125         | 230   | 500   | IK<br>GE | 2K      | 4K    | 42    | _  |
| A                                           | Expand for the matrix $L_{eq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •    | 00    | 30          | 47          | 40          | 0.5   | 00    | 05       | 02      | 52    | 43    |    |
| В                                           | Exposed façade, m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9    |       | 9.5         | 9.5         | 9.5         | 9.5   | 9.5   | 9.5      | 9.5     | 9.5   | 9.5   |    |
| С                                           | Volume of receiving room, m°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 57.7 |       |             |             |             |       |       |          |         |       |       | _  |
| D                                           | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       | 0.5         | 0.5         | 0.5         | 0.5   | 0.5   | 0.5      | 0.5     | 0.5   | 0.5   |    |
| E                                           | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       | -12.7       | -12.7       | -12.7       | -12.7 | -12.7 | -12.7    | -12.7   | -12.7 | -12.7 | -  |
| F                                           | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       | 19.3        | 24.3        | 29.3        | 25.7  | 30.7  | 40.7     | 43.7    | 40.7  | 45.7  | _  |
| G                                           | A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 27    | 13.8        | 19.9        | 15.3        | 27.7  | 26.2  | 21.2     | 14.7    | 8.2   | -5.9  | -  |
| Н                                           | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       | 3.0         | 3.0         | 3.0         | 3.0   | 3.0   | 3.0      | 3.0     | 3.0   | 3.0   |    |
| I                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |             |             |             |       |       |          |         |       |       |    |
| J                                           | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 30    | 16.8        | 22.9        | 18.3        | 30.7  | 29.2  | 24.2     | 17.7    | 11.2  | -2.9  | -  |
| K                                           | Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2    |       |             |             |             |       |       |          |         |       |       |    |
| L                                           | Ventilator D <sub>n,e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |             | 35          | 40          | 37    | 34    | 43       | 50      | 53    | 63    |    |
| М                                           | L <sub>Aeg</sub> - D <sub>n,e</sub> + 10*log(10) - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       |             | 15.9        | 11.3        | 23.1  | 29.6  | 25.6     | 15.1    | 2.6   | -16.5 |    |
| Ν                                           | Internal room noise level, vent open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 33    |             | 23.7        | 19.1        | 31.4  | 32.4  | 28.0     | 19.6    | 11.7  | -2.7  |    |
| Glazina:                                    | 4mm. 16/20mm. 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |             |             |             |       |       |          |         |       |       |    |
| Ventilator type:                            | Titan V75/C50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |             |             |             |       |       |          |         |       |       |    |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |             |             |             |       |       |          |         |       |       |    |
| Flat 1, kitchen/livin                       | g room - gable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |             |             |             |       |       |          |         |       |       |    |
| * Octave Band Ce                            | entre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | dB(A) | 31.5*       | 63*         | 125*        | 250*  | 500*  | 1k*      | 2k*     | 4k*   | 8k*   |    |
| A                                           | Measured L eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 68    | 36          | 47          | 48          | 57    | 60    | 65       | 62      | 52    | 43    |    |
| В                                           | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.6 |       | 11.9        | 11.9        | 11.9        | 11.9  | 11.9  | 11.9     | 11.9    | 11.9  | 11.9  | T  |
| С                                           | Volume of receiving room. m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 57.7 |       | -           | -           | _           |       | -     | -        | -       | -     |       | t  |
| P                                           | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1     | 0.5         | 0.5         | 0.5         | 0.5   | 0.5   | 0.5      | 0.5     | 0.5   | 0.5   | t  |
| F                                           | 10 x Log(RT60/(0 163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       | -127        | -127        | -127        | -12 7 | -127  | -127     | -12 7   | -12 7 | -127  |    |
| F                                           | Lbed existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       | 28.0        | 33.0        | 38.0        | 42.0  | 50.0  | 58.0     | 62.0    | 62.0  | 67.0  | t  |
| G                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 11    | 7.5         | 13.6        | 9.0         | 13.8  | 9.3   | 6.3      | -1.2    | -10.7 | -24.8 |    |
| н                                           | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       | 3.0         | 3.0         | 3.0         | 3.0   | 3.0   | 3.0      | 3.0     | 3.0   | 3.0   | t  |
| 1                                           | K = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       | 0.0         | 0.0         | 0.0         | 0.0   | 0.0   | 0.0      | 0.0     | 0.0   | 0.0   | +  |
| 1                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 14    | 10.5        | 16.6        | 12.0        | 16.9  | 12.2  | 0.2      | 10      | 77    | 21.0  | +  |
| Claring                                     | Calculated Internal holse level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 14    | 10.5        | 10.0        | 12.0        | 10.0  | 12.5  | 9.5      | 1.0     | -1.1  | -21.0 | -  |
| Giazing.                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |       |             |             |             |       |       |          |         |       |       | +  |
| ventilator type:                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 22    |             |             |             |       |       |          |         |       |       | +  |
|                                             | Combined sound level, dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | 33    |             |             |             |       |       |          |         |       |       | +  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |             |             |             |       |       |          |         |       |       | -  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |             |             |             |       |       |          |         |       |       | +  |
| Flat 1, bedroom - I                         | ront elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |       |             |             |             |       |       |          | <b></b> |       |       | _  |
| * Octave Band Ce                            | entre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | dB(A) | 31.5        | 63*         | 125*        | 250*  | 500^  | 1K^      | 2K^     | 4K^   | 8K^   | 1  |
| A                                           | Measured L max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 68    | 36          | 47          | 48          | 57    | 60    | 65       | 62      | 52    | 43    | -  |
| В                                           | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.9  |       | 7.7         | 7.7         | 7.7         | 7.7   | 7.7   | 7.7      | 7.7     | 7.7   | 7.7   | _  |
| С                                           | Volume of receiving room, m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.1 |       |             |             |             |       |       |          |         |       |       |    |
| D                                           | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       | 0.5         | 0.5         | 0.5         | 0.5   | 0.5   | 0.5      | 0.5     | 0.5   | 0.5   |    |
| E                                           | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |       | -9.6        | -9.6        | -9.6        | -9.6  | -9.6  | -9.6     | -9.6    | -9.6  | -9.6  |    |
| F                                           | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       | 20.3        | 25.3        | 30.3        | 26.8  | 31.9  | 41.8     | 44.8    | 41.9  | 46.9  |    |
| G                                           | A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 27    | 14.1        | 20.2        | 15.6        | 27.9  | 26.3  | 21.4     | 14.8    | 8.3   | -5.8  | -  |
| Н                                           | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       | 3.0         | 3.0         | 3.0         | 3.0   | 3.0   | 3.0      | 3.0     | 3.0   | 3.0   |    |
| I                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |             |             |             |       |       |          |         |       |       |    |
| J                                           | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 30    | 17.1        | 23.2        | 18.6        | 30.9  | 29.3  | 24.4     | 17.8    | 11.3  | -2.8  | ŀ  |
| К                                           | Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1    |       |             |             |             |       |       |          |         |       |       |    |
| L                                           | Ventilator D <sub>n.e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |             | 32          | 37          | 37    | 36    | 47       | 49      | 55    | 61    | Τ  |
| М                                           | $L_{\text{Aeg}} - D_{\text{ne}} + 10^{\text{*log}}(10) - B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |       |             | 17.7        | 13.1        | 21.9  | 26.4  | 20.4     | 14.9    | -0.6  | -15.7 | t  |
| N                                           | Internal room poise level vent open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 31    |             | 24.3        | 19.7        | 31.4  | 31.1  | 25.8     | 19.6    | 11.6  | -2.6  | t  |
| Glazina:                                    | Amm 16/20mm Amm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    |       |             | 21.0        | 10.1        | 01.1  | 01.1  | 20.0     | 10.0    | 11.0  | 2.0   | +  |
| Ventilator type:                            | Titan V75/C75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |       |             |             |             |       |       |          |         |       |       | +  |
| renalator type.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       |             |             |             |       |       |          |         |       |       |    |
| Elot 1 hadrees                              | zoblo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       |             |             |             |       |       |          |         |       |       | -  |
| * Octavo Perel C                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | dB(A) | 31 E*       | 62*         | 105*        | 250*  | 500*  | 14*      | ¢ר⊀     | /L*   | 0L*   |    |
| Julave Bana Ce                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |       | 31.5        | 47          | 123         | 250   | 500   | 65       | 28      | 4K    | 0K    |    |
| A                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 68    | 30          | 4/          | 48          | 5/    | 60    | 60       | 62      | 52    | 43    | -  |
| В                                           | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.7 |       | 10.7        | 10.7        | 10.7        | 10.7  | 10.7  | 10.7     | 10.7    | 10.7  | 10.7  | -  |
| С                                           | Volume of receiving room, m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.1 |       |             |             |             |       |       |          |         |       |       | _  |
| D                                           | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |       | 0.5         | 0.5         | 0.5         | 0.5   | 0.5   | 0.5      | 0.5     | 0.5   | 0.5   |    |
| E                                           | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L    |       | -9.6        | -9.6        | -9.6        | -9.6  | -9.6  | -9.6     | -9.6    | -9.6  | -9.6  |    |
| F                                           | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L    |       | 28.0        | 33.0        | 38.0        | 42.0  | 50.0  | 58.0     | 62.0    | 62.0  | 67.0  |    |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 13    | 9.4         | 15.5        | 10.9        | 15.7  | 11.2  | 8.2      | 0.7     | -8.8  | -22.9 | -  |
| G                                           | A+D+E-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |       |             |             | 0.0         | 20    | 30    | 20       | 3.0     | 3.0   | 3.0   |    |
| G<br>H                                      | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       | 3.0         | 3.0         | 3.0         | 3.0   | 5.0   | 3.0      | 0.0     | 0.0   | 5.0   |    |
| G<br>H<br>I                                 | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |       | 3.0         | 3.0         | 3.0         | 3.0   | 5.0   | 3.0      | 0.0     | 0.0   | 5.0   | t  |
| G<br>H<br>I<br>J                            | K = 3<br>Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 16    | 3.0<br>12.4 | 3.0<br>18.5 | 3.0<br>13.9 | 18.7  | 14.2  | 11.2     | 3.7     | -5.8  | -19.9 | -  |
| G<br>H<br>J<br>Glazing:                     | K = 3<br>Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 16    | 3.0<br>12.4 | 3.0<br>18.5 | 3.0         | 18.7  | 14.2  | 11.2     | 3.7     | -5.8  | -19.9 | -; |
| G<br>H<br>J<br>Glazing:<br>Ventilator type: | K = 3<br>Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 16    | 3.0<br>12.4 | 3.0<br>18.5 | 13.9        | 18.7  | 14.2  | 11.2     | 3.7     | -5.8  | -19.9 | -2 |

| Flat 1, bedroom - r                                                                                                                                                                                                                                                                                                                                                                              | ear elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                           | 04 5+                                                                                                                                  | 00÷                                                                                                                                  | 405*                                                                                                                                               | 050*                                                                                                                                        | F00*                                                                                                                           | 41.*                                                                                                                                              | 01-*                                                                                                                                            | 41-*                                                                                                                                      | 01-*                                                                                                                                               | 4.0                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| * Octave Band Ce                                                                                                                                                                                                                                                                                                                                                                                 | ntre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | dB(A)                                     | 31.5                                                                                                                                   | 63^                                                                                                                                  | 125^                                                                                                                                               | 250^                                                                                                                                        | 500*                                                                                                                           | 1K <sup>*</sup>                                                                                                                                   | 2K*                                                                                                                                             | 4K^                                                                                                                                       | 8K^                                                                                                                                                | 16                                                                                                  |
| A                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 60                                        | 29                                                                                                                                     | 41                                                                                                                                   | 49                                                                                                                                                 | 55                                                                                                                                          | 60                                                                                                                             | 63                                                                                                                                                | 60                                                                                                                                              | 53                                                                                                                                        | 43                                                                                                                                                 | 2                                                                                                   |
| В                                                                                                                                                                                                                                                                                                                                                                                                | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9         |                                           | 7.7                                                                                                                                    | 7.7                                                                                                                                  | 7.7                                                                                                                                                | 7.7                                                                                                                                         | 7.7                                                                                                                            | 7.7                                                                                                                                               | 7.7                                                                                                                                             | 7.7                                                                                                                                       | 7.7                                                                                                                                                | 7.                                                                                                  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Volume of receiving room, m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.1        |                                           |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
| D                                                                                                                                                                                                                                                                                                                                                                                                | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                           | 0.5                                                                                                                                    | 0.5                                                                                                                                  | 0.5                                                                                                                                                | 0.5                                                                                                                                         | 0.5                                                                                                                            | 0.5                                                                                                                                               | 0.5                                                                                                                                             | 0.5                                                                                                                                       | 0.5                                                                                                                                                | 0                                                                                                   |
| E                                                                                                                                                                                                                                                                                                                                                                                                | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                           | -9.6                                                                                                                                   | -9.6                                                                                                                                 | -9.6                                                                                                                                               | -9.6                                                                                                                                        | -9.6                                                                                                                           | -9.6                                                                                                                                              | -9.6                                                                                                                                            | -9.6                                                                                                                                      | -9.6                                                                                                                                               | -9                                                                                                  |
| F                                                                                                                                                                                                                                                                                                                                                                                                | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                           | 20.3                                                                                                                                   | 25.3                                                                                                                                 | 30.3                                                                                                                                               | 26.8                                                                                                                                        | 31.9                                                                                                                           | 41.8                                                                                                                                              | 44.8                                                                                                                                            | 41.9                                                                                                                                      | 46.9                                                                                                                                               | 5                                                                                                   |
| G                                                                                                                                                                                                                                                                                                                                                                                                | A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 26                                        | 6.8                                                                                                                                    | 14.2                                                                                                                                 | 16.9                                                                                                                                               | 26.5                                                                                                                                        | 26.2                                                                                                                           | 19.3                                                                                                                                              | 12.9                                                                                                                                            | 9.5                                                                                                                                       | -5.6                                                                                                                                               | -24                                                                                                 |
| н                                                                                                                                                                                                                                                                                                                                                                                                | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                           | 3.0                                                                                                                                    | 3.0                                                                                                                                  | 3.0                                                                                                                                                | 3.0                                                                                                                                         | 3.0                                                                                                                            | 3.0                                                                                                                                               | 3.0                                                                                                                                             | 3.0                                                                                                                                       | 3.0                                                                                                                                                | 3                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                           |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
| J                                                                                                                                                                                                                                                                                                                                                                                                | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 29                                        | 9.8                                                                                                                                    | 17.2                                                                                                                                 | 19.9                                                                                                                                               | 29.5                                                                                                                                        | 29.2                                                                                                                           | 22.3                                                                                                                                              | 15.9                                                                                                                                            | 12.5                                                                                                                                      | -2.6                                                                                                                                               | -2                                                                                                  |
| K                                                                                                                                                                                                                                                                                                                                                                                                | Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           |                                           |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
| L                                                                                                                                                                                                                                                                                                                                                                                                | Ventilator D <sub>n,e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                                           |                                                                                                                                        | 32                                                                                                                                   | 37                                                                                                                                                 | 37                                                                                                                                          | 36                                                                                                                             | 47                                                                                                                                                | 49                                                                                                                                              | 55                                                                                                                                        | 61                                                                                                                                                 |                                                                                                     |
| М                                                                                                                                                                                                                                                                                                                                                                                                | L <sub>Aeq</sub> - D <sub>n,e</sub> + 10*log(10) - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                           |                                                                                                                                        | 11.7                                                                                                                                 | 14.4                                                                                                                                               | 20.5                                                                                                                                        | 26.3                                                                                                                           | 18.3                                                                                                                                              | 13.0                                                                                                                                            | 0.6                                                                                                                                       | -15.5                                                                                                                                              |                                                                                                     |
| N                                                                                                                                                                                                                                                                                                                                                                                                | Internal room noise level, vent open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 30                                        |                                                                                                                                        | 18.3                                                                                                                                 | 21.0                                                                                                                                               | 30.0                                                                                                                                        | 31.0                                                                                                                           | 23.7                                                                                                                                              | 17.7                                                                                                                                            | 12.8                                                                                                                                      | -2.4                                                                                                                                               |                                                                                                     |
| Glazing:<br>Ventilator type:                                                                                                                                                                                                                                                                                                                                                                     | 4mm, 16/20mm, 4mm<br>Titan V75/C75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                           |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
| Flat 1, bedroom - g                                                                                                                                                                                                                                                                                                                                                                              | gable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                           | 24 5*                                                                                                                                  | 60*                                                                                                                                  | 405*                                                                                                                                               | 250*                                                                                                                                        | 500*                                                                                                                           | 4 6*                                                                                                                                              | 26*                                                                                                                                             | 46*                                                                                                                                       | 0L*                                                                                                                                                | 1                                                                                                   |
| * Octave Band Ce                                                                                                                                                                                                                                                                                                                                                                                 | ntre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | dB(A)                                     | 31.5                                                                                                                                   | 63"                                                                                                                                  | 125*                                                                                                                                               | 250"                                                                                                                                        | 500*                                                                                                                           | 1K <sup>*</sup>                                                                                                                                   | 2K <sup>-</sup>                                                                                                                                 | 4K*                                                                                                                                       | 8K*                                                                                                                                                | 1                                                                                                   |
| A _                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44-         | 00                                        | 29                                                                                                                                     | 41                                                                                                                                   | 49                                                                                                                                                 | 55                                                                                                                                          | 60                                                                                                                             | 63                                                                                                                                                | 60                                                                                                                                              | 53                                                                                                                                        | 43                                                                                                                                                 |                                                                                                     |
| В                                                                                                                                                                                                                                                                                                                                                                                                | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.7        |                                           | 10.7                                                                                                                                   | 10.7                                                                                                                                 | 10.7                                                                                                                                               | 10.7                                                                                                                                        | 10.7                                                                                                                           | 10.7                                                                                                                                              | 10.7                                                                                                                                            | 10.7                                                                                                                                      | 10.7                                                                                                                                               | 10                                                                                                  |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Volume of receiving room, m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.1        |                                           | c -                                                                                                                                    | <u> </u>                                                                                                                             |                                                                                                                                                    | 6.5                                                                                                                                         | <u> </u>                                                                                                                       | 0.5                                                                                                                                               |                                                                                                                                                 | 0.5                                                                                                                                       | 0.5                                                                                                                                                |                                                                                                     |
| D                                                                                                                                                                                                                                                                                                                                                                                                | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                           | 0.5                                                                                                                                    | 0.5                                                                                                                                  | 0.5                                                                                                                                                | 0.5                                                                                                                                         | 0.5                                                                                                                            | 0.5                                                                                                                                               | 0.5                                                                                                                                             | 0.5                                                                                                                                       | 0.5                                                                                                                                                | 0                                                                                                   |
| E _                                                                                                                                                                                                                                                                                                                                                                                              | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                                           | -9.6                                                                                                                                   | -9.6                                                                                                                                 | -9.6                                                                                                                                               | -9.6                                                                                                                                        | -9.6                                                                                                                           | -9.6                                                                                                                                              | -9.6                                                                                                                                            | -9.6                                                                                                                                      | -9.6                                                                                                                                               | -                                                                                                   |
| F                                                                                                                                                                                                                                                                                                                                                                                                | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 10                                        | 28.0                                                                                                                                   | 33.0                                                                                                                                 | 38.0                                                                                                                                               | 42.0                                                                                                                                        | 50.0                                                                                                                           | 58.0                                                                                                                                              | 62.0                                                                                                                                            | 62.0                                                                                                                                      | 67.0                                                                                                                                               | 6                                                                                                   |
| G                                                                                                                                                                                                                                                                                                                                                                                                | A+B+E-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | 12                                        | 2.1                                                                                                                                    | 9.5                                                                                                                                  | 12.2                                                                                                                                               | 14.3                                                                                                                                        | 11.1                                                                                                                           | 6.1                                                                                                                                               | -1.2                                                                                                                                            | -7.6                                                                                                                                      | -22.7                                                                                                                                              | -3                                                                                                  |
| H                                                                                                                                                                                                                                                                                                                                                                                                | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                                           | 3.0                                                                                                                                    | 3.0                                                                                                                                  | 3.0                                                                                                                                                | 3.0                                                                                                                                         | 3.0                                                                                                                            | 3.0                                                                                                                                               | 3.0                                                                                                                                             | 3.0                                                                                                                                       | 3.0                                                                                                                                                | 3                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 4-                                        |                                                                                                                                        | 40 -                                                                                                                                 | 45.0                                                                                                                                               | 47.0                                                                                                                                        |                                                                                                                                | <b>a</b> :                                                                                                                                        |                                                                                                                                                 | 4.5                                                                                                                                       | 46 -                                                                                                                                               | -                                                                                                   |
| J                                                                                                                                                                                                                                                                                                                                                                                                | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 15                                        | 5.1                                                                                                                                    | 12.5                                                                                                                                 | 15.2                                                                                                                                               | 17.3                                                                                                                                        | 14.1                                                                                                                           | 9.1                                                                                                                                               | 1.8                                                                                                                                             | -4.6                                                                                                                                      | -19.7                                                                                                                                              | -3                                                                                                  |
| Glazing:                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                           |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    | _                                                                                                   |
| Ventilator type:                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                           |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                  | Combined sound level, dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 30                                        |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
| Flat 1, bedroom - r                                                                                                                                                                                                                                                                                                                                                                              | ear elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                                           | 04 54                                                                                                                                  | 0.0.*                                                                                                                                | 105*                                                                                                                                               | 050*                                                                                                                                        | 50.0*                                                                                                                          |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
| * Octave Band Ce                                                                                                                                                                                                                                                                                                                                                                                 | ntre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | dB(A)                                     | 31.5*                                                                                                                                  | 63*                                                                                                                                  | 125*                                                                                                                                               | 250*                                                                                                                                        | 500*                                                                                                                           | 1k*                                                                                                                                               | 2k*                                                                                                                                             | 4k*                                                                                                                                       | 8k*                                                                                                                                                | 16                                                                                                  |
| A                                                                                                                                                                                                                                                                                                                                                                                                | Measured L max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 80                                        | 45                                                                                                                                     | 60                                                                                                                                   | 70                                                                                                                                                 | 70                                                                                                                                          | 76                                                                                                                             | 76                                                                                                                                                | 74                                                                                                                                              | 70                                                                                                                                        | 59                                                                                                                                                 | 4                                                                                                   |
| В                                                                                                                                                                                                                                                                                                                                                                                                | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.9         |                                           | 7.7                                                                                                                                    | 7.7                                                                                                                                  | 7.7                                                                                                                                                | 7.7                                                                                                                                         | 7.7                                                                                                                            | 7.7                                                                                                                                               | 7.7                                                                                                                                             | 7.7                                                                                                                                       | 7.7                                                                                                                                                | 7                                                                                                   |
| С                                                                                                                                                                                                                                                                                                                                                                                                | Volume of receiving room, m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 28.1        |                                           |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
| D                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                           |                                                                                                                                        |                                                                                                                                      |                                                                                                                                                    |                                                                                                                                             |                                                                                                                                |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                                           |                                                                                                                                                    |                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                  | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                                           | 0.5                                                                                                                                    | 0.5                                                                                                                                  | 0.5                                                                                                                                                | 0.5                                                                                                                                         | 0.5                                                                                                                            | 0.5                                                                                                                                               | 0.5                                                                                                                                             | 0.5                                                                                                                                       | 0.5                                                                                                                                                | 0                                                                                                   |
| E                                                                                                                                                                                                                                                                                                                                                                                                | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                                           | 0.5<br>-9.6                                                                                                                            | 0.5<br>-9.6                                                                                                                          | 0.5<br>-9.6                                                                                                                                        | 0.5<br>-9.6                                                                                                                                 | 0.5<br>-9.6                                                                                                                    | 0.5<br>-9.6                                                                                                                                       | 0.5<br>-9.6                                                                                                                                     | 0.5<br>-9.6                                                                                                                               | 0.5<br>-9.6                                                                                                                                        | C<br>-!                                                                                             |
| E<br>F                                                                                                                                                                                                                                                                                                                                                                                           | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                                           | 0.5<br>-9.6<br>20.9                                                                                                                    | 0.5<br>-9.6<br>25.9                                                                                                                  | 0.5<br>-9.6<br>30.9                                                                                                                                | 0.5<br>-9.6<br>27.6                                                                                                                         | 0.5<br>-9.6<br>32.6                                                                                                            | 0.5<br>-9.6<br>42.6                                                                                                                               | 0.5<br>-9.6<br>45.6                                                                                                                             | 0.5<br>-9.6<br>42.7                                                                                                                       | 0.5<br>-9.6<br>47.7                                                                                                                                | C<br>-!<br>5                                                                                        |
| E<br>F<br>G                                                                                                                                                                                                                                                                                                                                                                                      | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 40                                        | 0.5<br>-9.6<br>20.9<br>22.3                                                                                                            | 0.5<br>-9.6<br>25.9<br>31.7                                                                                                          | 0.5<br>-9.6<br>30.9<br>37.6                                                                                                                        | 0.5<br>-9.6<br>27.6<br>40.8                                                                                                                 | 0.5<br>-9.6<br>32.6<br>41.5                                                                                                    | 0.5<br>-9.6<br>42.6<br>31.5                                                                                                                       | 0.5<br>-9.6<br>45.6<br>26.3                                                                                                                     | 0.5<br>-9.6<br>42.7<br>25.1                                                                                                               | 0.5<br>-9.6<br>47.7<br>8.9                                                                                                                         | 0<br>- (<br>5<br>-7                                                                                 |
| E<br>F<br>G<br>H                                                                                                                                                                                                                                                                                                                                                                                 | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 40                                        | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0                                                                                                     | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0                                                                                                   | 0.5<br>-9.6<br><b>30.9</b><br><b>37.6</b><br><b>3.0</b>                                                                                            | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0                                                                                                          | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0                                                                                             | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0                                                                                                                | 0.5<br>-9.6<br><b>45.6</b><br>26.3<br>3.0                                                                                                       | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0                                                                                                        | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0                                                                                                                  | 0<br>-9<br>5<br>-7<br>3                                                                             |
| E<br>F<br>G<br>H<br>I                                                                                                                                                                                                                                                                                                                                                                            | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 40                                        | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0                                                                                                     | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0                                                                                                   | 0.5<br>-9.6<br><b>30.9</b><br><b>37.6</b><br><b>3.0</b>                                                                                            | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0                                                                                                          | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0                                                                                             | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0                                                                                                                | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0                                                                                                              | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0                                                                                                        | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0                                                                                                                  | 0<br>-9<br>5<br>-7<br>3                                                                             |
| E<br>F<br>G<br>H<br>I<br>J                                                                                                                                                                                                                                                                                                                                                                       | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 40                                        | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3                                                                                             | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7                                                                                           | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6                                                                                                         | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8                                                                                                  | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5                                                                                     | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5                                                                                                        | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3                                                                                                      | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1                                                                                                | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9                                                                                                          | 0<br>-9<br>5<br>-7<br>3<br>-7                                                                       |
| E<br>F<br>G<br>H<br>I<br>J<br>K                                                                                                                                                                                                                                                                                                                                                                  | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 40                                        | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3                                                                                             | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7                                                                                           | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6                                                                                                         | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8                                                                                                  | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5                                                                                     | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5                                                                                                        | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3                                                                                                      | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1                                                                                                | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9                                                                                                          | 0<br>-9<br>5<br>-7<br>3                                                                             |
| E<br>F<br>G<br>H<br>J<br>K<br>L                                                                                                                                                                                                                                                                                                                                                                  | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           | 40                                        | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3                                                                                             | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>32                                                                                     | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37                                                                                                   | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37                                                                                            | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36                                                                               | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47                                                                                                  | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49                                                                                                | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55                                                                                          | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61                                                                                                    | 0<br>-9<br>5<br>-7<br>3<br>-2                                                                       |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M                                                                                                                                                                                                                                                                                                                                                             | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{s}log(10) - B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           | 40                                        | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3                                                                                             | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>32<br>29.8                                                                             | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7                                                                                           | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6                                                                                    | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36<br>42.4                                                                       | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3                                                                                          | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1                                                                                        | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0                                                                                  | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2                                                                                            | 0<br>-(<br>5<br>-7<br>3<br>-4                                                                       |
| E<br>F<br>G<br>H<br>J<br>J<br>K<br>L<br>M<br>N                                                                                                                                                                                                                                                                                                                                                   | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{s}log(10) - B$<br>Internal room noise level, vent open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1           | 40<br>43<br>45                            | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3                                                                                             | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9                                                                           | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8                                                                                   | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4                                                                            | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36<br>42.4<br>46.6                                                               | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2                                                                                  | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>29.3<br>49<br>27.1<br>31.3                                                                        | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4                                                                          | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2                                                                                    | 0                                                                                                   |
| E<br>F<br>G<br>H<br>J<br>L<br>K<br>L<br>M<br>M<br>Glazing:<br>Ventilator type:                                                                                                                                                                                                                                                                                                                   | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br><i>Titan V75/C75</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           | 40 43 45                                  | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3                                                                                             | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>32<br>29.8<br>35.9                                                                     | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8                                                                                   | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4                                                                            | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36<br>42.4<br>46.6                                                               | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2                                                                                  | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3                                                                                | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4                                                                          | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2                                                                                    |                                                                                                     |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>M<br>Slazing:<br>Ventilator type:                                                                                                                                                                                                                                                                                                                        | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^* log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>pable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1           | 40<br>43<br>45                            | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3                                                                                             | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>32<br>29.8<br>35.9                                                                     | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8                                                                                   | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4                                                                            | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36<br>42.4<br>46.6                                                               | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2                                                                                  | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3                                                                                | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4                                                                          | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2                                                                                    | 0                                                                                                   |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>Flat 1, bedroom - c<br>* Octave Band Ce                                                                                                                                                                                                                                                                             | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>L <sub>Aeq</sub> - $D_{n,e}$ + 10°log(10) - B<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>pable<br>Inter Frequency, Hz<br>Magazing L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1           | 40<br>43<br>45<br>dB(A)                   | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>3.0<br>25.3                                                                              | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>32<br>29.8<br>35.9                                                                     | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br>125*                                                                           | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br>250*                                                                    | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36<br>42.4<br>46.6<br>500*                                                       | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b>                                                                    | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>27.1<br>31.3                                                                | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>4k*                                                                   | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>8k*                                                                             | 0<br>-9<br>5<br>-7<br>3<br>-2                                                                       |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>Flat 1, bedroom - G<br>* Octave Band Ce<br>A                                                                                                                                                                                                                                                                        | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>able<br>Inter Frequency, Hz<br>Measured $L_{max}$<br>Excepted for a k $v^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>3.0<br>25.3<br>31.5*                                                                     | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>32<br>29.8<br>35.9<br>                                                                 | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70                                                              | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br>250*<br>70                                                              | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36<br>42.4<br>46.6<br>500*<br>76                                                 | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76                                                              | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>2 <b>k</b> *<br>74                                                          | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>                                                                      | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br><b>8k*</b><br>59                                                                | 0<br>                                                                                               |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>Flat 1, bedroom - (<br>* Octave Band Ce<br>A<br>B                                                                                                                                                                                                                                                                   | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>pable<br>Inter Frequency, Hz<br>Measured $L_{max}$<br>Exposed façade, m <sup>2</sup><br>Venture 4 for applied up to a maximum and the second sec | 1           | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br><b>31.5</b> *<br>45<br>10.7                                                      | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br>60<br>10.7                                                             | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7                                                      | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br><b>250*</b><br>70<br>10.7                                               | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>44.5<br>42.4<br>46.6<br><b>500*</b><br>76<br>10.7                                | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7                                                      | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br><b>2k*</b><br>74<br>10.7                                                    | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>                                                                      | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br><b>8k*</b><br>59<br>10.7                                                | 0<br>                                                                                               |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>M<br>Slazing:<br>Ventilator type:<br>Flat 1, bedroom - 6<br>* Octave Band Ce<br>A<br>B<br>C                                                                                                                                                                                                                                                              | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>pable<br>Inter Frequency, Hz<br>Measured $L_{max}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 1.7 28.1  | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>31.5*<br>45<br>10.7                                                              | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>32<br>29.8<br>35.9<br>63*<br>60<br>10.7                                                | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br>125*<br>70<br>10.7                                                             | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br>250*<br>70<br>10.7                                                      | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>44.5<br>42.4<br>46.6<br>500*<br>76<br>10.7                                       | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7                                                      | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>2k*<br>74<br>10.7                                                           | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>28.4<br>4k*<br>70<br>10.7                                             | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br><b>8k*</b><br>59<br>10.7                                                | 0<br>                                                                                               |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>M<br>Slazing:<br>Ventilator type:<br>Flat 1, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D                                                                                                                                                                                                                                                         | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>pable<br>Inter Frequency, Hz<br>Measured $L_{max}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 11.7 28.1 | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>31.5*<br>45<br>10.7                                                              | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br>60<br>10.7<br>0.5<br>0.5                                               | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7                                                      | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br><b>250*</b><br>70<br>10.7                                               | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>42.4<br>46.6<br>500*<br>76<br>10.7                                               | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5                                               | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>2.7<br>1<br>31.3<br>2.7<br>4<br>10.7<br>0.5<br>0.5                          | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>28.4<br>70<br>10.7<br>0.5<br>0.5                                      | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br><b>8k*</b><br>59<br>10.7                                                | 0<br>                                                                                               |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>M<br>Glazing:<br>Ventilator type:<br>Flat 1, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>C<br>D<br>E                                                                                                                                                                                                                                               | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>L <sub>Aeq</sub> - $D_{n,e}$ + 10°log(10) - B<br>Internal room noise level, vent open<br><i>4mm</i> , 16/20mm, 4mm<br>Titan V75/C75<br>pable<br>Inter Frequency, Hz<br>Measured L <sub>max</sub><br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite DDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1           | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>3.0<br>25.3<br>45<br>10.7<br>0.5<br>-9.6<br>28.2                                 | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br>5.9<br>60<br>10.7<br>0.5<br>-9.6                                       | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7<br>0.5<br>-9.6                                       | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br><b>250*</b><br>70<br>10.7<br>0.5<br>-9.6                                | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36<br>42.4<br>46.6<br>500*<br>76<br>10.7<br>0.5<br>-9.6                          | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5<br>-9.6                                       | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br><b>2k*</b><br>74<br>10.7<br>0.5<br>-9.6<br>9.2                              | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>28.4<br>70<br>10.7<br>0.5<br>-9.6<br>52.2                             | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br>8k*<br>59<br>10.7<br>0.5<br>-9.6<br>57.0                                | 0 C                                                                                                 |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>Flat 1, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F                                                                                                                                                                                                                                               | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>L Age - $D_{n,e}$ + 10°log(10) - B<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>pable<br>Inter Frequency, Hz<br>Measured L max<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 11.7 28.1 | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>31.5*<br>45<br>10.7<br>0.5<br>-9.6<br>28.0                                       | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br><b>63*</b><br>60<br>10.7<br>0.5<br>-9.6<br>33.0                        | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7<br>0.5<br>-9.6<br><b>38.0</b><br>22.5                | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br><b>250*</b><br>70<br>10.7<br>0.5<br>-9.6<br>42.0                        | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>                                                                                 | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5<br>-9.6<br><b>58.0</b>                        | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>28*<br>74<br>10.7<br>0.5<br>-9.6<br>62.0                                    | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>28.4<br>28.4<br>70<br>10.7<br>0.5<br>-9.6<br>62.0                     | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br>8k*<br>59<br>10.7<br>0.5<br>-9.6<br>67.0                                | 0<br>                                                                                               |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>Contailator type:<br>Flat 1, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>S                                                                                                                                                                                                                                                | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>L <sub>Aeq</sub> - $D_{n,e}$ + 10°log(10) - B<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>able<br>Inter Frequency, Hz<br>Measured L <sub>max</sub><br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.728.1    | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>3.0<br>25.3<br>45<br>10.7<br>0.5<br>-9.6<br>28.0<br>18.2<br>2.2                  | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br>5.9<br>60<br>10.7<br>0.5<br>-9.6<br>33.0<br>27.6                       | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7<br>0.5<br>-9.6<br>38.0<br>33.5                       | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br>250*<br>70<br>10.7<br>0.5<br>-9.6<br>42.0<br>29.4                       | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>36<br>42.4<br>46.6<br>500*<br>76<br>10.7<br>0.5<br>-9.6<br>50.0<br>27.2          | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5<br>-9.6<br>58.0<br>19.1<br>2.2                | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br><b>2k*</b><br>74<br>10.7<br>0.5<br>-9.6<br>62.0<br>12.9                     | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>28.4<br>70<br>10.7<br>0.5<br>-9.6<br>62.0<br>8.8<br>2.2               | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br>8k*<br>59<br>10.7<br>0.5<br>-9.6<br>67.0<br>-7.4                        | C                                                                                                   |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>Flat 1, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>H                                                                                                                                                                                                                 | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>L <sub>Aeq</sub> - $D_{n,e}$ + 10*log(10) - B<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>Titan V75/C75<br>Measured L <sub>max</sub><br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI<br>A + B + E - F<br>K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.728.1    | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>3.0<br>25.3<br>45<br>10.7<br>0.5<br>-9.6<br>28.0<br>18.2<br>3.0                  | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br><b>63*</b><br>60<br>10.7<br>0.5<br>-9.6<br>33.0<br>27.6<br>3.0         | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7<br>0.5<br>-9.6<br>38.0<br>33.5<br>3.0                | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br><b>250*</b><br>70<br>10.7<br>0.5<br>-9.6<br>42.0<br>29.4<br>3.0         | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>                                                                                 | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5<br>-9.6<br>58.0<br>19.1<br>3.0                | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>74<br>10.7<br>0.5<br>-9.6<br>62.0<br>12.9<br>3.0                            | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>70<br>28.4<br>70<br>10.7<br>0.5<br>-9.6<br>62.0<br>8.8<br>3.0         | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br><b>8k*</b><br>59<br>10.7<br>0.5<br>-9.6<br>67.0<br>-7.4<br>3.0          | 0<br>                                                                                               |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>                                                                                                                                                                                                                                                                                                                    | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>Titan V75/C75<br>Measured $L_{max}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI<br>A + B + E - F<br>K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.728.1    | 40<br>43<br>45<br>dB(A)<br>80             | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>25.3<br>3.0<br>25.3<br>45<br>10.7<br>0.5<br>-9.6<br>28.0<br>18.2<br>3.0          | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br>60<br>10.7<br>0.5<br>-9.6<br>33.0<br>27.6<br>3.0                       | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7<br>0.5<br>-9.6<br>38.0<br>33.5<br>3.0                | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br><b>250*</b><br>70<br>10.7<br>0.5<br>-9.6<br>42.0<br>29.4<br>3.0         | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>42.4<br>46.6<br>500*<br>76<br>10.7<br>0.5<br>-9.6<br>50.0<br>27.2<br>3.0         | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5<br>-9.6<br>58.0<br>19.1<br>3.0                | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>2 <b>k</b> *<br>74<br>10.7<br>0.5<br>-9.6<br>62.0<br>12.9<br>3.0            | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>70<br>28.4<br>70<br>10.7<br>0.5<br>-9.6<br>62.0<br>8.8<br>3.0         | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>1                               | 0<br>                                                                                               |
| E<br>F<br>G<br>H<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>Flat 1, bedroom - 6<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>C<br>D<br>E<br>F<br>G<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                 | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>pable<br>Inter Frequency, Hz<br>Measured $L_{max}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V))$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1           | 40<br>43<br>45<br>dB(A)<br>80<br>27<br>30 | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>25.3<br>3.0<br>31.5*<br>45<br>10.7<br>0.5<br>-9.6<br>28.0<br>18.2<br>3.0<br>21.2 | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br>60<br>10.7<br>0.5<br>-9.6<br>33.0<br>27.6<br>3.0<br>27.6<br>3.0        | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7<br>0.5<br>-9.6<br>38.0<br>33.5<br>3.0<br>33.5        | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br>70<br>10.7<br>0.5<br>-9.6<br>42.0<br>29.4<br>3.0<br>32.4                | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>42.4<br>46.6<br>500*<br>76<br>10.7<br>0.5<br>-9.6<br>50.0<br>27.2<br>3.0<br>30.2 | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5<br>-9.6<br>58.0<br>19.1<br>3.0<br>22.1        | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>2<br><b>2k*</b><br>74<br>10.7<br>0.5<br>-9.6<br>62.0<br>12.9<br>3.0<br>15.9 | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>28.4<br>70<br>10.7<br>0.5<br>-9.6<br>62.0<br>8.8<br>3.0<br>11.8       | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>1                               | 0<br>-§<br>5;<br>-7<br>3<br>-4<br>-4<br>-4<br>-16<br>-4<br>10<br>-0<br>-9<br>67<br>-1§<br>3.<br>-16 |
| E<br>F<br>G<br>H<br>I<br>J<br>K<br>L<br>M<br><b>M</b><br><b>Glazing:</b><br><b>Ventilator type:</b><br>Flat 1, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>Glazing:<br>Ventilator type:<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>S<br>C<br>D<br>E<br>F<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | Reverb Time, seconds<br>$10 \times Log(RT60/(0.163 \times V)$<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C75pableInter Frequency, HzMeasured L_{max}Exposed façade, m2Volume of receiving room, m3Reverb Time, seconds10 \times Log(RT60/(0.163 \times V))Composite SRIA + B + E - FK = 3Calculated internal noise level-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1           | 40<br>43<br>45<br>dB(A)<br>80<br>27<br>30 | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>25.3<br>3.0<br>25.3<br>45<br>10.7<br>0.5<br>-9.6<br>28.0<br>18.2<br>3.0<br>21.2  | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br>60<br>10.7<br>0.5<br>-9.6<br>33.0<br>27.6<br>3.0<br>27.6<br>3.0        | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7<br>0.5<br>-9.6<br>38.0<br>33.5<br>3.0<br>36.5        | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br>70<br>10.7<br>0.5<br>-9.6<br>42.0<br>29.4<br>3.0<br>32.4                | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>42.4<br>46.6<br>500*<br>76<br>10.7<br>0.5<br>-9.6<br>50.0<br>27.2<br>3.0<br>30.2 | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5<br>-9.6<br>58.0<br>19.1<br>3.0<br>22.1        | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>28<br>74<br>10.7<br>0.5<br>-9.6<br>62.0<br>12.9<br>3.0<br>15.9              | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>70<br>28.4<br>70<br>10.7<br>0.5<br>-9.6<br>62.0<br>8.8<br>3.0<br>11.8 | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>12.2<br>1                               | 0<br>-§<br>5:<br>-7<br>3<br>-4<br>-4<br>-4<br>10<br>0<br>-9<br>67<br>-1§<br>3.<br>-16               |
| E<br>F<br>G<br>H<br>J<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>Flat 1, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H<br>I<br>J<br>Glazing:<br>Ventilator type:<br>Ventilator type:                                                                                                                                                                  | Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>L A <sub>60</sub> - $D_{n,e}$ + 10 <sup>1</sup> og(10) - B<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C75<br>pable<br>Inter Frequency, Hz<br>Measured L max<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 11.7 28.1 | 40<br>43<br>45<br>dB(A)<br>80<br>27<br>30 | 0.5<br>-9.6<br>20.9<br>22.3<br>3.0<br>25.3<br>25.3<br>25.3<br>3.0<br>25.3<br>45<br>10.7<br>0.5<br>-9.6<br>28.0<br>18.2<br>3.0<br>21.2  | 0.5<br>-9.6<br>25.9<br>31.7<br>3.0<br>34.7<br>29.8<br>35.9<br><b>63*</b><br>60<br>10.7<br>0.5<br>-9.6<br>33.0<br>27.6<br>3.0<br>30.6 | 0.5<br>-9.6<br>30.9<br>37.6<br>3.0<br>40.6<br>37<br>35.7<br>41.8<br><b>125*</b><br>70<br>10.7<br>0.5<br>-9.6<br><b>38.0</b><br>33.5<br>3.0<br>36.5 | 0.5<br>-9.6<br>27.6<br>40.8<br>3.0<br>43.8<br>37<br>35.6<br>44.4<br><b>250*</b><br>70<br>10.7<br>0.5<br>-9.6<br>42.0<br>29.4<br>3.0<br>32.4 | 0.5<br>-9.6<br>32.6<br>41.5<br>3.0<br>44.5<br>42.4<br>46.6<br>500*<br>76<br>10.7<br>0.5<br>-9.6<br>50.0<br>27.2<br>3.0<br>30.2 | 0.5<br>-9.6<br>42.6<br>31.5<br>3.0<br>34.5<br>47<br>31.3<br>36.2<br><b>1k*</b><br>76<br>10.7<br>0.5<br>-9.6<br><b>58.0</b><br>19.1<br>3.0<br>22.1 | 0.5<br>-9.6<br>45.6<br>26.3<br>3.0<br>29.3<br>49<br>27.1<br>31.3<br>28*<br>74<br>10.7<br>0.5<br>-9.6<br>62.0<br>12.9<br>3.0<br>15.9             | 0.5<br>-9.6<br>42.7<br>25.1<br>3.0<br>28.1<br>55<br>17.0<br>28.4<br>28.4<br>70<br>10.7<br>0.5<br>-9.6<br>62.0<br>8.8<br>3.0<br>11.8       | 0.5<br>-9.6<br>47.7<br>8.9<br>3.0<br>11.9<br>61<br>-0.2<br>12.2<br>12.2<br>12.2<br>8k*<br>59<br>10.7<br>0.5<br>-9.6<br>67.0<br>-7.4<br>3.0<br>-7.4 | 09<br>52<br>-7<br>3.<br>-4<br>-4<br>10<br>0.<br>-9<br>67<br>-15<br>3.<br>-16                        |

| ABIL / 1000000111                                                                                                                                                                                                | ent, daytime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      | 1 |
| Flat 2, kitchen/livir                                                                                                                                                                                            | g room - rear elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
| * Octave Band Ce                                                                                                                                                                                                 | entre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | dB(A)                             | 31.5*                                                                                      | 63*                                                                                        | 125*                                                                                                             | 250*                                                                                                | 500*                                                                                        | 1k*                                                                                                 | 2k*                                                                                                | 4k*                                                                                                  | 8k*                                                                                                  |   |
| А                                                                                                                                                                                                                | Measured L eq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 62                                | 33                                                                                         | 41                                                                                         | 46                                                                                                               | 50                                                                                                  | 53                                                                                          | 58                                                                                                  | 57                                                                                                 | 51                                                                                                   | 48                                                                                                   |   |
| В                                                                                                                                                                                                                | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.3              |                                   | 8.6                                                                                        | 8.6                                                                                        | 8.6                                                                                                              | 8.6                                                                                                 | 8.6                                                                                         | 8.6                                                                                                 | 8.6                                                                                                | 8.6                                                                                                  | 8.6                                                                                                  |   |
| С                                                                                                                                                                                                                | Volume of receiving room, m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.9             |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
| D                                                                                                                                                                                                                | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                   | 0.5                                                                                        | 0.5                                                                                        | 0.5                                                                                                              | 0.5                                                                                                 | 0.5                                                                                         | 0.5                                                                                                 | 0.5                                                                                                | 0.5                                                                                                  | 0.5                                                                                                  |   |
| Е                                                                                                                                                                                                                | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                   | -10.7                                                                                      | -10.7                                                                                      | -10.7                                                                                                            | -10.7                                                                                               | -10.7                                                                                       | -10.7                                                                                               | -10.7                                                                                              | -10.7                                                                                                | -10.7                                                                                                |   |
| F                                                                                                                                                                                                                | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |                                   | 21.0                                                                                       | 26.0                                                                                       | 31.0                                                                                                             | 27.7                                                                                                | 32.8                                                                                        | 42.7                                                                                                | 45.8                                                                                               | 42.8                                                                                                 | 47.8                                                                                                 |   |
| G                                                                                                                                                                                                                | A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 19                                | 10.2                                                                                       | 12.4                                                                                       | 12.6                                                                                                             | 20.2                                                                                                | 17.7                                                                                        | 12.7                                                                                                | 9.6                                                                                                | 6.5                                                                                                  | -1.4                                                                                                 |   |
| Н                                                                                                                                                                                                                | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                   | 3.0                                                                                        | 3.0                                                                                        | 3.0                                                                                                              | 3.0                                                                                                 | 3.0                                                                                         | 3.0                                                                                                 | 3.0                                                                                                | 3.0                                                                                                  | 3.0                                                                                                  |   |
| 1                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
| J                                                                                                                                                                                                                | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 22                                | 13.2                                                                                       | 15.4                                                                                       | 15.6                                                                                                             | 23.2                                                                                                | 20.7                                                                                        | 15.7                                                                                                | 12.6                                                                                               | 9.5                                                                                                  | 1.6                                                                                                  |   |
| ĸ                                                                                                                                                                                                                | Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |                                   | -                                                                                          |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
| L                                                                                                                                                                                                                | Ventilator Dag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                |                                   |                                                                                            | 31                                                                                         | 36                                                                                                               | 37                                                                                                  | 34                                                                                          | 30                                                                                                  | 33                                                                                                 | 38                                                                                                   | 43                                                                                                   |   |
| M                                                                                                                                                                                                                | / Arr - D - + 10*log(10) - B                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                   |                                                                                            | 10.9                                                                                       | 11 1                                                                                                             | 14.4                                                                                                | 19.9                                                                                        | 28.9                                                                                                | 25.8                                                                                               | 14 7                                                                                                 | 6.8                                                                                                  | + |
| N                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 32                                |                                                                                            | 16.7                                                                                       | 16.0                                                                                                             | 23.8                                                                                                | 23.3                                                                                        | 20.0                                                                                                | 26.0                                                                                               | 15.8                                                                                                 | 7.0                                                                                                  | + |
| Claring                                                                                                                                                                                                          | 4mm 16/20mm 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 52                                |                                                                                            | 10.7                                                                                       | 10.3                                                                                                             | 20.0                                                                                                | 20.0                                                                                        | 23.1                                                                                                | 20.0                                                                                               | 15.0                                                                                                 | 1.5                                                                                                  | - |
| Gidzirig.<br>Ventileter tuner                                                                                                                                                                                    | 4/////, 10/20/////, 4/////                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      | + |
| ventilator type:                                                                                                                                                                                                 | Greenwood 4000EAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      | + |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
| Flat 2, kitchen/livir                                                                                                                                                                                            | g room - gable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
| * Octave Band Ce                                                                                                                                                                                                 | entre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | dB(A)                             | 31.5*                                                                                      | 63*                                                                                        | 125*                                                                                                             | 250*                                                                                                | 500*                                                                                        | 1k*                                                                                                 | 2k*                                                                                                | 4k*                                                                                                  | 8k*                                                                                                  |   |
| А                                                                                                                                                                                                                | Measured L <sub>eq</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | 62                                | 33                                                                                         | 41                                                                                         | 46                                                                                                               | 50                                                                                                  | 53                                                                                          | 58                                                                                                  | 57                                                                                                 | 51                                                                                                   | 48                                                                                                   | T |
| В                                                                                                                                                                                                                | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12               |                                   | 10.8                                                                                       | 10.8                                                                                       | 10.8                                                                                                             | 10.8                                                                                                | 10.8                                                                                        | 10.8                                                                                                | 10.8                                                                                               | 10.8                                                                                                 | 10.8                                                                                                 | t |
| C                                                                                                                                                                                                                | Volume of receiving room. m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.9             |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      | + |
| D                                                                                                                                                                                                                | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                   | 0.5                                                                                        | 0.5                                                                                        | 0.5                                                                                                              | 0.5                                                                                                 | 0.5                                                                                         | 0.5                                                                                                 | 0.5                                                                                                | 0.5                                                                                                  | 0.5                                                                                                  | + |
| E                                                                                                                                                                                                                | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                                   | -10.7                                                                                      | -10.7                                                                                      | -10.7                                                                                                            | -10.7                                                                                               | -10.7                                                                                       | -10.7                                                                                               | -10.7                                                                                              | -10.7                                                                                                | -10.7                                                                                                | · |
| F                                                                                                                                                                                                                | I bed existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                   | 28.0                                                                                       | 33.0                                                                                       | 38.0                                                                                                             | 42.0                                                                                                | 50.0                                                                                        | 58.0                                                                                                | 62.0                                                                                               | 62.0                                                                                                 | 67.0                                                                                                 | 1 |
| G                                                                                                                                                                                                                | A+B+E-F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 5                                 | 5.4                                                                                        | 7.6                                                                                        | 7.8                                                                                                              | 8.1                                                                                                 | 2.6                                                                                         | -0.4                                                                                                | -4.5                                                                                               | -10.6                                                                                                | -18.5                                                                                                | + |
| н                                                                                                                                                                                                                | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1                                 | 3.0                                                                                        | 3.0                                                                                        | 3.0                                                                                                              | 3.0                                                                                                 | 3.0                                                                                         | 3.0                                                                                                 | 3.0                                                                                                | 3.0                                                                                                  | 3.0                                                                                                  | + |
| 1                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                   | 0.0                                                                                        | 0.0                                                                                        | 0.0                                                                                                              | 0.0                                                                                                 | 0.0                                                                                         | 0.0                                                                                                 | 0.0                                                                                                | 0.0                                                                                                  | 0.0                                                                                                  | + |
| .l                                                                                                                                                                                                               | Calculated internal poise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 8                                 | 8.4                                                                                        | 10.6                                                                                       | 10.8                                                                                                             | 11 1                                                                                                | 5.6                                                                                         | 2.6                                                                                                 | -1.5                                                                                               | -76                                                                                                  | -15.5                                                                                                | + |
| Glazina:                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | - <b>-</b>                        | 0.1                                                                                        | 10.0                                                                                       | 10.0                                                                                                             |                                                                                                     | 0.0                                                                                         | 2.0                                                                                                 | 1.0                                                                                                | 1.0                                                                                                  | 10.0                                                                                                 | - |
| Ventilator type:                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      | + |
| remained type.                                                                                                                                                                                                   | Combined sound level dB(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 32                                |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      | + |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
| Flat 2, bedroom -                                                                                                                                                                                                | rear elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      |   |
| * Octave Band Ce                                                                                                                                                                                                 | entre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | dB(A)                             | 31.5*                                                                                      | 63*                                                                                        | 125*                                                                                                             | 250*                                                                                                | 500*                                                                                        | 1k*                                                                                                 | 2k*                                                                                                | 4k*                                                                                                  | 8k*                                                                                                  |   |
| А                                                                                                                                                                                                                | Measured L max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | 62                                | 33                                                                                         | 41                                                                                         | 46                                                                                                               | 50                                                                                                  | 53                                                                                          | 58                                                                                                  | 57                                                                                                 | 51                                                                                                   | 48                                                                                                   |   |
| В                                                                                                                                                                                                                | Exposed facade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.6              |                                   | 88                                                                                         | 88                                                                                         | 88                                                                                                               | 88                                                                                                  | 88                                                                                          | 88                                                                                                  | 88                                                                                                 | 8.8                                                                                                  | 8.8                                                                                                  |   |
| C                                                                                                                                                                                                                | Volume of receiving room m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28.7             |                                   | 0.0                                                                                        | 0.0                                                                                        | 0.0                                                                                                              | 0.0                                                                                                 | 0.0                                                                                         | 0.0                                                                                                 | 0.0                                                                                                | 0.0                                                                                                  | 0.0                                                                                                  | + |
| n                                                                                                                                                                                                                | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.7             |                                   | 0.5                                                                                        | 0.5                                                                                        | 0.5                                                                                                              | 0.5                                                                                                 | 05                                                                                          | 05                                                                                                  | 05                                                                                                 | 05                                                                                                   | 0.5                                                                                                  | + |
| F                                                                                                                                                                                                                | 10 x L og/RT60//0 163 x 1/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                   | _0.5                                                                                       | _0.7                                                                                       | _0.7                                                                                                             | _0.5                                                                                                | -9.7                                                                                        | -9.5                                                                                                | -9.5                                                                                               | -9.5                                                                                                 | -9.5                                                                                                 | + |
|                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                   | 21.2                                                                                       | 26.2                                                                                       | 31.2                                                                                                             | 27 0                                                                                                | 320                                                                                         | 42 0                                                                                                | 45.0                                                                                               | 43.0                                                                                                 | 48.0                                                                                                 | + |
| с<br>С                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 20                                | 11 2                                                                                       | 13/                                                                                        | 13.6                                                                                                             | 21.3                                                                                                | 18 7                                                                                        | 13.7                                                                                                | 10.6                                                                                               | 74                                                                                                   | -0.5                                                                                                 | + |
|                                                                                                                                                                                                                  | K-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 20                                | 3.0                                                                                        | 3.0                                                                                        | 3.0                                                                                                              | 30                                                                                                  | 3.0                                                                                         | 30                                                                                                  | 3.0                                                                                                | 3.4                                                                                                  | 3.0                                                                                                  |   |
| P                                                                                                                                                                                                                | N = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                   | 5.0                                                                                        | 5.0                                                                                        | 5.0                                                                                                              | 5.0                                                                                                 | 5.0                                                                                         | 5.0                                                                                                 | 5.0                                                                                                | 5.0                                                                                                  | 0.0                                                                                                  |   |
| <u>н</u><br>І                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                   |                                                                                            |                                                                                            |                                                                                                                  |                                                                                                     |                                                                                             |                                                                                                     |                                                                                                    |                                                                                                      |                                                                                                      | + |
|                                                                                                                                                                                                                  | Calculated internel paice lavel                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | 22                                | 1/1 2                                                                                      | 16.4                                                                                       | 16.6                                                                                                             | 212                                                                                                 | 21 7                                                                                        | 16.7                                                                                                | 136                                                                                                | 10.4                                                                                                 | 25                                                                                                   |   |
| H<br>I<br>J                                                                                                                                                                                                      | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                | 23                                | 14.2                                                                                       | 16.4                                                                                       | 16.6                                                                                                             | 24.2                                                                                                | 21.7                                                                                        | 16.7                                                                                                | 13.6                                                                                               | 10.4                                                                                                 | 2.5                                                                                                  |   |
| H<br>J<br>K                                                                                                                                                                                                      | Calculated internal noise level<br>Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                | 23                                | 14.2                                                                                       | 16.4                                                                                       | 16.6                                                                                                             | 24.2                                                                                                | 21.7                                                                                        | 16.7                                                                                                | 13.6                                                                                               | 10.4                                                                                                 | 2.5                                                                                                  |   |
| ⊓<br>I<br>J<br>K<br>L                                                                                                                                                                                            | Calculated internal noise level<br>Number of ventilators<br>Ventilator D <sub>n,e</sub>                                                                                                                                                                                                                                                                                                                                                                                                              | 1                | 23                                | 14.2                                                                                       | 16.4<br>35                                                                                 | 16.6<br>40                                                                                                       | 24.2<br>37                                                                                          | 21.7<br>34                                                                                  | 16.7<br>43                                                                                          | 13.6<br>50                                                                                         | 10.4<br>53                                                                                           | 2.5<br>63                                                                                            |   |
| I<br>J<br>K<br>L<br>M                                                                                                                                                                                            | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{s} log(10) - B$                                                                                                                                                                                                                                                                                                                                                                         | 1                | 23                                | 14.2                                                                                       | 16.4<br>35<br>6.7                                                                          | 16.6<br>40<br>6.9                                                                                                | 24.2<br>37<br>14.2                                                                                  | 21.7<br>34<br>19.7                                                                          | 16.7<br>43<br>15.7                                                                                  | 13.6<br>50<br>8.6                                                                                  | 10.4<br>53<br>-0.5                                                                                   | 2.5<br>63<br>-13.4                                                                                   |   |
| ⊢<br>I<br>J<br>K<br>L<br>M<br>N                                                                                                                                                                                  | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{s} log(10) - B$<br>Internal room noise level, vent open                                                                                                                                                                                                                                                                                                                                 | 1                | 23<br>25                          | 14.2                                                                                       | 16.4<br>35<br>6.7<br>16.9                                                                  | 16.6<br>40<br>6.9<br>17.1                                                                                        | 24.2<br>37<br>14.2<br>24.6                                                                          | 21.7<br>34<br>19.7<br>23.8                                                                  | 16.7<br>43<br>15.7<br>19.2                                                                          | 13.6<br>50<br>8.6<br>14.8                                                                          | 10.4<br>53<br>-0.5<br>10.8                                                                           | 2.5<br>63<br>-13.4<br>2.6                                                                            |   |
| I<br>J<br>K<br>L<br>M<br>N<br>Glazing:                                                                                                                                                                           | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{s} log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm                                                                                                                                                                                                                                                                                                            | 1                | 23<br>25                          | 14.2                                                                                       | 16.4<br>35<br>6.7<br>16.9                                                                  | 16.6<br>40<br>6.9<br>17.1                                                                                        | 24.2<br>37<br>14.2<br>24.6                                                                          | 21.7<br>34<br>19.7<br>23.8                                                                  | 16.7<br>43<br>15.7<br>19.2                                                                          | 13.6<br>50<br>8.6<br>14.8                                                                          | 10.4<br>53<br>-0.5<br>10.8                                                                           | 2.5<br>63<br>-13.4<br>2.6                                                                            |   |
| I<br>J<br>K<br>L<br>M<br>Slazing:<br>Ventilator type:                                                                                                                                                            | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{s} log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50                                                                                                                                                                                                                                                                                           | 1                | 23<br>25                          | 14.2                                                                                       | 16.4<br>35<br>6.7<br>16.9                                                                  | 16.6<br>40<br>6.9<br>17.1                                                                                        | 24.2<br>37<br>14.2<br>24.6                                                                          | 21.7<br>34<br>19.7<br>23.8                                                                  | 16.7<br>43<br>15.7<br>19.2                                                                          | 13.6<br>50<br>8.6<br>14.8                                                                          | 10.4<br>53<br>-0.5<br>10.8                                                                           | 2.5<br>63<br>-13.4<br>2.6                                                                            |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:                                                                                                                                                            | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50                                                                                                                                                                                                                                                                                               | 1                | 23<br>25                          | 14.2                                                                                       | 16.4<br>35<br>6.7<br>16.9                                                                  | 16.6<br>40<br>6.9<br>17.1                                                                                        | 24.2<br>37<br>14.2<br>24.6                                                                          | 21.7<br>34<br>19.7<br>23.8                                                                  | 16.7<br>43<br>15.7<br>19.2                                                                          | 13.6<br>50<br>8.6<br>14.8                                                                          | 10.4<br>53<br>-0.5<br>10.8                                                                           | 2.5<br>63<br>-13.4<br>2.6                                                                            |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:                                                                                                                                                            | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{10} g(10) - B$<br>Internal room noise level, vent open<br><i>Amm</i> , 16/20mm, 4mm<br>Titan V75/C50                                                                                                                                                                                                                                                                                    | 1                | 23                                | 14.2                                                                                       | 16.4<br>35<br>6.7<br>16.9                                                                  | 16.6<br>40<br>6.9<br>17.1                                                                                        | 24.2<br>37<br>14.2<br>24.6                                                                          | 21.7<br>34<br>19.7<br>23.8                                                                  | 16.7<br>43<br>15.7<br>19.2                                                                          | 13.6<br>50<br>8.6<br>14.8                                                                          | 10.4<br>53<br>-0.5<br>10.8                                                                           | 2.5<br>63<br>-13.4<br>2.6                                                                            |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:                                                                                                                                                            | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{10} log(10) - B$<br>Internal room noise level, vent open<br><i>4mm</i> , 16/20mm, 4mm<br><i>Titan</i> V75/C50                                                                                                                                                                                                                                                                           | 1                | 23<br>25                          | 14.2                                                                                       | 16.4<br>35<br>6.7<br>16.9                                                                  | 16.6<br>40<br>6.9<br>17.1                                                                                        | 24.2<br>37<br>14.2<br>24.6                                                                          | 21.7<br>34<br>19.7<br>23.8                                                                  | 16.7<br>43<br>15.7<br>19.2                                                                          | 13.6<br>50<br>8.6<br>14.8                                                                          | 10.4<br>53<br>-0.5<br>10.8                                                                           | 2.5<br>63<br>-13.4<br>2.6                                                                            |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom -<br>* Octave Band Ce                                                                                                                   | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{log}(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50                                                                                                                                                                                                                                                                                             | 1                | 23<br>25<br>dB(A)                 | 14.2<br>31.5*                                                                              | 16.4<br>35<br>6.7<br>16.9                                                                  | 16.6<br>40<br>6.9<br>17.1                                                                                        | 24.2<br>37<br>14.2<br>24.6<br>250*                                                                  | 21.7<br>34<br>19.7<br>23.8<br>500*                                                          | 16.7<br>43<br>15.7<br>19.2                                                                          | 13.6<br>50<br>8.6<br>14.8                                                                          | 10.4<br>53<br>-0.5<br>10.8                                                                           | 2.5<br>63<br>-13.4<br>2.6<br>8k*                                                                     |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom -<br>* Octave Band Ce<br>A                                                                                                              | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{log}(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>gable<br>Inter Frequency, Hz<br>Measured $L_{eq}$<br>T                                                                                                                                                                                                                                   | 1                | 23<br>25<br>dB(A)<br>62           | 14.2<br>31.5*<br>33                                                                        | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41                                                     | 16.6<br>40<br>6.9<br>17.1<br><u>125*</u><br>46                                                                   | 24.2<br>37<br>14.2<br>24.6<br>250*<br>50                                                            | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53                                                    | 16.7<br>43<br>15.7<br>19.2<br><b>1k</b> *                                                           | 13.6<br>50<br>8.6<br>14.8<br>2k*<br>57                                                             | 10.4<br>53<br>-0.5<br>10.8<br>4k*<br>51                                                              | 2.5<br>63<br>-13.4<br>2.6<br>8k*                                                                     |   |
| Flat 2, bedroom -<br>* Octave Band Ce<br>A<br>B                                                                                                                                                                  | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{\circ}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>gable<br>entre Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup>                                                                                                                                                                                                 | 9.3              | 23<br>25<br>dB(A)<br>62           | 14.2<br>31.5*<br>33<br>9.7                                                                 | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7                                              | 16.6<br>40<br>6.9<br>17.1<br>125*<br>46<br>9.7                                                                   | 24.2<br>37<br>14.2<br>24.6<br><b>250*</b><br>50<br>9.7                                              | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7                                             | 16.7<br>43<br>15.7<br>19.2<br><b>1k</b> *<br>58<br>9.7                                              | 13.6<br>50<br>8.6<br>14.8<br><b>2k*</b><br>57<br>9.7                                               | 10.4<br>53<br>-0.5<br>10.8<br>4k*<br>51<br>9.7                                                       | 2.5<br>63<br>-13.4<br>2.6<br><b>8k*</b><br>48<br>9.7                                                 |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom -<br>* Octave Band Ce<br>A<br>B<br>C                                                                                                    | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>gable<br>entre Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup>                                                                                                                                                         | 9.3 28.7         | 23<br>25<br>dB(A)<br>62           | 14.2<br>31.5*<br>33<br>9.7                                                                 | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7                                              | 16.6<br>40<br>6.9<br>17.1<br><b>125*</b><br>46<br>9.7                                                            | 24.2<br>37<br>14.2<br>24.6<br><b>250*</b><br>50<br>9.7                                              | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7                                             | 16.7<br>43<br>15.7<br>19.2<br><b>1k*</b><br>58<br>9.7                                               | 13.6<br>50<br>8.6<br>14.8<br><b>2k*</b><br>57<br>9.7                                               | 10.4<br>53<br>-0.5<br>10.8<br>4k*<br>51<br>9.7                                                       | 2.5<br>63<br>-13.4<br>2.6<br><b>8k*</b><br>48<br>9.7                                                 |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom -<br>* <u>Octave Band Ce</u><br>A<br>B<br>C<br>D                                                                                        | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>gable<br>mtre Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds                                                                                                                                  | 9.3 28.7         | 23<br>25<br>dB(A)<br>62           | 14.2<br>31.5*<br>33<br>9.7<br>0.5                                                          | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7<br>0.5                                       | 16.6<br>40<br>6.9<br>17.1<br>125*<br>46<br>9.7<br>0.5                                                            | 24.2<br>37<br>14.2<br>24.6<br>250*<br>50<br>9.7<br>0.5                                              | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>0.5                                      | 16.7<br>43<br>15.7<br>19.2<br><b>1k*</b><br>58<br>9.7<br>0.5                                        | 13.6<br>50<br>8.6<br>14.8<br><b>2k*</b><br>57<br>9.7<br>0.5                                        | 10.4<br>53<br>-0.5<br>10.8<br><b>4k*</b><br>51<br>9.7<br>0.5                                         | 2.5<br>63<br>-13.4<br>2.6<br><b>8k*</b><br>48<br>9.7<br>0.5                                          |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom -<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E                                                                                          | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{10} log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>gable<br>more Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)                                                                                                   | 9.3<br>28.7      | 23<br>25<br>dB(A)<br>62           | 14.2<br>31.5*<br>33<br>9.7<br>0.5<br>-9.7                                                  | 16.4<br>35<br>6.7<br>16.9<br><b>63*</b><br>41<br>9.7<br>0.5<br>-9.7                        | 16.6<br>40<br>6.9<br>17.1<br><b>125*</b><br>46<br>9.7<br>0.5<br>-9.7                                             | 24.2<br>37<br>14.2<br>24.6<br><b>250*</b><br>50<br>9.7<br>0.5<br>-9.7                               | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>0.5<br>-9.7                              | 16.7<br>43<br>15.7<br>19.2<br>1k*<br>58<br>9.7<br>0.5<br>-9.7                                       | 13.6<br>50<br>8.6<br>14.8<br>2k*<br>57<br>9.7<br>0.5<br>-9.7                                       | 10.4<br>53<br>-0.5<br>10.8<br><b>4k*</b><br>51<br>9.7<br>0.5<br>-9.7                                 | 2.5<br>63<br>-13.4<br>2.6<br><b>8k*</b><br>48<br>9.7<br>0.5<br>-9.7                                  |   |
| Flat 2, bedroom -<br>* Octave Band Ce<br>B<br>C<br>D<br>E<br>F                                                                                                                                                   | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{10} (g(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>gable<br>more Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI                                                                                  | 9.3<br>28.7      | 23<br>25<br>dB(A)<br>62           | 14.2<br>31.5*<br>33<br>9.7<br>0.5<br>-9.7<br>28.0                                          | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7<br>0.5<br>-9.7<br>33.0                       | 16.6<br>40<br>6.9<br>17.1<br>125*<br>46<br>9.7<br>0.5<br>-9.7<br>38.0                                            | 24.2<br>37<br>14.2<br>24.6<br>250*<br>50<br>9.7<br>0.5<br>-9.7<br>42.0                              | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>0.5<br>-9.7<br>50.0                      | 16.7<br>43<br>15.7<br>19.2<br><b>1k</b> *<br>58<br>9.7<br>0.5<br>-9.7<br>58.0                       | 13.6<br>50<br>8.6<br>14.8<br><b>2k*</b><br>57<br>9.7<br>0.5<br>-9.7<br>62.0                        | 10.4<br>53<br>-0.5<br>10.8<br><b>4k*</b><br>51<br>9.7<br>0.5<br>-9.7<br>62.0                         | 2.5<br>63<br>-13.4<br>2.6<br><b>8k*</b><br>48<br>9.7<br>0.5<br>-9.7<br>67.0                          |   |
| Flat 2, bedroom -<br>* Octave Band Ce<br>Base of Ce<br>Flat 2, bedroom -<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G                                                                                  | Calculated internal noise level<br>Number of ventilators<br>Vertilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{log}(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>Titan V75/C50<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI<br>A + B + E - F                                                                                 | 9.3 28.7         | 23<br>25<br>dB(A)<br>62<br>5      | 14.2<br>31.5*<br>33<br>9.7<br>0.5<br>-9.7<br>28.0<br>5.3                                   | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7<br>0.5<br>-9.7<br>33.0<br>7.5                | 16.6<br>40<br>6.9<br>17.1<br>125*<br>46<br>9.7<br>0.5<br>-9.7<br>38.0<br>7.7                                     | 24.2<br>37<br>14.2<br>24.6<br>250*<br>50<br>9.7<br>0.5<br>-9.7<br>42.0<br>8.0                       | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>0.5<br>-9.7<br>50.0<br>2.5               | 16.7<br>43<br>15.7<br>19.2<br>19.2<br>19.2<br>58<br>9.7<br>0.5<br>-9.7<br>58.0<br>-0.5              | 13.6<br>50<br>8.6<br>14.8<br>2k*<br>57<br>9.7<br>0.5<br>-9.7<br>62.0<br>-4.6                       | 10.4<br>53<br>-0.5<br>10.8<br><b>4k*</b><br>51<br>9.7<br>0.5<br>-9.7<br>62.0<br>-10.7                | 2.5<br>63<br>-13.4<br>2.6<br>8k*<br>48<br>9.7<br>0.5<br>-9.7<br>67.0<br>-18.6                        |   |
| Flat 2, bedroom -<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H                                                                                                                                    | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>gable<br>Inter Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3                                                         | 9.3 28.7         | 23<br>25<br>dB(A)<br>62<br>5      | 14.2<br>31.5*<br>33<br>9.7<br>0.5<br>-9.7<br>28.0<br>5.3<br>3.0                            | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7<br>0.5<br>-9.7<br>33.0<br>7.5<br>3.0         | 16.6<br>40<br>6.9<br>17.1<br>125*<br>46<br>9.7<br>0.5<br>-9.7<br>38.0<br>7.7<br>3.0                              | 24.2<br>37<br>14.2<br>24.6<br>250*<br>50<br>9.7<br>0.5<br>-9.7<br>42.0<br>8.0<br>3.0                | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>0.5<br>-9.7<br>50.0<br>2.5<br>3.0        | 16.7<br>43<br>15.7<br>19.2<br><b>1k*</b><br>58<br>9.7<br>0.5<br>-9.7<br>58.0<br>-0.5<br>3.0         | 13.6<br>50<br>8.6<br>14.8<br>2k*<br>57<br>9.7<br>0.5<br>-9.7<br>62.0<br>-4.6<br>3.0                | 10.4<br>53<br>-0.5<br>10.8<br>                                                                       | 2.5<br>63<br>-13.4<br>2.6<br>8k*<br>48<br>9.7<br>0.5<br>-9.7<br>67.0<br>-18.6<br>3.0                 |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom -<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H                                                                           | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*}log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>gable<br>mitre Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI<br>A + B + E - F<br>K = 3                                                        | 9.3 28.7         | 23<br>25<br>dB(A)<br>62<br>5      | 14.2<br>31.5*<br>33<br>9.7<br>0.5<br>-9.7<br>28.0<br>5.3<br>3.0                            | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7<br>0.5<br>-9.7<br>33.0<br>7.5<br>3.0         | 16.6<br>40<br>6.9<br>17.1<br>17.1<br>125*<br>46<br>9.7<br>0.5<br>-9.7<br>38.0<br>7.7<br>3.0                      | 24.2<br>37<br>14.2<br>24.6<br>250*<br>50<br>9.7<br>0.5<br>-9.7<br>42.0<br>8.0<br>3.0                | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>0.5<br>-9.7<br>50.0<br>2.5<br>3.0        | 16.7<br>43<br>15.7<br>19.2<br><b>1</b> k*<br>58<br>9.7<br>0.5<br>-9.7<br>58.0<br>-0.5<br>3.0        | 13.6<br>50<br>8.6<br>14.8<br><b>2k*</b><br>57<br>9.7<br>0.5<br>-9.7<br>62.0<br>-4.6<br>3.0         | 10.4<br>53<br>-0.5<br>10.8<br><b>4k*</b><br>51<br>9.7<br>0.5<br>-9.7<br>62.0<br>-10.7<br>3.0         | 2.5<br>63<br>-13.4<br>2.6<br>8k*<br>48<br>9.7<br>0.5<br>-9.7<br>67.0<br>-18.6<br>3.0                 |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom -<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>E<br>G<br>H<br>I<br>J                                                                 | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{10} \text{log}(10) - B$<br>Internal room noise level, vent open<br><i>4mm</i> , 16/20mm, 4mm<br>Titan V75/C50<br>measured L <sub>eq</sub><br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level                             | 1<br>9.3<br>28.7 | 23<br>25<br>dB(A)<br>62<br>5<br>8 | 14.2<br>31.5*<br>33<br>9.7<br>0.5<br>-9.7<br>28.0<br>5.3<br>3.0<br>8.3                     | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7<br>0.5<br>-9.7<br>33.0<br>7.5<br>3.0<br>10.5 | 16.6<br>40<br>6.9<br>17.1<br><b>125*</b><br>46<br>9.7<br>0.5<br>-9.7<br>38.0<br>7.7<br>3.0<br>10.7               | 24.2<br>37<br>14.2<br>24.6<br><b>250*</b><br>50<br>9.7<br>0.5<br>-9.7<br>42.0<br>8.0<br>3.0<br>11.0 | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>0.5<br>-9.7<br>50.0<br>2.5<br>3.0<br>5.5 | 16.7<br>43<br>15.7<br>19.2<br><b>1</b> k*<br>58<br>9.7<br>0.5<br>-9.7<br>58.0<br>-0.5<br>3.0<br>2.5 | 13.6<br>50<br>8.6<br>14.8<br><b>2k*</b><br>57<br>9.7<br>0.5<br>-9.7<br>62.0<br>-4.6<br>3.0         | 10.4<br>53<br>-0.5<br>10.8<br><b>4k*</b><br>51<br>9.7<br>0.5<br>-9.7<br>62.0<br>-10.7<br>3.0<br>-7.7 | 2.5<br>63<br>-13.4<br>2.6<br><b>8k*</b><br>48<br>9.7<br>0.5<br>-9.7<br>67.0<br>-18.6<br>3.0<br>-15.6 |   |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom -<br>* Octave Band Ce<br>A<br>B<br>C<br>C<br>D<br>E<br>E<br>F<br>G<br>H<br>I<br>J<br>Glazing:                                           | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{10} log(10) - B$<br>Internal room noise level, vent open<br><i>4mm</i> , 16/20mm, 4mm<br><i>Titan</i> V75/C50<br>gable<br>mtre Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V)<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>- | 9.3 28.7         | 23<br>25<br>dB(A)<br>62<br>5<br>8 | <b>31.5*</b><br><b>33</b><br>9.7<br>0.5<br>-9.7<br><b>28.0</b><br>5.3<br>3.0<br><b>8.3</b> | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7<br>0.5<br>-9.7<br>33.0<br>7.5<br>3.0<br>10.5 | 16.6<br>40<br>6.9<br>17.1<br><b>125*</b><br>46<br>9.7<br>0.5<br>-9.7<br><b>38.0</b><br>7.7<br><b>3.0</b><br>10.7 | 24.2<br>37<br>14.2<br>24.6<br>250*<br>50<br>9.7<br>0.5<br>-9.7<br>42.0<br>8.0<br>3.0<br>11.0        | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>0.5<br>-9.7<br>50.0<br>2.5<br>3.0<br>5.5 | 16.7<br>43<br>15.7<br>19.2<br><b>1k*</b><br>58<br>9.7<br>0.5<br>-9.7<br>58.0<br>-0.5<br>3.0<br>2.5  | 13.6<br>50<br>8.6<br>14.8<br>2k*<br>57<br>9.7<br>0.5<br>-9.7<br>62.0<br>-4.6<br>3.0<br>-1.6        | 10.4<br>53<br>-0.5<br>10.8<br><b>4k*</b><br>51<br>9.7<br>0.5<br>-9.7<br>62.0<br>-10.7<br>3.0<br>-7.7 | 2.5<br>63<br>-13.4<br>2.6<br><b>8k*</b><br>48<br>9.7<br>0.5<br>-9.7<br>67.0<br>-18.6<br>3.0<br>-15.6 |   |
| I         J         K         L         M         Razing:         Ventilator type:         *Octave Band Ce         A         B         C         D         E         F         Glazing:         Ventilator type: | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{1} log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>able<br>mtre Frequency, Hz<br>Measured $L_{eq}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI<br>A + B + E - F<br>K = 3<br>Calculated internal noise level<br>-                 | 9.3 28.7         | 23<br>25<br>dB(A)<br>62<br>5<br>8 | 14.2<br>31.5*<br>33<br>9.7<br>0.5<br>-9.7<br>28.0<br>5.3<br>3.0<br>8.3                     | 16.4<br>35<br>6.7<br>16.9<br>63*<br>41<br>9.7<br>0.5<br>-9.7<br>33.0<br>7.5<br>3.0<br>10.5 | 16.6<br>40<br>6.9<br>17.1<br><b>125*</b><br>46<br>9.7<br>0.5<br>-9.7<br>38.0<br>7.7<br>3.0<br>10.7               | 24.2<br>37<br>14.2<br>24.6<br><b>250*</b><br>50<br>9.7<br>0.5<br>-9.7<br>42.0<br>8.0<br>3.0<br>11.0 | 21.7<br>34<br>19.7<br>23.8<br>500*<br>53<br>9.7<br>5.5<br>5.5<br>5.5                        | 16.7<br>43<br>15.7<br>19.2<br><b>1k*</b><br>58<br>9.7<br>0.5<br>-9.7<br>58.0<br>-0.5<br>3.0<br>2.5  | 13.6<br>50<br>8.6<br>14.8<br><b>2k*</b><br>57<br>9.7<br>0.5<br>-9.7<br>62.0<br>-4.6<br>3.0<br>-1.6 | 10.4<br>53<br>-0.5<br>10.8<br><b>4k*</b><br>51<br>9.7<br>0.5<br>-9.7<br>62.0<br>-10.7<br>3.0<br>-7.7 | 2.5<br>63<br>-13.4<br>2.6<br>8k*<br>48<br>9.7<br>0.5<br>-9.7<br>67.0<br>-18.6<br>3.0<br>-15.6        |   |

| Flat 2. bedroom - r                                                                                                                                                                                                             | ear elevation                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|
| * Octave Band Ce                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | dB(A)                               | 31 5*                                                                    | 63*                                                                                                 | 125*                                                                                                 | 250*                                                                                                 | 500*                                                                                          | 1 k*                                                                                                | 2k*                                                                                                | 4k*                                                                                        | 8k*                                                                                                 | 1                          |
| Oclave Band Ce                                                                                                                                                                                                                  | Management /                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                     | 21                                                                       | 25                                                                                                  | 42                                                                                                   | 230                                                                                                  | 500                                                                                           | 50                                                                                                  | <u>2</u> R                                                                                         | -TR                                                                                        | 42                                                                                                  |                            |
| A                                                                                                                                                                                                                               | Weasured L eq                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 04                                  | 31                                                                       | 30                                                                                                  | 42                                                                                                   | 55                                                                                                   | 59                                                                                            | 59                                                                                                  | 50                                                                                                 | 55                                                                                         | 42                                                                                                  |                            |
| В                                                                                                                                                                                                                               | Exposed façade, m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.6              |                                     | 8.8                                                                      | 8.8                                                                                                 | 8.8                                                                                                  | 8.8                                                                                                  | 8.8                                                                                           | 8.8                                                                                                 | 8.8                                                                                                | 8.8                                                                                        | 8.8                                                                                                 | 1                          |
| С                                                                                                                                                                                                                               | Volume of receiving room, m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                       | 28.7             |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| D                                                                                                                                                                                                                               | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                     | 0.5                                                                      | 0.5                                                                                                 | 0.5                                                                                                  | 0.5                                                                                                  | 0.5                                                                                           | 0.5                                                                                                 | 0.5                                                                                                | 0.5                                                                                        | 0.5                                                                                                 |                            |
| F                                                                                                                                                                                                                               | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                     | -97                                                                      | -97                                                                                                 | -97                                                                                                  | -97                                                                                                  | -97                                                                                           | -97                                                                                                 | -9.7                                                                                               | -97                                                                                        | -97                                                                                                 |                            |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                     | 21.2                                                                     | 26.2                                                                                                | 21.2                                                                                                 | 27.0                                                                                                 | 22.0                                                                                          | 42.0                                                                                                | 45.0                                                                                               | 42.0                                                                                       | 49.0                                                                                                |                            |
| F                                                                                                                                                                                                                               | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                     | 21.2                                                                     | 20.2                                                                                                | 31.2                                                                                                 | 21.9                                                                                                 | 32.9                                                                                          | 42.9                                                                                                | 45.9                                                                                               | 43.0                                                                                       | 40.0                                                                                                |                            |
| G                                                                                                                                                                                                                               | A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 25                                  | 8.8                                                                      | 7.6                                                                                                 | 10.2                                                                                                 | 26.4                                                                                                 | 25.3                                                                                          | 15.2                                                                                                | 11.6                                                                                               | 11.1                                                                                       | -6.9                                                                                                | -                          |
| Н                                                                                                                                                                                                                               | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                     | 3.0                                                                      | 3.0                                                                                                 | 3.0                                                                                                  | 3.0                                                                                                  | 3.0                                                                                           | 3.0                                                                                                 | 3.0                                                                                                | 3.0                                                                                        | 3.0                                                                                                 |                            |
| I                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| J                                                                                                                                                                                                                               | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 28                                  | 11.8                                                                     | 10.6                                                                                                | 13.2                                                                                                 | 29.4                                                                                                 | 28.3                                                                                          | 18.2                                                                                                | 14.6                                                                                               | 14.1                                                                                       | -3.9                                                                                                | -1                         |
| ĸ                                                                                                                                                                                                                               | Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                | -                                   | -                                                                        |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     | -                          |
| N                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                |                                     |                                                                          | 05                                                                                                  | 40                                                                                                   | 07                                                                                                   |                                                                                               | 40                                                                                                  | 50                                                                                                 | 50                                                                                         | 00                                                                                                  | -                          |
| L                                                                                                                                                                                                                               | Ventilator D <sub>n,e</sub>                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |                                     |                                                                          | 35                                                                                                  | 40                                                                                                   | 37                                                                                                   | 34                                                                                            | 43                                                                                                  | 50                                                                                                 | 53                                                                                         | 63                                                                                                  | _                          |
| M                                                                                                                                                                                                                               | L <sub>Aeq</sub> - D <sub>n,e</sub> + 10*log(10) - B                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                     |                                                                          | 0.9                                                                                                 | 3.5                                                                                                  | 19.4                                                                                                 | 26.3                                                                                          | 17.2                                                                                                | 9.6                                                                                                | 3.2                                                                                        | -19.8                                                                                               |                            |
| Ν                                                                                                                                                                                                                               | Internal room noise level, vent open                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 29                                  |                                                                          | 11.1                                                                                                | 13.7                                                                                                 | 29.8                                                                                                 | 30.4                                                                                          | 20.7                                                                                                | 15.8                                                                                               | 14.5                                                                                       | -3.8                                                                                                |                            |
| Glazing:                                                                                                                                                                                                                        | 4mm 16/20mm 4mm                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| Vantilator tuna                                                                                                                                                                                                                 | Titon V/7E/CEO                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     | +                          |
| ventilator type:                                                                                                                                                                                                                | Than V75/C50                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     | -                          |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| riat 2, bedroom - g                                                                                                                                                                                                             | able                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| * Octave Band Ce                                                                                                                                                                                                                | ntre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | dB(A)                               | 31.5*                                                                    | 63*                                                                                                 | 125*                                                                                                 | 250*                                                                                                 | 500*                                                                                          | 1k*                                                                                                 | 2k*                                                                                                | 4k*                                                                                        | 8k*                                                                                                 | 1                          |
| A                                                                                                                                                                                                                               | Measured L eq                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 64                                  | 31                                                                       | 35                                                                                                  | 42                                                                                                   | 55                                                                                                   | 59                                                                                            | 59                                                                                                  | 58                                                                                                 | 55                                                                                         | 42                                                                                                  |                            |
| R                                                                                                                                                                                                                               | Exposed facade m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                  | 02               | 1                                   | 97                                                                       | 97                                                                                                  | 9.7                                                                                                  | 97                                                                                                   | 97                                                                                            | 97                                                                                                  | 97                                                                                                 | 97                                                                                         | 97                                                                                                  |                            |
| 0                                                                                                                                                                                                                               | Volume of receiving and mark                                                                                                                                                                                                                                                                                                                                                                                                                   | 20.7             | 1                                   | 5.7                                                                      | 5.1                                                                                                 | 5.1                                                                                                  | 5.1                                                                                                  | 5.1                                                                                           | 5.1                                                                                                 | 5.1                                                                                                | 5.1                                                                                        | 5.1                                                                                                 |                            |
| C                                                                                                                                                                                                                               | volume of receiving room, m°                                                                                                                                                                                                                                                                                                                                                                                                                   | 28./             | -                                   |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    | <i>c</i> ·                                                                                 | <i>c</i> ·                                                                                          |                            |
| D                                                                                                                                                                                                                               | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | 1                                   | 0.5                                                                      | 0.5                                                                                                 | 0.5                                                                                                  | 0.5                                                                                                  | 0.5                                                                                           | 0.5                                                                                                 | 0.5                                                                                                | 0.5                                                                                        | 0.5                                                                                                 |                            |
| Е                                                                                                                                                                                                                               | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                     | -9.7                                                                     | -9.7                                                                                                | -9.7                                                                                                 | -9.7                                                                                                 | -9.7                                                                                          | -9.7                                                                                                | -9.7                                                                                               | -9.7                                                                                       | -9.7                                                                                                |                            |
| F                                                                                                                                                                                                                               | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                     | 28.0                                                                     | 33.0                                                                                                | 38.0                                                                                                 | 42.0                                                                                                 | 50.0                                                                                          | 58.0                                                                                                | 62.0                                                                                               | 62.0                                                                                       | 67.0                                                                                                |                            |
| G                                                                                                                                                                                                                               | A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                | 9                                   | 2.9                                                                      | 1.7                                                                                                 | 4.3                                                                                                  | 13.2                                                                                                 | 9,1                                                                                           | 1.0                                                                                                 | -3.6                                                                                               | -7.0                                                                                       | -25.0                                                                                               | -                          |
| <br>Ц                                                                                                                                                                                                                           | K = 3                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | -                                   | 3.0                                                                      | 3.0                                                                                                 | 3.0                                                                                                  | 3.0                                                                                                  | 30                                                                                            | 30                                                                                                  | 3.0                                                                                                | 3.0                                                                                        | 3.0                                                                                                 | 1                          |
| <u>п</u>                                                                                                                                                                                                                        | N = 0                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 1                                   | 3.0                                                                      | 5.0                                                                                                 | 5.0                                                                                                  | 5.0                                                                                                  | 3.0                                                                                           | 5.0                                                                                                 | 5.0                                                                                                | 5.0                                                                                        | 5.0                                                                                                 | -                          |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1                                   |                                                                          |                                                                                                     |                                                                                                      | 10.0                                                                                                 | 10 1                                                                                          |                                                                                                     | 0.5                                                                                                | 4.5                                                                                        | 00.0                                                                                                |                            |
| J                                                                                                                                                                                                                               | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 12                                  | 5.9                                                                      | 4.7                                                                                                 | 7.3                                                                                                  | 16.2                                                                                                 | 12.1                                                                                          | 4.0                                                                                                 | -0.6                                                                                               | -4.0                                                                                       | -22.0                                                                                               | -(                         |
| Glazing:                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| Ventilator type:                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| 11.2                                                                                                                                                                                                                            | Combined sound level dP(A)                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 20                                  |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     | 1                          |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| Flat 2, bedroom - r                                                                                                                                                                                                             | ear elevation                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| * Octave Band Ce                                                                                                                                                                                                                | ntre Frequency, Hz                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | dB(A)                               | 31.5*                                                                    | 63*                                                                                                 | 125*                                                                                                 | 250*                                                                                                 | 500*                                                                                          | 1k*                                                                                                 | 2k*                                                                                                | 4k*                                                                                        | 8k*                                                                                                 | _ 1                        |
| А                                                                                                                                                                                                                               | Measured L max                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | 77                                  | 52                                                                       | 55                                                                                                  | 55                                                                                                   | 60                                                                                                   | 68                                                                                            | 72                                                                                                  | 72                                                                                                 | 67                                                                                         | 59                                                                                                  |                            |
| P                                                                                                                                                                                                                               | Exposed facade m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                  | 76               |                                     | 8.8                                                                      | 8.8                                                                                                 | 8.8                                                                                                  | 8.8                                                                                                  | 8.8                                                                                           | 8.8                                                                                                 | 8.8                                                                                                | 8.8                                                                                        | 8.8                                                                                                 |                            |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0              |                                     | 0.0                                                                      | 0.0                                                                                                 | 0.0                                                                                                  | 0.0                                                                                                  | 0.0                                                                                           | 0.0                                                                                                 | 0.0                                                                                                | 0.0                                                                                        | 0.0                                                                                                 | -                          |
| C                                                                                                                                                                                                                               | volume of receiving room, m <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                       | 28.7             |                                     |                                                                          | <b>a</b> -                                                                                          |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     | -                          |
| D                                                                                                                                                                                                                               | Reverb Time, seconds                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |                                     | 0.5                                                                      | 0.5                                                                                                 | 0.5                                                                                                  | 0.5                                                                                                  | 0.5                                                                                           | 0.5                                                                                                 | 0.5                                                                                                | 0.5                                                                                        | 0.5                                                                                                 |                            |
| E                                                                                                                                                                                                                               | 10 x Log(RT60/(0.163 x V)                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                     | -9.7                                                                     | -9.7                                                                                                | -9.7                                                                                                 | -9.7                                                                                                 | -9.7                                                                                          | -9.7                                                                                                | -9.7                                                                                               | -9.7                                                                                       | -9.7                                                                                                |                            |
| F                                                                                                                                                                                                                               | Composite SRI                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                     | 21.2                                                                     | 26.2                                                                                                | 31.2                                                                                                 | 27.9                                                                                                 | 32.9                                                                                          | 42.9                                                                                                | 45.9                                                                                               | 43.0                                                                                       | 48.0                                                                                                | 1                          |
| G                                                                                                                                                                                                                               | A + B + E - F                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | 35                                  | 30.1                                                                     | 28.3                                                                                                | 23.3                                                                                                 | 31.1                                                                                                 | 34.6                                                                                          | 28.3                                                                                                | 24.8                                                                                               | 23.1                                                                                       | 97                                                                                                  |                            |
| U                                                                                                                                                                                                                               | K-2                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | - 33                                | 20                                                                       | 20.0                                                                                                | 20.0                                                                                                 | 20                                                                                                   | 20                                                                                            | 20.0                                                                                                | 20                                                                                                 | 20.1                                                                                       | 20                                                                                                  |                            |
| п                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                | i .              | 1                                   | 3.0                                                                      | 3.0                                                                                                 | 3.0                                                                                                  | 3.0                                                                                                  | 3.0                                                                                           | 3.0                                                                                                 | 3.0                                                                                                | 3.0                                                                                        | 3.0                                                                                                 | -                          |
|                                                                                                                                                                                                                                 | K = 5                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| I                                                                                                                                                                                                                               | K = 5                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                                     |                                                                          |                                                                                                     |                                                                                                      |                                                                                                      |                                                                                               |                                                                                                     |                                                                                                    |                                                                                            |                                                                                                     |                            |
| I<br>J                                                                                                                                                                                                                          | Calculated internal noise level                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 38                                  | 33.1                                                                     | 31.3                                                                                                | 26.3                                                                                                 | 34.1                                                                                                 | 37.6                                                                                          | 31.3                                                                                                | 27.8                                                                                               | 26.1                                                                                       | 12.7                                                                                                |                            |
| I<br>J<br>K                                                                                                                                                                                                                     | Calculated internal noise level Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                          | 1                | 38                                  | 33.1                                                                     | 31.3                                                                                                | 26.3                                                                                                 | 34.1                                                                                                 | 37.6                                                                                          | 31.3                                                                                                | 27.8                                                                                               | 26.1                                                                                       | 12.7                                                                                                |                            |
| I<br>J<br>K                                                                                                                                                                                                                     | Calculated internal noise level<br>Number of ventilators                                                                                                                                                                                                                                                                                                                                                                                       | 1                | 38                                  | 33.1                                                                     | 31.3                                                                                                | 26.3                                                                                                 | 34.1                                                                                                 | 37.6<br>34                                                                                    | 31.3<br>43                                                                                          | 27.8<br>50                                                                                         | 26.1                                                                                       | 12.7<br>63                                                                                          |                            |
| I<br>J<br>K<br>L                                                                                                                                                                                                                | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$                                                                                                                                                                                                                                                                                                                                                               | 1                | 38                                  | 33.1                                                                     | 31.3<br>35                                                                                          | 26.3<br>40                                                                                           | 34.1<br>37                                                                                           | 37.6<br>34                                                                                    | 31.3<br>43                                                                                          | 27.8<br>50                                                                                         | 26.1<br>53                                                                                 | 12.7<br>63                                                                                          | •                          |
| I<br>J<br>K<br>L<br>M                                                                                                                                                                                                           | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$                                                                                                                                                                                                                                                                                                                       | 1                | 38                                  | 33.1                                                                     | 31.3<br>35<br>21.6                                                                                  | 26.3<br>40<br>16.6                                                                                   | 34.1<br>37<br>24.1                                                                                   | 37.6<br>34<br>35.6                                                                            | 31.3<br>43<br>30.3                                                                                  | 27.8<br>50<br>22.8                                                                                 | 26.1<br>53<br>15.2                                                                         | 12.7<br>63<br>-3.2                                                                                  | -                          |
| I<br>J<br>K<br>L<br>M<br>N                                                                                                                                                                                                      | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open                                                                                                                                                                                                                                                                               | 1                | 38                                  | 33.1                                                                     | 31.3<br>35<br>21.6<br>31.8                                                                          | 26.3<br>40<br>16.6<br>26.8                                                                           | 34.1<br>37<br>24.1<br>34.5                                                                           | 37.6<br>34<br>35.6<br>39.7                                                                    | 31.3<br>43<br>30.3<br>33.8                                                                          | 27.8<br>50<br>22.8<br>29.0                                                                         | 26.1<br>53<br>15.2<br>26.5                                                                 | 12.7<br>63<br>-3.2<br>12.8                                                                          |                            |
| I<br>J<br>K<br>L<br>M<br>N<br>Glazing:                                                                                                                                                                                          | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{a}\log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm                                                                                                                                                                                                                                                      | 1                | 38                                  | 33.1                                                                     | 31.3<br>35<br>21.6<br>31.8                                                                          | 26.3<br>40<br>16.6<br>26.8                                                                           | 34.1<br>37<br>24.1<br>34.5                                                                           | 37.6<br>34<br>35.6<br>39.7                                                                    | 31.3<br>43<br>30.3<br>33.8                                                                          | 27.8<br>50<br>22.8<br>29.0                                                                         | 26.1<br>53<br>15.2<br>26.5                                                                 | 12.7<br>63<br>-3.2<br>12.8                                                                          |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:                                                                                                                                                                           | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50                                                                                                                                                                                                                                         | 1                | 38                                  | 33.1                                                                     | 31.3<br>35<br>21.6<br>31.8                                                                          | 26.3<br>40<br>16.6<br>26.8                                                                           | 34.1<br>37<br>24.1<br>34.5                                                                           | 37.6<br>34<br>35.6<br>39.7                                                                    | 31.3<br>43<br>30.3<br>33.8                                                                          | 27.8<br>50<br>22.8<br>29.0                                                                         | 26.1<br>53<br>15.2<br>26.5                                                                 | 12.7<br>63<br>-3.2<br>12.8                                                                          |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:                                                                                                                                                                           | $R = 3$ Calculated internal noise level         Number of ventilators         Ventilator $D_{n,e}$ $L_{Aeq} - D_{n,e} + 10^{a}\log(10) - B$ Internal room noise level, vent open $4mm$ , $16/20mm$ , $4mm$ Titan V75/C50                                                                                                                                                                                                                       | 1                | 38                                  | 33.1                                                                     | 31.3<br>35<br>21.6<br>31.8                                                                          | 26.3<br>40<br>16.6<br>26.8                                                                           | 34.1<br>37<br>24.1<br>34.5                                                                           | 37.6<br>34<br>35.6<br>39.7                                                                    | 31.3<br>43<br>30.3<br>33.8                                                                          | 27.8<br>50<br>22.8<br>29.0                                                                         | 26.1<br>53<br>15.2<br>26.5                                                                 | 12.7<br>63<br>-3.2<br>12.8                                                                          |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:                                                                                                                                                                           | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{a}\log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50                                                                                                                                                                                                                                     | 1                | 38                                  | 33.1                                                                     | 31.3<br>35<br>21.6<br>31.8                                                                          | 26.3<br>40<br>16.6<br>26.8                                                                           | 34.1<br>37<br>24.1<br>34.5                                                                           | 37.6<br>34<br>35.6<br>39.7                                                                    | 31.3<br>43<br>30.3<br>33.8                                                                          | 27.8<br>50<br>22.8<br>29.0                                                                         | 26.1<br>53<br>15.2<br>26.5                                                                 | 12.7<br>63<br>-3.2<br>12.8                                                                          |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - ç<br>* Octave Band Ce                                                                                                                                | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C50Titan V75/C50$                                                                                                                                                                                                                           | 1                | 38<br>39<br>dB(A)                   | 33.1<br>31.5*                                                            | 31.3<br>35<br>21.6<br>31.8<br>63*                                                                   | 26.3<br>40<br>16.6<br>26.8<br>125*                                                                   | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b>                                                            | 37.6<br>34<br>35.6<br>39.7<br>500*                                                            | 31.3<br>43<br>30.3<br>33.8<br>1k*                                                                   | 27.8<br>50<br>22.8<br>29.0<br>28<br>29.0                                                           | 26.1<br>53<br>15.2<br>26.5<br>4k*                                                          | 12.7<br>63<br>-3.2<br>12.8<br>8k*                                                                   |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A                                                                                                                           | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C50ableInter Frequency, HzMeasured L_{max}$                                                                                                                                                                                                 | 1                | 38<br>39<br>dB(A)<br>77             | 33.1<br>31.5*<br>52                                                      | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55                                                             | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55                                                      | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60                                                      | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68                                                      | 31.3<br>43<br>30.3<br>33.8<br>1k*<br>72                                                             | 27.8<br>50<br>22.8<br>29.0<br><b>2</b><br><b>2</b><br><b>2</b><br><b>k</b> *<br>72                 | 26.1<br>53<br>15.2<br>26.5<br><b>4k*</b><br>67                                             | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59                                                      | 1                          |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - c<br>* <u>Octave Band Ce</u><br>A<br>B                                                                                                               | R = 3         Calculated internal noise level         Number of ventilators         Ventilator $D_{n,e}$ $L_{Aeq} - D_{n,e} + 10^{*log}(10) - B$ Internal room noise level, vent open $4mm$ , $16/20mm$ , $4mm$ Titan V75/C50         able         ntre Frequency, Hz         Measured $L_{max}$ Exposed façade, m <sup>2</sup>                                                                                                                | 9.3              | 38<br>39<br>dB(A)<br>77             | 33.1<br>31.5*<br>52<br>9.7                                               | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55<br>9.7                                                      | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7                                               | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7                                               | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7                                               | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7                                               | 27.8<br>50<br>22.8<br>29.0<br>28<br>72<br>9.7                                                      | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7                                             | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7                                               |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - Q<br>* Octave Band Ce<br>A<br>B<br>C                                                                                                                 | R = 3         Calculated internal noise level         Number of ventilators         Ventilator $D_{n,e}$ $L_{Aeq} - D_{n,e} + 10^{a}\log(10) - B$ Internal room noise level, vent open         4mm, 16/20mm, 4mm         Titan V75/C50         mable         ntre Frequency, Hz         Measured $L_{max}$ Exposed façade, m <sup>2</sup> Volume of treeving room m <sup>3</sup>                                                               | 9.3              | 38<br>39<br>dB(A)<br>77             | 33.1<br>31.5*<br>52<br>9.7                                               | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55<br>9.7                                                      | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7                                               | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7                                               | 37.6<br>34<br>35.6<br>39.7<br><b>500*</b><br>68<br>9.7                                        | 31.3<br>43<br>30.3<br>33.8<br>1k*<br>72<br>9.7                                                      | 27.8<br>50<br>22.8<br>29.0<br>28<br>29.0<br>2 <b>k</b> *<br>72<br>9.7                              | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7                                             | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7                                               | 1                          |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C                                                                                                                 | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C50mableIntre Frequency, HzMeasured L_{max}Exposed façade, m2Volume of receiving room, m3Parent Time concert$                                                                                                                               | 1<br>9.3<br>28.7 | 38<br>39<br>dB(A)<br>77             | 33.1<br>31.5*<br>52<br>9.7                                               | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55<br>9.7<br>0.5                                               | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7                                               | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7                                               | 37.6<br>34<br>35.6<br>39.7<br><b>500*</b><br>68<br>9.7                                        | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7                                               | 27.8<br>50<br>22.8<br>29.0<br>28<br>70<br>9.7                                                      | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7                                             | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7                                               |                            |
| I<br>J<br>K<br>L<br>M<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D                                                                                                       | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*log(10)} - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C50ableInter Frequency, HzMeasured L_{max}Exposed façade, m2Volume of receiving room, m3Reverb Time, seconds$                                                                                                                            | 9.3 28.7         | 38<br>39<br>dB(A)<br>77             | 33.1<br>31.5*<br>52<br>9.7<br>0.5                                        | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55<br>9.7<br>0.5                                               | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5                                        | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5                                        | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5                                        | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5                                        | 27.8<br>50<br>22.8<br>29.0<br>2<br><b>2k*</b><br>72<br>9.7<br>0.5                                  | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5                                      | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7<br>0.5                                        | 1                          |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>C<br>D<br>E                                                                                                  | R = 3         Calculated internal noise level         Number of ventilators         Ventilator $D_{n,e}$ $L_{Aeq} - D_{n,e} + 10^{a}$ log(10) - B         Internal room noise level, vent open $4mm$ , $16/20mm$ , $4mm$ $Titan V75/C50$ Table         Inter Frequency, Hz         Measured $L_{max}$ Exposed façade, m <sup>2</sup> Volume of receiving room, m <sup>3</sup> Reverb Time, seconds $10 \times Log(RT60/(0.163 \times V))$      | 9.3<br>28.7      | 38<br>39<br>dB(A)<br>77             | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7                                | 31.3<br>35<br>21.6<br>31.8<br>55<br>9.7<br>0.5<br>-9.7                                              | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5<br>-9.7                                | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5<br>-9.7                                | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7                                | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5<br>-9.7                                | 27.8<br>50<br>22.8<br>29.0<br>2 <b>k</b> *<br>72<br>9.7<br>0.5<br>-9.7                             | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7                              | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7<br>0.5<br>-9.7                                |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>C<br>D<br>E<br>F                                                                                             | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>Titan V75/C50<br>Titan V75/C50<br>Titan V75/C50<br>Toposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI                                 | 9.3 28.7         | 38<br>39<br>dB(A)<br>77             | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7<br>28.0                        | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55<br>9.7<br>0.5<br>-9.7<br>33.0                               | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5<br>-9.7<br>38.0                        | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5<br>-9.7<br>42.0                        | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7<br>50.0                        | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>58.0                        | 27.8<br>50<br>22.8<br>29.0<br>2 <b>k</b> *<br>72<br>9.7<br>0.5<br>-9.7<br>62.0                     | 26.1<br>53<br>15.2<br>26.5<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7<br>62.0              | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7<br>0.5<br>-9.7<br>67.0                        |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>B<br>C<br>D<br>F<br>E<br>F<br>G                                                                         | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan VT5/C50ableIntre Frequency, HzMeasured L_{max}Exposed façade, m2Volume of receiving room, m3Reverb Time, seconds10 \times Log(RT60/(0.163 \times V))Composite SRIA + B + E - F$                                                                 | 9.3 28.7         | 38<br>39<br>dB(A)<br>77             | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7<br>28.0<br>24.2                | 31.3<br>35<br>21.6<br>31.8<br>                                                                      | 26.3<br>40<br>16.6<br>26.8<br>                                                                       | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5<br>-9.7<br>42.0<br>17.9                | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7<br>50.0<br>18.4                | 31.3<br>43<br>30.3<br>33.8<br>1k*<br>72<br>9.7<br>0.5<br>-9.7<br>58.0<br>14.1                       | 27.8<br>50<br>22.8<br>29.0<br><b>2k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>62.0<br>9.6                | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7<br>62.0<br>5.0               | 12.7<br>63<br>-3.2<br>12.8<br>8k*<br>59<br>9.7<br>0.5<br>-9.7<br>67.0<br>-8.4                       |                            |
| I<br>J<br>K<br>L<br>M<br>N<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>E<br>F<br>G<br>H                                                                                   | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10^{*log(10)} - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C50ableInter Frequency, HzMeasured L_{max}Exposed façade, m2Volume of receiving room, m3Reverb Time, seconds10 \times Log(RT60/(0.163 \times V))Composite SRIA + B + E - FK = 3$                                                         | 9.3 28.7         | 38<br>39<br>dB(A)<br>77<br>19       | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7<br>28.0<br>24.2<br>3.0         | 31.3<br>35<br>21.6<br>31.8<br>55<br>9.7<br>0.5<br>-9.7<br>33.0<br>22.4<br>3.0                       | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5<br>-9.7<br>38.0<br>17.4<br>3.0         | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5<br>-9.7<br>42.0<br>17.9<br>3.0         | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7<br>50.0<br>18.4<br>3.0         | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>58.0<br>14.1<br>3.0         | 27.8<br>50<br>22.8<br>29.0<br>28<br>29.0<br>2k*<br>72<br>9.7<br>0.5<br>-9.7<br>62.0<br>9.6<br>3.0  | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7<br>62.0<br>5.0<br>3.0        | 12.7<br>63<br>-3.2<br>12.8<br>8k*<br>59<br>9.7<br>0.5<br>-9.7<br>67.0<br>-8.4<br>3.0                |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>C<br>D<br>E<br>F<br>G<br>H<br>I                                                                              | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>Titan V75/C50<br>Measured L_max<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 × Log(RT60/(0.163 × V)<br>Composite SRI<br>A + B + E - F<br>K = 3                        | 9.3 28.7         | 38<br>39<br>dB(A)<br>77<br>19       | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7<br>28.0<br>24.2<br>3.0         | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55<br>9.7<br>0.5<br>-9.7<br>33.0<br>22.4<br>3.0                | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5<br>-9.7<br><b>38.0</b><br>17.4<br>3.0  | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5<br>-9.7<br>42.0<br>17.9<br>3.0         | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7<br>50.0<br>18.4<br>3.0         | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>58.0<br>14.1<br>3.0         | 27.8<br>50<br>22.8<br>29.0<br><b>2k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>62.0<br>9.6<br>3.0         | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7<br>62.0<br>5.0<br>3.0        | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7<br>0.5<br>-9.7<br>67.0<br>-8.4<br>3.0         | -1                         |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>A<br>B<br>C<br>C<br>D<br>E<br>F<br>G<br>H<br>H<br>I                                                          | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, 16/20mm, 4mm<br>Titan V75/C50<br>mable<br>Inter Frequency, Hz<br>Measured $L_{max}$<br>Exposed façade, m <sup>2</sup><br>Volume of receiving room, m <sup>3</sup><br>Reverb Time, seconds<br>10 x Log(RT60/(0.163 x V))<br>Composite SRI<br>A + B + E - F<br>K = 3    | 9.3 28.7         | 38<br>39<br>dB(A)<br>77<br>19       | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7<br>28.0<br>24.2<br>3.0         | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55<br>9.7<br>0.5<br>-9.7<br>33.0<br>22.4<br>3.0<br>22.4<br>3.0 | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5<br>-9.7<br>38.0<br>17.4<br>3.0         | 34.1<br>37<br>24.1<br>34.5<br>250*<br>60<br>9.7<br>0.5<br>-9.7<br>42.0<br>17.9<br>3.0                | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7<br>50.0<br>18.4<br>3.0         | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>58.0<br>14.1<br>3.0         | 27.8<br>50<br>22.8<br>29.0<br>2k*<br>72<br>9.7<br>0.5<br>-9.7<br>62.0<br>9.6<br>3.0<br>12.6        | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7<br>62.0<br>5.0<br>3.0<br>8.0 | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7<br>0.5<br>-9.7<br>67.0<br>-8.4<br>3.0         |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>A<br>B<br>C<br>A<br>B<br>C<br>C<br>B<br>C<br>F<br>B<br>C<br>C<br>H<br>I<br>J<br>J                            | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C50Titan V75/C50Titan V75/C50Titan V75/C50Titan V75/C50Resured L_{max}Exposed façade, m2Volume of receiving room, m3Reverb Time, seconds10 \times Log(RT60/(0.163 \times V))Composite SRIA + B + E - FK = 3Calculated internal noise level$ | 9.3 28.7         | 38<br>39<br>dB(A)<br>77<br>19<br>22 | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7<br>28.0<br>24.2<br>3.0<br>27.2 | 31.3<br>35<br>21.6<br>31.8<br><b>63*</b><br>55<br>9.7<br>0.5<br>-9.7<br>33.0<br>22.4<br>3.0<br>25.4 | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5<br>-9.7<br>38.0<br>17.4<br>3.0<br>20.4 | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5<br>-9.7<br>42.0<br>17.9<br>3.0<br>20.9 | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7<br>50.0<br>18.4<br>3.0<br>21.4 | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>58.0<br>14.1<br>3.0<br>17.1 | 27.8<br>50<br>22.8<br>29.0<br><b>2k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>62.0<br>9.6<br>3.0<br>12.6 | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7<br>62.0<br>5.0<br>3.0<br>8.0 | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7<br>0.5<br>-9.7<br>67.0<br>-8.4<br>3.0<br>-5.4 |                            |
| I<br>J<br>K<br>L<br>M<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>A<br>B<br>C<br>C<br>A<br>B<br>C<br>C<br>B<br>C<br>F<br>G<br>H<br>I<br>J<br>Glazing:<br>Ventilator type: | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C50mableIntre Frequency, HzMeasured L_{max}Exposed façade, m2Volume of receiving room, m3Reverb Time, seconds10 \times Log(RT60/(0.163 \times V))Composite SRIA + B + E - FK = 3Calculated internal noise level-$                           | 9.3 28.7         | 38<br>39<br>dB(A)<br>77<br>19<br>22 | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7<br>28.0<br>24.2<br>3.0<br>27.2 | 31.3<br>35<br>21.6<br>31.8<br>63*<br>55<br>9.7<br>0.5<br>-9.7<br>33.0<br>22.4<br>3.0<br>25.4        | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5<br>-9.7<br>38.0<br>17.4<br>3.0<br>20.4 | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5<br>-9.7<br>42.0<br>17.9<br>3.0<br>20.9 | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7<br>50.0<br>18.4<br>3.0<br>21.4 | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>58.0<br>14.1<br>3.0<br>17.1 | 27.8<br>50<br>22.8<br>29.0<br><b>2k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>62.0<br>9.6<br>3.0<br>12.6 | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7<br>62.0<br>5.0<br>3.0<br>8.0 | 12.7<br>63<br>-3.2<br>12.8<br><b>8k*</b><br>59<br>9.7<br>0.5<br>-9.7<br>67.0<br>-8.4<br>3.0<br>-5.4 |                            |
| I<br>J<br>K<br>L<br>M<br>Glazing:<br>Ventilator type:<br>Flat 2, bedroom - (<br>* Octave Band Ce<br>A<br>B<br>C<br>D<br>B<br>C<br>D<br>E<br>F<br>G<br>G<br>H<br>I<br>J<br>Glazing:<br>Ventilator type:                          | Calculated internal noise level<br>Number of ventilators<br>Ventilator $D_{n,e}$<br>$L_{Aeq} - D_{n,e} + 10*log(10) - B$<br>Internal room noise level, vent open<br>4mm, $16/20mm$ , $4mmTitan V75/C50ableIntre Frequency, HzMeasured L_{max}Exposed façade, m2Volume of receiving room, m3Reverb Time, seconds10 \times Log(RT60/(0.163 \times V))Composite SRIA + B + E - FK = 3Calculated internal noise level-$                            | 9.3 28.7         | 38<br>39<br>dB(A)<br>77<br>19<br>22 | 33.1<br>31.5*<br>52<br>9.7<br>0.5<br>-9.7<br>28.0<br>24.2<br>3.0<br>27.2 | 31.3<br>35<br>21.6<br>31.8                                                                          | 26.3<br>40<br>16.6<br>26.8<br><b>125*</b><br>55<br>9.7<br>0.5<br>-9.7<br>38.0<br>17.4<br>3.0<br>20.4 | 34.1<br>37<br>24.1<br>34.5<br><b>250*</b><br>60<br>9.7<br>0.5<br>-9.7<br>42.0<br>17.9<br>3.0<br>20.9 | 37.6<br>34<br>35.6<br>39.7<br>500*<br>68<br>9.7<br>0.5<br>-9.7<br>50.0<br>18.4<br>3.0<br>21.4 | 31.3<br>43<br>30.3<br>33.8<br><b>1k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>58.0<br>14.1<br>3.0<br>17.1 | 27.8<br>50<br>22.8<br>29.0<br><b>2k*</b><br>72<br>9.7<br>0.5<br>-9.7<br>62.0<br>9.6<br>3.0<br>12.6 | 26.1<br>53<br>15.2<br>26.5<br>4k*<br>67<br>9.7<br>0.5<br>-9.7<br>62.0<br>5.0<br>3.0<br>8.0 | 12.7<br>63<br>-3.2<br>12.8<br>8k*<br>59<br>9.7<br>0.5<br>-9.7<br>67.0<br>-8.4<br>3.0<br>-5.4        | -7<br>1<br>9<br>0<br>0<br> |