

REPLACEMENT CONSERVATORY ROOF STRUCTURAL CALCULATIONS

(to Eurocodes)

INTRODUCTION

The design objective is to provide an alternative or replacement roof to existing glazed conservatory roofs.
Having experienced the wide variation of temperatures during the summer and winter months of the year occupiers are requesting changes to the roof structure to make the climatic conditions more bearable within. The extremes of cold winter evenings and the hot summer days make the internal conditions usually un-bearable and the conservatory a room to avoid.

By changing the roof construction from glazed to a solid surface and including insulation this provides the conditions for a more habitable building.

The selected use of lightweight materials such as profiled steel tiling and aluminium rafters has kept the weight of the structure to that not much more than a twin wall plastic cladding and less than a double glazed system.

The aluminium eaves beam can be built off the existing conservatory wall mullions. If the existing are not suitable then additional reinforced posts are added to accommodate the structure. The rafter and hip beams are then built off the ring beams and covered with a plywood decking fixed through to the rafters thus providing lateral stability to the structure against normal roof loadings. A breathable membrain and timber battens to which the ExtraLight cladding is fixed. Insulation is fixed between the rafters and across the underside before underlining with membrain and plasterboard finish. The roof construction can be trimmed out to accept rooflights. The suitability of the existing and or any new supporting mullions should be checked out or specified by a suitably qualified person with the approval of the Local Building Control.

ExtraLight Shingle comes in a choice of natural weathered tones to recreate the visual appeal of a clay tiled roof, carefully selected to match most traditional roofs. The fascia, soffit and gutters can also be matched to the customers requirements.

With the addition of this construction the conservatory may now be classified as a sun room and then require Building Regulation approval for the conversion. A porch classification may be exempt but should be qualified by the Local Authority Building Control for comfirmation.

Suitability of existing construction and foundations should be confirmed by a structural engineer for the change of loadings and the results and recommendations forwarded to and approved by the Local Authority.

Completely new buildings will be built off suitable foundations of concrete strip, reinforced concrete raft or proprietry piled system.

The walls will match the existing house to the satisfaction of local planning requirements and be within the requirements of current Building Regulations. All glazing will be double glazed sealed units meeting the requirements of the Building Regulations regarding thermal values, have resistance to solar rays and have self cleaning coating. The roof structure will be supported off reinforced structural mullions within the framework construction and securely supported and fixed to the masonry walls or foundations. The floor construction will be to the clients requirements and will comply with current Building Regulations and practises.

In the event of the new building being used as a habitable room i.e. no seperating door in an opening between it and the existing property, there may be a need to increase insulation levels within the existing property in order to maintain or improve the existing thermal values.
Our representitive or engineer will advise accordingly to satisfy the legislation.

| www.supaliteroof.co.uk
 Email: sales@supaliteroof.co.uk
 Tel: 01772828060 \| Fax: 01772627813
 180-181 Brackirk Place \\| Walton Summit | Bamber Bridge I Preston | PR5 8A.J | SUPALITE ROOF SYSTEM | Drawn by PGR |
| :---: | :---: | :---: |
| | | Scale@ A4 |
| | | |
| | | |

Roof Plan

Roof Plan

Rafters - SAPA profile 205982
Ridge beam - SAPA profile 205980
Hip beam - SAPA profile 208929
Eaves beam - SAPA profile 206959

Roof Plan

Rafters - SAPA profile 205982
Ridge beam - SAPA profile 205980
Hip beam - SAPA profile 208929
Eaves beam - SAPA profile 206959

	SUPALITE ROOF SYSTEM	Drawn by PGR	
www.supaliteroof.co.uk		Scale @ A4	
Tel: 01772828060 \| Fax: 01772627813 180-181 Bradkirk Place I Walton Summit \| Bamber Bridge I Preston	PR5 8A.J		Drg No C11-165-2

Rafters - SAPA profile 205982
Ridge beam - SAPA profile 205980
Hip beam - SAPA profile 208929
Eaves beam - SAPA profile 206959
Valley beam - SAPA profile 205982 (2 Rafters Together)

Roof Plan

Rafters - SAPA profile 205982
Ridge beam - SAPA profile 205980
Eaves beam - SAPA profile 206959

Roof Plan

$\begin{aligned} & \text { www. supaliteroof.co.uk } \\ & \text { Email: sales@supaliteroof.co.uk } \\ & \text { Tel: } 01772828060 \text { । Fax: } 01772627813 \end{aligned}$	SUPALITE ROOF SYSTEM	Drawn by PGR
		Scale @ A4
		Drg No C11-165-3

EXTRALIGHT lightweight roofing 0.45 mm thick on 19×38 treated timber battens running vertically on breathable membrain on 12 mm exterior grade plywood fixed to top of roof rafter with screw fixings @ 150 crs .
19×38 batten fixed to top of roof rafter and plywood

Eaves beam

Box gutter fixed to uPVC fascia board fixed to eaves beam

GLAZING
'Celsius Elite' double glazed sealed units in upvc framework having 'U' value of $0.9 \mathrm{~W} /$ sq.mk

Ridge beam

25 mm PIR Insulation

12,5 plasterboard on 500 g poly membrain on 60 mm Recticel PIR Insulation (0.15 ' $\mathrm{U} '$ value) fixed to underside of rafters

ROOF 'U' value $0.15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{k}$

WALLING. ($0.28 \mathrm{~W} / \mathrm{m}^{2} \mathrm{k}^{\prime} \mathrm{U}^{\prime}$ value)
102 mm Facing brick. 25 mm cavity to 50 mm thick 'CELOTEX' - CW3050 installed in accordance with the manufacturers instructions. Fit the boards between the wall ties, and secure in place with a retaining clip on each tie. Ensure that horizontal and vertical joints are tightly butted to minimise heatloss. 100 mm thick 'THERMÂLITE - Turbo' Concrete block inner skin. Close cavities with proprietary cavity closers. 200 mm long Stainless steel wall ties to BS1243. Stagger spaced 900 horz. x 450 vert . at openings 225 vert . Tie all proposed masonry walls to existing with 'Furfix' adjustable tie system, or any similar approved. Installed to the manufacturers recommendations. Internal finish $12,5 \mathrm{~mm}$ Plasterboard with finish skim on plaster dabs. Subject to Local Authority approval where appropriate
FLOOR.
75 mm Sand / Cement screed with reinforcing mesh on 80 mm 'Celotex' underfloor insulation, with joints closely butted and taped with 75 mm wide masking tape on 1200.G.Poly DPM continuous with DPC. 125mm thick Concrete floor with A193 Fabric reinforcment 30 mm up from bottom. 1:3:6mix. 19 mm max agg size. 50 mm Sand Blinding on 100 mm min consolidated hardcore Subject to Local Autority approval where appropriate.

Wall foundations to suit loadings and ground conditions and to satisfaction of Local Authority where appropriate.
Sections Showing New Wall and Roof Construction

75mm Sand / Cement screed with reinforcing mesh on 80 mm 'Celotex' underfloor insulation, with joints closely butted and taped with 75 mm wide masking tape on 1200.G.Poly DPM continuous with DPC. 125 mm thick Concrete floor with A193 Fabric reinforcment 30 mm up from bottom. 1:3:6mix. 19 mm max agg size. 50 mm Sand Blinding on 100 mm min consolidated hardcore. Subject to Local Autority approval where appropriate.
ground level

all foundations to suit loadings and ground conditions and to satisfaction of Local Authority where appropriate

25mm T\&G Floor boards on timber floor joists @ 400crs max. Timber noggins at mid span. 30×5 Galv.m.stl straps to wall @ 1600crs max, with timber noggins under. 80 mm 'Celotex' underfloor insulation or any similar approved suspended between floor joists on 25 mm netlon netting, leaving a min 125 mm ventilated air space between joists and oversite. Floor Joists supported in galvanised steel joist hangers, on horz.
'Ruberoid' - Hyload dpc. 50mm thick concrete oversite. Subject to Local Authority approval where appropriate.

Sections Showing Alternative New Floor Constructions

| www.supaliteroof.co.uk
 Email: sales@supaliteroof.co.uk
 Tel: 01772828060 \| Fax: 01772627813
 180-181 Bradkirk Place I Walton Summit \| Bamber Bridge | Preston I PR5 8AJ | SUPALITE ROOF SYSTEM | Drawn by PGR |
| :---: | :---: | :---: |
| | | Scale @ A4 1:20 |
| | | Drg No C11-165-6 |

203660

Gable Frame

The gable framework is constructed and insulated similar to the roof slope with the outer cladding material to the satisfaction of the client

www.supaliteroof.co.uk Email: sales@supaliteroof.co.uk Tel: 01772828060 \| Fax: 01772627813 180-181 Bradkirk Place I Walton Summit \| Bamber Bridge I Preston I PR5 8AJ	SUPALITE ROOF SYSTEM	Drawn by PGR
		Scale@ A4 1:20
		Drg No C11-165-7

Rafter Span Tables
 Profile 203659

	ExtraLight	Redland Cambrian Slate	Slates	Concrete Interlocking tiles
Roof Rafter Centres (ideal $-600 \mathrm{~mm})$	Rafter Span	Rafter Span	Rafter Span	Rafter Span
450 mm	3200 mm	3100 mm	3100 mm	2900 mm
600 mm	2850 mm	2850 mm	2800 mm	2600 mm
750 mm	2700 mm	2600 mm	2600 mm	2450 mm
800 mm	2650 mm	2600 mm	2550 mm	2400 mm
900 mm	2550 mm	2550 mm	2450 mm	2300 mm

The maximum length of rafter is governed by the permitted deflection (1/300 of span).
The max. permitted bending stress is $160 \mathrm{n} / \mathrm{sq} . \mathrm{mm}$. (proof stress for $6063-\mathrm{T} 6=160 \mathrm{n} / \mathrm{sq} . \mathrm{mm}$)

Eaves Beam Maximum Clear Span
 Profile 206959

eg : over double doors

Hip Beam Maximum Span - 4900 mm

 Profile 205980

Note - With duo pitch roofs having a ridge span of more than 4900 mm a steel supporting beam will be required and to be designed by a suitably qualified person.

SUPALITE ROOF SYSTEM

Drawn by PGR
Scale @ A4
Drg No C11-165-8B

ENGINEERING and
BUILDING
DESIGN

41 Maitland Avenue
Thornton-Cleveleys
Lancs FY5 3JR
tel (01253) 859867
email. peter.redding@virgin.net

PETER G REDDING I ENG. MIET.(MECH)

Data Entry:-

Site Altitude	30.000 m	Reference Height (Z)			Size Effect Dimension (b+h)		
$V_{\text {b,map }}$	$25.000 \mathrm{~m} / \mathrm{s}$	Roof	4.000	m	Roof	5.000	m
Seasonal Factor (C,season)	1.000	Side Walls	2.300	m	Side Walls	8.000	m
Probability Factor (C,prob)	1.000	Gables	4.000	m	Gables	8.000	m
Site ID							

Dynamic Pressure Results

Wind Direction (deg)		0	30	60	90	120	150	180	210	240	270	300	330
Direction Factor C, dir		0.78	73	73	0.74	. 73	0.80	0.85	0.93	1.00	0.99	0.91	0.82
Orography Factor Co		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	, 000
Effective Height (h-hdis) m	Roof	000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
	Sid	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300
	Ga	4.000	4.000	4.000	4.000	4.000	000	000	4.000	000	4.000	. 000	4.000
Altitude Factor C,alt	Roof	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030
	Sides	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	1.030	. 030
	Gable	1.030	1.030	1.030	. 030	1.030	1.030	1.030	1.030	030	1.030	1.030	030
Roughness Factor Cr	Roof	0.978	0.978	0.978	0.978	78	78	978	. 978	, 978	0.978	0.978	0.978
	Sides	0.865	0.865	0.865	0.865	65	65	0.865	0.865	0.865	0.865	0.865	0.865
	Gable	0.9	0.978	0.978	0.978	0.978	0.978	978	0.978	0.978	978	0.978	0.978
Exposure Factor Ce	Roof	2.313	2.313	2.	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313
	Sides	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942
	Gabl	2.31	2.313	2.3	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313
Vb,0 (m/s)	Roo	25.75	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750
	Sides	25.750	25.750	25.750	25.750	25.750	750	750	25.750	5.75	25.750	25.750	25.750
	Gable	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750	25.750
Vb (m/s)	0	20.085	18.798	18.798	19.055	18.798	20.600	21.888	23.9	25.750	25.493	23.433	.11
	Sides	20	18.798	18.798	19.055	18.798	20.600	21.888	23.948	25.7	25.493	23.433	21.115
	Gable	20.08	18.798	18	19	98	20.60	21.888	23.94	25.7	25.49	23.	21.1
Vm (m/s)	Roof	19.6	18.388	18.388	18.	18.38	20.151	21.411	23.426	25.189	24.93	22.92	20.65
	Sides	17.36	16.253	16.253	16.476	16.253	17.812	18.925	20.706	22.265	22.042	20.261	8.25
	Gable	19.6	18.388	18.388	18	18.388	20.151	21.41	23.426	25.189	24.937	22.92	20.655
Turbulence Intensity Iv	Roo	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
	Sides	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183
	Gable	0.169	69	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
Peak Velocity Pressure qp ($\mathrm{kN} / \mathrm{m}^{2}$)	Roof	0.538	0.471	0.471	0.484	. 71	0.566	0.639	0.765	0.884	0.867	0.73	0.595
	Sides	0.44	0.389	0.389	0.399	0.389	0.467	527	0.631	0.729	0.715	0.604	0.490
	Gable	0.538	0.471	0.471	0.484	0.471	0.566	0.639	0.765	0.884	0.867	0.732	0.595
Size Effect Factor Cs	Roof	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960
	Sides	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948
	Gable	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948

Supalite Tiled Roof Systems Ltd 180-181 Brad Kirk Place, Preston, PR5 8AJ

General Wind Loading (Town terrain)

For locations with high wind exposure, wind loading calculations to be undertaken on the proposed roof by a suitably qualified person

Assumed building size - 4,0M $\times 4,0 \mathrm{M} \times 4,0 \mathrm{M}$ high Wind load (taken from wind assessment results) - $0.9 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$

Wind lateral loading on fixings
$0.9 \mathrm{kn} / \mathrm{sq} . \mathrm{M} \times 2.1 \mathrm{M} \times 0.5=0.95 \mathrm{kn} / \mathrm{M}$ run
using Powerline frame screws 7.5 dia $\times 102$ long (permitted shear $=0.8 \mathrm{kn}$)
No required $=0.95 / 0.8=2$ No fixings per M run to resist lateral wind loading.
Wind uplift on roof $=0.95 \mathrm{kn} / \mathrm{sq} . \mathrm{M} \times 1.4=1.33 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Roof dead load resisting uplift $=0.47 \mathrm{kn} / \mathrm{sq} . \mathrm{M} \times 0.9=0.43 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Uplift per M run $=1.33-0.43 \times 2.0 \mathrm{M}=1.8 \mathrm{kn} / \mathrm{M}$
Assuming eaves beam to mullion fixing at $1,0 \mathrm{M} \mathrm{crs}$ max uplift per fixing $=1.8 \mathrm{kn}$ max
Tensile stress in each fixing $=1.8 / 2=0.9 \mathrm{kn}<1.2 \mathrm{kn}$ permitted Use 2 No Powerline frame screws at each fixing point ie rafters to ridge, rafters to eaves beam, eaves beam to mullions

Vertical roof loading $($ dead +imp$)=0.47+0.6=1.07 \mathrm{kn} / \mathrm{sq} \cdot \mathrm{M}$
Load on wallplate / eaves beam $=1.07 \times 2.0 \mathrm{M}=2.14 \mathrm{kn} / \mathrm{M}$ run

Wind loading on roof structure.
Uplift on leeward roof panel $=0.9 \times(-0.6)=-0.54 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Factored dead load of roof $=0.47 \mathrm{kn} / \mathrm{sq} . \mathrm{M} \times 0.9=0.43 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Reversal loading $=-0.54+0.43=-0.11 \mathrm{kn} / \mathrm{sq} \cdot \mathrm{M}$

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Supalite Tiled Roof Systems Ltd - Supalite Roof				Job Ref. C11-165	
	Roof Rafters @ 450crs				Sheet no	1
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS

Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Free"
Support B	Vertically "Restrained"	Rotationally "Free"

Span Definitions:
Span 1 Length $=\mathbf{3 2 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{9 0 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{1 . 2 8} \times \mathbf{1 0}^{6} \mathrm{~mm}^{4}$
LOADING DETAILS
Beam Loads:
Load 1 UDL Dead load 0.2 kN/m
Load 2 UDL Live load 0.3 kN/m
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live $+1 \times$ Wind
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

	Dead $(k N)$	Live $(k N)$	Wind $(k N)$	Other $(k N)$				
Support A	-0.4	-0.4	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-0.4	-0.4	0.0	0.0	0.0	0.0	0.0	0.0

Support Reactions - Combination Summary

Support A Max react $=-1.1 \mathrm{kN} \quad$ Min react $=-1.1 \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$
Support B Max react $=\mathbf{- 1 . 1} \mathrm{kN} \quad$ Min react $=\mathbf{- 1 . 1} \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$

Beam Max/Min results - Combination Summary
Minimum shear $\mathrm{F}_{\text {min }}=-\mathbf{- 1 . 1} \mathrm{kN}$
Maximum moment $=0.9 \mathrm{kNm}$
Maximum deflection $=10.3 \mathrm{~mm}$
Minimum moment $=0.0 \mathrm{kNm}$
Minimum deflection $=\mathbf{0 . 0} \mathbf{~ m m}$
Span Max/Min results - Combination Summary
Span $1 \quad$ Maximum shear $=1.1 \mathrm{kN}$ at 0.000 m
Maximum moment $=0.9 \mathrm{kNm}$ at 1.600 m
Maximum deflection $=\mathbf{1 0 . 3} \mathbf{~ m m}$ at $\mathbf{1 . 6 0 0} \mathrm{m}$

Minimum shear $=\mathbf{- 1 . 1} \mathrm{kN}$ at $\mathbf{3 . 2 0 0 ~ m}$
Minimum moment $=\mathbf{0 . 0} \mathrm{kNm}$ at $\mathbf{0 . 0 0 0} \mathrm{m}$
Minimum deflection $=\mathbf{0 . 0} \mathrm{mm}$ at $\mathbf{3 . 2 0 0 ~} \mathrm{m}$

$\text { CSC } ~ \text { TEDDS }$	Project	Supalite Tiled Roof Systems Ltd - Supalite Roof			Job Ref.	
					C11-165	
Engineering and Building Design 41 Maitland Avenue	Section				Sheet no.	
Thornton-Cleveleys FY5 3JR	Roof Rafters @ 450crs				2	
tel 01253859867	Calc. by PGR	$\begin{aligned} & \text { Date } \\ & 25 / 09 / 2013 \end{aligned}$	Chk'd by	Date	App'd by	Date

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$M_{\max (\mathbf{k N m})}$	$\mathbf{M}_{\min (\mathbf{k N m})}$	$F_{\max }(\mathbf{k N})$	$F_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta_{\min }(\mathbf{m m})$
0.000	0.00	0.00	1.08	0.00	0.0	0.0
0.640	0.55	0.00	0.65	0.00	6.1	0.0
1.280	0.83	0.00	0.22	0.00	9.8	0.0
1.600	0.86	0.00	0.00	0.00	10.3	0.0
1.600	0.86	0.00	0.00	0.00	10.3	0.0
1.920	0.83	0.00	0.00	-0.22	9.8	0.0
2.560	0.55	0.00	0.00	-0.65	6.1	0.0
3.200	0.00	0.00	0.00	-1.08	0.0	0.0

RESULTS FOR COMBINATION 1

Beam Max/Min results - Combination 1 :

Maximum shear $=1.1 \mathrm{kN}$
Maximum moment $=0.9 \mathrm{kNm}$
Maximum deflection $=10.3 \mathrm{~mm}$

Span Max/Min results - Combination 1 :

Span $1 \quad$ Maximum shear $=1.1 \mathrm{kN}$ at 0.000 m
Maximum moment $=0.9 \mathrm{kNm}$ at 1.600 m

Minimum shear $=-\mathbf{1 . 1} \mathrm{kN}$
Minimum moment $=0.0 \mathrm{kNm}$
Minimum deflection $=0.0 \mathrm{~mm}$

Minimum shear $=\mathbf{- 1 . 1} \mathrm{kN}$ at $\mathbf{3 . 2 0 0 ~ m}$
Minimum moment $=0.0 \mathrm{kNm}$ at 0.000 m

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Roof Rafters @ 450crs				3	3
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

Maximum deflection $=10.3 \mathrm{~mm}$ at $\mathbf{1 . 6 0 0} \mathrm{m}$
Minimum deflection $=\mathbf{0 . 0} \mathbf{~ m m}$ at $\mathbf{3 . 2 0 0}$ m

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Roof Rafters @ 600crs				Sheet no	1
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS

Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Free"
Support B	Vertically "Restrained"	Rotationally "Free"

Span Definitions:
Span 1 Length $=\mathbf{2 8 5 0} \mathbf{m m} \quad$ Cross-sectional area $=\mathbf{9 0 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{1 . 2 8} \times \mathbf{1 0} \mathbf{0}^{\mathbf{6}} \mathrm{mm}^{4}$
LOADING DETAILS
Beam Loads:
Load 1 UDL Dead load 0.3 kN/m
Load $2 \quad$ UDL Live load 0.3 kN/m
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

	Dead $(k N)$	Live $(k N)$	Wind $(k N)$	Other $(k N)$				
Support A	-0.4	-0.5	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-0.4	-0.5	0.0	0.0	0.0	0.0	0.0	0.0

Support Reactions - Combination Summary

Support A Max react $=-1.2 \mathrm{kN} \quad$ Min react $=-1.2 \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$
Support B Max react $=\mathbf{- 1 . 2} \mathrm{kN} \quad$ Min react $=\mathbf{- 1 . 2} \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$

Beam Max/Min results - Combination Summary

Maximum shear $=1.2 \mathrm{kN}$
Maximum moment $=0.9 \mathrm{kNm}$
Maximum deflection $=8.5 \mathrm{~mm}$
Span Max/Min results - Combination Summary
Span 1 Maximum shear $=1.2 \mathrm{kN}$ at 0.000 m
Maximum moment $=0.9 \mathrm{kNm}$ at 1.425 m
Maximum deflection $=\mathbf{8 . 5} \mathrm{mm}$ at 1.425 m

Minimum shear $F_{\text {min }}=-1.2 \mathrm{kN}$
Minimum moment $=0.0 \mathrm{kNm}$
Minimum deflection $=0.0 \mathrm{~mm}$

Minimum shear $=\mathbf{- 1 . 2} \mathbf{k N}$ at $\mathbf{2 . 8 5 0 ~ m ~}$
Minimum moment $=\mathbf{0 . 0} \mathrm{kNm}$ at $\mathbf{2 . 8 5 0 ~ m}$
Minimum deflection $=0.0 \mathrm{~mm}$ at 2.850 m

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Roof Rafters @ 600crs				Sheet no./	2
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$M_{\max }(\mathbf{k N m})$	$M_{\min (\mathbf{k N m})}$	$F_{\max }(\mathbf{k N})$	$F_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta_{\mathrm{min}}(\mathbf{m m})$
0.000	0.00	0.00	1.24	0.00	0.0	0.0
0.570	0.57	0.00	0.75	0.00	5.0	0.0
1.140	0.85	0.00	0.25	0.00	8.0	0.0
1.425	0.89	0.00	0.00	0.00	8.5	0.0
1.425	0.89	0.00	0.00	0.00	8.5	0.0
1.710	0.85	0.00	0.00	-0.25	-0.75	0.0
2.280	0.57	0.00	0.00	0.00	-1.24	0.0
2.850	0			0.0	0.0	

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Roof Rafters @ 600crs				Sheet no	3
	Calc. by PGR	Date $25 / 09 / 2013$	Chk'd by	Date	App'd by	Date

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref.C11-165	
	Roof Rafters @ 750crs				Sheet no.	1
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS
Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Free"
Support B	Vertically "Restrained"	Rotationally "Free"

Span Definitions:
Span 1 Length $=\mathbf{2 7 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{9 0 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{1 . 2 8} \times \mathbf{1 0}^{6} \mathrm{~mm}^{4}$
LOADING DETAILS
Beam Loads:
Load 1 UDL Dead load 0.4 kN/m
Load $2 \quad$ UDL Live load 0.4 kN/m
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

	Dead (kN)	Live (kN)	Wind (kN)	Other (kN)				
Support A	-0.5	-0.6	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-0.5	-0.6	0.0	0.0	0.0	0.0	0.0	0.0

Support Reactions - Combination Summary

Support A Max react $=-1.5 \mathrm{kN} \quad$ Min react $=-1.5 \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$
Support B Max react $=-1.5 \mathrm{kN} \quad$ Min react $=-1.5 \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$

Beam Max/Min results - Combination Summary
Maximum shear $=1.5 \mathrm{kN}$
Maximum moment $=1.0 \mathrm{kNm}$
Maximum deflection $=8.5 \mathrm{~mm}$
Minimum shear $F_{\text {min }}=-\mathbf{1 . 5} \mathrm{kN}$
Minimum moment $=0.0 \mathrm{kNm}$
Minimum deflection $=\mathbf{0 . 0} \mathrm{mm}$
Span Max/Min results - Combination Summary
Span 1 Maximum shear $=1.5 \mathrm{kN}$ at 0.000 m
Maximum moment $=\mathbf{1 . 0} \mathrm{kNm}$ at $\mathbf{1 . 3 5 0 ~ m}$
Maximum deflection $=\mathbf{8 . 5} \mathrm{mm}$ at $\mathbf{1 . 3 5 0} \mathrm{m}$

Minimum shear = -1.5 kN at 2.700 m
Minimum moment $=0.0 \mathrm{kNm}$ at 0.000 m
Minimum deflection $=0.0 \mathrm{~mm}$ at $\mathbf{2 . 7 0 0 ~ m}$

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$\mathbf{M}_{\max (\mathbf{k N m})}$	$\mathbf{M}_{\min (\mathbf{k N m})}$	$F_{\max }(\mathbf{k N})$	$F_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta_{\min }(\mathbf{m m})$
0.000	0.00	0.00	1.47	0.00	0.0	0.0
0.540	0.63	0.00	0.88	0.00	5.0	0.0
1.080	0.95	0.00	0.29	0.00	8.1	0.0
1.350	0.99	0.00	0.00	0.00	8.5	0.0
1.350	0.99	0.00	0.00	0.00	8.5	0.0
1.620	0.95	0.00	0.00	-0.29	8.1	0.0
2.160	0.63	0.00	0.00	-0.88	5.0	0.0
2.700	0.00	0.00	0.00	-1.47	0.0	0.0

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Roof Rafters @ 750crs				Sheet no.	3
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Roof Rafters @ 800crs				Sheet no.	1
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS

Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Free"
Support B	Vertically "Restrained"	Rotationally "Free"

Span Definitions:
Span 1 Length $=\mathbf{2 6 5 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{9 0 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{1 . 2 8} \times \mathbf{1 0} \mathbf{0}^{\mathbf{6}} \mathrm{mm}^{4}$
LOADING DETAILS
Beam Loads:
Load 1 UDL Dead load 0.4 kN/m
Load 2 UDL Live load 0.4 kN/m
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

	Dead $(k N)$	Live $(k N)$	Wind (kN)	Other (kN)				
Support A	-0.5	-0.6	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-0.5	-0.6	0.0	0.0	0.0	0.0	0.0	0.0

Support Reactions - Combination Summary

Support A Max react $=-1.6 \mathrm{kN} \quad$ Min react $=-1.6 \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$
Support B Max react $=\mathbf{- 1 . 6} \mathrm{kN} \quad$ Min react $=\mathbf{- 1 . 6} \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$

Beam Max/Min results - Combination Summary
Maximum shear $=1.6 \mathrm{kN}$
Maximum moment $=1.0 \mathrm{kNm}$
Maximum deflection $=8.5 \mathrm{~mm}$
Minimum shear $F_{\text {min }}=-1.6 \mathrm{kN}$
Minimum moment $=0.0 \mathrm{kNm}$
Minimum deflection $\mathbf{= 0 . 0 ~ m m}$
Span Max/Min results - Combination Summary
Span 1 Maximum shear $=1.6 \mathrm{kN}$ at 0.000 m
Maximum moment $=1.0 \mathrm{kNm}$ at 1.325 m
Minimum shear $=\mathbf{- 1 . 6} \mathrm{kN}$ at $\mathbf{2 . 6 5 0 ~ m}$
Minimum moment $=\mathbf{0 . 0} \mathbf{k N m}$ at $\mathbf{0 . 0 0 0} \mathrm{m}$
Maximum deflection $=\mathbf{8 . 5} \mathrm{mm}$ at 1.325 m
Minimum deflection $=0.0 \mathrm{~mm}$ at $\mathbf{2 . 6 5 0} \mathrm{m}$

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Roof Rafters @ 800crs				Sheet no	2
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

SPAN RESULTS - SPAN 1

X (m)	$M_{\max }(\mathbf{k N m})$	$M_{\text {min }}(\mathrm{kNm})$	$F_{\text {max }}(\mathrm{kN})$	$F_{\text {min }}(k N)$	$\delta_{\text {max }}(\mathrm{mm})$	$\delta_{\text {min }}(\mathrm{mm})$
0.000	0.00	0.00	1.55	0.00	0.0	0.0
0.530	0.66	0.00	0.93	0.00	5.0	0.0
1.060	0.99	0.00	0.31	0.00	8.1	0.0
1.325	1.03	0.00	0.00	0.00	8.5	0.0
1.325	1.03	0.00	0.00	0.00	8.5	0.0
1.325	1.03	0.00	0.00	0.00	8.5	0.0
1.590	0.99	0.00	0.00	-0.31	8.1	0.0
2.120	0.66	0.00	0.00	-0.93	5.0	0.0
2.650	0.00	0.00	0.00	-1.55	0.0	0.0

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Section	Roof Rafters @ 800crs			Sheet no	3
	Calc. by PGR	Date $25 / 09 / 2013$	Chk'd by	Date	App'd by	Date

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Section	Roof Raft	@ 900		Sheet no	1
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS

Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Free"
Support B	Vertically "Restrained"	Rotationally "Free"

Span Definitions:
Span 1 Length $=\mathbf{2 5 5 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{9 0 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{1 . 2 8} \times \mathbf{1 0} \mathbf{0}^{6} \mathrm{~mm}^{4}$
LOADING DETAILS
Beam Loads:
Load 1 UDL Dead load 0.4 kN/m
Load $2 \quad$ UDL Live load 0.5 kN/m
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

	Dead $(k N)$	Live $(k N)$	Wind (kN)	Other (kN)				
Support A	-0.5	-0.6	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-0.5	-0.6	0.0	0.0	0.0	0.0	0.0	0.0

Support Reactions - Combination Summary

Support A Max react $=-1.7 \mathrm{kN} \quad$ Min react $=-1.7 \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$
Support B Max react $=-1.7 \mathrm{kN} \quad$ Min react $=\mathbf{- 1 . 7} \mathrm{kN} \quad$ Max mom $=0.0 \mathrm{kNm} \quad$ Min mom $=0.0 \mathrm{kNm}$

Beam Max/Min results - Combination Summary

Maximum shear $=1.7 \mathrm{kN}$
Maximum moment $=1.1 \mathrm{kNm}$
Maximum deflection $=8.3 \mathrm{~mm}$

Span Max/Min results - Combination Summary

Span 1 Maximum shear $=1.7 \mathrm{kN}$ at 0.000 m

Maximum moment $=1.1 \mathrm{kNm}$ at 1.275 m
Maximum deflection $=\mathbf{8 . 3} \mathrm{mm}$ at 1.275 m

Minimum shear $F_{\text {min }}=-1.7 \mathrm{kN}$
Minimum moment $=0.0 \mathrm{kNm}$
Minimum deflection $=0.0 \mathrm{~mm}$

Minimum shear $=\mathbf{- 1 . 7} \mathrm{kN}$ at $\mathbf{2 . 5 5 0 ~ m}$
Minimum moment $=\mathbf{0 . 0} \mathrm{kNm}$ at $\mathbf{0 . 0 0 0} \mathrm{m}$
Minimum deflection $=\mathbf{0 . 0} \mathrm{mm}$ at $\mathbf{0 . 0 0 0} \mathrm{m}$

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref.C11-165	
	Roof Rafters @ 900crs				Sheet no	2
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$\mathbf{M}_{\max (\mathbf{k N m})}$	$\mathbf{M}_{\min (\mathbf{k N m})}$	$\boldsymbol{F}_{\max }(\mathbf{k N})$	$F_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta_{\min (\mathbf{m m})}$
0.000	0.00	0.00	1.70	0.00	0.0	0.0
0.510	0.69	0.00	1.02	0.00	4.9	0.0
1.020	1.04	0.00	0.34	0.00	7.9	0.0
1.275	1.08	0.00	0.00	0.00	8.3	0.0
1.530	1.04	0.00	0.00	-0.34	7.9	0.0
2.040	0.69	0.00	0.00	-1.02	4.9	0.0
2.550	0.00	0.00	0.00	-1.70	0.0	0.0

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Roof Rafters @ 900crs				Sheet no.	3
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CSC 1 TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Eaves Beam - UDL				1	
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS
Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{3} \mathrm{kg} / \mathrm{m}^{3}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Restrained"
Support B	Vertically "Restrained"	Rotationally "Restrained"

Span Definitions:
Span $1 \quad$ Length $=\mathbf{2 4 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{1 6 0 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{4 . 4 4 \times 1 0 ^ { 6 } \mathrm { mm } ^ { 4 }}$
LOADING DETAILS
Beam Loads:
Load 1 UDL Dead load 1.3 kN/m
Load 2 UDL Live load 1.8 kN/m
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

	Dead (kN)	Live (kN)	Wind (kN)	Other (kN)				
Support A	-1.6	-2.1	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-1.6	-2.1	0.0	0.0	0.0	0.0	0.0	0.0

Support Reactions - Combination Summary

Support A Max react $=-5.3 \mathrm{kN} \quad$ Min react $=-5.3 \mathrm{kN} \quad$ Max mom $=-\mathbf{2} .1 \mathrm{kNm} \quad$ Min mom =-2.1 kNm

Support B Max react $=-5.3 \mathrm{kN} \quad$ Min react $=-5.3 \mathrm{kN} \quad$ Max mom $=\mathbf{2} .1 \mathrm{kNm} \quad$ Min mom $=2.1 \mathrm{kNm}$
Beam Max/Min results - Combination Summary

Maximum shear $=5.3 \mathrm{kN}$
Maximum moment $=1.1 \mathrm{kNm}$
Maximum deflection $=1.2 \mathrm{~mm}$
Span Max/Min results - Combination Summary
Span 1 Maximum shear $=5.3 \mathrm{kN}$ at 0.000 m
Maximum moment $=1.1 \mathrm{kNm}$ at 1.200 m
Maximum deflection $=\mathbf{1 . 2} \mathrm{mm}$ at $\mathbf{1 . 2 0 0} \mathrm{m}$

Minimum shear $F_{\text {min }}=-5.3 \mathrm{kN}$
Minimum moment $=-2.1 \mathrm{kNm}$
Minimum deflection $=0.0 \mathrm{~mm}$

Minimum shear $=-\mathbf{5 . 3} \mathrm{kN}$ at 2.400 m
Minimum moment $=\mathbf{- 2 . 1} \mathrm{kNm}$ at 0.000 m
Minimum deflection $=0.0 \mathrm{~mm}$ at 0.000 m

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$M_{\max }(\mathbf{k N m})$	$M_{\min }(\mathbf{k N m})$	$F_{\max }(\mathbf{k N})$	$F_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta_{\min }(\mathbf{m m})$
0.000	0.00	-2.12	5.31	0.00	0.0	0.0
0.480	0.00	-0.08	3.18	0.00	0.5	0.0
0.960	0.93	0.00	1.06	0.00	1.1	0.0
1.200	1.06	0.00	0.00	0.00	1.2	0.0
1.200	1.06	0.00	0.00	0.00	0.0	
1.200	1.06	0.00	0.00	0.00	-1.06	1.2
1.440	0.93	-2.12	0.08	0.00	18	0.2
1.920	0.00		-5.31	0.0	0.0	
2.400				0.0	0.0	

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project Supalite Tiled Roof Systems Ltd Supalite Roof				Job Ref. C11-165	
	Eaves Beam - Gable with Point Load				1	1
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS
Number of spans = $\mathbf{1}$
Material Properties:
Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:
$\begin{array}{lll}\text { Support A } & \text { Vertically "Restrained" } & \text { Rotationally "Restrained" } \\ \text { Support B } & \text { Vertically "Restrained" } & \text { Rotationally "Restrained" }\end{array}$

Span Definitions:

Span 1 Length $=\mathbf{2 4 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{2 1 2 7} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{4 . 4 4 \times 1 0 ^ { 6 }} \mathrm{mm}^{4}$
LOADING DETAILS
Beam Loads:
Load 1 UDL Dead load 0.5 kN/m
Load $2 \quad$ Point Dead load 2.8 kN at $\mathbf{1 . 2 0 0} \mathrm{m}$
Load $3 \quad$ Point Live load 3.3 kN at $\mathbf{0 . 0 0 0 ~ m}$
Support A loads:
Load 3 Beam pointLive Load 3.3 kN
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
Support A $1 \times$ Dead $+1 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

| | Dead
 $(k N)$ | Live
 $(k N)$ | Wind
 $(k N)$ | Other
 $(k N)$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Support A | -2.0 | -3.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Support B | -2.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |

Support Reactions - Combination Summary

Support A	Max react $=-6.0 \mathrm{kN}$	Min react $=-6.0 \mathrm{kN}$	Max mom = -1.5 kNm	Min mom $=-1.5 \mathrm{kNm}$
Support B	Max react = -2.7 kN	Min react $=\mathbf{- 2 . 7} \mathrm{kN}$	Max mom = 1.5 kNm	Min mom $=1.5 \mathrm{kNm}$
Beam Max/Min results - Combination Summary				
Maximum shear $=2.7 \mathrm{kN}$			Minimum shear $\mathrm{F}_{\text {min }}=-2.7 \mathrm{kN}$	
Maximum moment $=1.3 \mathrm{kNm}$			Minimum moment $=\mathbf{- 1 . 5} \mathrm{kNm}$	
Maximum deflection $=1.1 \mathrm{~mm}$			Minimum deflection $=0.0 \mathrm{~mm}$	

Span Max/Min results - Combination Summary
Span 1 Maximum shear $=2.7 \mathrm{kN}$ at $0.000 \mathrm{~m} \quad$ Minimum shear $=\mathbf{- 2 . 7} \mathrm{kN}$ at $\mathbf{2 . 4 0 0 ~ m}$

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref. C11-165	
	Eaves Beam - Gable with Point Load				Sheet no.	2
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

Maximum moment $=1.3 \mathrm{kNm}$ at 1.200 m	Minimum moment $=\mathbf{- 1 . 5} \mathrm{kNm}$ at 2.400 m
Maximum deflection $=1.1 \mathrm{~mm}$ at 1.200 m	Minimum deflection $=0.0 \mathrm{~mm}$ at 0.000 m

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$M_{\max }(\mathbf{k N m})$	$M_{\min (\mathbf{k N m})}$	$F_{\max }(\mathbf{k N})$	$F_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta_{\min }(\mathbf{m m})$
0.000	0.00	-1.46	2.70	0.00	0.0	0.0
0.480	0.00	-0.24	2.38	0.00	0.4	0.0
0.960	0.82	0.00	2.05	0.00	1.0	0.0
1.200	1.30	0.00	1.89	-1.89	-1.89	1.1
1.200	1.30	0.00	0.00	-2.05	1.1	0.0
1.440	0.82	0.00	-0.24	0.00	-2.38	0.0
1.920	0.00	-1.46	0.00	-2.70	0.0	0.0
2.400	0.00	-1.46	0.00	-2.70	0.0	0.0
2.400	0.00				0.0	

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref.C11-165	
	Section	ves Beam - G	le with		Sheet no.	3
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CSC T TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				$J_{\text {Job Ref. }}$	
	Supalite Tiled Roof Systems Ltd - Supalite Roof				C11-165	
	Section Eaves Beam - with Point Loads					1
	$\begin{gathered} \text { Calc. by } \\ \text { PGR } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Date } \\ & \text { 25/09/2013 } \end{aligned}\right.$	Chkt by	Date	Appod by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS

Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Restrained"
Support B	Vertically "Restrained"	Rotationally "Restrained"

Span Definitions:
Span 1 Length $=\mathbf{2 4 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{2 1 2 7} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{4 . 4 4 \times 1 0 ^ { 6 } \mathrm { mm } ^ { 4 }}$

LOADING DETAILS

Beam Loads:
Load $1 \quad$ Point Dead load 2.8 kN at 1.200 m
Load $2 \quad$ Point Live load $\mathbf{3 . 3} \mathbf{~ k N}$ at $\mathbf{1 . 2 0 0 ~ m}$
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

	Dead $(k N)$	Live $(k N)$	Wind $(k N)$	Other $(k N)$				
Support A	-1.4	-1.6	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-1.4	-1.6	0.0	0.0	0.0	0.0	0.0	0.0

Support Reactions - Combination Summary

Support A Max react $=-4.4 \mathrm{kN} \quad$ Min react $=-4.4 \mathrm{kN} \quad$ Max mom $=-\mathbf{2} .6 \mathrm{kNm} \quad$ Min mom =-2.6 kNm

Support B Max react $=-4.4 \mathrm{kN} \quad$ Min react $=-4.4 \mathrm{kN}$ Max mom = $2.6 \mathrm{kNm} \quad$ Min mom $=2.6 \mathrm{kNm}$
Beam Max/Min results - Combination Summary

Maximum shear $=4.4 \mathrm{kN}$
Maximum moment $=2.6 \mathrm{kNm}$
Maximum deflection $=2.0 \mathrm{~mm}$
Span Max/Min results - Combination Summary
Span 1 Maximum shear $=4.4 \mathrm{kN}$ at 0.000 m
Maximum moment $=\mathbf{2 . 6} \mathrm{kNm}$ at 1.200 m
Maximum deflection $=\mathbf{2 . 0} \mathrm{mm}$ at $\mathbf{1 . 2 0 0} \mathrm{m}$

Minimum shear $F_{\text {min }}=-4.4 \mathrm{kN}$
Minimum moment $=\mathbf{- 2 . 6} \mathrm{kNm}$
Minimum deflection $=0.0 \mathrm{~mm}$

Minimum shear $=-\mathbf{4 . 4} \mathrm{kN}$ at 2.400 m
Minimum moment $=\mathbf{- 2 . 6} \mathrm{kNm}$ at 0.000 m
Minimum deflection $=\mathbf{0 . 0} \mathrm{mm}$ at $\mathbf{0 . 0 0 0} \mathrm{m}$

CSC T TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys FY5 3JR tel 01253859867	Project				Job Ref.C11-165	
	Eaves Beam - with Point Loads				Sheet no.	2
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$M_{\max }(\mathbf{k N m})$	$M_{\min }(\mathbf{k N m})$	$F_{\max }(\mathbf{k N})$	$F_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta_{\min }(\mathbf{m m})$
0.000	0.00	-2.62	4.37	0.00	0.0	0.0
0.480	0.00	-0.52	4.37	0.00	0.7	0.0
0.960	1.57	0.00	4.37	0.00	1.8	0.0
1.200	2.62	0.00	4.37	-4.36	-4.36	2.0
1.200	2.62	0.00	0.00	-4.36	0.0	
1.440	1.57	0.00	-0.52	0.00	-4.36	0.0
1.920	0.00	-2.62	0.00	-4.36	0.7	0.0
2.400	0.00	-2.62	0.00	0.36	0.0	
2.400				0.0	0.0	

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref.C11-165	
	Section				Sheet no./rev.	
	Hip Beam - UDL				1	
	Calc. by PGR	$\begin{aligned} & \text { Date } \\ & 25 / 09 / 2013 \end{aligned}$	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS
Number of spans = $\mathbf{1}$

Material Properties:

$$
\text { Modulus of elasticity }=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad \text { Material density }=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{3}
$$

Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Restrained"
Support B	Vertically "Restrained"	Rotationally "Restrained"

Span Definitions:
Span 1 Length $=\mathbf{4 8 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{1 5 8 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{3 . 1 4 \times 1 0 ^ { 6 }} \mathrm{mm}^{4}$
LOADING DETAILS
Beam Loads:
Load $1 \quad$ VDL Dead load 0.1 kN/m to $1.5 \mathrm{kN} / \mathrm{m}$
Load $2 \quad$ VDL Live load $0.1 \mathrm{kN} / \mathrm{m}$ to $1.8 \mathrm{kN} / \mathrm{m}$
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Support Reactions - Combination Summary

Support A	Max react $=-\mathbf{- 3 . 9} \mathrm{kN}$	Min react $=-\mathbf{- 3 . 9} \mathrm{kN}$	Max mom $=-\mathbf{- 3 . 9} \mathrm{kNm}$	Min mom $=-\mathbf{3 . 9} \mathrm{kNm}$
Support B	Max react $=-8.1 \mathrm{kN}$	Min react $=-8.1 \mathrm{kN}$	Max mom $=\mathbf{5 . 6} \mathrm{kNm}$	Min mom $=\mathbf{5 . 6} \mathrm{kNm}$

Beam Max/Min results - Combination Summary

Maximum shear $=3.9 \mathrm{kN}$
Maximum moment $=2.4 \mathrm{kNm}$
Maximum deflection $=15.8 \mathrm{~mm}$
Span Max/Min results - Combination Summary
Span $1 \quad$ Maximum shear $=3.9 \mathrm{kN}$ at 0.000 m
Maximum moment $=\mathbf{2 . 4} \mathrm{kNm}$ at 2.603 m
Maximum deflection $=15.8 \mathrm{~mm}$ at 2.505 m

Minimum shear $F_{\min }=-8.1 \mathrm{kN}$
Minimum moment $=-5.6 \mathrm{kNm}$
Minimum deflection $=0.0 \mathrm{~mm}$

Minimum shear $=\mathbf{- 8 . 1} \mathrm{kN}$ at $\mathbf{4 . 8 0 0} \mathrm{m}$
Minimum moment $=-5.6 \mathrm{kNm}$ at 4.800 m Minimum deflection $=0.0 \mathrm{~mm}$ at 0.000 m

Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref. C11-165	
	Section				Sheet no./rev.	
	Hip Beam - UDL				2	
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

SPAN RESULTS - SPAN 1

X (m)	$M_{\text {max }}(\mathbf{k N m})$	$M_{\text {min }}(\mathrm{kNm})$	$F_{\text {max }}(k N)$	$F_{\text {min }}(k N)$	$\delta \max (\mathrm{mm})$	δ min (mm)
0.000	0.00	-3.93	3.86	0.00	0.0	0.0
0.600	0.00	-1.70	3.52	0.00	2.6	0.0
1.200	0.23	0.00	2.85	0.00	8.1	0.0
1.800	1.65	0.00	1.85	0.00	13.2	0.0
2.400	2.38	0.00	0.52	0.00	15.7	0.0
2.504	2.42	0.00	0.26	0.00	15.8	0.0
2.505	2.42	0.00	0.26	0.00	15.8	0.0
2.505	2.42	0.00	0.26	0.00	15.8	0.0
2.603	2.44	0.00	0.00	0.00	15.7	0.0
2.603	2.44	0.00	0.00	0.00	15.7	0.0
2.604	2.44	0.00	0.00	0.00	15.7	0.0
3.000	2.22	0.00	0.00	-1.13	14.4	0.0
3.600	0.96	0.00	0.00	-3.11	9.6	0.0
4.200	0.00	-1.58	0.00	-5.42	3.4	0.0
4.800	0.00	-5.60	0.00	-8.05	0.0	0.0

RESULTS FOR COMBINATION 1

Support Reactions and Deflections - Combination 1:

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref. C11-165	
	Section				Sheet no./rev.	
	Hip Beam - UDL				3	
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

Support A Reaction $=-\mathbf{3 . 9} \mathrm{kN} \quad$ Moment $=-3.9 \mathrm{kNm} \quad$ Deflection $=\mathbf{0 . 0 \mathrm { mm }} \quad$ Rotation $=\mathbf{0 . 0 0}$ deg
Support B Reaction $=-8.1 \mathrm{kN} \quad$ Moment $=\mathbf{5 . 6} \mathrm{kNm} \quad$ Deflection $=\mathbf{0 . 0} \mathrm{mm} \quad$ Rotation $=\mathbf{0 . 0 0}$ deg
Beam Max/Min results - Combination 1 :
Maximum shear $=3.9 \mathrm{kN}$
Maximum moment $=2.4 \mathrm{kNm}$
Maximum deflection $=15.8 \mathrm{~mm}$
Minimum shear $=-8.1 \mathrm{kN}$
Minimum moment $=-5.6 \mathrm{kNm}$
Minimum deflection $=0.0 \mathrm{~mm}$
Span Max/Min results - Combination 1:

Span Results - Span 1 - Combination

$\mathbf{x (m)}$	$\mathbf{F}_{\text {left }} \mathbf{(k N)}$	$\mathbf{F}_{\text {right }} \mathbf{(k N)}$	$\mathbf{M} \mathbf{(k N m})$	$\boldsymbol{\delta}(\mathbf{m m})$
0.000	3.86		-3.93	0.0
1.200	2.85		0.23	8.1
2.400	0.52		2.38	15.7
3.600	-3.11		0.96	9.6
4.800	-8.05		-5.60	0.0

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref. C11-165	
	Hip Beam - 900 point loads				1	
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS

Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Restrained"
Support B	Vertically "Restrained"	Rotationally "Restrained"

Span Definitions:
Span 1 Length $=\mathbf{4 9 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{1 5 8 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{3 . 1 4 \times 1 0 ^ { 6 }} \mathrm{mm}^{4}$
LOADING DETAILS
Beam Loads:
Load $1 \quad$ Point Dead load 0.2 kN at 0.810 m
Load $2 \quad$ Point Live load 0.2 kN at $\mathbf{0 . 8 1 0} \mathrm{m}$
Load $3 \quad$ Point Dead load 0.7 kN at 1.950 m
Load $4 \quad$ Point Live load 0.8 kN at 1.950 m
Load $5 \quad$ Point Dead load 1.0 kN at 3.050 m
Load $6 \quad$ Point Live load 1.2 kN at 3.050 m
Load $7 \quad$ Point Dead load 1.4 kN at 4.100 m
Load $8 \quad$ Point Live load 1.6 kN at $\mathbf{4 . 1 0 0 ~ m ~}$
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS

Support Reactions - Combination Summary

Support A	Max react $=-\mathbf{3 . 2} \mathrm{kN}$	Min react $=-\mathbf{3 . 2} \mathrm{kN}$	Max mom $=-\mathbf{3} .6 \mathrm{kNm}$	Min mom $=-\mathbf{3 . 6} \mathrm{kNm}$
Support B	Max react $=-6.8 \mathrm{kN}$	Min react $=-6.8 \mathrm{kN}$	Max mom $=5.7 \mathrm{kNm}$	Min mom $=5.7 \mathrm{kNm}$

Beam Max/Min results - Combination Summary

Maximum shear $=3.2 \mathrm{kN}$
Maximum moment $=2.6 \mathrm{kNm}$
Maximum deflection $=16.3 \mathrm{~mm}$
Span Max/Min results - Combination Summary
Span 1 Maximum shear $=3.2 \mathrm{kN}$ at 0.000 m
Maximum moment $=\mathbf{2 . 6} \mathrm{kNm}$ at 3.050 m
Maximum deflection $=16.3 \mathrm{~mm}$ at 2.593 m

Minimum shear $F_{\min }=-6.8 \mathrm{kN}$
Minimum moment $=-5.7 \mathrm{kNm}$
Minimum deflection $=\mathbf{0 . 0} \mathrm{mm}$

Minimum shear $=-6.8 \mathrm{kN}$ at 4.900 m
Minimum moment $=-5.7 \mathrm{kNm}$ at 4.900 m
Minimum deflection $=0.0 \mathrm{~mm}$ at 4.900 m

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref. C11-165	
	Section				Sheet no./rev.	
	Hip Beam - 900 point loads				2	
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	PGR	25/09/2013				

SPAN RESULTS - SPAN 1

X (m)	$M_{\text {max }}(\mathbf{k N m})$	$M_{\text {min }}(\mathrm{kNm})$	$F_{\text {max }}(\mathrm{kN})$	$F_{\text {min }}(k N)$	$\delta \max (\mathrm{mm})$	$\delta \min (\mathrm{mm})$
0.000	0.00	-3.63	3.18	0.00	0.0	0.0
0.613	0.00	-1.68	3.18	0.00	2.6	0.0
0.810	0.00	-1.05	3.18	0.00	4.2	0.0
1.225	0.05	0.00	2.65	0.00	8.0	0.0
1.838	1.67	0.00	2.65	0.00	13.4	0.0
1.950	1.97	0.00	2.65	0.00	14.2	0.0
2.450	2.24	0.00	0.53	0.00	16.2	0.0
2.592	2.31	0.00	0.53	0.00	16.3	0.0
2.593	2.31	0.00	0.53	0.00	16.3	0.0
2.593	2.31	0.00	0.53	0.00	16.3	0.0
3.050	2.56	0.00	0.53	-2.63	15.1	0.0
3.063	2.53	0.00	0.00	-2.63	15.1	0.0
3.675	0.92	0.00	0.00	-2.63	10.1	0.0
4.100	0.00	-0.20	0.00	-6.85	5.6	0.0
4.288	0.00	-1.48	0.00	-6.85	3.7	0.0
4.900	0.00	-5.68	0.00	-6.85	0.0	0.0

RESULTS FOR COMBINATION 1

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref. C11-165	
	Section				Sheet no./rev.	
	Hip Beam - 900 point loads				3	
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

Support Reactions and Deflections - Combination 1 :

Support A Reaction $=\mathbf{- 3 . 2} \mathrm{kN} \quad$ Moment $=\mathbf{- 3 . 6} \mathrm{kNm} \quad$ Deflection $=0.0 \mathrm{~mm} \quad$ Rotation $=0.00 \mathrm{deg}$
Support B Reaction $=-6.8 \mathrm{kN} \quad$ Moment $=5.7 \mathrm{kNm} \quad$ Deflection $=0.0 \mathrm{~mm} \quad$ Rotation $=0.00 \mathrm{deg}$ Beam Max/Min results - Combination 1 :

Maximum shear $=3.2 \mathrm{kN}$	Minimum shear $=-6.8 \mathrm{kN}$
Maximum moment $=2.6 \mathrm{kNm}$	Minimum moment $=-5.7 \mathrm{kNm}$

Span Max/Min results - Combination 1 :
Span 1 Maximum shear $=3.2 \mathrm{kN}$ at $\mathbf{0 . 0 0 0} \mathrm{m}$
Maximum moment $=\mathbf{2 . 6} \mathrm{kNm}$ at $\mathbf{3 . 0 5 0} \mathrm{m}$
Minimum shear $=-6.8 \mathrm{kN}$ at 4.900 m
Minimum moment $=-5.7 \mathrm{kNm}$ at 4.900 m
Maximum deflection $=\mathbf{1 6 . 3} \mathrm{mm}$ at 2.593 m
Minimum deflection $=0.0 \mathrm{~mm}$ at $\mathbf{4 . 9 0 0} \mathrm{m}$

Span Results - Span 1-Combination

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref.C11-165	
	Section				Sheet no./rev.	
	Hip Beam - 900 point loads				4	
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

$\mathbf{x ~ (m) ~}$	$\mathbf{F}_{\text {left (kN) }}$	Fright (kN) $^{\mathbf{M} \mathbf{(k N m})}$	$\boldsymbol{\delta}$ (mm)	
0.000	3.18		-3.63	0.0
0.810	3.18	2.65	-1.05	4.2
1.225	2.65		0.05	8.0
1.950	2.65	0.53	1.97	14.2
2.450	0.53		2.24	16.2
3.050	0.53	-2.63	2.56	15.1
3.675	-2.63		0.92	10.1
4.100	-2.63	-6.85	-0.20	5.6
4.900	-6.85		-5.68	0.0

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref. C11-165	
	Section	Ridge Beam UDL load - 3200 rafters			1	1
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS
Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Restrained"
Support B	Vertically "Restrained"	Rotationally "Restrained"

Span Definitions:
Span 1 Length $=\mathbf{3 9 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{1 5 8 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{3 . 1 4 \times 1 0 ^ { 6 }} \mathrm{mm}^{4}$
LOADING DETAILS
Beam Loads:
Load 1 UDL Dead load 1.5 kN/m
Load 2 UDL Live load 1.8 kN/m
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS
Unfactored support reactions

	Dead (kN)	Live (kN)	Wind (kN)	Other (kN)				
Support A	-2.9	-3.4	0.0	0.0	0.0	0.0	0.0	0.0
Support B	-2.9	-3.4	0.0	0.0	0.0	0.0	0.0	0.0

Support Reactions - Combination Summary

Support A Max react $=-9.1 \mathrm{kN} \quad$ Min react $=-9.1 \mathrm{kN} \quad$ Max mom $=-5.9 \mathrm{kNm} \quad$ Min mom =-5.9 kNm
Support B Max react $=-9.1 \mathrm{kN} \quad$ Min react $=-9.1 \mathrm{kN} \quad$ Max mom $=5.9 \mathrm{kNm} \quad$ Min mom $=5.9 \mathrm{kNm}$

Beam Max/Min results - Combination Summary
Maximum shear $=9.1 \mathrm{kN}$
Maximum moment $=3.0 \mathrm{kNm}$
Maximum deflection $=12.9 \mathrm{~mm}$
Minimum shear $F_{\text {min }}=-9.1 \mathrm{kN}$
Minimum moment $=-5.9 \mathrm{kNm}$
Minimum deflection $\mathbf{= 0 . 0 ~ m m}$
Span Max/Min results - Combination Summary
Span 1 Maximum shear $=9.1 \mathrm{kN}$ at 0.000 m
Maximum moment $=\mathbf{3 . 0} \mathrm{kNm}$ at 1.950 m
Maximum deflection $=\mathbf{1 2 . 9} \mathrm{mm}$ at 1.950 m

Minimum shear $=\mathbf{- 9 . 1} \mathrm{kN}$ at 3.900 m
Minimum moment $=-5.9 \mathrm{kNm}$ at 3.900 m
Minimum deflection $=\mathbf{0 . 0} \mathrm{mm}$ at $\mathbf{0 . 0 0 0} \mathrm{m}$

$\text { CSC }>\text { FEDD }$	Project				Job Ref.	
	Supalite Tiled Roof Systems Ltd - Supalite Roof				C11-165	
41 Maitland Avenue	Section				Sheet no./rev.	
Thornton-Cleveleys. Lancs FY5 3JR	Ridge Beam UDL load - 3200 rafters				2	
01253859867	Calc. by	Date	Chk'd by	Date	App'd by	Date
	PGR	25/09/2013				

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$M_{\max }(\mathbf{k N m})$	$M_{\min (\mathbf{k N m})}$	$F_{\max }(\mathbf{k N})$	$F_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta \min (\mathbf{m m})$
0.000	0.00	-5.91	9.10	0.00	0.0	0.0
0.780	0.00	-0.24	5.46	0.00	5.3	0.0
1.560	2.60	0.00	1.82	0.00	11.9	0.0
1.950	2.96	0.00	0.00	0.00	12.9	0.0
2.340	2.60	0.00	0.00	-1.82	11.9	0.0
3.120	0.00	-0.24	0.00	-5.46	5.3	0.0
3.900	0.00	-5.91	0.00	-9.10	0.0	0.0

RESULTS FOR COMBINATION 1

Support Reactions and Deflections - Combination 1 :

Support A	Reaction $=-9.1 \mathrm{kN}$	Moment $=-5.9 \mathrm{kNm}$	Deflection $=0.0 \mathrm{~mm}$	Rotation $=\mathbf{0 . 0 0} \mathrm{deg}$
Support B	Reaction $=-9.1 \mathrm{kN}$	Moment $=5.9$ kNm	Deflection $=0.0$ mm	Rotation $=\mathbf{0 . 0 0} \mathrm{deg}$
Beam Max/Min results - Combination 1 :				
	Maximum shear $=9.1 \mathrm{kN}$		Minimum shear $=-9.1 \mathrm{kN}$	
	Maximum moment $=3.0 \mathrm{kNm}$		Minimum moment $=-5.9 \mathrm{kNm}$	
	Maximum deflection $=12.9 \mathrm{~mm}$		Minimum deflection $=0.0 \mathrm{~mm}$	
Span Max/Min results - Combination 1 :				
Span 1	Maximum shear $=9$	at 0.000 m	Minimum shear $=-9.1$	at 3.900 m

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref.C11-165	
	Ridge Beam UDL load - 3200 rafters				3	
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

Maximum moment $=3.0 \mathrm{kNm}$ at 1.950 m
Maximum deflection $=12.9 \mathrm{~mm}$ at 1.950 m

Minimum moment $=-5.9 \mathrm{kNm}$ at 3.900 m
Minimum deflection $=\mathbf{0 . 0} \mathbf{~ m m}$ at 0.000 m

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys . Lancs FY5 3JR 01253859867	Project				Job Ref. C11-165	
	Section				Sheet no	
	Ridge Beam - 900 point loads				1	
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

CONTINUOUS BEAM ANALYSIS - INPUT

BEAM DETAILS
Number of spans = $\mathbf{1}$

Material Properties:

Modulus of elasticity $=\mathbf{7 0} \mathrm{kN} / \mathrm{mm}^{2} \quad$ Material density $=\mathbf{2 7 0 0} \mathrm{kg} / \mathrm{m}^{\mathbf{3}}$
Support Conditions:

Support A	Vertically "Restrained"	Rotationally "Restrained"
Support B	Vertically "Restrained"	Rotationally "Restrained"

Span Definitions:
Span 1 Length $=\mathbf{3 9 0 0} \mathrm{mm} \quad$ Cross-sectional area $=\mathbf{1 5 8 0} \mathrm{mm}^{2} \quad$ Moment of inertia $=\mathbf{3 . 1 4 \times 1 0 ^ { 6 }} \mathrm{mm}^{4}$
LOADING DETAILS
Beam Loads:
Load $1 \quad$ Point Dead load 1.4 kN at 0.500 m
Load $2 \quad$ Point Dead load 1.4 kN at 1.400 m
Load $3 \quad$ Point Dead load 1.4 kN at 2.300 m
Load $4 \quad$ Point Dead load 1.4 kN at 3.200 m
Load $5 \quad$ Point Live load 1.6 kN at 0.500 m
Load 6 Point Live load 1.6 kN at $\mathbf{1 . 4 0 0} \mathrm{m}$
Load $7 \quad$ Point Live load 1.6 kN at $\mathbf{2 . 3 0 0 ~ m}$
Load $8 \quad$ Point Live load 1.6 kN at $\mathbf{3 . 2 0 0 ~ m ~}$
LOAD COMBINATIONS
Load combination 1
Span $1 \quad 1.35 \times$ Dead $+1.5 \times$ Live
CONTINUOUS BEAM ANALYSIS - RESULTS

Support Reactions - Combination Summary

Support A	Max react $=\mathbf{- 8 . 9} \mathrm{kN}$	Min react $=-8.9 \mathrm{kN}$	Max mom $=-6.1 \mathrm{kNm}$	Min mom $=-6.1 \mathrm{kNm}$
Support B	Max react $=\mathbf{- 8 . 0} \mathrm{kN}$	Min react $=\mathbf{- 8 . 0} \mathrm{kN}$	Max mom $=5.9$ kNm	Min mom $=5.9 \mathrm{kNm}$
Beam Max/Min results - Combination Summary				
Maximum shear $=8.9 \mathrm{kN}$			Minimum shear $F_{\text {min }}=-8.0 \mathrm{kN}$	
Maximum moment $=3.0 \mathrm{kNm}$			Minimum moment $=-6.1 \mathrm{kNm}$	
Maximum deflection $=13.0$ mm			Minimum deflection $=0.0 \mathrm{~mm}$	

Span Max/Min results - Combination Summary
Span 1 Maximum shear $=8.9 \mathrm{kN}$ at 0.000 m
Maximum moment $=\mathbf{3 . 0} \mathrm{kNm}$ at 2.300 m
Minimum shear $=-8.0 \mathrm{kN}$ at 3.900 m
Minimum moment $=-6.1 \mathrm{kNm}$ at 0.000 m
Minimum deflection $\mathbf{= 0 . 0} \mathbf{~ m m}$ at $\mathbf{0 . 0 0 0} \mathrm{m}$

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref.C11-165	
	Section Ridge Beam - 900 point loads				Sheet no	2
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

SPAN RESULTS - SPAN 1

$\mathbf{x}(\mathbf{m})$	$\mathbf{M}_{\max (\mathbf{k N m})}$	$\mathbf{M}_{\min (\mathbf{k N m})}$	$\mathbf{F}_{\max }(\mathbf{k N})$	$\boldsymbol{F}_{\min }(\mathbf{k N})$	$\delta_{\max }(\mathbf{m m})$	$\delta_{\min }(\mathbf{m m})$
0.000	0.00	-6.10	8.92	0.00	0.0	0.0
0.488	0.00	-1.75	8.92	0.00	2.5	0.0
0.500	0.00	-1.64	8.92	0.00	2.6	0.0
0.975	0.59	0.00	4.70	0.00	7.3	0.0
1.400	2.59	0.00	4.70	0.00	11.0	0.0
1.463	2.62	0.00	0.48	0.00	11.5	0.0
1.950	2.85	0.00	0.48	0.00	13.0	0.0
1.956	2.85	0.00	0.48	0.00	13.0	0.0
2.300	3.01	0.00	0.48	-3.75	12.2	0.0
2.438	2.50	0.00	0.00	-3.75	11.5	0.0
2.925	0.67	0.00	0.00	-3.75	7.3	0.0
3.200	0.00	-0.36	0.00	-7.97	4.6	0.0
3.412	0.00	-2.05	0.00	-7.97	2.5	0.0
3.900	0.00	-5.94	0.00	-7.97	0.0	0.0

RESULTS FOR COMBINATION 1

Support Reactions and Deflections - Combination 1 :

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys . Lancs FY5 3JR 01253859867	Project				Job Ref. C11-165	
	Ridge Beam - 900 point loads				Sheet no	3
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

Support A	Reaction $=-8.9 \mathrm{kN}$	Moment $=-6.1 \mathrm{kNm}$	Deflection $=0.0 \mathrm{~mm}$	Rotation $=0.00 \mathrm{deg}$
Support B	Reaction $=-8.0 \mathrm{kN}$	Moment $=5.9 \mathrm{kNm}$	Deflection $=0.0 \mathrm{~mm}$	Rotation $=0.00 \mathrm{deg}$

Beam Max/Min results - Combination 1 :
Maximum shear $=8.9 \mathrm{kN} \quad$ Minimum shear $=-8.0 \mathrm{kN}$
Maximum moment $=3.0 \mathrm{kNm} \quad$ Minimum moment $=-6.1 \mathrm{kNm}$
Maximum deflection $=\mathbf{1 3 . 0} \mathrm{mm} \quad$ Minimum deflection $=\mathbf{0 . 0} \mathrm{mm}$

Span Max/Min results - Combination 1 :

Span 1	Maximum shear $=\mathbf{8 . 9} \mathrm{kN}$ at 0.000 m	Minimum shear $=\mathbf{- 8 . 0} \mathrm{kN}$ at $\mathbf{3 . 9 0 0} \mathrm{m}$
	Maximum moment $=\mathbf{3 . 0} \mathrm{kNm}$ at $\mathbf{2 . 3 0 0 ~ \mathrm { m }}$	Minimum moment $=\mathbf{- 6 . 1} \mathrm{kNm}$ at 0.000 m
	Maximum deflection $=13.0 \mathrm{~mm}$ at 1.956 m	Minimum deflection $=\mathbf{0 . 0} \mathrm{mm}$ at 0.000 m

Span Results - Span 1 - Combination

$\mathbf{x ~ (m) ~}$	$\mathbf{F}_{\text {left (kN) }}$	Fright $^{\mathbf{(k N})}$	$\mathbf{M} \mathbf{(k N m})$	$\delta(\mathbf{m m})$
0.000	8.92		-6.10	0.0
0.500	8.92	4.70	-1.64	2.6
0.975	4.70		0.59	7.3
1.400	4.70	0.48	2.59	11.0
1.950	0.48		2.85	13.0
2.300	0.48	-3.75	3.01	12.2
2.925	-3.75		0.67	7.3
3.200	-3.75	-7.97	-0.36	4.6

CSC TEDDS Engineering and Building Design 41 Maitland Avenue Thornton-Cleveleys. Lancs FY5 3JR 01253859867	Project				Job Ref.C11-165	
	Ridge Beam - 900 point loads				Sheet no	4
	Calc. by PGR	Date 25/09/2013	Chk'd by	Date	App'd by	Date

$\mathbf{x (m)}$	F left $^{(k N)}$	Fright $(\mathbf{k N})$	$\mathbf{M}(\mathbf{k N m})$	$\delta(\mathrm{mm})$
3.900	-7.97		-5.94	0.0

- Show all datasheets
- All Metals
. General Information
- Aluminium Alloy
- Commercial Alloy
- General Information
- Copper~Brass~Bronze
- Brass
- Bronze
- Copper-Nickel (CuproNickel)
- General Information
- Pure Copper

Quick Links

\qquad

Tubes

Custom Profiles

Brochures

Data Sheets

Got a question?

Contact us direct on:

+44 (0) 1189896000
or use our online Enquiry form it is simple to use and we will reply within 24 hrs (business days only).

Aluminium Alloy // Commercial Alloy // 6063 - T6

Aluminium Alloy 6063

Aluminium alloy 6063 is a medium strength alloy commonly referred to as an architectural alloy. It is normally used in intricate extrusions.
It has a good surface finish, high corrosion resistance, is readily suited to welding and can be easily anodised. Most commonly available as T6 temper, in the T4 condition it has good formability.

Applications

6063 is typically used in:
Architectural applications
Extrusions
Window frames
Doors
Shop fittings
Irrigation tubing
In balustrading the rails and posts are normally in the T6 temper and formed elbows and bends are T4. T4 temper 6063 aluminium is also finding applications in hydroformed tube for chassis.

Aluminium Alloy 6063A

Aluminium alloy 6063A is a variation of 6063 with greater strength but retains the same good surface finish qualities and affinity for anodising.

Applications
6063A is used in the same applications as 6063. It is also used in:
Road transport
Rail transport
Extreme sports equipment

ALLOY DESIGNATIONS

Aluminium alloy 6063/6063A also corresponds to the following standard designations and specifications:

AA6063
AI Mgo. 7 Si
GS10
AIMgSi0. 5

Chemical Element
Manganese (Mn) $0.0-0.10$ Iron (Fe) $0.0-0.35$ Magnesium (Mg) $0.45-0.90$ Silicon (Si) $0.20-0.60$ Zinc (Zn) $0.0-0.10$ Titanium (Ti) $0.0-0.10$ Chromium (Cr) $0.0-0.10$ Copper (Cu) $0.0-0.10$ Aluminium (Al) Balance

Physical Property	Value
Density $2.70 \mathrm{Kg} / \mathrm{m}^{3}$ Melting Point $600^{\circ} \mathrm{C}$ Thermal Expansion $23.5 \times 10^{\wedge}-6 / \mathrm{K}$ Modulus of Elasticity 69.5 GPa Thermal Conductivity $200 \mathrm{~W} / \mathrm{m} . \mathrm{K}$ Electrical Resistivity $0.035 \times 10^{\wedge}-6 \Omega . \mathrm{m}$	

Mechanical Property	Value
Proof Stress	160 Min MPa
Tensile Strength	195 Min MPa
Elongation	14%
Shear Strength	150 MPa
Hardness Vickers	80 HV

Properties above are for material in the T6 condition

Ballytherm Limited

Annagh Industrial Park, Ballyconnell, Co. Cavan, Ireland
Tel: +353 (0) 499527000 Fax: +353 (0) 499527002
Web: http://www.ballytherm.ie Email: info@ballytherm.ie

Project Information

Reference
Date 8 January 2014
Client Tyne Insulation Ltd. Project Ref. Alan Waters- Supalite tiled roof systems Ltd

Construction Type

Element
: Pitched roof, ceiling at rafter line - Uvalue Element 1
Warm pitched roof
Internal surface emissivity : High External surface emissivity : High
Light steel-frame construction - Cold frame or Hybrid type:-

Stud depth, d	$: 150.0 \mathrm{~mm}$	Stud spacing, $\mathrm{s}(\mathrm{mm})$	$: 600.0 \mathrm{~mm}$
Flange width	$:$ not exceeding 80mm	p	$: 0.388$

Correction for mechanical fasteners :-

Alpha	$: 1.6$ per m	Thermal conductivity of fastener	$: 17.00 \mathrm{~W} / \mathrm{mK}$
Fasteners per square metre	$: 6.00$ off	Fasteners cross-sectional area	$: 12.50 \mathrm{~mm}^{2}$

Construction	Thickness (mm)	Thermal Conductivity (W/mK)	Thermal Resistance ($\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$)	Vapour Resistivity (MNs/gm)	Vapour Resistance (MNs/g)
Outside surface resistance	-	-	0.040	-	
Metal tiles /Battens	30.0	0.167	0.180	-	2.50
Breather membrane(BS5250)	-	-	- 0	-	0.50
Softwood, dry	12.0	0.125	0.096	100.00	1.20
Cavity bridged by Aluminium frame at 1.7 mm @ 600 mm centres.	25.0	-	0.454	-	0.13
Ballytherm Polyisocyanurate between aluminium frame at $1.7 \mathrm{~mm} @ 600 \mathrm{~mm}$ centres	100.0	0.022	4.500	450.00	100.00
Cavity Bridged by aluminium frame at 1.7 mm @ 600 mm centres.	30.0	-	0.454	-	0.16
Polythene, 500 gauge (0.12mm) (BS5250)	-	-	-	-	250.00
Ballytherm Polyisocyanurate (BS5250)	82.5	0.022	3.750	450.00	37.13
Plaster, gypsum (BS5250)	12.5	0.190	0.066	50.00	0.63
Plaster, lightweight (BS5250)	2.0	0.020	0.100	30.00	0.06
Inside surface resistance	-	-	0.100	-	-

U-value-0.15W/m²K

U-value, Combined Method : $0.15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ (upper/lower limit $9.706 / 4.946 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$, dUf 0.0075 , dUg 0.0000, dUp0.0000, dUr0.00 dUrc0.0000)
(Correction for mechanical fasteners, Delta $\mathrm{Uf}=0.008 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$)
(Correction for air gaps, Delta $\mathrm{Ug}=0.000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$)
(Based on the combined method for determining U-values of structures containing repeating thermal bridges.)
Admittance : $0.95 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ Decrement : 9.29 factor Decrement dalay : 0.00 hours

Detailed U-value Calculation Results

Construction includes 3 bridged layers.

Non-bridged layers

Outside surface resistance	$0.040 \mathrm{~m}^{2 \mathrm{~K}} / \mathrm{W}$
Metal tiles /Battens	$0.180 \mathrm{~m}^{2 \mathrm{~K} / \mathrm{W}}$
Softwood, dry	$0.096 \mathrm{~m}^{2 \mathrm{~K} / \mathrm{W}}$
Ballytherm Polyisocyanurate (BS5250)	$3.750 \mathrm{~m}^{2 \mathrm{~K} / \mathrm{W}}$
Plaster, gypsum (BS5250)	$0.066 \mathrm{~m}^{2 \mathrm{~K} / \mathrm{W}}$
Plaster, lightweight (BS5250)	$0.100 \mathrm{~m}^{2 \mathrm{~K} / \mathrm{W}}$
Inside surface resistance	$\underline{0.100 \mathrm{~m}^{2 \mathrm{~K}} / \mathrm{W}}$
Resistance of non-bridged layers, $\mathrm{R}_{N B}=$	$\underline{4.332 \mathrm{~m}^{2 \mathrm{~K}} / \mathrm{W}}$

Bridged layers

Cavity bridged by Aluminium frame at 1.7 mm @ 600 mm centres. (L1) bridged by Aluminium frame (B1)
Ballytherm Polyisocyanurate between aluminium frame at $1.7 \mathrm{~mm} @ 600 \mathrm{~mm}$ centres (L2) bridged by Aluminium fram Cavity Bridged by aluminium frame at 1.7 mm @ 600 mm centres. (L3) bridged by Aluminium frame (B3)
Path 1 - Cavity bridged by Aluminium frame at $1.7 \mathrm{~mm} @ 600 \mathrm{~mm}$ centres. / Ballytherm Polyisocyanurate between alu
Path 2 - Aluminium frame / Aluminium frame / Aluminium frame
Resistance and fraction of heat flow paths
$R_{P_{1}}=R_{N B}+R_{L 1}=4.332+5.408=9.740 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W} \quad \mathrm{F}_{\mathrm{P}_{1}}=99.717 \%$
$R_{P 2}=R_{N B}+R_{L 2}=4.332+0.002=4.334 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W} \quad \mathrm{F}_{\mathrm{P} 2}=0.283 \%$
Upper resistance limit
$R_{\text {upper }}=1 /\left(\left(F_{P_{1}} / R_{P_{1}}\right)+\left(F_{P_{2}} / R_{P_{2}}\right)\right)$
$R_{\text {upper }}=1 /((0.997 / 9.740)+(0.003 / 4.334))=9.706 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$
Lower resistance limit
$\mathrm{R}_{\text {lower }}=\mathrm{R}_{\mathrm{NB}}+1 /\left(\left(\mathrm{F}_{\mathrm{L} 1} / \mathrm{R}_{\mathrm{L} 1}\right)+\left(\mathrm{F}_{\mathrm{B} 1} / \mathrm{R}_{\mathrm{B} 1}\right)\right)$
$R_{\text {lower }}=4.332+1 /((0.997 / 5.408)+(0.003 / 0.002))=4.946 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$

Total resistance of roof
Light steel-frame construction - Cold frame or Hybrid type
Stud depth, d : 150.0 mm Stud spacing, s : 600.0 mm
Flange width : not exceeding 80mm $p: 0.388$

$$
R_{T}=\left(p \times R_{\text {upper }}+(1-p) \times R_{\text {lower }}\right)=(0.388 \times 9.706+(1-0.388) \times 4.946)=6.79 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}
$$

Correction for mechanical fasteners, Delta Uf $=0.008 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Correction for air gaps, Delta Ug $=0.000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
$U=(1 / R t)+($ Delta Uf + Delta Ug + Delta Up + Delta Ur + Delta Urc $)=(1 / 7.3260)+0.0075+0.0000+0.0000+0.00($ W/m²K

Structure element \quad : Pitched roof, ceiling at rafter line	
Description	Warm pitched roof

Description : Warm pitched roof
Condensation calculations performed in accordance with BS5250:2002

Condensation is occuring at the following layers interfaces:-

Month	Int $\left(C^{\circ}\right)$	Int $(\% R H)$	Ext $\left(C^{\circ}\right)$	Ext $(\% R H)$
Jan	20.00	59.30	3.80	83.00
Feb	20.00	58.70	3.90	81.00
Mar	20.00	57.20	5.70	76.50
Apr	20.00	56.80	7.90	74.00
May	20.00	57.50	11.30	71.50
Jun	20.00	62.00	14.20	73.50
Jul	20.00	66.00	15.80	75.50
Aug	20.00	66.60	15.70	76.50
Sep	20.00	64.30	13.50	78.50
Oct	20.00	62.20	10.60	81.00
Nov	20.00	59.80	6.30	82.50
Dec	20.00	59.60	4.50	83.50

$\mathrm{Gc}=$ Monthly moisture accumulation per area at an interface
$\mathrm{Ma}=$ Accumulated moisture content per area at an interface
Peak accumulated moisture content per area at interface $(\mathrm{Ma})=0.00000 \mathrm{Kg} / \mathrm{m}^{2}$
Annual moisture accumulation $=0.00000 \mathrm{Kg} / \mathrm{m}^{2}$

Condensation Risk Analysis (no account taken of thermal bridges)

3 - Dwellings with low occupancy

Jan (worst)	Feb	Mar	Apr		Jun	Jul			Oct	Nov	Dec
Jan (worst)	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

20.0C 59.3\% 20.0C 58.7\% 20.0C 57.2\% 20.0C 56.8\% 20.0C 57.5\% 20.0C 62.0\% 20.0C 66.0\% 20.0C 66.6\% 20.0C 64.3\% 20.0C 62.2\% 20.0C 59.8\% 20.0C 59 $3.8 \mathrm{C} 83.0 \% \quad 3.9 \mathrm{C} 81.0 \% \quad 5.7 \mathrm{C} 76.5 \% \quad 7.9 \mathrm{C} 74.0 \% \quad 11.3 \mathrm{C} 71.5 \% \quad 14.2 \mathrm{C} 73.5 \% \quad 15.8 \mathrm{C} 75.5 \% \quad 15.7 \mathrm{C} 76.5 \% \quad 13.5 \mathrm{C} 78.5 \% \quad 10.6 \mathrm{C} 81.0 \% \quad 6.3 \mathrm{C} 82.5 \% \quad 4.5 \mathrm{C} 83.5$

Interface Dewpoint Vapour Saturated Worst	Peak	Conde			
Temp.	Temp.	Pressure V.P.	Cond.	Buildup	sation

1 Outside surface resistance
2 Metal tiles /Battens
$\begin{array}{llll}3.9 & 1.2 & 0.67 & 0.81\end{array}$
$\begin{array}{llll}4.2 & 1.3 & 0.67 & 0.82\end{array}$
$\begin{array}{llll}4.2 & 1.3 & 0.67 & 0.82\end{array}$
$\begin{array}{llll}4.3 & 1.3 & 0.67 & 0.83\end{array}$
$\begin{array}{llll}5.1 & 1.3 & 0.67 & 0.88\end{array}$
No

No

No

12 Inside surface resistance
9.9
1.7 mm @ 600mm centres

8 Polythene, 500 gauge (0.12 mm) (BS5250)
9 Ballytherm Polyisocyanurate (BS5250)
10 Plaster, gypsum (BS5250)
11 Plaster, lightweight (BS5250)
Worst case internal / external conditions for graph : $20.0^{\circ} \mathrm{C}$ @ $59.3 \%^{\text {Tempherature }} 3.8^{\circ} \mathrm{C}$

Condensation Risk Analysis (no account taken of thermal bridges)

3 - Dwellings with low occupancy

Jan (worst)	Feb	Mar	Apr		Jun	Jul			Oct	Nov	Dec
Jan (worst)	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec

20.0C 59.3\% 20.0C 58.7\% 20.0C 57.2\% 20.0C 56.8\% 20.0C 57.5\% 20.0C 62.0\% 20.0C 66.0\% 20.0C 66.6\% 20.0C 64.3\% 20.0C 62.2\% 20.0C 59.8\% 20.0C 59 $3.8 \mathrm{C} 83.0 \% \quad 3.9 \mathrm{C} 81.0 \% \quad 5.7 \mathrm{C} 76.5 \% \quad 7.9 \mathrm{C} 74.0 \% \quad 11.3 \mathrm{C} 71.5 \% \quad 14.2 \mathrm{C} 73.5 \% \quad 15.8 \mathrm{C} 75.5 \% \quad 15.7 \mathrm{C} 76.5 \% \quad 13.5 \mathrm{C} 78.5 \% \quad 10.6 \mathrm{C} 81.0 \% \quad 6.3 \mathrm{C} 82.5 \% \quad 4.5 \mathrm{C} 83.5$

Interface	Dewpoint Vapour Saturated Worst	Peak	Conder		
Temp.	Temp.	Pressure V.P.	Cond.	Buildup	sation

1 Outside surface resistance
2 Metal tiles /Battens
3 Breather membrane (BS5250)
4 Softwood, dry

15.8	11.5	1.35	1.80
15.9	11.5	1.36	1.81
15.9	11.5	1.36	1.81
15.9	11.5	1.36	1.81

5 Cavity bridged by Aluminium frame at
$1.7 \mathrm{~mm} @ 600 \mathrm{~mm}$ centres.
6 Ballytherm Polyisocyanurate between
16.
1.36
($\mathrm{g} / \mathrm{m}^{2}$)
aluminium frame at $1.7 \mathrm{~mm} @ 600 \mathrm{~mm}$ centres
7 Cavity Bridged by aluminium frame at
$1.7 \mathrm{~mm} @ 600 \mathrm{~mm}$ centres.
8 Polythene, 500 gauge (0.12 mm) (BS5250)
18.3

9 Ballytherm Polyisocyanurate (BS5250)
10 Plaster, gypsum (BS5250)
11 Plaster, lightweight (BS5250)
12 Inside surface resistance
Temperature

Guidelines for powerline concrete frame screws

Product summary

Wherfive concrete frame screws are a medium duty self tapping fixing suitable for the through fixing of wood, metal and UPVC frames to masonry.

Also suitable for securing wooden battens, brackets, signs, channel supports, electrical and plumbing fittings.

The screw will cut its own thread into the masonry once a pilot hole has been pre-drilled. There is no need for any additional plugs.

They are particulariy useful in close to the edge fixing situations and were the fixing points are to be grouped closely together.

They are removable, reusable, fast and versatile.
The head is self-countersinking and has a Torx-30 drive to reduce the risk of cam out.
A T-30 bit is included free of charge within each box.
Recommended loads vary with substrate type, quality and consistency.
Hole diameter and embedment is also critical. The screw length should equal the fixture thickness + minimum embedment** +13 mm .

Technical recommendations

Diameter	Length (mm)	$\begin{aligned} & \text { Min hole** } \\ & \text { Depth (mm) } \\ & \text { (embedment) } \end{aligned}$	$\begin{aligned} & \text { Drill size* } \\ & \text { (mm) } \end{aligned}$	$\begin{aligned} & \text { Drive } \\ & \text { bit } \end{aligned}$	Recommended loads (Kn)C2e/25 concrete** Solid brick**Tensite Shear Tensile Shear			
7.5 mm	42	30	6	T30	1.2	0.8	0.8	0.5
7.5 mm	62	30	6	T30	1.2	0.8	0.8	0.5
7.5 mm	82	30	6	T30	1.2	0.8	0.8	0.5
7.5 mm	102	30	6	T30	1.2	0.8	0.8	0.5
7.5 mm	122	30	6	T30	1.2	0.8	0.8	0.5
7.5 mm	152	30	6	T30	1.2	0.8	0.8	0.5
7.5 mm	182	30	6	T30	1.2	0.8	0.8	0.5

* the drill diameter may change depending on the substrate, 6.5 mm is recommended for very dense concrete or brick.
** the min embedment increases depending on the substrate. 30 mm in concrete, 40 mm in solid brick , 60 mm in aerated concrete or hollow brick.

Installation advice

- Eye protection and gloves should be worn
a Drill hole to the correct diameter and depth
- Clean out the hole
- Position the screw in the hole through the part to be fixed
- Tighten until the head of the screw is flush within the fixture, (a 6.5 mm clearance hole can be pre-drilled in to the fixture to facilitate this)

Snow Drifting Abutting Taller Structures

ENGINEERING and BUILDING DESIGN

Peter G Redding I ENG MIET
41 Maitland Avenue
Thornton-Cleveleys
Lancs FY5 3JR
tel : (01253) 859867
fax : (01253) 858967
email : peter.redding@hotmail.co.uk
'SUPALITE’ roof snow drifting
$\mathrm{Sk}=$ snow on ground $=0.6 \mathrm{kn} /$ sq. M (average)
$\mathrm{U} 3=4$
$\mathrm{U} 1=1.33$
$\mathrm{U} 2=4$
Drifted snow $=4 \times 0.6=2.4 \mathrm{kn} / \mathrm{sq} \cdot \mathrm{M}$
Using rafters @ 450crs.
Mono pitched roofs with rafters at 90 degrees to abutment - snow drifting variable along rafter. Pitched roofs with rafters parallel to abutment - snow load constant.

Maximum rafter span (between supports) - Dead + snow-see calculation sheets
Mono roofs- 3600 mm
Pitched roofs-3000mm

SUPAUTE' ROOF.
ANELE STEEL LINTEL OVER DOOR.

$$
\begin{aligned}
& \text { SPAN-3900 } \\
& \text { ROOF LOAD-DEAD-0.47×3.2 }=1.5 \mathrm{~km} / \mathrm{m} . \\
& 1 \mathrm{MP}-0.6 \times 3.2=1.9 \mathrm{~km} / \mathrm{m} .
\end{aligned}
$$

BENDINE STRESS.

$$
\begin{aligned}
& \text { LOAD PGR.M }=3.4 \mathrm{~km} \\
& L D L=3.4 \times 3.9=13.3 \mathrm{~km} \\
& M B=13.3 \times 3.9=6.5 \mathrm{kmm} . \\
& Z \times R \in Q U D=\frac{6.5 \times 10^{3}}{165}=39.4 \mathrm{~cm}^{3} .
\end{aligned}
$$

TRY $150 \times 75 \times 10$ MS ANSELE,

$$
\begin{aligned}
& I_{\text {xx }}=51.8 ; I_{x x}=501 \\
& \text { STREAS }=\frac{39.4 \times 10^{2}}{51.8}=76 \mathrm{~m} / \mathrm{mm}^{2}<165 \therefore \text { olk } \\
& \text { defl. }=\frac{5}{384} \times \frac{3.9 \times 1.9}{2100} \times \frac{390^{3}}{501}=5.5 \mathrm{~mm}(1 / 709) \\
& \therefore \text { olk }
\end{aligned}
$$

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton Cleveleys Lancs FY5 3JR 01253859867	Project Supalite door Lint				Job Ref.	
	Section				Sheet no./rev.	
	Calc. by PGR	$\begin{array}{\|l\|} \hline \text { Date } \\ 08 / 03 / 2019 \end{array}$	Chk'd by	Date	App'd by	Date

STEEL BEAM ANALYSIS \& DESIGN (EN1993-1)

In accordance with UK national annex

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton Cleveleys Lancs FY5 3JR 01253859867	Project Supalite door Lintel				Job Ref.	
	Section				Sheet no./rev.	
	Calc. by PGR	$\begin{array}{\|l\|} \hline \text { Date } \\ 08 / 03 / 2019 \end{array}$	Chk'd by	Date	App'd by	Date

Support conditions

Support A	Vertically restrained Rotationally free Support B
	Vertically restrained
	Rotationally free

Applied loading

Beam loads
roof
Dead self weight of beam $\times 1$
roof
Dead full UDL $1.5 \mathrm{kN} / \mathrm{m}$
Imposed full UDL $1.9 \mathrm{kN} / \mathrm{m}$

Load combinations

Load combination 1

Support A

Span 1

Support B
$M_{\text {max }}=\mathbf{1 6} \mathrm{kNm}$
$\mathrm{M}_{\mathrm{s} 1 _ \text {max }}=\mathbf{1 6} \mathrm{kNm}$
$V_{\text {max }}=12.8 \mathrm{kN}$
$V_{\text {s1_max }}=12.8 \mathrm{kN}$
$\delta_{\text {s1_max }}=10 \mathrm{~mm}$
$R_{\text {A_max }}=12.8 \mathrm{kN}$
RA_Dead $=4.2 \mathrm{kN}$
RA_Imposed $=4.8 \mathrm{kN}$
$R_{B_{-} \max }=12.8 \mathrm{kN}$
R_{B} Dead $=4.2 \mathrm{kN}$

Dead $\times 1.35$
Imposed $\times 1.50$
Dead $\times 1.35$
Imposed $\times 1.50$
Dead $\times 1.35$
Imposed $\times 1.50$

Analysis results

Maximum moment	$M_{\text {max }}=16 \mathrm{kNm}$	$\mathrm{M}_{\text {min }}=\mathbf{0} \mathrm{kNm}$
Maximum moment span1	$\mathrm{M}_{\text {s1_max }}=16 \mathrm{kNm}$	$\mathrm{Ms}_{\text {1_ }}$ min $=0 \mathrm{kNm}$
Maximum shear	$V_{\text {max }}=12.8 \mathrm{kN}$	$\mathrm{V}_{\text {min }}=\mathbf{- 1 2 . 8} \mathrm{kN}$
Maximum shear span1	$\mathrm{V}_{\text {s1_ }}$ max $=12.8 \mathrm{kN}$	$\mathrm{V}_{\text {s1_ } \min }=-12.8 \mathrm{kN}$
Deflection span1	$\delta_{\text {s1_ }}$ max $=10 \mathrm{~mm}$	$\delta_{\text {st_min }}=2.6 \times 10^{-16} \mathrm{~mm}$
Reactions at support A	$\mathrm{R}_{\mathrm{A}_{-} \max }=12.8 \mathrm{kN}$	$\mathrm{RA}_{\text {_ }}$ in $=12.8 \mathrm{kN}$
Unfactored dead load reaction at support A	$\mathrm{R}_{\mathrm{A}_{\text {dead }}}=4.2 \mathrm{kN}$	
Unfactored imposed load reaction at support A	RA_Imposed $=4.8 \mathrm{kN}$	
Reactions at support B	$R_{B_{-} \text {max }}=12.8 \mathrm{kN}$	$\mathrm{RB}_{\text {_ min }}=12.8 \mathrm{kN}$
Unfactored dead load reaction at support B	$\mathrm{RB}_{\text {_ Dead }}=4.2 \mathrm{kN}$	

CSC I TEDDS Engineering and Building Design 41 Maitland Avenue Thornton Cleveleys Lancs FY5 3JR 01253859867	Project Supalite door Lintel				Job Ref.	
	Section				Sheet no./rev.	
	$\begin{aligned} & \text { Calc. by } \\ & \text { PGR } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Date } \\ 08 / 03 / 2019 \end{array}$	Chk'd by	Date	App'd by	Date

Unfactored imposed load reaction at support B \quad RB_Imposed $=4.8 \mathrm{kN}$

Section details

Section type
RHS $150 \times 100 \times 5.0$
Steel grade
S275H
From table 3.1: Nominal values of yield strength f_{y} and ultimate tensile strength f_{u} for hot rolled structural steel

Nominal thickness of element
Nominal yield strength
Nominal ultimate tensile strength
Modulus of elasticity
$\mathrm{t}=5.0 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{u}=430 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=210000 \mathrm{~N} / \mathrm{mm}^{2}$

Partial factors - Section 6.1

Resistance of cross-sections
$\gamma \mathrm{mo}=1.00$
Resistance of members to instability
$\gamma_{\mathrm{M} 1}=\mathbf{1 . 0 0}$
Resistance of tensile members to fracture
$\gamma \mathrm{M} 2=1.10$

Lateral restraint

Span 1 has full lateral restraint

Effective length factors

Effective length factor in major axis
$\mathrm{K}_{\mathrm{y}}=1.000$
Effective length factor in minor axis
$\mathrm{K}_{\mathrm{z}}=1.000$
Effective length factor for torsion
$K_{\text {Lt } . A}=1.000$
K Lt.b $=\mathbf{1 . 0 0 0}$
Classification of cross sections - Section 5.5

$$
\varepsilon=\sqrt{ }\left[235 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{fy}\right]=0.92
$$

Internal compression parts - Table 5.2 (sheet 1 of 3)
Width of section
$\mathrm{c}=\mathrm{h}-3 \times \mathrm{t}=135 \mathrm{~mm}$
c $/ \mathrm{t}=29.2 \times \varepsilon<=72 \times \varepsilon$

Check shear - Section 6.2.6

Design shear force
$\mathrm{V}_{\mathrm{Ed}}=\max \left(\operatorname{abs}\left(\mathrm{V}_{\max }\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=12.8 \mathrm{kN}$
Height of web
$h_{w}=h-2 \times t=140 \mathrm{~mm}$

CSC - TEDDS Engineering and Building Design 41 Maitland Avenue Thornton Cleveleys Lancs FY5 3JR 01253859867	Project Supalite door Linte				Job Ref.	
	Section				Sheet no./rev.	
	Calc. by PGR	$\begin{aligned} & \hline \text { Date } \\ & 08 / 03 / 2019 \end{aligned}$	Chk'd by	Date	App'd by	Date

Shear area factor
$\eta=1.000$ $h_{w} / t<72 \times \varepsilon / \eta$

Shear buckling resistance can be ignored
Shear area - cl 6.2.6(3)
Design shear resistance - cl 6.2.6(2)

Check bending moment - Section 6.2.5
Design bending moment $\quad M_{\text {Ed }}=\max \left(a b s\left(M_{s 1}\right.\right.$ _max $)$, abs(Ms1_min)) $=\mathbf{1 6} \mathbf{k N m}$
Design resistance for bending - Section 6.2.5(2)
Design bending resistance moment - eq $6.13 \quad M_{c, R d}=M_{\text {pl,Rd }}=W_{\text {pl. }} \times f_{y} / \gamma$ мо $=\mathbf{3 2 . 8} \mathbf{k N m}$
PASS - Design bending resistance moment exceeds design bending moment
Check vertical deflection - Section 7.2.1
Consider deflection due to imposed loads

Limiting deflection
Maximum deflection span 1
$\delta_{\text {lim }}=L_{\text {s1 }} / 360=13.9 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=9.967 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

NO.	DESC RIPTION.	QTY.
1	EAVES BEAM	1
2	RAFIER	2
3	BATIEN 39×50	2
4	SOFFITBOARD	1
5	BATIEN 39×19	1
6	FASCIA BOARD	1
7	EAVE PROTECTOR	1
8	BATIEN 39×19	1
9	TLE STARTER CLEAT	1
10	GUTIER BRACKET	2
11	LENGTH OF GUTIER	1
12	EXTRALG HTTLE	1
13	EAVES BEAM FOAM	1
14	BATIEN 75 x 19	1
15	12MM PLY	1
16	$100 M M$ EPS INSULATION	1
17	WALL SOAKER	1
18	62.5 PIR INSULATED BOARD	1
19	EAVESVENT	1
20	$25 M M ~ I N S U L A T I O N ~$	1

SC OTIISH SPEC

 |EAVES VENTILATION UP | INTOTHEROOF SYSTEM_I

ENGINEERING and BUILDING DESIGN

Peter G. Redding I Eng MIET

Structural Calculations

JOB . Supalite replacement roof for conservatories
NAME : Celtic Vista
SITE ADDRESS : North Scotland
DATE : November 2017

Loadings - Snow and Wind

British Standards and Codes of Practice

EN 1990; EN 1991;EN 1992; EN 1993; EN 1995; EN 1996; EN 1999; BS 449 ; BS 5950; BS 5268;
Beam spans for these calculations are based on the clear span between supports. For the total beam length add the appropriate end support lengths.

These calculations are for the SUPALITE roof only and do not undertake any check of existing side wall mullions or foundations which should be undertaken by a suitably qualified engineer before commencement of work and appointed by the client or contractor.

The following wind and snow calculations are based on average forces experienced by most of the United Kingdom. In extreme areas affected by strong winds and high snow falls ie the North of England and Scotland the calculations should be undertaken by a suitably qualified engineer to check all the structural aspects of roof members, wall mullions and foundations.

Wind loading.
Peak velocity pressure (max) - uplift on roof $=-1.192 \mathrm{kn} / \mathrm{sq} \cdot \mathrm{M}$ On walls $=0.832 \mathrm{kn} / \mathrm{sq} \cdot \mathrm{M}$

Max uplift on roof $(\mathrm{Cpe}+\mathrm{Cpi})=-1.336 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Roof dead load $=0.47 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$ and Roof imposed load $=0.6 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Wind + dead $=-1.336+(0.47 \times 0.9)=-0.9 \mathrm{kn} / \mathrm{sq} \cdot \mathrm{M}$ uplift.
Dead + imposed $=0.47+0.6=1.07 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Roof members designed for Dead + Imposed > Wind + Dead therefore o'k

Using Powerline frame screws 7.5 dia $\times 102$ long (permitted shear $=0.8 \mathrm{kn}$) No required per sq. $M=0.9 / 0.8=2$ No fixings per sq.M to resist wind uplift.

Factored wind on roof $=-1.333 \times 1.4=-1.9 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Factored dead load of roof $=0.47 \times 0.9=0.43 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Factored uplift of roof due to wind $=-1.9+0.43=1.47 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Permitted tensile for Powerline screws $=1.2 \mathrm{kn}$
Therefore minimum No of screws to resist uplift $=1.47 / 1.2=2$ No screws.
Uplift per M run of eaves $=1.47 \mathrm{x} 2.0 \mathrm{M}=2.94 \mathrm{kn}$
Assuming mullion fixing at 1.0 M crs max uplift per fixing $=2.94 \mathrm{kn}$
Using Powerline screws 7.5 dia No of screws required $=2.94 / 1.2=3$ to each fixing point at rafters to ridge, rafters to eaves beam, eaves beam to mullion.

Loadings (contd)

Snow Loading

It will be assumed that with snow on the roof no access would be required on the roof and so imposed will be disregarded.

Assuming zone 3 and altitude of 175 M - Ground snow load (Sk) $=0.74 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Snow drifting coefficient (U1) $=0.8+0.4(25-15) / 15=1.07$
Therefore drifted snow load $=0.93 \times 1.07=1.0 \mathrm{kn} / \mathrm{sq} \cdot \mathrm{M}$ (average)
Drifted snow load + roof dead load $=1.47 \mathrm{kn} / \mathrm{sq} . \mathrm{M}$
Therefore use 2 No rafters ie double up rafters.

Wind Assessment to BS EN 1991-1-4
Data Entry:-

Site Altitude	175.000 m	Reference Height (Z)			Size Effect Dimension (b*h)		
$V_{\text {b,map }}$	$27.500 \mathrm{~m} / \mathrm{s}$	Roof	4.000	m	Roof	5.000	m
Seasonal Factor (C,season)	1.000	Side Walls	2.300	m	Side Walls	8.000	m
Probability Factor (C,prob)	1.000	Gables	4.000	m	Gables	8.000	m
Site ID							

Dynamic Pressure Results

Wind Direction (deg)		0	30	60	90	120	150	180	210	240	270	300	330
Direction Factor C,dir		0.78	0.73	0.73	0.74	0.73	0.80	0.85	0.93	1.00	0.99	0.91	0.82
Orography Factor Co		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Effective Height (h-hdis) m	Roof	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
	Sides	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300	2.300
	Gabl	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Altitude Factor C,alt	Roof	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175
	Sides	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175
	Gable	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175	1.175
Roughness Factor Cr	Roof	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978
	Sides	0.865	0.865	0.865	0.865	0.865 .	0.865	0.865	0.865	0.865	0.865	0.865	0.865
	Gable	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978	0.978
Exposure Factor Ce	Roof	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313
	Sides	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942	1.942
	Gable	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313	2.313
Vb,0 (m/s)	Roof	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313
	Sides	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313
	Gable	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313	32.313
Vb (Roof	25.204	23.588	23.588	23.911	23.588	25.850	27.466	30.051	32.313	31.989	29.404	26.496
	Sides	25.204	23.588	23.588	23.911	23.588	25.850	27.466	30.051	32.313	31.989	29.404	26.496
	Gable	25.204	23.588	23.588	23.911	23.588	25.850	27.466	30.051	32.313	31.989	29.404	26.496
Vm (m/s)	Roof	24.655	23.075	23.075	23.391	23.075	25.287	26.868	29.396	31.609	31.293	28.764	25.919
	Sides	21.793	20.396	20.396	20.675	20.396	22.351	23.748	25.983	27.939	27.660	25.425	22.910
	Gable	24.655	23.075	23.075	23.391	23.075	25.287	26.868	29.396	31.609	31.293	28.764	25.919
Turbulence Intensity lv	Roof	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
	Sides	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183	0.183
	Gable	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169	0.169
Peak Velocity Pressure qp ($\mathrm{kN} / \mathrm{m}^{2}$)	Roof	0.847	0.742	0.742	0.763	0.742	0.891	1.006	1.204	1.393	1.365	1.153	0.936
	Sides	0.699	0.612	0.612	0.629	0.612	0.735	0.830	0.993	1.148	1.125	0.951	0.772
	Gable	0.847	0.742	0.742	0.763	0.742	0.891	1.006	1.204	1.393	1.365	1.153	0.936
Size Effect Factor Cs	Roof	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960	0.960
	Sides	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948	0.948

DATA ENTRY:-
Width of Bay
Length of Bay
Roof Type
Bay type
5.000 m Reference Height 4.000 m $4.000 \mathrm{~m} \quad$ Roof Pitch 25.000 deg. Ridged Duopitch roof
Single bay building

Wind
4000

Wind Analysis to BS EN 1991-1-4 - Cpe Results for Roofs

DATA ENTRY:-

Width of Bay
Length of Bay
Roof Type
Bay type
$5.000 \mathrm{~m} \quad$ Reference Height 4.000 m
$4.000 \mathrm{~m} \quad$ Roof Pitch 25.000 deg. Monopitch roof Single bay building

Wind
4000
High Eaves

Wind

1000
1000
High Eaves

SNOW LOADING TO BS6399:PART 3:1988

Site location

Location of site

Aberdeen

Site altitude
$A=175 \mathrm{~m}$

Calculate site snow load

From BS6399:Part 3: 1988 - Figure 1. Basic snow load on the ground
Basic snow load
$\mathrm{s}_{\mathrm{b}}=0.80 \mathrm{kN} / \mathrm{m}^{2}$
$S_{\text {ath }}=0.1 \times \mathrm{s}_{\mathrm{b}}+\left(0.09 \mathrm{kN} / \mathrm{m}^{2}\right)=0.17 \mathrm{kN} / \mathrm{m}^{2}$
Site snow load
$\mathrm{s}_{0}=\mathrm{s}_{\mathrm{b}}+\mathrm{S}_{\text {alt }} \times(\mathrm{A}-(100 \mathrm{~m})) / 100 \mathrm{~m}=0.93 \mathrm{kN} / \mathrm{m}^{2}$

Asymmetric loading

Roof geometry

Roof type
Distance on plan from gutter to ridge
Angle of pitch of roof

Pitched
$\mathrm{b}=1.000 \mathrm{~m}$
$\alpha=25.0 \mathrm{deg}$

Calculate uniform snow load
From BS6399:Part 3: 1988 - Figure 3. Snow load shape coefficients for pitched roofs
Snow load shape coefficient
Uniform roof snow load

$$
\begin{aligned}
& \mu_{1}=0.80 \\
& s_{\mathrm{d} 1}=\mu_{1} \times \mathrm{s}_{0}=0.74 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

BS6399:Part3:1988 CI. 5

Calculate asymmetric snow load

From BS6399:Part 3: 1988 - Figure 3. Snow load shape coefficients for pitched roofs

Snow load shape coefficient
Asymmetric roof snow load

Snow sliding down roof

Maximum uniform snow load on roof
Force from sliding snow load
$\mu_{1}=0.8+0.4 \times[(\alpha-15 \mathrm{deg}) / 15 \mathrm{deg}]=1.07$
$\mathbf{S}_{\mathrm{d} 1}=\mu_{1} \times \mathbf{S}_{0}=0.99 \mathrm{kN} / \mathrm{m}^{2}$
BS6399:Part3:1988 CI. 5

Sd_max $=0.99 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{F}_{\mathrm{s}}=\mathrm{S}_{\mathrm{d} _ \text {max }} \times \mathrm{b} \times \sin (\alpha)=0.42 \mathrm{kN} / \mathrm{m}$

