

FLOOD RISK & DRAINAGE STATEMENT

Land at the rear of Sheepleas House, Epsom Road, West Horsley, KT24 6AL

Prepared for: BlackOnyx Projects Ref: 005_8230659_SM_FR_Drainage_Statement

Geomatics

Civil Engineering

Document History

Issue	Date	Description	Prepared By	Checked By
1	15 Mar 2024	Draft Issued to Client	S McNair	J Birch
2	19 Mar 2024	Updated following client comments	S McNair	J Birch

Hertfordshire		Oxfordshire	Cambridgeshire		Bristol
postbox@alar	nvi	llegroup.com	www.alanvillear	ou	ip.com

© Glanville Consultants Ltd. All rights reserved.

This report contains confidential information intended solely for the recipient. No part of this report may be copied, reproduced or stored electronically without prior written permission from Glanville Consultants Ltd. This report has been prepared in accordance with the commissioning brief and is for the client's exclusive use unless otherwise agreed in writing. Glanville Consultants Ltd does not accept liability for any use of this report, other than for the purposes for which it was originally prepared and provided. Third parties should not use or rely on the contents of this report without written permission from Glanville Consultants Ltd.

Contents

1.0	Introduction	1
2.0	Site Description and Development Proposals	2
3.0	Flood Risk Appraisal	4
4.0	Surface Water Drainage	6
5.0	Sustainable Drainage Pollution Control and Maintenance Measures	8
6.0	Foul Water Drainage	10
7.0	Summary and Conclusions	12

Appendices

Appendix A:	British Geological Survey SuDS GeoReport Extracts					
Appendix B:	Proposed Site Layout					
Appendix C:	Environment Agency Flood Map for Planning Extract					
Appendix D:	MicroDrainage Calculations					
Appendix E:	Proposed Drainage Strategy					
Appendix F:	Thames Water Sewer Records					

1.0 Introduction

- 1.1 This Flood Risk & Drainage Statement has been prepared by Glanville Consultants on behalf of BlackOnyx Projects in relation to a proposed residential development on land at the rear of Sheepleas House, Epsom Road, West Horsley, KT24 6AL.
- 1.2 The purpose of this document is to assess the existing level of flood risk to the site and its surroundings within the context of the development proposals and to demonstrate a suitable drainage strategy for the disposal of surface water run-off and foul water effluent from the development.
- 1.3 This assessment has been prepared in accordance with the National Planning Policy Framework (NPPF) and the Planning Practice Guidance (PPG) to the NPPF. Local policy concerning flood risk and drainage has been considered, in fulfilment of the guidance set out in the Guildford Borough Strategic Flood Risk Assessment, published in January 2016.
- 1.4 This assessment was undertaken with reference to information provided and/or published by the following bodies:
 - Ordnance Survey;
 - British Geological Survey;
 - Surrey County Council;
 - Guildford Borough Council; and
 - Environment Agency.
- 1.5 This report concludes that the proposed development is not at risk of flooding and that the site can be developed safely without increasing flood risk elsewhere. The development proposals therefore comply with relevant planning policy concerning flood risk. The report also demonstrates that suitable arrangements for the disposal of surface water run-off and foul effluent from the proposed development can be provided.

2.0 Site Description and Development Proposals

Site Description

- 2.1 The application site is located along A246 Epsom Road in East Horsley, Surrey, approximately 12.5km to the east of Guildford and 9.5km to the west of Leatherhead. The site is situated on the western edge of the village of East Horsely, to the north of Epsom Road, and currently comprises a detached dwelling, known as 'Sheepleas House', with associated garden space, a detached garage at the front, and a tennis court to the rear.
- 2.2 The site is irregular in shape and extends to approximately 0.66 Ha in area. The centre of the site is roughly located at National Grid Reference TQ 09166 52774. The application site is bordered by agricultural land to the north and west, existing residential development to the east, and Epsom Road to the south, from which the site is currently accessed at the western end of the site frontage.

Topography

2.3 A topographical survey was undertaken by Greenhatch Group in December 2023. Levels on-site generally fall away from Epsom Road, from a high point of roughly 91.41m Above Ordnance Datum (AOD) close to the vehicular access in the south of the site to a low point found in the north-western corner of the site, at approximately 85.68m AOD, some 6m below the level of Epsom Road.

Geological Conditions

- 2.4 Geological maps published by the British Geological Survey (BGS) indicates the site is underlain by a variety of soils, with the southern part of the site consisting of the access road underlain by chalk of the Newhaven Chalk Formation before a band of Thanet Formation (sand) in the rear garden area of the property. The remaining area in the northern part of the site is underlain sands, silts and clay of the Lambeth Group. The BGS mapping indicates no superficial deposits on-site.
- 2.5 The BGS produces Infiltration SuDS GeoReports which include detailed subsurface data that can be used to inform the suitability of a site for infiltration SuDS. An Infiltration SuDS GeoReport for the site has been obtained, with the data and mapping reviewed in the following paragraphs. Extracts of this report are included in Appendix A, which includes copies of the geological mapping described in paragraph 2.4.
- 2.6 Section 2 of the SuDS GeoReport reviews the drainage potential of the soils underlying the site. This section includes mapping which suggests the southern part of the site, underlain by the Newhaven Chalk and Thanet Formation, is likely to be freely draining, while the area associated with the Lambeth Group is likely to permit moderate infiltration. The depth to groundwater is shown to be more than 5m below the ground surface throughout the year.
- 2.7 In addition to the BGS GeoReport, Soilscapes mapping provided by Cranfield University on behalf of DEFRA shows that the site falls on HOST class 7 soil, which is characterised as freely draining, slightly acid but base-rich soils.

Hydrological and Hydrogeological Context

- 2.8 The closest watercourse designated as a main river by the Environment Agency (EA) is a tributary of the Ockham Mill Stream, located approximately 1.5km to the north of the site. The closest watercourse is an unnamed ordinary watercourse approximately 475m to the northwest of the site at West Horsely Place. No major artificial waterbodies or reservoirs are located in the vicinity of the site.
- 2.9 The EA defines Source Protection Zones (SPZs) for groundwater sources such as wells, boreholes and springs used for public drinking water supply. These zones show the risk of contamination from any activities that might cause pollution in the area. The SPZs mapping indicates that the site is not located within a SPZ zone.
- 2.10 The EA defines Drinking Water Safeguard Zones (SgZs) and Drinking Water Protected Areas (DWPAs) for water sources used for public drinking water supply. SgZs define areas where pollution control measures are needed to avoid deterioration in water quality. DWPAs are areas where water sources need to be protected to prevent pollution. The mapping shows the site is located within a Surface Water SgZ.
- 2.11 A Nitrate Vulnerable Zone (NVZ) is a conservative designation for areas of land that drain to nitrate polluted waters or waters which could become polluted by nitrates. The NVZs mapping indicates that the site is not located within a NVZ.
- 2.12 Groundwater vulnerability mapping published by the EA indicates the risk to possible groundwater sources from any potential pollutants on-site reaching the underlying aquifer. The mapping shows that the site is located within an area where there is a high likelihood of possible pollutants reaching groundwater.
- 2.13 The Bedrock Aquifer Designation Map published by the EA indicates that the site overlays a combination of a principal aquifer in the southern portion of the site, and a Secondary A aquifer in the north of the site. Principal Aquifers are layers of rock or drift deposits that have intergranular and/or fracture permeability that provide a high level or water storage. They may support water supply and/or river base flow on a strategic scale, while Secondary A Aquifers comprise of permeable layers that can support local water supplies and may form an important source of base flow to rivers on a strategic scale.
- 2.14 None of the above points in relation to groundwater or surface water vulnerability are considered an issue that would prevent the site from being developed for residential purposes. Nonetheless, careful consideration will be given to the surface water drainage strategy for the site to provide suitable pollution control measures. The surface water drainage strategy is outlined in Section 4 of this report.

Development Proposals

2.15 The development proposals are for the construction of five residential dwellings (including 2 x 3-bed units, 2 x 4-bed units and 1 x 5-bed unit). The existing property – Sheepleas House – is not included within the application red line and is to be retained. The proposals also include associated access, parking, and landscaping. The proposed site layout plan is provided at Appendix B.

3.0 Flood Risk Appraisal

3.1 Flood risk to the site is considered from all likely sources of flooding, as defined in the National Planning Policy Framework (NPPF) and the Planning Practice Guidance (PPG) to the NPPF. These include tidal, fluvial, surface water, artificial sources, groundwater, and sewer. The following paragraphs consider flood risk to the site from all these sources.

Tidal/Coastal

3.2 Given that there are no tidally influenced watercourses on or within the vicinity of the site, tidal flooding is not an issue that would prevent the development of the site.

Fluvial

3.3 The EA publishes flood zone mapping on GOV.UK website which shows the modelled extents of fluvial flooding. An extract from the EA mapping is included in Appendix C. The flood zone mapping indicates that the entirety of the site is located within Flood Zone 1, at the lowest risk of fluvial flooding (<1 in 1,000 year return period). The site is therefore considered to be at very low risk of fluvial flooding.

Surface Water

- 3.4 The EA publishes a Flood Risk from Surface Water map on the GOV.UK website which indicates the predicted risk of surface water flooding if rainwater does not drain away through normal drainage systems or soak into the ground. The mapping indicates that the vast majority of the site, including the entire developed area, is at 'very low' risk of surface water flooding, with an annual probability of flooding less than 1:1,000.
- 3.5 An area of 'low' flood risk, defined as an area with an annual probability of flooding between 0.1% and 1%, is shown in the front garden of Sheepleas House. However, built development is not proposed in this area, which is isolated from other areas of surface water flood risk and not located on a wider overland flow path. As such, it is considered that the risk of flooding to the proposed development from surface water is very low.

Artificial Sources

3.6 The EA publishes indicative mapping on its website which reveals the maximum extent of reservoir flooding in the unlikely event that a reservoir should fail. The mapping indicates that the site is not located within a reservoir flood risk area. The risk of flooding from this source is therefore considered to be negligible.

Groundwater

3.7 As mentioned in Section 2, the SuDS GeoReport indicates the depth to groundwater from the surface throughout the year is likely to be greater than 5m. In addition, the GOV.UK long term flood risk checker indicates the site is located in an area where groundwater flooding is unlikely to occur. It is therefore considered that the risk of flooding from this source is very low.

Sewer

3.8 Sewer records have been obtained from Thames Water as sewerage undertaker for the area surrounding the site. The records show the closest public sewer to be located at the junction of Epsom Road with Fearn Close and Longhurst Road some 175m to the east of the site. Given the distance from the site to the nearest sewers, it is considered that the risk of flooding from this source is very low.

Historical

3.9 The Guildford Borough Council Level 1 Strategic Flood Risk Assessment (SFRA) dated January 2016 includes reports of historical flooding within the borough. No instances of historical flooding are recorded within the SFRA for the area surrounding the site, with the closest being reports of fluvial flooding at Kingston Avenue and Old Rectory Lane around 1.2 km north of the site which will have no impact on the development proposals.

Summary

3.10 The entire site is located within Flood Zone 1, at the lowest risk of fluvial flooding. All other sources of flooding identified are considered to present a low to negligible risk to the proposed development.

4.0 Surface Water Drainage

Sustainable Drainage

- 4.1 The PPG recommends that priority should be given to the use of sustainable drainage systems (SuDS) as they are designed to control surface water run-off where it falls and mimic natural drainage as closely as possible. SuDS also provide opportunities for the following:
 - reduce the causes and impacts of flooding;
 - remove pollutants from urban run-off at source; and
 - combine water management with green space with benefits for amenity, recreation, and wildlife.
- 4.2 SuDS encompass a wide range of drainage techniques intended to minimise the rate of discharge, volume and environmental impact of run-off. Infiltration based techniques are high up in the hierarchy of techniques available due to the ability for close to source dispersion of surface water. These techniques are considered the closest solution to mimic the natural drainage of undeveloped sites.
- 4.3 The Building Regulations part H3 stipulates that rainwater from roofs and paved areas is carried away from surface to discharge to one of the following, listed in order of priority:
 - a) an adequate soakaway or some other adequate infiltration system; or, where that is not practical;
 - b) a watercourse; or, where that is not practical
 - c) a sewer.

Outfall and Constraints

- 4.4 As mentioned in Section 2, the site is underlain by a combination of Newhaven Chalk Formation before a band of Thanet Formation and Lambeth Group soils in the north of the site. These soil groups are described as freely draining and/or permitting moderate infiltration and, therefore, it is expected that infiltration drainage techniques for the disposal of surface water will be feasible on-site.
- 4.5 At the appropriate design stage, infiltration testing will be undertaken in the locations of the proposed soakaways and porous access road to ascertain accurate soil profiles and infiltration rates for detailed design purposes, and this requirement could be secured by a suitably worded planning condition.

Surface Water Drainage Strategy

- 4.6 The proposed surface water drainage strategy strives to utilise sustainable drainage techniques in accordance with the guidance described in CIRIA document C753 'The SuDS Manual' (2015) to accommodate run-off from all rainfall events up to and including the 1 in 100 year event, with a 40% allowance for climate change. Run-off generated from the proposed development will discharge either via on-plot geocellular soakaways, permeable paving or an infiltration basin.
- 4.7 Run-off generated by the roof areas will discharge via on-plot soakaways consisting of geocellular crates, where spatial constraints allow namely Plots 1 and 5. These systems will be sealed to only allow run-off from roofs to enter them, with catchpits provided upstream of the soakaways to remove any sediment contained within the surface water run-off. The proposed driveways will be constructed using permeable paving with a deepened porous sub-base and allowed to infiltrate under their own footprints.

- 4.8 The existing access road in the south of the site between Sheepleas House and the existing maintenance and store building is formed by an asphalt driveway which, from a drainage perspective, will remain unchanged as a result of the development and therefore drain as per the existing situation via the existing gulleys in the area. The proposed access road to be constructed through the site will also be formed using permeable paving, with larger infrequent storm events able to discharge via an infiltration basin in the west of the site. Plots 2-4 will also discharge surface water run-off via the permeable paving and the infiltration basin, as insufficient space for domestic soakaways which adhere to an appropriate stand-off distance can be achieved.
- 4.9 MicroDrainage calculations show the proposed infiltration features have been sized to accommodate the 1 in 100 year + 40% climate change allowance storm without flooding from surface water. A 10% allowance for urban creep has also been applied to the proposed dwelling areas. Copies of the calculations are included in Appendix D of this report, with a drawing illustrating the proposed surface water drainage strategy included in Appendix E.

5.0 Sustainable Drainage Pollution Control and Maintenance Measures

Pollution Control

- 5.1 Pollution control measures are designed to minimise the transmittal of any pollutants collected by runoff flowing over hard paved areas to the underlying aquifer, with guidance provided on appropriate control measures included in CIRIA C753. The EA has also published a position statement detailing its approach to groundwater protection.
- 5.2 The EA's approach to groundwater protection states the discharge of clean roof water from residential development is acceptable provided rainwater downpipes are sealed against pollutants entering the system from other sources of surface water run-off. As such, it is considered appropriate to discharge surface water run-off from the roof areas on-site directly to domestic geocellular soakaways.
- 5.3 Table 26.2 of 'The SuDS Manual' indicates the minimum treatment indices for contributing pollution hazards for different land use classifications. The treatment indices for individual driveways and low-traffic roads, such as within the development, are shown in Table 1.
- 5.4 The pollution indices in Table 1 should be compared with the mitigation indices in Table 2 and the following formulae applied.

Total SuDS Mitigation Index \geq Pollution Hazards Index (for each contaminant type)

Total SuDS Mitigation Index = 1st Stage Mitigation Index + 0.5 (2nd Stage Mitigation Index)

Table 1: Pollution Hazard Indices for Different Land Use Classifications (Table 26.2, CIRIA C753)

	Pollution	Pollution Hazard Indices			
Land Use	Hazard Level	Suspended Solids	Metals	Hydro- carbons	
Individual property driveways, residential car parks, low traffic roads (e.g. cul-de-sacs, home zones and general access roads) and non- residential car parking with infrequent change (e.g. schools, offices)	Low	0.5	0.4	0.4	

5.5 The proposed access road will drain via permeable paving, which is effective at removing pollutants, such as hydrocarbons, from surface water run-off. SuDS mitigation indices, taken from Table 26.4 of CIRIA C753, are shown in Table 2 to exceed the pollution hazard indices. The proposed surface water strategy is therefore considered to provide a suitable level of protection against pollution.

SuDS Component	Mitigation Indices					
Subs Component	Suspended Solids	Metals	Hydrocarbons			
Permeable paving	0.7	0.6	0.7			
Infiltration Basin	0.6	0.5	0.6			

Table 2: SuDS Mitigation Indices (Table 26.4, CIRIA C753)

Maintenance and Responsibilities

5.6 All new surface water infrastructure will be designed and constructed in accordance with The Building Regulations and best practice, as appropriate.

- 5.7 The proposed surface water system will remain under private ownership. All surface water infrastructure serving a single property, such as the on-plot soakaways, will be owned and therefore maintained by the respective property owner. The proposed access road and open space area on-site will remain private, and the SuDS features will be maintained by a private management company.
- 5.8 Suitable adoption and maintenance regimes for the proposed drainage systems, incorporating advice from the component manufacturers and installers, will be developed by site management company and implemented prior to occupation of the development. A summary of typical items to be included is given in Table 3 below.

Drainage Feature	Inspection and Maintenance	Frequency
	Brushing and vacuuming of surface to remove detrimental materials such as debris, dirt and sediment	Annually
	Stabilise / mow adjacent verges and remove weeds from pavement surface	As required
Permeable pavements	Ensure paving dewaters after rain and between storms: check joints for sedimentation; mechanically clean or jet wash and sweep surface free from silt, etc; refill joints with sealing grit	As required
	Inspect and repair any rutting and cracked or broken blocks and replace lost jointing material	As required
	Rehabilitate surface and upper substructure	As required
Gullies	Inspect and remove any sediment / debris.	Annually
	Clean out catchpits and dispose of silt build-up	Regularly, as required – typically quarterly
Geocellular soakaway*	Ensure inlets and pre-treatment structures are clear and free of debris	Regularly, as required
	Inspection if infiltration decreases. Uncover, inspect, and remediate as appropriate, including cleaning and replacement of infiltration media and surface. Reinstate as required	Remedial work, as required
	Inspect for signs of clogging and remove any litter / debris found.	
	Inspect and clear inlets and outlets of any blockages.	
	Inspect banksides for evidence of physical damage and	
Infiltration basin	repair as appropriate.	Annually, or as
	Check sediment level and remove any excess.	required
	Inspect inflittration surfaces for ponding, compaction and silf	
	infiltration performance, break up silt doposits and provent	
	compaction of surface.	

Table 3: SuDS Maintenance Schedule

*refer to manufacturers' guidance for specific maintenance instructions

6.0 Foul Water Drainage

Existing Foul Water Drainage

6.1 As mentioned in Section 4 of this report, the closest Thames Water foul water sewer is located at the junction of Epsom Road with Fearn Close and Longhurst Road, approximately 175m east of the site. A copy of the Thames Water records is included in Appendix F. It is understood that the existing property of Sheepleas House does not have a mains connection to the public sewerage network.

Proposed Foul Water Drainage Strategy

- 6.2 The topography of the surrounding area is such that the existing Thames Water sewer at Fearn Close is at a higher overall elevation relative to the site and, as such, would require a pumped connection from the site to the sewer. It is also a considerable distance from the site.
- 6.3 Part H1 of the Building Regulations states foul water from developments should be conveyed to one of the following, listed in order of priority:
 - a) a public sewer; or, where that is not reasonably practicable,
 - b) a private sewer communicating with a public sewer; or, where that is not reasonably practicable,
 - c) a septic tank with appropriate secondary treatment (or another wastewater treatment system); or, where that is not reasonably practicable,
 - d) a cesspool.
- 6.4 Given the considerable distance and requirement for a pumped connection, it is not considered reasonable or financially viable to connect to the public sewer. There is also no evidence of a private sewer communicating with a public sewer, so this option is not available.
- 6.5 The next hierarchically appropriate solution is either a septic tank or other wastewater treatment system. However, the lack of a watercourse nearby rules out this option as a possible outfall from the system. The alternative would be to allow treated effluent to discharge via infiltration to ground. However, a development of this size discharging effluent to ground would require a permit from the Environment Agency as the drainage system would not adhere to the general binding rules for small sewage discharges due to the volume of effluent discharged. Strict EA permitting rules mean a treatment system discharging to ground cannot not be accommodated within the site constraints, for example, infiltration systems must be a minimum of 50m from other soakage devices, which is not practicable within the site boundaries.
- 6.6 Foul water effluent generated by the proposed development will therefore be discharged to on-site cesspools. Cesspools are sealed tanks which do not allow effluent to discharge to the environment and are therefore emptied periodically for disposal by a licensed waste management contractor.
- 6.7 As per Building Regulations, the cesspools will be located 7m from habitable dwellings. To comply with stand-off and emptying distance requirements, Plots 1-3 and 5 will be provided with individual on-plot cesspools, whilst Plot 4 will discharge to a cesspool located within the public open space immediately to the west of the dwelling. The foul water drainage proposals are also illustrated in the drawing included in Appendix E.

6.8 Cesspools serving and located within the curtilage of a single property will be owned and maintained by the property owner. The cesspool serving Plot 4 will be owned and maintained by the property owner, with the right of access and maintenance schedule written into the property deeds, if necessary.

7.0 Summary and Conclusions

Summary

- 7.1 This Flood Risk & Drainage Statement has been prepared by Glanville Consultants on behalf of BlackOnyx Projects in relation to a proposed residential development on land at the rear of Sheepleas House, Epsom Road, West Horsley, KT24 6AL.
- 7.2 This report has been prepared in accordance with the requirement of National Planning Policy Framework, Planning Practice Guidance, and with reference to the relevant Strategic Flood Risk Assessment and National and Local Drainage Standards.
- 7.3 The entire site is in Flood Zone 1, and therefore is considered to be at very low risk of fluvial flooding. All other sources of potential flooding identified are considered to present a low to negligible risk to the proposed development.
- 7.4 Geological mapping suggests infiltration drainage techniques should be feasible on-site and, as such, run-off from the proposed development will discharge via a combination of on-plot soakaways consisting of geocellular crates, permeable paving with deepened porous sub-base and an infiltration basin.
- 7.5 The proposed SuDS features have been sized to accommodate all flows up to the 1 in 100 year +40 % climate change storm event without flooding from surface water. Appropriate pollution control and maintenance measures have also been proposed within this report.
- 7.6 Foul water will drain to private cesspools located on-site. Alternative means of disposal have been ruled out as it is not considered reasonable or financially viable to connect to the public sewer due to the considerable distance to the outfall, and other means of on-site disposal are unsuitable due to site constraints.

Conclusions

- 7.7 In conclusion, this report has demonstrated that the proposed development:
 - is in accordance with the National Planning Policy Framework;
 - will not be at an unacceptable risk from surface water flooding or other sources;
 - will not increase flood risk elsewhere;
 - will employ a surface water drainage strategy based on the principles of sustainable drainage;
 - will employ a suitable foul water drainage strategy.
- 7.8 The proposals are therefore considered to fully comply with national, regional and local planning policy.

Appendices

Appendix A

British Geological Survey SuDS GeoReport Extracts

Search location

Contains OS data © Crown Copyright and database right 2024. OS OpenMap Local: Scale: 1:5 000 (1cm = 50 m) Search location indicated in red

Point centred at: 509168,152717

Section 2. Drainage potential

The following pages contain maps that will help you assess the drainage potential of the ground by considering the:

- depth to water table
- permeability of the superficial deposits
- thickness of the superficial deposits
- permeability of the bedrock
- presence of floodplains

Superficial deposits are not present everywhere and therefore some areas of the *superficial deposit permeability* map may not be coloured. Where this is the case, the *bedrock permeability* map shows the likely permeability of the ground. Superficial deposits in some places are very thin and hence in these places you may wish to consider both the permeability of the superficial deposits and the permeability of the bedrock. The *superficial thickness* map will tell you whether the superficial deposits are thin (< 3 m thick) or thick (>3 m). Where they are over 3 m thick, the permeability of the bedrock may not be relevant.

For more information read 'Explanation of terms' at the end of this report.

Section 5. Geological Maps

The following maps show the artificial, superficial and bedrock geology within the area of interest.

Artificial deposits

Contains OS data © Crown Copyright and database right 2024

Superficial deposits

Contains OS data © Crown Copyright and database right 2024

Bedrock

Contains OS data © Crown Copyright and database right 2024

Coal, ironstone or mineral vein

Note: Faults and Coals, ironstone & mineral veins are shown for illustration and to aid interpretation of the map. Not all such features are shown and their absence on the map face does not necessarily mean that none are present

Key to Artificial deposits: *No deposits recorded by BGS in the search area*

Map colour	Computer Code	Rock name	Rock type
	HEAD-XCZSV	HEAD	CLAY, SILT, SAND AND GRAVEL
	RTDU-XSV	RIVER TERRACE DEPOSITS (UNDIFFERENTIATED)	SAND AND GRAVEL

Key to Superficial deposits:

Key to Bedrock geology:

Map colour	Computer Code	Rock name	Rock type
	LC-XCZS	LONDON CLAY FORMATION	CLAY, SILT AND SAND
	LMBE-XCZS	LAMBETH GROUP	CLAY, SILT AND SAND
	TAB-S	THANET FORMATION	SAND
	NCK-CHLK	NEWHAVEN CHALK FORMATION	CHALK
	SECK-CHLK	SEAFORD CHALK FORMATION	CHALK

Appendix B

Proposed Site Layout

Sheepleas House, West Horsley

23125 / C101A

Scale 1:500 @ A2 March 2024 OSP Architecture, Broadmede House, Farnham Business Park, Weydon Lane, Farnham, Surrey, GU9 8QT Tel: 01252 267878 www.osparchitecture.com

Appendix C

Environment Agency Flood Map for Planning Extracts

Flood map for planning

Your reference 8230659_FMfP

Location (easting/northing) **509158/152763**

Created 14 Mar 2024 14:31

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Appendix D

MicroDrainage Calculations

Glanville Consultants				Page 1
Cornerstone Court	Sheeplea	s House		
62 Foxhall Road	Epsom Ro	ad, West Hors	ey	
Didcot OX11 7AD	Plot 1 S	oakaway Sizing	ſ	Micco
Date 14/03/2024 16:35	Designed	l by S McNair	·	
File 8230659 - PLOT1&2 SOAKA	Checked	bv J Birch		Diginaria
Micro Drainage	Source (ontrol 2020.1.	3	
Summary of Results	for 100 ye	ear Return Per	iod (+40%)	
Half	rain Time •	946 minutes		
		J40 minutes.		
Storm Ma	ax Max	Max Max	Status	
	m) (m)	(1/s) (m ³)	
15 min Summer 98.	913 0.463	0.1 6	.6 OK	
50 min Summer 99. 60 min Summer 99	211 0 761	0.1 8	., UK	
120 min Summer 99.	356 0.906	0.1 12	.9 OK	
180 min Summer 99.	429 0.979	0.2 13	.9 O K	
240 min Summer 99.	471 1.021	0.2 14	.5 ОК	
360 min Summer 99.	520 1.070	0.2 15	.2 ОК	
480 min Summer 99.	542 1.092	0.2 15	.6 O K	
600 min Summer 99.	548 1.098	0.2 15	.7 ОК	
720 min Summer 99.	545 1.095	0.2 15	.6 O K	
960 min Summer 99.	534 1.084	0.2 15	.4 ОК	
1440 min Summer 99.	442 0 002	0.2 15	.0 OK	
2160 min Summer 99.	396 0 936	0.2 14	.2 OK	
4320 min Summer 99	284 0 834	0.1 13	9 OK	
5760 min Summer 99.	196 0.746	0.1 11	.6 OK	
7200 min Summer 99.	117 0.667	0.1 9	.5 ОК	
8640 min Summer 99.	046 0.596	0.1 8	.5 ОК	
10080 min Summer 98.	984 0.534	0.1 7	.6 ОК	
15 min Winter 98.	913 0.463	0.1 6	.6 OK	
Storm	Rain	Flooded Time-Pe	ak	
Event	(mm/hr)	Volume (mins)		
		(m°)		
15 min Sum	nmer 135.323	0.0	23	
30 min Sum	nmer 89.751	0.0	37	
60 min Sum	umer 56.713	0.0	66	
120 min Sum	nmer 34.581	0.0 1	26	
180 min Sum	nmer 25.514	0.0 1	56	
240 min Sum	20.423		± 4 5 /	
ARO min Sum	uner 11 927	0.0 3	32	
600 min Sum	mer 10.029	0.0 6	0	
720 min Sum	mer 8.694	0.0 6	92	
960 min Sum	nmer 6.934	0.0 8	02	
1440 min Sum	nmer 5.033	0.0 10	54	
2160 min Sum	nmer 3.646	0.0 14	68	
2880 min Sum	umer 2.897	0.0 18	76	
4320 min Sum	nmer 2.092	0.0 26	38	
5760 min Sum	mer 1.659	0.0 35	12	
/200 min Sum	$ \begin{array}{c} \text{uner} 1.385 \\ \text{mer} 1.104 \end{array} $		20 26	
0040 MILLI SUM 10080 min Sum	uner 1.194 mer 1.055	0.0 58	48	
15 min Win	ter 135.323	0.0	22	
©19	982-2020 I	nnovyze		

Glanville Consultants	Page 2					
Cornerstone Court						
62 Foxhall Road						
Didcot OX11 7AD	Micro					
Date 14/03/2024 16:35						
File 8230659 - PLOT1&2 SOAKA.	Diamacje					
Micro Drainage						
Summary of Result						
Storm	Man	More	Nov	More	Status	
Event	Level	. Depth I	nfiltratio	n Volume	Status	
	(m)	(m)	(1/s)	(m³)		
20 min Winton (0 0 610	0	1 0 7	O K	
60 min Winter 9	9.000 99.212	2 0.762	0.	1 10.9	0 K	
120 min Winter 9	99.35	7 0.907	0.	1 12.9	ОК	
180 min Winter 9	99.432	1 0.981	0.	2 14.0	ОК	
240 min Winter 9	99.474	4 1.024	0.	2 14.6	ОК	
360 min Winter 9	99.525	5 1.075	0.	2 15.3	ОК	
480 min Winter 9	99.549	9 1.099	0.	2 15.7	O K	
600 min Winter 9	99.558	8 1.108	0.	2 15.8	OK	
720 min Winter 9	19.558	8 1.108	0.	2 15.8	OK	
960 min Winter 9	19.54.	1 1.091 2 1 052	0.	2 15.5	OK	
2160 min Winter 9	19.302 29.302	Z I.USZ 7 0 977	0.	2 13.0	O K	
2880 min Winter 9	99.42 99.35	1 0.901	0.	1 12.8	O K	
4320 min Winter 9	99.214	4 0.764	0.	1 10.9	O K	
5760 min Winter 9	99.095	5 0.645	0.	1 9.2	ОК	
7200 min Winter 9	98.993	3 0.543	0.	1 7.7	ОК	
8640 min Winter 9	98.904	4 0.454	0.	1 6.5	ОК	
10080 min Winter 9	98.828	8 0.378	0.	1 5.4	ОК	
Storm		Rain	Flooded T	'ime-Peak		
Event		(mm/hr)	(m ³)	(mins)		
			(111)			
30 min W	Vinte	r 89.751	0.0	37		
60 min W	Vinte	r 56.713	0.0	66		
120 min W	Vinte	r 34.581	0.0	124		
180 min M 240 min M	vinte: Jinto:	r 25.514	0.0	240		
240 MIN W 360 min M	vintel Jinter	r 11 927	0.0	24U 356		
480 min W	Vinter	r 11.937	0.0	468		
600 min W	Vinter	r 10.029	0.0	580		
720 min W	Vinte	r 8.694	0.0	688		
960 min W	Vinte	r 6.934	0.0	886		
1440 min W	Vinte	r 5.033	0.0	1100		
2160 min W	Vinte	r 3.646	0.0	1564		
2880 min W	Vinte	r 2.897	0.0	2020		
4320 min 16	vintei	r 2.092	0.0	2896		
	lint -	Y	0.0	2090		
5760 min W 7200 min W	Vinte:	r 1.659 r 1.325	0 0	1536		
5760 min W 57200 min W 8640 min W	Vinte: Vinte: Vinte:	r 1.659 r 1.385 r 1.194	0.0	4536 5280		
5760 min W 5760 min W 7200 min W 8640 min W 10080 min W	Vinte Vinte Vinte Vinte	r 1.659 r 1.385 r 1.194 r 1.055	0.0 0.0 0.0	4536 5280 6056		
5760 min W 5760 min W 7200 min W 8640 min W 10080 min W	Vinte Vinte Vinte Vinte	r 1.659 r 1.385 r 1.194 r 1.055	0.0 0.0 0.0	4536 5280 6056		
5760 min W 5760 min W 7200 min W 8640 min W 10080 min W	Vinte Vinte Vinte Vinte	r 1.659 r 1.385 r 1.194 r 1.055	0.0 0.0 0.0	4536 5280 6056		
5760 min W 5760 min W 7200 min W 8640 min W 10080 min W	Vinte Vinte Vinte Vinte	r 1.659 r 1.385 r 1.194 r 1.055	0.0	4536 5280 6056		
5760 min W 5760 min W 7200 min W 8640 min W 10080 min W	Vinte Vinte Vinte Vinte	r 1.659 r 1.385 r 1.194 r 1.055	0.0 0.0 0.0	4536 5280 6056		
5760 min W 57200 min W 8640 min W 10080 min W	Vinte Vinte Vinte Vinte	r 1.659 r 1.385 r 1.194 r 1.055	0.0 0.0 0.0	4536 5280 6056		
5720 min W 5760 min W 8640 min W 10080 min W	Vinter Vinter Vinter	r 1.659 r 1.385 r 1.194 r 1.055	0.0 0.0 0.0	4536 5280 6056		
5760 min W 5760 min W 7200 min W 8640 min W 10080 min W	Vinter Vinter Vinter Vinter	r 1.639 r 1.385 r 1.194 r 1.055	0.0 0.0 0.0	4536 5280 6056		

Glanville Consultants				
Cornerstone Court	Sheepleas House			
62 Foxhall Road	Epsom Road, West Horsley			
Didcot OX11 7AD	Plot 1 Soakaway Sizing	Mirro		
Date 14/03/2024 16:35	Designed by S McNair	Dcainago		
File 8230659 - PLOT1&2 SOAKA	Checked by J Birch	Diamage		
Micro Drainage	Source Control 2020.1.3			

Rainfall Details

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.900
Region	England and Wales	Cv (Winter) 0.900
M5-60 (mm)	20.000	Shortest Storm (mins) 15
Ratio R	0.377	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.022

Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)
0	4	0.011	4	8	0.011

Glanville Consultants		Page 4
Cornerstone Court	Sheepleas House	
62 Foxhall Road	Epsom Road, West Horsley	
Didcot OX11 7AD	Plot 1 Soakaway Sizing	Mirro
Date 14/03/2024 16:35	Designed by S McNair	Dcainago
File 8230659 - PLOT1&2 SOAKA	Checked by J Birch	Diamage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 98.450 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.03600

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	15.0	15.0	1.300	0.0	34.2
1.200	15.0	34.2			

Glanville Consultants						Page 1
Cornerstone Court	Sł	neeplea	s House			
62 Foxhall Road	Εŗ	psom Roa	ad, West	Horsley	[
Didcot OX11 7AD	Pl	lot 5 Se	oakaway	Sizing		Micco
Date 14/03/2024 14:19	De	esigned	by S Mc	Nair		
File 8230659 - PLOT 5 SOAKAW	Cł	necked 1	by J Bir	ch		urainage
Micro Drainage	Sc	Durce C	$\frac{o_f \circ D_{\pm\pm}}{ontrol 2}$	020 1 3		_
	50	Juice et	SHCLOT Z	020.1.5		
Summary of Results	for	100 ye	ar Retur	n Perio	d (+40%)	
A		-			· · ·	
Half I	Drain	Time : 8	394 minute	s.		
Storm	Max	Max	Max	Max	Status	
Event L	evel	Depth Ir	filtratio	n Volume		
	(m)	(m)	(l/s)	(m³)		
15 min Summan Of	0 170	0 226	0	0 11 0	O K	
15 min Summer 95 30 min Summer 90	9.280	0.326	υ.	∠ 11.6 2 15.3	OK	
60 min Summer 99	9.386	0.536	0.	3 19.1	O K	
120 min Summer 99	9.487	0.637	0.	3 22.7	O K	
180 min Summer 99	9.538	0.688	0.	3 24.5	ΟK	
240 min Summer 99	9.566	0.716	0.	3 25.5	ОК	
360 min Summer 99	9.599	0.749	0.	3 26.7	ОК	
480 min Summer 99	9.612	0.762	0.	3 27.2	ОК	
600 min Summer 99	9.615	0.765	0.	3 27.2	ОК	
720 min Summer 99	9.610	0.760	0.	3 27.1	ОК	
960 min Summer 99	9.597	0.747	0.	3 26.6	ОК	
1440 min Summer 99	9.566	0.716	0.	3 25.5	ОК	
2160 min Summer 99	9.518	0.668	0.	3 23.8	ОК	
2880 min Summer 99	9.474	0.624	0.	3 22.2	ОК	
4320 min Summer 99	9.392	0.542	0.	3 19.3	ОК	
5760 min Summer 99	9.319	0.469	0.	2 16.7	ОК	
7200 min Summer 99	9.254	0.404	0.	2 14.4	ОК	
8640 min Summer 99	9.195	0.345	0.	2 12.3	OK	
10080 min Summer 99	9.144	0.294	0.	2 10.5	OK	
15 mill winter 53	9.170	0.320	0.	2 11.0	0 K	
Storm		Rain	Flooded T	'ime-Peak		
Event		(mm/hr)	Volume	(mins)		
			(111-)			
15 min Su	ummer	135.323	0.0	26		
30 min Su	ummer	89.751	0.0	41		
60 min Su	ummer	56.713	0.0	70		
120 min Su	ummer	34.581	0.0	130		
180 min Su	ummer	25.514	0.0	188		
240 min Su	ummer	20.423	0.0	246		
360 min Su	ummer	11 027	0.0	364		
480 min St	unner	10 000	0.0	484		
600 min St 720 min St	unner	70.029 TU.U29	0.0	602 70 <i>6</i>		
120 min Su 960 min Su	ummer	6 931	0.0	700 812		
1440 min Su	Immer	5 033	0.0	1060		
2160 min Su	ummer	3.646	0.0	1472		
2880 min Su	ummer	2.897	0.0	1880		
4320 min Su	ummer	2.092	0.0	2688		
5760 min Su	ummer	1.659	0.0	3472		
7200 min Su	ummer	1.385	0.0	4256		
8640 min Su	ummer	1.194	0.0	5016		
10080 min Su	ummer	1.055	0.0	5752		
15 min Wi	inter	135.323	0.0	26		
	1000	-2020 T-	220111122			
©	тар/-	-ZUZU II	movyze			

Glanville Consultants	Glanville Consultants								
Cornerstone Court									
62 Foxhall Road									
Didcot OX11 7AD	Micro								
Date 14/03/2024 14:19									
File 8230659 - PLOT 5 SOAKAW	Dialitacje								
Micro Drainage	S	ource C	Control 2	020.1.3					
Summary of Results	for	100 ye	ear Retur	n Perio	d (+40%)				
					.				
Storm Ma	IX 701	Max Depth T	Max nfiltratio	Max n Volume	Status				
(I	n)	(m)	(1/s)	(m ³)					
30 min Winter 99.	280	0.430	0.	2 15.3	ОК				
120 min Winter 99.	489	0.639	0.	3 22.7	ОК				
180 min Winter 99.	540	0.690	0.	3 24.6	O K				
240 min Winter 99.	569	0.719	0.	3 25.6	O K				
360 min Winter 99.	603	0.753	0.	3 26.8	ОК				
480 min Winter 99.	617	0.767	0.	3 27.3	O K				
720 min Winter 99.	022 619	0.769	U. 0	3 27 4	OK				
960 min Winter 99.	602	0.752	0.	3 26.8	ОК				
1440 min Winter 99.	565	0.715	0.	3 25.5	O K				
2160 min Winter 99.	503	0.653	0.	3 23.3	O K				
2880 min Winter 99.	441	0.591	0.	3 21.0	ОК				
4320 min Winter 99. 5760 min Winter 99	326	0.476	0.	2 16.9 2 13 /	OK				
7200 min Winter 99.	139	0.289	0.	2 10.3	0 K				
8640 min Winter 99.	066	0.216	0.	2 7.7	ОК				
10080 min Winter 99.	005	0.155	0.	2 5.5	ОК				
Storm		Rain	Flooded T	'ime-Peak					
Event		(mm/hr)	Volume	(mins)					
			(m³)						
30 min Win	ter	89.751	(m ³)	40					
30 min Win 60 min Win	ter ter	89.751 56.713	(m ³)	40 70					
30 min Win 60 min Win 120 min Win	ter ter ter	89.751 56.713 34.581	(m³) 0.0 0.0	40 70 126					
30 min Win 60 min Win 120 min Win 180 min Win	ter ter ter	89.751 56.713 34.581 25.514	(m ³)	40 70 126 184					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win	ter ter ter ter	89.751 56.713 34.581 25.514 20.423	(m³) 0.0 0.0 0.0 0.0	40 70 126 184 242 358					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win	ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937	(m³) 0.0 0.0 0.0 0.0 0.0	40 70 126 184 242 358 472					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win	ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029	(m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	40 70 126 184 242 358 472 582					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win	ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	40 70 126 184 242 358 472 582 692					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win	ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win	ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win	ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897	(m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 480 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 5760 min Win 7200 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385 1.194	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464 5192					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win 2880 min Win 4320 min Win 5760 min Win 7200 min Win 8640 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385 1.194 1.055	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464 5192 5856					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 480 min Win 720 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win 7200 min Win 8640 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385 1.194 1.055	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464 5192 5856					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 480 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win 7200 min Win 8640 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385 1.194 1.055	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464 5192 5856					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win 7200 min Win 8640 min Win	ter tter ter ter ter tter tter tter tte	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385 1.194 1.055	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464 5192 5856					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win 7200 min Win 8640 min Win 10080 min Win	ter tter tter tter tter tter tter tter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385 1.194 1.055	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464 5192 5856					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win 7200 min Win 8640 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385 1.194 1.055	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464 5192 5856					
30 min Win 60 min Win 120 min Win 180 min Win 240 min Win 360 min Win 480 min Win 600 min Win 720 min Win 960 min Win 1440 min Win 2160 min Win 2880 min Win 4320 min Win 5760 min Win 5760 min Win 8640 min Win 10080 min Win	ter ter ter ter ter ter ter ter ter ter	89.751 56.713 34.581 25.514 20.423 14.927 11.937 10.029 8.694 6.934 5.033 3.646 2.897 2.092 1.659 1.385 1.194 1.055	(m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	40 70 126 184 242 358 472 582 692 892 1110 1568 2020 2864 3688 4464 5192 5856					

Glanville Consultants									
ornerstone Court Sheepleas House									
2 Foxhall Road Epsom Road, West Horsley									
Pl	ot 5 S	oakawa	ay Siz	ing		Micro			
De	signed	by S	McNai	r		Dcainago			
Ch	ecked	by J B	Birch			Diamage			
So	urce C	ontrol	L 2020	0.1.3					
Rainf	all De F 1	tails SR 00	W	inter S [.] Cv (Su	torms mmer)	Yes 0.900			
ngland	and Wal	es		Cv (Wi	nter)	0.900			
	20.0	00 Sho	rtest :	Storm (1	mins)	15			
	0.3 Y	77 Loi es	ngest S Clim	storm (1 ate Cha	mins) nge %	+40			
	_				5				
Time 2	Area D	lagram	1						
Total A	area (ha) 0.03	9						
Time	(mins)	Area	Time	(mins)	Area				
From:	To:	(ha)	From:	To:	(ha)				
4	8	0.013	8	12	0.013				
	Sh Ep Pl De Ch So Rainf ngland Time Z Total Z From: 4	Sheeplea Epsom Ro Plot 5 S Designed Checked I Source C Rainfall De F ngland and Wal 20.0 0.3 Y Time Area D: Total Area (ha Time (mins) From: To: 4 8	Sheepleas Hous Epsom Road, We Plot 5 Soakawa Designed by S Checked by J H Source Control Rainfall Details FSR 100 ngland and Wales 20.000 Shot 0.377 Lor Yes Time Area Diagram Total Area (ha) 0.031 Time (mins) Area From: To: (ha) 4 8 0.013	Sheepleas House Epsom Road, West Hoplot 5 Soakaway Siz Designed by S McNai Checked by J Birch Source Control 2020 Rainfall Details FSR Wingland and Wales 20.000 Shortest S 0.377 Longest S Yes Climation Time Area Diagram Total Area (ha) 0.039 Time (mins) Area Time From: To: 4 8 8 0.013	Sheepleas House Epsom Road, West Horsley Plot 5 Soakaway Sizing Designed by S McNair Checked by J Birch Source Control 2020.1.3 Rainfall Details FSR Winter S 100 Cv (Surngland and Wales rgland and Wales Cv (Wingland and Wales 20.000 Shortest Storm (Surgest Storm (Surgest Climate Chails) Time Area Diagram Total Area (ha) 0.039 Time (mins) Area Time (mins) From: To: 4 8 0.013 8	Sheepleas House Epsom Road, West Horsley Plot 5 Soakaway Sizing Designed by S McNair Checked by J Birch Source Control 2020.1.3 Rainfall Details FSR Winter Storms 100 Cv (Summer) ngland and Wales Cv (Winter) 20.000 Shortest Storm (mins) 0.377 Longest Storm (mins) 0.377 Longest Storm (mins) Yes Climate Change % Time Area Diagram Total Area (ha) 0.039 Time (mins) Area Time (mins) Area From: To: (ha) 4 8 0.013 8 12 0.013			

Glanville Consultants		Page 4
Cornerstone Court	Sheepleas House	
62 Foxhall Road	Epsom Road, West Horsley	
Didcot OX11 7AD	Plot 5 Soakaway Sizing	Mirro
Date 14/03/2024 14:19	Designed by S McNair	Dcainago
File 8230659 - PLOT 5 SOAKAW	Checked by J Birch	Diamage
Micro Drainage	Source Control 2020.1.3	

Model Details

Storage is Online Cover Level (m) 100.000

Cellular Storage Structure

Invert Level (m) 98.850 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.03600

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	37.5	37.5	0.900	0.0	57.5
0.800	37.5	57.5			

Glanville Consultant	Page 1									
Cornerstone Court										
62 Foxhall Road										
Didcot OX11 7AD	Micro									
Date 14/03/2024 16:2	Date 14/03/2024 16:28 Designed by S McNair									
File 8230659 - Casca	Digitig	ye								
Micro Drainage Source Control 2020.1.3										
Cascade Summa	ry of Result	ts fo	r 82306	59 - Per	meable	Paving	J.SRCX			
Upstre	am	Outf	flow To		Overflo	W TO				
Structu	ires									
())		Trafil		Deein CDCV	7 (T	Teme)				
(1)(one) 8230659 -	INIII	tration	Basin.SRCX	L (1	vone)				
	Half D	rain T	ime : O	minutes.						
Storm	Max Max	М	ax	Max	Max	Max	Status			
Event	Level Depth	Infilt	ration (Control Σ	Outflow	Volume				
	(m) (m)	(1	/s)	(1/5)	(1/5)	(m ³)				
15 min Summer	98.216 0.266		0.1	32.7	32.8	1.1	ОК			
30 min Summer	98.232 0.282		0.1	35.6	35.7	1.2	ОК			
60 min Summer	98.226 0.276		0.1	34.5	34.6	1.1	ОК			
120 min Summer	98.190 0.240		0.1	27.0	21.1	0.9	OK			
240 min Summer	98 124 0 174		0.1	18 7	18 7	0.0	O K			
360 min Summer	98.094 0.144		0.1	14.3	14.3	0.3	ОК			
480 min Summer	98.077 0.127		0.1	11.7	11.7	0.2	0 K			
600 min Summer	98.069 0.119		0.1	10.0	10.1	0.2	ОК			
720 min Summer	98.062 0.112		0.1	8.7	8.8	0.2	ОК			
960 min Summer	98.052 0.102		0.1	7.0	7.1	0.2	ОК			
1440 min Summer	98.035 0.085		0.0	5.1	5.1	0.1	O K			
2160 min Summer	98.023 0.073		0.0	3.7	3.8	0.1	ОК			
2880 min Summer	98.015 0.065		0.0	3.0	3.0	0.1	ОК			
4320 min Summer	98.004 0.054		0.0	2.1	2.1	0.0	ОК			
7200 min Summer	97.999 0.049		0.0	1.7	1.7	0.0	OK			
	57.555 0.015		0.0	1.5	1.5	0.0	0 10			
	Storm	Rain	Flooded	Discharge	Time-Pe	ak				
	Event (n	mm/hr)	Volume	Volume	(mins)				
			(m³)	(m³)						
15	min Summer 13	35.323	0.0	31.0		16				
30	min Summer 8	39.751	0.0	41.4		24				
60	min Summer 5	56.713	0.0	52.4		38				
120	min Summer 3	34.581	0.0	64.1		68				
180	min Summer 2	25.514	0.0	71.0	1	98				
240	min Summer 1	1/ 927	0.0	/5.8	1	.20 88				
480	min Summer 1	11.937	0.0	88.6	2	50				
600	min Summer 1	10.029	0.0	93.1	3	06				
720	min Summer	8.694	0.0	96.8	3	74				
960	min Summer	6.934	0.0	102.9	4	90				
1440	min Summer	5.033	0.0	112.0	7	34				
2160	min Summer	3.646	0.0	121.6	10	92				
2880	min Summer	2.897	0.0	128.7	14	68				
4320	min Summer	2.092	0.0	139.2	21	.32				
5/60	min Summer	1 325	0.0	146.9 152 0	28	32				
/200	MIN DUNNEL	T.JOJ	0.0	192.9	50	52				
	©19	82-20	20 Inno	ovyze						

Glanville Consultants	Page 2							
Cornerstone Court		Sheeple	eas H	louse				
62 Foxhall Road		Epsom H	Road,	West Ho	rsley			
Didcot OX11 7AD		Access	Micco					
Date 14/03/2024 16:28	03/2024 16:28 Designed by S McNair							
File 8230659 - Cascad	le PP +	Checked	d bv	J Birch			Drainage	
Micro Drainage		Source	$\frac{1}{Cont}$	rol 2020	1 3			
MICIO DIAINAGE		Source	COIIC	2020	•1•3			
Cascado Summar	w of Pocult	to for 8	23061	50 - Dorm	andle P	auina	CDCV	
	y or Result	.5 101 0.	2300.	JJ - Fein		aving	. SRCA	
Storm	Max Max	Max		Max	Max	Max	Status	
Event	Level Depth	Infiltrat	tion (Control S	Outflow N	/olume		
	(m) (m)	(l/s)		(l/s)	(l/s)	(m³)		
8640 min Summer	97.991 0.041		0.0	1.2	1.2	0.0	ОК	
15 min Winter	98 216 0 266		0.0	32.8	32 9	1 0	OK	
30 min Winter	98.231 0.281		0.1	35.4	35.5	1.0	ОК	
60 min Winter	98.206 0.256		0.1	30.8	31.0	1.0	ОК	
120 min Winter	98.139 0.189		0.1	21.3	21.4	0.5	O K	
180 min Winter	98.107 0.157		0.1	16.1	16.2	0.4	O K	
240 min Winter	98.086 0.136		0.1	13.1	13.2	0.3	ОК	
480 min Winter	98.067 0.117 98.057 0.107		0.1	9.7 7.8	9.7 7.8	0.2	OK	
600 min Winter	98.048 0.098		0.0	6.6	6.6	0.1	ОК	
720 min Winter	98.040 0.090		0.0	5.7	5.7	0.1	ОК	
960 min Winter	98.030 0.080		0.0	4.6	4.6	0.1	O K	
1440 min Winter	98.019 0.069		0.0	3.3	3.3	0.1	O K	
2160 min Winter	98.007 0.057		0.0	2.4	2.4	0.1	ОК	
4320 min Winter	98.002 0.052		0.0	1.9	2.0	0.0	OK	
5760 min Winter	97.989 0.039		0.0	1.1	1.1	0.0	ОК	
7200 min Winter	97.985 0.035		0.0	0.9	0.9	0.0	ОК	
8640 min Winter	97.983 0.033		0.0	0.8	0.8	0.0	ОК	
10080 min Winter	97.980 0.030		0.0	0.7	0.7	0.0	ОК	
	Storm	Rain Flo	beboo	Discharge	Time-Dea	k		
1	Event (1	mm/hr) Vo	lume	Volume	(mins)			
	·	(m³)	(m³)	ι - <i>ι</i>			
			_					
8640	min Summer	1.194	0.0	158.0	432	20		
15	min Winter 1	1.UDD 35 323	0.0	102.5 21 N	496	50 6		
30	min Winter	89.751	0.0	41.3	2	24		
60	min Winter	56.713	0.0	52.4	3	88		
120	min Winter	34.581	0.0	64.1	6	58		
180	min Winter 2	25.514	0.0	71.0	10	0		
240	min Winter 2	20.423	0.0	75.8	12	28		
360	min Winter .	11.937	0.0	83.1 88 6	18	0 14		
600	min Winter	10.029	0.0	93.1	31	.2		
720	min Winter	8.694	0.0	96.8	37	4		
960	min Winter	6.934	0.0	102.9	49	90		
1440	min Winter	5.033	0.0	112.0	74	16		
2160	min Winter	3.646	0.0	121.6	110)4		
2880	min Winter	2.097 2.092	0.0	139 2	15U 221	6		
5760	min Winter	1.659	0.0	146.9	286	54		
7200	min Winter	1.385	0.0	152.9	353	36		
8640	min Winter	1.194	0.0	158.0	436	50		
10080	min Winter	1.055	0.0	162.5	532	28		

©1982-2020 Innovyze

Glanville	Consul	tants								:	Page 3
Cornerston	e Cour	t			Sheep	leas 1	House				
62 Foxhall	Road				Epsom	Road	, West	Hors	Ley		
Didcot OX	Didcot OX11 7AD Access Road Permeable Paving									g	Micco
Date 14/03	/2024	16:28			Desig	ned b	y S Mcl	Nair			
File 82306	59 – C	ascad	e PP +	• • • •	Check	ed by	J Bird	ch			Dialitada
Micro Drai	nage				Sourc	e Cont	trol 20	020.1	.3		
Ca	Cascade Rainfall Details for 8230659 - Permeable Paving.SRCX										
Rainfall ModelFSRWinter StormsYesReturn Period (years)100Cv (Summer)0.900Region England and WalesCv (Winter)0.900M5-60 (mm)20.000Shortest Storm (mins)15Ratio R0.377Longest Storm (mins)10080Summer StormsYesClimate Change %+40											
				<u>Tim</u>	e Area	a Diag	gram				
				Tota	l Area	(ha) (0.104				
Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)	Time From:	(mins) To:	Area (ha)
0	4	0.026	4	8	0.026	8	12	0.026	12	16	0.026
				©198	2-202	0 Inno	ovyze				

Glanville Consultants		Page 4
Cornerstone Court	Sheepleas House	
62 Foxhall Road	Epsom Road, West Horsley	
Didcot OX11 7AD	Access Road Permeable Paving	Micro
Date 14/03/2024 16:28	Designed by S McNair	
File 8230659 - Cascade PP +	Checked by J Birch	Diamaye
Micro Drainage	Source Control 2020.1.3	
<u>Cascade Model Details</u> Storage is On	for 8230659 - Permeable Paving.SP	RCX
Porous	S Car Park Structure	
Infiltration Coefficient Base Membrane Percolation Max Percolatio Safety P Invert Le	(m/hr)0.03600Width (m)(mm/hr)1000Length (m)n (1/s)35.7Slope (1:X)Factor2.0Depression Storage (mm)orosity0.30Evaporation (mm/day)vel (m)97.950Cap Volume Depth (m)	2.4 53.5 41.2 5 3 0.400
Pip	e Outflow Control	
Diameter (m) 0.2 Slope (1:X) 195 Length (m) 9.7 Roughness k (mm) 0.6	<pre>25 Entry Loss Coefficient 0.500 .1 Coefficient of Contraction 0.600 55 Upstream Invert Level (m) 97.950 00</pre>	

©1982-2020 Innovyze

Glanville Consultants Page 1						
Cornerstone Court	Sheeplea	as House				
62 Foxhall Road	Epsom Road, West Horsley					
Didcot OX11 7AD	Western Infiltration Basin				Micro	
Date 14/03/2024 16:29	Designed	d by S Mc	Nair			
File 8230659 - Cascade	PP +	Checked	by J Bir	ch		Digitight
Micro Drainage		Source (Control 2	2020.1.3		
Cascade Summary c	of Results	for 823	0659 - Ir	nfiltrat	ion Basi	n.SRCX
	Upstream Structures	5	Outflow	To Overf	low To	
8230659 -	Permeable	Paving.SRC	X (Nor	ne)	(None)	
	Half Dra	ain Time :	649 minute	es.		
Storm	n Max	Max	Max	Max	Status	
Event	Leve	l Depth I	nfiltratio	n Volume		
	(m)	(m)	(1/s)	(m³)		
15		70 0 470	0	7 20 1	0 7	
IS MIN S 30 min S	Summer 98.3	72 0.472 80 0 580	0.	/ 30.1 8 39 9	OK	
60 min 5	Summer 98.5	78 0.678	0.	9 49.8	ОК	
120 min S	Summer 98.60	60 0.760	1.	0 58.9	ОК	
180 min S	Summer 98.69	97 0.797	1.	0 63.3	O K	
240 min 5	Summer 98.71	16 0.816	1.	0 65.5	O K	
360 min S	Summer 98.73	33 0.833	1.	1 67.7	ОК	
480 min 5	Summer 98.7.	3/ 0.83/	1.	1 68.2	OK	
720 min 5	Summer 98.7	35 0.835	1.	1 68.0	O K	
960 min S	Summer 98.72	29 0.829	1.	1 67.2	ОК	
1440 min S	Summer 98.7	10 0.810	1.	0 64.9	ОК	
2160 min S	Summer 98.6	73 0.773	1.	0 60.5	O K	
2880 min S	Summer 98.63	35 0.735	0.	9 56.1	O K	
4320 min 8	Summer 98.50	67 0.667	0.	9 48.7	ОК	
7200 min 5	Summer 98.4	57 0.557	0.	8 42.7 8 37.8	0 K	
	Storm	Rain	Flooded I	'ime-Peak		
	Event	(mm/hr)	Volume (m³)	(mins)		
	L5 min Summe	er 135.323	0.0	30		
	30 min Summe	er 89.751	0.0	45		
	50 min Summe	er 56.713	0.0	74		
12	20 min Summe	er 34.581	0.0	130		
18	30 min Summe	er 25.514	0.0	188		
24	to min Summe	zr = 20.423	0.0	246		
48	30 min Summe	er 11.937	0.0	462		
60	00 min Summe	er 10.029	0.0	514		
72	20 min Summe	er 8.694	0.0	574		
96	50 min Summe	er 6.934	0.0	702		
144	10 min Summe	er 5.033	0.0	976		
210	50 min Summe	er 3.646	0.0	1388		
288	oo min Summe	er 2.897	0.0	1/96 1/96		
576	50 min Summe	er 1.659	0.0	3352		
720)0 min Summe	er 1.385	0.0	4120		
	~ ~ ~ ~		•			
	©198	52-2020 I	nnovyze			

Glanville Consultants					Page 2
Cornerstone Court	Sheeplea	as House			
62 Foxhall Road	Epsom Ro	ad, West H	Horsley		
Didcot OX11 7AD	Western	Infiltrati	lon Basi	n	Micco
Date 14/03/2024 16:29	Designed	by S McNa	ir		
File 8230659 - Cascade PP +	Checked	by J Birch	*±±		Drainage
Migro Drainago	Source	Soptrol 200	20 1 2		
MICIO DIalilage	Source C	2012	20.1.3		
Cascade Summary of Result	s for 823()659 - Inf [.]	iltratio	on Basi	n SBCX
	5 101 0230	<u>, , , , , , , , , , , , , , , , , , , </u>	LICIACIO	JII DUDII	
Storm Ma	ax Max	Max	Max S	tatus	
Event Lev	vel Depth I	nfiltration	Volume		
(1	n) (m)	(l/s)	(m³)		
8640 min Summer 98	412 0 512	0.7	33 7	ОК	
10080 min Summer 98.	372 0.472	0.7	30.2	ОК	
15 min Winter 98.	372 0.472	0.7	30.1	ОК	
30 min Winter 98.	480 0.580	0.8	39.9	O K	
60 min Winter 98.	578 0.678	0.9	49.9	O K	
120 min Winter 98.	661 0.761	1.0	59.1	ОК	
180 min Winter 98.	699 0./99 719 0.919	1.0	63.5	OK	
360 min Winter 98.	737 0.837	1.1	68.2	0 K	
480 min Winter 98.	742 0.842	1.1	68.8	O K	
600 min Winter 98.	739 0.839	1.1	68.5	ОК	
720 min Winter 98.	735 0.835	1.1	68.0	ОК	
960 min Winter 98.	727 0.827	1.0	66.9	O K	
1440 min Winter 98.	699 0.799	1.0	63.5	ОК	
2160 min Winter 98.	648 U./48	1.0	57.6 51 Q	OK	
4320 min Winter 98.	506 0.606	0.9	42.5	0 K	
5760 min Winter 98.	430 0.530	0.7	35.3	ОК	
7200 min Winter 98.	365 0.465	0.7	29.6	ОК	
8640 min Winter 98.	310 0.410	0.6	25.1	ОК	
10080 min Winter 98.	262 0.362	0.6	21.4	ОК	
Storm	Rain	Flooded Tir	ne-Peak		
Event	(mm/hr)	Volume (mins)		
		(m³)			
8640 min Sum	mer 1 194	0.0	4848		
10080 min Sum	mer 1.055	0.0	5640		
15 min Win	ter 135.323	0.0	30		
30 min Win	ter 89.751	0.0	44		
60 min Win	ter 56.713	0.0	72		
120 min Win	ter 34.581	0.0	128		
180 min Win 240 min Win	ter 23.314	0.0	100 242		
360 min Win	ter 14.927	0.0	354		
480 min Win	ter 11.937	0.0	464		
600 min Win	ter 10.029	0.0	564		
720 min Win	ter 8.694	0.0	586		
960 min Win	ter 6.934	0.0	738		
1440 min Win 2160 min Win	ter 5.033	0.0	1042 1700		
2100 MIN WIN 2880 min Win	ter 2.897	0.0	1916		
4320 min Win	ter 2.092	0.0	2732		
5760 min Win	ter 1.659	0.0	3520		
7200 min Win	ter 1.385	0.0	4288		
8640 min Win	ter 1.194	0.0	5024		
10080 min Win	ter 1.055	0.0	5768		
©19	982-2020 I	nnovyze			

Glanville Consultants		Page 3
Cornerstone Court	Sheepleas House	
62 Foxhall Boad	Epsom Road, West Horsley	
Dideot 0X11 7AD	Western Infiltration Basin	
Date $11/03/2021$ 16.29	Designed by S McNair	MICrO
File 9220650 Caseade DD	Checked by J Pirch	Drainage
Miene Ducine un		
Micro Drainage	Source Control 2020.1.3	
Cascade Rainfall Details	for 8230659 - Infiltration Basin.	SRCX
Rainfall Model Return Period (years) Region Engla	FSR Winter Storms Y 100 Cv (Summer) 0.9 and and Wales Cv (Winter) 0.9	es 00 00
M5-60 (mm) Ratio R Summer Storms	20.000 Shortest Storm (mins) 0.377 Longest Storm (mins) 100 Yes Climate Change % +	15 80 40
	ne Area Diagram	
Tota	al Area (ha) 0.000	
Ti Fr	me (mins) Area om: To: (ha)	
	0 4 0.000	
©198	32-2020 Innovyze	

Glanville Consultants		Page 4
Cornerstone Court	Sheepleas House	
62 Foxhall Road	Epsom Road, West Horsley	
Didcot OX11 7AD	Western Infiltration Basin	Mirro
Date 14/03/2024 16:29	Designed by S McNair	Dcainago
File 8230659 - Cascade PP +	Checked by J Birch	Diamage
Micro Drainage	Source Control 2020.1.3	

Cascade Model Details for 8230659 - Infiltration Basin.SRCX

Storage is Online Cover Level (m) 98.900

Infiltration Basin Structure

Invert Level (m) 97.900 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.03600 Porosity 1.00 Infiltration Coefficient Side (m/hr) 0.03600

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 45.0 1.000 144.6

Appendix E

Proposed Drainage Strategy

Appendix F

Thames Water Sewer Records

SearchFlow Limited 42 Kings Hill Avenue Kings Hill West Malling ME19 4AJKent

Search address supplied	Sheepleas House, Epsom Road, West Horsley, LEATHERHEAD, KT24 6AL
Your reference	B4081.8.fw
Our reference	DWS/DWS Standard/2023_4917940
Received date	29 November 2023
Search date	13 December 2023

Keeping you up-to-date

Notification of Price Changes

From 1st April 2023 Thames Water Property Searches will be increasing the prices of its CON29DW, CommercialDW Drainage & Water Enquiries and Asset Location Searches. Historically costs would rise in line with RPI but as this currently sits at 14.2%, we are capping it at 10%.

Customers will be emailed with the new prices by January 1st 2023.

Any orders received with a higher payment prior to the 1st April 2023 will be non-refundable. For further details on the price increase please visit our website at www.thameswater-propertysearches.co.uk

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

0800 009 4540

Residential The Law Society's CON29DW

Drainage & Water Enquiry

Questi	on	Summary Answer
Maps		
1.1	Where relevant, please include a copy of an extract from the public sewer map.	Map Provided
1.2	Where relevant, please include a copy of an extract from the map of waterworks.	Map Provided
Draina	ge	
2.1	Does foul water from the property drain to a public sewer?	Not Connected
2.2	Does surface water from the property drain to a public sewer?	Not Connected
2.3	Is a surface water drainage charge payable?	No Charge
2.4	Does the public sewer map indicate any public sewer, disposal main or lateral drain within the boundaries of the property?	No
2.4.1	Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the boundaries of the property?	No
2.5	Does the public sewer map indicate any public sewer within 30.48 metres(100 feet) of any buildings within the property?	No
2.5.1	Does the public sewer map indicate any public pumping station or any other ancillary apparatus within the 50metres of any buildings within the property?	No
2.6	Are any sewers or lateral drains serving, or which are proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?	No
2.7	Has a sewerage undertaker approved or been consulted about any plans to erect a building or extension on the property over or in the vicinity of a public sewer, disposal main or drain?	No
2.8	Is the building which is or forms part of the property, at risk of internal flooding due to overloaded public sewers?	Not At Risk
2.9	Please state the distance from the property to the nearest boundary of the nearest sewage treatment works.	6.425 Kilometres
Water		
3.1	Is the property connected to mains water supply?	Connected
3.2	Are there any water mains, resource mains or discharge pipes within the boundaries of the property?	No
3.3	Is any water main or service pipe serving or which is proposed to serve the property, the subject of an existing adoption agreement or an application for such an agreement?	No
3.4	Is the property at risk of receiving low water pressure or flow?	No
3.5	What is the classification of the water supply for the property?	Hard
3.6	Please include details of the location of any water meter serving the property.	See Details
Charg	ing	
4.1.1	Who are the sewerage undertakers for the area?	Thames Water
4.1.2	Who are the water undertakers for the area?	Affinity Water
4.2	Who bills the property for sewerage services?	Not Billed
4.3	Who bills the property for water services?	Affinity Water
4.4	What is the current basis for charging for sewerage and/or water services at the property?	Metered
4.5	Will the basis for charging for sewerage and water services at the property change as a consequence of a change of occupation?	No

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4WW T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

Meters

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:1009	Comments:
Width:	200m	
Printed By:	ASuji	
Print Date:	13/12/2023	
Map Centre:	509177,152719	
Grid Reference:	TQ0952NW	

Meters

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:2523	Comments:
Width:	500m	
Printed By:	ASuji	
Print Date:	13/12/2023	
Map Centre:	509177,152719	
Grid Reference:	TQ0952NW	

Con29DW Residential Drainage and Water Search - Sewer Key

Notes:

1) All levels associated with the plans are to Ordnance Datum Newlyn.

2) All measurements on the plan are metric.

3) Arrows (on gravity fed severs) or flecks (on rising mains) indicate the direction of flow. 4) Most private pipes are not shown on our plans, as in the past, this information has not been recorded. 5) 'na' or '0' on a manhole indicates that data is unavailable.

6) The text appearing alongside a sewer line indicates the internal diameter of the pipe in millimeters. Text next to a manhole indicates the manhole reference number and should not be taken as a measurement. If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W T 0800 009 4540 E searches@thameswater.co.uk I www.thameswater-propertysearches.co.uk

postbox@glanvillegroup.com | www.glanvillegroup.com

Glanville Consultants Ltd, Registered office: 3 Grovelands Business Centre, Boundary Way, Hemel Hempstead, Hertfordshire, HP2 7TE