

Ground Investigation Report

at Kingston Wharf, East Cowes, Isle of Wight PO32 6JS

for **Cowes Harbour Commission**

Reference: 21091/GIR/Rev103 March 2024

Soils Limited 21091/GIR/Rev103

Control Document

Project Kingston Wharf, East Cowes, Isle of Wight PO32 6JS

Document Type Ground Investigation Report

Document Reference 21091/GIR/Rev103

Document Status FINAL

Date March 2024

Prepared by D E Windsor BSc. (Hons) FGS

D.E. Winter

First check by T Rees-Blanchard BEng (Hons), MIMMM, FGS. (trb@soilslimited.co.uk)

Second check by Eur Ing R B Higginson BSc, PGDip, CEng, MICE, FGS.

This is not a valid document for use in the design of the project unless it is titled Final in the document status box.

Current regulations and good practice were used in the preparation of this report. The recommendations given in this report must be reviewed by an appropriately qualified person at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

Commission

This document comprises the Main Investigation Report (MIR) and incorporates the results, discussion, and conclusions to this intrusive works. General site data is recorded below:

Cowes Harbour Commission
Kingston Wharf, East Cowes, Isle of Wight, PO32 6JS
SZ 503 943
Q27988, dated 17th August 2023.
Change Request Form CR_3 dated January 11 th 2024
Q27988, dated 5 th October 2023
Change Request Form CR_3 dated January 11 th 2024

Notes

The record of revision to this document is presented below:

Record Of Revisions				
Revision	Date	Reason		
1.00	November 2023	Copy to Client		
1.02	November 2023	Updated Proposed development details.		
1.03	March 2024	Updated following additional intrusive investigation		

Soils Limited 21091/GIR/Rev103

Limitations and Disclaimers

The report was prepared solely for the brief described in Section 1.1 of this report.

The contents, recommendations and advice given in the report are subject to the Terms and Conditions given in Soils Limited's Quotation

Soils Limited disclaims any responsibility to the Client and others in respect of any matters outside the scope of the above.

This report has been prepared by Soils Limited, with all reasonable skill, care and diligence within the terms of the Contract with the Client, incorporation of our General Conditions of Contract of Business and taking into account the resources devoted to us by agreement with the Client.

The report is personal and confidential to the Client and Soils Limited accept no responsibility of whatever nature to third parties to whom this report, or any part thereof, is made known. Any such party relies on the report wholly at its own risk.

The Client may not assign the benefit of the report or any part to any third party without the written consent of Soils Limited.

The ground is a product of continuing natural and artificial processes. As a result, the ground will exhibit a variety of characteristics that vary from place to place across a site, and also with time. Whilst a ground investigation will mitigate to a greater or lesser degree against the resulting risk from variation, the risks cannot be eliminated.

The investigation, interpretations, and recommendations given in this report were prepared for the sole benefit of the Client in accordance with their brief. As such these do not necessarily address all aspects of ground behaviour at the site.

Current regulations and good practice were used in the preparation of this report. An appropriately qualified person must review the recommendations given in this report at the time of preparation of the scheme design to ensure that any recommendations given remain valid in light of changes in regulation and practice, or additional information obtained regarding the site.

If the term "competent person" is used in this report or any Soils Limited document, it means an engineering geologist or civil engineer with a minimum of three years post graduate experience in the understanding and application of the appropriate codes of practice.

Unless the site investigation works have been designed and specified in accordance with EC7, this report is a Geotechnical Investigation Report and is not necessarily a Ground Investigation Report as defined by EC7 (Eurocode 7 Part 1, §3.4, Part 2, §6.1) or a Geotechnical Design Report (Eurocode 7 Part 1, §2.8) as defined by Eurocode 7 and as such may not characterise the ground conditions and additional works may be required to comply with the requirements of EC7.

Within the report reference to ground level relates to the site level at the time of the investigation, unless otherwise stated.

Exploratory hole is a generic term used to describe a method of direct investigation. The term trial pit, borehole or window sample borehole implies the specific technique used to produce an exploratory hole.

The depth to roots and/or of desiccation may vary from that found during the investigation. The Client is responsible for establishing the depth to roots and/or of desiccation on a plot by plot basis prior to the construction of foundations. Supplied site surveys may not include substantial shrubs or bushes and is also unlikely to have data or any trees, bushes or shrubs removed prior to or following the site survey.

Where trees are mentioned in the text this means existing trees, substantial bushes or shrubs, recently removed trees (approximately 20 years to full recovery on cohesive soils) and those planned as part of the site landscaping).

The geotechnical laboratory testing was performed by GEO Site & Testing Services Ltd (GSTL) in accordance with the methods given in BS 1377:1990 Parts 1 to 8 and their UKAS accredited test methods.

For the preparation of this report, the relevant BS code of practice were adopted for the geotechnical laboratory testing technical specifications, in the absence of the relevant Eurocode specifications (ref: ISO TS 17892).

The chemical analyses were undertaken by Derwentside Environmental Testing Services (DETS) in accordance with their UKAS and MCERTS accredited test methods or their documented in-house testing procedures. This investigation did not comprise an environmental audit of the site or its environs.

Ordinary watercourses (OWs) are defined as rivers (which are not designated as main rivers), streams, ditches, drains, culverts, cuts and sewers (other than public sewers). This includes all OWs that are not mapped. Ordinary watercourse consent (OWC) is required from the Lead Local Flood Authority (LLFA) when changing/adapting/adding to the cross sections of OWs. Installations of any structure or obstruction into an OW that impedes the flow without consent is prohibited by the Land Drainage Act 1991 Section 23.

Failure to remove obstructions may result in legal action by the LLFA with powers under Section 25 of the Land Drainage Act 1991.

We suggest surveying the site for OW usually seen in rural areas as boundary ditches in order to avoid potential impacts to residents downstream and prosecution. OWC can be applied for from your LLFA.

Ownership of land brings with it onerous legal liabilities in respect of harm to the environment. "Contaminated Land" is defined in Section 57 of the Environment Act 1995 (as updated 2021) as:

"Land which is in such a condition by reason of substances in, on or under the land that significant harm is being caused or that there is a significant possibility of such harm being caused or that pollution of controlled waters is being, or is likely to be caused".

It must be noted that a detailed survey of the possible presence or absence of invasive species, such as Japanese Knotweed, is outside of the scope of investigation.

Deleterious materials may be present in any Made Ground that pose a potential risk to site workers, end users and adjacent vulnerable receptors. These could include a range of contaminants, including asbestos, especially if the material includes large fractions of demolition derived materials.

The investigation, analysis or recommendations in respect of contamination are made solely in respect of the prevention of harm to vulnerable receptors, using where possible best practice at the date of preparation of the report. The investigation and report do not address, define or make recommendations in respect of environmental liabilities. A separate environmental audit and liaison with statutory authorities is required to address these issues.

All environmental works are undertaken in the context of, and in compliance with, BS10175+A2 2017 and LCRM (EA 2021) and all other pertinent planning, standards, documentation and guidance appropriate to the site at the time of production which may include, but are not necessarily limited to, documents provided by BS/CEN/ISO, NHBC, AGS, CIEH, CIRIA, SoBRA and CLAIRE.

Ownership of copyright of all printed material including reports, survey data, drawings, laboratory test results, trial pit and borehole log sheets, including drillers log sheets remains with Soils Limited. License is for the sole use of the client and may not be assigned, transferred or given to a third party. This license is only valid once we have been paid in full for this engagement. In the event of non-payment for our services, we reserve the right to retract the license for all project data, preventing their use and any reliance upon such data by the client or any other third party. We may also contact parties other than the client to notify them of this retraction.

Contents

Commi	ission	i
Limitat	ions and Disclaimers	. . ii
Section	I Introduction	. 9
1.1	Objective of Investigation	. 9
1.2	Site Description	. 9
1.3	Proposed Development	. 9
1.4	Anticipated Geology	10
1.4.1	Typical Cross Section	10
1.4.2	Made Ground	11
1.4.3	Tidal River or Creek Deposits	11
1.4.4	Bembridge Limestone Formation	11
Section	2 Site Works	12
2.1	Proposed Project Works	12
2.1.1	Actual Project Works	12
2.2	Additional Works	13
2.3	Ground Conditions	13
2.4	Ground Conditions Encountered in Exploratory Holes	15
2.4.1	Made Ground	15
2.4.2	Tidal River or Creek Deposits	15
2.4.3	Bembridge Limestone Formation	16
2.5	Roots	16
2.6	Groundwater	17
Section	3 Geotechnical In-Situ and Laboratory Testing	18
3.1	Standard Penetration Tests	18
3.2	Dynamic Cone Penetrometer Tests	18
3.3	Infiltration Tests	18
3.4	Quick Unconsolidated Undrained Triaxial Compression Tests	18
3.5	Atterberg Limit Tests	19
3.6	Particle Size Distribution Tests	19
3.7	Sulphate and pH Tests	19
Section	4 Engineering Appraisal	21
4.1	Established Ground Conditions	21
4.1.1	Made Ground and Topsoil	21

Soils Limited 21091/GIR/Rev103

4.1.2	Tidal River or Creek Deposits	21
4.1.3	Bembridge Limestone Formation	21
4.1.4	Guidance on Shrinkable Soils	22
4.1.5	Groundwater	22
Section	5 Pavements	23
5.1	Pavements	23
Section	6 Site Drainage	24
6.1	Soakaways	24
Section	7 Determination of Chemical Analysis	25
7.1	Soil Sampling	25
7.2	Determination of Chemical Analysis	25
Section	8 Qualitative Risk Assessment	27
8.1	Assessment Criteria	27
8.2	Representative Contamination Criteria - Soil	27
8.3	Risk Assessment – Made Ground	27
8.4	Risk Assessment – Tidal River or Creek Deposits	28
8.5	Asbestos	28
8.6	Risk to Groundwater	28
8.7	Risk from Ground Gas Ingression	28
8.7.1	Radon	29
8.8	Generic Quantitative Risk Assessment	29
8.8.1	Soils	29
8.8.2	Asbestos	29
8.9	Recommendations	29
8.10	Duty of Care	29
8.11	Excavated Material	30
8.12	HazWasteOnline	30
8.13	Re-use of Excavated Material On-site	30
8.14	Imported Material	30
8.15	Discovery Strategy	30

List of Figures

Figure 1 – Site Location Map	32
Figure 2 – Aerial Photograph	33

Figure 3 – Exploratory Hole Plan	34
Figure 4 – Additional Works Exploratory Hole Plan	35

List of Tables

Table 2.1 Final Depth of Exploratory Holes	13
Table 2.2 Ground Conditions	14
Table 2.3 Established Depth of Made Ground	15
Table 2.4 Established Depth of Tidal River or Creek Deposits	15
Table 2.5 Established Depth of Root Penetration	16
Table 2.6 Groundwater Strikes	17
Table 3.1 SPT Hammer Efficiency	18
Table 3.2 Standard Penetration Tests (SPT) Interpretation	18
Table 3.3 Undrained Cohesion Results Classification	19
Table 3.4 Atterberg Limit Results Classification	19
Table 3.5 Particle Size Distribution Classification	19
Table 3.6 Sulphate and pH Test Results	20
Table 4.1 Established Volume Change Potential by Strata	22
Table 7.1 Chemical Analyses Suites - Soil	25
Table 9.1 Summary of GAC Exceedances – Made Ground	27
Table 9.2 Summary of GAC Exceedances – Tidal River or Creek Deposits	28

- Table C.1.1 SPT "N" Blow Count Cohesive Classification
- Table C.1.2 SPT "N" Blow Count Granular Classification
- Table C.1.3 Interpretation of SPT "N" Blow Counts in Chalk
- Table C.2.1 Interpretation of QUU Tests
- Table C.2.2 Interpretation of Atterberg Limit Tests
- Table C.2.3 Interpretation of PSD Tests

List of Appendices

- Appendix A Standards and Resources
- Appendix B Field Work
- Appendix B.1 Engineers Logs

Appendix C Geotechnical In-Situ and Laboratory Testing

Appendix C.1 Classification

Soils Limited 21091/GIR/Rev103

- Appendix C.2 Interpretation
- Appendix C.3 Geotechnical In-Situ and Laboratory Results

Appendix D Chemical Laboratory Analyses

- Appendix D.1 Chemical Laboratory Results
- Appendix D.2 General Assessment Criteria

Appendix E Information Provided by the Client

Section I Introduction

I.I Objective of Investigation

The Client commissioned Soils Limited to undertake an intrusive ground investigation and to prepare a Ground Investigation Report to supply the Client and their designers with information regarding ground conditions, to assist in preparing a foundation scheme for development that was appropriate to the settings present on the site.

The investigation was to be undertaken to provide comment on appropriate foundation options for the proposed development. The investigation was to be made by means of insitu testing and geotechnical laboratory testing undertaken on soil samples taken from the exploratory holes.

The scope of works did not include the production of a Preliminary Investigation Report, or desktop study, in respect to ground contamination and therefore it was not possible to create, test or revise a conceptual site model in respect to ground contamination.

In the absence of CSM a number of geoenvironmental samples were collected and sent to the laboratory for analysis screening for a wide range of common brownfield contaminants.

I.2 Site Description

At the time of the investigation, October 2023 and February 2024, the site comprised a flat area adjacent to the River Medina. The site was used as a turning area for a boat travel hoist as well as temporary boat storage. The site covering was a mixture of concrete and scalping's. In places the scalping's were underlain by concrete.

The site was bounded to the north by a dismantled gas plant, to the east by boatyard services and boat storage areas, the south of the site was bounded by an industrial unit and to the west of the site was the tidal River Medina, which flowed north into the Solent.

The site was generally flat and level however the site sat within the wider Medina valley which dips down towards the River Medina.

The site location plan is given in Figure 1. An aerial photograph of the site and its close environs has been included in Figure 2.

I.3 Proposed Development

The development was to include a vessel wash down facility and hardstanding for boat storage.

In compiling this report reliance was placed on the contents of the letter addressed to Soils Limited on the 31st July 2022 from Hamil Davies Ltd. The recommendations provided within this report are made exclusively in relation to the scheme outlined above,

and must not be applied to any other scheme without further consultation with Soils Limited. Soils Limited must be notified about any change or deviation from the scheme outlined.

I.4 Anticipated Geology

The 1:50,000 BGS map showed the site to be located directly upon the bedrock Bembridge Limestone Formation with overlying superficial deposits of Tidal River or Creek Deposits.

It must be noted that the local geology passing east west through the River Medina can vary markedly with significant depths of Alluvial deposits near the centre of the valley formed by the River Medina. There can also be areas where the alluvial deposits and the Bembridge Limestone Formation are interbedded with soft bands of alluvial soils due to landslip overriding the alluvium and then subsequent alluvial deposition. In places the only way to differentiate between alluvial deposits and the Bembridge Limestone Formation is by the organic odour emitted from the recent alluvial soils The recent alluvium contains both modern shells and debris sourced from the in-situ soils, so is very difficult to distinguish.

I.4.1 Typical Cross Section

The typical cross section was based on an investigation undertaken by others and

provided to Soils Limited by Prof Edward Bromhead. (Reference: J. N. Hutchinson & E. N. Bromhead (2002) KEYNOTE PAPER: Isle of Wight Landslides. Conference on Instability: Planning & Management, Thomas Telford, May 2002.1-37. ISBN 0 7277 3132 7)

I.4.2 Made Ground

Made Ground comprises material that has been placed by man or spread by man. It can comprise demolition material from former structures on the site or imported material placed to raise levels. Its composition can be very variable both laterally and with depth and may contain putrescible matter and voids.

I.4.3 Tidal River or Creek Deposits

Normally comprises a consolidated soft silty clay, with layers of sand, gravel and peat.

They consist mainly of soft mud, but in places contain admixtures of sand. As a general rule, mud is deposited near highwater mark, silty or sandy mud in areas of intermediate water, and fine sand near the position of the water at low tide. In some places the sediments are laminated and cross-bedded. This lamination is not destroyed by burrowing and bottom organisms that live in great profusion on these tidal flats, probably owing to the fact that the sediments are deposited so rapidly that the organisms do not have time to rework them before they are buried by additional deposits. In some places as much as 3 meters of sediment are deposited in a year. The material laid down by tidal waters.

I.4.4 Bembridge Limestone Formation

The Bembridge Limestone Formation is comprised of peloidal limestones interbedded with lime rich mudstone and clays repeating a total of three times over a thickness of up to 9m.

Section 2 Site Works

2.1 Proposed Project Works

The proposed intrusive investigation was designed to provide information on the ground conditions and to aid the design of foundations for the proposed industrial development. The intended investigation, as outlined within the Soils Limited quotation (Q27988, dated 17th August 2023), was to comprise the following items:

- Scan of trial hole plan locations with CAT & Genny
- 1No. day machine excavated trial pits up to 3m deep
- 1No. trial pit soakage test
- 6No. DCP-TRL insitu CBR tests
- 1No. up to 15m deep cable percussive boreholes
- 1No. 10m deep groundwater monitoring well
- Geotechnical laboratory testing
- Geoenvironmental laboratory testing
- Waste acceptance criteria testing

2.1.1 Actual Project Works

The actual project works were undertaken on 9th October 2023, with subsequent sample logging, laboratory testing, and reporting. The actual works comprised:

- Scan of trial hole plan locations with CAT & Genny
- 6No. machine excavated trial pits
- 1No. trial pit soakage test
- 6No. DCP-TRL insitu CBR tests
- 1No. 12.30m deep cable percussive borehole
- 1No. 10m deep groundwater monitoring well
- Geotechnical laboratory testing
- Geoenvironmental laboratory testing
- Waste acceptance criteria testing

One cable percussive borehole was backfilled with gravel and bentonite following the installation of a monitoring well, and the remaining trial pits were backfilled with arising's upon completion and mounded over to allow for future settlement.

All exploratory hole locations have been presented in Figure 3.

Following completion of site works, soil cores were logged and sub sampled so that samples could be sent to the laboratory for both contamination and geotechnical testing.

2.2 Additional Works

The additional intrusive investigation was designed to provide further information on the ground conditions in terms of contaminated soils in the location of the proposed industrial development. The intended additional investigation, as outlined within the Soils Limited quotation Change request form CR_3 (dated January 2024), were undertaken 7th February 2024 and comprised the following items:

- Additional windowless sampler drilling intended to delineate the extent of possible asbestos contamination;
- 10no. 1m deep windowless sampler boreholes at a distance of 1.00m and 3.00m, and at cardinal points around the previous TPSK1 trial hole location;
- Sample logging and Laboratory preparation;
- Laboratory Asbestos screening, 10No samples;
- Additional 2No. Laboratory Asbestos Quantification.

2.3 Ground Conditions

On 9th October 2023 one cable percussive borehole was drilled to a depth of 12.30m below ground level (bgl) at a location selected by the client's engineer.

One standpipe was installed within BH1 to allow for continued monitoring of both groundwater and ground gas, where present.

A total of six trial pits were machine excavated using a JCB 3CX type back hoe excavator to depths of between 1.30 and 3.00m bgl. It was not possible to excavate TP4 due to the presence of a concrete slab underlying the hardstanding at this location.

On 7th February 2024, 10No. up to 1.00m bgl windowless sampler boreholes were excavated with a Premier Drilling rig at a distance of 1.00m and 3.00m, and at cardinal points around the previous TPSK1 trial hole location for the purpose of delineating the area of previous contamination identified during siteworks October 2023.

The maximum depths of exploratory holes have been included in Table 2.1.

All exploratory holes were scanned with a Cable Avoidance Tool (C.A.T.) and GENNY prior to excavation to ensure the health and safety of the operatives.

Exploratory Hole	Depth (m bgl)	Exploratory Hole	Depth (m bgl)
BHI(w)	12.30	TP3	2.10
TPSKI	2.50	TP5	3.00
TPSKIA	1.95	TP6	2.30
TP2	1.30		
WSNI	1.00	WSSI	1.00
WSN3	1.00	WSS3	1.00
WSEI	0.20 '	WSWI	1.00

Table 2.1 Final Depth of Exploratory Holes

Exploratory Hole	Depth (m bgl)	Exploratory Hole	Depth (m bgl)
WSE3	0.20 '	WSW3	1.00
WSNW3	1.00	WSSW3	1.00

Note(s): ^W - well installation. The depths given in this table are taken from the ground level on-site at the time of investigation. ¹ Terminated on concrete.

The approximate exploratory hole locations are shown on Figure 3.

The soil conditions encountered were recorded and soil sampling commensurate with the purposes of the investigation was carried out. The depths given on the exploratory hole logs and quoted in this report were measured from ground level.

The soils encountered from immediately below ground surface have been described in the following manner. Where the soil incorporated an organic content such as either decomposing leaf litter or roots or has been identified as part of the in-situ weathering profile, it has been described as Topsoil both on the logs and within this report. Where man has clearly either placed the soil, or the composition altered, with say greater than an estimated 5% of a non-natural constituent, it has been referred to as Made Ground both on the log and within this report.

For more complete information about the soils encountered within the general area of the site reference must be made to the detailed records given within Appendix B, but for the purposes of discussion, the succession of conditions encountered in the exploratory holes in descending order can be summarised as:

Made Ground (MG) Tidal River or Creek Deposits (TRD) Bembridge Limestone Formation (BLF)

The ground conditions encountered in the exploratory holes are summarised in Table 2.2.

Strata	Depth Encour (m bgl)	ntered	Typical Thickness	Typical Description
	Тор	Bottom	(m)	
MG	0.00	0.20 ->3.00 ¹	1.80	Multi-coloured clayey SAND and GRAVEL overlying dark grey and black sandy gravelly CLAY with concrete, tarmacadam and brick fragments.
TRD	0.75 - >3.00 ¹	7.80	6.00	Soft, bluish grey and orangish brown CLAY.
BLF	7.80	>12.30'	Not proven ²	Yellowish brown silty sand overlying off white medium strong LIMESTONE.

Table 2.2 Ground Conditions

Note(s): ¹ Final depth of exploratory hole. ² Base of strata not encountered. The depths given in this table are taken from the ground level on-site at the time of investigation.

2.4 Ground Conditions Encountered in Exploratory Holes

The ground conditions encountered in exploratory holes have been described below in descending order. The engineering logs are presented in Appendix B.1.

2.4.1 Made Ground

Soils described as Made Ground were encountered in each of the seventeen exploratory holes from ground level to depths ranging between 0.20 and >3.00m bgl.

The Made Ground typically comprised granular soils overlying cohesive soils. The granular layer was typically described as multi-coloured clayey SAND and GRAVEL with concrete, flint, brick, tarmacadam and limestone fragments. The cohesive layers were typically described as dark grey and black sandy gravelly CLAY with inclusions of flint, tarmacadam, concrete and brick fragments. An anoxic type odour was noted within the several trial pits along with peaty fragments and de-composing roots.

The established depth of Made Ground found at each exploratory hole location have been included in Table 2.3.

Exploratory Hole	Depth (m bgl)	Exploratory Hole	Depth (m bgl)
BHI	1.80	WSEI	0.20
TPSKI	0.75	WSE3	0.20
TPSKIA	0.75	WSSI	0.85
TP2	1.30 ¹	WSS3	0.60
TP3	2.10 ¹	WSWI	1.00 ¹
TP5	3.00 ¹	WSW3	1.00 ¹
TP6	2.30	WSNW3	1.00 ¹
WSNI	1.00 ¹	WSSW3	1.00 ¹
WSN3	0.75		

Table 2.3 Established Depth of Made Ground

Note(s): ¹ Final depth of exploratory hole.

2.4.2 Tidal River or Creek Deposits

Soils described as Tidal River Deposits were encountered in six out of the seventeen trial holes from immediately underlying the Made Ground and were present to a depth of 7.80m bgl within BH1 and to the base of TPSK1 and TP6.

The Tidal River Deposits were typically described as soft, bluish grey and orangish brown CLAY with inclusions of weak calcic nodules.

The established depth of Tidal River or Creek Deposits found at each exploratory hole location have been included in Table 2.4.

Table 2.4 Established Depth of Tidal River or Creek Deposits

Exploratory Hole	Depth (m bgl)	Exploratory Hole	Depth (m bgl)
BHI	7.80	WSEI	Not encountered
TPSKI	2.50 ¹	WSE3	Not encountered

Exploratory Hole	Depth (m bgl)	Exploratory Hole	Depth (m bgl)
TPSKIA	Not encountered	WSSI	1.00 ¹
TP2	Not encountered	WSS3	1.00 ¹
TP3	Not encountered	WSWI	Not encountered
TP5	Not encountered	WSW3	Not encountered
TP6	3.00 ¹	WSNW3	Not encountered
WSNI	Not encountered	WSSW3	Not encountered
WSN3	1.00 ¹		

Note(s): ¹ Final depth of exploratory hole.

The thickness of the alluvial deposits are likely to increase markedly in a westerly direction towards the centre of the River Medina.

2.4.3 Bembridge Limestone Formation

Soils described as the Bembridge Limestone Formation were only encountered within BH1 and were present underlying the Tidal River Deposits to the base of the investigation, 12.30m bgl.

The Bembridge Limestone Formation was described as yellowish brown silty sand overlying off white medium strong LIMESTONE recovered as sub-angular fine to coarse GRAVEL.

There can also be areas where the alluvial deposits and the Bembridge Limestone Formation are interbedded with soft bands of alluvial soils due to landslip overriding the alluvium and then subsequent alluvial deposition. In places the only way to differentiate between alluvial deposits and the Bembridge Limestone Formation is by the organic odour emitted from the recent alluvial soils.

2.5 Roots

Roots were encountered in fourteen out of the seventeen exploratory holes at depths ranging between 0.60 and 3.00m bgl. The established depth of root penetration found at the exploratory hole locations has been included in Table 2.5.

Table 2.5 Established Depth of Root Penetration

Exploratory Hole	Depth (m bgl)	Exploratory Hole	Depth (m bgl)
BHI	None observed	WSEI	None observed
TPSKI	2.30	WSE3	None observed
TPSKIA	1.95	WSSI	1.00 ¹
TP2	1.30 ¹	WSS3	1.00 ¹
TP3	0.60	WSWI	1.00 ¹
TP5	3.00 ¹	WSW4	1.00 ¹
TP6	2.30 ¹	WSNW3	1.00 ¹
WSNI	1.00 ¹	WSSW3	1.00 ¹
WSN3	0.75		

Note(s): ¹ Final depth of exploratory hole.

Roots may be found to greater depth at other locations on the site particularly close to trees and/or trees that have been removed both within the site and its close environs.

2.6 Groundwater

Groundwater was encountered within three out of the seventeen trial holes. Groundwater was encountered as seepages within the Made Ground at shallow depth and at greater depth within Bembridge Limestone Member. The groundwater in the Bembridge Limestone Member was confined by the overlying Tidal River Deposits and rose from 7.80m bgl to 3.70m bgl.

The site was noted to be bounded by the tidal River Medina and therefore it is anticipated that groundwater present within the shallow soils may exhibit tidal fluctuations with associated attenuation and a lag from the groundwater bodies.

Changes in groundwater level occur for a number of reasons including seasonal effects and variations in drainage and tidal effects. The main intrusive investigation was conducted in October 2023, when groundwater levels should be rising from their annual minimum (lowest) elevation, which typically occurs around September to the annual maximum (highest) which typically occurs around March.

Details of the groundwater strikes during the investigation are presented in Table 2.6.

Exploratory Hole	Strike Depth (m bgl)	Notes
BHI	7.80	Rising to 3.70m bgl after 20 minutes
TPSKI	2.30	Slight seepage.
TPSKIA	-	No groundwater encountered
TP2	1.30	Slight seepage.
TP3	-	No groundwater encountered
TP5	-	No groundwater encountered
TP6	-	No groundwater encountered
WSNI	-	No groundwater encountered
WSN3	-	No groundwater encountered
WSEI	-	No groundwater encountered
WSE3	-	No groundwater encountered
WSSI	-	No groundwater encountered
WSS3	-	No groundwater encountered
WSWI	-	No groundwater encountered
WSW4	-	No groundwater encountered
WSNW3	-	No groundwater encountered
WSSW3	-	No groundwater encountered

Table 2.6 Groundwater Strikes

Groundwater equilibrium conditions may only be conclusively established, if a series of observations are made via groundwater monitoring wells which could be undertaken using the well within BH1 if required.

Section 3 Geotechnical In-Situ and Laboratory Testing

3.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were undertaken in BH1. The results were interpreted based on the classifications outlined in Appendix C.1, Table C.1.1 to Table C.1.3.

Table 3.1 SPT Hammer Efficiency

SPT Hammer Ref	Energy Ratio Er (%)
AR3552	77

Table 3.2 Standard Penetration Tests (SPT) Interpretation

Strata	N60	Cohesive Soils	
	Range	Classification	Inferred Cohesion (Cu)
TRD	8–12	Medium	40 – 60kPa
Strata	N60	Granular Soils	
	Range	Relative Density	
BLF	10 – 42	Medium dense to dense	
BLF	Range 10 – 42	Relative Density Medium dense to dense	

3.2 Dynamic Cone Penetrometer Tests

The Transport Research Laboratory (TRL), Dynamic Cone Penetrometer (DCP) was undertaken at six locations (DCP1 – DCP6). The results were interpreted based on the classification outlined in Appendix C.1.

The results from DCP testing indicated CBR values of between 7% and 273% for the soils encountered in the top 1.00m bgl. The high CBR values encountered were anticipated to be large gravel clasts or Made Ground inclusions struck during the test.

The DCP results are presented in Appendix C.3.

3.3 Infiltration Tests

Infiltration testing was undertaken in TPSK1A within the Tidal River or Creek Deposits following the principles of BRE Digest 365 Soakaway design: 1991.

A single test was attempted in TPSK1A however over the 96minute duration of the test the water level increased by 8% rather than decreased, likely due to water ingress from the Made Ground and Tidal River or Creek Deposits.

3.4 Quick Unconsolidated Undrained Triaxial Compression Tests

Quick Unconsolidated Undrained Triaxial Compression Tests (QUU) were performed on one sample obtained from the Tidal River or Creek Deposits. The strength interpretation was based on the classification outlined in Table C.2.1.

Strata	Sample Depth	Cohesive Soils	
	(m bgl)	Classification	Undrained Cohesion (Cu)
TRD	6.50 – 6.95	Medium	56kPa

Table 3.3 Undrained Cohesion Results Classification

A full interpretation of the QUU tests are outlined Table C.2.1, Appendix C.2 and the laboratory report in Appendix C.3.

3.5 Atterberg Limit Tests

Atterberg Limit tests were performed on two samples obtained from the Tidal River or Creek Deposits. The results were classified in accordance with BRE Digest 240.

Table 3.4 Atterberg Limit Results Classification

Strata	Depth	Classification	
	(m bgl)	BRE 240	
TRD	2.55 and 7.50	High	

A full interpretation of the Atterberg Limit tests, are outlined in Table C.2.2, Appendix C.2 and the laboratory report in Appendix C.3.

3.6 Particle Size Distribution Tests

Particle Size Distribution (PSD) tests were performed on one sample from the Bembridge Limestone Member.

Table 3.5 Particle Size Distribution Classification

Strata	Depth	Shrinkabilitiy Classification
	(m bgl)	BRE 240
BLM	9.00	Yes

Note that a cohesive soil is only classified as having a volume change potential if it is also plastic and an Atterberg Limit test can be conducted on the strata.

A full interpretation of the PSD tests, are outlined in Table C.2.3, Appendix C.2 and the laboratory report in Appendix C.3.

3.7 Sulphate and pH Tests

Water soluble sulphate (2:1) and pH testing in accordance with Building Research Establishment Special Digest 1, 2005, 'Concrete in Aggressive Ground' was carried out on three samples, one from the Tidal River or Creek Deposits and two from the Bembridge Limestone Formation.

Table 3.6 Sulphate and pH Test Results

Strata	Depth (m bgl)	Sulphate Concentration (mg/l)	pН
TRD	3.00	206	8.2
BLF	8.00	202	7.9
	10.50	154	8.2

The significance of the sulphate and pH Test results are discussed in Section 0 and the laboratory report in Appendix C.3.

Section 4 Engineering Appraisal

4.1 Established Ground Conditions

An engineering appraisal of the soil types encountered during the site investigation and likely to be encountered during the redevelopment of this site is presented. Soil descriptions are based on analysis of disturbed samples taken from the exploratory holes.

4.1.1 Made Ground and Topsoil

Foundations must not be placed on non-engineered fill unless such use can be justified on the basis of a thorough ground investigation and detailed design. Foundations must be taken through any Topsoil and/or Made Ground and either into, or onto a suitable underlying natural stratum of adequate bearing characteristics.

Peat and organic soils are highly compressible, and even lightly loaded foundations will be subject to considerable settlements over a long period if placed on them. For this reason, these soils are not suitable for carrying the loads for important structures.

Soils described as Made Ground were encountered in each of the seventeen exploratory holes from ground level to depths ranging between 0.20 and >3.00m bgl.

4.1.2 Tidal River or Creek Deposits

Soils described as Tidal River Deposits were encountered in six out of the seventeen trial holes from immediately underlying the Made Ground and were present to a depth of 7.80m bgl within BH1.

Soils of the Tidal River or Creek Deposits are normally consolidated, predominantly cohesive soils and as such are expected to display low bearing capacities with moderate to high settlement characteristics. The soils of the Tidal River or Creek Deposits were not considered suitable for the proposed development due to their generally poor engineering characteristics and the variations both in composition and deposition thickness. Peat and organic soils may also be present that are highly compressible, and even lightly loaded foundations will be subject to considerable settlements over a long period if placed on them. For this reason, these soils are not suitable for carrying the loads for important structures

4.1.3 Bembridge Limestone Formation

Soils described as the Bembridge Limestone Formation were only encountered within BH1 and were present underlying the Tidal River Deposits to the base of the investigation, 12.30m bgl.

Generally, soils of the Bembridge Limestone Formation are a weak rock and would possess moderate bearing and settlement characteristics. The Bembridge Limestone Formation would be suitable as a bearing stratum providing that a piled foundation solution was adopted.

4.1.4 Guidance on Shrinkable Soils

The ground conditions were established as Tidal River or Creek Deposits, with a typical thickness off 7.80m, overlying the bedrock of Bembridge Limestone Formation.

The volume change potential for each strata was established and presented in Table 4.1.

Table 4.1 Established Volume Change Potential by Strata

Strata	Volume Change Potential	Established Lower Boundary
	BRE	(m bgl)
TRD	High	7.80
BLM	Yes	>12.30

4.1.5 Groundwater

Groundwater was encountered within three out of the seventeen trial holes. Groundwater was encountered as seepages within the Made Ground at shallow depth and at greater depth within Bembridge Limestone Member. The groundwater in the Bembridge Limestone Member was confined by the overlying Tidal River Deposits and rose from 7.80m bgl to 3.70m bgl.

The site was noted to be bounded by the tidal River Medina and therefore it is anticipated that groundwater present within the shallow soils may exhibit tidal fluctuations with associated attenuation and lag for groundwater bodies.

Section 5 Pavements

5.1 Pavements

The Transport Research Laboratory (TRL) Dynamic Cone Penetrometer (DCP) was undertaken at six locations on site (DCP1 – DCP6). The results from dynamic cone penetrometer tests indicated **CBR values of between 7% and 273%** for the soils encountered in the top 1.00m bgl. The high CBR values encountered were anticipated to be large gravel clasts struck during the test.

When removing 400mm of Made Ground the worst case CBR value was 7% which was considered suitable for design purposes for the majority of the road layout.

As CBR values were highly variable due to changes in moisture content and ground conditions, **in-situ testing must be undertaken** immediately prior to the installation of pavements/roads. Any soft spots at formation level must be dug out and replaced with a suitably compacted granular fill. Prior to construction the formation level must be proof rolled.

The variable soils of the Made Ground should be considered to be frost susceptible.

The overall thickness of the pavement will be dictated by the frost susceptibly of the subgrade.

Section 6 Site Drainage

6.1 Soakaways

The results of in-situ soakage tests indicated that the soils of the Tidal River or Creek Deposits underlying the site had shallow groundwater which resulted in the water level in the test pit rising over time.

It is recommended that the results of the in-situ permeability testing are passed to a drainage engineer for commentary and design.

Section 7 Determination of Chemical Analysis

7.1 Soil Sampling

Exploratory hole locations were established to provide an overview of ground conditions across the site in relation to the proposed construction, together with enabling the collection of samples to enable chemical characterisation of the underlying strata.

Representative samples for potential environmental testing were obtained from the exploratory holes at depths of between 0.20m and 2.50m to allow appropriate representation of the materials encountered, with additional samples to be obtained, if necessary, where there was visual or olfactory evidence of contamination.

In the absence of a preliminary investigation report or desk study analytical testing was based initially on a screening suite of commonly identified inorganic and organic contaminants, taking into account the prevailing site conditions.

7.2 Determination of Chemical Analysis

The driver for determination of the analysis suite was the information obtained from the Preliminary Investigation Report and Contamination Investigation Report intrusive investigation.

The initial chemical analyses were carried out on four samples of Made Ground and one sample of the Tidal River or Creek Deposits.

Ten further Asbestos ID analyses followed by two Asbestos Quantification tests were undertaken on samples of Made Ground recovered during additional siteworks February 2024. The nature of the analyses is detailed in Table 7.1.

Table 7.1 Chemical Analyses Suites - Soil

Determinants	Soil T	ested
	MG	TRD
Metal suites: Arsenic, Boron (Water Soluble), Cadmium, Chromium (total &	5	I
hexavalent), Copper, Lead, Mercury, Nickel, Selenium, Vanadium, Zinc		
Organic Matter	5	I
pH	5	I
Polycyclic aromatic hydrocarbons (PAH) – (EPA 16)	5	I
Phenols – total monohydric	5	I
Extractable petroleum hydrocarbons (EPH) – Texas banding	5	I
Total petroleum hydrocarbons (TPH) – CWG banding	5	I
BTEX and MTBE	5	I
Cyanide total & free	5	I
Polychlorinated biphenyls (PCB) – 7 Congeners	5	
Waste acceptance criteria (WAC)	5	
Asbestos screening	16	I
Asbestos quantification	3	

The soil testing was carried out in compliance with the MCERTS performance standard,

Table 3.6 Sulphate and pH Test Results

Strata	Depth (m bgl)	Sulphate Concentration (mg/l)	pН
TRD	3.00	206	8.2
BLF	8.00	202	7.9
	10.50	154	8.2

The significance of the sulphate and pH Test results are presented in the laboratory report in Appendix C.3.

Section 8 Qualitative Risk Assessment

8.1 Assessment Criteria

The assessment criteria used to determine risks to human health are derived and explained within Appendix D.2.

8.2 Representative Contamination Criteria - Soil

The development was to include a vessel wash down facility and hardstanding for boat storage.

In compiling this report reliance was placed on the contents of the letter addressed to Soils Limited on the 31st July 2022 from Hamil Davies Ltd. The recommendations provided within this report are made exclusively in relation to the scheme outlined above, and must not be applied to any other scheme without further consultation with Soils Limited. Soils Limited must be notified about any change or deviation from the scheme outlined.

Based on the proposed development, the results of the chemical analysis have been compared against generic assessment criteria (GAC) for a '*Commercial*' end use, as presented in SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination December 2014 (C4SL), derived for the protection of human health. Where this document has not published screening values for determinants, GACs derived for the same end use have been adopted from the following published guidance; DEFRA Soil Guideline Values (SGV) and LQM/CIEH/Suitable 4 Use Level (S4UL).

To assess the potential toxicity of organic determinants (Petroleum Hydrocarbons and Polyaromatic Hydrocarbons) to the human health, soils samples were analysed for Soil Organic Matter (SOM). The selected samples analysed recorded, SOM values of between 2.8% and 16.9%. For each soil sample tested, the resultant SOM allowed for the correct comparison to be made with the appropriate guideline value for each organic determinants analysed.

8.3 Risk Assessment – Made Ground

Table 8.1 outlines the sample that have exceeded their relevant assessment criteria. The full laboratory report is presented in Appendix D.1.

Table 8.	Summary of G	AC Exceedances –	Made Ground
----------	--------------	------------------	-------------

Contaminant	Concentration	Guidance Level
No exceedances		
	No exceedances	Contaminant Concentration No exceedances

The risk assessment has established no potential pollutant linkages in relation to human health from the Made Ground across the site.

8.4 Risk Assessment – Tidal River or Creek Deposits

Table 8.2 outlines the samples that have exceeded their relevant assessment criteria. The full laboratory report is presented in Appendix D.1.

Table 8.2 Summary of GAC Exceedances – Tidal River or Creek Deposits

Location	Depth (m bgl)	Contaminant	Concentration	Guidance Level
		No exceedances		
Note(s): Units mg/kg				

The risk assessment has established no potential pollutant linkages in relation to human health from the Tidal River or Creek Deposits.

8.5 Asbestos

The test certificate for each sample submitted for contamination analysis during this investigation includes the results of an Asbestos Screen.

A sample from the Made Ground (TPSK1:0.50m bgl) was reported as 'Detected' with a material type of Chrysotile, present as loose fibres, the asbestos was subsequently quantified at 0.005%.

Additional works as a delineation exercise around TPSK1 resulted in two further positive Asbestos ID's detected with a material type of Chrysotile, present as loose fibres. Composite samples of Made Ground were analysed, and the two samples with positive Asbestos screen were WSS3:0.00 - 0.60, and WSNW3 0.00 - 1.00m bgl. The asbestos was subsequently quantified at 0.001% in both samples.

In summary, the positive Asbestos identification indicated that the presence in soils is no longer an isolated outlier. Further delineation of the area is an option for the site. Quantification results can be passed to a specialist asbestos consultant whereby further advice must be sought for the site.

8.6 Risk to Groundwater

Taking into consideration the ground conditions encountered, the presence of oily sheen noted on groundwater seepages and the presence of PAH and TPH levels within the soil samples it is recommended that groundwater sampling and laboratory testing is undertaken.

8.7 Risk from Ground Gas Ingression

The investigation identified potentially putrescible materials in the form of wood

fragments within the Made Ground, however as the proposed development plans did not include any buildings or confined spaces it is considered that there is no risk to the end user.

8.7.1 Radon

Based on a review of the online Radon Mapping the site **was not situated** within an area where protection or risk assessment against the ingress of radon was required. Radon protection measures **will not be required** within the proposed new development.

8.8 Generic Quantitative Risk Assessment

Quantitative risk assessments were undertaken for the soil. The full laboratory chemical report is presented in Appendix D.1.

8.8.1 Soils

None of the samples tested showed elevated concentrations when assessed against the commercial screening values.

8.8.2 Asbestos

Asbestos Containing Material (ACM) were detected within three samples: TPSK1 at 0.50m bgl; WSS3:0.00 - 0.60; and WSNW3 0.00 - 1.00m bgl. The ACM was determined to comprise loose fibres of chrysotile and was quantified at 0.005% in TPSK1 at 0.50m, and 0.001% in both WSS3:0.00 - 0.60; and WSNW3 0.00 - 1.00m bgl.

The Tier 1 Quantitative risk assessment therefore established that there was **a risk to the human health receptors** of construction workers or future end-users and an asbestos consultant should be appointed to provide specialist advice.

8.9 Recommendations

Soil chemical analysis recorded three samples with Asbestos fibres present.

Therefore, there was a risk to the Human Health receptor and further specialist advice from an asbestos consultant should be sought.

Taking into consideration the ground conditions encountered, the presence of oily sheen noted on groundwater seepages and the presence of PAH and TPH levels within the soil samples it is recommended that groundwater sampling and laboratory testing is undertaken.

8.10 Duty of Care

Groundworkers must maintain a good standard of personal hygiene including the wearing of overalls, boots, gloves and eye protectors and the use of dust masks during periods of dry weather.

8.11 Excavated Material

Excavated material as waste must be defined or classified prior to any disposal, transport, recycling or re-use at or by an appropriately licensed or exempt carrier and/or off-site disposal facility. The requirements inherent in both Duty of Care and Health and Safety must also be complied with. In order to determine what is to happen, what is suitable, appropriate and most effective in the disposal of wastes, especially those subject to CDM waste management plan requirements, several factors must be considered, and competent advice must always be sought.

8.12 HazWasteOnline

WAC analysis was undertaken on a single sample to provide a general indication for future waste removal.

The sample was classified as suitable for disposal at an inert landfill. The WAC certificate is presented in Appendix D.1.

8.13 Re-use of Excavated Material On-site

The re-use of on-site soils may be undertaken either under the Environmental Permitting Regulations 2007 (EPR), in which case soils other than uncontaminated soils are classed as waste, or under the CL:AIRE Voluntary Code of Practice (CoP) which was published in September 2008 and is accepted as an alternative regime to the EPR.

8.14 Imported Material

Any soil, which is to be imported onto the site, must undergo chemical analysis to permit classification prior to its importation and placement in order to ascertain its status with specific regard to contamination, i.e. to prove that it is suitable for the purpose for which it is intended.

8.15 Discovery Strategy

There may be areas of contamination not identified during the course of the investigation. Such occurrences may also be discovered during the demolition and construction phases for the redevelopment of the site.

List of Figures

Figure 1 – Site Location Map	32
Figure 2 – Aerial Photograph	33
Figure 3 – Exploratory Hole Plan	34
Figure 4 – Additional Works Exploratory Hole Plan	35

List of Appendices

Appendix A	Standards and	Resources
Appendix A	Standards and	Resource

- Appendix B Field Work
- Appendix B.1 Engineers Logs
- Appendix C Geotechnical In-Situ and Laboratory Testing
- Appendix C.1 Classification
- Appendix C.2 Interpretation
- Appendix C.3 Geotechnical In-Situ and Laboratory Results
- Appendix D Chemical Laboratory Analyses
- Appendix D.1 Chemical Laboratory Results
- Appendix D.2 General Assessment Criteria
- Appendix E Information Provided by the Client

Soils Limited 21091/GIR/Rev103

Kingston Wharf

Figure I – Site Location Map

Job Number 21091	Project Kingston Wharf, East Cowes, Isle of Wight, PO32 6JS
Client	Date
Cowes Harbour Commission	March 2024

Kingston Wharf

Figure 2 – Aerial Photograph

Project

Kingston Wharf, East Cowes, Isle of Wight, PO32 6JS

Client

Cowes Harbour Commission

Date

March 2024

Job Number 21091

Kingston Wharf

Figure 3 – Exploratory Hole Plan

Project

Kingston Wharf, East Cowes, Isle of Wight, PO32 6JS

Client

Cowes Harbour Commission

Date

March 2024

Job Number 21091
Kingston Wharf

Figure 4 – Additional Works Exploratory Hole Plan

Project

Kingston Wharf, East Cowes, Isle of Wight, PO32 6JS

Client

Cowes Harbour Commission

Date

March 2024

Job Number 21091

1410 1051000 WSN3 ----WSN1 WSNW3 0 19994-0 WSW3, WSW1 00000 WSE1, WSE3 - 586-21 d= 1,26mi part WSSW3 WSS1 WSS3 D^k 453 🚽 - 300-1200 - 1-0.90 A. 00%

16.1

TREE.

-

21

ST.TLUTL.

-

metter.

Location of previous TPSK1

D

35

Appendix A Standards and Resources

The site works, soil descriptions and geotechnical testing was undertaken in accordance with the following standards were applicable:

- BS 5930:2015 and BS EN ISO 22476-3:2005+A1:2011
- BS EN 1997-1:2004+A1:2013 Eurocode 7. Geotechnical design
- BS EN ISO 14688-1:2018 Geotechnical investigation and testing Identification and description
- BS EN ISO 14688-2:2018 Geotechnical investigation and testing Principles for a classification
- BS 10175:2011+A2:2017 Investigation of potentially contaminated sites
- LCRM 2021 Environment Agency
- BS 8004:2015 Code of practice for foundations
- BS 1377:1990 Parts 1 to 8
- BRE Special Digest 1, 2005, 'Concrete in Aggressive Ground'
- Stroud, M. A. 1974, "The Standard Penetration Test its application and interpretation", Proc. ICE Conf. on Penetration Testing in the UK, Birmingham. Thomas Telford, London.
- N.E. Simons, B.K. Menzies, "A Short Course in Foundation Engineering"
- SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination December 2014
- CIRIA C733, Asbestos in soil and made ground: a guide to understanding and managing risks and CAR2012 regulations.
- Google Earth
- British Geological Survey Website & iGeology App

Appendix B Field Work

Appendix B.I Engineers Logs

			Contra	act Name:	Kin	acton M	lborf		Client:	Cowoo Horbour C	amianian	Hole ID:	БЦА	
-		1 C	Contra	act Numbe	Kin	Start and	/nart End Date:			Cowes Harbour C	OMISSION	Hole Tyr	BH1	
5				21091	51.	09	/10/23	Logged D	JA	TRB	PRFLIM	Tiole Typ	CP	
			Eastin	g:		Northing:	10/20	Ground Le	evel:	Plant Used:	Print Date:	Scale:	01	
La I à	I I	IED								Dando 2000	07/11/2023		1:50	
Weather:				1	Terr	mination:	Very dense Li	mestone at	the base.	SPT Hammer: AR3	552 Energy Ratio: 77%		Sheet	1 of 2
Dopth	Samples & Ir	n Situ Testing		Level	Depth (m)	Logond			Strata Detail	Strata Description			Groun Water	dwater Backfill/
Deptil	Туре	Itesuit	.5	(mAOD)	(Thickness) 0.05		Firm greyish b	prown, slightly	v sandy, slightl	y gravelly silty CLAY. Grave	el is subangular fine to coar	se /	Strike	Installation
0.30	ES				(0.30) 0.30		flint. MADE G	ROUND	silty slightly	sandy slightly gravelly CLA	Y Gravel is subangular to	/i		
0.30 - 0.5	0 B FS						subrounded fin	ne to coarse	flint. MADE G	ROUND		/F		
0.50 - 0.7	0 В				(0.70)		Soft dark grey	ish brown slig	ghtly sandy sli	ghtly gravelly CLAY. Grave	is subangular fine to mediu	im [
0.90 - 1.1	0 B ES				1.00			MADE GRU	UND			·		
1.20	SPT	N=5 (6,2/1,	1,2,1)		1.10		Soft dark grey	and light gre	enish grey slig	ghtly sandy gravelly REWO	RKED CLAY. Gravel is			
1.50	ES				(0.70)		subangular fin	ie to coarse t	iint. Made Gr	ROUND		-		
4.00.00					4.00									
2.00	о в FS				1.80		Soft bluish gre	ey and orangi DAL RIVER C	sh brown sligh REEK DEPOS	ntly gravelly CLAY. Gravel is SITS.	s subangular fine to coarse	-2		
2.10 - 2.5	5 U											-		
												-		
2.55 - 2.7	5 B													
3.00	QDT	N=6 (1 0/1	1221									Ŀ,		
3.00	D		·,~,~)				- 3							
3 50						ŀ								
0.00						· · · · · ·								
4 00 4 4	0 B													
4.00 - 4.4												- 4		
4 50 4 0						<u> </u>								
4.50 - 4.9						<u> </u>						-		
4.90 - 5.1	0 D				(6.00)									
						· · · · ·						- 5		
5 50	0.77					· · · · ·	-					-		
5.50	D	N=9 (1,1/2,	2,2,3)			· · · · ·						-		
	_					· · · · ·								
6.00	D					· · · · ·						- 6 [
							-							
6.50 - 6.9	5 U											-		
6.05 7.1												-		
0.95 - 7.1	5 0											- 7		$\left \cdot \right $
												-		
7.50	D											-		
					7.80	•	Yellowish brov	vn silty SAND). Occasional :	subangular fine to coarse li	mestone gravel. BEMBRID	GE	\vdash	
8.00	SPT D	N=8 (2,2/2,	2,2,2)			$\left \begin{array}{c} \times & \times \\ \times & \times \end{array} \right $	LIMESTONE I	FORMATION				- 8		
						$\times \times $						ŀ		
						× × × × ×						-		
					(2,30)	× × × × ×						ŀ		
9.00	D				(2.00)	× × × × ×						- 9		
						× × × × × ,	4					ŀ		
9.50	SPT D	N=13 (10,3/3	3,3,3,4)			× × × × × × ×						-		
						× × × × × × ,	4					ŀ		Γ.Ħ.
						×								Ľ.H.:
Deta	Start & End	d of Shift Obser	vations	Water (=)	Boreho	le Diamete	er Casing Di	ameter Re	emarks:			I	1	ı
Date	Time	Deptn (m) Ca	ising (m	vvater (m)	Deptn (n	וט ן (ייו (mi	3.00	200	roots observe	ed.				
							12.00	150						
											Water Strikes			
From (m)	To (m) D	Chiselling uration	Remar	ks	Top (m	In:) Base (I	stallation m) Type [S Dia (mm)	ліке (m) Са 7.80	ising (m) Sealed (m) Tim	e (mins) Rose to (m) Remain 20 3.70	arks		
					0.00 1.00	1.00	PLAIN SLOTTED	50 50						
								\vdash						
									Hand v	rane (HV), Hand penetrome	eter (HP) reported in kPa. Pl	D reported	in ppm.	
					1									

	ļ	0		Contra	act Name:	:	anatana MA	lle e uf		Client:	Course Llorbour C	•i	Hole ID:	DUA	
-		Ĭ		Contra	act Numb	er:	Start and	End Date:	Logged By	/:	Cowes Harbour C Checked By:	Status:	Hole Typ	BH1	
5)	U,)			21091		09	/10/23		JA	TRB	PRELIM		СР	
LI	MI	Т	ΕC	Eastin	g:		Northing:		Ground Le	evel:	Plant Used: Dando 2000	Print Date: 07/11/2023	Scale:	1:50	
Weather:					I	Teri	mination:	Very dense Li	mestone at	the base.	SPT Hammer: AR3	552 Energy Ratio: 77%		Sheet	2 of 2
Denth	Samples 8	k In S	Situ Testing Resi	ilts	Level	Depth (m)	Legend			Strata Details	s Strata Description			Groun Water	dwater Backfill/
10.10	D		11000		(mAOD)	(Thickness) 10.10	XXXX	Yellowish brov	n silty SANE). Occasional s	subangular fine to coarse li	mestone gravel. BEMBRIDO	÷	Strike	Installation
10.20 - 10. 10.50	40 В SPT	r	N=31 (2	25 for		(0.50)		Off-white, med BEMBRIDGE	Ium strong L	IMESTONE. R FORMATION	lecovered as subangular fi	ne to coarse limestone grav	el.		
	D		140mm/1	0,6,7,8)		10.60		Stiff, greyish c limestone. Oc	ream slightly casional mari	sandy slightly ine shell fragm	gravelly CLAY. Gravel is s ents. BEMBRIDGE LIMES	ubangular fine to coarse TONE FORMATION.			
						(0.90)				5			- 11		
11.50	D					11.50		Off-white, med BEMBRIDGE	lium strong L LIMESTONE	IMESTONE. R	ecovered as subangular fi	ne to coarse limestone grav	el		
12.00	SPT	г :	33 (42 for 1	30mm/33		(0.80)							- 12		
12.00 - 12.	30 D		101 200			12.30				End	of Borehole at 12.30m				
12.00 12.													-		•••••
													- 13		
													-		
													- 14		
													[
													Ē		
													- 15		
													[
													F		
													- 16		
													-		
													- 18		
													- 19		
													-		
													- 20		
	Start & F	Ind c	of Shift Obs	ervations		Boreho	le Diamete	r Casina Di	ameter Re	emarks:			20		
Date	Time	e [Depth (m) C	Casing (m) Water (m) Depth (r	n) Dia (mr	m) Depth (m) [3.00	Dia (mm) 200	roots observe	d.				
								12.00	150						
		C	hiselling				lns	stallation	s	trike (m) Cas	sing (m) Sealed (m) Tim	Water Strikes e (mins) Rose to (m) Rema	arks		
From (m)	To (m)	Dura	ation	Remar	KS	Top (m) Base (r 1.00	n) Type [PLAIN	Dia (mm) 50	1.80		20 3.70			
						1.00	10.00		50						
										Hand va	ane (HV), Hand penetrome	eter (HP) reported in kPa. PI	D reported i	n ppm.	

Soils L	mited		Trial Pit No.
Newton House, Cross Ro Tel: 01737 814221 Email: :	ad, Tadworth KT20 5SR admin@soilslimited.co.uk	Trial Pit Log	TP2
		Method: Machine Excavated	Sheet 1 of 1
	Project No.: 21091	Plant: CAT	TP
Location: Kingston Road, Isle of Wight, PO32	6JS	Support:	Scale
Client: Cowes Harbour Comission	Trial Pit Leng	th: m Trial Pit Width: m	1:25
Dates: 09/10/2023 Lev	el: Co-or	ds:	DEE
a v Samples & In Situ Testing De	pth Level n) (mAOD) Legend	Stratum Description	
Dates: 09/10/2023 Lev. Samples & In Situ Testing De Depth Type Results (r 0.10 ES 0. 0. 0. 0.30 B 0. 0. 0. 0. 0.60 D ES 0. 0. 0. 1.10 D ES 1. 1. 1.	el: Co-or pth Level (MAOD) Legend 20 45 45 00 00 30 10 10 10 10 10 10 10 10 10 1	ds: Stratum Description a brown gravelly SAND. Gravel is angular to rour carse flint, chalk, and limestone. Frequent rook ROUND. Mitled grey, clayey sandy GRAVEL AND COBB angular to rounded, fine to coarse chalk, flint, Cobbles are angular to sub-angular chalk. MAD bits free motile yellowish brown and grey, slight to CLAY. MADE GROUND. tiff multicoloured slightly sandy slightly gravelly ravel is sub-angular fine to coarse chalk/calcic rootlets and decomposing roots. Water seep al with mild sheen on surface. MADE GROUN End of Pit at 1.300m	DEE DEE DEE DEE DEE DEE DEE DEE DEE DEE
			- 4
General Remarks: Rootlets observed to 1.30m bgl. Groundwater Remarks: Water seepage at 1.30m bgl.			Sample Type D: Disturbed B: Bulk J: Jar W: Water

	0	-		Sc	oils Limit	ed					Trial Pit N	0.
S		5	ן די	Newton House, Cro el: 01737 814221 E	ss Road, mail: adm	Tadwort	h KT20 slimiteo) 5SR d.co.uk	Tr	rial Pit Log	TPSK1	Α
EIM	I I E	Ð							Mathadi	Machina Everyated	Sheet 1 of	f 1
Projec	ct Name:	King	ston W	/harf		Projec	t No.:	21091	Plant:	CAT		е
Locati	ion:	King	ston R	oad, Isle of Wight, I	PO32 6JS				Support:	-	Scale	
Client	:	Cow	es Har	bour Comission				Trial Pit Lengt	th: m	Trial Pit Width: m	1:25	
Dates	:		09/	10/2023	Level:			Co-orc	ds:		DEE	;y
/ater trike		Samp	les & Ir	n Situ Testing	Depth		Legen	ıd		Stratum Description		
<u>> 0</u>	Dept	11	Туре	Results	0.50			Multicolor Gravel is clinker, ta rootlets. Stiff greet black stai	ured, slightly angular to su irmac and flin MADE GROU nish grey slig ning, possibl	sandy, slightly silty GRAVEL and ib-angular, fine to coarse, Limesi it. Cobbles are angular bricks. (JND. htly sandy, slightly gravelly CLA) y organic. Gravel is angular to re	COBBLES. tone, brick, Occasional	- - - - - - - - - - - -
					0.75			to coarse sub-angu Firm blue slightly gr fine to co features i and deco	flint, brick, te lar brick cobi ish grey mott avelly silty C arse flint, inci n frequent in mposing rool	armac, limestone. Occasional ar bles. Occasional rootlets. MADE tled grey and dark grey, slightly s LAY. Gravel is sub-angular to su- reasing with depth. Sand is fine clusions and lenses. Occasional tlets. TIDAL RIVER CREEK DEF	igular to <u>E GROUND.</u> andy, ib-rounded, and rootlets POSITS	- 1
					1.60			Firm to st Occasion CREEK D	iff, yellowish al rootlets an DEPOSITS	brown mottled grey and blue CL d decomposing rootlets. TIDAL	AY. RIVER	
					1.95					End of Pit at 1.950m		- 2
												4
Genera	al Remarks	5:									Sample Type	<u> </u>
Ground	s observe dwater Rei	d to 2. marks:	30m bg No w	ıı. rater strike.							D: Disturbed B: Bulk J: Jar W: Water	

1946-175			So	oils Limit	ted					Trial Pit No	0.
S	DIIS	т	Newton House, Cro	oss Road, mail: adm	Tadwort	h KT2() 5SR	Tr	ial Pit Log	TPSK	1
LIM	1 I T E D	1	ei. 01737 014221 E	Indii. duii		Simileo	1.CO.UK			Sheet 1 of	[:] 1
Proje	ct Name: K	ingston V	/harf		Projec	t No.:	21091	Method: Plant:	Machine Excavated	_ Hole Type □ TP	э
Locat	ion: K	ingston R	oad, Isle of Wight,	PO32 6JS	;			Support:	0,11	Scale	
Client	t: C	owes Ha	bour Comission				Trial Pit Lengt	th: m	Trial Pit Width: m	1:25	
Dates	5:	09/	10/2023	Level:			Co-ord	ds:		- Logged B	y
ike ike	Sa	amples & li	n Situ Testing	Depth	Level	Lagan			Stratum Description		
Wa Str	Depth	Туре	Results	(m)	(mAOD)	- Legen	Nulticolo	urod olightly			1
	0.10	D ES D ES		0.50			Stiff green black stai	nish grey slight ning, possibly	bangular, fine to coarse, Limes' t. Cobbles are angular bricks. (JND. htly sandy, slightly gravelly CLAN / organic. Gravel is angular to r occasional ar	6. Frequent	
	0.80	DES		0.75			Sub-angu Firm blue slightly gr fine to co features i and deco	lar brick cob lar brick cob ish grey mottl avelly silty Cl arse flint, incr n frequent inc mposing root	Index, Undestone: Occasional and lees. Occasional rootlets. MADE led grey and dark grey, slightly s _AY. Gravel is sub-angular to su easing with depth. Sand is fine clusions and lenses. Occasional lets. TIDAL RIVER CREEK DEF	iguiano E GROUND. andy, ib-rounded, and I rootlets POSITS	- - - - - - - - - - - - - - - - - - -
	1.70	ES D		1.60	Become Firm to st Occasion	iff, yellowish l al rootlets and	<u>gl. Becomes</u> soft at 1.40m bgl. prown mottled grey and blue CL d decomposing rootlets. TIDAL	AY. RIVER			
$\mathbf{\mathbf{F}}$	2.30	D					CREEK [DEPOSITS	nciusions of calcic material/chalk from 2.00	m bgl.	- - - - - - - - - - - - -
Genera	al Remarks:			2.50					End of Pit at 2.500m	Sample Type	
Genera Rootlet Ground	al Remarks: ts observed to dwater Remai	o 2.30m bg rks: No w	l. rater strike. Seepage	into hole at	t 2.30m b	gl.				Sample Type D: Disturbed B: Bulk J: Jar W: Water	

	2			So	ils Limit	ed					Trial Pit No.
SC		5	N Te	lewton House, Cro l: 01737 814221 E	ss Road, mail: adm	Tadwort in@soils	h KT20 slimited) 5SR J.co.uk	Tr	ial Pit Log	TP6
Ducies	4 N I	L'in mate		h f		Ducies	4 1 1	24004	Method:	Machine Excavated	Sheet 1 of 1 Hole Type
Projec	t Name:	Kingsto	on vv	nan		Projec	t NO.:	21091	Plant:	CAT	TP
Locati	on:	Kingsto	on Ro	oad, Isle of Wight, F	PO32 6JS			1	Support:		Scale
Client		Cowes	Hart	oour Comission				Trial Pit Lengt	th: m	Trial Pit Width: m	1:25
Dates	:		09/1	0/2023	Level:			Co-oro	ds:		DEE
/ater trike	Dent	Samples	s & In	Situ Testing	Depth		Legen	d		Stratum Description	
	0.10	E	D ES B D ES B		0.20			Pink mott to sub-an flint. MAI Multicolor fine to co Frequent Black mo	led grey, slig gular, fine to o DE GROUND ured SAND At arse limestono ash. MADE (ttled multicolo Gravel is ano	htty silty sandy GRAVEL. Grave coarse limestone, igneous, conc ND GRAVEL. Gravel is angular e, clinker, igneous, brick, flint an GROUND. Sured SAND AND GRAVEL with ular to rounded fine to coarse of	I is angular rete and to rounded, d tarmac. frequent
	1.00	E	D ES B ES					brick, concrete, depth. M	orate, metal, Occasional ADE GROUN	and glass. Cobbles angular brid clay lenses and inclusions, incre D.	Anne, siag, k and asing with - - - - - - - - - - - - -
	1.50	, E	D ES		1.40			Firm blac CLAY. G brick, cor fragments	kish brown me ravel is angula icrete, and me s. MADE GR	ottled multicoloured, slightly san ar to sub-angular, fine to coarse etal. Frequent ash. Occasional OUND.	dy, gravelly clinker, rope
	2.00	E	D ES		2.30			Stiff multi angular to concrete.	coloured sligh o sub-angular, Occasional r	ttly sandy, slightly gravelly CLAY , fine to coarse brick, flint, clinke ootlets. MADE GROUND.	C Gravel is r, and 2
	2.50	E	D ES					Stiff multi material. 	coloured CLA TIDAL RIVER	Y. Occasional inclusions of wea CREEK DEPOSITS.	k calcic
	3.00	E	D ∃S		2.90 3.00		* * * * * * * *	Very stiff fine to me mudstone	light blueish g edium weak ca e. TIDAL RIVE	rey gravelly CLAY. Gravel is su alcic material and extremely wea FR CREEK DEPOSITS. End of Pit at 3.000m	b-angular ak calcic - 3
											- 4
Genera	l Remarks	s:									Sample Type
Rootlets Ground	s observe Iwater Rer	d to 2.30r marks: N	m bgl No gro	oundwater encounter	ed.						D: Disturbed B: Bulk J: Jar W: Water

	0		So	ils Limit	ted						Trial Pit No.
SC	DIS	۱ Te	Newton House, Cros el: 01737 814221 Er	ss Road, mail: adm	Tadwort iin@soils	h KT20 slimiteo) 5SR d.co.uk		Tr	rial Pit Log	TP5
Projec	t Name: King	ston W	/harf		Projec	t No.:	21091		Method:	Machine Excavated	Hole Type
Locati	on: Kinc	iston R	oad. Isle of Wight. F	PO32 6JS	5				Plant:	CAT	TP
Client	Cow	es Har	bour Comission				Trial Pit I	enat	b' m	Trial Pit Width m	1:25
Datas		00/	10/2023	Lovoli					4e:		Logged By
bales.	Samı	oles & Ir	Situ Testing	Donth	Lovol			0-010	15.		DEE
Wati Strik	Depth	Туре	Results	(m)	(mAOD)	Legen	d			Stratum Description	
	0.20	B D ES		0.10			Pink to su MAE Mult sub- cond	mott ib-an <u>DE GF</u> icolou angu crete.	led grey, slig gular, fine to <u>ROUND.</u> ured slightly s lar, fine to co Frequent su	phtly silty sandy GRAVEL. Grav coarse limestone, flint, tarmac a sandy, clayey GRAVEL. Gravel barse limestone, flint, brick, tarm ub-angular limestone cobbles ar	rel is angular and concrete. is angular to ac and nd boulders.
	0.50	D ES		0.80			Fred Firm CLA cond deco	to st Y. Gr rete,	iff, greenish h ravel is angul tarmac, brick sing wood fra	brown mottled multicoloured, sli lar to sub-rounded, fine to coars k, and limestone. Occasional ro agments. Organic odour. MAD	difference of the set
	0.90	D ES					Firm Occa sand rootl GRC	to st asion I lens ets, c DUNE	alt, yellowish al angular to ses. Occasio decomposing D.	brown mottled blue and grey, C sub-angular fine to coarse flint nal fine calcareous shells. Occ wood fragments and roots. MA	LAY. gravel and - asional - 1 ADE - - -
	1.50	D ES									
	2.00	D ES		1.95 2.30			Firm yello sub- flint Occ: MAE	to st wish angu grave asion <u>DE GF</u>	iff with occas brown, slight lar fine to coa el lenses and al rootlets, de ROUND.	sional soft inclusions, dark grey tty sandy, slightly gravelly CLAY arse flint and rare brick. Freque inclusions. Frequent black mot ecomposing wood fragments ar	mottled 2 Gravel is 2 ent sand and 2 tiling. 2 Id roots. 2
	2.50	D ES					Firm Grav Occa Disti	to st vel is asion nct o	iff, multicolou sub-angular al rootlets, de rganic odour.	rred slightly sandy, slightly grav fine to coarse flint and rare bric ecomposing wood fragments ar . MADE GROUND.	elly CLAY.
	3.00	D ES		3.00						End of Pit at 3.000m	
											- 4
											5
Genera	I Remarks: s observed to 3	.00m bg	l.								Sample Type D: Disturbed B: Bulk J: Jar
Ground	water Remarks	: No gr	oundwater encountere	ed.							W: Water

	-		So	ils Limit	ed					Trial Pit No	э.
S	DIS	ا Te	Newton House, Cros el: 01737 814221 Er	ss Road, nail: adm	Tadwortl in@soils	h KT20 slimited) 5SR d.co.uk	Tr	ial Pit Log	TP3	
During			11f		D	4. 6. 1.	04004	Method:	Machine Excavated	Sheet 1 of Hole Type	1 •
Projec	t Name: King	SION W	лап		Projec	t NO.:	21091	Plant:	CAT	TP	-
Locati	on: King	ston R	oad, Isle of Wight, F	032 6JS			1	Support:		Scale	
Client	Cow	es Har	bour Comission				Trial Pit Leng	th: m	Trial Pit Width: m	1:25	v
Dates	:	09/	10/2023	Level:			Co-oro	ds:		DEE	у
/ater trike	Samp	oles & Ir	n Situ Testing	Depth		Legen	ıd		Stratum Description		
Dates	: <u>Depth</u> 0.20 0.50 0.70 1.00 1.60 2.10	09/ ples & Ir Type D ES D ES B B ES D ES	10/2023 n Situ Testing Results	Level: Depth (m) 0.30 0.60 1.50 2.10	Level (mAOD)	Legen	Co-ord d Yellowish fine to co MADE G Multicoloi rounded, Occasion Gravel is and brick odour. O MADE G Firm and angular tu Frequent GROUNE 60cm di	ds: brown gravel arse flint, cha ROUND. ured clayey S fine to coarse al clay lenses ttled multicold angular to rou . Frequent cl ccasional cor ROUND. stiff intermitte to rounded, fin large sand ar). ameter concrete p	Stratum Description Iy SAND. Gravel is angular to ro Ik, and limestone. Frequent root AND AND GRAVEL. Gravel is a concrete, flint, brick and tarmad concrete, flint, brick and tarmad concrete, flint, brick and tarmad puned, fine to coarse flint, tarma ay lenses increasing with depth. crete boulders. Rare metal frag ntly slightly sandy gravelly CLAN e to coarse flint, tarmac, concret nd gravel lenses. Anoxic odour. ile persists to base of hole. End of Pit at 2.100m	Logged B DEE	y 2
Gener	al Pomorizo:									Sample Time	5
Genera	n Remarks: s observed to 0. lwater Remarks:	60m bg No gi	l. roundwater encountere	ed.						Sample fype D: Disturbed B: Bulk J: Jar W: Water	

			Contra	ct Name:	Kin	noton W	horf		Client:	Cov	waa Harba		on	Hole	ID:		
		1 C	Contra	ct Numbe	r: S	Start and	End Date:	Logged	By:	Cov	ed By:	Statu	011 S:	Hole	Туре	5N1	
				21091		07/	/02/24		DEE		DEE		FINAL		,	ws	
LIM	1 1	TED	Easting	g:	N	lorthing:		Ground	_evel:	Plant l	Jsed: Premier 4	Print	Date: 20/03/2024	Scale): 	:50	
Weather:					Term	nination:										Sheet	1 of 1
Sai	mples & Ir	Situ Testing							Strata De	tails						Ground	dwater
Depth	Туре	Resu	lts	Level (mAOD)	Depth (m) (Thickness)	Legend				Strata D	escription		. .			Water Strike	Backfill/ Installation
0.00 - 1.00					0.20 (0.30) 0.50 (0.50) 1.00		base, and rare Pinkish grey n rounded, fine Firm multicolo flint. Occasion	nottled mul to coarse li ured, slight	and brick. Oc iicoloured, slig mestone, flint ly sandy, sligh osing organic	casional cla ghtly silty, ve and rare ta ntly gravelly material. F	ay lenses. MA ery sandy GR. rmac. MADE CLAY. Grave Re-worked so	ADE GROUN AVEL. Grave GROUND. el is angular t ils. MADE G	n, me to coars D. el is angular to o rounded, fin ROUND.	o sub-	- 1		
					1.00				E	nd of Bore	hole at 1.00r	n			- 2		
															- 4		
															- 5		
															- 7		
															- 9		
	tart 8 E	of Shift Obe	nyationa		Borobel	e Diameta		ameter	Pomorko						10		L
Date	Time	Chiselling	asing (m)	Water (m)	Borehol	Diamete Diamete Dia (mn	Casing Di n) Depth (m) I	ameter Dia (mm)	strike (m)	Casing (m)	Sealed (m)	Water St Time (mins)	rikes Rose to (m)	Remarks			
From (m) To	o (m) Du	uration	Remar	ks	Top (m)	Base (n	n) Type I	Dia (mm)				0	0.00	No groundwa	iter ei	ncounte	red.
									Hand	d vane (HV)), Hand peneti	rometer (HP)	reported in kF	Pa. PID report	ted in	ppm.	

	5			Contra	ct Name:					Client:	_				Hole	ID:		
		4				King	gston W	harf		_	Cov	wes Harbour	Comiss	ion		W	SN3	
			5	Contra	ct Numbe	er: S	Start and	End Date:	Logged	By:	Check	ed By:	Statu	s:	Hole	Туре	:	
					21091		07	/02/24		DEE		DEE		FINAL		١	NS	
LI	MI	ΤE	Ð	Easting	g:	١	Northing:		Ground	Level:	Plant I	Used: Premier 4	Print	Date: 20/03/2024	Scale	е: 1	:50	
Weather:						Term	nination:									:	Sheet 1 o	f 1
:	Samples &	In Situ 1	Testing		Lovel	Darath (m)				Strata Deta	ails						Groundwa	iter
Depth	Туре		Result	s	(mAOD)	(Thickness)	Legend				Strata D	Description					Water Ba Strike Insta	kfill/ Ilation
0.00 - 0.1						0.20 0.40 (0.35) 0.75 1.00		limestone, flin Multicoloured tarmac, ceme Firm multicolo flint and rare o Soft to firm ye well rounded,	it, and rare , sandy ver ent, and flint pured, sligh clinker. Oc ellowish bro fine to coa	y clayey GRAV y clayey GRAV . Rare brick cc tly sandy, slight casional decom wn mottled bro rse flint.	vrick. Occa EL. Grave obble. MA tly gravelly posing or wn, slightly	asional clay lens asional clay lens el is angular to s DE GROUND. r CLAY. Gravel ganic material. y sandy, slightly	is angular Re-worked gravelly C	to rounded, fine soils. MADE C LAY. Gravel is a	brick, to coarse <u>GROUND.</u> angular to	t - - - - - - - - - - - - -		
						1.00				Er	d of Bore	hole at 1.00m						
																- 5		
																- - - - - - - 7 - - - - - - - - -		
																- 8		
																- - 10		
Date	Start & E Time	nd of Sh Dept	ift Obsei h (m) Ca	rvations asing (m)	Water (m)	Borehol Depth (m	e Diamete) Dia (mn	r Casing D n) Depth (m)	iameter Dia (mm)	Remarks:			Water St	rikes				
From (m)	To (m)	Chise Duration	lling	Remar	ks	Top (m)	Ins Base (n	n) Type	Dia (mm)	Strike (m) C	asing (m)	Sealed (m) T	ime (mins) 0	Rose to (m) R 0.00 N	Remarks Io groundwa	ater er	countered	
										Hand	vane (HV)), Hand penetro	meter (HP)	reported in kPa	a. PID repor	ted in	ppm.	

				Contra	ct Name:					Client:			. .		ŀ	Hole ID:		
		Ϋ́		Contro	ot Numb	Kin	gston W	harf	Loggod	Dv:	Co\ Chook	wes Harbou	ur Comiss	sion			VSE1	
				Contra		er:			Logged		Check		Statt		I I	ноге тур	e: Me	
			2	F action	21091		U7	/02/24	C maxima d	DEE	Diant	DEE	During 4			Deele.	w5	
L. F	ΜI	TE	ΕD	Easung	y.		voruning.		Ground	Level.	Plant	Oseu. Premier 4	Pint	20/03/202/	1	scale.	1.20	
Weather:						Torr	nination:							20/00/202			Shoot	1 of 1
weather.	Samples 8	In Situ	Testina			Ien				Strata De	etails						Ground	dwater
Depth	Туре	e	Result	s		Depth (m) (Thickness)	Legend				Strata D	Description					Water Strike	Backfill/ Installation
0.00 - 0.2	20 D				(IIIAOD)	0.10		Greyish brown	clayey ve	ry sandy GR	AVEL. Grav	el is angular to	o well-round	ed, fine to coa	arse flint,	}		
						0.20		Pinkish grey n	ottled mul	ticoloured, sl	ightly silty, v	ery sandy GR	AVEL. Grav	el is angular te	o sub-	-/[
								vrounded, fine t	o coarse li	mestone, flin I	it, tarmac an End of Bore	d brick. MADI hole at 0.20n	E GROUND n	•		/-		
																- 1		
																-		
																- 2		
																-		
																-		
																-3		
																•		
																-		
																- 4		
																-		
																:		
																-		
																- 5		
																-		
																ľ		
																- 6		
																-		
																ŀ		
																- 7		
																[
																-		
																- 8		
																-		
																-		
																-		
																-		
																· · · ·		
																^{- 10}		
Date	Start & E	nd of Sh Dept	utt Obser th (m) Ca	vations ising (m)	Water (m)	Boreho Depth (n	le Diamete 1) Dia (mr	r Casing Di n) Depth (m) [ameter Dia (mm)	≺emarks:								
		Chise	elling				In:	stallation		Strike (m)	Casing (m)	Sealed (m)	Water S Time (mins	trikes) Rose to (m)	Remark	s		
From (m)	To (m)	Duration		Remar	ks	Top (m) Base (r	n) Type [Dia (mm)				Ò	0.00	No grou	ndwater e	ncounte	red.
									F									
										Har	nd vane (HV), Hand penetr	rometer (HP) reported in k	Pa. PID ı	reported in	n ppm.	

				Contra	ct Name:					Client:					Hole ID:		
				Contro	ot Numbr	Kin	gston W	harf	Loggod	Dv.	Co\	ves Harbou	Ir Comiss	ion		VSE3	
					21001	л. ^с		_ng Date: /02/24	Logged	DFF		Sialu	s. FINIΔI		ws		
				Eastin	q:	1	Northina [.]	10 <i>212</i> 7	Ground	Level:	Plant	Used:	Print	Date:	Scale:		
LI	ΜI	ΤI	ED		5		5		-			Premier 4		20/03/2024		1:50	
Weather:						Tern	nination:									Sheet	1 of 1
	Samples &	In Situ	Testing		Level	Depth (m)				Strata D	etails				4	Groun	dwater
Depth	Туре	*	Result	S	(mAOD)	(Thickness)	Legend	Dinkich grov n	ottled mul	ticoloured a	Strata D	Description		el is angular to	sub	Strike	Installation
0.00 - 0.2						0.20		rounded, fine	o coarse li	mestone, flir	nt, tarmac an	d brick. MADE	E GROUND.				••••
												nole at 0.2011	1		-		
															- 1		
															-		
															-		
															- 2		
															[
															-		
															- 3		
															-		
															ŀ		
															-		
															- 4		
															-		
															-		
															- 5		
															-		
															-		
															- 6		
															-		
															-		
															-		
															- 7		
															-		
															- 8		
															-		
															[
															-9		
															-		
															-		
									,						- 10		
Date	Start & E Time	nd of Sh	th (m) Ca	vations ising (m)	Water (m)	Boreho Depth (m	le Diamete ı) Dia (mr	r Casing Di n) Depth (m) I	ameter Dia (mm)	Remarks:							
			T														
									F				Mat O	rikoo			
F ₂ () '		Chise	elling	F		-	Ins			Strike (m)	Casing (m)	Sealed (m)	Time (mins)	Rose to (m) F	Remarks	nco: '	rod
rom (m)	Io (m)	Duration		Remar	KS	Top (m)	Base (r	n) Type [Jia (mm)				U	0.00	vo groundwater e	ncounte	red.
									F	На	nd vane (HV), Hand penetr	ometer (HP)) reported in kP:	a. PID reported i	n ppm.	
			1								(()			•••	

				Contra	ct Name:	Kin	anatana 14	/h = ==		Client:	0				Hole I	D:	004	
		Μí Ι		Contra	ct Numbe	r: Kin	gston w Start and	Find Date:	l ogged B	V.	Cov	ves Harbou	r Comiss Statu	ion s'	Hole -	VV Type	551	
			5		21091	···	07	/02/24		DEE	SHOOK	DEE		FINAL		., المردر. الم	vs	
	MI	T	E D	Easting	g:		Northing:		Ground Lo	evel:	Plant l	Used:	Print	Date:	Scale	:	.50	
Weather:						Torr	nination:							20/03/2024	•		Sheet '	1 of 1
weather.	Samples &	& In Situ	Testing							Strata Detai	ils					`	Ground	dwater
Depth	Тур	e	Result	s	Level (mAOD)	Depth (m) (Thickness)	Legend				Strata D	escription					Water Strike	Backfill/ Installation
0.00 - 0.8	35 D				/			Multicoloured,	sandy very	clayey GRAVE	EL. Grave	el is angular to	sub-angula	, fine to coars	e			
						(0.50)			,,		. Haro s			0.1001121	-		4	
						0.50 0.60		Firm multicolo	ured, slightly	v sandy, very g	ravelly Cl	LAY. Gravel is	angular to r	ounded, fine f	to coarse		4	
						0.85		Firm dark grey	mottled bla	ck and greyish	brown, s	slightly sandy, s	slightly grave	elly CLAY. Gr	avel is		4	
						1.00	<u></u>	decomposing	organic mate	erial. Re-work	ed soils.	MADE GROU	ND.	AV Cravel in		1	-	
								rounded, fine t	o coarse flir	it. Occasional	decompo	osing organic n	naterial. Po	ssibly re-work	ed soils.			
										Enc		nole at 1.00m	1		Ē			
															[
															-	2		
															[
															-			
															Ē			
															-	3		
															[
															-			
															-			
															Ē	4		
															-			
															-			
															ļ			
															-	5		
															-			
															Ē			
															-			
															-	6		
															[
															-			
															-			
															ŀ	7		
															[
															-			
															[
															-	8		
															[
															-			
															ļ			
															-	9		
															-			
															ŀ			
															[
						-										10		
Date	Start & E	nd of Sł e Dep	nift Obser th (m) Ca	vations ising (m)	Water (m)	Boreho Depth (n	n) Dia (mi	er Casing Dia m) Depth (m) [ameter R Dia (mm)	emarks:								
													Mist- C	rikoc				
		Chise	elling				l In:	stallation		Strike (m) Ca	asing (m)	Sealed (m)	vvater St Time (mins)	Rose to (m)	Remarks	-		
From (m)	To (m)	Duratior	1	Remar	ks	Top (m) Base (I	m) Type [Dia (mm)				0	0.00	No groundwa	er en	counter	ed.
									F	Hand y	/ane (U\/)	Hand penetr	ometer (UD)	reported in M		ad in	nnm	
						1				nand V	ane (HV)	, nanu penetro	uneter (HP)	reported in Ki	ra. FID report	su IN	phili	

				Contra	ct Name:					Client:					Hole	e ID:		
		-1 P		Contro	ot Numb	Kin	gston W	harf	Loggod	2.4	Cov	ves Harbou	Ir Comiss	ion		۷ م. T. (D	VSS3	
S				Contra		с і.	Start and		Logged I	∍y. DEE	Cneck		Statu	5. EINIAI	HOI	⇒ тур	₩e	
				Easting	21091 g:		07 Northing:	/02/24	Ground I	Level:	Plant l	Jsed:	Print	FINAL Date:	Sca	le:	W5	
L	11	I E	. D									Premier 4		20/03/2024	L		1:50	
Weather:						Terr	mination:										Sheet	1 of 1
Dopth	Samples & I	n Situ T	esting Recult	to to	Level	Depth (m)	Logond			Strata De	tails Stroto D						Groun Water	dwater Backfill/
0.00 - 0.6	0 D		Result		(mAOD)	(Thickness)	Legena	Pinkish grev r	nottled mult	icoloured, slid	ghtly silty, ve	ery sandy GRA	AVEL. Grav	el is angular to	sub-	1	Strike	Installation
						0.20		rounded, fine Multicoloured	to coarse li	mestone, flint / clayey GRA	and tarmad	. MADE GRC	OUND. sub-angula	, fine to coars	e brick,			
						(0.40)		tarmac, breez	eblock, des clusions. M	iccated concr	rete, cemen ID.	t, and flint. Ra	are brick cob	ble. Frequent	clay	÷		
						(A.4R)		Becomes gravel Firm dark gre	<u>y CLAY.</u> y mottled bl	ack and greyi	sh brown, s	lightly sandy,	slightly grave	elly CLAY. Gra	avel is	1		
						1.00		angular to rou decomposing	nded, fine t organic ma	o coarse flint terial. Re-wo	and rare br rked soils.	ick, clinker and MADE GROU	d desiccated	concrete. Occ	casional	-1		
								Soft to firm, d	ark grey mo ′. Gravel is	ttled black be angular to rou	coming blu unded, fine	eish grey mott to coarse flint.	led dark gre Frequent d	y, slightly sanc ecomposing o	dy, slightly organic	1		
								material.		E	nd of Bore	hole at 1.00m	 ו					
																-2		
																ŀ		
																Ē		
																ŀ		
																- 3		
																ŀ		
																-		
																-		
																- 4		
																-		
																-		
																-		
																- 5		
																-		
																- 6		
																-		
																-		
																-7		
																ŀ		
																-		
																- 8		
																-		
																- 9		
																-		
																Ē		
																-		
								1 -	· · · · · ·							¹⁰		
Date	Start & En Time	d of Shi Depth	tt Obsei n (m) Ca	rvations asing (m)	Water (m	Boreho) Depth (n	n) Dia (mr	r Casing Di n) Depth (m)	ameter Dia (mm)	Remarks:								
									_				Mat O	rikoo				
		Chisel	ling		l		l Ins	stallation		Strike (m)	Casing (m)	Sealed (m)	Time (mins)	Rose to (m)	Remarks			
From (m)	To (m) D	uration		Remar	ks	Top (m) Base (r	n) Type	Dia (mm)				0	0.00	No ground	vater e	ncounte	ered.
										Han	vane (HV)	Hand nenetr	ometer (HP)	reported in k		orted i	י ממח	
												, nanu peneli		-oponed in Kr	а. по тер	neu ll	· Phili	

	•		Contra	ct Name:	Kin	acton M	/borf		Client:	Cou	voo Horbou		ion	H	ole ID:	10/11/1	
C		ic	Contra	ct Numbe	er:	Start and	End Date:	Logged By	:	Checke	ed By:	Statu	s:	H	ole Type)))	
				21091		07	/02/24	D	EE		DEE		FINAL			ws	
LIN	1 1	TED	Easting	g:		Northing:		Ground Le	vel:	Plant U	Jsed: Premier 4	Print	Date: 20/03/2024	s 1	cale:	1:50	
Weather:					Terr	nination:										Sheet	1 of 1
Sa	amples & Ir	Situ Testing		Laural		1			Strata Detail	ls						Ground	dwater
Depth	Туре	Resul	ts	Level (mAOD)	Depth (m) (Thickness)	Legend	D' L' L		· · · · ·	Strata D	escription					Water Strike	Backfill/ Installation
Depth 0.00 - 1.00	Type D	Resul	ts	Level (mAOD)	Depth (m) (Thickness) (0.50) 0.60 (0.40) 1.00	Legend	Pinkish grey m rounded, fine fi Firm multicolo brick, clinker, c Firm blackish is angular to ro and wood frag	nottled yellow to coarse lime ured, slightly <u>desiccated co</u> brown nottle ounded, fine t <u>ments. Very</u>	ish brown, slig estone, flint an sandy, very gu increte, tarma o coarse flint a rare coarse si End	Strata D phtly silty, ad rare tar ravelly CL <u>c and film</u> vn and bla and rare a and sized of Borel	escription very sandy G rmac. MADE LAY. Gravel is t. MADE GR ack, slightly sz clinker. Frequ brick. Re-wc hole at 1.00n	BRAVEL. Gr GROUND. s angular to r OUND. andy, slightly uent decomp orked soils. n	avel is angular ounded, fine t gravelly CLA osing organic WADE GROUI	r to sub- io coarse Y. Gravel material ND.	-1	Water Strike	
															- 10		
Date	Start & End	I of Shift Obse	rvations asing (m)	Water (m)	Boreho Depth (n	le Diamete	er Casing Dia n) Depth (m) [ameter Re Dia (mm)	marks:			Water St	rikes				
From (m)	To (m) Du	Chiselling uration	Remar	ks	Top (m	Ins Base (r	stallation m) Type [[Dia (mm)	trike (m) Ca	sing (m)	Sealed (m)	Time (mins) 0	Rose to (m) 0.00	Remarks No groun	i dwater e	ncounte	red.
	, 50		.5.141			, (, .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							5.20			
									Hand v	ane (HV)	, Hand penetr	rometer (HP)	reported in kF	Pa. PID re	eported ir	n ppm.	

	6		Contra	ct Name:	12				Client:	~		<u> </u>		Hol	e ID:		
6		í	Contra	oct Numbe	Kin	gston W	hart End Date:	Logged By		Cov	ves Harbou	r Comiss	ion	Hol		vsw3	
			Contra	21091	<i>.</i>	ວເລາ ເ and ດ7	/02/24		EE	Check	DFF	Statu	FINAI		стур	WS	
	1 1 1	T E D	Eastin	g:	1	Northing:		Ground Le	vel:	Plant U	Jsed:	Print		Sca	ale:	1.50	
Weather:					Torr	nination:							20/03/2024	•		Sheet	1 of 1
Sai	mples & In	Situ Testing			lien				Strata Deta	ails						Groun	dwater
Depth	Туре	Resu	lts	Level (mAOD)	Depth (m) (Thickness)	Legend				Strata D	escription					Water Strike	Backfill/ Installation
0.00 - 1.00	D				0.15		Yellowish brow rare limestone	wn silty very s e. MADE GRO	andy GRAVE OUND.	EL. Grave	l is angular to	sub-rounde	d, fine to coars	se flint and	1		
					(0.40)		Pinkish grey n	nottled grey, s	lightly silty, s flint MADE	andy GRA	VEL. Gravel i	s angular to	sub-rounded	, fine to			
					0.55		Multicoloured,	, sandy very c	layey GRAVI	EL. Grave	l is angular to	sub-angula	, fine to coars	e brick,	Ŧ		
					0.75		Firm multicolo	oured, slightly	sandy, slight	ly gravelly	CLAY. Grave	l is angular	o rounded, fin	e to coarse			
					1.00			nal decompos ND.	sing organic r	material.	/ery rare sand	SIZED DRICK.	Re-worked s	OIIS.	/ 1		
									En	d of Borel	hole at 1.00m	I			ŀ		
															ŀ		
															-2		
															ł		
															ŀ		
															•		
															- 3		
															ŀ		
															-		
															- 4		
															-		
															F		
															- 5		
															ŀ		
															- 6		
															-		
															-		
															-7		
															; '		
															-		
															- 8		
															-		
	1														ŀ		
															- 9		
															ŀ		
															ŀ		
															ŀ		
															- 10		
s	Start & End	of Shift Obse	rvations	 	Boreho	le Diamete	r Casing Di	ameter Re	marks:							I	<u> </u>
Date	Time	Depth (m) C	asing (m)	Water (m)	Depth (m	ו) Dia (mr	n) Depth (m) I	Dia (mm)									
												Water St	rikes	Den			
From (m) To	o (m) Du	Chiselling Iration	Remar	ks	Top (m)	Ins Base (r	stallation n) Type I	Dia (mm)	trike (m) Ca	asing (m)	Sealed (m)	1 ime (mins) 0	Rose to (m) 0.00	Remarks No ground	water e	encounte	ered.
									Hand	vane (HV)	, Hand penetro	ometer (HP)	reported in kl	Pa. PID rep	orted i	n ppm.	

	() – °		Contra	ct Name:					Client:					Ho	le ID:		
		ήr		Cantra	at Niumaha	Kin	gston W	harf	Levend	<u></u>	Cov	ves Harbou	r Comiss	ion		W	SSW3	
5				Contra		я. 	otart and רי		Loggea	∍y. DEE	Check		Statu	5. EINIAI	но	етур	ਰ. ਆਵ	
	M	TE		Easting	∠1091 g:	1	07 Northing:	102124	Ground I		Plant U	Jsed:	Print	FINAL Date:	Sca	ale:	w5	
	TT I	1 0	U									Premier 4		20/03/2024	•		1:50	
Weather:	Samples 9 1	n Qitu T	octin~			Tern	nination:			Strata D-							Sheet	1 of 1
Depth	Type		Result	ts		Depth (m)	Legend			Su'atà De	Strata D	escription					Water Strike	Backfill/
0.00 - 1.0	00 D	+			(IIIAOD)	(Interness)	-	Yellowish brow	wn silty very	/ sandy GRA	VEL. Grave	l is angular to s	sub-rounde	d, fine to coars	se flint and	ŀ	Guild	
						0.20 0.40		Pinkish grey r	e. MADE G nottled grey	KOUND.	, sandy GRA	AVEL. Gravel i	s angular to	sub-rounded,	, fine to	1		
						0.40		Coarse limesto Greyish browi	one, and rai	re flint. MAD	E GROUND	el is angular to	well-rounde	ed, fine to med	lium flint	4		
						0.80		\and rare conc Multicoloured	rete. MADI	E GROUND. / clayey GRA	WEL. Grave	el is angular to	sub-angula	r, fine to coars	e flint,	_ <u>_</u> ;		
						1.00		brick, limestor	ne and cond	rete. Freque	ent clay inclu htly gravelly	usions. MADE	GROUND.	o rounded, fin	e to coarse	_/-1		<u>.</u>
								flint. Occasio	nal decomp	osing organi F	c material. I	Re-worked soil	s. MĂDE G	ROUND.		J.		
										-		noie at 1.00m				F		
																-		
																- 2		
																[
																ŀ		
																ŀ		
																- 3		
																-		
																Ļ		
																ŀ		
																4		
																Ę		
																ŀ		
																5		
																5		
																ŀ		
																F		
																-		
																-6		
																-		
																- 7		
																ŀ		
																ŀ		
																ŀ		
																- 8		
																ŀ		
																F		
																ł		
																9		
																ŀ		
																F		
																[
																- 10		
	Start & En	d of Shi	ft Obsei	rvations		Boreho	le Diamete	er Casing Di	iameter F	Remarks:								
Date	Time	Depth	n (m) Ca	asing (m)	Water (m)	Depth (m	n) Dia (mr	m) Depth (m)	Dia (mm)									
									F				Water St	rikes				
From (m)		Chisel	ling	Remark	ks	Top (m)		stallation	Dia (mm)	Strike (m)	Casing (m)	Sealed (m)	Time (mins)	Rose to (m)	Remarks	water 4	encounte	red
		arauUII		Noniali		10p (III)		пу туре	υια (IIIII)				5	0.00	.			
									F	Han	d vane (HV)	. Hand penetro	meter (HP)	reported in kr	Pa, PID ren	orted in	mממ ו	
						1				rian		,a. a ponotic		. spenda in M	2 Q 10p	u II		

				Contra	ct Name:					Client:	0		.		Hole	e ID:		
-		1		Contra	ct Numb	Kir	Igston W	hart	Logged	BV:	Cov	ves Harboui	Comiss	ion	Hol		SNW3	3
	$\left(\right)$			Jonua	21091	5 1.	0.art and 07	/02/24	Loggeu	DFF	Check	DFF	Jaiu	FINAI		стур	ws	
	1 1	T F	D	Easting	g:		Northing:	, 52,27	Ground I	level:	Plant l	Jsed:	Print	Date:	Sca	le:		
			5			I.						Premier 4		20/03/2024	1		1:50	
Weather:	mplos º !-	Situ Tart	inc			Ter	mination:			Strata D-							Sheet	1 of 1
Depth	Type	R	esults	5	Level	Depth (m)	Legend			Strata Del	Strata D	escription					Water	Backfill/
0.00 - 1.00	D				(IIIAOD)	(THORIESS)		Multicoloured,	silty very s	andy GRAVE	L. Gravel is	s angular to sul	o-angular, fi	ne to coarse f	flint,	-	50.00	**************************************
						(0.60)		limestone, cor	ICTELE DITICK	and tarmac.	MADE GRO	JUND.				ŀ		
						0.60		Soft to firm m	ulticoloured	slightly sand	v slightly g		Gravel is an	gular to round	ded fine to	-		
						(0.40)		coarse flint wit	th rare brick	. Occasional	decompos	ing organic ma	terial. Re-v	vorked soils.	MADE	ŀ		
						1.00		GROUND.		E	nd of Bore	hole at 1.00m				1		
																ŀ		
																ŀ		
																ļ		
																-2		
																ŀ		
																-		
																-		
																- 3		
																[
																ŀ		
																-		
																- 4		
																-		
																ŀ		
																ŀ		
																- 5		
																-		
																Ē		
																-		
																-6		
																ŀ		
																Ē		
																-		
																-7		
																-		
																-		
																8		
																-		
																ŀ		
																Ļ		
																-		
																-		
																ł		
																- 10		
	Start & Fnr	d of Shift ()bserv	ations/		Borehr	le Diamete	er Casing Di	ameter F	Remarks:								
Date	Time	Depth (r	n) Cas	sing (m)	Water (m) Depth (r	n) Dia (mi	m) Depth (m)	Dia (mm)	tomaino.								
													Water St	rikes				
From (m)	Го (m) Dı	Chiselling uration	3	Remar	ks	Top (m	In: Base (I	stallation n) Type I	Dia (mm)	Strike (m)	Casing (m)	Sealed (m)	Time (mins) 0	Rose to (m) 0.00	Remarks No groundv	vater e	ncounte	ered.
															-			
									F									
										Hand	d vane (HV)	, Hand penetro	meter (HP)	reported in kl	Pa. PID repo	orted in	n ppm.	

Appendix C Geotechnical In-Situ and Laboratory Testing

Appendix C.I Classification

Classification based on SPT "N" values:

The inferred undrained strength of the cohesive soils was based on the SPT "N" blow counts, derived from the relationship suggested by Stroud (1974) and classified using Table C.1.1. (Ref: Stroud, M. A. 1974, "The Standard Penetration Test – its application and interpretation", Proc. ICE Conf. on Penetration Testing in the UK, Birmingham. Thomas Telford, London.).

Table C.I.I SPT "N" Blow Count Cohesive Classification

Classification	Undrained Cohesive Strength C _u (kPa)
Extremely low	<10
Very low	10 – 20
Low	20 – 40
Medium	40 – 75
High	75 – 150
Very high	150 – 300
Extremely high	> 300

Note(s): (Ref: BS EN ISO 14688-2:2004+A1:2013 Clause 5.3.)

The relative density of granular soils was classified based of the relationship given in Table C.1.2.

The UK National Annex to Eurocode 7: Geotechnical design – Part 2: Ground investigation and testing, NA 3.7 SPT test, BS EN 1997-2:2007, Annex F states "Relative density descriptions on borehole records should also be based on uncorrected SPT N values, unless significantly disturbed, using the density classification in BS 5930:2015, Table 7.

Table C.I.2 SPT "N" Blow Count Granular Classification

Classification	SPT "N" blow count (blows/300mm)
Very loose	0 to 4
Loose	4 to 10
Medium dense	10 to 30
Dense	30 to 50
Very dense	Greater than 50

Note(s): (Ref: The Standard Penetration Test (SPT): Methods and Use, CIRIA Report 143, 1995)

Chalk samples recovered are disturbed by the sampling process. Therefore, it is difficult to assess an accurate chalk grade for in accordance with CIRIA C574 'Engineering in

Chalk'. In the absence of a standardised correlation between SPT "N" values and chalk grade for the most recent chalk classification (CIRIA C574) a broad indication of the insitu chalk grade can be assessed using a paper by T.R.M. Wakeling from a site in Mundford, Norfolk, which compares SPT "N" values to the old Spink & Norbury chalk classification. From the Spink & Norbury classification it is possible to infer a basic CIRIA Grade (structureless or structured), as outlined in Table C.1.3.

SPT "N" Value Range	Spink & Norbury Grade	Inferred CIRIA Grade
<8	VI	Structureless (Dm)
8 – 15	V	Structureless (Dc)
15 – 20	IV	Structured chalk (C5 – AI
20 - 25	III	Structured chalk (C5 – A1
25 - 35	II	Structured chalk (C5 – AI
>35	1	Structured chalk (C5 – AI

Table C.I.3 Interpretation of SPT "N" Blow Counts in Chalk

Classification of DCP results to CBR:

Note(s):

The DCP consists of a cone fixed to the bottom of a 575mm vertical rod. An 8kg weight is repeatedly lifted and dropped onto an anvil at the mid-height of the rod to deliver a 'blow'. A vertical scale alongside the rod is used to measure the depth of penetration of the cone. These measurements are then converted to CBR values using the following equation derived from the DTP Interim Advice Note 73/06 – Design Guidance for Road Pavement Foundations:

Appendix C.2 Interpretation

Table C.2.1 Interpretation of QUU Tests

Location	Stratum	Sample Depth (m bgl)	Moisture Content (%)	Soil Strength	Shear Strength (kPa)
BHI	BLM	6.50-6.95	28	Medium	56
Note(s):					

Table C.2.2 Interpretation of Atterberg Limit Tests

Stratum	Moisture Content	Plasticity Index	Passing 425µm	Modified Plasticity	Soil Classification	Volume Change Potential
	(%)	(%)	Sieve	Index		BRE
			(%)	(%)		
TRD	34-41	46-53	91-96	44-48	CV	High

Note(s): BRE Volume Change Potential refers to BRE Digest 240 (based on Atterberg results)

Soils Classification based on British Soil Classification System

The most common use of the term clay is to describe a soil that contains enough clay-sized material or clay minerals to exhibit cohesive properties. The fraction of clay-sized material required varies, but can be as low as 15%. Unless stated otherwise, this is the sense used in Digest 240. The term can be used to denote the clay minerals. These are specific, naturally occurring chemical compounds, predominately silicates. The term is often used as a particle size descriptor. Soil particles that have a nominal diameter of less than 2 µm are normally considered to be of clay size, but they are not necessarily clay minerals. Some clay minerals are larger than 2 µm and some particles, 'rock flour' for example, can be finer than 2 µm but are not clay minerals. (The Atterberg Limit Tests were undertaken in accordance with BS 1377:Part 2:1990 Clauses 3.2, 4.3 and 5)

Table C.2.3 Interpretation of PSD Tests

Location	Depth (m bgl)	Soil Description	Volume Change Potential BRE	Passing 63µm Sieve (%)
BHI	9.00	Brown fine to coarse gravelly silty/ clayey fine to coarse SAND	Yes	28

Note(s): BRE 240 states that a soil has a volume change potential when the clay fraction exceeds 15%. Only the silt and clay combined fraction are determined by sieving therefore the volume change potential is estimated from the percentage passing the 63µm sieve. NHBC Standards Chapter 4.2 states that a soil is shrinkable if the percentage of silt and clay passing the 63µm sieve is greater than 35% and the Plasticity Index is greater than 10%.

(The Particle Size Distribution Tests were undertaken in accordance with BS 1377: Part 2: 1990 Clause 9)

Appendix C.3 Geotechnical In-Situ and Laboratory Results

Soakaway Calculations

Soakaway Te	est No.	TPSK1A Tes	t 1			
Contract:		Kingston What	arf			
Contract No		21091				
Field Test					Trial Pit Log (include details of groundwa See trial Pit record	ater)
Depth of Pit			1.95	m	_	
Width of Pit			0.60	m	_	
Length of Pit	t		1.70	m	_	
Depth of Pit	Soaked		0.53	m	-	
ap50			2.239	m2	_	
Vp75-25		-	•	m3	_	
t75-25		-		min	_	
water used			0.5406	m3	_	
f		1	not calculated	m/sec.	_	
Field Data	l					
Depth to	Elapsed	Head of	Head of	-	T75 T25	
Water	Time	Water	Water	-		
(m)	(min)	(% of Ho)	(m)	_	· 	
1.42	1	100	0.53	-		
1 42	4	100	0.53	- 100		
1.42	10	100	0.53	-	-	
1.42	18	100	0.53	_	-	
1.41	40	102	0.54	-	-	
1.41	55	102	0.54	_	-	
1.38	75	108	0.57	80	+	
1.38	96	108	0.57	-	Ģ	
				-	4	
				-	-	
				<u></u>	4	
				- H 60	+	
				- %	-	
				- v	-	
				- lea	4	
					-	
				- 40	+	
				-	-	
				_	1	
				-	1	
				-	Ĭ	
				_ 20	+	
				-	-	
				-	-	
				-	1	
T75	0.000) 75		- 0	1	ł
T25	0.000) 25		- 3	0 50 100 15	50
T75-25	0.000	Derived from	Best Fit	-	Elapsed Time (min)	
				_		
Comment	S			_		

Telephone:

. Facsimile: 01737 814 221

01737 812 557

Newton House, Cross Road, Tadworth

Surrey, KT20 5SR

Contract Number: 69137

Client Ref: 21091 Client PO: 21091

> Client: Soils Limited Newton House Cross Road Tadworth Surrey KT20 5SR

Date Received: 07-11-2023 Date Completed: 16-11-2023 Report Date: 16-11-2023

This report has been checked and approved by:

Qty

6

B. Evons

Brendan Evans Office Administrator

Contract Title: Kingston Wharf For the attention of: Tom Rees-Blanchard

Test Description

Samples Received - @ Non Accredited Test

- @ N	Ion Accredited Test	
Mois BS137	sture Content of Soil 77 : Part 2 : Clause 3.2 : 1990 - * UKAS	2
1 Po BS 13	Pint Liquid & Plastic Limit 377:1990 - Part 2 : 4.4 & 5.3 - * UKAS	2
PSD BS 13	Wet & Dry Sieve method 377:1990 - Part 2 : 9.2 - * UKAS	1
Quic 38m BS 13	ck Undrained Triaxial Compression test - single specimen at one confining pressure (100mm or m diameter) 377:1990 - Part 7 : 8 - * UKAS	1
Dete *Plea ISRM	ermination of Point Load Value Axial or Diametrical including WC ase note GSTL is not accredited for the water content of rock* Suggested Method for Point Load Strength - * UKAS	2
Disp	oosal of samples for job	1
Notes:	Observations and Interpretations are outside the UKAS Accreditation * - denotes test included in laboratory scope of accreditation # - denotes test carried out by approved contractor @ - denotes non accredited tests	
This certi relate on GEO Site	ificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein ly to the material supplied to the laboratory. This test report/certificate shall not be reproduced except in full, without the approval of e & Testing Services Ltd. Any opinions or interpretations stated - within this report/certificate are excluded from the laboratories UKAS accreditation.	
Approv Brendar Richard Wayne	red Signatories: n Evans (Office Administrator) - Darren Bourne (Quality Senior Technician) - Paul Evans (Director) I John (Quality/Technical Manager) - Shaun Jones (Laboratory manager) - Shaun Thomas (Site Manager) Honey (Human Resources/ Health and Safety Manager)	

NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377:1990 - Part 2 : 4.4 & 5.3)

Contract Number

69137

0513

Project Name

Date Tested

Kingston Wharf

13/11/2023

DESCRIPTIONS

Sample/Hole Reference	Sample Number	Sample Type	D	epth (r	n)	Descriptions
BH1		В	2.55	-	2.75	Brown fine to medium gravelly silty CLAY
BH1		D	7.50	-		Brown fine to medium gravelly silty CLAY
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

Operator

Owain Davies

	~	-	
	G	3	
GEOTECHNICA	L SITE & T	ESTING LA	BORATORIES

NATURAL MOISTURE, LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377:1990 - Part 2 : 4.4 & 5.3)

Contract Number

Project Name

Date Tested

69137

Kingston Wharf

BS 5930:2015+A1:2020

David Edwards

O CC	TIS	ingle Sta	age Unconso	lidat	ed-Un	drained Tri	axial	Contract Nur	nber	69137	
GEOTECHNICAL SITE & TESTING L	ABORATORIES		BS 1377 :	1 est 1990		Borehole/Pit	No.	BH1			
Project Nan	me		Kings	ston W	harf	Sample N	D.				
			Depth Top ((m)	6.50						
Soil Descript	tion		Brown	Silty C	CLAY			Depth Base	(m)	6.95	
Date Teste	ed		13/	11/202	23			Sample Tv	ne	UT100	
				11/202				Onemater		landar	
								Operator		Jordan	
120 —											
100 -											
80 -			·								
kPa											
ress											
09 or St											
viato											
De											
40 —											
20											
	1										
0 /	••••••••••••••••••••••••••••••••••••••	5.0	0	10 0	0	15	00	20 (0		0
0.00)	5.0	0	10.0	Axia	I strain %	.00	20.0	0	23.0	
Moisture	Content (%)		28			Notes.					
Bulk Den	nsity (Mg/m ³)		1.96								
Dry Dens	sity (Mg/m ³)		1.53								
Specimen	Length (mm	1)	208.9								
Cell Pres	ssure (kPa)		101.1					1			
Deviator	Stress (kPa)	,	111								
Undrained She	ear Strength	(kPa)	56								
Failure	Strain (%)		20								
Mode (Of Failure		Compound				1				
Membrane L	Jsed/Thickn	ess	Rubber/0.4m	n			5			ales.	
Rate of S	Suain (70/1111)	1.32								
						Failur	e Sketch.				
											S
										2788	

 Contract Number
 Contract Number
 Point Load Test

 Contract Number
 69137

Contract Number	69137	
Project Name	Kingston Wharf	
Sample Type	Core	
Date Tested	09/11/2023	
	*Please note that GSTL is not accredited for the water content of rock	

Hole	De	epth (r	n)	Sample No	Test	Туре	Width	Platen Seperation	Failure Load	Equivalent Diameter	Point Load	Size Factor	Point Load Index	Moisture Content	Description	Angle Between Plane of Anisotropy & Core	Type of Anisotropy (Bedding or
BUI	10.20		10.40		i i u i u i u i	1//	60	30	0.02	47.97	0.01	0.08	0.01	26.2	CLAY	AXIS	Gleavage)
BHI	10.20	-	10.40		1		60	30	0.02	47.87	0.01	0.98	0.01	20.2			
ВПІ	12.00	-	12.30		1		108	49	8.40	82.09	1.25	1.25	1.50	3.0	SILISTONE		
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
	1	-															
		-															
	t	<u> </u>															
	<u> </u>	-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
		-															
	-	-															
	<u> </u>	-															
	<u> </u>	-															
	<u> </u>				<u> </u>												
		-															
		-															
		-															
											-						
		-															
		-															
	t	-			<u> </u>												
		-															
		-															
		-															
		-															
		-															
	<u> </u>																
		-															

Key	Reported As
Width	(W) mm
Platen Separation	(D) mm
Failure Load	(P) kN
Equivalent Diameter	(De) mm
Point Load	(Is) MPa
Size Factor	(F)
Point Load Index	(ls(50)) MPa
Moisture Content	%
Description	SC

UKAS TESTING 2788

Tom Rees-Blanchard Soils Ltd Thomas Telford House - Unit 11 Sun Valley Business Park Winnall Close Winchester SO23 0LB

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 23-12744

Site Reference:	Kingston Wharf
Project / Job Ref:	21091
Order No:	None Supplied
Sample Receipt Date:	13/10/2023
Sample Scheduled Date:	13/10/2023
Report Issue Number:	1
Reporting Date:	19/10/2023

Authorised by:

Mul

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Page 2 of 5

٦

Soil Analysis Certificate							
DETS Report No: 23-12744			Date Sampled	09/10/23	09/10/23	09/10/23	
Soils Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	
Site Reference: Kingston Wharf			TP / BH No	BH1	BH1	BH1	
Project / Job Ref: 21091			Additional Refs	None Supplied	None Supplied	None Supplied	
Order No: None Supplied			Depth (m)	3.00	8.00	10.50	
Reporting Date: 19/10/2023		D	ETS Sample No	679992	679993	679994	
			-		-		-
Determinand	Unit	RL	Accreditation				
pH	pH Units	N/a	MCERTS	8.2	7.9	8.2	
Total Sulphate as SO ₄	mg/kg	< 200	MCERTS	1566	742	823	
Total Sulphate as SO ₄	%	< 0.02	MCERTS	0.16	0.07	0.08	
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	206	202	154	
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.21	0.20	0.15	
Total Sulphur	%	< 0.02	NONE	0.06	0.05	0.05	
Ammonium as NH ₄	mg/kg	< 0.5	MCERTS	8.9	7.5	9.2	
Ammonium as NH ₄	mg/l	< 0.05	MCERTS	0.89	0.75	0.92	
W/S Chloride (2:1)	mg/kg	< 1	MCERTS	724	234	333	
W/S Chloride (2:1)	mg/l	< 0.5	MCERTS	362	117	166	
Water Soluble Nitrate (2:1) as NO ₃	mg/kg	< 3	MCERTS	4	< 3	< 3	
Water Soluble Nitrate (2:1) as NO ₃	mg/l	< 1.5	MCERTS	1.9	< 1.5	< 1.5	
MUC Magazation		< 0.1	NONE	77	6 5	F 2	

 W/S Magnesium
 mg/l
 < 0.1</th>
 NONE
 7.7
 6.5
 5.2

 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion
 Subcontracted analysis (S)

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 23-12744	
Soils Ltd	
Site Reference: Kingston Wharf	
Project / Job Ref: 21091	
Order No: None Supplied	
Reporting Date: 19/10/2023	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
679992	BH1	None Supplied	3.00	23.6	Grey clay
679993	BH1	None Supplied	8.00	21.7	Brown sand
679994	BH1	None Supplied	10.50	18.2	Grey sandy clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample ^{I/S} Unsuitable Sample ^{U/S}

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Soil Analysis Certificate - Methodology & Miscellaneous Information					
DETS Report No: 23-12744					
Soils Ltd					
Site Reference: Kingston Wharf					
Project / Job Ref: 21091					
Order No: None Supplied					
Reporting Date: 19/10/2023					

Matrix	Analysed	Determinand	Brief Method Description	Method
Soil		Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 bot water extract followed by ICP-OES	F012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by agua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5 diphenvlcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium suipnate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
SOIL	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/nexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
Soil	D	Eluorida - Water Soluble	neadspace GC-MS	F009
Soil		Eraction Organic Carbon (EOC)	Determination of Fluonde by exclusion analyser	E009
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	F027
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	F027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) suppate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soll	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil		Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by for chromatography	E009 E014
Soil	AR	Sulphate (as SOT) - Water Soluble (2.1)	Determination of sulphide by distillation followed by colorimetry	F018
Soil	D	Sulphue Sulphur - Total	Determination of total subhur by extraction with aqua-regia followed by ICP-OFS	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) subhate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	ΔR	VUUS VPH (୮၄-୮ጽ & ୮ጽ-୮10)	Determination of volatile organic compounds by neadspace GC-MS & C8-C10 by GC-FID	F001
	Dried	ערח (נט-נס מ נס-נוט)	שביבירוווווממטה טר וועמוטנמוטטווג נטינט אין וובמטגאמנע טנייוג א גע נטינדע אין טנידעט	LUUI

D Dried AR As Received

t of HWOL Acronyms and Operators	
IS Report No: 23-12744	
ls Ltd	
e Reference: Kingston Wharf	
ject / Job Ref: 21091	
ler No: None Supplied	
porting Date: 19/10/2023	

Acronym	Description
HS	Headspace analysis
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent
CU	Clean-up - e.g. by florisil, silica gel
1D	GC - Single coil gas chromatography
2D	GC-GC - Double coil gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics only
AR	Aromatics only
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total

Det - Acronym

Appendix D Chemical Laboratory Analyses

Appendix D.I Chemical Laboratory Results

Tom Rees-Blanchard Soils Ltd Thomas Telford House - Unit 11 Sun Valley Business Park Winnall Close Winchester SO23 0LB

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 23-12742

Site Reference:	Kingston Wharf
Project / Job Ref:	21091
Order No:	21091
Sample Receipt Date:	13/10/2023
Sample Scheduled Date:	13/10/2023
Report Issue Number:	1
Reporting Date:	19/10/2023

Authorised by:

Mul

Dave Ashworth Technical Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

For Topsoil and WAC analysis the expanded uncertainty measurement should be considered while evaluating results against compliance values.

Soil Analysis Certificate

DETS Ltd Unit 1, Rose Lane Industrial Estate Rose Lane Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

DETS Report No: 23-12742			Date Sampled	None Supplied				
Soils Ltd			Time Sampled	None Supplied				
Site Reference: Kingston Wharf		TP / BH No		TP2	TPSK1	TP3	TP5	TP6
Project / Job Ref: 21091			Additional Refs	None Supplied				
Order No: 21091			Depth (m)	0.30	0.50	0.70	0.20	2.50
Reporting Date: 19/10/2023		D	ETS Sample No	679985	679986	679987	679988	679989
Determinand	Unit	RL	Accreditation	(n)		(n)		
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected	Detected	Not Detected	Not Detected	Not Detected
Sample Matrix ^(S)	Material Type	N/a	NONE		Loose Fibres			
Asbestos Type (S)	PLM Result	N/a	ISO17025		Chrysotile			
pH	pH Units	N/a	MCERTS	7.4	7.8	7.7	9.6	8.0
Total Cyanide	mg/kg	< 1	NONE		< 1	< 1	< 1	< 1
Free Cyanide	mg/kg	< 1	NONE		< 1	< 1	< 1	< 1
Organic Matter (SOM)	%	< 0.1	MCERTS	4.1	2.8	16.9	6.5	3.3
Arsenic (As)	mg/kg	< 2	MCERTS	4	8	18	13	11
W/S Boron	mg/kg	< 1	NONE	< 1	< 1	1.5	< 1	< 1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	0.5	< 0.2	0.4	0.6	< 0.2
Chromium (Cr)	mg/kg	< 2	MCERTS	3	11	15	10	14
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	< 2	< 2	< 2	< 2
Copper (Cu)	mg/kg	< 4	MCERTS	7	15	33	22	56
Lead (Pb)	mg/kg	< 3	MCERTS	3	81	140	127	18
Mercury (Hg)	mg/kg	< 1	MCERTS	< 1	< 1	< 1	< 1	< 1
Nickel (Ni)	mg/kg	< 3	MCERTS	4	7	12	10	21
Selenium (Se)	mg/kg	< 2	MCERTS	< 2	< 2	< 2	< 2	< 2
Vanadium (V)	mg/kg	< 1	MCERTS	10	23	32	20	23
Zinc (Zn)	mg/kg	< 3	MCERTS	18	30	194	111	58

 Total Phenols (monohydric)
 mg/kg
 < 2</th>
 NONE
 < 2</th>
 <

Soil Analysis Certificate	- Speciated PAHs							
DETS Report No: 23-1274	42		Date Sampled	None Supplied				
Soils Ltd			Time Sampled	None Supplied				
Site Reference: Kingston	Wharf		TP / BH No	TP2	TPSK1	TP3	TP5	TP6
Project / Job Ref: 21091			Additional Refs	None Supplied				
Order No: 21091			Depth (m)	0.30	0.50	0.70	0.20	2.50
Reporting Date: 19/10/2	.023	D	ETS Sample No	679985	679986	679987	679988	679989
			-					
Determinand	Unit	RL	Accreditation	(n)		(n)		
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	4.16	22.20	< 0.1
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	1.76	< 0.1
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	88.70	< 0.1
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.20	54.50	< 0.1
Phenanthrene	mg/kg	< 0.1	MCERTS	0.19	0.18	1.78	120	< 0.1
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	0.21	17.40	< 0.1
Fluoranthene	mg/kg	< 0.1	MCERTS	0.17	0.32	0.39	88.90	< 0.1
Pyrene	mg/kg	< 0.1	MCERTS	0.15	0.27	0.47	60.30	< 0.1
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	0.15	0.29	19.90	< 0.1
Chrysene	mg/kg	< 0.1	MCERTS	0.13	0.15	0.31	13.90	< 0.1
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	0.19	0.22	8.44	< 0.1
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	3.10	< 0.1
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	0.14	0.13	5.79	< 0.1
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	1.43	< 0.1
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.37	< 0.1
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1	< 0.1	< 0.1	0.91	< 0.1
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6	< 1.6	8.2	508	< 1.6

Soil Analysis Certificate	- EPH Texas Bande	ed				
DETS Report No: 23-1274	12		Date Sampled	None Supplied		
Soils Ltd			Time Sampled	None Supplied		
Site Reference: Kingston	Wharf		TP / BH No	TP2		
Project / Job Ref: 21091			Additional Refs	None Supplied		
Order No: 21091			Depth (m)	0.30		
Reporting Date: 19/10/2	023	D	ETS Sample No	679985		
					-	
Determinand	Unit	RL	Accreditation	(n)		
EPH Texas (C6 - C8) : HS 1D MS Total	mg/kg	< 0.05	NONE	< 0.05		
EPH Texas (>C8 - C10) : FH_1D_Total	mg/kg	< 1	MCERTS	< 1		
EPH Texas (>C10 - C12) : FH 1D Total	mg/kg	< 1	MCERTS	< 1		
EPH Texas (>C12 - C16) : EH 1D Total	mg/kg	< 1	MCERTS	2		
EPH Texas (>C16 - C21) : EH 1D Total	mg/kg	< 1	MCERTS	5		
EPH Texas (>C21 - C40) : EH_1D_Total	mg/kg	< 6	MCERTS	14		
EPH Texas (C6 - C40) : HS_1D_MS+EH_1D_Total	mg/kg	< 6	NONE	22		

Soil Analysis Certificate	- TPH CWG Bande	d						
DETS Report No: 23-12742			Date Sampled	None Supplied				
Soils Ltd		Time Sampled		None Supplied				
Site Reference: Kingston	Wharf		TP / BH No	TP2	TPSK1	TP3	TP5	TP6
Project / Job Ref: 21091			Additional Refs	None Supplied				
Order No: 21091			Depth (m)	0.30	0.50	0.70	0.20	2.50
Reporting Date: 19/10/2	023	D	ETS Sample No	679985	679986	679987	679988	679989
Determinand	Unit	RL	Accreditation	(n)		(n)		
Aliphatic >C5 - C6 : HS 1D MS AL	mg/kg	< 0.01	NONE		< 0.01	< 0.01	< 0.01	< 0.01
Aliphatic >C6 - C8 :	mg/kg	< 0.05	NONE		< 0.05	< 0.05	< 0.05	< 0.05
Aliphatic >C8 - C10 :	ma/ka	< 2	MCERTS		< 2	17	3	< 2
EH_CU_1D_AL Aliphatic >C10 - C12 :			MCEDIC				10	
EH_CU_1D_AL	mg/kg	< 2	MCERIS		< 2	0	10	< 2
EH_CU_1D_AL	mg/kg	< 3	MCERTS		< 3	12	112	< 3
Aliphatic >C16 - C21 : EH CU 1D AL	mg/kg	< 3	MCERTS		< 3	6	149	< 3
Aliphatic >C21 - C34 : EH CU 1D AL	mg/kg	< 10	MCERTS		< 10	< 10	188	< 10
Aliphatic (C5 - C34) : HS_1D_MS+EH_CU_1D_AL	mg/kg	< 21	NONE		< 21	44	469	< 21
Aromatic >C5 - C7 : HS 1D MS AR	mg/kg	< 0.01	NONE		< 0.01	< 0.01	< 0.01	< 0.01
Aromatic >C7 - C8 : HS 1D MS AR	mg/kg	< 0.05	NONE		< 0.05	< 0.05	< 0.05	< 0.05
Aromatic >C8 - C10 : FH_CU_1D_AR	mg/kg	< 2	MCERTS		< 2	12	< 2	< 2
Aromatic >C10 - C12 : EH_CU_1D_AR	mg/kg	< 2	MCERTS		< 2	11	44	< 2
Aromatic >C12 - C16 : FH_CU_1D_AR	mg/kg	< 2	MCERTS		< 2	44	383	< 2
Aromatic >C16 - C21 : FH_CU_1D_AR	mg/kg	< 3	MCERTS		< 3	49	530	< 3
Aromatic >C21 - C35 : EH CU 1D AR	mg/kg	< 10	MCERTS		< 10	65	529	< 10
Aromatic (C5 - C35) : HS_1D_MS+EH_CU_1D_AR	mg/kg	< 21	NONE		< 21	181	1486	< 21
Total >C5 - C35 : HS_1D_MS+EH_CU_1D_Tot	mg/kg	< 42	NONE		< 42	225	1955	< 42

Soli Analysis Certificate	- BIEX / MIBE							
DETS Report No: 23-1274	12		Date Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Soils Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Kingston	Wharf	TP / BH No		TPSK1	TP3	TP5	TP6	
Project / Job Ref: 21091		-	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: 21091			Depth (m)	0.50	0.70	0.20	2.50	
Reporting Date: 19/10/2	023	D	ETS Sample No	م 679986 679987 679988 679989				
Determinand	Unit	RL	Accreditation		(n)			
Determinand Benzene : HS_1D_MS	Unit ug/kg	RL < 2	Accreditation MCERTS	< 2	(n) < 2	< 2	< 2	
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS	Unit ug/kg ug/kg	RL < 2 < 5	Accreditation MCERTS MCERTS	< 2 < 5	(n) < 2 8	< 2 < 5	< 2 < 5	
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS	Unit ug/kg ug/kg ug/kg	RL < 2 < 5 < 2	Accreditation MCERTS MCERTS MCERTS	< 2 < 5 < 2	(n) < 2 8 < 2	< 2 < 5 < 2	< 2 < 5 < 2	
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS	Unit ug/kg ug/kg ug/kg ug/kg	RL < 2 < 5 < 2 < 2 < 2	Accreditation MCERTS MCERTS MCERTS MCERTS	< 2 < 5 < 2 < 2	(n) < 2 8 < 2 < 2 < 2	< 2 < 5 < 2 3	< 2 < 5 < 2 < 2	
Determinand Benzene : HS_1D_MS Toluene : HS_1D_MS Ethylbenzene : HS_1D_MS p & m-xylene : HS_1D_MS o-xylene : HS_1D_MS	Unit ug/kg ug/kg ug/kg ug/kg ug/kg	RL < 2	Accreditation MCERTS MCERTS MCERTS MCERTS MCERTS	< 2 < 5 < 2 < 2 < 2 < 2 < 2	(n) < 2 8 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 < 5 < 2 3 4	< 2 < 5 < 2 < 2 < 2 < 2 < 2	

Soil Analysis Certificate	 PCB (7 Congener 	s)						
DETS Report No: 23-1274	DETS Report No: 23-12742		Date Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Soils Ltd			Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	
Site Reference: Kingston	Wharf		TP / BH No	TPSK1	TP3	TP5	TP6	
Project / Job Ref: 21091		4	Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	
Order No: 21091			Depth (m)	0.50	0.70	0.20	2.50	
Reporting Date: 19/10/2	Reporting Date: 19/10/2023			679986	679987	679988	679989	
			-			-		
Determinand	Unit	RL	Accreditation		(n)			
PCB Congener 28	mg/kg	0.008	NONE	< 0.008	< 0.008	< 0.008	< 0.008	
PCB Congener 52	mg/kg	0.008	NONE	< 0.008	< 0.008	< 0.008	< 0.008	
PCB Congener 101	mg/kg	: 0.008	NONE	< 0.008	< 0.008	0.564	< 0.008	
PCB Congener 118	mg/kg	0.008	NONE	< 0.008	< 0.008	0.385	< 0.008	
PCB Congener 138	mg/kg	0.008	NONE	< 0.008	< 0.008	0.575	< 0.008	
PCB Congener 153	mg/kg	: 0.008	NONE	< 0.008	< 0.008	0.592	< 0.008	
PCB Congener 180	mg/kg	0.008	NONE	< 0.008	< 0.008	< 0.008	< 0.008	
Total PCB (7 Congeners)	mg/kg	< 0.1	NONE	< 0.1	< 0.1	2.1	< 0.1	

DETS Ltd Lenham Heath Maidstone Kent ME17 2JN Tel : 01622 850410

Waste Acceptance Criteria	Analytical Ce	ertificate - B	S EN 12457	/2				
DETS Report No: 23-12742		Date Sampled	None Supplied			Landfill Wast	e Acceptance	Criteria Limits
Soils Ltd		Time Sampled	None Supplied					
Site Reference: Kingston Wharf TP / BH		TP / BH No	TP2				Stable Non-	
Project / Job Ref: 21091 Additional Refs Order No: 21091 Depth (m)		Additional Refs	None Supplied			Inert Waste	HAZARDOUS	Hazardous Waste
		Depth (m)	0.30		Lanum	hazardous	Landfill	
Reporting Date: 19/10/2023		DETS Sample No	679985				Lunam	
Determinand	Unit	MDL						
TOC ^{MU}	%	< 0.1	2.4			3%	5%	6%
Loss on Ignition ^{MU}	%	< 0.01	1.50					10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05			6		
Sum of PCBs	mg/kg	< 0.1	< 0.1			1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500		
	mg/kg	< 1.7	< 1.7			100		
рН ^{MU}	pH Units	N/a	7.4				>6	
Arid Neuturlinetien Conseite			2.2				To be	To be such as a
Acid Neutralisation Capacity	moi/kg (+/-)	< 1	3.3				evaluated	To be evaluated
			10.1		Cumulative	Limit values	for compliance	leaching test
Eluate Analysis			10.1		10:1	using BS E	N 12457-3 at	L/S 10 l/kg
			mg/l		mg/kg		(mg/kg)	
Arsenic ^U			< 0.01		< 0.1	0.5	2	25
Barium ^U	1		< 0.02		< 0.2	20	100	300
Cadmium ^U	1		< 0.0005		< 0.005	0.04	1	5
Chromium ^U	1		< 0.005		< 0.05	0.5	10	70
Copper ^U			< 0.01		< 0.1	2	50	100
Mercury ^U			< 0.0005		< 0.005	0.01	0.2	2
Molyhdenum ^U	1		< 0.001		< 0.005	0.5	10	30
Nickol ^U	1		< 0.001		< 0.01	0.5	10	40
	1		< 0.007		< 0.07	0.1	10	50
Antimony	-		< 0.005		< 0.05	0.5	0.7	5
Anumony	4		< 0.005		< 0.05	0.00	0.7	7
	-		< 0.005		< 0.05	0.1	0.5	/
Zinc	4		< 0.005		< 0.05	4	50	200
Chloride	-		10.8		108	800	15000	25000
Fluoride	-		< 0.5		< 5	10	150	500
Sulphate ⁰			12.8		128	1000	20000	50000
TDS			96		960	4000	60000	100000
Phenol Index ^U	4		< 0.01		< 0.1	1	-	-
DOC ^U			9.3		92.9	500	800	1000
Leach Test Information								
		-						
Sample Mass (kg)			0.10					
Dry Matter (%)			85.8					
Moisture (%)			16.6					
Stage 1			10.0					
Volumo Elusto I 10 (litros)			0 00					
VOIUTHE ETUALE LTU (HTTES)			0.88					
Analytical results are expressed on a dry	y weight basis wh	ere samples are a	assisted-dried at	less than 30°C. The Samples	s Descriptions page de	scribes if the test i	s performed on the	e dried or as-

d portioi

Stated limits are for guidance only and DETS Ltd cannot be held responsible for any discrepencies with current legislation

M Denotes MCERTS accredited test U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions	
DETS Report No: 23-12742	
Soils Ltd	
Site Reference: Kingston Wharf	
Project / Job Ref: 21091	
Order No: 21091	
Reporting Date: 19/10/2023	

DETS Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
^ 679985	TP2	None Supplied	0.30	14.2	White chalk
^ 679986	TPSK1	None Supplied	0.50	12.1	Brown sandy clay with stones
^ 679987	TP3	None Supplied	0.70	10	Black sandy gravel with stones and concrete
^ 679988	TP5	None Supplied	0.20	6.5	Brown gravelly sand with stones and concrete
^ 679989	TP6	None Supplied	2.50	21.8	Grey clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample^{1/S} Unsuitable Sample^{1/S} ^ no sampling date provided; unable to confirm if samples are within acceptable holding times

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 23-12742
Soils Ltd
Site Reference: Kingston Wharf
Project / Job Ref: 21091
Order No: 21091
Reporting Date: 19/10/2023

Matrix	Analysed	Determinand	terminand Brief Method Description	
	On			No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BIEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soll	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	۸D	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
3011	AK	C12-C16, C16-C21, C21-C40)	headspace GC-MS	L004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	E004
Soil	٨D	Moisture Content	Calculate contant: determined aravimetrically	E003
Soil		Nitrate - Water Soluble (2:1)	Determination of nitrate by outraction with water & analysed by ion chromatography	E005
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (TI) subpate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and beyone followed by GC-MS	F008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	F011
Soil	AR	nH	Determination of nH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	F021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	F009
Soil	D	Sulphate (as SO4) - Total	Determination of total supported by extraction with 10% HCI followed by UCP-OES	E003
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of suphate by extraction with water & analysed by ion chromatography	F009
Soil	<u>р</u>	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OFS	F014
Soil	AR	Sulphace (as so i) Water solable (21)	Determination of subhide by distillation followed by colorimetry	F018
Soil		Sulphur - Total	Determination of statal sulphure by extraction with acuargoing followed by ICP_OES	E010
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by cc-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TFM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with irron (II) subpate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Tron (11) Suppare Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
5011	AK		Determination of Voldule organic compounds by neadspace GC-MS % C9 C10 by CC CTD	E001
	AK	۷۲۲ (LD-L8 & L8-L10)	ערידוט אין	EUUI

Water Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 23-12742
Soils Ltd
Site Reference: Kingston Wharf
Project / Job Ref: 21091
Order No: 21091
Reporting Date: 19/10/2023

Matrix	Analysed On	Determinand	Brief Method Description	Method No		
Water	UF	Alkalinity	etermination of alkalinity by titration against hydrochloric acid using bromocresol green as the end oint			
Water	F	Ammoniacal Nitrogen	etermination of ammoniacal nitrogen by discrete analyser.			
Water	UF	BTEX	Determination of BTEX by headspace GC-MS	E101		
Water	F	Cations	Determination of cations by filtration followed by ICP-MS	E102		
Water	UF	Chemical Oxygen Demand (COD)	Determination using a COD reactor followed by colorimetry	E112		
Water	F	Chloride	Determination of chloride by filtration & analysed by ion chromatography	E109		
Water	F	Chromium - Hexavalent	Determination of hexavalent chromium by acidification, addition of 1,5 diphenylcarbazide followed by	E116		
Water	UF	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E115		
Water	UF	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E115		
Water	UF	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E115		
Water	UF	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through liquid:liquid extraction with cyclohexane	E111		
Water	F	Diesel Range Organics (C10 - C24)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104		
Water	F	Dissolved Organic Content (DOC)	Determination of DOC by filtration followed by low heat with persulphate addition followed by IR deter	E110		
Water	UF	Electrical Conductivity	Determination of electrical conductivity by electrometric measurement	E123		
Water	F	EPH (C10 – C40)	Determination of liquid:liquid extraction with hexane followed by GC-FID	E104		
Water	F	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of liquid:liquid extraction with hexane followed by GC-FID for C8 to C40. C6 to C8 by	E104		
Wator	E	<u> </u>	Inclusive CC-115	E100		
Water	F F	Fluorite	Determination of Fluoride by Intration & analysed by for Chromatography	E109		
VValer	F		Determination of Califord and Mg by ICP-MS followed by Calculation	E102 E201		
Leachate	F	Leachate Preparation - NRA	Dased on National Kivers Authority leaching lest 1994	E301		
Leachate	F	Leachate Preparation - WAC	Based on BS EN 12457 PCI, 2, 3	E302		
water	F	Metals	Determination of metals by filtration followed by ICP-MS	E102		
Water	F	Mineral OII (C10 - C40)	Determination of liquid: liquid extraction with nexane followed by GI-FID	E104		
Water	F	Nitrate Manabudzia Dhanal	Determination of nitrate by filtration & analysed by ion chromatography	E109		
water	UF	Mononyaric Prienoi	Determination of phenois by distillation followed by colorimetry	EIZI		
Water	F	PAH - Speciated (EPA 16)	dichloromethane followed by GC-MS	E105		
Water	F	PCB - 7 Congeners	Determination of PCB compounds by concentration through SPE cartridge, collection in dichloromethan	E108		
Water	UF	Petroleum Ether Extract (PEE)	Gravimetrically determined through liquid:liquid extraction with petroleum ether	E111		
Water	UF	pH	Determination of pH by electrometric measurement	E107		
Water	F	Phosphate	Determination of phosphate by filtration & analysed by ion chromatography	E109		
Water	UF	Redox Potential	Determination of redox potential by electrometric measurement	E113		
Water	F	Sulphate (as SO4)	Determination of sulphate by filtration & analysed by ion chromatography	E109		
Water	UF	Sulphide	Determination of sulphide by distillation followed by colorimetry	E118		
Water	F	SVOC	Determination of semi-volatile organic compounds by concentration through SPE cartridge, collection in dichloromethane followed by GC-MS	E106		
Water	UF	Toluene Extractable Matter (TEM)	Gravimetrically determined through liquid: liquid extraction with toluene	E111		
Water	UF	Total Organic Carbon (TOC)	Low heat with persulphate addition followed by IR detection	E110		
Water	F	TPH CWG (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C35. C5 to C8 by headspace GC-MS	E104		
Water	F	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of liquid:liquid extraction with hexane, fractionating with SPE followed by GC-FID for C8 to C44. C5 to C8 by headspace GC-MS	E104		
Water	UF	VOCs	Determination of volatile organic compounds by headspace GC-MS	E101		
Water	UF	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E101		

F Filtered UF Unfiltered

st of HWOL Acronyms and Operators	
TS Report No: 23-12742	
ils Ltd	
te Reference: Kingston Wharf	
oject / Job Ref: 21091	
der No: 21091	
porting Date: 19/10/2023	

Acronym	Description			
HS	Headspace analysis			
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent			
CU	Clean-up - e.g. by florisil, silica gel			
1D	GC - Single coil gas chromatography			
2D	GC-GC - Double coil gas chromatography			
Total	Aliphatics & Aromatics			
AL	Aliphatics only			
AR	Aromatics only			
#1	EH_2D_Total but with humics mathematically subtracted			
#2	EH_2D_Total but with fatty acids mathematically subtracted			
_	Operator - underscore to separate acronyms (exception for +)			
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total			

Det - Acronym
Benzene - HS_1D_MS
EPH Texas (C10 - C12) - EH_1D_Total
EPH Texas (C12 - C16) - EH_1D_Total
EPH Texas (C16 - C21) - EH_1D_Total
EPH Texas (C21 - C40) - EH_1D_Total
EPH Texas (C6 - C40) - HS_1D_MS+EH_1D_Total
EPH Texas (C6 - C8) - HS_1D_MS_Total
EPH Texas (C8 - C10) - EH_1D_Total
Ethylbenzene - HS_1D_MS
MTBE - HS_1D_MS
Mineral Oil (C10 - C40) (BS EN 12457-2) - EH_CU_1D_AL
TPH CWG - Aliphatic >C10 - C12 - EH_CU_1D_AL
TPH CWG - Aliphatic >C12 - C16 - EH_CU_1D_AL
TPH CWG - Aliphatic >C16 - C21 - EH_CU_1D_AL
TPH CWG - Aliphatic >C21 - C34 - EH_CU_1D_AL
TPH CWG - Aliphatic >C5 - C6 - HS_1D_MS_AL
TPH CWG - Aliphatic >C6 - C8 - HS_1D_MS_AL
TPH CWG - Aliphatic >C8 - C10 - EH_CU_1D_AL
TPH CWG - Aliphatic C5 - C34 - HS_1D_MS+EH_CU_1D_AL
TPH CWG - Aromatic >C10 - C12 - EH_CU_1D_AR
TPH CWG - Aromatic >C12 - C16 - EH_CU_1D_AR
TPH CWG - Aromatic >C16 - C21 - EH_CU_1D_AR
TPH CWG - Aromatic >C21 - C35 - EH_CU_1D_AR
TPH CWG - Aromatic >C5 - C35 - HS_1D_MS+EH_CU_1D_AR
TPH CWG - Aromatic >C5 - C7 - HS_1D_MS_AR
TPH CWG - Aromatic >C7 - C8 - HS_1D_MS_AR
TPH CWG - Aromatic > C8 - C10 - EH_CU_1D_AR
TPH CWG - Total >C5 - C35 - HS_1D_MS+EH_CU_1D_Total
Toluene - HS_1D_MS
Iotal B1EX (BS EN 12457-2) - HS_1D_MS_Total
m & p-xylene - HS_1D_MS
lo-xylene - HS_1D_MS

Parameter	Matrix Type	Suite Reference	Expanded Uncertainity Measurement	Unit
тос	Soil	BS EN 12457	10.4	%
Loss on Ignition	Soil	BS EN 12457	16.9	%
BTEX	Soil	BS EN 12457	14.0	%
Sum of PCBs	Soil	BS EN 12457	21.1	%
Mineral Oil	Soil	BS EN 12457	9.0	%
Total PAH	Soil	BS EN 12457	17.9	%
рН	Soil	BS EN 12457	0.282	Units
Acid Neutralisation Capacity	Soil	BS EN 12457	18.0	%
Arsenic	Leachate	BS EN 12457	19.5	%
Barium	Leachate	BS EN 12457	12.2	%
Cadmium	Leachate	BS EN 12457	17.2	%
Chromium	Leachate	BS EN 12457	20.7	%
Copper	Leachate	BS EN 12457	14.1	%
Mercury	Leachate	BS EN 12457	16.7	%
Molybdenum	Leachate	BS EN 12457	13.3	%
Nickel	Leachate	BS EN 12457	14.0	%
Lead	Leachate	BS EN 12457	12.1	%
Antimony	Leachate	BS EN 12457	16.1	%
Selenium	Leachate	BS EN 12457	15.5	%
Zinc	Leachate	BS EN 12457	14.0	%
Chloride	Leachate	BS EN 12457	15.7	%
Fluoride	Leachate	BS EN 12457	19.1	%
Sulphate	Leachate	BS EN 12457	27.6	%
TDS	Leachate	BS EN 12457	10.0	%
Phenol Index	Leachate	BS EN 12457	12.9	%
DOC	Leachate	BS EN 12457	20.4	%
Clay Content	Soil	BS 3882: 2015	15.0	%
Silt Content	Soil	BS 3882: 2015	14.0	%
Sand Content	Soil	BS 3882: 2015	13.0	%
Loss on Ignition	Soil	BS 3882: 2015	16.9	%
pН	Soil	BS 3882: 2015	0.282	Units
Carbonate	Soil	BS 3882: 2015	12.0	%
Total Nitrogen	Soil	BS 3882: 2015	12.0	%
Phosphorus (Extractable)	Soil	BS 3882: 2015	24.0	%
Potassium (Extractable)	Soil	BS 3882: 2015	20.0	%
Magnesium (Extractable)	Soil	BS 3882: 2015	26.0	%
Zinc	Soil	BS 3882: 2015	19.8	%
Copper	Soil	BS 3882: 2015	23.2	%
Nickel	Soil	BS 3882: 2015	32.6	%
Available Sodium	Soil	BS 3882: 2015	23.0	%
Available Calcium	Soil	BS 3882: 2015	23.0	%
Electrical Conductivity	Soil	BS 3882: 2015	10.0	%

Tom Rees-Blanchard Soils Ltd Thomas Telford House - Unit 11 Sun Valley Business Park Winnall Close Winchester SO23 0LB

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 23-13780

Site Reference:	Kingston Wharf
Project / Job Ref:	21091
Order No:	21091
Sample Receipt Date:	07/11/2023
Sample Scheduled Date:	07/11/2023
Report Issue Number:	1
Reporting Date:	13/11/2023

Authorised by:

S.CZ

Steve Knight Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate				
DETS Report No: 23-13780	Date Sampled	None Supplied		
Soils Ltd	Time Sampled	None Supplied		
Site Reference: Kingston Wharf	TP / BH No	TPSK1		
Project / Job Ref: 21091	Additional Refs	None Supplied		
Order No: 21091	Depth (m)	0.50		
Reporting Date: 13/11/2023	DETS Sample No	684249		
			-	-
Determinand Unit	RI Accreditation			

 Asbestos Quantification (S)
 %
 < 0.001</th>
 ISO17025
 0.005

 Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion

Subcontracted analysis (S)

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 23-13780
Soils Ltd
Site Reference: Kingston Wharf
Project / Job Ref: 21091
Order No: 21091
Reporting Date: 13/11/2023

Matrix	Analysed	Determinand	Brief Method Description	Method
Soil		Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 bot water extract followed by ICP-OES	F012
Soil	AR	BTFX	Determination of BTEX by headspace GC-MS	F001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	F002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cvanide - Complex	Determination of complex cvanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	E004
0.1		<u>C12-C16, C16-C21, C21-C40</u>	headspace GC-MS	5000
Soll	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soll	D	Praction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil		TOC (Tetal Organic Carbon)	Determination of TOC by combustion analyser.	E027
Soil		Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E027 E020
Coil			Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	E010
501	D		titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenois - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soll	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soli	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCI followed by ICP-OES	E013
Soil	D D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of supplate by extraction with water followed by ICD_OEC	E009 F014
Soil	AR	Sulpride (ds 50-7) - Water Soluble (2.1) Sulphide	Determination of sulphide by distillation followed by colorimetry	F018
Soil	D	Sulphue Sulphur - Total	Determination of total sulphuce by extraction with aqua-regia followed by ICP-OFS	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric pitrate followed by colorimetry	E017
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) subset	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)), 4, Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE 2, cartridge for C8 to C44. C5 to C8 by headspace GC-MS 4)	
Soil			Determination of volatile organic compounds by headspace CC_MS & C2_C10 by CC_ETD	E001
<u> </u>	AK	ערה (נס-נס מ נט-נוט)		E001

of HWOL Acronyms and Operators	
S Report No: 23-13780	
Ltd	
Reference: Kingston Wharf	
ect / Job Ref: 21091	
r No: 21091	
rting Date: 13/11/2023	

Acronym	Description		
HS	Headspace analysis		
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent		
CU	Clean-up - e.g. by florisil, silica gel		
1D	GC - Single coil gas chromatography		
2D	GC-GC - Double coil gas chromatography		
Total	Aliphatics & Aromatics		
AL	Aliphatics only		
AR	Aromatics only		
#1	EH_2D_Total but with humics mathematically subtracted		
#2	EH_2D_Total but with fatty acids mathematically subtracted		
_	Operator - underscore to separate acronyms (exception for +)		
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total		

Det - Acronym

Dee Windsor Soils Ltd Thomas Telford House - Unit 11 Sun Valley Business Park Winnall Close Winchester SO23 0LB

Derwentside Environmental Testing Services Ltd Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 24-01544

Site Reference:	Kingston Wharf, East Cowes, Isle Of Wight
Project / Job Ref:	21091
Order No:	None Supplied
Sample Receipt Date:	15/02/2024
Sample Scheduled Date:	15/02/2024
Report Issue Number:	1
Reporting Date:	21/02/2024

Authorised by:

Sila

Steve Knight Customer Support Manager

Dates of laboratory activities for each tested analyte are available upon request.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 24-01544	Date Sampled	14/02/24	14/02/24	14/02/24	14/02/24	14/02/24
Soils Ltd	Time Sampled	None Supplied				
Site Reference: Kingston Wharf, East Cowes, Isle Of	TP / BH No	WSN1	WSN3	WSE1	WSE3	WSS1
Wight						
Project / Job Ref: 21091	Additional Refs	None Supplied				
Order No: None Supplied	Depth (m)	0.00 - 1.00	0.00 - 0.75	0.00 - 0.20	0.00 - 0.20	0.00 - 0.85
Reporting Date: 21/02/2024	DETS Sample No	699254	699255	699256	699257	699258
	-		-		-	

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Not Detected				
Sample Matrix ^(S)	Material Type	N/a	NONE					
Asbestos Type ^(S)	PLM Result	N/a	ISO17025					

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Date Sampled	14/02/24	14/02/24	14/02/24	14/02/24	14/02/24
Time Sampled	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
TP / BH No	WSS3	WSW1	WSW3	WSSW3	WSNW3
Additional Refs	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)	0.00 - 0.60	0.00 - 1.00	0.00 - 1.00	0.00 - 1.00	0.00 - 1.00
DETS Sample No	699259	699260	699261	699262	699263
	Date Sampled Time Sampled TP / BH No Additional Refs Depth (m) DETS Sample No	Date Sampled 14/02/24 Time Sampled None Supplied TP / BH No WSS3 Additional Refs None Supplied Depth (m) 0.00 - 0.60 DETS Sample No 699259	Date Sampled 14/02/24 14/02/24 Time Sampled None Supplied None Supplied TP / BH No WSS3 WSW1 Additional Refs None Supplied None Supplied Depth (m) 0.00 - 0.60 0.00 - 1.00 DETS Sample No 699259 699260	Date Sampled 14/02/24 14/02/24 14/02/24 Time Sampled None Supplied None Supplied None Supplied TP / BH No WSS3 WSW1 WSW3 Additional Refs None Supplied None Supplied None Supplied Depth (m) 0.00 - 0.60 0.00 - 1.00 0.00 - 1.00 DETS Sample No 699259 699260 699261	Date Sampled 14/02/24 14/02/24 14/02/24 14/02/24 Time Sampled None Supplied None Supplied None Supplied None Supplied TP / BH No WSS3 WSW1 WSW3 WSSW3 Additional Refs None Supplied None Supplied None Supplied None Supplied Depth (m) 0.00 - 0.60 0.00 - 1.00 0.00 - 1.00 0.00 - 1.00 DETS Sample No 699259 699260 699261 699262

Determinand	Unit	RL	Accreditation					
Asbestos Screen (S)	N/a	N/a	ISO17025	Detected	Not Detected	Not Detected	Not Detected	Detected
Sample Matrix ^(S)	Material Type	N/a	NONE	Loose fibres				Loose fibres
Asbestos Type ^(S)	PLM Result	N/a	ISO17025	Chrysotile				Chrysotile

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S)

Soil Analysis Certificate - Method	lology & Miscellaneous In	nformation	
DETS Report No: 24-01544			
Soils Ltd			
Site Reference: Kingston Wharf, Ea	st Cowes, Isle Of Wight		
Project / Job Ref: 21091			
Order No: None Supplied			
Reporting Date: 21/02/2024			
Matrix Analysed Dete	rminand	Brief Method Description	Method

	On			No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR	BTEX	Determination of BTEX by headspace GC-MS	E001
Soil	D	Cations	Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D	Chloride - Water Soluble (2:1)	Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1.5 diphenylcarbazide followed by colorimetry	E016
Soil	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soil	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D	Cyclohexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR	Diesel Range Organics (C10 - C24)	Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH TEXAS (C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by headspace GC-MS	E004
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	pH	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018
Soil		Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	E024
Soil	ΔR	Thiocyanate (as SCN)	GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	F017
	-		addition of ferric nitrate followed by colorimetry	
Soil	D	Toluene Extractable Matter (TEM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	AR	TPH CWG (ali: C5- C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C34, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	TPH LQM (ali: C5-C6, C6-C8, C8-C10, C10-C12, C12-C16, C16-C35, C35-C44, aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C44. C5 to C8 by headspace GC-MS	E004
Soil	AR	VOCs	Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

ist of HWOL Acronyms and Operators
DETS Report No: 24-01544
ioils Ltd
ite Reference: Kingston Wharf, East Cowes, Isle Of Wight
Project / Job Ref: 21091
Order No: None Supplied
teporting Date: 21/02/2024

Acronym	Description		
HS	Headspace analysis		
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent		
CU	Clean-up - e.g. by florisil, silica gel		
1D	GC - Single coil gas chromatography		
2D	GC-GC - Double coil gas chromatography		
Total	Aliphatics & Aromatics		
AL	Aliphatics only		
AR	Aromatics only		
#1	EH_2D_Total but with humics mathematically subtracted		
#2	EH_2D_Total but with fatty acids mathematically subtracted		
_	Operator - underscore to separate acronyms (exception for +)		
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total		

Det - Acronym

Dee Windsor Soils Ltd Thomas Telford House - Unit 11 Sun Valley Business Park Winnall Close Winchester SO23 0LB

Normec DETS Limited Unit 1 Rose Lane Industrial Estate Rose Lane Lenham Heath Kent ME17 2JN t: 01622 850410

DETS Report No: 24-02170

Site Reference:	Kinaston Wharf, East Cowes, Isle Of Wiaht
Proiect / Job Ref:	21091
Order No:	None Supplied
Sample Receipt Date:	15/02/2024
Sample Scheduled Date:	29/02/2024
Report Issue Number:	1
Reporting Date:	12/03/2024

Authorised by:

KOL Ð

Kevin Old Operations Director

Dates of laboratory activities for each tested analyte are available upon request.

Upinions and interpretations are outside the laboratory's scope of 150 17025 accreditation. I his certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Soil Analysis Certificate						
DETS Report No: 24-02170	~Date Sampled	14/02/24	14/02/24			
Soils Ltd	~Time Sampled	None Supplied	None Supplied			
~Site Reference: Kingston Wharf, East Cowes, Isle Of	~TP / BH No	WSS3	WSNW3			
Wight						
~Project / Job Ref: 21091	~Additional Refs	None Supplied	None Supplied			
~Order No: None Supplied	~Depth (m)	0.00 - 0.60	0.00 - 0.10			
Reporting Date: 12/03/2024	DETS Sample No	701704	701705			
					-	

Determinand	Unit	RL	Accreditation				
Asbestos Quantification (S)	%	< 0.001	ISO17025	0.001	0.001		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C. The Method Description page describes if the test is performed on the dried or as-received portion Subcontracted analysis (S) ~ Sample details provided by the customer

Soil Analysis Certificate - Methodology & Miscellaneous Information
DETS Report No: 24-02170
Soils Ltd
~Site Reference: Kingston Wharf, East Cowes, Isle Of Wight
~Project / Job Ref: 21091
~Order No: None Supplied
Reporting Date: 12/03/2024

Matrix	Analysed	Determinand Brief Method Description		Method
Soil		Boron - Water Soluble	Determination of water coluble bergen in coil by 2:1 bet water extract followed by ICD OES	E012
Soil		BUIUII - Water Soluble	Determination of RTEV by badshare GCMS	E012 F001
Soil		Cations	Determination of DTLX by nearspace GCMS	E001
Soil		Chlorida Water Soluble (2:1)	Determination of calculations in soil by aquartegia digestion rollowed by ICF-CES	E002
3011	D		Determination of chorace by extraction with water & analysed by lon chinalogical physical phy	L009
Soil	AR	Chromium - Hexavalent	1,5 diphenylcarbazide followed by colorimetry	E016
Soll	AR	Cyanide - Complex	Determination of complex cyanide by distillation followed by colorimetry	E015
Soll	AR	Cyanide - Free	Determination of free cyanide by distillation followed by colorimetry	E015
Soll	AR	Cyanide - Total	Determination of total cyanide by distillation followed by colorimetry	E015
Soli	D	Cyclonexane Extractable Matter (CEM)	Gravimetrically determined through extraction with cyclonexane	E011
SOII	AR	Diesei Range Organics (C10 - C24)	Determination of nexane/acetone extractable nydrocarbons by GC-FLD	E004
Soil	AR	Electrical Conductivity	electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR	EPH (C10 – C40)	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR	EPH Product ID	Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	٨D	EPH TEXAS (C6-C8, C8-C10, C10-C12,	Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	F004
501		C12-C16, C16-C21, C21-C40)	headspace GC-MS	LUUH
Soil	D	Fluoride - Water Soluble	Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	Fraction Organic Carbon (FOC)	Determination of TOC by combustion analyser.	E027
Soil	D	Organic Matter (SOM)	Determination of TOC by combustion analyser.	E027
Soil	D	TOC (Total Organic Carbon)	Determination of TOC by combustion analyser.	E027
Soil	AR	Exchangeable Ammonium	Determination of ammonium by discrete analyser.	E029
Soil	D	EOC (Eraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by	E010
3011	D		titration with iron (II) sulphate	LUIU
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D	Magnesium - Water Soluble	Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Cail		Minaral Oil (C10 C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	E004
5011	AK		cartridge	E004
Soil	AR	Moisture Content	Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	Determination of organic matter by oxidising with potassium dichromate followed by titration with iron (II) subhate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR	PCB - 7 Congeners	Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR	Ha	Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR	Phenols - Total (monohydric)	Determination of phenols by distillation followed by colorimetry	E021
Soil	D	Phosphate - Water Soluble (2:1)	Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Total	Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D	Sulphate (as SO4) - Water Soluble (2:1)	Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil	AR	Sulphide	Determination of sulphide by distillation followed by colorimetry	E018
Soil	D	Sulphur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES	E024
Soil	AR	SVOC	Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by GC-MS	E006
Soil	AR	Thiocyanate (as SCN)	Determination of thiocyanate by extraction in caustic soda followed by acidification followed by addition of ferric nitrate followed by colorimetry	E017
Soil	P	Toluene Extractable Matter (TFM)	Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010
		TPH CWG (ali; C5- C6. C6-C8. C8-C10.		
		(10-C12) $(12-C16)$ $(16-C21)$ $(21-C34)$	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	
Soil	AR	210 C12, C12 C10, C10 C21, C21 C34, 2701 CE C7 C7 C9 C9 C10 C10 C12	estrides for C9 to C2E, CE to C9 by backgrace CC MC	E004
			cartriage for C8 to C35. C5 to C8 by neadspace GC-MS	
		<u> </u>		
		TPH LQM (ali: C5-C6, C6-C8, C8-C10,		
Soil	ΔD	C10-C12, C12-C16, C16-C35, C35-C44,	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE	F004
501		aro: C5-C7, C7-C8, C8-C10, C10-C12,	cartridge for C8 to C44. C5 to C8 by headspace GC-MS	
		C12-C16, C16-C21, C21-C35, C35-C44)		
Soil	ΔD	, , , , , , , , , , , , , , , , , , ,	Determination of volatile organic compounds by headspace CC-MS	E001
Soil	AR	۷۵۵۵ ۷۳۲ (۲۵-۲۵ & ۲۹-۲۱۵)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	F001
	Dried			2001

AR As Received ~ Sample details provided by the customer

List of HWOL Acronyms and Operators DETS Report No: 24-02170 Soils Ltd ~Site Reference: Kingston Wharf, East Cowes, Isle Of Wight ~Project / Job Ref: 21091 ~Order No: None Supplied Reporting Date: 12/03/2024

Acronym	Description		
HS	Headspace analysis		
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent		
CU	Clean-up - e.g. by florisil, silica gel		
1D	GC - Single coil gas chromatography		
2D	GC-GC - Double coil gas chromatography		
Total	Aliphatics & Aromatics		
AL	Aliphatics only		
AR	Aromatics only		
#1	EH_2D_Total but with humics mathematically subtracted		
#2	EH_2D_Total but with fatty acids mathematically subtracted		
_	Operator - underscore to separate acronyms (exception for +)		
+	Operator to indicate cumulative eg. EH+HS_Total or EH_CU+HS_Total		
~	Sample details provided by the customer		

Det - Acronym

Appendix D.2 General Assessment Criteria

HUMAN HEALTH RISK ASSESSMENT

Introduction

The statutory definition of contaminated land is defined in the Environmental Protection Act 1990, ref. 1.1, which was introduced by the Environment Act 1995, ref. 1.2;

'Land which appears to the local authority in whose area it is situated to be in such a condition, by reason of substances in, on or under the land, that –

- (a) significant harm is being caused or there is a significant possibility of such harm being caused; or
- (b) pollution of controlled waters is being, or is likely to be, caused.'

The UK guidance on the assessment of contaminated has developed as a direct result of the introduction of these two Acts. The technical guidance supporting the new legislation has been summarised in a number of key documents collectively known as the Contaminated Land Reports (CLRs), a proposed series of twelve documents. Seven were originally published in March 1994, four more were published in April 2002, while the last remaining guidance document, CLR 11, ref 1.3 was published in 2004. In 2008 CLR reports 7 to 10 were withdrawn by DEFRA and the Environment Agency and updated version of CLR 9 and 10 were produced in the form of Science Reports SR2, ref. 1.4 and SR3, ref. 1.5.

In establishing whether a site fulfils the statutory definition of 'contaminated land' it is necessary to identify, whether a pollutant linkage exists in respect of the land in question and whether the pollutant linkage:

- is resulting in significant harm being caused to the receptor in the pollutant linkage,
- presents a significant possibility of significant harm being caused to that receptor,
- is resulting in the pollution of the controlled waters which constitute the receptor, or
- is likely to result in such pollution.

A 'pollutant linkage' may be defined as the link between a contaminant 'source' and a 'receptor' by means of a 'pathway'.

Assessment Methodology

The guidance proposes a four-stage assessment process for identifying potential pollutant linkages on a site. These stages are set out in the table below:

No.	Process	Description
1	Hazard Identification	Establishing contaminant sources, pathways and receptors (the conceptual model).
2	Hazard Assessment	Analysing the potential for unacceptable risks (what linkages could be present, what could be the effects).
3	Risk Estimation	Trying to establish the magnitude and probability of the possible consequences (what degree of harm might result and to what receptors, and how likely is it).
4	Risk Evaluation	Deciding whether the risk is unacceptable.

Stages 1 and 2 develop a *'conceptual model'* based upon information collated from desk based studies, and frequently a walkover of the site. The walkover survey should be conducted in general accordance with CLR 2, ref. 1.6. The formation of a conceptual model is an iterative process and as such, it should be updated and refined throughout each stage of the project to reflect any additional information obtained.

The extent of the desk studies and enquiries to be conducted should be in general accordance with CLR 3, ref. 1.7. The information from these enquiries is presented in a desk study report with recommendations, if necessary, for further work based upon the conceptual model. Specific DoE 'Industry Profiles' provide guidance on the nature of contaminants relating to specific industrial processes.

If potential pollutant linkages are identified within the conceptual model, a Phase 2 site investigation and report will be recommended. The investigation should be planned in general accordance with CLR 4, ref 1.8. The number of exploratory holes and samples collected for analysis should be consistent with the size of the site and the level of risk envisaged. This will enable a contamination risk assessment to be conducted, at which point the conceptual model can be updated and relevant pollutant linkages can be identified.

A two-stage investigation may be more appropriate where time constraints are less of an issue. The first stage investigation being conducted as an initial assessment for the presence of potential sources, a second being a more refined investigation to delineate wherever possible the extent of the identified contamination.

All site works should be in general accordance with the British Standards BS 10175:2011, ref. 1.9. and BS 5930:2015, ref. 1.10.

The generic contamination risk assessment screens the results of the chemical analysis against generic guidance values which are dependent on the proposed end-use of the development.

The end-use may be defined as one of the following ref. 1.15;

- Residential with homegrown produce domestic low rise and low density housing with gardens where vegetables may be grown for home consumption
- Residential without homegrown produce domestic low density and low density housing where no gardens are present.
- Allotments specific areas where vegetables are grown for home consumption.
- Public open space in close proximity to residential housing includes the predominantly grassed area adjacent to high density housing and the central green area around which houses are developed. This land-use includes the smaller areas commonly incorporated in newer developments as informal grassed areas or more formal landscaped areas with a mixture of open space and covered soil with planting.
- Public open space in use as general parkland provided for recreational use and may be used for family visits and picnics, children's play area, sports grounds and dig walking.
- Commercial industrial premises where there is limited exposure to soil.

Standard Land-use Scenarios

The standard land-use scenarios used to develop conceptual exposure models are presented in the following sections:

Residential with homegrown produce

Generic scenario assumes a typical two-storey house built on a ground bearing slab with a private garden having a lawn, flowerbeds and a small fruit and vegetable patch.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil and indoor dust ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and indoor dust and inhalation of indoor and outdoor dust and vapours.
- Building type is a two-storey small terraced house.

A sub-set of the Residential land-use is **Residential without Homegrown produce**. The generic scenario assumes low density housing with communal landscaped gardens where the consumption of home grown vegetables will not occur.

Allotments

Provision of open space (about 250sq.m) commonly made available to tenants by the local authority to grow fruit and vegetable for their own consumption. Typically, there are a number of plots to a site which may have a total area of up to 1 hectare. The tenants are assumed to be adults and that young children make occasional accompanied visits.

Although some allotment holders may choose to keep animals including rabbits, hens, and ducks, potential exposure to contaminated meat and eggs is not considered.

- Critical receptor is a young female child (zero to six years old)
- Exposure duration is six years.
- Exposure pathways include direct soil ingestion, consumption of homegrown produce and any adhering soil, skin contact with soils and inhalation of outdoor dust and vapours.
- There is no building.

Commercial

The generic scenario assumes a typical commercial or light industrial property comprising a three-storey building at which employees spend most time indoors and are involved in office-based or relatively light physical work.

- Critical receptor is a working female adult (aged 16 to 65 years old).
- Exposure duration is a working lifetime of 49 years.
- Exposure pathways include direct soil and indoor dust ingestion, skin contact with soils and dusts and inhalation of dust and vapours.
- Building type is a three-storey office (pre 1970).

Public Open Space within Residential Area

The generic scenario refers to any grassed area 0.05 ha and that is close to Housing.

- Grassed area of up to 0.05 ha and a considerable proportion of this (up to 50%) may be bare soil
- Predominantly used by children for playing and may be used for activities such as a football kick about
- Sufficiently close proximity to home for tracking back of soil to occur, thus indoor exposure pathways apply
- older children as the critical receptor on basis that they will use site most frequently (Age class 4-9)
- ingestion rate 75 mg.day⁻¹

Public Open Space Park

This generic scenario refers to any public park that is more than 0.5ha in area:

- Public park (>0.5 ha), predominantly grassed and may also contain children's play equipment and border areas of soil containing flowers or shrubs (75% cover)
- Female child age classes 1-6
- Soil ingestion rate of 50 mg.day-1
- Occupancy period outdoors = 2 hours.day⁻¹
- Exposure frequency of 170 days.year-1 for age classes 2-18 and 85
- days.year⁻¹ for age class I
- Outdoor exposure pathways only (no tracking back).

Human Health Generic Quantitative Risk Assessment (GQRA) involves the comparison of contaminant concentrations measured in soil at the site with Generic Assessment Criteria (GAC).

GAC are conservative values adopted to ensure that they are applicable to the majority of possible contaminated site. These values may be published Contaminated Land Exposure Assessment Model (CLEA) derived GAC derived by a third party or the Environment Agency/ DEFRA. It is imperative to the risk assessor to understand the uncertainties and limitations associated with these GAC to ensure that they are used appropriately. Where the adoption of a GAC is not appropriate, for instance when the intended land-use is at variance the CLEA standard land-uses, then a Detailed Quantitative Risk Assessment (DQRA) may be undertaken to develop site specific values for relevant soil contaminants based on the site specific conditions.

In 2014, the publication of Category 4 Screening Levels (C4SL) ref 1.15, 1.16, as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3) ref 1.5 used in the generation of SGVs. C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010 ref 1.16. Where a C4SL has been published, Soils Limited has adopted them as GAC for these six substances.

For all other substances the soils will be compared to Suitable 4 Use Levels (S4ULs) published by LQM ref. 1.12, which were developed for around 85 substances and are intended to enable a screening assessment of the risks posed by soil quality on development sites. The updated LQM/CIEH GAC publication was developed to accommodate recent developments in the understanding of chemical, toxicological and routine exposure to soil-based contaminants.

Where no S4UL or C4SL is available, the assessment criteria (AC) may be generated using the Contaminated Land Exposure Assessment (CLEA) Software Version 1.07, ref. 1.13. Toxicological and physico-chemical/fate and transport data used to generate the AC has been derived from a hierarchy of data sources as follows:

- 1. Environment Agency or Department of Environment Food and Rural Affairs (DEFRA) documents;
- 2. Other documents produced by UK Government or state organisations;
- 3. European institution documents;
- 4. International organisation documents;
- 5. Foreign government institutions.

In the case of the majority of contaminants considered, the toxicological data has been drawn from the relevant CLR 9 TOX report, or updated toxicological data published by the Environment Agency (2009), ref. 1.6, where available. Where no TOX report is available reference has been made to the health criteria values, derived for use in Land Quality Press (2006), ref. 1.17, as this is considered to represent a peer reviewed data source. Similarly, fate and transport data has been derived in the first instance from Environment Agency (2003), ref. 1.18 and for contaminants not considered in this

document the fate and transport data used in previous versions of the CLEA model has been used.

Chemical laboratory test results are processed as follows. A statistical analysis of the results is conducted, as detailed in CIEH and CL:AIRE 'Guidance on Comparing Soil Contamination Data with a Critical Concentration', ref. 1.14. Individual concentrations are compared to the selected guideline values to identify concentrations of contaminants that are above the selected screening criteria.

Where the risk estimation identifies significant concentrations of one or more contaminants, a further risk evaluation needs to be undertaken.

References

- 1.1 The Environmental Protection Act, Part IIA, Section 78, DoE 1990.
- 1.2 Environment Act 1995, Section 57, DoE 1995.
- 1.3 CLR 11, '*Model Procedures for the Management of Contaminated Land*', DEFRA and Environment Agency, 2004.
- 1.4 Environment Agency Science Report SC050021/SR2 'Human health toxicological assessment of contaminants in soil'.
- 1.5 Science Report SC050021/SR3 'Updated technical background to the CLEA model', Environment Agency, 2008
- 1.6 CLR 2, '*Guidance on preliminary site inspection of contaminated land*', Report by Applied Environmental, DoE 1994.
- 1.7 CLR 3 '*Documentary Research on Industrial Sites*', Report by RPS Consultants Ltd., DOE, 1994
- 1.8 CLR 4, '*Sampling strategies for contaminated land*', Report by The Centre for Research into the Built Environment, the Nottingham Trent University, DoE, 1994
- 1.9 BS 10175: 2011 '*Investigation of potentially contaminated sites. Code of practice*', British Standards Institute, 2011
- 1.10 BS 5930: 2015 'Code of practice for ground investigations', British Standards Institute, 2015
- 1.11 Science Report SC050021 'Contaminants in Soil: Updated Collation of Toxicological Data and Intake Values for Humans', Environment Agency, 2009
- 1.12 The LQM/S4ULs for Human Health Risk Assessment, Nathanail P, McCaffery C, Gillett A, Ogden R, and Nathanail J, Land Quality Press, Nottingham, published 2015.
- 1.13 CLEA 'Software Version 1.071' (downloaded from the Environment Agency website, <u>http://www.environment-agency.gov.uk</u>)
- 1.14 CIEH '*Guidance on Comparing Soil Contamination Data with a Critical Concentration*', Chartered Institute of Environmental Health (CIEH) and Contaminated Land: Applications in Real Environments (CL:AIRE), May 2008.
- 1.15 DEFRA SP1010: Development of Category 4 Screening Levels for the Assessment of Land Affected by Contamination, published March 2014.
- 1.16 Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 1.17 Generic Assessment Criteria for Human Health Risk Assessment, Nathanial CP, McCaffery C, Ashmore M, Cheng Y, Gillett A, Hooker P and Ogden RC
- 1.18 CLR 2, '*Guidance on preliminary site inspection of contaminated land*', Report by Applied Environmental, DoE 1994.
| | | | | Residential with | | | Residential without | | | Allotment | S | Commercial | | | Public C |)
pen Spac | e - Resi | Public C | Open Spac | ce -Park | | | |
|--------------|---------------------------------|-------------|----------|------------------|--------|-------|---------------------|------------|--------|-----------|--------|------------|---------|---------|----------|---------------|----------|----------|-----------|----------|---------------|----------|------|
| | | SOM | 1 0 | e-grown pr | oduce | nome- | -grown pr | oduce
6 | 1 | 2.5 | 6 | 1 | 2.5 | 6 | 1 | 2.5 | 6 | 1 | 2.5 | 6 | 7 | | |
| Туро | Contaminants Species | Vear | 1.0 | 2.5 | U U | | 2.5 | • | | 2.5 | | | 2.5 | | | 2.5 | U U | • | 2.5 | • | 1 | | |
| туре | Antimony | 2010 | | | | | 550 | | | | | | 7500 | | | | | | | | FIC/AGS/ | | 2010 |
| | Arsenic | 2014 | | 37 | | | 40 | | | 49 | | | 640 | | | 79 | | | 16 | 8 | C4SI | | 2014 |
| | Alsonic | 2015 | | 37 | | | 40 | | | 40 | | | 640 | | | 79 | | | 17 | 0 | S4UI | LOM/CIEH | 2015 |
| | Bervllium | 2015 | | 1.7 | | | 1.7 | | | 35 | | | 12 | | | 2.2 | | | 6 | 3 | S4UL | LOM/CIEH | 2015 |
| | Boron | 2015 | | 290 | | | 11000 | | | 45 | | | 240000 | | | 21000 | | | 460 | 00 | S4UL | LOM/CIEH | 2015 |
| | Cadmium | 2015 | | ++ | | | 85 | | | 1.9 | | | 190 | | | 120 | | | 53 | 2 | S4UL | LQM/CIEH | 2015 |
| | | 2014 | | 26 | | | 149 | | | 4.9 | | | 410 | | | 220 | | | 88 | 0 | C4SL | DEFRA | 2014 |
| | Chromium III | 2015 910 | | | 910 | | | 18000 | | | 8600 | | | 1500 | | | 330 | 00 | S4UL | LQM/CIEH | 2015 | | |
| | VI | 2014 | | 21 | | | 21 | | | 170 | | | 49 | | | 23 | | | 25 | 0 | C4SL | DEFRA | 2014 |
| | VI | 2015 | | 6 | | | 6 | | | 1.8 | | | 33 | | | 7.7 | | | 22 | .0 | S4UL | LQM/CIEH | 2015 |
| | Copper | 2015 | | 2400 | | | 7100 | | | 520 | | | 68000 | | | 12000 | | | 440 | 00 | S4UL | LQM/CIEH | 2015 |
| | Lead | 2014 | | 200 | | | 310 | | | 80 | | | 2330 | | | 630 | | | 13 | 00 | C4SL | DEFRA | 2014 |
| <u>8</u> | Mercury Elemental | 2015 | 2015 1.2 | | | | 1.2 | | | 21 | | 58 | | | | 16 | | | 3 | 0 | S4UL | LQM/CIEH | 2015 |
| eta | Inorganic | 2015 | | 40 | | | 56 | | | 19 | | | 1100 | | | 120 | | | 24 | 0 | S4UL | LQM/CIEH | 2015 |
| Σ | Methyl | 2015 | | 11 | | | 15 | | | 6 | | | 320 | | | 40 | | | 68 | 8 | S4UL | LQM/CIEH | 2015 |
| | Nickel | 2015 | 130 | | 180 | | 53 | | | 980 | | | 230 | | | | 80 | 0 | S4UL | LQM/CIEH | 2015 | | |
| | Selenium 2015 | | | 250 | | 430 | | 88 | | | 12000 | | | 1100 | | | | 180 | 00 | S4UL | LQM/CIEH | 2015 | |
| | Vanadium | nadium 2015 | | 410 | | 1200 | | 91 | | 9000 | | | 2000 | | | 5000 | | | S4UL | LQM/CIEH | 2015 | | |
| • | Zinc 2015 | | 3700 | | 40000 | | 620 | | | 730000 | | | 81000 | | | 1700 | 000 | S4UL | LQM/CIEH | 2015 | | | |
| | Benzene | 2014 | | 0.87 | | | 3.3 | 1 | | 0.18 | 1 | | 98 | 1 | | 140 | 1 | | 23 | 0 | C4SL | DEFRA | 2014 |
| | | 2015 | 0.087 | 0.17 | 0.37 | 0.38 | 0.7 | 1.4 | 0.017 | 0.034 | 0.075 | 27 | 47 | 90 | 72 | 72 | 73 | 90 | 100 | 110 | S4UL | LQM/CIEH | 2015 |
| | Toluene | 2015 | 130 | 290 | 660 | 880 | 1900 | 3900 | 22 | 51 | 120 | 65000 | 110000 | 180000 | 56000 | 56000 | 56000 | 87000 | 95000 | 100000 | S4UL | LQM/CIEH | 2015 |
| | Ethylbenzene | 2015 | 47 | 110 | 260 | 83 | 190 | 440 | 16 | 39 | 91 | 4700 | 13000 | 27000 | 24000 | 24000 | 25000 | 17000 | 22000 | 27000 | S4UL | LQM/CIEH | 2015 |
| | Xylenes o-xylene | 2015 | 60 | 140 | 330 | 88 | 210 | 480 | 28 | 67 | 160 | 6600 | 15000 | 33000 | 41000 | 42000 | 43000 | 17000 | 24000 | 33000 | S4UL | LQM/CIEH | 2015 |
| | m-xylene | 2015 | 59 | 140 | 320 | 82 | 190 | 450 | 31 | 74 | 170 | 6200 | 14000 | 31000 | 41000 | 42000 | 43000 | 17000 | 24000 | 32000 | S4UL | LQM/CIEH | 2015 |
| | p-xylene | 2015 | 56 | 130 | 310 | /9 | 180 | 310 | 29 | 69 | 160 | 3900 | 14000 | 30000 | 41000 | 42000 | 43000 | 17000 | 23000 | 31000 | S4UL | LQM/CIEH | 2015 |
| | Aliphatic >C5 - C6 | 2015 | 42 | 78 | 160 | 42 | 78 | 160 | 730 | 1700 | 3900 | 3200 | 5900 | 12000 | 570000 | 590000 | 600000 | 95000 | 130000 | 180000 | S4UL | LQM/CIEH | 2015 |
| | Aliphatic >C6 - C8 | 2015 | 100 | 230 | 530 | 100 | 230 | 530 | 2300 | 5600 | 13000 | 7800 | 17000 | 40000 | 600000 | 610000 | 620000 | 130000 | 220000 | 320000 | S4UL | | 2015 |
| ous | Aliphatic >Clo_Cl2 | 2015 | 120 | 220 | 740 | 120 | 220 | 770 | 320 | 1400 | 7200 | 2000 | 22000 | 17000 | 13000 | 13000 | 13000 | 21000 | 22000 | 21000 | S4UL
S4LII | | 2015 |
| acti | Aliphatic >C10 - C12 | 2015 | 130 | 2400 | 4300 | 130 | 2400 | 110 | 11000 | 13000 | 13000 | 59000 | 23000 | 9000 | 13000 | 13000 | 13000 | 25000 | 25000 | 24000 | 54UL
\$4UI | | 2015 |
| Ц
Ц | Aliphatic $> C16 - C35$ | 2015 | 65000 | 92000 | 110000 | 65000 | 92000 | 110000 | 260000 | 270000 | 270000 | 1600000 | 1700000 | 1800000 | 250000 | 250000 | 250000 | 450000 | 480000 | 490000 | 54UI | | 2015 |
| Su o | Aliphatic >C35 - C44 | 2015 | 65000 | 92000 | 140000 | 65000 | 92000 | 110000 | 260000 | 270000 | 270000 | 1600000 | 1700000 | 1800000 | 250000 | 250000 | 250000 | 450000 | 480000 | 490000 | S4UL | | 2015 |
| arb | Aromatic $>C5 - C7$ | 2015 | 70 | 140 | 300 | 370 | 690 | 1400 | 13 | 27 | 57 | 26000 | 46000 | 86000 | 56000 | 56000 | 56000 | 76000 | 84000 | 92000 | S4LII | | 2015 |
| 100 | Aromatic >C7 - C8 | 2015 | 130 | 290 | 660 | 860 | 1800 | 3900 | 22 | 51 | 120 | 56000 | 110000 | 180000 | 56000 | 56000 | 56000 | 87000 | 95000 | 100000 | S4UL | LOM/CIEH | 2015 |
| hyd | Aromatic >C8 - C10 | 2015 | 34 | 83 | 190 | 47 | 110 | 270 | 8.6 | 21 | 51 | 3500 | 8100 | 17000 | 5000 | 5000 | 5000 | 7200 | 8500 | 9300 | S4UL | LQM/CIEH | 2015 |
| E | Aromatic >C10 - C12 | 2015 | 74 | 180 | 380 | 250 | 590 | 1200 | 13 | 31 | 74 | 16000 | 28000 | 34000 | 5000 | 5000 | 5000 | 9200 | 9700 | 10000 | S4UL | LQM/CIEH | 2015 |
| oleu | Aromatic >C12 - C16 | 2015 | 140 | 330 | 660 | 1800 | 2300 | 2500 | 23 | 57 | 130 | 36000 | 37000 | 38000 | 5100 | 5100 | 5000 | 10000 | 10000 | 10000 | S4UL | LQM/CIEH | 2015 |
| at a | Aromatic >C16 - C21 | 2015 | 260 | 540 | 930 | 1900 | 1900 | 1900 | 46 | 110 | 260 | 28000 | 28000 | 28000 | 3800 | 3800 | 3800 | 7600 | 7700 | 7800 | S4UL | LQM/CIEH | 2015 |
| ě. | Aromatic >C21 - C35 | 2015 | 1100 | 1500 | 1700 | 1900 | 1900 | 1900 | 370 | 820 | 1600 | 28000 | 28000 | 28000 | 3800 | 3800 | 3800 | 7800 | 7800 | 7900 | S4UL | LQM/CIEH | 2015 |
| | Aromatic >C34 - C44 | 2015 | 1100 | 1500 | 1700 | 1900 | 1900 | 1900 | 370 | 820 | 1600 | 28000 | 28000 | 28000 | 3800 | 3800 | 3800 | 7800 | 7800 | 7900 | S4UL | LQM/CIEH | 2015 |
| | Aliphatic + Aromatic >C44 - C70 | 2015 | 1600 | 1800 | 1900 | 1900 | 1900 | 1900 | 1200 | 2100 | 3000 | 28000 | 28000 | 28000 | 3800 | 3800 | 3800 | 7800 | 7800 | 7900 | S4UL | LQM/CIEH | 2015 |
| suc | Acenaphthene | 2015 | 210 | 510 | 1100 | 3000 | 4700 | 6000 | 34 | 85 | 200 | 84000 | 97000 | 100000 | 15000 | 15000 | 15000 | 29000 | 30000 | 30000 | S4UL | LQM/CIEH | 2015 |
| Å | Acenaphthylene | 2015 | 170 | 420 | 920 | 2900 | 4600 | 6000 | 28 | 69 | 160 | 83000 | 97000 | 100000 | 15000 | 15000 | 15000 | 29000 | 30000 | 30000 | S4UL | LQM/CIEH | 2015 |
| | Anthracene | 2015 | 2400 | 5400 | 11000 | 31000 | 35000 | 37000 | 380 | 950 | 2200 | 520000 | 54000 | 540000 | 74000 | 74000 | 74000 | 150000 | 150000 | 1 50000 | S4UL | LQM/CIEH | 2015 |
| lydı
g∕kg | Benzo(a)anthracene | 2015 | 7.2 | 11 | 13 | 11 | 14 | 15 | 2.9 | 6.5 | 13 | 170 | 170 | 180 | 29 | 29 | 29 | 49 | 56 | 62 | S4UL | LQM/CIEH | 2015 |
| Ш
Ш ц | Benzo(a)pyrene | 2014 | | | 5 | | | 5.3 | | | 5.7 | | | 76 | | | 10 | _ | | 21 | C4SL | DEFRA | 2014 |
| s) | | 2015 | 2.2 | 2.7 | 3 | 3.2 | 3.2 | 3.2 | 0.97 | 2 | 3.5 | 35 | 35 | 36 | 5.7 | 5.7 | 5.7 | 11 | 12 | 13 | S4UL | LQM/CIEH | 2015 |
| H, | Benzo(b)fluoranthene | 2015 | 2.6 | 3.3 | 3.7 | 3.9 | 4.0 | 4.0 | 0.99 | 2.1 | 3.9 | 44 | 44 | 45 | 7.1 | 7.2 | 7.2 | 13 | 15 | 16 | S4UL | LQM/CIEH | 2015 |
| ic A | Benzo(ghi)perylene | 2015 | 320 | 340 | 350 | 360 | 360 | 360 | 290 | 470 | 640 | 3900 | 4000 | 4000 | 640 | 640 | 640 | 1400 | 1500 | 1600 | S4UL | LQM/CIEH | 2015 |
| ydl | Benzo(k)fluoranthene | 2015 | 77 | 93 | 100 | 110 | 110 | 110 | 37 | 75 | 130 | 1200 | 1200 | 1200 | 190 | 190 | 190 | 370 | 410 | 440 | S4UL | LQM/CIEH | 2015 |
| l X | Chrysene | 2015 | 15 | 22 | 27 | 30 | 31 | 32 | 4.1 | 9.4 | 19 | 350 | 350 | 350 | 57 | 57 | 57 | 93 | 110 | 120 | S4UL | LQM/CIEH | 2015 |
| L L | Dibenz(a,h)anthracene | 2015 | 0.24 | 0.28 | 0.3 | 0.31 | 0.32 | 0.32 | 0.14 | 0.27 | 0.43 | 3.5 | 3.6 | 3.6 | 0.57 | 0.57 | 0.58 | 1.1 | 1.3 | 1.4 | S4UL | LQM/CIEH | 2015 |

February 2020 – Human Health Risk Assessment

			Re	esidential w	rith	Residential without			Allotments			Commercial			Public Open Space - Resi			Public Open Space -Park					
		SOM	1.0	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1		
Туре	Contaminants Species	Year										-			-						1		
	Fluoranthene	2015	280	560	890	1500	1600	1600	52	130	290	23000	23000	23000	3100	3100	3100	6300	6300	6400	S4UL	LQM/CIEH	2015
	Fluorene	2015	170	400	860	2800	3800	4500	27	67	160	63000	68000	71000	9900	9900	9900	20000	20000	20000	S4UL	LQM/CIEH	2015
	Indeno(1,2,3-cd)pyrene	2015	27	36	41	45	46	46	9.5	21	39	500	510	510	82	82	82	150	170	180	S4UL	LQM/CIEH	2015
	Naphthalene	2015	2.3	5.6	13	2.3	5.6	13	4.1	10	24	190	460	1100	4900	4900	4900	1200	1900	3000	S4UL	LQM/CIEH	2015
	Phenanthrene	2015	95	220	440	1300	1500	1500	15	38	90	22000	22000	23000	3100	3100	3100	6200	6200	6300	S4UL	LQM/CIEH	2015
	Pyrene	2015	620	1200	2000	3700	3800	3800	110	270	620	54000	54000	54000	7400	7400	7400	15000	15000	15000	S4UL	LQM/CIEH	2015
	Coal Tar(Bap as surrogate matter)	2015	0.79	0.98	1.1	1.2	1.2	1.2	0.32	0.67	1.2	15	15	15	2.2	2.2	2.2	4.4	4.7	4.8	S4UL	LQM/CIEH	2015
	I,2 Dichloroethane	2015	0.0071	0.011	0.019	0.0092	0.013	0.023	0.0046	0.0083	0.016	0.67	0.97	1.7	29	29	29	21	24	28	S4UL	LQM/CIEH	2015
	I,I,I Trichloroethane	2015	8.8	18	39	9	18	40	48	110	240	660	1300	3000	I 40000	140000	140000	57000	76000	100000	S4UL	LQM/CIEH	2015
e ð	I,I,2,2 Tetrachloroethane	2015	1.6	3.4	7.5	3.9	8	17	0.41	0.89	2	270	550	1100	1400	1400	1400	1800	2100	2300	S4UL	LQM/CIEH	2015
s	I,I,I,2 Tetrachloroethane	2015	1.2	2.8	6.4	1.5	3.5	8.2	0.79	1.9	4.4	110	250	560	1400	1400	I 400	1500	1800	2100	S4UL	LQM/CIEH	2015
alka	Tetrachloroethene	2015	0.18	0.39	0.9	0.18	0.4	0.92	0.65	1.5	3.6	19	42	95	1400	1400	I 400	810	1100	1500	S4UL	LQM/CIEH	2015
hloroa alk	Tetrachloromethane (Carbon Tetrachloride)	2015	0.026	0.056	0.13	0.026	0.056	0.13	0.45	I	2.4	2.9	6.3	14	890	920	950	190	270	400	S4UL	LQM/CIEH	2015
Ū	Trichloroethene	2015	0.016	0.034	0.075	0.017	0.036	0.08	0.041	0.091	0.21	1.2	2.6	5.7	120	120	120	70	91	120	S4UL	LQM/CIEH	2015
Į	Trichloromethane	2015	0.91	1.7	3.4	1.2	2.1	4.2	0.42	0.83	1.7	99	170	350	2500	2500	2500	2600	2800	3100	S4UL	LQM/CIEH	2015
	Vinyl Chloride (cloroethene)	2015	0.00064	0.00087	0.0014	0.00077	0.001	0.0015	0.00055	0.001	0.0018	0.059	0.077	0.12	3.5	3.5	3.5	4.8	5	5.4	S4UL	LQM/CIEH	2015
Ś	2,4,6 Trinitrotoluene	2015	1.6	3.7	8.1	65	66	66	0.24	0.58	1.4	1000	1000	1000	130	130	130	260	270	270	S4UL	LQM/CIEH	2015
losive	RDX (Hexogen/Cyclonite/1,3,5-trinitro- 1,3,5-triazacyclohexane)	2015	120	250	540	13000	13000	13000	17	38	85	210000	210000	210000	26000	26000	27000	49000	51000	53000	S4UL	LQM/CIEH	2015
Expl	HMX (Octogen/1,3,5,7-tetrenitro-	2015	5.7	13	26	6700	6700	6700	0.86	1.9	3.9	110000	110000	110000	13000	13000	1 3000	23000	23000	24000	S4UL	LQM/CIEH	2015
	Aldria	2015	F 7		71	7.2	7.4	7.5	2.2		0.(170	170	170	10	10	10	20	21	21	641.0		2015
	Aldrin	2015	3./ 0.97	0.0	7.1	7.3	7.4	7.5	3.2	0.1	7.6	170	170	170	18	18	18	30	31	31	SHUL SALII		2015
		2015	0.7/	74	3.5	/	7.3	7. 4 620	0.17	0.41	0.76	9300	9400	9400	10	10	10	2200	30	2400	S4UL		2015
es	Dichloryos	2015	0.032	0.044	0.14	610	620	620	0.0049	0.01	0.022	140	140	140	1200	1200	1200	2300	2400	2700	54UL 54UI		2015
icid	Alpha - Endosulfan	2015	7.4	18	41	160	280	410	1.2	2.9	6.8	5600	7400	8400	1200	1200	1200	2400	2400	2500	54UI		2015
est	Beta - Endosulfan	2015	7	17	39	190	320	440	1.2	2.7	6.4	6300	7800	8700	1200	1200	1200	2400	2400	2500	S4UL		2015
<u> </u>	Alpha -Hexachlorocyclohexanes	2015	0.23	0.55	1.2	6.9	9.2	11	0.035	0.087	0.21	170	180	180	24	24	24	47	48	48	S4UL		2015
	Beta -Hexachlorocyclohexanes	2015	0.085	0.2	0.46	3.7	3.8	3.8	0.013	0.032	0.077	65	65	65	8.1	8.1	8.1	15	15	16	S4UL	LOM/CIEH	2015
	Gamma -Hexachlorocyclohexanes	2015	0.06	0.14	0.33	2.9	3.3	3.5	0.0092	0.023	0.054	67	69	70	8.2	8.2	8.2	14	15	15	S4UL	LQM/CIEH	2015
	Chlorobenzene	2015	0.46		2.4	0.46	1	2.4	5.9	14	32	56	130	290	11000	13000	14000	1300	2000	2900	S4UL	LOM/CIEH	2015
	I,2-Dichlorobenzene	2015	23	55	130	24	57	130	94	230	540	2000	4800	11000	90000	95000	98000	24000	36000	51000	S4UL	LQM/CIEH	2015
	I,3-Dichlorobenzene	2015	0.4	1	2.3	0.44	1.1	2.5	0.25	0.6	1.5	30	73	170	300	300	300	390	440	470	S4UL	LQM/CIEH	2015
N N	I,4-Dichlorobenzene	2015	61	150	350	61	150	350	15	37	88	4400	10000	25000	17000	17000	1700	36000	36000	36000	S4UL	LQM/CIEH	2015
ene	I,2,3,-Trichlorobenzene	2015	1.5	3.6	8.6	1.5	3.7	8.8	4.7	12	28	102	250	590	1800	1800	1800	770	1100	1600	S4UL	LQM/CIEH	2015
enz	I,2,4,-Trichlorobenzene	2015	2.6	6.4	15	2.6	6.4	15	55	140	320	220	530	1300	15000	17000	19000	1700	2600	4000	S4UL	LQM/CIEH	2015
ę	1,3,5,-Trichlorobenzene	2015	0.33	0.81	1.9	0.33	0.81	1.9	4.7	12	28	23	55	130	1700	1700	1800	380	580	860	S4UL	LQM/CIEH	2015
엄	I,2,3,4,-Tetrachlorobenzene	2015	15	36	78	24	56	120	4.4	11	26	1700	3080	4400	830	830	830	1500	1600	1600	S4UL	LQM/CIEH	2015
0	I,2,3,5,- Tetrachlobenzene	2015	0.66	1.6	3.7	0.75	1.9	4.3	0.38	0.9	2.2	49	120	240	78	79	79	110	120	130	S4UL	LQM/CIEH	2015
	I,2,4, 5,- Tetrachlobenzene	2015	0.33	0.77	1.6	0.73	1.7	3.5	0.06	0.16	0.37	42	72	96	13	13	13	25	26	26	S4UL	LQM/CIEH	2015
	Pentachlrobenzene	2015	5.8	12	22	19	30	38	1.2	3.1	7	640	770	830	100	100	100	190	190	190	S4UL	LQM/CIEH	2015
	Hexachlorobenzene	2015	1.8	3.3	4.9	4.1	5.7	6.7	0.47	1.1	2.5	110	120	120	16	16	16	30	30	30	S4UL	LQM/CIEH	2015
ven ve																							
slor Iqoʻsl	Phenols	2015	120	200	380	440	690	1200	23	42	83	440	690	1300	440	690	1300	440	690	1300	S4UL	LQM/CIEH	2015
her hlor	Chlorophenols (4 Congeners)	2015	0.87	2	4.5	94	150	210	0.13	0.3	0.7	3500	4000	4300	620	620	620	1100	1100	1100	S4UL	LQM/CIEH	2015
υ	Pentachlorophenols	2015	0.22	0.52	1.2	27	29	31	0.03	0.08	0.19	400	400	400	60	60	60	110	120	120	S4UL	LQM/CIEH	2015
ers	Carbon Disulphide	2015	0.14	0.29	0.62	0.14	0.29	0.62	4.8	10	23		22	47	11000	11000	12000	1300	1900	2700	S4UL	LQM/CIEH	2015
0 th	Hexachloro-1,3-Butadiene	2015	0.29	0.7	1.6	0.32	0.78	1.8	0.25	0.61	1.4	31	66	120	25	25	25	48	50	51	S4UL	LQM/CIEH	2015
-	Sum of PCDDs, PCDFs and dioxin-like PCB's.	2012			8			8			8			240							SGV	DEFRA	2012
	NOTE																						
1	Priority Guideline (mg kg ⁻¹)																						

Human Health Risk Assessment

				Re home	sidential w e-grown pr	vith oduce	Resi home	dential wi -grown p	thout roduce		Allotments	5		Commercia	I	Public Open Space - Res			
		_	SOM	1.0	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	1	2.5	6	
Туре	Contaminants	Species	Year																
	1	Site Specific Assessment Criteria (SSAC) (Soils Limited)															-		
	2	2014: Category 4 Screening Level (C4SL) (Contaminated Land: Application in Real Environment (CL:ARE), 2014)																	
	3	2012: Soil Guideline Value (SGV) (Environment Agency, 2009)																	
	4	2015: Suitable 4 Use Level (S4UL) (Nathanail et al, 2015)																	
		For Generic Risk Assess	ment, the	values in	Bold have	e priority													
	Table reviewed	February 2020																	

Human Health Risk Assessment

Public Open Space -Park

Appendix E Information Provided by the Client

Soils Limited Geotechnical & Environmental Consultants

Newton House Cross Road, Tadworth Surrey KT20 5SR

T 01737 814221W soilslimited.co.uk