

Ricky Chadwick

Project Name: Ricky ChadwickDate Created: 27th February 2023Designer: Daniel Saunders

Roof Layout

Roof 1

Component list

ltem		Quantity
	HIB Longi HiMo5 405W All Black Mono solar panel	16
	Solis 5kw Hybrid inverter	1
	NET Emlite Bi-directional Meter ECA2.nv	1
	Label sheet	1
	AC isolator - KN 25A 3-pole	2
	Puredrive 5kw battery	2
	Pair of MC4 connectors	4
	100m reel of 6mm2 solar cable	1
•	50m reel of 10mm2 solar cable	2

Inverter checks

Solis 5kw Hybrid

Panels

PV power

6240 Rated AC output

5000

....

Input 1: 8 Trina Vertex S 390W All Black Mono solar panels in 1 strings

Panels		Inverter	
PV power	3120 W		
Open circuit voltage at -10° C	356 V	Max DC voltage	520 V
V _{mpp} at 40° C	260 V	V_{mpp} lower limit	90 V
V _{mpp} at -10° C	295 V	V _{mpp} upper limit	520 V
I _{mpp} at 40° C	12 A	Max DC input current	17.2 A

Max voltage

The open circuit voltage of the solar panels never exceeds the voltage limit of the inverter.

Max power point range

The maximum power point voltage of the solar panels is always above the lower limit of the inverter MPPT tracker. The maximum power point voltage of the solar panels is always below the upper limit of the inverter MPPT tracker.

Max Current

The maximum power point current of the solar panels is always below the maximum current for the inverter MPPT tracker.

Input 2: 8 Trina Vertex S 390W All Black Mono solar panels in 1 strings

Panels		Inverter	
PV power	3120 W		
Open circuit voltage at -10° C	356 V	Max DC voltage	520 V
V _{mpp} at 40° C	260 V	V_{mpp} lower limit	90 V
V _{mpp} at -10° C	295 V	V _{mpp} upper limit	520 V
I _{mpp} at 40° C	12 A	Max DC input current	17.2 A

Max voltage

The open circuit voltage of the solar panels never exceeds the voltage limit of the inverter.

Max power point range

The maximum power point voltage of the solar panels is always above the lower limit of the inverter MPPT tracker. The maximum power point voltage of the solar panels is always below the upper limit of the inverter MPPT tracker.

Max Current

The maximum power point current of the solar panels is always below the maximum current for the inverter MPPT tracker.

Electrical

Solis 5kw Hybrid

AC Isolator

.....

A AC isolator - KN 25A 3-pole has been specified for this input

Current

The rated isolator current (25A) is greater than the rated inverter current (23A) $% \left(23A\right) =0$

Phases

The isolator is suitable for use on a single phase inverter.

.....

Input 1

DC Isolator

Integrated isolator

This inverter contains an integrated DC Isolator.

Cable

30m of 6mm2 solar cable has been specified

Voltage drop

Voltage drop at maximum power point at 40°C will be around **2.09 V (0.80 percent)**

Input 2

DC Isolator

Integrated isolator

This inverter contains an integrated DC Isolator.

Cable

40m of 10mm2 solar cable has been specified

Voltage drop

Voltage drop at maximum power point at 40°C will be around **1.76 V (0.68 percent)**

Performance Estimate

Site details

Ricky Chadwick

Client

Address

The sunpath diagram shows the arcs of the sky that the sun passes through at different times of the day and year as yellow blocks. The shaded area indicates the horizon as seen from the location of the solar array. Where objects on the horizon are within 10m of the array, an added semi-circle is drawn to represent the increased shading. Blocks of the sky that are shaded by objects on the horizon are coloured red, and a shading factor is calculated from the number of red blocks. The performance of the solar array is calculated by multiplying the size of the array (kWp) by the shading factor (sf) and a site correction factor (kk), taken from tables which take account of the geographical location, orientation and inclination of the array.

Inverter 1 Solis 5kw Hybrid

Input 1

1		L		L	
I	L		I	L	
- 6	_				

-× +=

A. Installation data				
Installed capacity of PV system - kWp (stc)	3.120	kWp		
Orientation of the PV system - degrees from South	0	0		
Inclination of system - degrees from horizontal	30	٥		
Postcode region	12			
B. Performance calculations				
kWh/kWp (Kk)	953	kWh/kWp		
Shade factor (SF)	1.00			
Estimated output (kWp x Kk x SF)	2973	kWh		

Input 2

11.	A. Installation data			
	Installed capacity of PV system - kWp (stc)	3.120	kWp	
	Orientation of the PV system - degrees from South	0	٥	
	Inclination of system - degrees from horizontal	30	٥	
	Postcode region	12		
-× +=	B. Performance calculations			
	kWh/kWp (Kk)	953	kWh/kWp	
	Shade factor (SF)	1.00		
	Estimated output (kWp x Kk x SF)	2973	kWh	

Performance Summary

A. Installation data				
Installed capacity of PV system - kWp (stc)	6.24	kWp		
Orientation of the PV system - degrees from South	See indiv	vidual inputs		
Inclination of system - degrees from horizontal	See indiv	vidual inputs		
Postcode region	12			
B. Performance calculations				
kWh/kWp (Kk)	See indiv	idual inputs		
Shade factor (SF)	See indiv	idual inputs		
Estimated output (kWp x Kk x SF)	5946	kWh		
C. Estimated PV self-consumption - PV	Only			
Assumed occupancy archetype	h	iome all day		
Assumed annual electricity consumption, kWh	3500	kWh		
Assumed annual electricity generation from solar PV system, kWh	5946	kWh		
Expected solar PV self-consumption (PV Only)	1367.58	kWh		
Grid electricity independence / Self-sufficiency (PV Only)	39.07	%		
D. Estimated PV self-consumption - with EESS				
Assumed usable capacity of electrical energy storage device, which is used for self-consumption,	9	kWh		
Expected solar PV self-consumption (with EESS)	3210.84	kWh		
Grid electricity independence / Self-sufficiency (with EESS)	91.74	%		

Important Note: The performance of solar PV systems is impossible to predict with certainty due to the variability in the amount of solar radiation (sunlight) from location to location and from year to year. This estimate is based upon the standard MCS procedure is given as guidence only for the first year of generation. It should not be considered as a guarantee of performance.

The solar PV self-consumption has been calculated in accordance with the most relevant methodology for your system. There are a number of external factors that can have a significant effect on the amount of energy that is self-consumed so this figure should not be considered as a guarantee of the amount of energy that will be self-consumed

Equipment Costs	
16x *HIB* Longi HiMo5 405W All Black Mono solar panel	£3,380.00
Solis 5kw Hybrid inverter	£1,560.00
NET Emlite Bi-directional Meter ECA2.nv	£58.31
Label sheet	£3.28
2x AC isolator - KN 25A 3-pole	£63.23
2 x Puredrive 5kw battery	£5,500.00
4x Pair of MC4 connectors	£13.52
DC cabling to PV array including isolators	£354.90
Total equipment cost	£10,933.23

Services Costs

Total services cost	£5,250.00
Ground mount system rail and fixings for panels (not including ground works)	£2,550.00
Paperwork, mcs sign off etc	£500.00
nstallation of solar pv and electrical side at house	£2,200.00

Totals

£16,183.23	Total before tax
£0.00	VAT at 0%
£16,183.23	Total including tax

Financial

Generation

The system is expected to generate 5946 kWh per year initially, decreasing gradually as the solar cells degrade. Over the 25 year term of this financial projection the total generation is expected to be 144991 kwh, of which 130492 kWh will be consumed on site and 14499 kWh exported.

Payback

After adjusting projected costs and benefits for inflation, and applying a discount rate of 4%, the initial system cost of £16,183.23 is expected to be recouped after 10 years.

Net Present Value

The total present value of future benefits and costs, using a discount rate of 4% per year, is £35,610.63. The cost of the PV system is £16,183.23. The net present value of the project is therefore £19,427.40. A positive net present value is a good indication that the project is financially worthwhile.

IRR

The Internal Rate of Return is a useful measure for comparing the relative profitability of investments.

Assumptions

£19427.

145 MWh

Inflation rate	2%
Cost of electricity	£0.35 /kWh reases with inflation
System size	6.24 kWp les at 0.2% per year
Discount rate	4%
Projection length	25 years

Disclaimer

Our financial model calculates the benefits of a solar PV installation (such as savings in electricity, or payments for exported electricity) and costs (the initial purchase cost, and any future maintenance costs if entered), over the projected lifespan of the system. Values are corrected for inflation, system degradation, and discount rate - a measure that accounts for the fact that a promise of a monetary sum in the distant future is usually considered less valuable than the promise of the same sum in the near future.

A model is only as accurate as the assumptions it makes. You should consider whether the values chosen are appropriate for your situation. There are many variables that dictate the financial return of a solar installation and we cannot forecast how they may change in the future. This financial projection shows a likely scenario for future financial returns. Actual returns may vary significantly from this forecast.

		ments	caving5
	EtPort P	an Electricit	10tal
Year 1	0	1890	1890
Year 2	0	1924	1924
Year 3	0	1958	1958
Year 4	0	1993	1993
Year 5	0	2029	2029
Year 6	0	2066	2066
Year 7	0	2103	2103
Year 8	0	2141	2141
Year 9	0	2179	2179
Year 10	0	2218	2218
Year 11	0	2258	2258
Year 12	0	2299	2299
Year 13	0	2340	2340
Year 14	0	2382	2382
Year 15	0	2425	2425
Year 16	0	2468	2468
Year 17	0	2513	2513
Year 18	0	2558	2558
Year 19	0	2604	2604
Year 20	0	2650	2650
Year 21	0	2698	2698
Year 22	0	2746	2746
Year 23	0	2796	2796
Year 24	0	2846	2846
Year 25	0	2897	2897

The projected income from the system over the project lifetime in payments for generated and exported electricity, along with electricity savings, are shown in the table and graph below.

These figures assume an inflation rate of 2 percent.

f0

Electricity savings over 25 years

		Ś	×°	it's	5 vS
		abene	, eben	- duosi	, ecost
	, C	unter all	atina .co	unter al	latin non
	0 ^{15C}	CUM	0 ^{isc}	CURI	Cash
Year 1	1852	1852	0	16183	-14331
Year 2	1810	3662	0	16183	-12521
Year 3	1769	5431	0	16183	-10753
Year 4	1728	7159	0	16183	-9024
Year 5	1689	8848	0	16183	-7335
Year 6	1651	10499	0	16183	-5684
Year 7	1613	12112	0	16183	-4071
Year 8	1576	13688	0	16183	-2495
Year 9	1541	15229	0	16183	-954
Year 10	1505	16734	0	16183	551
Year 11	1471	18205	0	16183	2022
Year 12	1438	19643	0	16183	3460
Year 13	1405	21048	0	16183	4865
Year 14	1373	22421	0	16183	6238
Year 15	1342	23763	0	16183	7580
Year 16	1311	25074	0	16183	8891
Year 17	1281	26356	0	16183	10172
Year 18	1252	27608	0	16183	11424
Year 19	1224	28831	0	16183	12648
Year 20	1196	30027	0	16183	13844
Year 21	1169	31196	0	16183	15013
Year 22	1142	32338	0	16183	16155
Year 23	1116	33454	0	16183	17271
Year 24	1091	34545	0	16183	18362
Year 25	1066	35611	0	16183	19427

The table and graph below show the discounted costs for the project (including the initial capital required for the installation), against the total discounted benefits from income and savings on electricity bills.

The system pays for itself in 10 years.

