

BELL MUNRO CONSULTING LTD.

Proposed Development at Bitterne Road, Southampton

Drainage Calculations April 2024

	Initials	Signature	Date
Prepared by:	R.C	Eller.	04/24
Checked by:	S.J.B	Stor	04/24
Approved by:	S.J.B	Stor	04/24

Bell Munro Consulting Ltd. Consulting Civil and Structural Engineers Turing House 5 Archway Manchester M15 5RL Tel: 0161 209 8032 Fax: 0161 209 8033 E-Mail: consulting@bellmunro.co.uk Ref: J8115

Introduction

Surface water discharge is to a surface water sewer with a proposed discharge rate of 1.0l/s. This represents a 50% betterment on the existing discharge rate of 2.1l/s for a 1 in 1 year event. Infiltration to ground is not possible due to the arrangement of the site and no watercourse is available to the site.

Surface water storage is provided by the pipe and manhole network within the site. Permeable surfacing with full infiltration is proposed for the private parking and path areas.

Foul drainage is to the existing foul sewer connection on site.

Scheme has been designed for the following criteria:

1:1 year storm - no surcharging

1:2 year storm - no surcharging

1:30 year storm - no flooding

1:100 year + 40% allowance for climate change - no flooding

Bell Munro Consulting Ltd		Page 1
Turing House		
5 Archway		
Manchester M15 5RL		Micro
Date 12/04/2024 16:26	Designed by RichardCliffe	
File J8115 EXISTING MD MODEL.MDX	Checked by	Digiligh
XP Solutions	Network 2020.1.3	
Summary of Critical Result	ts by Maximum Level (Rank 1) for S [.] mulation Criteria	torm
Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (l/s)	<pre>1.000 Additional Flow - % of Total Flow 0 MADD Factor * 10m³/ha Storage 0 Inlet Coefficient 0.500 Flow per Person per Day (l/per/day) 0.000</pre>	v 0.000 = 2.000 = 0.800 0.000
Number of Input Hydrographs 0 Number Number of Online Controls 0 Number o	f Storage Structures 0 Number of Real Time/Are	ea Diagrams 0 me Controls 0
Synthe	etic Rainfall Details	
Rainfall Model	FSR Ratio R 0.350	
M5-60 (mm)	19.800 Cv (Winter) 0.840	
Margin for Flood Risk N	Warning (mm) 300.0 DVD Status OFF	
Analy:	DTS Status ON	
	210 000000 0	
Profile(s) Duration(s) (mins) 15.	30, 60, 120, 180, 240, 360, 480, 600, 7	ter 20.
960	, 1440, 2160, 2880, 4320, 5760, 7200, 86	40,
	10	080
Return Period(s) (years)		1
CIIMate Change (%)		0
IIS/MH Boturn Clima	ata First (X) First (X) First (7) Overfl	Water
PN Name Storm Period Chan	ge Surcharge Flood Overflow Act.	(m)
1.000 1 15 Summer 1 +	-0% -0%	7.378
	0 0	/.JII
Surcharged Flooded	Half Drain Pipe	Level
PN Name (m) (m ³)	Cap. (1/s) (mins) (1/s) Status E	xceeded
1.000 1 -0.062 0.000	0.30 2.1 OK	
1.001 2 0.037 0.000	2.1 04	
©19	82-2020 Innovyze	

Bell Munro Consulting Ltd		Page 1
Turing House		
5 Archway		
Manchester M15 5RL		Micco
Date 12/04/2024 16:36	Designed by RichardCliffe	
File J8115 MD 04 08 23.MDX	Checked by	Diamada
XP Solutions	Network 2020.1.3	1
STORM SEWER DESIGN	by the Modified Rational Method	
Design	Criteria for Storm	
Pipe Sizes STA	ANDARD Manhole Sizes STANDARD	
FSR Rainfal	l Model - England and Wales	
Return Period (years)	100 PIM	P (%) 100
M5-60 (mm) Batio B	19.700 Add Flow / Climate Chang 0.350 Minimum Backdrop Heigh	e (%) 0 t (m) 0 200
Maximum Rainfall (mm/hr)	50 Maximum Backdrop Heigh	t (m) 1.500
Maximum Time of Concentration (mins)	30 Min Design Depth for Optimisatio	n (m) 1.200
Foul Sewage (l/s/ha)	0.000 Min Vel for Auto Design only	(m/s) 1.00
Volumetric Ruhori coerr.	0.750 Min Stope for Optimisation	(1.X) 500
Design	ed with Level Soffits	
Simulati	on Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s)	0.750 Additional Flow - % of Total Flo 1.000 MADD Factor * 10m ³ /ha Storag 0 Inlet Coeffiecien 0 Flow per Person per Day (1/per/day 0.500 Run Time (mins 0.000 Output Interval (mins of Offline Controls 0 Number of Time/Ar	w 0.000 e 2.000 t 0.800) 0.000) 60) 1 ea Diagrams 0
Number of Online Controls 1 Number o	f Storage Structures 0 Number of Real Ti	me Controls 0
Synthet	cic Rainfall Details	
Painfall Model	ESP Brofilo Timo Summe	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Return Period (years)	100 Cv (Summer) 0.75	50
Region Engla	and and Wales Cv (Winter) 0.84	10
M5-60 (mm)	19.700 Storm Duration (mins)	30
Katio K	0.550	
©19	82-2020 Innovyze	

	onsulting	Ltd					Page	2
Turing House]
5 Archway								
Manchester	M15 5RL						Mic	
Date 12/04/2	024 16:36		Desig	ned by Ri	chardClif	fe		.IU ipago
File J8115 MD 04 08 23.MDX				ed by			Uld	IIIdye
XP Solutions			Netwo	 rk 2020.1	.3			
		On	line Contr	ols for S	torm			
			()	DG (DM	1 0 0 0 17 -	1	1 0	
<u>Hyar</u>	o-Brake® (Jptimum I	Mannole: 3	, DS/PN:	1.003, VO.	Lume (m³)	: 1.0	
			Unit Refere	nce MD-SHF	-0049-1000-	0800-1000		
			Design Head	(m)	0010 1000	0.800		
		De	sign Flow (1	L/s)		1.0		
			Flush-H Object	Flo™ -ive Minim	C. Lise unstrea	alculated		
			Applicat	cion	upstream	Surface		
			Sump Availa	able		Yes		
		-	Diameter	(mm)		49		
	Minimum (l Nutlet Pin	nvert Level e Diameter	(m) (mm)		/.080		
	Suggest	ted Manhol	e Diameter	(mm)		1200		
				1				
Control	Points	Head (m)	Flow (l/s)	Cont	rol Points	Head	(m) Flo	ow (1/s)
Design Point	(Calculated)) 0.800	1.0		Kick-	-Flo® 0.	.437	0.8
	Flush-Flo	™ 0.215	0.9	Mean Flow	over Head F	Range	-	0.8
The hydrolog	ical calcul	ations hav	ve been base	d on the He	ad/Discharg	e relation	ship fo	r the
Hydro-Brake®	Optimum as	specified	d. Should a	nother type	e of control	device ot	her that	n a
Hydro-Brake	Optimum® be	utilised	then these	storage rou	ting calcul	ations wil	l be in	validated
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (L/s)
Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow ()	L/s)
Depth (m) 0.100 0.200	Flow (1/s) 0.8 0.9	Depth (m) 1.200 1.400	Flow (1/s)	Depth (m) 3.000 3.500	Flow (1/s) 1.8 1.9	Depth (m) 7.000 7.500	Flow (2.7 2.8
Depth (m) 0.100 0.200 0.300	Flow (1/s) 0.8 0.9 0.9	Depth (m) 1.200 1.400 1.600	Flow (1/s) 1.2 1.3 1.4	Depth (m) 3.000 3.500 4.000	Flow (1/s) 1.8 1.9 2.1	Depth (m) 7.000 7.500 8.000	Flow (L/s) 2.7 2.8 2.9
Depth (m) 0.100 0.200 0.300 0.400	Flow (1/s) 0.8 0.9 0.9 0.8	Depth (m) 1.200 1.400 1.600 1.800 2.000	Flow (1/s) 1.2 1.3 1.4 1.4	Depth (m) 3.000 3.500 4.000 4.500	Flow (1/s) 1.8 1.9 2.1 2.2	Depth (m) 7.000 7.500 8.000 8.500	Flow (L/s) 2.7 2.8 2.9 2.9
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	Flow (1/s) 0.8 0.9 0.9 0.8 0.8 0.9	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200	Flow (1/s) 1.2 1.3 1.4 1.4 1.4 1.5 1.6	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (:	L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Flow (1/s) 0.8 0.9 0.9 0.8 0.8 0.8 0.8 0.9 1.0	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400	Flow (1/s) 1.2 1.3 1.4 1.4 1.4 1.5 1.6 1.6	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.9 0.8 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 1.800 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.5 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1
Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800 1.000	Flow (1/s) 0.8 0.9 0.8 0.8 0.9 1.0 1.1	Depth (m) 1.200 1.400 1.600 2.000 2.200 2.400 2.600	Flow (1/s) 1.2 1.3 1.4 1.4 1.6 1.6 1.6 1.7	Depth (m) 3.000 3.500 4.000 4.500 5.500 6.000 6.500	Flow (1/s) 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6	Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	Flow (L/s) 2.7 2.8 2.9 2.9 3.0 3.1

Bell Munro Consulting Ltd		Page 1
Turing House		
5 Archway		
Manchester M15 5RL		Micco
Date 12/04/2024 16:34	Designed by RichardCliffe	
File J8115 MD 04 08 23.MDX	Checked by	Digiliga
XP Solutions	Network 2020.1.3	
Summary of Critical Result	s by Maximum Level (Rank 1) for St	corm
Areal Reduction Factor	mulation Criteria 1 000 Additional Flow - & of Total Flow	0 000
Hot Start (mins)	0 MADD Factor * 10m ³ /ha Storage	2.000
Hot Start Level (mm)	0 Inlet Coeffiecient	0.800
Manhole Headloss Coeff (Global)	0.500 Flow per Person per Day (l/per/day)	0.000
Foul Sewage per hectare (1/s)	J.UUU	
Number of Input Hydrographs 0 Number	of Offline Controls 0 Number of Time/Are	a Diagrams O
Number of Online Controls 1 Number of	f Storage Structures 0 Number of Real Tim	ne Controls 0
	tic Deinfall Deteile	
Bainfall Model	FSR Ratio R 0 350	
Region Eng	land and Wales Cv (Summer) 0.750	
M5-60 (mm)	19.700 Cv (Winter) 0.840	
Margin for Elect Dick I		
Margin for Flood Risk V Analys	sis Timestep Fine Inertia Status OFF	
	DTS Status ON	
Profile(s)	Summer and Wint	er
Duration(s) (mins) 15,	30, 60, 120, 180, 240, 360, 480, 600, 72	20,
960	, 1440, 2160, 2880, 4320, 5760, 7200, 864	0,
Poturn Poriod(s) (yoars)	100	180
Climate Change (%)		0
		-
	to First (V) First (V) First (F) Orangia	Water
DS/MH Return Clima PN Name Storm Period Chan	te first (X) first (Y) first (Z) Overflo The Surcharge Flood Overflow Act.	(m)
		·/
1.000 1 15 Summer 1 +	0%	7.322
1.001 2 15 Winter 1 +		7.217
2 000 3 15 Summer 1 +	0 % .0 %	7.217
1.003 3 15 Winter 1 +	0%	7.216
Surcharged Flooded	Halt Drain Pipe	Level
PN Name (m) (m ³)	Cap. (1/s) (mins) (1/s) Status E:	xceeded
1.000 1 -0.078 0.000	0.11 0.6 OK	
	0.06 0.8 OK	
2 000 3 -0.085 0.000	0.06 0.5 0K	
2.000 5 0.005 0.000	0.00	
1.003 3 -0.014 0.000	0.08 0.8 OK	

Bell Muni	co Con	sulting L	td						Page 1
Turing Ho	ouse								
5 Archway	7								
Mancheste	er M1	5 5RL							Micco
Date 12/0)4/202	4 16:32		De	esigned by	Richard	Cliffe		
File .1811	15 MD		MDX	Ch	ecked by	112011020	011110		Drainage
VD Soluti		04 00 23.1	MDA	N	tuork 202	0 1 2			
AP SOLUCI	LOIIS			INE	ELWOIK 202	.0.1.3			
	lummar	v of Crit	ical Pe	eulte	hu Mavimi	m Tovol	(Pank 1) for St	torm
	annar	y or cric.		Sures	by Haxine		(Italik I	7 101 5	
				Simul	ation Crite	eria			
	i	Areal Reduct	cion Fact	or 1.0	00 Additi	onal Flow	- % of 1	otal Flow	0.000
		Hot St	art (mir	ns)	0 MZ	ADD Factor	* 10m³/ł	na Storage	2.000
Man	holo U	Hot Start	Level (m	nm)	0 Flow por	L Porson no	nlet Coe	(por/day)	0.800
F	oul Ser	wage per her	ctare (1/	's) 0.0	00 riow bei	. гетроп ре	т раў (1	-, ћет, пад)	0.000
_				-,					
Number of	Input	Hydrographs	s 0 Nur	nber of	Offline Co	ontrols 0 N	lumber of	E Time/Are	ea Diagrams O
Number	of Onli	ine Controls	s 1 Numbe	er of S	torage Stru	ictures 0 N	lumber o:	f Real Tin	ne Controls O
			C .,	ntheti	- Rainfall	Detaile			
		Rainfa	<u>sy</u> 11 Model	IIIIecro	FSI	R Ratio	DR 0.35	0	
			Region	Engla	nd and Wale	s Cv (Summe	er) 0.75	0	
		M5	-60 (mm)		19.70	0 Cv (Winte	er) 0.84	0	
				1				0.55	
		Margin for	Flood Ri	lsk War	ning (mm) 3 Timester	SUU.U D	VD Stati ia Stati	IS OFF	
			AI	D D	TS Status	ON	ia stati	IS OFF	
				_					
		5	c'1 ()				~	1	
		Pro Duration (s)	(mins)	15 30	0 60 120	180 240	360 48	r and Wint) 600 73	ter 20
		Duración (5)	(111110)	960, 1	L440, 2160,	2880, 4320	5760,	7200, 864	40,
								100	080
	Return	n Period(s)	(years)						30
		Climate Cha	ange (%)						0
									Water
1	US/MH	Re	eturn Cli	imate	First (X)	First (Y)	First	(Z) Overf	low Level
PN	Name	Storm Pe	eriod Ch	ange	Surcharge	Flood	Overfl	.ow Act	. (m)
1 000	1	30 Wintor	30	+00 3	0/15 Mintor	~			7 450
1.001	2. 1	30 Winter	30	+0% 3	0/15 Summer				7.448
1.002	3 3	30 Winter	30	+0% 3	0/15 Summer	-			7.447
2.000	3 3	30 Winter	30	+0% 3	0/15 Winter	-			7.448
1.003	3 3	30 Winter	30	+0% 3	0/15 Summer	-			7.447
		Surcharged	Flooded		1	Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m ³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
				_					
1.000	1	0.050	0.000	0.16			1.0 S	URCHARGED	
1 002	2	0.140	0.000	0.10			1.0 S 0.6 S	URCHARGED	
2.000	3	0.048	0.000	0.09			0.8 S	URCHARGED	
1.003	3	0.217	0.000	0.09			0.9 S	URCHARGED	
			(ରୀ	-2020 Inno				
1			(LULU IIIIC	/ Y Z C			

Bell Munro Consulting Ltd		Page 1
Turing House		
5 Archway		
Manchester M15 5RL		Micro
Date 12/04/2024 16:42	Designed by RichardCliffe	
File J8115 MD 04 08 23.MDX	Checked by	Dialitatje
XP Solutions	Network 2020.1.3	
Summary of Critical Resul	ts by Maximum Level (Rank 1) for S	torm
Arcal Poduction Factor	imulation Criteria	. 0 000
Hot Start (mins)	0 MADD Factor * 10m ³ /ha Storage	≥ 2.000
Hot Start Level (mm)	0 Inlet Coefficient	0.800
Manhole Headloss Coeff (Global)	0.500 Flow per Person per Day (l/per/day)	0.000
Foul Sewage per hectare (1/s)	0.000	
Number of Input Hydrographs 0 Number	of Offline Controls 0 Number of Time/Are	ea Diagrams O
Number of Online Controls 1 Number of	of Storage Structures 0 Number of Real Tir	ne Controls 0
Synth	etic Rainfall Details	
Rainiali Model Begion En	rSK Ratio R 0.350 gland and Wales Cv (Summer) 0 750	
M5-60 (mm)	19.700 Cv (Winter) 0.840	
Margin for Flood Risk	Warning (mm) 300.0 DVD Status OFF	
Analy	DTS Status ON	
	210 000000 011	
Profile(S) Duration(S) (mins) 15	Summer and Win . 30. 60. 120. 180. 240. 360. 480. 600. 7	ter 20.
96	0, 1440, 2160, 2880, 4320, 5760, 7200, 864	40,
	10	080
Return Period(s) (years)	:	100
Climate Change (%)		40
		Water
US/MH Return Climat	e First (X) First (Y) First (Z) Overf	flow Level
PN Name Storm Period Change	e Surcharge Flood Overflow Act	z. (m)
1.000 1 60 Winter 100 +40	% 100/15 Summer	7.905
1.001 2 60 Winter 100 +40	% 100/15 Summer	7.902
1.002 3 60 Winter 100 +40	% 100/15 Summer	7.901
2.000 3 60 Winter 100 +40	% 100/15 Summer	7.902
1.003 3 60 Winter 100 +40	% 100/15 Summer	7.900
Surcharged Flooded	Half Drain Pipe	
US/MH Depth Volume Flo	w / Overflow Time Flow	Level
PN Name (m) (m ³) Ca	ap. (l/s) (mins) (l/s) Status	Exceeded
1.000 1 0.505 0.000 0).16 1.0 FLOOD RISK	
1.001 2 0.583 0.000 0	1.0 FLOOD RISK	
1.002 3 0.594 0.000 0	0.07 0.7 FLOOD RISK	
2.000 3 0.502 0.000 0	0.08 0.7 FLOOD RISK	
1.003 3 0.670 0.000 0	1.0 FLOOD RISK	
©19	82-2020 Innovyze	