AESC Plant 3, Sunderland Reference number 22A29 - R001

FLOOD RISK ASSESSMENT & DRAINAGE STRATEGY

AESC PLANT 3, SUNDERLAND

FLOOD RISK ASSESSMENT & DRAINAGE STRATEGY

IDENTIFICATION TABLE	
Client/Project owner	AESC UK
Project	AESC Plant 3, Sunderland
Study	Flood risk assessment & drainage strategy
Date	03/01/2024
Reference number	22A29 - R001

APPROVAL

APPROVAL						
Version	Name		Position	Date	Modifications	
	Author	G Pellegrino/ T Dawe	Associate	09/11/2023		
1	Checked	C Treagus-Mullan	Senior Design Manager	10/11/2023	First issue	
	Approved	B Sharp	Assoc. Director	10/11/2023		
	Author	T Dawe	Associate	02/01/2024		
2	Checked	J Crawford	Assoc. Director	03/01/2024	Team comments applied.	
	Approved	B Sharp	Assoc. Director	03/01/2024		

TABLE OF CONTENTS

1.	INTRODUCTION	5
1.1	BACKGROUND	5
1.2	Scope of Report	5
2.	SITE INFORMATION	6
2.1	SITE DESCRIPTION	6
2.2	SITE TOPOGRAPHY AND LAND DRAINAGE	6
2.3	GROUND CONDITIONS	7
2.4	SURFACE WATER FEATURES	8
2.5	DRAINAGE INFRASTRUCTURE	8
3.	REGULATORY REQUIREMENTS	9
3.1	Environment Agency	9
3.2	LEAD LOCAL FLOOD AND PLANNING AUTHORITIES REQUIREMENTS.	9
3.3	Northumbrian Water	10
3.4	Other	10
4.	PROPOSED DEVELOPMENT	10
4.1	INTRODUCTION	10
4.2	PLANNING CONTEXT	11
5.	FLOOD RISK ASSESMENT	12
5.1	EXISTING FLOOD RISK	12
5.2	POST-DEVELOPMENT FLOOD RISK	16
5.3	SEQUENTIAL TEST & PLANNING CONTEXT	18
6.	DRAINAGE STRATEGY	19
6.1	EXISTING SITE SURFACE WATER RUN-OFF	19
6.2	PROPOSED DRAINAGE STRATEGY	19
6.3	FOUL DRAINAGE	24
6.4	MAINTENANCE AND RESPONSIBILITY	24
7.	CONCLUSION	25
8.	REFERENCES	27

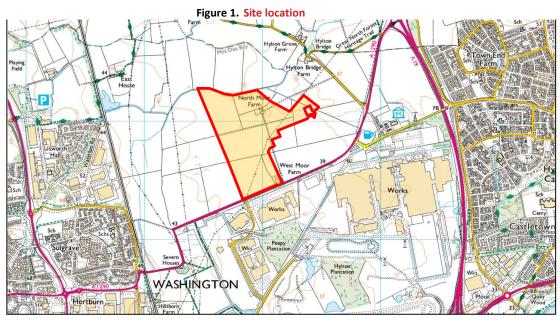
LIST OF FIGURES

Site location	5
Existing land drainage sub-catchments	7
Superficial surface geology	7
Proposed layout including AESC Plant 2	11
Usworth Burn and River Don	12
Existing and future Usworth Burn flood extents	13
Flood profiles along Usworth Burn	14
Flood risk from surface water	15
	Superficial surface geology Proposed layout including AESC Plant 2 Usworth Burn and River Don Existing and future Usworth Burn flood extents Flood profiles along Usworth Burn

LIST OF TABLES

Table 1.	Selected flood level forecasts	14
Table 2.	Pollution hazard indices by land-use	20
Table 3.	Water quality treatment steps	21
Table 4.	SuDS water quality mitigation indices	21
Table 5.	Cumulative treatment mitigation by catchment	21
Table 6.	Surface water drainage catchments	22
Table 7.	Surface drainage discharge rates	23
Table 8.	Peak storm drainage discharges	23
Table 9.	SuDS and Drainage System Maintenance Plan	24

LIST OF APPENDICES


- Appendix A Drawings
- Appendix B Ground investigation information
- Appendix C Regulatory information
- Appendix D JBA Flood modelling report
- Appendix E Surface drainage system details

1. INTRODUCTION

1.1 Background

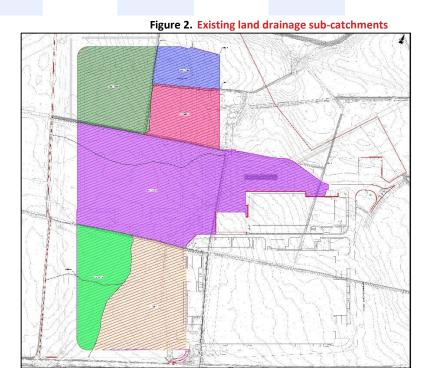
- 1.1.1 AESC UK proposes to develop a second battery factory (AESC Plant 3) and warehouse on farmland immediately west of their AESC Plant 2 development that is currently under construction. The site is partially located within the boundaries of the International Advanced Manufacturing Park (IAMP) ONE Phase 2 on land north of the Nissan UK's Sunderland factory.
- 1.1.2 The site is located north of the A1290 Washington Road. The former West Moor Farm (now demolished) was nearby to the east. North Moor Farm is close to the northeast corner of the site. The location of AESC Plant 3 is shown on **Figure 1**.

Source: Ordnance Survey. Crown Copyright reserved.

1.2 Scope of Report

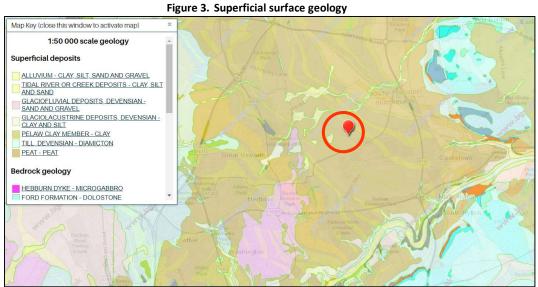
1.2.1 The purpose of this assessment is to develop a full appreciation of possible flood risks to the development and to other properties in the surrounding areas that may be affected as a result. It describes the strategy for managing the drainage needs of the proposed scheme in order to satisfy the requirements set out in *'National Planning Policy Framework'*⁽¹⁾ and *'Planning Practice Guidance'*⁽²⁾ together with the specific requirements of the Environment Agency (EA) and Lead Local Flood Authority (LLFA) which in this case is Sunderland City Council (SCC).

2. SITE INFORMATION


2.1 Site Description

- 2.1.1 The AESC Plant 3 site occupies approximately 32ha of arable farmland between the A1290 Washington Road and Usworth Burn, which flows eastward past the northern end of the site. The site abuts the AESC Plant 2 to the east and will share access onto International Drive with that development. Farmland and open ground lie to the west with the edge of Washington 1km away.
- 2.1.2 Part of the access route to the Proposed Development also passes through the IAMP ONE area where both Plants 2 and 3 will share an access route onto International Drive. The majority of the Plant 3 scheme lies outside of the IAMP limits. Part of the Plant 3 site boundary overlaps with the planning application boundary for AESC Plant 2, which is now under construction. The majority of the Plant 3 scheme lies outside the area allocated for development within the IAMP Area Action Plan and on land designated, and implemented, as an Ecological and Landscape Mitigation Area.
- 2.1.3 The Usworth Burn and River Don both pass to the north of the site. A series of fieldboundary ditches are currently draining the land, part draining northwards into the Burn and part flowing south to discharge into a dyke and culvert that runs along the southern side of the A1290.
- 2.1.4 The A1290 is to be widened to a dual carriageway as part of the Early Infrastructure and Northern Employment Area planning permission.

2.2 Site topography and land drainage


- 2.2.1 A survey of existing land levels is shown on drawings 22A29-FRA-TOPO-01 and 02 in **Appendix A**. A plan showing how the land splits into a series of sub-catchments is shown in **Figure 2** (extract of SYSTRA drg nr 21B34-SYS-HDG-Z0-DR-CH-02-500).
- 2.2.2 The proposed development land is bisected by two land-drains running east to west, though the eastern ends of these have been affected by the Plant 2 development. Drains also run south to north. The central and northern areas drain northwards to the Usworth Burn upstream of its confluence with the River Don near Hylton Bridge, north-east of the site. The south-western section of land is believed to drain to a low point north-west of the former West Moor Farm. The wider drainage pattern in this part of the site sees the land drain to an open drain that runs along the southern side of A1290 Washington Road. The drain appears to reach a summit opposite the Farm's site and flows away both eastwards and westwards from this point.
- 2.2.3 The site levels sit mostly between 38-40mOD, falling to around 37mOD at North Moor Farm.
- 2.2.4 The site's contour pattern is included on SYSTRA drawings nr 22A29-FRA-TOPO-01 and 02 in **Appendix A**.

2.3 Ground conditions

2.3.1 Publicly-available records from the British Geological Survey (Figure 3) indicate the superficial geology to be Pelaw Clay. Site-investigations ⁽⁶⁾ in 2017 on the eastern part of the site within the original IAMP ONE extent recorded slightly sandy or gravelly clay or silty clay over mudstone or sandstone: the corresponding borehole logs are included for information in Appendix B. Where granular material (gravel) was present, this was at depths below which soakaway structures would be practicable and which were below such groundwater levels as were recorded.

Source: British Geological Society website, 2019

AESC Plant 3, Sunderland	
Flood risk assessment & drainage strategy	 22A29 - R001

- 2.3.2 More recently, a study by RPS ⁽¹⁵⁾ described the general ground conditions as "... underlain by the Pennine Middle Coal Measures Formation, and also Alluvium, mapped across the northern site boundary. Superficial Deposits including Pelaw Clay, Laminated Clay and Glacial Till represent unproductive strata overlying the bedrock of variable thickness."
- 2.3.3 Past observations of the general behaviour of the land noted surface ponding on the fields at local low spots during heavy or prolonged wet weather. Soakaway tests across the IAMP ONE area returned permeability factors no higher than 5x10⁻⁷m/s. This is reflected in observations of the area's behavior during and after prolonged wet weather where surface ponding is a frequent result.
- 2.3.4 The site is located outside of any groundwater source protection zone. The nearest potentially sensitive groundwater abstraction is a fish farm about 2km north of the site.

2.4 Surface Water Features

- 2.4.1 Usworth Burn runs eastwards passing the north edge of the site, joining the River Don approximately 460m from the northern corner of the site. The River Don continues to the east passing through Hylton Bridge nearby and then passing beneath the A19 immediately downstream of an old railway bridge across the river. It eventually discharges to the River Tyne in Jarrow. The Burn's flood behavior is addressed in more detail in Section 4.
- 2.4.2 A pond is recorded on early mapping close to North Moor Farm but later maps suggest that it was filled in during the early 1900s,
- 2.4.3 A ditch runs alongside the A1290 past the site's southern boundary flowing eastwards into a piped culvert that follows Washington Road beyond the Nissan entrance or westwards to discharge to a small tributary stream to Usworth Burn west of Cherry Blossom Way.
- 2.4.4 The site is crossed by a number of ditches which convey flows in different directions; the main falls across the site are northern-east towards the Usworth Burn or, for the southern part, eastwards toward International Drive. There is a small ditch flowing towards the north which continues beyond the site's northern edge and discharges into Usworth Burn. The south-west corner of the site drains toward the eastern edges. There are no other surface water-features of note within or close to the proposed development site.

2.5 Drainage Infrastructure

- 2.5.1 There are no public surface water or foul sewers within the site. The two farmsteads are believed to have relied upon septic or cess tanks for their domestic drainage. The nearest public sewers are those laid for the AESC Plant 2 and IAMP ONE. Those were designed to serve only the IAMP project and made no allowance for any further development outside of the IAMP limits. There are trunk sewers to the west at the edge of the Washington urban area and those drain southwards to a sewage treatment works south-east of Barmston.
- **2.5.2** The A1290 highway drainage discharges into an open drain along the south side of the road which flows away from a high point opposite West Moor Farm, eastwards towards the culverted watercourse along Washington Road or westwards towards Washington and Cherry Blossom Way.

AESC Plant 3, Sunderland	
Flood risk assessment & drainage strategy	22A29 - R001
	03/01/2024

3. REGULATORY REQUIREMENTS

3.1 Environment Agency

- 3.1.1 The Environment Agency (EA) is the drainage authority for the River Don and Usworth Burn which are both designated 'main river'. Their main interest is in the fluvial flood-risk management for the development and compliance with the Water Framework Directive (WFD)⁽⁹⁾.
- 3.1.2 With regard to the WFD, the Northumbria River Basin Management Plan ⁽¹⁰⁾ deems the site to be split between the Don and the Wear Lower & Estuary surface-water units. This corresponds with the topography of the site and the split between those two destinations. There is no local groundwater unit.
- 3.1.3 A Water Framework Assessment ⁽¹¹⁾ produced for the overall IAMP development did not record any additional constraints upon the scheme that impact specifically upon this scheme.

3.2 Lead Local Flood and Planning Authorities requirements.

- 3.2.1 SCC is the LLFA and LPA for this site as it sits entirely south of the River Don (the boundary with South Tyneside Council). The land drains are classed as 'ordinary watercourses' and fall under their oversight. As LLFA, they are also a statutory consultee to the planning process.
- 3.2.2 The most recent version ⁽¹²⁾ of their Strategic Flood Risk Assessment (SFRA) was published in 2017.
- 3.2.3 The SFRA mentions the IAMP development, principally referring to it in respect of a 2016 Flood Risk and Water Management Report ⁽⁴⁾ produced as part of the IAMP AAP. The SFRA highlighted four key objectives for drainage strategy and flood-risk management for the IAMP project drawn from this document, of which three are pertinent to this particular site:
 - Managing flood risk from large paved areas.
 - Controlling run-off from new development.
 - Managing water quality of development run-off.
- 3.2.4 SCC, in its role as LLFA, maintains a Local Flood Risk Management Strategy ⁽¹³⁾. This sets out a series of measures to manage flood risk of which the following are pertinent to this site:
 - Development drainage on greenfield sites should be designed to discharge at greenfield run-off rates for the 1 in 1-year and 1 in 100-year rainfall events.
 - Greenfield (and brownfield) sites should be checked on a 6-hour rainfall duration and any flooding constrained within the development site, causing no flooding to any buildings. Such flood water must be able to enter back into the system.
 - Major Planning Application schemes should include some form of SuDS attenuation and source control.
- 3.2.5 The LFRMS identifies part of IAMP TWO as land where development potentially conflicts with known flood risk but that is outside the extent of this particular site.

AESC Plant 3, Sunderland	
Flood risk assessment & drainage strategy	22A29 - R001
	03/01/2024

- 3.2.6 SCC's Local Plan includes two documents which have some bearing on this assessment:
 - The Core Strategy and Development Plan (CSDP) ⁽¹⁴⁾ which sets out the overarching spatial strategy for development within the city from 2015-2033, adopted in 2020.
 - The IAMP AAP ⁽³⁾ which was prepared jointly by SCC and STC and adopted in 2017.
- 3.2.7 The CSDP includes a series of policies relating to drainage and flood risk:
 - WWE2 Flood Risk and Coastal Management.
 - WWE3 Water Management
 - O WWE4 Water Quality
 - WWE5 Disposal of Foul Water
- 3.2.8 Policy WWE2 broadly restates principal elements of the general thread for flood-risk management from NPPF ⁽¹⁾. It also requires development to contribute to the objectives of the local river basin management plan and to utilise SuDS measures as part of wider 'green infrastructure' systems. Policy WWE3 requires development to demonstrate that it passes the Sequential Test for flooding, to match greenfield run-off rates for surface drainage at the 1-year and 100-year return periods and to apply suitable provision for climate-change effects.
- 3.2.9 Policy WWE4 obliges development discharging to a watercourse to make appropriate pollution control measures. Policy WWE5 sets out a hierarchy of preference for sewage disposal from new development. The full text of all four policies is included in **Appendix C** for reference.

3.3 Northumbrian Water

3.3.1 NWL is the incumbent sewer authority. Any new trunk foul sewer serving the AESC Plant 3 site that are to be adopted will comply with the Sewerage Sector Guidance ⁽⁷⁾, the current design standard for such works.

3.4 Other

- 3.4.1 A portion of the Plant 3 site is within the IAMP ONE scheme extent. The following reports were produced for the overall IAMP ONE development to inform earlier stages of the planning and design process related to flood risk and drainage matters:
 - AAP Flood Risk and Water Management Technical Background Report⁽⁴⁾.
 - IAMP ONE: Environmental Statement: Chapter I: Water resources & flood risk ⁽⁵⁾.

4. PROPOSED DEVELOPMENT

4.1 Introduction

4.1.1 The proposed development comprises erection of a building to be used for the manufacture of batteries for electric vehicles, an assembly & warehousing building, an office building, a sub-station, gatehouse, ancillary compounds/structures and associated infrastructure provision, access, parking, drainage and landscaping. The proposed layout is shown in **Figure 4** which also shows the adjacent Plant 2, currently under construction. The diverted

AESC Plant 3, Sunderland	
Flood risk assessment & drainage strategy	22A29 - R001
	03/01/2024

National Grid power lines run alongside the western and northern sides of the proposed development. A larger plan is included in **Appendix A**.

4.1.2 The facility will employ up to 1,900 staff across the factory, warehouse and office.

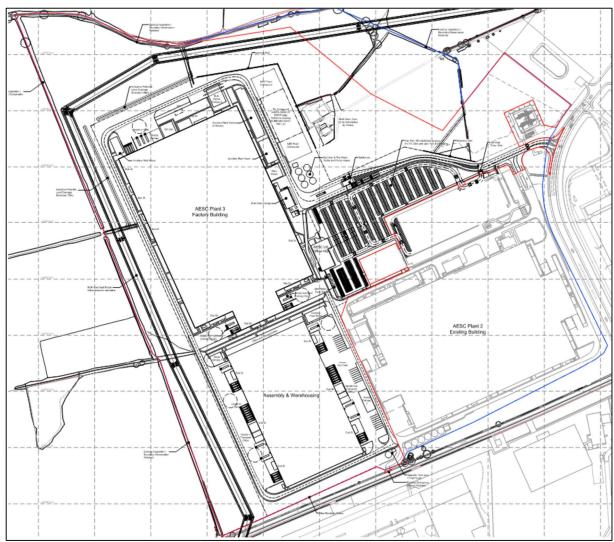


Figure 4. Proposed layout including AESC Plant 2

Source: IAMP AAP

4.2 Planning Context

4.2.1 The proposed development will use certain hazardous substances, the presence of which will classify the development as '*highly Vulnerable*' according to Table 2 from the flood management section of the PPG website. The offices and sub-station elements of the scheme are classed as '*less vulnerable*'.

SYSTIA

5. FLOOD RISK ASSESMENT

5.1 Existing flood risk

Fluvial Flooding

5.1.1 A small river known as Usworth Burn runs north of the site, flowing eastwards. The Burn converges with the River Don west of Hylton Bridge where Follingsby Lane crosses the Don. The river continues eastwards and passes beneath the A19 just north of the A19/A1290 Downhill Lane junction. These features are located as shown in **Figure 5**.

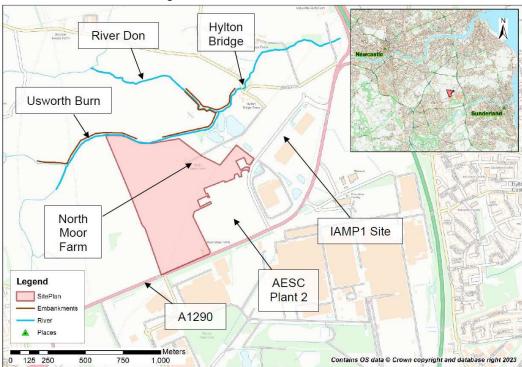


Figure 5. Usworth Burn and River Don

- 5.1.2 The EA's indicative flood mapping of the Don and the Burn was too coarse to be relied upon for the purposes of flood risk assessment for the project. A detailed river model was originally compiled to provide detailed forecasts of the design flood extents in order to inform the flood risk assessment process for the IAMP scheme. This model has been reused and updated as appropriate to provide site-specific flood level information for the AESC Plant 3 scheme. JBA's report ⁽⁸⁾ contains full details of the modelling work and results and is included in **Appendix D**.
- 5.1.3 Selected present-day and future flood extents across and close to the proposed development together with the proposed development planning boundary are shown in **Figure 6**.
- 5.1.4 The present-day 1% AEP flood reaches the planning outline of the proposed development either side of North Moor Farm and extends across this boundary north of the proposed parking area. The design flood including for the effects of climate change (1% AEP+CC34)

AESC Plant 3, Sunderland	
Flood risk assessment & drainage strategy	22A29 - R001
	03/01/2024

Source: JBA report 2023

encroaches slightly further onto the margins of the proposed planning area either side of North Moor Farm and towards International Drive. These areas are outside of the developed footprint and will be retained as part of the scheme's landscaping works. These areas lie to the north-east of the main buildings and the predicted flood flows are contained within the Burn's channel where it passes north of the proposed development.

5.1.5 The Usworth Brun is part of the Tyne Management Catchment for the purposes of deriving climate-change allowances. Allowances have been based on the 2080s epoch in view of the proposed lifetime of the facility. A 34% (Central) allowance is appropriate for the AESC Plant 3 site, if (as expected) it is categorised as '*Highly Vulnerable*'. The modelling also tested a 42% allowance (Higher Central) to provide design levels if the development were to be classed as '*essential infrastructure*'.

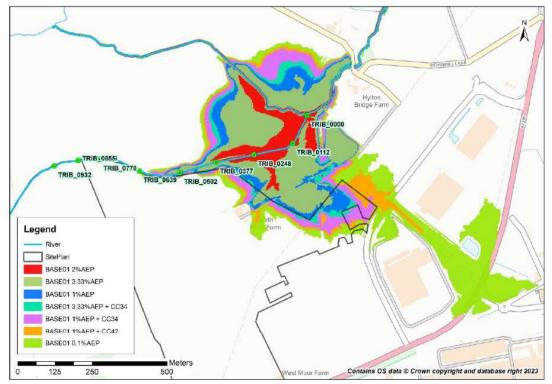
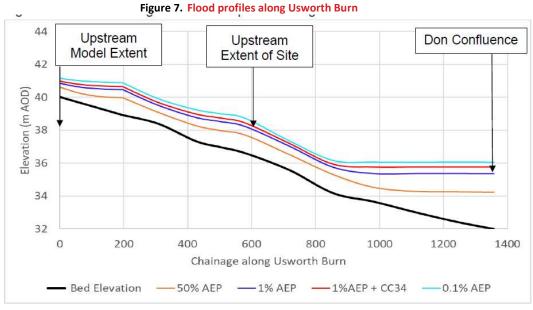



Figure 6. Existing and future Usworth Burn flood extents

Source: JBA report, 2023

- 5.1.6 Almost all the proposed development sits within the low-risk category of Flood Zone 1. Flood Zone 2 encroaches onto the north-eastern end of the proposed development and affects part of the site entrance off International Drive. Flood Zone 3A extends onto the landscaped margins of the proposed development but does not reach the proposed buildings.
- 5.1.7 The flooding is driven mainly by the restriction to flow at Hylton Bridge as is shown in the series of water-level profiles shown in **Figure 7**. The constraints imposed by the A19 culvert do not overly influence flood levels this far upstream: peak flood levels at the design-flood level of severity are about 1m lower upstream of the A19 than upstream of Hylton Bridge.

Source: JBA report 2023

5.1.8 Key flood levels from the river modelling are shown in **Table 1**. The node locations can be seen on Figure 6. 0855i is opposite the north-western corner of the main buildings. 0502 is roughly opposite the north-eastern corner and 0248 is opposite North Moor Farm. This latter node correlates to the backed-up section of the flood profile, upstream of Hylton Bridge.

Table 1.	Selected flood level forecasts

NODE	1% AEP	1%NAEP + CC34%	0.1% AEP
0855i	38.52mOD	38.74mOD	39.00mOD
0502	35.74	35.93	36.15
0248	35.35	35.76	36.05

- 5.1.9 The design life of the development exceeds 50 years so allowances from the 2080s column have been used.
- 5.1.10 The modelling included existing flood defences within the model: a comparison was made omitting those defences but showed no meaningful difference in results at design flood levels. This is due to the low standard of protection afforded by those features: they are overwhelmed at the design flood conditions.
- 5.1.11 Overall, there is only a **VERY LOW** risk of fluvial flooding at present with all but a small area of the proposed development located in Flood Zone 1. There is a very low residual risk of

AESC Plant 3, Sunderland		
Flood risk assessment & drainage strategy	22A29 - R001	
	03/01/2024	Pag

flood flows crossing the eastern end of the site and continuing down to the A1290 and across to Washington Road and towards the Nissan factory.

Surface Water Flooding

5.1.12 The at-risk areas affected by surface flooding largely align with those affected by fluvial flooding. Figure 8 shows the EA's indicative mapping for surface flooding across proposed development site. A localised low area on the western side of the site opposite the warehouse location is forecast to have a high risk of such flooding but the site is otherwise largely free of such risk.

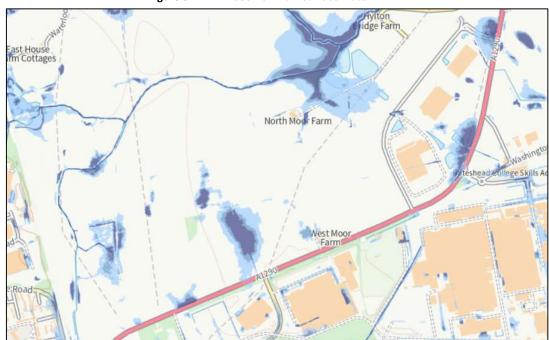


Figure 8. Flood risk from surface water

Source: EA website, 2023

- 5.1.13 The AESC Plant 2 complex adjacent to the proposed development site creates a substantial paved and built area which potentially generates substantial quantities of run-off. That scheme includes new surface drainage designed to manage that run-off to the requisite standards and which therefore significantly reduces that risk.
- 5.1.14 A localised low area of high surface-flood risk is situated on the western side of the proposed site. The site is however otherwise largely clear of surface flood risk other than an area around North Moor Farm which is on the periphery of the proposed site.
- 5.1.15 Given those provisions, surface flooding is considered to present a LOW risk of flooding to the proposed development or neighbouring areas.

Artificial sources

There are no nearby artificial water bodies (e.g. canals, SuDS basins) beyond those created 5.1.16 specifically for the IAMP scheme to the east. This potential source poses no material risk of flooding to the site.

AESC Plant 3, Sunderland		
Flood risk assessment & drainage strategy	22A29 - R001	
	03/01/2024	Page 15,

Groundwater flooding

5.1.17 Groundwater is not considered to pose any meaningful risk of flooding to the site. The physical nature of the soils locally does not permit ready movement of groundwater and there is no underlying mobile water table that would be expected to rise to the surface. The risk of flooding to the site from groundwater is considered **NEGLIGIBLE**.

Drainage flooding

- 5.1.18 The closest location of any known sewer flooding issues was on Washington Road adjacent to the former Three Horse Shoes Public House opposite the air museum. This was understood to be caused by or exacerbated by land-drainage flows that were culverted west of the pub and discharged into piped drains running along Washington Road, as well as local deficiencies in the pipe works themselves. Such flooding is too far away to pose any risk to the site or cause any significant interference with off-site access.
- 5.1.19 The main surface water sewer close to the site is the new drainage system to serve the AESC Plant 2 development, currently under construction. The new drainage is designed to convey flows up to and including the 1 in 100-year event with a 40% climate change allowance.
- 5.1.20 There are no recorded instances of flooding on the A1290 from the highway drainage network in the vicinity of the site.
- 5.1.21 Drainage flooding is not considered to present anything more than a **VERY LOW** risk of flooding to the site or its accesses.

Summary

5.1.22 The main risk of flooding to the existing site arises from surface flooding on a localised low area straddling the south-west boundary of the proposed development. The Usworth Burn will flood peripheral areas either side of North Moor Farm but such flooding will not extend any significant distance into the body of the site. Such flooding only occurs at or around the design flood standard. The probability of flooding from any source other than the localised high-risk surface flooding occurrence is no more than **LOW**.

5.2 Post-development flood risk

Fluvial flooding

- 5.2.1 The proposed buildings and ancillary elements do not encroach onto the current or future Flood Zone 3. The peripheral parts of the site which are predicted to be affected at the design standard are to be part of the scheme's landscaping and will not be altered in terms of ground level. The fluvial floodplain will therefore not be altered. A plan showing the proposed development layout together with the modelled flood extents is included in **Appendix A**.
- 5.2.2 The site access off International Drive and a new sub-station are proposed within Flood Zone 2 and their finished levels will be set above the 0.1% flood levels. In the event that the access is obstructed for any reason, a back-up access is available at the south-east corner of this development onto the A1290. That is located in Flood Zone 1.

AESC Plant 3, Sunderland		
Flood risk assessment & drainage strategy	22A29 - R001	
	03/01/2024	Р

- 5.2.3 The floor levels for the new development are to be set at 39.0mOD. This is generally well above the design flood level (1% + CC) as per the levels in **Table 1**. It is only in the northwest corner of the site that the design flood profile rises to within 0.6m of the proposed floor level. The design flood level quickly falls away as the Burn runs eastward and at the north-east corner of the main factory building the flood level opposite that point is below 36mOD, 3m below the floor level. The Burn is confined even in flood within its channel at the north-west corner of the site and in this situation the floor level chosen is considered reasonable in relation to the modelled design flood profile.
- 5.2.4 The provision of a new surface drainage system to serve the proposed development will manage the risk of increased fluvial flooding downstream and prevent any increase in such flooding up to the requisite design standard.
- 5.2.5 These provisions mean that the post-development peak flood levels will be unaltered from the pre-development behaviour. The risk of fluvial flooding to or exacerbated by the proposed development remains **VERY LOW**.

Surface Water Flooding

- 5.2.6 The risk of external surface flooding affecting the proposed development is minimal due to the absence of large paved areas surrounding the proposed development that would shed run-off quickly onto the site.
- 5.2.7 The proposed development creates significant areas of paved surface and building roofs. This significantly increases the rate of run-off from the site but the provision of a new surface drainage system as part of the development will collect and manage that run-off and setting of floor levels higher than external surfaces will prevent the risk of internal flooding in such conditions. There is a residual risk of increased run-off and surface flooding at storm conditions above the drainage design standards but the levels of such risk are **LOW**.
- 5.2.8 Surface flooding is considered to continue to pose a **LOW RISK** of flooding overall for the site's developed form given the provision of a new drainage system to drain the scheme.

Groundwater Flooding

- 5.2.9 The proposed development will harden the majority of the site surface and divert rainfall away from soaking into the ground and into the new surface drainage system. This is not considered to materially alter the local groundwater behaviour given how poorly permeable is the superficial material. Any water ponding on adjacent waterlogged ground that spills onto the development if ground levels permit will be collected by the drainage system.
- 5.2.10 Any use of piled foundations may intrude into lower strata (e.g. sandstone) which may be more porous but are not considered to cause any material interference with the movement of groundwater in those layers as the likely spacing of such elements will be widely spread.
- 5.2.11 Groundwater is considered to continue to pose a **NEGLIGIBLE** risk of flooding for the proposed development.

Artificial Flooding

5.2.12 As noted earlier, this potential source is not relevant here.

AESC Plant 3, Sunderland	
Flood risk assessment & drainage strategy	22A29 - R001
	03/01/2024

Drainage flooding

- 5.2.13 The risk of flooding from existing off-site sewers remains no more than **LOW**. Those locations where sewer flooding has previously been reported are remote from the site and are unaffected in turn by the new development. New drainage systems provided for the proposed development itself have been designed to conform to the relevant design standards for drainage 100-year return period plus 45% allowance for future climate change. Those systems are described in more detail in **Section 6**.
- 5.2.14 There is a residual risk of sewer flooding during storm conditions above the drainage design standards but the levels of such risk are **VERY LOW**.

Summary

- 5.2.15 The majority of the proposed development site sits within Flood Zone 1, at LOW risk of fluvial flooding from the Usworth Burn. Peripheral areas around North Moor Farm and alongside the site access from International Drive sit within Zones 2 or 3, where the risk rises to HIGH. These latter areas will be used for landscaping purposes and the new buildings are all situated in Zone 1.
- 5.2.16 The provision of new drainage will manage the risk of increased run-off rates from the scheme discharging into the Burn and worsening fluvial flooding downstream. The same provision will also manage the risk of surface flooding on site from the new paved and built areas and the risk of drainage flooding from the new systems. The new scheme removes a high-risk area of surface flooding within site limits as a result of the new earthworks and site levels.
- 5.2.17 Groundwater remains as a NEGLIGIBLE risk of flooding, as does the risk originating from artificial sources.
- 5.2.18 Overall the risk of flooding to or originating from the proposed development is no greater than **LOW**.

5.3 Sequential Test & Planning Context

- 5.3.1 The proposed development site lies almost wholly within Flood Zone 1. Those areas that fall within Flood Zones 2 and 3 are mainly used for landscaping and retained in their current landform. The positioning of development follows the sequential approach and therefore the Sequential Test is considered to be satisfied.
- 5.3.2 The proposed development is classed as *'highly vulnerable'* in terms of its sensitivity to flooding. This category is compatible with the development's location in Flood Zone 1, according to Table 2 *Flood risk vulnerability and flood zone 'incompatibility'* from PPG (Flood Risk and Coastal Change). No exceptions test is needed.

03/01/2024

6. DRAINAGE STRATEGY

6.1 Existing site surface water run-off

- 6.1.1 The existing topography of the AESC Plant 3 site splits into two catchments that drain in different directions as shown previously in **Figure 2**. Part of the site naturally drains to Usworth Burn via a land-drain network running northward (Outfall 1) whilst the remainder drains via the IAMP ONE drainage system that the Plant 2 drainage connects to (Outfall 2).
- 6.1.2 The local greenfield run-off rate has previously been agreed as a Q_{BAR} value of 3.81/s/ha. This corresponds to values of 3.3, 6.7 and 8.01/s/ha for the 1-year, 30-year and 100-year storm return periods respectively. The proposed development land is no different in character from the IAMP areas and it is considered appropriate for the same values to be used in the drainage design for Plant 3.

6.2 **Proposed drainage strategy**

- 6.2.1 Detailed design of the proposed development drainage is described in RPS report AESC GIGA FACTORIES PLOT 2 PLANNING Drainage Strategy, October 2023. This is included in **Appendix E** for information.
- 6.2.2 The surface drainage strategy for this scheme takes the same approach as that used for Plant 2. The soil is predominantly clayey and poorly permeable, as described earlier. Those conditions do not support use of infiltration drainage for development drainage purposes. Such residual infiltration as may occur from un-lined drainage features will be minimal and has not been allowed for in design of the trunk surface-drainage system at this stage.
- 6.2.3 Permeability values recorded from site tests ranged from '*no result*' to **5x10⁻⁷m/s**. The latter values would class the ground as '*very poor infiltration*' (Table 25.1, SuDS Manual) and reflect the logged descriptions of the sub-soil as clay. The Manual suggests that residual infiltration from attenuation structures (e.g. permeable pavements, cellular tanks) can be considered for levels of permeability as low as 1x10⁻⁸m/s. No such allowance for residual infiltration has been incorporated in the detailed design.
- 6.2.4 The ground conditions within the proposed development parcel are too poorly permeable to enable meaningful use of infiltration within the drainage system to retain an initial 5mm of rainfall run-off in tandem with the other design requirements for the system. The nature of the site's usage and the residual risks of pollution to certain types of source-control SuDS features mean that a 'hard' drainage approach for run-off collection from parking and access areas is considered more appropriate in most areas.
- 6.2.5 Provision of green roofs to provide this function for the factory and warehouse was ruled out by the client due to the potential consequences of a leak given the site's usage. A green/ blue roof is proposed for the new office building.
- 6.2.6 As stated in the RPS report, "... it is generally not feasible to retain the first 5mm of rainfall on site. Where practicable the impermeable surface areas have been kept to a minimum and where appropriate (e.g. AESC Office HQ roof) surfacing suitable to provide interception has

AESC Plant 3, Sunderland	
Flood risk assessment & drainage strategy	22A29 - R001
	03/01/2024

been incorporated. A wide vegetative landscaping belt has been provided to the south, west and northern boundary. Gravel landscaped areas have also been provided."

Water quality management

- 6.2.7 The proposed drainage systems will provide water quality management as follows to control and prevent pollution from the surface run off. The methodology is based upon the pollution hazard and SuDS treatment indices process set out in the SuDS Manual.
- 6.2.8 An indices approach has been used in order to evaluate the train of treatment required for the surface water runoff from the proposed impermeable areas and it will rely upon underground storage tanks and proprietary oil separators in order to achieve the required train of treatments for the proposed outfalls.
- 6.2.9 The proposed development consists of different catchments by pollution risk rating as follows:
 - Building roofs low risk.
 - Car parking, circulation roadways and hardstanding medium risk
 - Access roads by gatehouse high risk (due need for <u>all</u> traffic to pause there).
 - Delivery areas for fuel high risk, additional treatment provision.
 - Delivery areas for chemicals very high risk, drained separately.
- 6.2.10 The fuel delivery areas will be locally isolated from the main circulation routes and drained through a full retention (forecourt) separator in addition to the SuDS elements provided in the wider drainage network for the medium risk catchments.
- 6.2.11 The chemical delivery bays are roofed over and not subject to direct rainfall. Any water that reaches these areas indirectly (dripping off vehicles, wind-blown rain in severe conditions) will drain to captive tanks to prevent any risk of spillage being flushed through into the drainage networks. Liquid collected within these tanks will be tested and appropriate waste disposal determined from the test results.
- 6.2.12 It is proposed to apply a green/blue roof to the office building.
- 6.2.13 The pollution hazard values for the three risk ratings are shown in Table 2 (taken from Table 26.2, SuDS Manual).

Land-use	Pollution Hazard	TSS	Metals	Hydrocarbons
Building Roofs	Low	0.30	0.40	0.05
Circulation roads, hardstanding, car parking	Medium	0.70	0.60	0.90
Gatehouse access roads	High	0.70	0.60	0.90

Table 2. Pollution hazard indices by land-use

6.2.14 The proposed surface water drainage strategy takes into account difference in usage between the areas and each risk-related catchment is treated independently. Table 3 sets

AESC Plant 3, Sunderland	
Flood risk assessment & drainage strategy	22A29 - R001

out the SuDS component(s) applied to the main catchments, in addition to the specific arrangements described above for the fuel and chemical delivery bays.

Catchment	Step One	Step Two	Destination
Factory & warehouse roofs	Vortex separator	Vortex separator	Watercourse
– low risk			
Office roof – low risk	Green/blue roof	Vortex separator	Watercourse
Circulation roads,	Full retention oil	Vortex separator	Watercourse
hardstanding – medium risk	separator		
Car parks – medium risk	Bypass oil	Vortex separator	Watercourse
	separator		
Circulation roads & fuel	Full retention	Vortex separator	Watercourse
delivery areas – high risk	interceptor		
Access road (site entrance)	Bypass oil	Vortex separator	Watercourse
– high risk	separator		

Table 3. Water quality treatment steps

- 6.2.15 The attenuation storage elements provide a benefit through settlement of suspended solids together with any adsorbed metals or hydrocarbons but this is not a deliberate outcome and needs to be managed in order to control any build-up of silt inside those storage elements to avoid impacting their hydraulic performance. That behaviour has not been considered as reducing the pollutant index within the surface runoff with any significant effect and has been assigned indices of 0.50, 0.20 and 0.20 respectively.
- 6.2.16 The mitigation indices used in the design of the new surface drainage, based upon Table 26.3 of the SuDS Manual defines the mitigation indices as follows (Table 4) and the associated cumulative mitigation value for the combinations of treatment components for each catchment category. These are based upon specific proprietary products as recorded in RPS's report ⁽¹⁵⁾.

SuDS Type	TSS	Metals	Hydrocarbons
Green/blue roof	0.80	0.70	0.90
Full retention Separator	0.80	0.60	0.99
By-Pass Oil Separator	0.80	0.60	0.90
Vortex Separator	0.50	0.40	0.80

Table 5. Cumulative treatment mitigation by catchment				
Catchment	TSS	Metals	Hydrocarbons	
Factory & warehouse roofs – low risk	0.75	0.60	1.20	
Office roof – low risk	1.05	0.90	1.30	
Circulation roads, hardstanding – medium risk	1.05	0.80	1.39	
Car parks – medium risk	1.05	0.80	1.30	
Circulation roads, fuel delivery areas – high risk	1.05	0.80	1.39	
Access road entrance – high risk	1.05	0.80	1.30	

- 6.2.17 These results show that even allowing for some variation in the effective indices for the proprietary systems compared with those estimated in this assessment, the proposed treatment steps in the drainage systems are sufficient to meet the predicted pollution hazard ratings for the different areas of the site.
- 6.2.18 Run-off is directed variously to the Usworth Burn or Hylton Dene Burn. In the latter case this is delivered via the Plant 2 drainage system that in turn discharges to the IAMP ONE storm drainage system.
- 6.2.19 Firefighting water storage requirements are to be agreed with the local authority. The surface and foul water systems can be shut down if needed to prevent firefighting water from leaving the site. In the event of a fire, contaminated firefighting water will be captured primarily by the surface water drainage system serving the external roads and pavements and depending upon the fire's location by the foul water drainage systems. It will be prevented from discharging from the site to prevent pollution downstream as far as is practicable. The on-site pump stations can be switched out to hold contaminated water within the drainage network, which can then be pumped out after the event to be disposed of appropriately.

Water quantity management

- 6.2.20 The design philosophy used for the proposed development is the same as used for the AESC Plant 2 and the IAMP scheme. Plot drainage is managed within the plot limits by the corresponding plots' own surface drainage systems, discharging only greenfield-equivalent flows appropriate to the receiving watercourse.
- 6.2.21 The Plant 3 area is split in two with the larger part set to discharge to the Usworth Burn and part to the Plant 2 and IAMP ONE storm drainage that in turn eventually feeds into the Hylton Dene Burn headwaters. **Table 6** shows the respective areas of the drained areas.

SUB-CATCHMENT	AREA	DISCHARGE POINT & WATERCOURSE
South-east corner	3.9ha	Outfall 1, AESC Plant 2 & IAMP
Main site	20.66	Outfall 2, Usworth Burn

Table 6. Surface water drainage catchments

6.2.22 The proposed development has an overall drained area of 24.6ha. The section in the southeast corner of the site was originally allocated to drain via the Plant 2 drainage to the IAMP sewer network beneath International Drive. Due to the adjacent ongoing development a suitable route to discharge this area to the IAMP system is no longer available. it is proposed instead to drain this area to Usworth Burn but to restrict the overall discharge rate to the Burn to that derived for the main site area of 20.66ha, so that there is no material increase in discharge rate to the Burn.

AESC Plant 3, Sunderland		
Flood risk assessment & drainage strategy	22A29 - R001	
	03/01/2024	Page

Table 7. Surface drainage discharge rates

STORM EVENT	UNIT DISCHARGE RATE	NET DISCHARGE LIMIT
100% AEP	3.3 l/s/ha	68.2 l/s
3.3% AEP	6.7	138.4
1.0% AEP	8.8	165.3

- 6.2.23 The attenuation storage required to hold the excess run-off in each system pending storage will be provided via cellular storage tanks located beneath the car-parking area. The dense layout used for the scheme does not leave sufficient space to use basins or similar surface features.
- 6.2.24 The flow control for each of the sub-systems is derived through pumped outfalls. To give security of operation, the pump sets operate in duty/standby mode. Back-up generators are provided to give security of power supply in the event of a power outage. Connection points for mobile pumps will be provided. An extra allowance of storage of 125m³ per system is to be provided to cater for complete pump failure.
- 6.2.25 The following hydraulic design criteria have been applied to the storm drainage design:
 - No surcharging of drains for the Q₁ storm condition.
 - No flooding of drains for the Q₃₀ condition.
 - Flooding up to 350mm deep on service yards and up to 125mm deep in car parking areas is allowed for in the Q_{100} condition. A climate-change allowance of 45% to be applied to rainfall.
- 6.2.26 The design discharges for the three storm conditions are shown in Table 8, taken at the effective outfall (link 2.025).

Table 8. Peak storm	drainage discharges
RETURN PERIOD	PEAK FLOW
1% AEP	68.2 l/s
3.3% AEP	135.0
1%AEP+45%CC	151.2

6.2.27 Extracts from the MicroDrainage network details and results tables for the main sewer network (Appendix D of the RPS report) are included with the surface drainage layouts in **Appendix E**.

AESC Plant 3, Sunderland		
Flood risk assessment & drainage strategy	22A29 - R001	
	03/01/2024	Pag

6.3 Foul Drainage

- 6.3.1 The proposed option for foul water from the proposed development is to discharge into the existing 225mm dia foul sewer beneath International Drive. This leads to a sewage pumping station that transfers sewage from IAMP ONE to an NWL public sewer west of Nissan near Seven Cottages on the old A1290 route. The pump station was not designed to handle the Plant 3 flows and to date it has not been confirmed whether it is possible to upgrade the facility to do so.
- 6.3.2 If the IAMP ONE system does not have sufficient spare capacity, a dedicated pump station on site and a new off-site rising main will be needed to transfer the proposed development flows to a suitable location where it can discharge to the main NWL sewer network.

6.4 Maintenance and responsibility

- 6.4.1 The owner and operator of the proposed development are to be responsible for constructing, owning and maintaining both the foul and surface water systems within the site boundary and the off-site connections for the relevant drainage networks.
- 6.4.2 The principal maintenance activities for the new drainage systems are listed in Table 9. The suggested frequencies should be reviewed and revised as experience of the system requires or permits and in line with manufacturers' guidance where appropriate.

DRAINAGE FEATURE	ACTION	FREQUENCY
Gully/linear drain and RWP inlets	Cleanse gullies, linear drains and RWP inlets	6 months - yearly
Underground Storage Tanks	Inspect for silt accumulation, clean out as necessary	Yearly
Bypass or full retention oil separator	Inspection, remove silt and light liquids, check flow through the unit	Yearly
Vortex Separator	Inspection, remove silt and light liquids, check flow through the unit	Yearly
Pump installations	Inspect M&E elements, replace pumps at intervals	6 months – yearly
Green/blue roof	Inspect internally and externally	Yearly

Table 9. SuDS and Drainage System Maintenance Plan

AESC Plant 3, Sunderland		
Flood risk assessment & drainage strategy	22A29 - R001	
	03/01/2024	Page

7. CONCLUSION

- 7.1.1 It is proposed to develop a new battery factory, warehousing and offices on farmland north of the A1290 Washington Road, west of the IAMP ONE and AESC Plant 2 developments. The proposed scheme has an approximate area of 32ha within the planning boundary and a developed footprint of about 24ha.
- 7.1.2 The proposed development comprises erection of a building to be used for the manufacture of batteries for electric vehicles, an assembly & warehousing building, an office building, a sub-station, gatehouse, ancillary compounds/structures and associated infrastructure provision, access, parking, drainage and landscaping.

Flood risk

- 7.1.3 The majority of the site sits in the Usworth Burn catchment. The Burn passes the site beyond its northern boundary before converging with the River Don to the north-east. The Don flows off eastwards, passing beneath Hylton Bridge which controls flood levels back towards North Moor Farm. The greater part of the site drains in a north-easterly direction towards Usworth Burn via a network of field ditches and land drains. A small part of the site at its south-eastern corner drains into the headwaters of Hylton Dene Burn via the IAMP ONE storm drainage.
- 7.1.4 The site lies almost entirely within Flood Zone 1 throughout its lifetime. The floodplain of Usworth Burn encroaches onto the northern margins of the site but only affect areas intended for landscaping. The development itself lies wholly in Flood Zone 1. There is a localized low area on the scheme's western boundary that is at high risk of surface flooding but this will be removed by the proposed development earthworks and land drain diversions. There are no other significant sources of flood risk affecting or affected by the proposed development.
- 7.1.5 The proposed development is classified as 'highly vulnerable' to flooding, due to the use of certain raw materials that are categorized as hazardous. The vulnerability class is compatible with the level of flood risk on the development and the spatial positioning of the development satisfies the sequential approach. An exceptions test is not required.

Drainage strategy

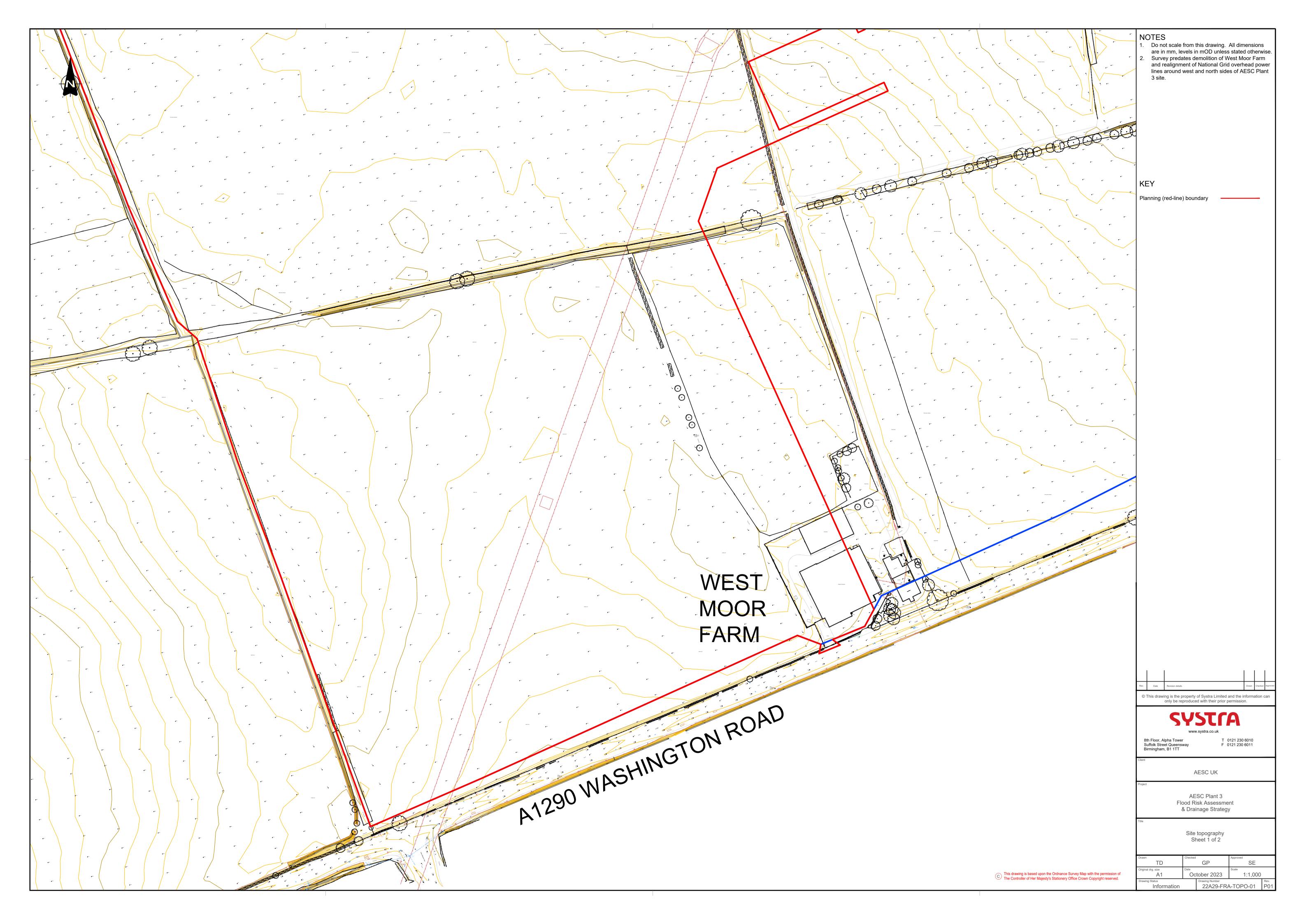
- 7.1.6 Ground conditions across the site are dominated by poorly-permeable clayey and silty soils as evidenced by regular waterlogging of the farmland following wet weather and ponding in local depressions. This has dictated the surface drainage approach in that infiltration is not a practicable mechanism to drain the development. Restriction of flows to greenfield equivalent rates and attenuation of the excess run-off on site will be used to manage surface run-off up to and including the 100-year storm condition. An allowance of 45% for future climate change effects upon rainfall has been applied to the storm drainage design.
- 7.1.7 The storm drainage system is controlled by pumps: the size of the site and its level relative to the receiving watercourse makes a passive flow-control solution impracticable without excessive land raising. The system discharges into a small land drain near North Moor Farm before flowing into the Usworth Burn.

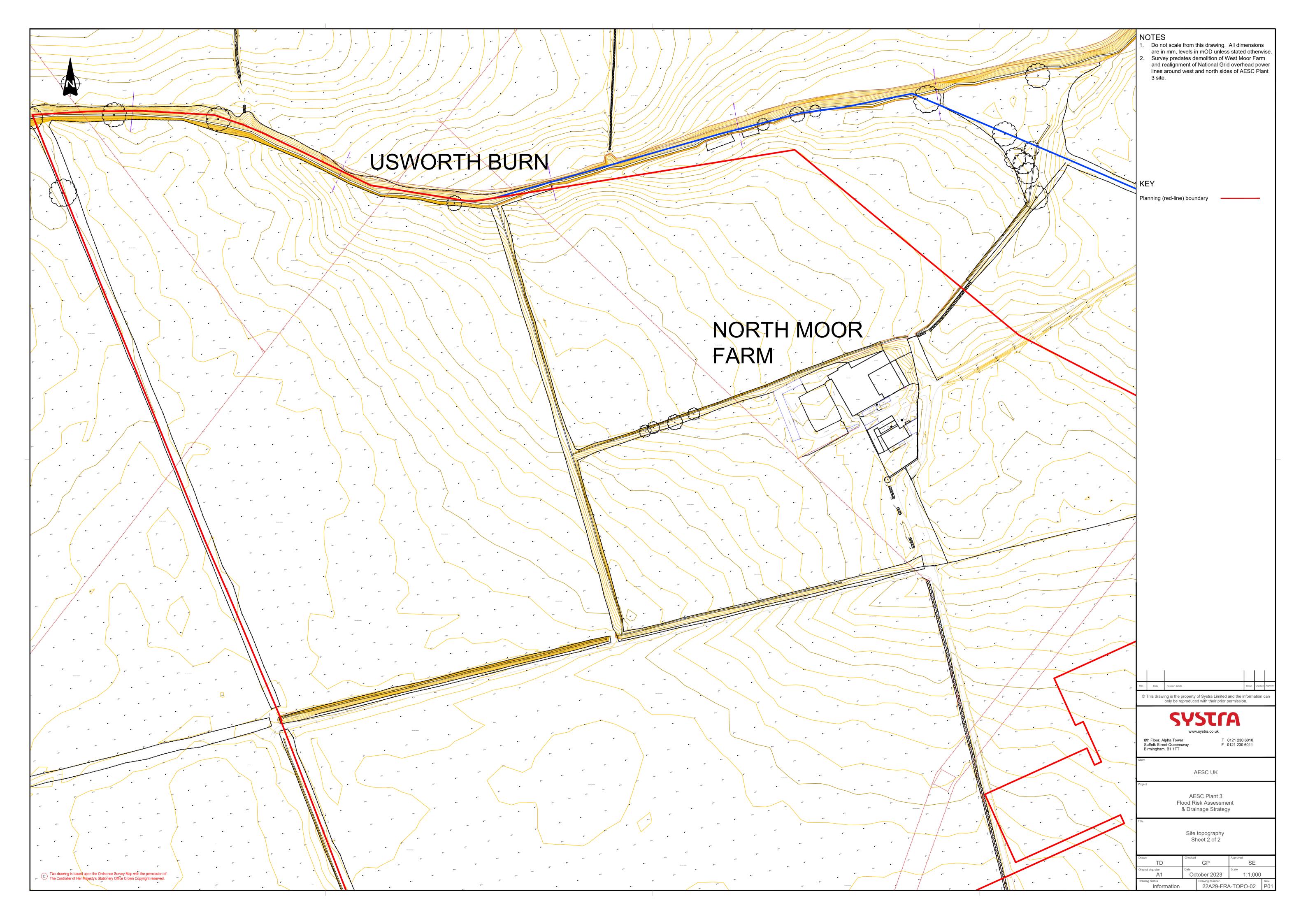
- 7.1.8 The foul drainage system for Plant 3 will pump the foul water flows generated to a suitable connection point with the NWL sewer system. The exact location of this connection has yet to be established. The likeliest location is onto a large combined sewer about 1km west of the site near the eastern edge of Washington, where the IAMP rising mains discharge.
- 7.1.9 The future development owner(s) and operator(s) are to be responsible for constructing, owning and maintaining both foul and surface water systems within the site boundary.

8. REFERENCES

- **1.** National Planning Policy Framework: Development and Flood Risk; Communities & Local Government, March 2012. Last updated December 2023.
- 2. Technical Guidance to National Planning Policy Framework: Development and Flood Risk; Communities & Local Government, March 2012.
- 3. IAMP Area Action Plan, South Tyneside Council & Sunderland City Council, 2017.
- 4. IAMP Area Action Plan: Flood Risk and Water Management Technical Background Report, SYSTRA Ltd, 2016
- 5. IAMP ONE: Environmental Statement: Chapter I: Water Resources & Flood Risk, Golder Associates, March 2018.
- 6. Factual report on site investigation for land at IAMP, Dunelm Geotechnical & Environmental, 2018.
- 7. Sewers for Adoption; WRc plc, 2018 (8th Ed.)
- 8. IAMP ONE JBA flood modelling, JBA Consulting Ltd, March 2018
- 9. Water Framework Directive 2000/60/EC; European Parliament, 2000.
- **10.** Northumbria River Basin Management Plan, Environment Agency, 2015.
- **11.** IAMP Water Framework Assessment, JBA Consulting Ltd, 2018.
- **12.** Sunderland Level 1 Strategic Draft Flood Risk Assessment, JBA Consulting, 2017.
- **13.** Local Flood Risk Management Strategy, Sunderland City Council, 2016.
- 14. Core Strategy and Development Plan 2015 2033, Sunderland City Council,
- **15.** Phase 1 Geo-Environmental Desk Study And Preliminary Risk Assessment, RPS, 2023.

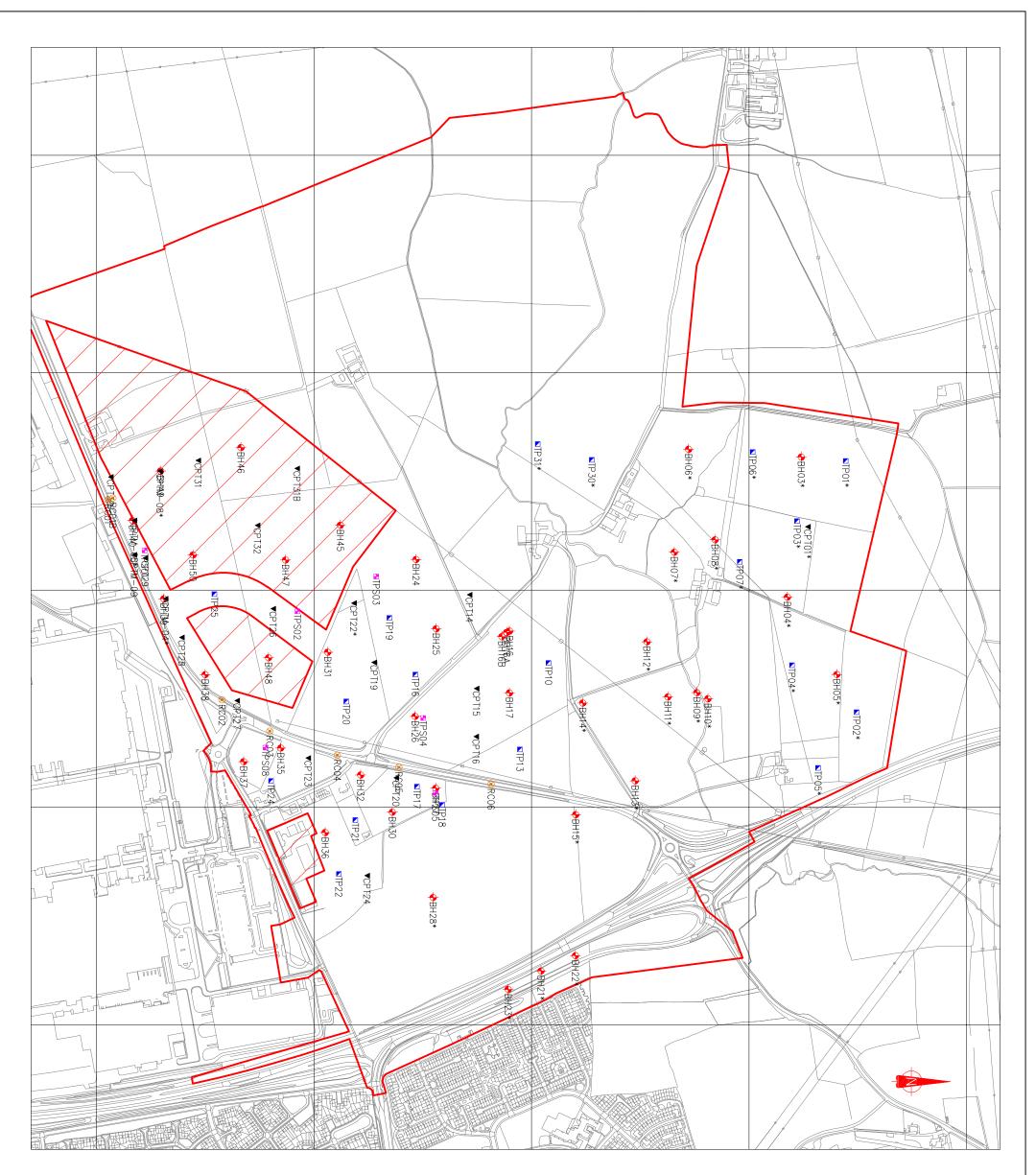
SYSTIA


Appendix A: Drawings



Appendix A: Contents

- SYSTRA drawings 22A29-FRA-TOPO-01 & 02 *Existing ground elevations and contours*
- RPS RPS drawing 204-P04 Proposed site layout
 RPS drawing 205-P01 Proposed landscape plan
- SYSTRA drawing 22A29-FRA-FLOOD-01 Development layout and flood extents


Appendix B: Ground investigation information

Appendix B: Contents

- Dunelm GI plan and borehole logs (2017)Dunelm GI soakaway tests (2017)

PROJECT TITLE: IAMP - PRELIMINARY GROUND INVESTIGATION DRAWING TITLE: Exploratory Hole Location Plan DRAWING NUMBER: D8044/02		NOTES:	Dunelm Geotechnical & Environmental Ltd Foundation House, St. John's Road, Meadowfield Durham, DH78TZ Tel: 0191 378 3151 Fax: 0191 378 3157 e-mail: admin@dunelm.co.uk web: www.dunelm.co.uk web: www.dunelm.co.uk scaled from this drawing. © Copyright Reserved
---	--	--------	--

	DUNE	and Britting		BOREHOLE RECORD		Borehole				
	DTECHNICAL & ENVIR	DNMENTAL RSSOCIATION		BOREHOLE RECORD		BH	45			
contrac	ct No: D80	44	Site: IAMP	- Preliminary Ground Investigation	GL (m AOD) 35.63 Scale 1:50 Easting: Northing: 433350.81 559060.39					
lient: S	Sunderland	I City Council		Driller: PK/DC Logged By: BC	Sheet 1 of					
ethod:	: Cable Pe	rcussive Drilling w	ith Rotary Core	Drilling Checked By: BL	Dates: 02/08/2017 - 17/08/2017					
	SAMPLE	DETAILS	ig) vater	STRATA RECORD	Denth	1				
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater	Description	Depth (m)	Level (m AOD)	Legend Back			
D ES	0.10 0.10			Dark brown slightly sandy slightly gravelly clayey TOPSOIL. Gravel is subangular to rounded, fine to coarse of sandstone,	(0.25)	35.38				
D B	0.30 0.50 - 1.00		Ē	limestone, mudstone and coal.	/E 0.25	35.36				
в	0.50 - 1.00			Firm brown slightly sandy slightly gravelly CLAY of high plasticity. Gravel is subangular to subrounded, fine to coarse of sandstone, mudstone and coal.	(0.95)					
в	1.20 - 1.65		- 1		1.20	34.43				
UF	1.20 - 1.65	49 blows		Firm greyish brown slightly sandy slightly gravelly silty CLAY of intermediate plasticity. Gravel is subangular to subrounded, fine to coarse of sandstone, limestone and mudstone.						
BRE	1.70									
B D SPT (S)	2.00 - 2.45 2.00 2.00 - 2.45	N=15 (3,5/4,4,3,4)	2 (1.60) Dry							
BRE	2.50				E					
-					E					
U	3.00 - 3.45	22 blows	-3		E					
D	3.45									
BRE	3.70				Ē					
в	4.00 - 4.45		-4 (1.60) Dry							
D PT (S)	4.00	N=7 (1,2/2,2,1,2)			Ē					
BRE	4.50									
U	5.00 - 5.45	16 blows	-5							
D	5.45				(8.30)					
BRE	5.70				E					
B D SPT (S)	6.00 - 6.45 6.00 6.00 - 6.45	N=9 (3,2/3,2,2,2)	6 (1.60) Dry							
BRE	6.50									
U	7.00 - 7.45	12 blows	7	7.00m: Clay of high plasticity.						
D BRE	7.45 7.70									
в	8.00 - 8.45		- 8 (1.60) Dry		Ē					
D PT (S)	8.00 8.00 - 8.45	N=7 (3,2/2,1,2,2)			E					
BRE	8.50									
В	9.00 - 9.45		- 9 (1.60) Dry							
D PT (S)	9.00 9.00 - 9.45	N=9 (2,3/2,2,3,2)			E					
BRE D	9.50 9.50			Firm, greyish brown slightly sandy clayey SILT. Sand is fine to coarse.	9.50	26.13	× × × ×			
В	10.00 - 10.65			Continued on next sheet			× × × ×			
th Struck Ca	Ground Wate using Depth (m) Water Le	Water sealed From	Chiselling / Hard Strat n (m) To (m) Ti	ma (hr) Diameter Depth (m) Diameter Depth (m) 1 Hand dug inspectio	n pit to 1.20	Ĵm.				
(m) 13.20	(m) 12.00 3.4	(11)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
				140 13.80 121 19.10						

		Ň		ATTISH	BRILL	ing	BOREHOLE RECORD									Borehole				
	OTECHNICAL & ENVIR	ONMENTAL		75500	CIATION		Site: IAMP - Preliminary Ground Investigation										BH	45		
Contrac	ct No: D80)44													35. Ea:	GL (m AOD) 35.63 Scale 1:50 Easting: Northing: 433350.81 559060.39				
lient:	Sunderland	d City (Cou	ncil								Dril	ler: PK/D	C	Logged By: B	C Sh	eet 2 of	2		
lethod	: Cable Pe	ercussi	ive [Drilli	ing ۱	with	Rota	y Core	Drillir	ng		Ch	ecked By	y: BL	-	Da	tes:	02/08/2017	7 - 17/08/2	017
	SAMPLE		AILS				Gin STRATA RECORD								Depth	Level		Wel		
Туре	Depth From-To (m)	1	nsitu	Testi	ing			(Casing) Groundwater					ription				(m)	(m AOD)	Legend	Back
UF	10.00 - 10.64	4 blows									ı brown sl	lightly sa	indy clay	/ey S	SILT. Sand is fine	to	(1.20)		× × × ×	
									coar	se.						Ē			$(\times \times $	
BRE	10.70						-									Ē	10.70	24.93	(
D	10.70														AY of intermediat , fine to coarse of	te E	10.70	24.95	×	
U	11.00 - 11.45	7 blows					- 11				nudstone				,				X	
D	11.45						Ē												×	
BRE	11.45															Ē	(2.00)		×	
D	11.90															Ē	(2.00)		× 	
B D	12.00 - 12.45 12.00						12 (11	90) Dry	12.00	0m: Stiff.			-			Ē			×	
SPT (S)	12.00 - 12.45	N=30 (4,5	5/6,7,8	8,9)			Ē									Ē			×	
BRE	12.50															Ē	12.70	22.93	×	
D	12.80														ravelly CLAY of lo , fine to coarse of	ow E	12.70	22.95		
в	13.20 - 13.65						13				nudstone				,	F	(0.90)			M
D SPT (S)	13.20 - 13.65 13.20 13.20 - 13.65	N=39 (4,4	4/6.8.1	0.15)			(12	10) 'Diy'								Ē				$\langle \rangle \rangle$
BRE	13.60			0,10)			Ē		Verv	dense li	iaht brow	n sandv	GRAV/EI		aravel is angular to		13.60	22.03		$\langle \rangle \rangle$
D D SPT (S)	13.70 13.80 13.80 - 14.60	N=50+ (8	17/40	10 for	ritomr	n) NI	03/08/	2017 1700	suba	ngular, f					Weathered		(0.45)			
C	13:90 = 14:90 14:09 = 14:90	11-501 (0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,10101		¹ /NI	14 (13.	390 <u>3.10</u> 3903.177.70 3093,100 300 3093,100 3093,100 3093,100 3093,100 3093,100 3093,100 3093,100 3093,100 3093,100 3093,100 3093,100 3093,100 3093,100 300 300 300,00000000	rock	head). ium stro	ng, partia	lly weath	nered, lig	ght b	rown fine to		14.05	21.58	• • • • •	
			100	80	80	1									are closely space th light brown cla					
с	14.70 - 14.90					NI	ł		_ infill.						, undulating with reddis	· ⊢				
C	14.70 - 14.90					0 A	[brow		e gravel infil			rough	, and along with reduce	sh			· · · · · ·	
						A	- 15) - 14.99111.	AZUL.		_			Ē			· · · · · ·	
			91	91	49	3										Ē			· · · · · ·	
									45.0		Fracture is	00 -1				Ē				
С	15.80 - 15.90 15.90 - 16.30					A				0 - 15.94m:		30 aegrees	<u>, pianar an</u>	a smo	ootn.	Ē	(3.80)			
			90	90	90		16		15.90) - 15.94111.	AZUL.		_			Ē				
	16.30 - 17.70															Ē			· · · · · ·	
											re is 10 degro Fractures a				ey clay infill. h with grey clay infill.	Ē			· · · · · ·	
с	16.90 - 17.20					1										Ē			· · · · · ·	
-			100	100	91		17									Ē			· · · · · ·	
																Ē				
	17.70 - 19.10							7.70 - 19.10									17.70	17.93		
						NA		7.70 - 19.10 75 % Wate	r∣ ⊢ırm						tly gravelly CLAY. arse of sandstone	E	(0.23) 17.93	17.93		
с с	18.00 18.20 - 18.40					6	- 18		Med	ium stro	ng to stro	ng, parti	ally weat	there	ed light brown fine	e	(0.27) 18.20	17.43	· · · · · ·	
5	10.20 - 10.40		100	80	62	4			\ spac	ed, subl	norizontal	, planar,	smooth	and	clean.	/F	(0.50)	17.40		
						Ľ	ŀ		SAN	DSTON	E. Fractu	ires are	closely to	o me	rey fine grained edium spaced,	F	(0.50) 18.70	16.93		
						5					il, planar, ng to stro				ed, light brown fin	/E	(0.40)	10.00		
				+	-	-	- 19		to cc	arse gra	ained SAN	DSTON	IE. Frac	ture	s are closely	" F	19.10	16.53		0111
							-		18.8	2m: Fractur		egree, plan	ar, smooth	with b	CIEAN. lack clay infill. ooth with reddish brow	"E				
						1	l		sligh		clay infill. G	ravel is an	gular to sub	bangul	lar, fine to medium of	n				
											Er	nd of Bore	hole at 19.	10 m		Ē				
	Ground Wate	er (m)	TCR%	%SCR%	6 RQD%		120 niselling	Hard Strat	ta	Casing	g Depths	Hole	Diameter	G	eneral Remarks	- <u> </u>		1	1	1
epth StruckCa (m)	asing Depth (m) Water Le	vel Minute		er seale (m)	ed Fi	rom (m)	То	(m) Ti	ime (hr)	Diameter (mm)	Depth (m)	Diamete (mm)	Depth (r		. Hand dug inspe		to 1.2	0m.		
13.20	12.00 3.4	20			1	13.60	13	80	01:00	200 150 140	1.60 13.80 13.80	200 150 121	1.60 13.60							
										140	13.80	121	19.10							
og last upd	lated 24/01/201	8			7							1								

	MINE	Settish Briting		BOREHOLE RECORD		Bore	ehole	
E	DTECHNICAL & ENVIR	DIMENTAL RESOCIATION		BOREHOLE RECORD		Bł	146	
Contrac	:t No: D80		Site: IAMP	- Preliminary Ground Investigation	GL (m AO 38.56 Easting: 433172.22	, I	Scale 1:50 Northing: 558831.72	
lient: S	Sunderland	I City Council		Driller: RH/DC Logged By: BC	Sheet 1 of		550051.72	
		rcussive Drilling with	h Rotary Core		Dates:	10/08/201	7	
		E DETAILS	-					
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	We Back
ES ES B D	0.20 0.40 0.50 0.60 - 1.20 0.60	HVP=57 kPa		Dark brown slightly sandy slightly gravelly slightly clayey TOPSOIL. Gravel is subangular to rounded, fine to coarse of sandstone, mudstone, siltstone and coal. Firm brownish grey slightly sandy slightly gravelly CLAY. Gravel is subangular to subrounded, fine to coarse of sandstone, mudstone, siltstone and coal. Occasional rootlets	(0.10) 0.10 (0.40) 0.50	38.46 38.06		
BRE D UT	1.00 1.00 1.20 - 1.65	54 blows	1	Inoted. Stiff orangish brown, mottled grey, slightly sandy slightly gravelly CLAY of intermediate plasticity. Gravel is subangular to subrounded, fine to coarse of sandstone, mudstone and coal.	(1.70)			
D BRE D B D SPT (S)	1.65 2.00 2.00 2.20 - 2.70 2.20 2.20 - 2.29	N=50+ (25 for 40mm/50 for	2 (2.00) Dry	Stiff greyish brown slightly sandy slightly gravelly CLAY with occasional cobbles. Gravel is subangular to rounded, fine to	2.20	36.36		
B BRE D B UT	3.00 3.00 3.00 3.20 - 3.70 3.20 - 3.65	50mm)	3	coarse of sandstone, mudstone, siltstone and coal. Cobbles are of sandstone.				
U	3.80 - 4.25	150 blows						
D	4.25		- 4					
BRE D B D SPT (S)	4.80 4.80 5.00 - 5.50 5.00 5.00 - 5.45	N=31 (5,7/7,7,8,9)	- 5 (4.50) Dry		(5.70)			
BRE D U	5.80 5.80 6.00 - 6.45	135 blows	6	6.00m: Clay of intermediate plasticity.				
D BRE D B D	6.45 6.80 6.80 7.00 - 7.50 7.00		7 (6.00) Dry	6.45 - 6.80m: Firm.				
BRE	7.00 - 7.44	N=50+ (7,9/9,12,15,14 for 60mm	1)					· · · · · · · · · · · · · · · · · · ·
D D D SPT (S)	7.80 7.90 8.00 8.20 = 9:60	N=50+ (12,13 for 10mm/50 fbr ^{NI} 20mm)			7.90 (0.30) 8:28	30.66 30.36	×××××× ××××××	
PT (C)	8.10 - 8.17 8.20 - 9.60	N=0 (25 for 40mm,0 for 30mm/) 100 92 61	75 % Wate	 Very weak to weak, partially weathered, brownish grey SILTSTONE. Fractures are closely spaced subhorizontal planar, smooth, clean. 8.22 - 8.53m: Subvertical, stepped, smooth, clean with light brown discolouration on fracture surface. 8.91 - 8.95m: 10 degree, planar, smooth with light grey siltstone gravel. 	(1.87)			
с	9.50 - 9.60 9.60 - 11.10	TCR%SCR% R00% FI	10	Continued on next at a t	(1.87)			
th StruckCa (m)	Ground Wate sing Depth (m) Water Le	er (m) C	m) To (m) Ti	Continued on next sheet ta Casing Depths Hole Diameter General Remarks ime (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand dug inspection 00.45 200 7.50 200 8.20 2. No groundwater er 01.00 140 11.00 116 30.60 2.00				

ſ	UNE		1	ATISH	BRILLIN	6		BOREHOLE	RECOR	h		Bore	ehole	
	Intract No: D8044 Site: IAMP - Preliminary Ground In nt: Sunderland City Council Image: Site Council hod: Cable Percussive Drilling with Rotary Core Drilling								NLCON	,		BH	146	
					16.						GL (m AO 38.56	D)	Scale 1:50	
Contrac	ct No: D80	44					Site: IAMP	- Preliminary Ground I	nvestigation		Easting:	1	Northing:	
											433172.22		558831.72	
									Driller: RH/DC	Logged By: BC	Sheet 2 of			
lethod				Drilli	ng v	vith		Drilling	Checked By: J	Н	Dates:	10/08/201	7	
	SAMPLE	DETA	-				vater	STE	RATA RECORD	h	Denth	Laval		Well/
Туре	Depth	N (cu)	TCR %	R %	RQD %	FI	(Casing) Groundwater		Description		Depth (m)	Level (m AOD)	Legend	Backfi
C	From-To (m) 10.10 - 10.22		P	SC	RC		- ō				- 10.07	28.49	* * * * * * *	
0	10.10 10.22							Very weak to weak, parti brownish dark grey MUD				20.40		
			100	100	97			medium spaced subhoriz	zontal, planar, sm	ooth, undulose,	E			())))
								clean.			Ē			
						3								
	11.10 - 12.60						- 11 11.10 - 30.6				(1.84)			
							95 % Wate	r 11.32 - 11.34m: Subhorizontal, J	planar, smooth with lig	nt grev clav infill.	E			
									<u>siana, o</u> nooti mariigi		E			
			100	95	84		ł				E			
						4	- 12	<u>11.88 - 11.91m: Subhorizontal, J</u> Very weak to weak, parti	olanar, smooth with ligh	nt grey clay infill.	11.91	26.65		
с	12.20 - 12.35						Ę	MUDSTONE. Fractures	are closely space	d subhorizontal,	E			
						NI	ł	planar, smooth, clean. (D	orillers description	ı).	E			()))
	12.60 - 14.10						ŀ	12.53 - 12.60m: Fractures are t	frequent, interlock and	orientated.	E			
											Ē			
							- 13	12.93 - 12.95m: 15 degree, plar	n <u>ar, smo</u> oth with light g	rey clay infill.	E			
С	13.30 - 13.40		100	100	97									
						3					(2.95)			
						Ŭ					E			
							- 14] 13.96 - 13.98m: 15 degree, plar	ar amonth with light a	rov dov infill	Ē			
с	14.10 - 15.60 14.20 - 14.30							13.90 - 13.9011. 13 degree, plar	iar, smooth with light g	rey clay mini.	Ē			
								14.37m: Subhorizontal, stepped	. smooth. clean fractur	es.	E			()))
			100	100	100				<u></u>		Ē			
			100	100	100			14.70 - 14.71m: 20 degree plan			- 14.86	23.70		
							15	Medium strong to strong SANDSTONE. Fractures			E			
								between 20-30 degrees, 15.28 - 15.33m: Very weak to w	planar, smooth,	clean.	E			
								13.20 - 13.33m. Very weak to w	eak blue, grey muusio	le ballu.	E			
с	15.60 - 17.10 15.70 - 16.05										E			
							- 16				<u> </u>			
			100	100	87			16.05 - 16.08m: Subhorizontal p	olanar, smooth with ligh	t grey clay infill.				
											E			
								16.58 - 16.62m: Weak blue, gre	y mudstone band.		Ē			
											E			
	17.10 - 18.60						17							
						2	-	17.10 - 17.27m: Subvertical, pla	nar, smooth, undulose	, ciean tracture				
			100	100	61						(5.48)			
							- 18							
							- 18				Ē			
											Ē			
	18.60 - 20.10										Ē			
											E			
							19				E			
			100	100	93						Ē			
											E			
							E	19.70 - 19.74m: Weak thinly lan	ninated blue area and	stone hand	E			
								19.70 - 19.74111. vveak tniniý láň	<u>maleu b</u> iue, grey mud	Storie Darid.	Ē			
	20.10 - 21.60		I	I		I	- 20	Con	tinued on next sheet		-			1111
	Ground Wate	er (m)				Cł	niselling / Hard Stra	ta Casing Depths	Hole Diameter	General Remarks	•	-	•	•
pth StruckCa (m)	(m) Water Le	vel Minutes		er seale (m)	FIG	om (m)	1 1	(mm) Depth (m)	(mm) (mm)	 Hand dug inspectio No groundwater en 		0m.		
Τ				_		2.20 8.00	2.60 8.20	00:45 200 7.50 01:00 140 11.00	200 8.20 116 30.60					
			1		1									

	DUNE			RITISH	BRILLIN	MG		BOREHOLE	RECORI	ס		Bore	ehole	
Ĥ	DTECHNICAL & ENVIR	ONMENTAL		75500	TATION			DOREHOLE				BH	146	
ontra	ct No: D80)44					Site: IAMP	- Preliminary Ground I	nvestigation		GL (m AO 38.56 Easting: 433172.22	1	Scale 1:50 Northing: 558831.72)
ient:	Sunderland	d City (Coui	ncil					Driller: RH/DC	Logged By: BC	433172.22 Sheet 3 of		00001.72	
					na v	with	Rotary Core	e Drilling	Checked By: J		Dates:	10/08/201	7	
	SAMPLE						1	g	, , , , ,					
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater	_	RATA RECORI)	Depth (m)	Level (m AOD)	Legend	We Back
											20.34	18.22		
			100	100	90	4		Very weak, partially weat are closely spaced betwee clean.	thered, grey MUI een 5 - 20 degree	DSTONE. Fractures e, planar, smooth,	(0.51)	10.22		
							- 21	Medium strong to strong medium grained SANDS	, partially weathe TONE. Fractures	ered, grey fine to s are subhorizontal,	20.85	17.71	· · · · · ·	
								planar, smooth, clean.					· · · · · ·	
	21.60 - 23.10										E			
							22						· · · · · ·	
			100	100	67						Ē		· · · · · · · · · · · · · · · · · · ·	
								22.38m: Fractures are subhorize infill. 22.59 - 22.88m: Subvertical plan					· · · · · ·	
									<u></u>		E		· · · · · · · · · · · · · · · · · · ·	
	23.10 - 24.60						- 23				Ē			
			100	100	100						Ē			
							24				Ē			
											E			
	24.60 - 26.10										E		· · · · · ·	
											Ē			
			100	100	0		- 25				E			
						2					E			
								25.60m: Fractures are subhorize clay infill.	ontal, planar, smooth,	undulose with light grey	(9.75)			
			-				26							
	26.10 - 27.60													
											E		· · · · · ·	
			100	100	0						E			
							27	26.89m: Fractures are subhorize 26.96m: Fractures are subhorize	<u>ontal, pla</u> nar, smooth v ontal, planar, rough wi	with light grey clay infill. th grey clay infill.	E			
								27.20m: Fractures are subhorize gravel infill.	ontal, planar, smooth v	with light grey sandstone	E		· · · · · · · · · · · · · · · · · · ·	
	27.60 - 29.10													
							- 28							
			100	100	100						E		· · · · · ·	
											E			
	29.10 - 30.60					1	29				E_			
											E			
			100	100	100									
							20				E			
	1				1		- 30		tinund on and the st		Ē			
Struck	Ground Wat		M/ot-	er seale	ad		hiselling / Hard Stra	ta Casing Depths	Diameter	General Remarks	n nit to 4 0	0~	1	1
m)	(m) Water Le	evel Minutes		er seale (m)	Fr	om (m 2.20	2.60	00:45 200 7.50	(mm) Deptn (m)	 Hand dug inspection No groundwater en 				
						8.00	8.20	01:00 140 11.00	116 30.60					
	dated 24/01/201				-									

	DUNE	LM			DRILLIN BOOM			В	SORE	HOL	E RE	CORE)		Bore BH	ehole 146	
	ct No: D80						Site: IAM	/IP - Preli	iminary	Ground	d Invest	igation		GL (m AOE 38.56 Easting: 433172.22		Scale 1:50 Northing: 558831.72	
-	Sunderland										Drille	r: RH/DC	Logged By: BC	Sheet 4 of	4		
Method	I: Cable Pe				ng v	with		ore Drillir	ng		Chec	ked By: JI	4	Dates:	10/08/2017	7	
	SAMPLE	E DETA					ng) vater			e.		RECORD		Death			14/511/
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater				Descri			Depth (m)	Level (m AOD)	Legend	Well/ Backfill
										En	d of Boreho	le at 30.60 m	1	30.60	7.96	· · · · · · · · · · · · · · · · · · ·	
							- 31										
							- 32										
							- 33										
							- 34										
							- 35										
							- 36										
							- 37										
							- 38										
							- 39										
							40										
	1						1 									<u> </u>	
	Ground Wate	er (m)			\square	CI	hiselling / Hard	Strata		Depths	Hole Di	_	General Remarks				
Depth StruckC (m)	(m) Water Le	evel Minutes	Wate	er seale (m)		rom (m)		Time (hr)	Diameter (mm) 200	Depth (m)	Diameter (mm)		 Hand dug inspectio No groundwater en 				
						2.20 8.00	2.60 8.20	00:45 01:00	140	7.50 11.00	200 116	8.20 30.60					
Log last up	dated 24/01/201	18			-												

ſ	IINF	Satish Brite	. He	BOREHOLE	RECOR	D		Bore	hole	
	DTECHNICAL & ENVIR	ONMENTAL 78 SOCIATIO	*					BH	147	
Contrac	ct No: D80			- Preliminary Ground	Investigation		GL (m AO 36.54 Easting: 433430.80	Ń	Scale 1:50 Iorthing: 558934.44	
lient:	Sunderland	d City Council	I		Driller: PK/DC	Logged By: AH	Sheet 1 of			
ethod	: Cable Pe	ercussive Drilling	with Rotary Core	e Drilling	Checked By:	JH	Dates:	07/08/201	7 - 18/08/20)17
	SAMPLE	E DETAILS	ig) vater	ет	RATA RECOR	D	Dauth	1		Wel
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater		Description		Depth (m)	Level (m AOD)	Legend	Back
D ES	0.10 0.10 0.30	HVP=25 kPa		MADE GROUND: Brown topsoil. Gravel is suban sandstone, mudstone, co	gular to rounded		(0.60)			
D ES B BRE U	0.70 0.70 0.70 0.80 - 1.20 0.80 1.20 - 1.65	HVP=66 kPa 29 blows	-1	Firm, dark brown mottled CLAY of intermediate pla subrounded, fine to coar and coal.	asticity. Gravel is	s subangular to	0.60	35.94		
D BRE D SPT (S) BRE	1.65 1.90 2.00 2.00 - 2.45 2.50	N=14 (2,2/3,3,4,4)	- 2 (1.60) Dry				(2.50)			
U	3.00 - 3.45	22 blows	3	Firm, dark brown mottled gravelly CLAY of interme			3.10	33.44		
D BRE	3.45 3.70			to rounded, fine to coars siltstone.			(1.20)		×	
B D PT (S) D BRE	4.00 - 4.45 4.00 4.00 - 4.45 4.30 4.50	N=12 (1,2/2,3,4,3)	- 4 (1.60) Dry	Firm thinly laminated gre gravelly CLAY. Gravel is coarse of sandstone, mu	subangular to s	subrounded, fine to	4.30	32.24		
UT	5.00 - 5.45	12 blows	5	5.00m: Clay of low plasticity.						
D	5.45								××	
BRE	5.70								××	
B D SPT (S)		N=13 (2,3/3,3,3,4)	6 (1.20) Dry				(3.70)			
BRE	6.50								×	
UT	7.00 - 7.45	22 blows	-7						××	
BRE	7.70 8.00 - 8.45		- 8 (1.60) Dry	Stiff greyish brown silty s	lightly condu C	AV of low plasticity	8.00	28.54		
D PT (S) BRE	8.00 8.00 - 8.45 8.50	N=20 (5,5/6,5,5,4)			mynny sanuy OL	an onow prasticity.	(1.50)			
UT	9.00 - 9.45	18 blows	9				(1.50)			
D	9.45						9.50	07.04	× × ×	
BRE	9.70			Firm, slightly sandy sligh cobbles. Gravel is suba of sandstone, mudstone	ngular to subrou	nded, fine to coarse	9.50	27.04		
В	10.00 - 10.45 Ground Wate	er (m)	10 (9.90) Dry Chiselling / Hard Stra		ntinued on next shee Hole Diameter	t General Remarks	_		. <u>6.1 8 5</u> 1. . .	
th StruckCa (m) 15.30	asing Depth (m) 14.90 11.8				Diameter (mm) Depth (m) 200 1.60 150 15.30 121 20.70	1. Hand dug inspectio	n pit to 1.2	0m.		
	lated 24/01/201	8	10.00							

	DUNE	Λ'		8TISH	B ×	NG		BOREHOLE RECORD		DUIG	ehole	
Ű	DTECHNICAL & ENVIR	ONMENTAL		75500	TATION			BOREHOLE RECORD		BH	ł47	
Contra	ct No: D80)44					Site: IAMP -	Preliminary Ground Investigation	GL (m A0 36.54 Easting: 433430.8	1	Scale 1:50 Northing: 558934.44	
lient:	Sunderland	d City C	Cou	ncil				Driller: PK/DC Logged By: A				
		-			ng ۱	with	Rotary Core	Drilling Checked By: JH	Dates:	07/08/201	7 - 18/08/2	017
	SAMPLE	Depth From-To (m) Insitu Testing 10.00 10.37 10.00 - 10.37 N=50+ (5,9/12,11,27 for 10.50 11.00 - 11.45 11.45 56 blows 11.70 12.00 - 12.45					g) ater					
Туре	Depth From-To (m)	Ir	nsitu	Testi	ing		(Casing) Groundwater	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfi
D SPT (S)		N=50+ (5,	9/12, [,]	11,27 f	or 70n	nm)	-	Firm, slightly sandy slightly gravelly CLAY with frequent cobbles. Gravel is subangular to subrounded, fine to coars				
BRE	10.50							of sandstone, mudstone, limestone and coal. Cobbles are sandstone.				
U	11.45 11.70 12.00 - 12.45 12.00 12.00 - 12.44 N=50+ (7,10/12,14,14,10 70mm) 12.50						- 11	11.00m: Clay of low plasticity.				
D	11.45	11.45 11.70 12.00 - 12.45 12.00 - 12.44 12.00 - 12.44 12.00 - 12.44 12.00 - 12.44 12.50 + (7,10/12,14,14,10 fr										
BRE	11.70	11.00 - 11.45 56 blows 11.45 1 11.70 1 12.00 - 12.45 1 12.00 - 12.44 70mm) 12.50 12.70 1 13.00 - 13.38 N=49 (25/12,11,11,15) 1 13.50 1 13.80			07/08/2017							
B D SPT (S)	11.45 11.70 12.00 - 12.45 12.00 12.00 - 12.44 12.50 12.70 13.00 - 13.45 13.00 13.00 - 13.38 N=49 (25/12,11,11,15)			r	(10.90) Dry (10.90) Dry (08/08/2017 0800 (12 (10.90) Dry (11.90) Dry		(5.30)					
BRE	12.50	Depth From-To (m) Insitu Testing 10.00 10.37 N=50+ (5,9/12,11,27 for 70mr 10.50 11.00 11.45 11.00 11.45 56 blows 11.45 11.70 12.00 12.00 12.45 N=50+ (7,10/12,14,14,10 for 70mm) 12.50 12.70 13.00 13.38 13.50 N=49 (25/12,11,11,15)				E						
D		Depth From-To (m) Insitu Testing 10.00 10.00 - 10.37 N=50+ (5,9/12,11,27 for 70) 10.50 10.50 11.00 - 11.45 56 blows 11.00 - 11.45 56 blows 11.45 11.70 12.00 - 12.44 N=50+ (7,10/12,14,14,10 fc 70mm) 12.00 - 12.44 N=50+ (7,10/12,14,14,10 fc 70mm) 12.00 - 12.44 N=50+ (7,10/12,14,14,10 fc 70mm) 13.00 - 13.45 13.00 N=49 (25/12,11,11,15) 13.50 N=49 (25/12,11,11,15) 13.80 N=49 (25/12,11,11,15) 14.00 - 14.40 14.00 N=50+ (21,4 for 10mm/21,2 60mm) 14.80 N=50+ (22 for 4\$mm/50 for 4\$mm/50 15.30 - 15.39 N=50+ (22 for 4\$mm/50 for 4\$mm/50 15.30 - 15.39 N=50+ (22 for 4\$mm/50 for 4\$mm/50										
B D SPT (S)	12.00 12.00 - 12.44 12.50 12.70 13.00 - 13.45 13.00 13.00 - 13.38 N=49 (25/12,11,11,15) 13.50 13.80)		- 13 (12.90) Dry					
BRE	70mm) 12.50 12.70 13.00 - 13.45 13.00 13.00 - 13.38 13.50 13.80 14.00 - 14.40											
D	12.70 13.00 - 13.45 13.00 13.00 - 13.38 N=49 (25/12,11,11,15) 13.50 13.80 14.00 - 14.40											
B D	13.00 13.00 - 13.38 13.50 13.80 14.00 - 14.40 14.00 14.00 - 14.22 N=50+ (21.4 for 10mm/21,2			- 14 (13.90) Dry								
SPT (S)	13.50 13.80 14.00 - 14.40 14.00 14.00 - 14.22 N=50+ (21,4 for 10mm/21,2)		9 for									
D	14.80						- 15	Very dense yellowish brown sandy GRAVEL. Gravel is subangular to angular, fine to coarse of sandstone.	14.80	21.74		
— D ——	15.20 - 16.70						08/08/2017 1700	(Weathered sandstone, rockhead).	- 15:38			
SPT (S) SPT (S)	15:30 - 15:39 15:30 - 15:39		for 4	\$mm/	50 for	NI	08/08/2017 1799 (15.559 0570 (15.559 0570 (15.559 0570 08/08/2017 1700		15.30	21.24		
		45mm/50					(15.00) Dry (15.00) Dry	subhorizontal, planar, smooth and clean. Below 16.62m fractures are medium to widely spaced.				
C C	15.47 - 15.89		100	72	53	3	16					
C	10.10 - 10.29							16.25 - 16.70m: Subvertical, planar, smooth, clean fracture. 16.40 - 16.62m: Frequent subvertical fractures with brown clay infill.				
С	16.70 - 16.83					40	16.70 - 18.20		(2.75)			
	16.70 - 18.20						60 % Water					
						3						
			100	100	100			17.50 - 18.00m: Dark red staining.				
С	17.70 - 17.84											
	18.20 - 19.70					╞	- 18 18.20 - 19.70	Weak, partially weathered, orange brown fine, predominan		18.49		
							45 % Water	medium to coarse, micaceous SANDSTONE. Fractures an subhorizontal, planar, smooth with dark red staining.	E			
						12		18.05 - 19.05m: Subvertical, undulose fracture with orange staining.	(1.00)			
			100	80	20		19	10.04 10.06m: Dadi and braun alari	19.05	17.49		
								19.04 - 19.06m: Dark red brown clay. Extremely weak, partially weathered, thinly to thickly bedde red brown MLIDSTONE with occasional thin laminae of	/E			
						30		red brown MUDSTONE with occasional thin laminae of siltstone. Fractures are very closely spaced, subhorizonta planar, smooth and cloan	, (0.95)			
	19.70 - 20.70					10	19.70 - 20.70 90 % Water	planar, smooth and clean. 19.38m: Subvertical, planar, smooth, clean fracture.				
	Ground Wate		TCR%	6SCR%	RQD%		20 hiselling / Hard Strat	Continued on next sheet Casing Depths Hole Diameter General Remark	<u> </u>	16.54		1111,
pth Struck Ca (m)		-i ´	Wate	er seale (m)	ed Fi	rom (m)		e (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) Depth (m) Depth (m) Depth (m) Depth (m) T. Hand dug insp		20m.		
15.30	14.90 11.8	20				10.30 12.80 13.90	13.10 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
						13.90 14.40 14.90	14.50 (1245 140 18.00 121 20.70 1200 1:00				

	DUNE BEDTECHNICAL & ENVIR	LM		Postoci		<u> </u>			BORE	HOL	E RE	CORI	D				Bore BH	hole 147	
Contra	act No: D80)44					Site: IAN	/IP - Pr	eliminary	Ground	d Invest	igation				GL (m AOE 36.54 Easting: 433430.80	D) s	Scale 1:50 Iorthing: 58934.44	
Client:	Sunderland	d City (Cour	ncil							Drille	er: PK/DC	Log	gged By:	AH	Sheet 3 of			
Method	d: Cable Pe) rillir	ng v	with		ore Dri	illing		Chec	ked By: J	Н		_	Dates:	07/08/2017	7 - 18/08/20	017
	SAMPLE	E DETA					ng) water			s		RECORD	`			Depth	Level		Well/
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater		(0.00 - 20.08m·	_	Descr	iption				(m)	(m AOD)	Legend	Backfill
			100	40	10	NI	- 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30	E bi Si R m	19.90 - 20.08m: xtremely we rown MUDS mooth with (red brown g nudstone. () eds of muds	eak to we STONE. F occasiona ravelly Cl Weathere stone.	ak, partial Fractures al clay infi AY. Grav d MUDST	ly weathe are subho II. /el is angu	red, dar prizontal llar, fine ccasion	l, planar, to coars	e of nin		16.14 15.84		
	Ground Wate	er (m)			—	Cł	hiselling / Hard \$	Strata		Depths	-			I Remarl					
Depth Struck C (m) 15.30	Casing Depth (m) 14.90	vel Minutes	Water (er sealec (m)	1	rom (m) 10.30 12.80 13.90 14.40 14.90) To (m) 10.50 13.10 14.20 14.50 15.30	Time (hr 00:30 01:00 00:45 00:20 01:00	(11111)	Depth (m) <u>1.60</u> <u>15.00</u> <u>18.00</u>	Diameter (mm) 200 150 121	Depth (m) <u>1.60</u> <u>15.30</u> 20.70	1. Hand	l dug insp	pectior	n pit to 1.20	Эm.		
Log last ur	pdated 24/01/201	18			-														

ſ	UNE	ALTISH DRILLING		BOREHOLE	RECOPD			Bore	ehole	
	DTECHNICAL & ENVIR			DORLHOLE				BH	48	
ontroc				Broliminan/ Cround I	weatigation		GL (m AO 35.44	D) ;	Scale 1:50	
ontrac	ct No: D80		Site. IAIVIP	- Preliminary Ground I	างธอแฎสแบก		Easting: 433655.60	N D 5	Northing: 558895.29	
lient: S	Sunderland	I City Council	1		Driller: PK/DC	Logged By: BC	Sheet 1 of	f 3		
		rcussive Drilling wi	th Rotary Core	Drilling	Checked By: JH		Dates:	08/08/201	7 - 18/08/20)17
	SAMPLE	E DETAILS	ate							
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater		ATA RECORD		Depth (m)	Level (m AOD)	Legend	We Back
D ES	0.10 0.10			Dark brown slightly sandy			E			
	0.40	HVP=26 kPa		Gravel is subangular to re limestone, mudstone, silts		rse of sandstone,	(0.50)			
D ES	0.50 0.50			Firm, brown mottled light			0.50	34.94		
B BRE	0.60 - 1.20 0.60			CLAY of high plasticity. C fine to coarse of sandstor	Bravel is subangula	ir to subrounded,	E			
-	0.70	HVP=68 kPa	-1			Juai.	(0.80)			
U	1.20 - 1.65	29 blows					E			
				Firm brown, mottled light	grey, slightly sandy	slightly gravelly	1.30	34.14		
D	1.65		Ē	CLAY of intermediate plas rounded, fine to coarse of			E			
							E			
BRE	1.90 2.00 - 2.45		2 (1.60) Dry	2.00m: Stiff			E			
D PT (S)	2.00 2.00 - 2.45	N=17 (2,3/3,4,5,5)					E			
							(2.15)			
BRE	2.50						Ē			
							E			
U	3.00 - 3.45	15 blows	- 3				Ê			
			-							
D	3.45			Firm this base is the		v oonde slight	_ 3.43	31.99		
BRE				Firm, thinly laminated, gre gravelly CLAY. Gravel is						
DRE	3.70			coarse of sandstone, mu			E			
B D	4.00 - 4.45		4 (1.60) Dry				Ē			
D PT (S)	4.00 4.00 - 4.45	N=9 (1,2/2,2,2,3)					E			
BRE	4.50									
DICE	4.00						E			
							E			
UT	5.00 - 5.45	9 blows	5	5.00m: Clay of intermediate plas	ticity.		E		F I	
							E			
D	5.45						E			
BRE	5.70						F			
B D	6.00 - 6.45 6.00		6 (1.60) Dry				Ē			
PT (S)	6.00 - 6.45	N=10 (2,2/2,2,3,3)					E			
BRE	6.50		08/08/2017 1700				E		$\mathbf{F} = 1$	
			(1.60) Dry 09/08/2017 0800				É			
			(1.60) 2.10				Ē			
UT	7.00 - 7.45	12 blows	-7				(7.35)			
							Ē			
D	7.45						E			
BRE	7.70						E			
	8 00 0 17						E			
B D	8.00 - 8.45 8.00		- 8 (1.60) Dry	8.00m: Clay of high plasticity.			Ē			
PT (S)	8.00 - 8.45	N=9 (2,2/2,2,2,3)					Ē			
BRE	8.50						È			
							E			
UT	9.00 - 9.45	10 blows	-9				E			
							E			\square
	0.45						E			
D	9.45						Ē			
BRE	9.70						É			
в	10.00 - 10.45		10 (9.90) Dry		inued on next shoot		F			
I	Ground Wate	er (m)	Chiselling / Hard Strat		inued on next sheet Hole Diameter Ge	eneral Remarks			ı	
h Struck Ca (m)	using Depth (m) Water Le	vel Minutes Water sealed (m) From	(m) To (m) Ti		iameter (mm) Depth (m) 1.	Hand dug inspection	n pit to 1.2	0m.		
8.00	12.40 5.3	20 14.	90 15.10 0 10 17.20 0 00 18.30 0	00:20 200 1.60 00:20 150 11.50	200 10.00 150 18.50					
		18.	00 18.30	01:00 140 22.50	121 23.50					

	DUNE	Settish Briting		BOREHOLE RECORD		Bore	ehole	
	OTECHNICAL & ENVIR	ONMENTAL RESOCIATION				Bŀ	148	
Contrac	ct No: D80		Site: IAMP	- Preliminary Ground Investigation	GL (m AO 35.44 Easting: 433655.60	1	Scale 1:50 Northing: 558895.29	
lient:	Sunderland	d City Council		Driller: PK/DC Logged By: BC			000090.29	
		ercussive Drilling wi	th Rotary Core	Drilling Checked By: JH	Dates:	08/08/201	7 - 18/08/20)17
	SAMPLE	EDETAILS	ater					
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Wel Back
D SPT (S)	10.00 10.00 - 10.45	N=10 (1,2/2,2,3,3)		Firm, thinly laminated, greyish brown, slightly sandy slightly gravelly CLAY. Gravel is subrounded to rounded, fine to				Ļ.
BRE	10.50			coarse of sandstone, mudstone and coal.				
BILL	10.00							•
D B	10.90 11.00 - 11.65		11	Soft, thinly laminated slightly sandy silty CLAY of intermediat plasticity.	e 10.80	24.64		•
UF		4 blows			(1.00)		^×	• • • •
					E (1.00)		× × ×	
BRE D	11.70 11.80				11.80	23.64	— <u>×</u> ^	
В	12.00 - 12.45		12 (11.90) Dry	Stiff, brown slightly sandy slightly gravelly CLAY. Gravel is subangular to rounded, fine to coarse of sandstone, mudston	F			
D SPT (S)	12.00 12.00 - 12.45	N=22 (3,4/4,5,6,7)		and coal.				
BRE	12.50							
U	13.00 - 13.45	60 blows	13	13.00m: Clay of low plasticity.				Ŵ
					(6.20)			
D	13.45							
BRE	13.70							
B D	14.00 - 14.45 14.00		14 (12.40) Dry					
SPT (S)		N=29 (4,5/7,8,8,6)						
BRE	14.50				E			
					(6.20)			
_			15		(0.20)			
B D SPT (S)	15.20 - 15.65 15.20 15.20 - 15.64	N=50+ (6,8/13,14,11,12 for	(12.40) Dry		E			
		70mm)			E			
BRE	15.70							
U	16.00 - 16.45	72 blows	16		Ē			
D	16.45				E			
BRE	16.70				E			
B D SPT (S)	17.00 - 17.45 17.00 17.00 - 17.20	N=50+ (9,16 for 55mm/50)	17 (12.40) Dry					
BRE	17.50							
DILL	11.50							
в	18.00 - 18.30		18 (12.40) Dry		18.00	17.44		
D SPT (S)	18.00 18.00 - 18.14	N=50+ (15,10 for 15mm/50 for		Very dense reddish brown sandy GRAVEL. Gravel is subangular to angular, fine to coarse of sandstone.	(0.50)			
D SPT (S)	18.30 18:80 = 28:50	55mm)		(Weathered SANDSTONE).	- 18:58	16.94		
(5)	18.50 - 20.00		18.50 - 20.0	O COAISE GIAINEU SANDSTONE. FIACIULES ALE VELY CLOSELY LO	E	10.94		
			10 19 80 % Wate	r a closely spaced, subhorizontal, planar, smooth with localised clay infill.	(0.79)			
		100 81 29		18.83 - 18.85m: Fractures are subhorizontal, planar, smooth, undulose with ligh brown clay infill. 18.90 - 10.01m: Eractures are 60 decrees steeped smooth and clean	F 19.29	16.15		
С	19.40 - 19.60			18.90 - 19.01m: Fractures are 60 degrees, steeped, smooth and clean. Very weak to weak, partially weathered, brown fine to coarse	E (0.15)	16.00		
			0	grained SANDSTONE. Frequent randomly orientated interlocking fractures.	(0.33)	15.67		
	20.00 - 21.30	TCR%SCR% RQD%	FI 20	Medium strong to strong, partially weathered, light brown fine Continued on next sheet	e (0.16) 19.93	15.51		1111
pth Struck Ca	Ground Water	er (m)	Chiselling / Hard Stra	ta Casing Depths Hole Diameter General Remarks	tion nit to 1.3	20m		
(m) 18.00	(m) 12.40 5.3	Water sealed (m) From 20 14. 17. 17.		Imm (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) Depth (m) 00:20 200 1.60 200 10.00 10.00 00:20 150 11.50 150 18.50 18.50	1011 pit to 1.2	JUIII.		
		17.	10 17.20 00 18.30	00:20 150 11.50 150 18.50 01:00 140 22.50 121 23.50				

				R R	R	-10			E	BORE	HOL	E RE	CORD				Bore BH		
Contrac	t No: D80	44		⁹ SSOCI	ATION		Site:	IAMP -	Pre	liminary	Ground	d Invest	igation			GL (m A0 35.44 Easting: 433655.6	DD) s	Cale 1:50)
lient: S	Sunderland	City C	oun	icil								Drille	er: PK/DC	Logged By	: BC	Sheet 3		00000.20	
	Cable Pe	-			ng v	vith	Rotar	/ Core	Drilli	ng		Cheo	cked By: JH			Dates:	08/08/2017	7 - 18/08/2	017
	SAMPLE	DETA	LS		-		_	ater		-									
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casino	Groundwater			S	TRATA Descr	RECORD			Depth (m)	Level (m AOD)	Legend	Well Backf
C	20.95 - 21.10 21.30 - 22.50 21.50 - 21.60 22.50 - 23.50		100	85	44	2 NI 5 NA 4 4	-21 -22 -22 -22	.00 - 21.30 0 % Water .30 - 22.50 0 % Water .50 - 23.50 0 % Water	Wee coa clos clay.0 19.0 Mec fine spa Wee fine orie coa 20.1 21.0 disc coa 20.1 21.0 disc coa spa Wee fine spa Wee fine spa Wee fine spa Wee fine spa Wee fine spa Wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa wee fine spa spa spa spa spa spa spa spa spa spa	rse graine ely space r infill. 22 - 19.3m. dium stror to mediuu ced, subh ak to medi to mediuu ntated inti dium stror rse graine 76 - 20.8m. 76 - 20.8m. 76 - 20.8m. 76 - 20.8m. 76 - 20.8m. 76 - 20.8m.	ium stror ad SAND: d, subho Fractures aing to stroom grainee iorizontal ium stroor d SAND: Fracture is a is subhoria fracture is a is subhoria fracture is a subhoria fracture is a subhoria fracture is a subhoria fracture is a fracture is a AZCL. Fracture is a	ng, partial STONE. rizontal, p re subvertica ng, partia d SANDS , planar, s gd, partial d SANDS fractures ng, partial STONE. 35 degrees, p fracture. ndy CLAY ng, partial ess are clo samoth a ubhorizontal	ly weathere Fractures a blanar, smoot lly weathere TONE. Fra smooth and ly weathere TONE. Fre lly weathere planar, smooth r, smooth with li blanar, smooth r, smooth with li blanar, smooth r, smooth and planar, smooth r, smooth and planar, smooth r, smooth and planar, smooth r, and clean. r, planar, smooth	d, reddish bro quent random ed, brown fine	y to sed lean. bwn dium wn lly to to t grey wn wn clay		15.02 14.92 14.31 14.21		
epth Struck Ca (m) 18.00	Ground Wate sing Depth (m) Water Le 12.40	er (m) vel Minutes		sealed m)	1 1	Ch pom (m) 14.90 17.10 18.00		0 C	a ne (hr) 0020 11:00	Casing Diameter (mm) 150 140	Depths Depth (m) 1.60 11.50 22.50	Hole D Diameter (mm) 150 121		e eneral Rema Hand dug ins			20m.		

				8thisH	RILLIN	NG							DE	ററ	חי				Bore	hole	
	DTECHNICAL & ENVIR	DNMENTAL		7SS C	HATION					DUP	REHO		κc	CUR	U				BH	149	
ontrac	:t No: D80	44					Site:	IAM	P - I	Prelimina	ary Grou	und I	nvest	igation	1		39.2 Eas	ting:	е (C И	Scale 1:50)
liont: (Sunderland		`ou	ncil									Drille	er: RH/D	C	Logged By: BC		226.03 eet 1 of		58647.01	
	Cable Pe				na v	with	Rotar	v Co	ore D	Drilling			_	cked By:		Logged by. Do	Date		11/08/2017	7 - 24/08/2	017
ctrica.	SAMPLE				ng v	WILLI		-		, ming			onec	skeu by.	011					24/00/2	
Туре	Depth		-	Testi	ina			Groundwater						RECOR	RD			epth (m)	Level (m AOD)	Legend	Wel Back
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	From-To (m)						:	0		Dark brow	n slightly	sand	y, sligh	tly grave	elly c	clayey TOPSOIL.	=				201
D ES	0.20 0.20									Gravel is sandstone					e to	coarse of	_ · ·	0.30) 0.30	38.91		
B D	0.20 0.50 - 1.20 0.50	HVP=24 kl	Ра						ľ	Firm brow	n mottled	light	grey sl	ightly sa	ndy	slightly gravelly					
ES	0.50 0.50 0.70	HVP=65 kl	Pa													bangular to tstone and coal.	E				•
BRE	1.00	11VI -05 Ki	ia				1										-(1.45)			- -
D B D	1.00 1.20 - 1.60							Dry									E				
SPT (S)	1.20 1.20 - 1.65	N=10 (2,2/	2,2,3	,3)													E				
BRE	1.75																_Ē.	1.75	37.46		- -
							-2									CLAY of high ed, fine to coarse	E	-			
U	2.20 - 2.45	100 blows					É			of sandsto						,	E				
D BRE	2.50 2.70																Ē	1.55)			
D	2.90						l										Ê				
B D	3.00 - 3.50 3.00						-3 (2.9	0) Dry									Ē				
SPT (S)	3.00 - 3.45	N=12 (2,2/	3,3,3	,3)					-	Stiff dark b	prown slic	ahtly s	andv.	sliahtlv a	rave	elly CLAY. Gravel	is E :	3.30	35.91		
										subangula	r to subro	ounde				f sandstone,	E				•
BRE	3.75									mudstone	anu coal	•									
							4										E				•
UF	4.20 - 4.70	100 blows															Ē				
B	4.70 - 5.20		0/50 -		- ·		(4.6	0) Dry										2.70)			
SPT (S) BRE	4.70 - 4.91 4.75	N=50+ (3,3	3/5U f	or 60n	1111)		-5										E				
BRE	5.20						-										E				
							Ē										Ē				
	E 75 0 05																Ē				
B D SPT (S)	5.75 - 6.25 5.75 5.75 - 6.20	N=42 (5,5/	0 10	10 14)			ŧ	0) Dry	Ţ	5.75m: Clay	of low plasti	icity.					E				
BRE	6.20	N-42 (0,0/	0,10,	10, 14)	,		- 6									VEL. Gravel is	(6.00	33.21	<u> </u>	
DRE	0.20									weathered						dstone. (Lightly	Ē"	0.50)			
									F	Stiff red br	own sligh	ntly sa	ındy, sl	ightly gra	avel	lly CLAY. Gravel is	\$ E ((6.50 0.20)	32.71	<u>*************************************</u>	
B BFT(S)	6:75 6:75 7.14	N <u>≣50</u> †10	,13/1	6,21,1	3,8)	NI	(6.7	0)(0.70)) Dry				ne to co	oarse of	mud	dstone and coal.		6.70 6:05) 6:78)	32.51 32.46	<u></u>	
··· (3)	8:75 - 8:88	N=50+ (10,13/16 ,21,13,8)					7		Ň	(drillers de Stiff dark d			ndv ars	avelly CI	AY	Gravel is angular		9:79) 6.88	32.46 32.33		
		,_ , , , 0,0)	100	100	66	40			N	to subang	ular, fine t	to coa				nd sandstone.		0.82)			UII,
			100	100						(drillers de Black COA	λL. ΄										
						12	ŧ									grey MUDSTONE ubhorizontal,	· E	7.70	31.51		
	8.00 - 9.50					A	8			planar, sm	ooth, clea	an.					_Æ				
										spaced, su	ubhorizon	ital pla	anar, si	mooth, c	lear	actures are closely n.	/ E«	0.90)			
									[[8.05 - 8.30m	: Subvertica	l undula	ating, sm	ooth fractur	re.		E				
			96	84	0	15	ŧ			8.55 - 8.65m Extremely						<i>^{ture.}</i> h bands. Fracture:		8.60	30.61		
с	9.00 - 9.12						-9									nar, smooth, clean	E	0.70)			
-							-										E				
	0.50 11.00					NI			F							mudstone.	÷ ا	9.30	29.91		
	9.50 - 11.00									Fractures planar, sm			y to clo	osely spa	acec	d, subhorizontal	Ē				
										-							E				
	Ground Wate		TCR%	SCR%	KQD%		10 hiselling /	Hard S	Strata	Ca	sing Depths			n next she		eneral Remarks					p
th Struck Ca	size Dentite	vel Minutes		er seale (m)	ed Fr	rom (m)			Time	Diama	ter Denth	(m) [Diameter (mm)	Depth (m)	1.	Hand dug inspect			0m.		
(m)	(11)		+	(11)		4.90 6.70	5.1		00:	(mm	6.70		(mm) 150 121	6.85 30.30		No groundwater e					
						5.10	/.(01:	140		Ĭ	121	30.30							
		1			1									1							

			4	Ser115H	BRILLIN	10		BOREHOLE RECORD		Bore BH	hole 149	
	ct No: D80			3500	CIATIO		Site: IAMP -	Preliminary Ground Investigation	GL (m AO 39.21 Easting: 433226.03	D) ; N B 5	Scale 1:50 Northing: 558647.01	
	Sunderland	-					Deter Care	Driller: RH/DC Logged By: BC	Sheet 2 of			
letnoa	SAMPLE			Jriili	ng v	vitn	Rotary Core	Drilling Checked By: JH	Dates:	11/08/201	7 - 24/08/2	017
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfil
С	10.30 - 10.45		100	100				9.95 - 10.10m: Subvertical planar, smooth, clean fracture. 10.05 - 10.30m: Weak grey mudstone.				
	44.00 44.00		100	83	83			10.70 - 10.80m: Subvertical planar, smooth, clean fracture.	(3.30)			
	11.00 - 11.30 11.30 - 12.80		100	03	03	11	- 11	11.12 - 11.15m: Subvertical planar, smooth, clean fracture 11.24 - 11.27m: Subvertical undulating, smooth, clean fracture. 11.40 - 11.45m: Subhorizontal planar, smooth fracture.	Ē			
С	11.83 - 11.93		100	100	80		12	11.40 - 11.50m: Subvertical undulating, smooth, clean fracture.				
C C	12.50 - 12.90 12.55 - 12.80							12.55m: Medium strong.	12.60	26.61		
	12.80 - 14.30		100	96	80	40	- 13	Weak, partially weathered, orange brown medium grained SANDSTONE. Fractures are closely spaced, subhorizontal planar, smooth. 12.94 - 13.00m: Subvertical planar, smooth, clean fracture.				
С	13.90						14					
	14.30 - 15.80					20			(3.40)			
С	14.80 - 15.00		100	96	93		- 15					
С	15.80 - 17.00 15.90 - 16.00		100	83	28	20	16	Very weak, partially weathered, thinly bedded, dark grey MUDSTONE. Fractures are extremely closely to very closely spaced, planar with clay infill.	16.00	23.21		
	17.00 - 17.80					NI A	17	16.00 - 16.10m: Subvertical planar, smooth, clean fracture.	(1.50)			
	17.80 - 19.00		87	66	22	12		17.45 - 17.55m: Subvertical planar, smooth, clean, fracture. Very weak, partially weathered black carbonated MUDSTONE. Fractures are very closely spaced,	17.50	21.71		
			100	86	13	20	- 18	subhorizontal planar, smooth, clean.	(1.90)			
	19.00 - 20.80		100	93	90		- 19	18.75 - 18.95m: Subvertical, stepped, smooth, clean, fracture.		40.01		
							20	Weak, partially weathered dark grey SILTSTONE with bands of fine to medium sandstone. Fractures are closely to medium spaced, subhorizontal planar, smooth, clean.	19.40	19.81		
anth Ct- 1-	Ground Wate	er (m)	147				niselling / Hard Strata			0	1	L
(m)	asing Depth (m) Water Le	vel Minutes	vvate	r seale (m)	FI	om (m) <u>4.90</u> 6.70	5.10 0	e (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) 1. Hand dug inspectiv 2:30 150 6.70 150 6.85 1. No groundwater er 0:00 140 11.00 121 30.30 2. No groundwater er				

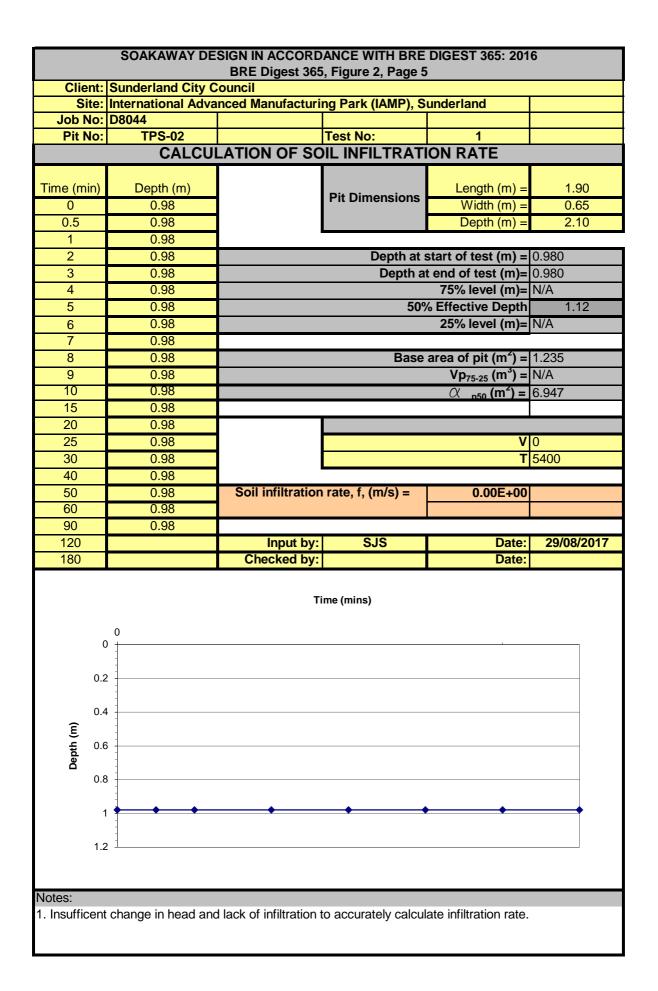
	DUNE	N/		Ser15H	BRILLI	MG			BORE	нОг	E RE	COR	n			Bore	ehole	
	OTECHNICAL & ENVIR	ONMENTAL		75500	IATION							COR	U			BH	49	
Contra	ct No: D80)44					Site: IAM	1P - Pre	liminary	Ground	d Invest	igation			GL (m AO 39.21 Easting:	, s	Scale 1:50 Northing:)
liont:	Sunderland		2011	ncil							Drille	er: RH/DC		Logged By: BC	433226.03 Sheet 3 of		58647.01	
	: Cable Pe	-			nav	with	Potany C	oro Dril	ina			ked By:		Logged By. BC	Dates:	11/08/201	7 24/08/2	017
letiiou	SAMPLE				ng v	with	-		ing		Chec	Keu by.			Dales.	11/06/201	7 - 24/08/2	
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater			S	TRATA Descr	RECOR	D		Depth (m)	Level (m AOD)	Legend	Well Backf
								20	.30 - 20.45: D	ark grey fine	to medium	sandstone.			(2.05)			
	20.80 - 22.30							20	.70 - 20.80m:	Dark grey fir	ne to mediun	n sandstone.						
							- 21	21	.22 - 21.36m:	Subvertical	undulating.	mooth. clea	n frac	cture.				
			100	100	83			We	ak, partia	lly weathe	ered dark	grey fine	to n	nedium	21.45	17.76		
									NDSTON phorizonta				nedi	ium spaced,				
						6	- 22								(1.15)			
	22.30 - 23.80														E			
			100	93	73			We Fra	ak, partia actures are	lly weathe closely t	ered thinly o medium	v bedded n spaced,	dark sub	k grey SILSTONE. bhorizontal planar,	22.60	16.61	× × × × × × × × × × × × × × × × × × ×	
			100	93	73		- 23	22	ooth, clea .90 - 23.00m:	Subvertical					E_		× × × × × × × × × × × × × × × × × × ×	
								23	.20 - 23.50m:	Subvertical	undulating, s	mooth, clea	n frac	cture.	(1.35)		× × × × × × × × × × × × × × × × × × ×	
	23.80 - 24.80														E		× × × × × × × × × × × × × × × × × × ×	
			95	75	70		- 24	We	ak, partia	lly weathe	ered dark	grey SILS	STO	NE. Fractures are	23.95	15.26	× × × × × × × × × × × × × × × × × × ×	
				10	10	15		vei	y closely t	o closely	spaced, j	bianar, sn	noot	ın.	E		× × × × × × × × × × × × × × × × × × ×	
			-			A		24	.55m: Subver	tical planar, s	smooth, clea	n fracture.					*****	
	24.80 - 26.30						- 25											
			96	96	86										E			
					00		ł											
						12	- 26	25	.80 - 26.00m:	Subvertical	planar, smo	oth, clean fra	cture	ð.				
	26.30 - 27.80		-			12			00 00 45	Outronting			-4		(4.30)			
						-			.30 - 26.45m: .58 - 26.62m:						E		× × × × × × × × × × × × × × × × × × ×	
			100	100	73				20.02.11	ousroniour	<u>oranai, orno</u> e	in, ordan na	olui o				******	
						4	- 27										******	

	27.80 - 29.30														E		× × × × × × × × × × × × × × × × × × ×	
							- 28								Ē		× × × × × × × × × × × × × × × × × × ×	
			100	100	53				ry weak, p actures are					JDSTONE.	28.25	10.96	~~~~	
										,	,				(2.05)			
						15	- 29	28	.90 - 29.50m:	Subvertical	planar, smo	oth, clean fra	cture	ð.				
	29.30 - 30.30														(2.05)			
			100	85	30													
							20								E			
		1	1		1	1	- 30				ontinued -	n nevt cho-	+		Ē			
th Struck	Ground Wate	1	M/ot	er seale	ad		niselling / Hard		Casing	g Depths		n next shee iameter	Gei	neral Remarks		0~~	1	ı
(m)	asing Depth (m) Water Le	evel Minutes		er seale (m)	Fr	rom (m 4.90 6.70	5.10	Time (hr) 00:30 01:00	(mm) 150	Depth (m) 6.70	(mm) 150 121	Depth (m) 6.85 30.30		Hand dug inspectior No groundwater enc				
						6.70	7.00	01:00	140	11.00	121	30.30]					
	dated 24/01/201				-													

	DUNE EDTECHNICAL & ENVI			Passoci	R			E	BORE	HOL	E RE	CORI	D		Bore BH	hole 149	
	ct No: D8						Site: IAN	/IP - Preli	iminary	Ground		-		GL (m AOI 39.21 Easting: 433226.03		Scale 1:50 Iorthing: 58647.01	
	Sunderlan											r: RH/DC		Sheet 4 of			
Method	I: Cable P)rillir	ng v	with		ore Drillir	ng		Chec	ked By: J	IH	Dates:	11/08/2017	7 - 24/08/20)17
Туре	SAMPL Depth From-To (m)	E DETA	%	SCR %	RQD %	FI	(Casing) Groundwater			S	TRATA I Descri		D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
Туре	From-To (m)						31 32 33 34 35 36 37 38	30.1	18 - 30.24m: -	<u>Subvertical j</u> En		th, clean frac	n		8.91		
							- 40										
	<u></u>	<u> </u>					- 										
	Ground Wa	iter (m)			Т	Cł	niselling / Hard	Strata	Casing	Depths	Hole Di	ameter	General Remarks				
Depth StruckC (m)	Casing Depth (m) Water L	Level Minutes	; Water	er sealed (m)	FIC	rom (m) 4.90 6.70		Time (hr) 00:30 01:00	Diameter (mm) 150 140	Depth (m) 6.70 11.00	Diameter (mm) 150 121	Depth (m)	1. Hand dug inspect 2. No groundwater e				
Log last up	udated 24/01/20)18			_												

	DUNE	Satish British		BOREHOLE	RECOPD			Bore	ehole	
I	EDTECHNICAL & ENVIR	ONMENTAL 35 SOCIATION		BURENULE	NEGORD			BH	150	
				5			GL (m AO 38.09	D) (Scale 1:50	
Contra	ct No: D80)44	Site: IAMP	- Preliminary Ground I	nvestigation		Easting: 433419.38	۱ م	Northing: 558721.55	
lient:	Sunderland	d City Council			Driller: CT/DC	Logged By: BC	Sheet 1 of		550721.55	
		ercussive Drilling wit	h Rotary Core	Drilling	Checked By: JH		Dates:	24/08/201	7 - 25/08/2	017
	SAMPLE	E DETAILS	ater -				-			
Туре	Depth From-To (m)	Insitu Testing	(Casing) Groundwater	-	RATA RECORD		Depth (m)	Level (m AOD)	Legend	We Back
B D	0.00 - 0.30 0.10			Brown slightly sandy slig is subangular to rounded			(0.35)			
ES D B	0.20 0.35 0.40 - 0.90			mudstone, siltstone and	coal.		0.35	37.74		
ES BRE	0.50			Firm brown mottled light CLAY. Gravel is subangu	lar to rounded, fine	to coarse of	(0.75)			
				sandstone, mudstone an	d coal.					
ES B	1.00 1.20 - 1.70		Dry	Firm dark brown mottled	dark grey slightly s	andy, slightly	1.10	36.99		
D SPT (S)	1.20 1.20 - 1.65	N=11 (2,2/2,3,3,3)		gravelly CLAY of interme to subrounded, fine to co	diate plasticity. Gra	ivel is subangular	E			
				mudstone and coal.	arse or sandstone,	Sitistone,	Ē			
BRE	1.75						E			
U	2.20 2.65	76 blours	2				(2.00)			
U	2.20 - 2.65	76 blows		2.20m: Stiff.			E			
5	0.70						Ē			
D BRE	2.70 2.75						Ē			
			3	Stiff growigh brown gilty o	lightly condy CLAX	of low plasticity	3.10	34.99		
B D	3.20 3.20		(3.10) Dry	Stiff greyish brown silty s Sand is fine to medium.		or low plasticity.	E		××	
SPT (S)	3.20 - 3.65	N=17 (4,4/4,4,4,5)		3.20-4.70m: Silt bands noted.			E		×— —×	
BRE	3.75						E		×— —×	
			4				E		××	
U	4.20 - 4.65	57 blows		4.20m: Firm silt of low plasticity.			E		×— —×	
							E		×— —×	
D	4.70						(3.30)		×— —×	
BRE	4.90		5				<u> </u>			
B D	5.20 - 5.70 5.20		(4.50) Dry				E		× × -	
SPT (S)	5.20 - 5.65	N=11 (1,3/3,2,2,4)					Ē		X	
							E		×_×_×	
BRE	5.90		6				E_		× ×	
U	6.20 - 6.50	100 blows					E		× ×	
_				Stiff brownish grey slight	y sandy, slightly gr	avelly CLAY.	6.40	31.69		
D	6.60			Gravel is subangular to s sandstone, mudstone an		coarse of				
BRE	6.90		7							
B D	7.20 - 7.70 7.20		(4.50) Dry							
SPT (S)	7.20	N=50+ (5,7/26,24 for 40mm)								
BRE	7.90		8	7.90m: Very soft band noted.						
U	8.20 - 8.70	100 blows								
							(4.20)			
B D	8.70 - 9.20 8.70		(4.50) Dry				E			
D SPT (S) BRE	8.70 8.70 - 9.14 8.90	N=50+ (6,7/8,11,16,15 for 70mr	n) - 9							
	0.00						Ē			
							Ē			
В	9.70 - 10.20		(4.50) Dry							
D SPT (S)	9.70 9.70 - 10.15	N=42 (6,9/9,10,10,13)	10				-			
BRE	9.90 Ground Wate		Chiselling / Hard Stra		tinued on next sheet Hole Diameter Ge	eneral Remarks				
pth Struck C (m)	asing Depth (m)	(11)		(mm) Deput (m)	Diameter Depth (m) 1.	Hand dug inspectio	n pit to 1.2	20m.		
		9.0	0 9.10 0 10.85	00:20 200 4.50 01:00 140 15.00	200 10.60 116 31.20					
g last up	dated 24/01/201	8								

tient: Su ethod: (Type Fr spT (S) 1 1 c 1	CHNICAL & ENVIRO No: D804 Underland Cable Pe SAMPLE Depth rom-To (m) 18:88 - 14:48 10.70 10.70 - 10.91 11.40 - 12.40 12.20 - 12.40 12.40 - 13.90	City C rcussiv DETA	ve D ILS situ	rillir	ng v				Stiff brownish grey slightly	Vestigation Driller: CT/DC Checked By: JH ATA RECORD escription	Logged By: BC	GL (m AOE 38.09 Easting: 433419.38 Sheet 2 of Dates: Depth (m)	N 8 5 4	Legend	
tient: Su ethod: (Type Fr spT (S) 1 1 c 1	underland Cable Pe SAMPLE Depth from-To (m) 18:88 - 14:48 10.70 10.70 - 10.91 11.40 - 12.40	City C rcussiv DETA	ve D ILS situ	rillir		vith		ary Core	Drilling STR/ D Stiff brownish grey slightly	Driller: CT/DC Checked By: JH		433419.38 Sheet 2 of Dates: Depth	3 5 4 24/08/2017 Level	7 - 25/08/20	Wel
C 1	Cable Pe SAMPLE Depth rom-To (m) 18:88 - 14:48 10.70 10.70 - 10.91 11.40 - 12.40	N=50+ (7,11/9,2 3,18 for	ve D ILS situ	rillir			Roti	-	Stiff brownish grey slightly	Checked By: JH		Dates: Depth	24/08/2017		Wel
Type Fi	SAMPLE Depth rom-To (m) 18:88 : 14:48 10.70 10.70 - 10.91 11.40 - 12.40	N=50+ (7,11/9,2 3,18 for	ILS situ 1				Roti	-	Stiff brownish grey slightly	ATA RECORD		Depth	Level		Wel
C 1	Depth irom-To (m) 18:88 : 14:48 10.70 10.70 - 10.91 11.40 - 12.40 12.20 - 12.40	N=50+ (7,11/9,2 3,18 for	situ 1	Testir	ng	NI		(Casing) Groundwater	D Stiff brownish grey slightly					Legend	
D SPT (S) 1 1 C 1	10.70 10.70 - 10.91 11.40 - 12.40 12.20 - 12.40	(7,11/9,2 3,18 for				NI						1	l '	1 1	Back
D SPT (S) 1 1 C 1	10.70 10.70 - 10.91 11.40 - 12.40 12.20 - 12.40	(7,11/9,2 3,18 for				NI			Gravel is subangular to su sandstone, mudstone and	brounded, fine to					
SPT (S) 1	10.70 - 10.91 11.40 - 12.40 12.20 - 12.40	(7,11/9,2 3,18 for				NI		10.60 - 15.40	Very dense reddish grey s	andv GRAVEL. G	Gravel is angular to	E 18:68	27.49		
C 1	12.20 - 12.40	201111)				18 6	- 11	80 % Water (4.50) Dry	subangular, fine to coarse SANDSTONE). Weak, partially weathered	of sandstone. (W	ANDSTONE.	(0.35) 10.95 (0.06) 11.01	27.14 27.08	· · · · · · · · · · · · · · · · · · ·	
						28		,	Weak, partially weathered grained SANDSTONE. Fra spaced, subhorizontal plar	actures are very on ar, smooth, clear	closely to closely	(0.39) 11.40	26.69		
			100	40	0		12		Very weak, partially weath interbedded MUDSTONE subangular, closely to very planar, smooth, clean.	and SILTSTONE.	Fractures are				
			100	9	0	-									
			100	9	U	7									
C 1	13.20 - 13.40		100	100	95		13								
	13.90 - 15.40														
C 1	14.00 - 14.15					20	- 14								
			100	93	86							(6.00)			
C 1	14.85 - 15.15					4	- 15								
	15.20 - 15.40 15.40 - 16.35					ŕ		15.40 - 19.35							
			,-					100 % Water							
C 1	16.00 - 16.10		46	43	43	AZC	16								
1	16.35 - 17.85			_		L									
						6									
			100	100	70		17								
									Extremely weak, partially v			E ^{17.40}	20.69		
1	17.85 - 19.35					20			Fractures are extremely cl	usery spaced, pla	anai, siiiuulii.				
						12 NI	- 18		18.05m: Subvertical, planar, clean	fracture.					
			96	70	6	20 NI 6 NI						(2.35)			
						40	10								
1	19.35 - 20.85						- 19	19.35 - 22.35							
	20.00					A 40 NI		95 % Water				E	40.01		
			TCR%	SCR%	RQD%		20		Very weak, partially weath	ered, dark grey N	IUDSTONE.	19.75	18.34		
n Struck Casing	Ground Wate	r (m)	Water	rsealed				g / Hard Strata	Casing Depths Diameter Depth (m) Dia	Hole Diameter G	eneral Remarks Hand dug inspectior	ו pit to 1.2	0m.		
(m) (r	m) Water Lev		(m)		9.00 0.70			(mm) (mm)	mm) Beptit (iii) 17 200 10.60 116 31.20					
	ed 24/01/2018				4										


	DUNE EDTECHNICAL & ENVIRO			8500	k –	NG			В	ORE	HOL	E RE)			Bore BH	ehole 150		
ontra	ct No : D80	44					Site	: IAMP -	- Prelii	minary	Ground	d Inves	stigation			GL (m AC 38.09 Easting: 433419.3	1	Scale 1:50 Northing: 58721.55		
lient:	Sunderland	City C	Coui	ncil								Drill	er: CT/DC	I	Logged By: BC	Sheet 3 o	f 4			
ethod	: Cable Pe			Drilli	ng ۱	with	Rota	-	Drillin	ng		Che	ecked By: J⊦	H		Dates:	24/08/201	7 - 25/08/2	017	
	SAMPLE	DETA	1					ng) water			S	TRATA	RECORD)		Depth	Level		w	/el
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI		(Casing) Groundwater			_	Desc	ription			(m)	(m AOD)	Legend	Bad	
			-	0,	L.								ubhorizontal	l, pla	anar, smooth,	E				
			90	46	0						s descript Medium stro		ey fine to mediu	ım sa	ndstone.	(1.95)				
									20.66	- 20 76m ⁻	Weak dark o	nev siltstor	-			(1.05)				
	20.85 - 22.35					40			20.00) - 20.70m.	Weak uaik g	ney sitsion	<u>.</u> e.			(1.95)				
							- 21		21.00) - 21.15m:	Subvertical	olanar, smo	oth fracture.							
			100	100	33															
													smooth, rough,			21.70	16.39			
									are s	ubhorizo	ontal plan	ar, smoo	oth, clean.		ONE. Fractures	E (0.30)				
							- 22						smooth, clean f			22.00	16.09	× × × × × × × × × × × × × × × × × × ×		
	22.35 - 23.85					12		22.35 - 23.85 100 % Water	SILT	STONE	with banc	ls of san	dstone. Frac I planar, clea	ctur				× × × × × × × × × × × × × × × × × × ×		
						12		100 /0 Water	0030		Sely Subi	onzonta		an.				× × × × × × × × × × × × × × × × × × ×		
			100	73	73													× × × × × × × × × × × × × × × × × × ×		
							- 23		22.95	5 - 23.10m:	Subvertical	olanar, smo	oth, clean fracti	ture.				* * * * * * * *		

																(3.15)		*****		
	23.85 - 25.35							23.85 - 25.35								E		*****		
						1	- 24	95 % Water										*****		
			100	95	53											E		× × × × × × × × × × × × × × × × × × ×		
			100	50	00													× × × × × × × × × × × × × × × × × × ×		
																		× × × × × × × × × × × × × × × × × × ×		
							- 25		Exte	omolyw	ook norti		thorad dark			25.15	12.94	* * * * * * *		
	25.35 - 26.85							25.35 - 26.85 100 % Water	Fract	tures are			horizontal, p		ar, smooth,	(0.65)				
								100 /0 Water	clear	۱.						(0.65)				
			100	73	66								l, dark grey			25.80	12.29	× × × × × × × ×		
						12	- 26						ontal, planar		nooth, clean.	Ē		× × × × × × × × × × × × × × × × × × ×		
																(0.90)		× × × × × × × × × × × × × × × × × × ×		
									26.60) - 26.75m:	Subvertical	planar, smo	oth, clean fract	ture.		26.70	11.39	× × × × × × × × × × × × × × × × × × ×		
	26.85 - 28.20							26.85 - 31.20 100 % Water	E se st				hered, dark horizontal, p		y MUDSTONE. ar. smooth.	E	11.00			
							- 27	100 /0 Water	clear		,	,	, p		,,					
			88	88	26											Ē				
																Ē				
						30										(2.90)				
	28.20 - 29.70						- 28				<u></u>	,				(2.90)				
									28.20) - 28.70m:	Subvertical	olanar, smo	oth, tight, clean	n fract	ure.					
						NI														
			100	46	10	15 40														
						40 15	- 29		29.00) - 29.25m:	Subvertical	undulating,	smooth, clean f	fractu	re	Ē				
									29.32	? - 29.42m:	Medium stro	ong dark gr	ey sandstone.			Ē				
	29.70 - 31.20		\vdash			1			, Weal	k dark or	ey SILTS	TONE v	vith occasior	nal t	hin beds of	29.60	8.49	*****		
									muds	stone. Fr	actures a	re close	ly subhorizo	ontal	l planar, smooth,	Ē		× × × × × × × × × × × × × × × × × × ×		
			1	1		<u></u>	- 30						on next sheet			-		*****		_
h StruckC	Ground Wate	vel Minutes	Wate	er seale (m)	ed Fi	Ch rom (m)		o (m) Tir	a me (hr)	Casing Diameter (mm)	Depths Depth (m)	Hole Diameter (mm)			eral Remarks and dug inspection	on pit to 1.2	20m.			
(m)	(11)	-	+	\''')		9.00		9.10 0	00:20	(mm) 200 140	4.50 15.00	(mm) 200 116	10.60 31.20							
						-				,										
		1	1				1	1			1	1								

	DUNE EDTECHNICAL & ENVIR	LM		Res Soco	DRILLIN B CIATION			E	ORE	HOL	E RE	CORI	0		Bore BH	ehole 150	
	ct No: D80						Site: IAM	/IP - Preli	minary	Ground				GL (m AOI 38.09 Easting: 433419.38	N 8 5	Scale 1:50 Northing: 558721.55	
	Sunderland					<u> </u>						r: CT/DC	Logged By: Bo				
Method	: Cable Pe)rillir	ng v	with		ore Drillin	ıg		Chec	ked By: J	H	Dates:	24/08/2017	7 - 25/08/20	J17
Туре	SAMPLE Depth From-To (m)		TCR %	SCR %	RQD %	FI	(Casing) Groundwater			S	TRATA F Descri	RECORD)	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
			100		50		32 33 33 34 35 36 37 38		<u>)- 29.85m: :</u>		indulating, si	mooth, clean			6.89		
							- 40										
	Ground Wate	er (m)			<u> </u>	Cł	hiselling / Hard	Strata	Casing	Depths	Hole Di	ameter	General Remarks				
Depth StruckCa (m)		evel Minutes	Water (er sealed (m)	110	rom (m) 9.00 10.70		Time (hr) 00:20 01:00	Diameter (mm) 200 140	Depth (m) 4.50 15.00	Diameter (mm) 200 116		1. Hand dug inspe		Ĵm.		

	SUVKVMVA		ANCE WITH BRE	DIGEST 365- 201	6
	SOARAWAT DE		5, Figure 2, Page 5		0
	Sunderland City C	ouncil			
	International Adva	nced Manufacturi	ng Park (IAMP), S	underland	
Job No:					
Pit No:			Test No:	1	
	CALCU	LATION OF SC	IL INFILTRATI	ON RATE	
Time (min)	Depth (m)			Length (m) =	2.00
0	0.96		Pit Dimensions	Width (m) =	
0.5	0.965			Depth (m) =	2.00
1	0.97				
2	0.97		Depth at s	start of test (m) =	0.960
3	0.97			t end of test (m)=	
4	0.975			75% level (m)=	
5	0.975		50%	6 Effective Depth	
6	0.975			25% level (m)=	N/A
7	0.975				
8	0.975		Base	area of pit (m ²) =	
9	0.975			Vp ₇₅₋₂₅ (m ³) =	
10	0.975			$\alpha_{\rm p50} ({\rm m}^2) =$	6.772
15	0.975				
20	0.975				
25	0.975				0.0195
30	0.975			Т	5400
40	0.975	Call infiltration	note f (m/a)		
50 60	0.975 0.975	Soli Inflitration	rate, f, (m/s) =	5.33E-07	Inferred value
90	0.975				
120	0.975	Input by:	SJS	Date:	29/08/2017
120		Checked by:	333	Date:	29/00/2017
		-	me (mins)		
0.057	0				
0.958	-				
0.962					
0.962					
996.0 () 996.0 Debth ()	3				
م 0.97		•	_		
0.972	2		\rightarrow		
0.974	1				

0.976

Notes: 1. Insufficent change in head and lack of infiltration to accurately calculate infiltration rate. Quoted rate should be regarded as indictaive only.

	SOAKAWAY DE		ANCE WITH BRE		6
Clients	Current and a city of		5, Figure 2, Page 5)	
	Sunderland City C			un de rile re d	
	International Adva		ng Park (IAWP), 5	underland	
Job No: Pit No:	TPS-03		Test No:	1	
Fit NO:					
	CALCU	LATION OF SC	DIL INFILTRATI	UNRATE	
Time (min)	Depth (m)		Pit Dimensions	Length (m) =	2.10
0	0.88		Fit Dimensions	Width (m) =	0.65
0.5	0.88			Depth (m) =	2.00
1	0.88				
2	0.88		Depth at s	start of test (m) =	0.880
3	0.88		Depth a	t end of test (m)=	0.880
4	0.88			75% level (m)=	N/A
5	0.88		50%	6 Effective Depth	
6	0.88			25% level (m)=	
7	0.88				
8	0.88		Base	area of pit (m ²) =	1.365
9	0.88		2400	$\frac{1000 \text{ or pr}(\text{m}^3)}{\text{Vp}_{75-25} \text{ (m}^3)} =$	
10	0.88			$\alpha_{p_{75-25}}(m') = \alpha_{p_{50}}(m') =$	
15	0.88			(11) = 0.50	7.525
20	0.88				
20	0.88			V	0
					5400
30	0.88				5400
40	0.88				
50	0.88	Soli Inflitration	n rate, f, (m/s) =	0.00E+00	Inferred value
60	0.88				
90	0.88 0.88				
90 120		Input by:	SJS	Date:	29/08/2017
90		Input by: Checked by:	SJS	Date: Date:	
90 120 180 0.1	0.88	Checked by:	SJS ime (mins)		
90 120 180		Checked by:			
90 120 180 0.1 0.2 0.3 0.4 5 0.4 0.5 0.5 0.6 0.7 0.8 0.5 1 0.5 0.7 0.8 0.5 1 0.5 0.7 0.8 0.5 1 0.7 0.8 0.5 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.8 0.7 0.7 0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7		Checked by: T	ime (mins)	Date:	

	SOAKAWAY DE	SIGN IN ACCORD		DIGEST 365: 201	6
	SOARAWAT DE		5, Figure 2, Page 5		0
	Sunderland City C	Council			
Site:	International Adva	nced Manufacturi	ng Park (IAMP), S	underland	
Job No:					
Pit No:			Test No:	1	
	CALCU	LATION OF SC	IL INFILTRAT	ON RATE	-
Time (min)	Depth (m)		Pit Dimensions	Length (m) =	2.00
0	0.95		The Dimensions	Width (m) =	0.65
0.5	0.95			Depth (m) =	2.00
1	0.955				
2	0.955			start of test (m) =	
3	0.955		Depth a	t end of test (m)=	
4	0.955			75% level (m)=	
5	0.96		50%	6 Effective Depth	
6	0.96			25% level (m)=	N/A
7	0.96				4.000
8	0.96		Base	area of pit (m ²) =	
9	0.96			$Vp_{75-25}(m^3) =$	
10	0.96			$\alpha_{\rm p50} ({\rm m}^2) =$	6.839
15	0.96				
20	0.96			V	0.040
25	0.96 0.96				0.013 5400
30 40	0.96			I	5400
<u>40</u> 50	0.96	Soil infiltration	rate, f, (m/s) =	2 525 07	Inferred value
60	0.96	Son minication	i i ale, i, (iii/3) =	5.522-07	
90	0.96				
120	0.00	Input by:	SJS	Date:	29/08/2017
120		Checked by:		Date:	20/00/2011
	0	Ti	me (mins)		
0.948 0.95	-				
0.95					
0.954 Debth (Ш) 0.956		•	•		
0.958	3				
0.96	6 <u>]</u>				

0.962

Notes: 1. Insufficent change in head and lack of infiltration to accurately calculate infiltration rate. Quoted rate should be regarded as indictaive only.

	SOAKAWAY DE		ANCE WITH BRE		6
Client	Sunderland City C	BRE Digest 365	5, Figure 2, Page 5	1	
	International Adva		ng Dark (IAMD) S	underland	
Job No:			IIG FAIK (IAWIF), 3		
Pit No:	TPS-05		Test No:	1	
1 11 110.			DIL INFILTRATI	=	
	CALCO	LATION OF 3C			
Time (min)	Depth (m)			Length (m) =	2.00
	0.26		Pit Dimensions	Width (m) =	0.65
0.5	0.26			Depth (m) =	2.00
				Depth (m) =	2.00
1	0.26		Dawth at a	start of to st (m)	0.000
2	0.26		-	start of test (m) =	
3	0.26		Depth a	t end of test (m)=	
4	0.26			75% level (m)=	
5	0.27		50%	6 Effective Depth	
6	0.27			25% level (m)=	N/A
7	0.27				
8	0.27		Base	area of pit $(m^2) =$	
9	0.27			$Vp_{75-25} (m^3) =$	N/A
10	0.27			$\alpha_{p50} (m^2) =$	10.443
15	0.275				
20	0.275				
25	0.275			V	0.039
30	0.275			Т	18000
40	0.275				
50	0.275	Soil infiltration	rate, f, (m/s) =	2.07E-07	Inferred value
60	0.275				
90	0.285				
120	0.285	Input by:	SJS	Date:	29/08/2017
180	0.29	Checked by:		Date:	
240	0.3	,			
300	0.3				
		-			
0.255	-	т. 	me (mins)		
0.255	5	Ti	me (mins)		
0.25 0.26		т: 	me (mins)		
0.255 0.26 0.265 0.27	5 5 7	•	me (mins)		
0.255 0.26 0.265 0.27	5 5 7	•	me (mins)		
0.255 0.26 0.265 0.27	5 5 7	•	ime (mins)		
0.255 0.26 0.265 0.27	5 5 7	Ti	me (mins)		
0.25 0.26 0.26 0.27 (£ 0.27 5 0.28		•	me (mins)		
0.255 0.265 0.275 0.275 0.275 0.285 0.285 0.285 0.255	5 7 7 5 8 9	Ti	me (mins)		
0.25 0.26 0.26 0.27 (£ 0.27 5 0.28	5 7 7 5 8 9	•	me (mins)		
0.255 0.265 0.275 0.275 0.275 0.285 0.285 0.285 0.255		•	me (mins)		
0.25 0.26 0.26 0.27 (E 0.28 0.28 0.28 0.29	5 6 7 5 8 5 9 5 3	•	me (mins)		
0.25 0.26 0.26 0.27 E 0.27 E 0.28 0.28 0.29 0.29 0.29	5 6 7 5 8 5 9 5 3	•	ime (mins)		
0.255 0.265 0.275 0.275 0.285 0.285 0.295 0.295 0.295 0.305	5 6 7 5 8 5 9 5 3	T	ime (mins)		
0.25 0.26 0.27 0.27 0.28 0.28 0.29 0.29 0.29 0.30					
0.25 0.26 0.27 0.27 0.28 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	5 6 7 5 8 5 9 5 3	I lack of infiltration		ate infiltration rate.	Quoted rate

	SOAKAWAY DE		ANCE WITH BRE		6
Oliente	Current and City C		5, Figure 2, Page 5	0	
	Sunderland City C International Adva		ng Dork (IAMD) S	underland	
Job No:		nced Manufacturi	ng Park (IAWP), 5	underland	
Pit No:	TPS-08		Test No:	1	
			DIL INFILTRATI	-	
	CALCO				
Time (min)	Depth (m)			Length (m) =	2.00
0	0.53		Pit Dimensions	Width (m) =	0.70
0.5	0.53			Depth (m) =	2.00
1	0.53			Depth (III) =	2.00
2	0.53		Denth at a	start of test (m) =	0 530
3	0.53			t end of test (m)=	
4	0.53		Deptild	75% level (m)=	
5	0.53		50%	& Effective Depth	
6	0.53			25% level (m)=	
7	0.53			20 /0 10 001 (11)=	1.0/7.
8	0.53		Base	area of pit (m ²) =	1 400
9	0.53			$Vp_{75-25} (m^3) =$	
10	0.53			$\alpha_{p50} (m^2) =$	
15	0.53			$(11)^{-1}$	9.000
20	0.53				
25	0.53			V	0
30	0.53				5400
40	0.53			-	0.00
50	0.53	Soil infiltration	rate, f, (m/s) =	0.00E+00	Inferred value
60	0.53		, (,		
90	0.53				
120		Input by:	SJS	Date:	29/08/2017
180		Checked by:		Date:	
0.1		т	ime (mins)		
0.2 (m) Debth (m)	-				
0.4	-	•			
0.6			`	•	
Notes: 1. Insufficent	change in head and	l lack of infiltration	to accurately calcul	ate infiltration rate.	

	SOAKAWAY DE		ANCE WITH BRE 5, Figure 2, Page 5		6
Client:	Sunderland City C	Council	<u>, i iguio 2, i ugo c</u>		
Site:	IAMP - Preliminar	y Ground Investig	ation		
Job No:					
Pit No:	TPS11		Test No:	1	
	CALCU	LATION OF SC	IL INFILTRATI	ON RATE	
Time (min)	Depth (m)		Pit Dimensions	Length (m) =	3.30
0	0.7			Width (m) =	0.80
0.5	0.7			Depth (m) =	2.00
1	0.7				
2	0.7			start of test (m) =	
3	0.7		Depth at	end of test (m)=	
4	0.7			75% level (m)=	
5	0.7		50%	6 Effective Depth	1.3
6	0.7			25% level (m)=	N/A
7	0.7				
8	0.7		Base	area of pit (m ²) =	
9	0.7			$Vp_{75-25} (m^3) =$	
10	0.7			$\alpha_{p50} (m^2) =$	13.300
15	0.7				
20	0.7				
25	0.7			V	
30	0.7			Т	5400
40	0.7				
50	0.7	Soil infiltration	rate, f, (m/s) =	0.00E+00	Inferred value
60	0.7				
60 90					05/00/0047
60 90 120	0.7	Input by:		Date:	25/09/2017
60 90	0.7				25/09/2017
60 90 120	0.7 0.7	Input by: Checked by:		Date:	25/09/2017
60 90 120	0.7 0.7	Input by: Checked by:		Date:	25/09/2017
60 90 120 180	0.7 0.7	Input by: Checked by:		Date:	25/09/2017
60 90 120 180	0.7 0.7	Input by: Checked by:		Date:	25/09/2017
60 90 120 180	0.7	Input by: Checked by:		Date:	25/09/2017
60 90 120 180 0.1 0.2	0.7	Input by: Checked by:		Date:	25/09/2017
60 90 120 180 0.1 0.2	0.7	Input by: Checked by:		Date:	25/09/2017
60 90 120 180 0.1 0.2	0.7	Input by: Checked by:		Date:	
60 90 120 180 0.1 0.2 0.3 tg 0.4	0.7	Input by: Checked by:		Date:	
60 90 120 180 0.1 0.2	0.7	Input by: Checked by:		Date:	
60 90 120 180 0.1 0.2 0.3 tg 0.4		Input by: Checked by:		Date:	
60 90 120 180 0.1 0.2 € 0.3 € 0.4 0.5 0.6		Input by: Checked by:		Date:	
60 90 120 180 0.1 0.2 0.3 (E) 0.3 (E) 0.4 0.5		Input by: Checked by:		Date:	
60 90 120 180 0.1 0.2 € 0.3 € 0.4 0.5 0.6		Input by: Checked by:		Date:	
60 90 120 180 0.1 0.2 () 0.3 () 180 0.4 0.5 0.6 0.7		Input by: Checked by:		Date:	

Appendix C: Regulatory Information

Appendix C: Contents

• Sunderland City Council policies WWE2 – WWE5

- 11.6 Significant weight is given to the wider environmental, social and economic benefits of renewable and low carbon energy generation and particularly, decentralised energy generation schemes. The impact on neighbouring residents and other sensitive receptors is also a significant consideration, but will vary, depending on the size, scale, location and type of technology proposed. Any potential cumulative impact of schemes within the area, including within and outside the city, will also be considered.
- 11.7 The A&D Plan will identify locations suitable for wind energy development if appropriate.
- 11.8 Applications for wind turbine installations will need to include details of associated infrastructure and connectivity, such as new access roads and overhead power lines, so that the council can fully assess the proposal.

Policy

WWE2 Flood risk and coastal management

- 1. To reduce flood risk and ensure appropriate coastal management, development:
 - should follow the sequential approach to determining the suitability of land for development, directing new development to areas at the lowest risk of flooding and where necessary applying the exception test, as outlined in national planning policy;
 - will be required to demonstrate, where necessary, through an appropriate Flood Risk Assessment (FRA) that development will not increase flood risk on site or elsewhere, and if possible reduce the risk of flooding;
 - iii. will be required to include or contribute to flood mitigation, compensation and/or protection measures, where necessary, to manage flood risk associated with or caused by the development;
 - iv. should comply with the Water Framework Directive by contributing to the Northumbria River Basin Management Plan;
 - v. will maintain linear coastal flood defences north from Hendon Sea Wall to Seaburn, and managed coastal retreat on the Heritage Coast and north of Seaburn;

- vi. which would adversely affect the quantity of surface or groundwater flow or ability to abstract water must demonstrate that no significant adverse impact would occur, or mitigation can be put in place to minimise this impact; and
- vii. of additional river flood defences must demonstrate that the proposal represents the most sustainable response to a particular threat.
- 11.9 Flooding is a key factor in determining the scale and location of development in Sunderland. It is important that inappropriate development is avoided in areas currently at risk from flooding, or likely to be at risk as a result of climate change, or in areas where development is likely to increase flooding elsewhere. Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk, but where it is necessary, without increasing flood risk elsewhere. The National Planning Practice Guidance (NPPG), together with the council's latest Strategic Flood Risk Assessment (SFRA), Preliminary Flood Risk Assessment (PFRA) and latest Local Flood Risk Management Strategy (LFRMS) provides guidance in this respect. The SFRA provides a framework for the overall appraisal and management of risk. It allows the identification of land with the lowest probability of flooding that would be appropriate to the type of development or land use proposed.
- 11.10 Development should be directed towards locations which are at lowest risk from flooding. Where necessary, the applicant will be required to demonstrate that they have followed the sequential test.
- 11.11 Developers must consider flood risk from all sources as part of a SFRA and ensure they are utilising the most appropriate and up-to-date information in assessing the risk of flooding from all sources to the development site. Discussions should be held with the Lead Local Flood Authority when considering measures to mitigate flooding from different flood sources within development proposals. Conditions or planning obligations will be used as appropriate to secure flood risk mitigation measures.
- 11.12 Sunderland falls within the Northumbria River Basin Management Plan (RBMP) which provides cross-boundary guidance on good

practice and measures for improvement. Drawn up by the Environment Agency, RBMPs aim to provide integrated management of surface and groundwater bodies across individual regions.

- 11.13 Built development can lead to increased surface water run-off: therefore new development is encouraged to incorporate mitigation techniques in its design, such as source control (interception) Sustainable Drainage Systems (SuDS) and attenuation SuDS. Where appropriate, SuDS should be used as part of the linked Green Infrastructure Network to provide multiple functions and benefits to landscape quality, recreation and biodiversity. This can be achieved through habitat creation, new open spaces and good design. SuDS should be designed to help cope with intense rainfall events as well as day-today rainfall events and to overcome any deterioration in water quality status. In determining the suitability of SuDS for individual development sites, developers should seek advice from the Lead Local Flood Authority.
- 11.14 In line with the Sunderland Corporation Act 1972 and Shoreline Management Plan, coastal flood defences will be maintained (termed "holding the line") at Hendon Beach, the Port of Sunderland, Sunderland Harbour, Roker and Seaburn Beaches. 'Managed retreat' (which monitors the coastline's natural processes but with no active intervention) will be undertaken along the Heritage Coast to the south of Hendon as well as at South Bents and Whitburn Cliffs.
- 11.15 This policy should be read alongside the Marine Management Organisation's North East Inshore and Offshore Plans.

Policy

WWE3 Water management

Development must consider the effect on flood risk, on-site and off-site, commensurate with the scale and impact. Development must:

1. be accompanied by a Flood Risk Assessment (where appropriate), to demonstrate that the development, including the access, will be safe, without increasing or exacerbating flood risk elsewhere and where possible will reduce flood risk overall;

- 2. demonstrate that they pass the Sequential Test and if necessary the Exceptions Test in flood Zones 2 and 3;
- 3. discharge at greenfield runoff rates for the 1 in 1 and 1 in 100 flood events plus the relevant climate change allowance for greenfield and brownfield sites in accordance with the latest Local Flood Risk Management Strategy;
- incorporate a Sustainable Drainage System (SuDS) to manage surface water drainage. Where SuDS are provided, arrangements must be put in place for their whole life management and maintenance;
- 5. separate, minimise and control surface water runoff by discharging in the following order:
 - i. to an infiltration or soak away system;
 - ii. to a watercourse (open or closed);
 - iii. to a surface water sewer; then
 - iv. to a combined sewer.

However, if sites are within 250m of a tidal estuary or the sea, surface water can be discharged directly);

- ensure adequate protection where sites may be susceptible to over land flood flows (as shown in the Strategic Flood Risk Assessment) or lie within a Surface Water Risk Area (as shown on the Environment Agency flood maps);
- 7. incorporate allowance for climate change in accordance with the latest Environment Agency Guidance;
- make developer contributions, where needed, to ensure that the drainage infrastructure can cope with the capacity needed to support proposed new development;
- 9. demonstrate control of the quality of surface water runoff during construction and for the lifetime of the development. For all developments the management of water should be an intrinsic part of the overall development; and
- 10. not have a detrimental impact on the city's water resources, including the Magnesian Limestone Aquifer and its ground source protection zones. Development along the River Wear and coast should take account of the Northumbria River Basin Management Plan, to deliver continuing improvements in water quality.

- 11.16 Flooding from sewers is increasingly recognised as an issue in areas that are not necessarily at risk from fluvial flooding – whereby rainfall events, sometimes away from the area concerned, cause major surface water run-off to enter the sewerage system.
- 11.17 This policy seeks to minimise the risk that future development locations could be flooded from sewers or add to an existing risk by ensuring that surface water run-off entering the sewer system is kept to an absolute minimum. Other benefits of such an approach will include a much reduced risk to water quality.
- 11.18 To help adapt to expected climate change, the policy provides the broad framework for addressing the increased risk of flooding including a requirement for sustainable drainage systems.
- 11.19 Where appropriate, SuDS should contribute to the provision of green infrastructure whilst retaining acceptable levels of useable amenity space.
- 11.20 In order to protect the Magnesian Limestone Aquifer and its ground source protection zones, the use of deep infiltration SUDS and other infiltration SuDS will not be supported where they are likely to have an adverse impact on drinking water supply. Ground investigations would need to be considered on a case by case basis and should be guided by the Environment Agency's approach to groundwater protection.

Policy

WWE4 Water quality

The quantity and quality of surface and groundwater bodies and quality of bathing water shall be protected and where possible enhanced in accordance with the Northumbria River Basin Management Plan.

- 1. Water quality assessments will be required for:
 - i. any physical modifications to a watercourse; and
 - ii. any development which could indirectly, adversely affect water bodies.
- 2. Development that discharges water into a watercourse will be required to incorporate appropriate water pollution control measures.

- 3. Development that incorporates infiltration based SuDS will be required to incorporate appropriate water pollution control measures.
- 4. Development adjacent to, over or in, a main river or ordinary watercourse should consider opportunities to improve the river environment and water quality by:
 - i. naturalising watercourse channels;
 - ii. improving the biodiversity and ecological connectivity of watercourses;
 - iii. safeguarding and enlarging river buffers with appropriate habitat; and
 - iv. mitigating diffuse agricultural and urban pollution.
- 11.21 This policy seeks to minimise the impact of development on the quality of surface water and the Magnesian Limestone Aquifer and its ground source protection zones.
- 11.22 The potential to pollute our groundwater aquifers is significant. Intense rainfall can cause localised flooding and erosion, and storm sewage overflows are known to affect water quality, environmental quality and affect important wildlife sites. Furthermore, old mine workings within the city have the potential to release heavy metals into the groundwater aquifers, and in areas along the coast, over-pumping of the aquifer has resulted in saline intrusions. Increased use of fertilizers in the catchment by the agricultural industry is also resulting in increasing nitrite concentrations, and landfill sites also present a high risk to groundwater.
- 11.23 The Environment Agency and the Coal Authority recommend a hydrogeological risk assessment is provided on the impact of development on the existing minewater 'blocks' (in terms of flood risk and water quality) as identified by the Coal Authority. Further advice should be sought with the local planning authority.
- 11.24 The council, in conjunction with the Environment Agency and the sewerage undertaker, will seek to resist development that threatens water quality and quantity, and will generally encourage initiatives that result in an improvement of water quality and the capacity of surface waters to support wildlife. The WFD became part of UK law in 2003 with the primary objectives of achieving good

ecological status in water bodies, and providing protection for drinking water sources and protected sites (Habitats Directive Sites and Sites of Special Scientific Interest). These requirements are reflected in the Environment Agency's Northumbria River Basin Management Plan, which covers the city area.

- 11.25 Early engagement with the local planning authority, the LLFA, Environment Agency and relevant water and sewerage companies can help to establish if water quality is likely to be a significant planning concern and, if it is, to clarify what assessment will be needed to support the application. Applicants should provide sufficient information for the council to be able to identify the likely impacts on water quality. The information supplied should be proportionate to the nature and scale of the development proposed and the level of concern about water quality.
- 11.26 Water quality at the designated bathing water sites at Roker and Seaburn is assessed by the Environment Agency. From May to September, weekly assessments measure current water quality, and at a number of sites daily pollution risk forecasts are issued. Both beaches have been rated as excellent for 2015, 2016 and 2017.

Policy

WWE5 Disposal of foul water

- 1. Development should utilise the following drainage hierarchy:
 - i. connection to a public sewer;
 - ii. package sewage treatment plant (which can be offered to the Sewerage Undertaker for adoption); then
 - iii. septic tank.
- 2. Development involving the use of non-main methods of drainage in areas where public sewerage exists or the use of Cess Pits will not be permitted.
- Development of new or extensions/ improvements to existing waste water, sludge or sewage treatment works, will normally be supported unless the adverse impact of the development significantly outweighs the need for greater capacity.

11.27 For further information regarding the drainage hierarchy and use of non-main methods of drainage advice should be sought from Northumbria Water.

Policy

WWE6 Waste management

Development that encourages and supports the minimisation of waste production, and the re-use and recovery of waste materials including, for example, re-cycling, composting and Energy from Waste will normally be supported. Proposals for waste management facilities to deal with waste arisings will be encouraged based upon the following principles:

- managing waste through the waste hierarchy in sequential order. Sites for the disposal of waste will only be permitted where it meets a need which cannot be met by treatment higher in the waste hierarchy;
- 2. promoting the opportunities for on-site management of waste where it arises and encouraging co-location of waste developments that can use each other's waste materials;
- 3. ensuring that sufficient capacity is located within the city to accommodate forecast waste arisings of all types during the Plan period, reducing the reliance on other authority areas;
- 4. supporting delivery of the South Tyne and Wear Joint Municipal Waste Management Strategy;
- facilitating the development of recycling facilities across the city including civic amenity sites and small recycling 'bring' banks to ensure there is sufficient capacity and access for the deposit of municipal waste for re-use, recycling and disposal;
- facilitating the development of a network of small scale local waste management facilities in accessible locations, and effective methods of waste management such as suitable facilities to separate or store different types of waste, including materials that are required to be separated for kerbside collection schemes;
- 7. ensuring new waste developments are located and designed to avoid unacceptable adverse impacts on landscape, wildlife, heritage assets and amenity;
- 8. working collaboratively with neighbouring local authorities with responsibilities for waste and other local authorities where waste import/export relationships exist. This will ensure a co-operative cross boundary approach to waste management is established and maintained; and

Appendix D: JBA river modelling report

Appendix D: Contents

- Fluvial Flood Risk Report for AESC Plant 3 site, JBA Consulting, October 2023
 SYSTRA drg nr 22A29-FRA-FLOOD-01 P01 Predicted flood extents

Fluvial Flood Risk Report for AESC Plant 3 site

Draft v4.0

October 2023

Prepared for: SYSTRA

www.jbaconsulting.com

Document Status

Issue date	16th October 2023
Issued to	Tim Dawe (SYSTRA)
BIM reference	XXXX-XXXX-XXXX-XXXX-XXXX-XXXX
Revision	Draft v4.0
Prepared by	Chulani Herath
	Analyst
	Kevin Frodsham BSc BA MSc PhD
	Senior Analyst
Reviewed by	Rene Dobson BEng CEng MICE
	Associate Director
Authorised by	Rene Dobson BEng CEng MICE
	Associate Director

Carbon Footprint

The format of this report is optimised for reading digitally in pdf format. Paper consumption produces substantial carbon emissions and other environmental impacts through the extraction, production and transportation of paper. Printing also generates emissions and impacts from the manufacture of printers and inks and from the energy used to power a printer. Please consider the environment before printing.

Contract

JBA Project Manager	Kevin Frodsham
Address	Phoenix House, Lakeside Drive, Centre Park, Warrington.
	WA1 1RX
JBA Project Code	2023s0690

This report describes work commissioned by SYSTRA, on behalf of AESC UK, by an instruction dated 09th May 2023. The Client's representative for the contract was Tim Dawe of SYSTRA. Chulani Herath and Kevin Frodsham of JBA Consulting carried out this work.

Purpose and Disclaimer

Jeremy Benn Associates Limited ("JBA") has prepared this Report for the sole use of SYSTRA and its appointed agents in accordance with the Agreement under which our services were performed.

JBA has no liability for any use that is made of this Report except to SYSTRA for the purposes for which it was originally commissioned and prepared.

No other warranty, expressed or implied, is made as to the professional advice included in this Report or any other services provided by JBA. This Report cannot be relied upon by any other party without the prior and express written agreement of JBA.

Copyright

© Jeremy Benn Associates Limited 2023

Contents

cutive Summ	ary	vii
Introductio	n	10
Model and	Hydrology Review	13
2.1	Hydraulic Modelling History	13
2.2	Hydrology Review	15
2.3	Hydraulic Model Review	21
Methodolo	gy	24
3.1	Hydrology Updates	24
3.2	Climate change uplifts	24
3.3	Data Checks	25
3.4	Hydraulic Model Updates	27
3.5	Model Simulations	28
Outcomes		30
4.1	Baseline (Existing) Flood Risk	30
4.2	Defence Failure	31
4.3	Impact of Fully Land Raising	33
4.4	Sensitivity testing	34
4.5	Summary of modelling results and implications for development	37
	Introduction Model and 2.1 2.2 2.3 Methodolo 3.1 3.2 3.3 3.4 3.5 Outcomes 4.1 4.2 4.3 4.4	 2.2 Hydrology Review 2.3 Hydraulic Model Review Methodology 3.1 Hydrology Updates 3.2 Climate change uplifts 3.3 Data Checks 3.4 Hydraulic Model Updates 3.5 Model Simulations Outcomes 4.1 Baseline (Existing) Flood Risk 4.2 Defence Failure 4.3 Impact of Fully Land Raising 4.4 Sensitivity testing

5 Assumptions and Limitations

40

List of Figures

List of Figures	
Figure 1-1: Planning Boundary for AESC Plant 3 and location	10
Figure 1-2: Current site layout for the AESC Plant 3 site.	11
Figure 2-1: IAMP1 Model Schematic	14
Figure 2-2: Flow Estimation Points (FEPs) for the IAMP study	16
Figure 2-3: Model rating at the gauge location on the downstream face of Hylton Bride	ge 20
Figure 2-4: Hylton Bridge gauge record (m AOD based on the supplied Agency datun	n)20
Figure 3-1: LIDAR comparison (2015 DTM composite versus 2022 DTM composite)	26
Figure 3-2: LIDAR 2022 DTM composite versus topographic survey (2015)	27
Figure 3-3: Updates to the floodplain roughness map across the IAMP site	28
Figure 4-1: Modelled long section event profiles along the Usworth Burn	30
Figure 4-2: Modelled Flood Outlines adjacent to the IAMP site extension.	31
Figure 4-3: Modelled undefended 1% AEP (+34%) flood outline.	32
Figure 4-4: Impact of fully raising Plot 2 site on peak 1% AEP (+34%) floodplain depth	ns. 33
Figure 4-5: Modelled flood outlines arising from storm duration testing.	35
Figure 4-6: Impact of flow testing ($\pm 20\%$) on the 1% AEP ($\pm 34\%$) flood outline.	36
Figure 4-7: Impact of roughness testing (±20%) on the 1% AEP (+34%) flood outline.	36
Figure 4-8: Proposed site elevations in the north-east of AESC Plant 3 site.	38
List of Tables	
Table 2-1: Final lumped peak flow estimates from the IAMP (2017) study	16
Table 2-2: Peak river levels modelled in response to different 1% AEP storm duration (reproduced from the IAMP 2017 reporting)	ls 18
Table 4-1: Modelled peak river levels (m AOD) along the Usworth Burn for specified r	nodes 30
Table 4-2: Modelled impact of removing the defence embankments on peak 1% AEP (+34%) river levels (m AOD)	32
Table 4-3: Modelled impact of fully raising the Plot 2 site on peak 1% AEP (+34%) riv levels (m AOD)	er 33
Table 4-4: Modelled peak river levels (m AOD) along the Usworth Burn for specified 1 AEP storm durations,	1% 34
Table 4-5: Modelled peak river levels (m AOD) along the Usworth Burn from sensitivit	ty tests 35

۷

Abbreviations

1D	One-Dimensional
2D	Two-Dimensional
AEP	Annual Exceedance Probability
AESC Plant 3	Name of Development Site
CC	Climate Change
CSD	Critical Storm Duration
DTM	Digital Terrain Model
FEH	Flood Estimation Handbook
FEP	Flow Estimation Point
FRA	Flood Risk Assessment
IAMP	International Advanced Motoring Park
LIDAR	Light Detection and Ranging (remote sensing data)
LMED	Median Annual Stage (L)
m AOD	metres Above Ordnance Datum
NGR	National Grid Reference
QMED	Median Annual Flow (Q)
ReFH	Revitalised Rainfall-Run Off
URBEXT	Urban Extent (FEH catchment descriptor)

Executive Summary

Introduction

JBA were commissioned by SYSTRA to produce a fluvial flood risk report to inform a prospective new development site (i.e., the AESC Plant 3 site) adjacent to the International Advanced Manufacturing Park (IAMP) near Washington, Tyne and Wear. This information is expected to be used by SYSTRA to prepare a Flood Risk Assessment (FRA) for the site.

The Usworth Burn, a tributary of the River Don (Jarrow), flows along the northern edge of the AESC Plant 3 site. JBA previously modelled the fluvial flood risk from the River Don and Usworth Burn for SYSTRA between 2015 and 2018 to inform the FRA for the IAMP (Stage 1), which has now been implemented. The hydrology and hydraulic modelling that underpinned the IAMP FRA were reviewed and accepted by the Environment Agency in 2017 and the results were used to update their Flood Map locally.

Model and Hydrology Review and Updates

One requirement of the current study was to determine what, if any, updates were needed to the existing IAMP (2017) hydrology and hydraulic model to provide an up-to-date picture of the fluvial flood risk to the AESC Plant 3 site. To this purpose, a high-level review of the hydrology and hydraulic model were undertaken, which led to the following outcomes.

- Hydrology
 - The IAMP (2017) model inflows were retained in the knowledge that they have previously been reviewed and accepted by the Environment Agency and are known to be conservative. The critical storm duration for the Usworth Burn alongside the Plot 2 site was also confirmed to be the same as was used for the IAMP site (i.e., 12 hours).
 - The inflows for climate change scenarios were updated to reflect the current recommended climate change uplifts for the study watercourse over the lifetime of the development. A +34% (Central) allowance should be appropriate for the AESC Plant 3 site, if (as expected) it is categorised as 'Highly Vulnerable'. However, a 1% AEP +42% (Higher Central) uplift has also been modelled in this study to provide design levels should the development be categorised as 'essential infrastructure'.
- Hydraulic Modelling The following model updates were undertaken.
 - The floodplain and bank crests were updated to reflect the latest LIDAR data (i.e., National LIDAR 2022 composite DTM - flown in 2021). This supersedes the combination of old LIDAR (believed from 2009), topographic survey and proposed IAMP levels that was used in the IAMP (2017) model.
 - The floodplain roughness map was updated to reflect the current state of the IAMP1 development in relation to new buildings, roads, hard standing areas and surface water.

Model Runs and Outcomes

The following model simulations were undertaken.

- Baseline (existing risk) AESC Plant 3 scenario.
 - Present day (i.e., without climate change) 50%, 3.3%, 1% and 0.1% AEP
 - Future (i.e., with climate change) 3.3% AEP Central (+34%), 1% AEP
 Central (+34%) and 1% AEP Higher Central (+42%)
- Undefended (Defence Failure) 1% AEP Central (+34%) event.
- Site Fully Raised 1% AEP Central (+34%) event.
- Sensitivity Tests Storm duration, Flow, Roughness and Downstream Boundary.

The modelled baseline (existing risk) flood outlines predict that only a small area along the north-eastern periphery of the AESC Plant 3 site would be at fluvial flood risk. The baseline peak 1% AEP with climate change (+34%) flood levels modelled in the Usworth Burn alongside the site range from 38.43m AOD in the west to 35.76m AOD in the east.

The undefended model predicts that failure of the local (relatively low-level) earth embankments would not increase the flood risk to the AESC Plant 3 site.

The 'site fully raised' scenario predicts that there would be off-site impacts in a 1% AEP with climate change (+34%) event, should the whole of the development site be raised above flood levels.

Implications for Development

Most of the site remains dry in 0.1% AEP event so there would be no fluvial flood risk constraints on developing these parts of the site (providing that excavation is not undertaken to below the modelled flood levels). By contrast, there will be constraints on developing those parts of the site that are modelled to be at fluvial flood risk. The outcome of the 'site fully raised' scenario shows that raising these areas out of the flood zones would lead to adverse off-site impacts so our recommendation would be to avoid any development (including ground level changes) across these areas or else some additional flood mitigation measures would likely be needed to avoid an Environment Agency objection. From a set of proposed development platform levels that were supplied to JBA by SYSTRA in July 2023, the site could be safely developed as planned without having any off-site impacts, but the platform elevations would need to be tapered sharply down to existing levels along the eastern edge of the Giga 3 platform.

There would be no residual risk to the site from defence failure or blockage along the Usworth Burn and River Don. However, one might want to consider whether it would be appropriate to build in resilience to an extreme (0.1% AEP) flood event within any critical parts of the site.

There would be no emergency access/egress issues for the site as dry access would be possible along the A1290 in all events.

Recommendations

The main recommendation from this study would be to ensure that no development takes place within the modelled area of the 1% AEP with climate change (+34%) flood outline. This would ensure that the site was suitably safe and would have no adverse off-site impacts. If ground levels are to be changed across this area, then further work may be needed to quantify the impacts and deliver appropriate mitigation. An alternative approach would be undertake fresh hydrology that would seek to downscale the importance of the Hylton Bridge adjustment factor that underpins the current model hydrology and has led to what is expected to be a conservative assessment of the flood risk.

Limitations

The flood risk presented in this report is based on a model with only minor updates to an existing model that was previously reviewed and accepted by the Environment Agency in 2017. However, the Environment Agency will still likely seek to review the hydraulic model and hydrology after a Flood Risk Assessment has been submitted before removing any objection to the development. There is therefore a risk that the Environment Agency review may require a response that would require further work, which could include a request to update the hydrology or certain parts of the hydraulic model.

1 Introduction

SYSTRA is assisting with the potential development of a commercial (AESC Plant 3) site, which is located between the A1290 and a watercourse called the Usworth Burn near the town of Washington, Tyne and Wear (Figure 1-1). The AESC Plant 3 development site is immediately to the west of the initial stages of the IAMP (International Advanced Motoring Park) development site¹, for which JBA previously assisted SYSTRA between 2015 and 2018 in relation to the fluvial flood risk. The AESC 3 site will be sited alongside the AESC Plant 2, which is now already under construction as part of the IAMP development.

The Usworth Burn is a tributary of the River Don (Jarrow) that flows along the northern edge of the AESC Plant 3 site. There is, therefore, a potential fluvial flood risk to the site that needs to be quantified so that the magnitude of any flood mitigation measures that may be needed can be determined before submitting a site-specific Flood Risk Assessment (FRA) to planning.

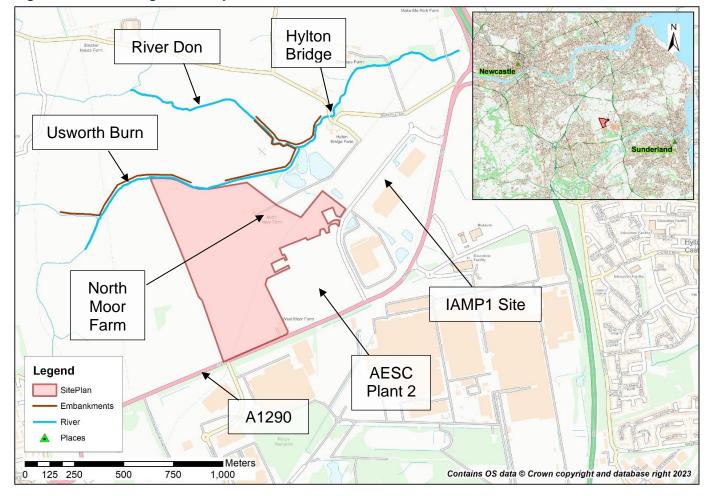
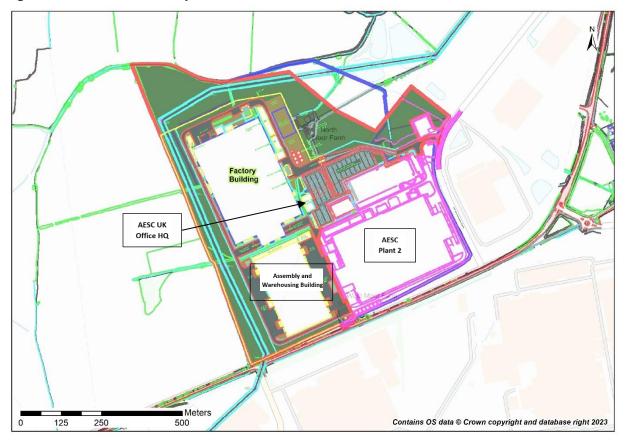



Figure 1-1: Planning Boundary for AESC Plant 3 and location

¹ https://iampnortheast.co.uk/

The proposed site layout is shown in Figure 1-2. The main components of the site design are a large factory building, a large assembly and warehousing building, and a smaller office building. These buildings would be partly surrounded by hardstanding areas (grey on Figure 1-2) with a retaining wall separating this from green space (green on Figure 1-2). The main access to the site is planned to be from International Drive to the east alongside the AESC Plant 2. It is expected that North Moor Farm will be demolished by a third party.

An initial inspection of the results of the previous work on the IAMP site would suggest that the fluvial flood risk to the AESC Plant 3 site is likely to be low. Therefore, the initial commission between JBA and SYSTRA is limited to quantifying the existing fluvial flood risk to the site, which would be needed to present the baseline risk within a Flood Risk Assessment (FRA). Should the existing (baseline) risk be found to place significant constraints on the development, then further work may be needed to identify mitigation measures and quantify their impact.

For the purposes of understanding the existing risk to the site and planning a site-specific flood risk assessment (FRA), up-to-date hydraulic modelling will be required for the AESC Plant 3 site and the outcomes of the following fluvial flood events are required to help inform the fluvial risk and site drainage strategy.

• 1-year, 30-year, 100-year, 1,000-year and 30-yr & 100-yr+climate change.

The climate change (CC) allowances must follow the latest guidance on developing in flood zones², which has changed since the IAMP models were last edited.

Any fluvial hydraulic modelling that is used to underpin an FRA will likely be reviewed by the Environment Agency before an objection to development on flood risk grounds is removed. Since the IAMP model and hydrology were previously reviewed and accepted by the Environment Agency in 2017, it is not expected that significant issues will be raised in response to re-using the existing model and flows (updated, as necessary, with the latest climate change allowances). However, if there have been any changes to hydraulic modelling or hydrology best practices since 2017, or, if any new information has become available since 2017 that could call into question the accuracy of the existing model, then some model updates might be required before the Environment Agency is able to sign off the modelling work. Therefore, before re-running the models, a high-level review of the existing IAMP (2017) model and hydrology was undertaken to see what (if any) improvements could be made to the existing hydraulic model. These reviews are documented in Section 2 of this report. The methodology for quantifying the fluvial flood risk to the AESC Plant 3 site is then discussed in Section 3 before the modelling outcomes are presented in Section 4, together with some commentary on the resulting development constraints. Some limitations of the study are listed in Section 5.

This report has been written to summarise the existing fluvial risk to the site to a standard that can be presented as a modelling Appendix to a Flood Risk Assessment.

² https://www.gov.uk/guidance/flood-risk-assessments-climate-change-allowances

2 Model and Hydrology Review

2.1 Hydraulic Modelling History

The River Don is situated in Tyne and Wear and flows from a source in Washington to the River Tyne at Jarrow. The Usworth Burn is a short tributary of the Don that originates in Usworth and flows into the Don alongside the IAMP1 development. Prior to 2015 there were no detailed hydraulic models of either the River Don or Usworth Burn. Therefore, to assess the risk from these watercourses to the IAMP development, a detailed model was developed by JBA under commission from SYSTRA between 2015 and 2017, which ultimately informed the Flood Risk Assessment (FRA) for the IAMP1 site. The outputs from that model were subsequently used by the Environment Agency to update part of the Flood Zones between Usworth and the A19 (Washington Road). The model was subsequently updated by JBA in October 2018 to reflect a further potential phase of development (IAMP2) but these features have not been implemented so the IAMP1 model represents the most suitable starting point for any existing risk modelling. JBA were involved in a further phase of modelling of the Don and Usworth Burn for South Tyneside Council in 2018/19 as part of a fluvial modelling study for a small number of sites along the River Don. However, this later study merely appended the IAMP1 model into upstream and downstream extensions of the River Don so did not contain any model improvements that could influence the AESC Plant 3 site (other than a fresh set of hydrology calculations).

This chapter documents the development of these flood risk models in a little more detail leading to a more detailed review of the latest model and hydrology.

2.1.1 IAMP1 model

JBA Consulting were originally commissioned by SYSTRA (via JMP) in 2015 to undertake a flood risk modelling study of the fluvial flood risk from the River Don in Washington. The study was used to support the outline planning application for the initial stages of the International Advanced Manufacturing Park (IAMP) development on undeveloped land upstream of the A19.

The study required the production of a hydrology report to define the model inflows and the creation of a new-build hydraulic model of the River Don and Usworth Burn to define the fluvial flood risk.

The hydraulic model is a linked 1D-2D (ISIS-TUFLOW) model that includes a 2.6-kilometre reach of the River Don and a 1.4-kilometre reach of the Usworth Burn (Figure 2-1). The upstream modelled extents on these watercourses are located at Strother House Farm Bridge on the River Don (NGR 432354, 559708) and approximately 600 metres upstream of the upstream extent of the AESC Plant 3 site on the Usworth Burn (NGR 432130, 558907). The downstream model extent is located approximately 500 metres downstream of the A19 (at NGR 431525, 559646), at which point the River Don drains a catchment area of around 17km².

Figure 2-1: IAMP1 Model Schematic

Some of the key data components of the model are as follows.

- **Survey** Topographic survey to underpin the IAMP model was collected by Academy Geomatics in November 2015 and March 2017. This included 38 cross sections along the River Don and Usworth Burn that were used to define the channel geometry and structures within the 1D component of the hydraulic model. Bank height information and floodplain levels were also surveyed.
- **LIDAR** 1m DTM tiles (believed to have been flown in 2009) were used in combination with topographic survey to define the floodplain topography within the 2D domain of the model.

Both baseline (existing risk) and post-development model scenarios were created as part of the IAMP modelling.

The model was reviewed and accepted by the Environment Agency following a model review undertaken in June 2017. The modelled flood outlines adjacent to the IAMP development were then used to update the Environment Agency's Flood Maps.

2.1.2 IAMP2 modelling - October 2018

This phase of modelling was undertaken in response to the following potential changes that were being considered as a subsequent stage (2) of the IAMP development.

- The inclusion of a new access bridge
- The inclusion of a new hotel platform (raised above flood levels)
- The removal of the Elliscope Farm Access Bridge.

No changes were made to the IAMP1 model inflows at this stage.

None of the studied measures have yet been implemented. Furthermore, none of the modelled changes was predicted to have any impacts when evaluated against the IAMP1 post development model. Therefore, the IAMP1 model would still seem to be the more appropriate baseline model for assessing the baseline (existing risk) to the AESC Plant 3 site.

2.1.3 River Don - South Tyneside Council

This study added both up and downstream extensions to the IAMP1 mode so that the model extended from Northumberland Avenue (A195) to downstream of New Road (B1298) in East Boldon. However, the 1D model remained effectively unchanged through the IAMP model and the 2D model component required a larger (4 metre) cell size because of the increased model extent. In addition, to our knowledge, the model was never received by the Environment Agency. Therefore, the IAMP1 model would still appear to be the best model to use to assess the flood risk to the AESC Plant 3 site. However, a fresh hydrology calculation record was undertaken for the Don (STC) study that is potentially relevant to the AESC Plant 3 site assessment.

2.2 Hydrology Review

2.2.1 IAMP methodology

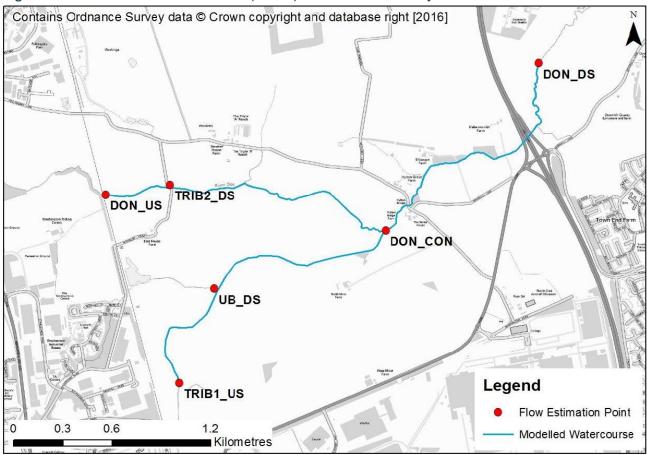

The IAMP1 and IAMP2 models both utilised the inflows that had been calculated for the IAMP1 study in 2017. Flood estimates were limited to the IAMP model extents as shown in Figure 2-2. Both FEH Statistical and (Urban) ReFH peak flows were estimated for these locations, and the final model inflows were derived as ReFH hydrographs that were scaled (as necessary) to match the FEH Statistical peak flows shown in

Table 2-1. One key assumption of the IAMP hydrology was that the (discontinued) gauge record from Hylton Bridge was appropriate for deriving a donor adjustment factor for the FEH Statistical peak flow estimates. The inclusion of this donor factor more than doubled the peak flows relative to those based on catchment descriptors alone (with or without donor factors from other, more distant, gauges). Hence, the IAMP FRA was undertaken in the expectation that the modelled flows were likely quite conservative.

The IAMP hydrology was signed off by the Environment Agency along with the IAMP model in 2017. Therefore, this review is aimed at checking whether the original IAMP flows are still appropriate for undertaking an FRA for the AESC Plant 3 site in 2023. Given the short

time between the two studies, they should still be appropriate subject to the following checks.

- 1. The age of the data underpinning the hydrology (i.e., has any new data become available since the IAMP1 model).
- 2. Hydrology guidance (i.e., has anything changed in terms of standards that could mean that some changes are needed to the original hydrology method).
- 3. Are any changes needed because the primary fluvial risk to the western extension will be from the Usworth Burn rather than the River Don.

Figure 2-2: Flow Estimation Points (FEPs) for the IAMP study

Flow		FI	ood pea	ık (m³/s)) for the	followi	ng AEP	events ((%)	
Estimation Point	50	20	10	5	3.33	2	1.33	1	0.5	0.1
DON_US	2.8	4.1	4.9	5.7	6.2	6.8	7.3	7.6	8.5	10.5
UB_DS	1.6	2.2	2.6	3.0	3.3	3.6	3.9	4.1	4.7	6.1
TRIB1_US	0.7	0.9	1.1	1.2	1.3	1.5	1.6	1.7	1.9	2.5
TRIB2_DS	1.4	1.9	2.3	2.7	2.9	3.2	3.5	3.6	4.0	5.0
DON_CON	7.6	10.8	13.0	15.1	16.4	18.1	19.4	20.3	22.6	28.3
DON_DS	8.4	11.9	14.4	16.8	18.2	20.0	21.4	22.4	25.0	31.0

Issues related to the age of the data

The Hylton Bridge gauge was only operational between October 2005 and June 2014. Therefore, there is no new gauge data within the catchment that could be used to improve the Hylton Bridge donor adjustment that underpins the peak flows used by the IAMP model. If the Hylton Bridge donor factor were to be disregarded, then one would potentially have to resort to using one of the other three gauges (outside the catchment) that were listed in the IAMP Calculation Record as a donor. There may be up to five more years data from these other potential donor sites, but five years additional data is unlikely to induce any significant change to these other donor factors which were all previously either close to or lower than 1.0. An additional five years of data could influence the pooling groups that were used to estimate the growth curves but a major change in the growth curve in relation to this length of additional record is considered unlikely.

Issues related to changes in guidance

In recent years, flow estimation guidelines have shifted from recommending ReFH to using ReFH2 when applying a rainfall run-off method. Therefore, any new calculation record would be expected to list the ReFH2 calculated flows instead of ReFH. However, the peak IAMP model inflows are based on the FEH Statistical method so any update of the ReFH2 flows would likely only have a relatively small influence on the IAMP inflows³. If one were to abandon the original preference for generating peak flows via the FEH Statistical approach to generating them via the ReFH2 method, this would bring about an overall reduction in flows because of the magnitude of the Hylton bridge adjustment factor.

It is noted that the local sewer network data was not used in the IAMP study. It was, therefore, assumed that there was no significant transfer of water in or out of the topographic catchments via the sewers. This is a fair assumption for an FRA, for which sourcing the sewer network data would be potentially problematic. However, given the extent of upstream urbanisation, there is a risk that some run-off may be diverted either in or out of the study catchments.

The IAMP hydrology was based on the following software: FEH CD-ROM v3.01, WINFAP-FEH v3.0.0032 and ISIS v3.7 (for urban ReFH). These products have all subsequently been updated, which could lead to changes in any fresh hydrology calculations. However, it is considered highly unlikely that these would lead to a significantly more conservative assessment of the IAMP flows.

Issues related to Usworth Burn being the primary source of risk

The IAMP FRA documents the outcome of storm duration testing, which justified the use of a 12-hour storm for modelling the risk to the IAMP site, which is situated close to the Don / Usworth Burn confluence. However, Table 2-2 (reproduced from the IAMP 2017 report) hints that a shorter storm may be critical along the Usworth Burn. Therefore, the AESC

³ Via a subtly changed hydrograph shape and/or altered 1%:0.1% AEP ratio, which is used to derive the 0.1% AEP inflows. In addition, the IAMP study made use of the Urban ReFH approach, which represented an improvement over earlier ReFH approaches.

Plant 3 study should seek to confirm the critical storm duration for the site before running design events (see Section 4.4.1).

Location	Peak river levels (m AOD) for the following storm durations						
	4 hr	8 hr	12 hr	14 hr	16 hr		
US extent of River Don	37.15	37.21	37.19	37.18	37.16		
US extent of tributary	40.76	40.73	40.70	40.69	40.67		
DS of confluence	34.45	34.59	34.60	34.59	34.58		
US face of Hylton Bridge	33.96	34.09	34.10	34.09	34.08		
US face of A19 road bridge	32.19	32.42	32.46	32.45	32.43		
DS extent of River Don	29.99	30.06	30.07	30.07	30.07		

Table 2-2: Peak river levels modelled in response to different 1% AEP storm durations (reproduced from the IAMP 2017 reporting)

2.2.2 River Don STC Study

Whereas the IAMP study was restricted to the upper reaches of the Don, the STC study undertaken undertook a more holistic assessment to the River Don hydrology to inform three separate models at various regions within the Don catchment, one of which was the extended IAMP model (listed in Section 2.1.3). The detail of this more recent calculation record is not reviewed in detail here partly because it was undertaken for another client and partly because it is mainly referenced to provide a ballpark comparison with the previous IAMP model approach.

The STC calculation record considered donor adjustments based on the same gauges as the IAMP study and concluded that the value of QMED, derived via the Hylton Bridge gauge record, was simply too different without any additional supporting evidence to be used as a donor site. The STC study favoured an adjustment to the initial FEH Statistical flow estimates based on the Team Valley gauge. However, the hydrology report ultimately recommended that the design flows should be derived on the basis of a distributed unscaled (Urban) ReFH approach. This was largely based on the observation that the (Urban) ReFH derived peak flows were (a little) more conservative than the flows generated by the FEH Statistical method⁴. In addition, the urban component of the ReFH approach had been studied in more detail than for the IAMP study, giving increased confidence in the results. The resulting flows appeared to produce reasonable results when assessed against the recent flood history along the River Don suggesting that any widespread donor adjustment based on Hylton Bridge would likely lead to an overestimate of flows.

⁴ Note that the difference between FEH Statistical and ReFH derived flows was much smaller than for the IAMP hydrology, so the two approaches led to broadly similar peak flows.

2.2.3 Re-assessment of Hylton Bridge QMED flow

The QMED derivation process used in the IAMP study has been re-examined as part of this study to assess whether there is any evidence of why the IAMP analysis led to such a high donor adjustment.

The previous QMED assessment at the Hylton Road gauge derived an LMED value of 1.635m ALD (Above Level Datum) from the POT series, which, when appended to the supplied Environment Agency datum of 32.081m AOD, produces an LMED value in m AOD of 33.716m AOD. The equivalent QMED flow was then read from the IAMP model rating (Figure 2-3) to be 7.0m³/s. This contrasted with a value of 2.6m3/s that had been derived from catchment descriptors alone, which ultimately led to QMED donor adjustment factors (when adjusted for both URBEXT and centroid distance) of between 2.0 and 2.5⁵ at all FEPs (flow estimation points) within the IAMP model.

One concern with the original LMED/QMED conversion process was the accuracy of the gauge datum, which could not be checked when surveyors visited the watercourse in 2017 with an instruction to check the gauge datum because the gauge board had been removed. The following paragraph details some new information on the datum issue that was not examined in the IAMP study.

The recorded baseflow level in the Hylton Bridge gauge record is around 32.3m AOD based on the supplied Environment Agency datum (Figure 2-4). By contrast, the water levels recorded in two different river surveys at the upstream and downstream faces of Hylton Bridge that were undertaken for the IAMP study in November 2015 and March 2017 were 32.15 and 32.14m AOD, respectively. In addition, both surveys recorded a channel invert level in the order of 31.95m AOD and flow conditions on the day of both surveys were relatively benign. This suggests that there is likely a discrepancy of at least 0.16 metres between the surveyed and gauged (low flow) water levels at the gauge location. This might be due to issues with the gauge and/or survey datums or the fact that the downstream cross-section at the bridge is not sufficiently close to the gauge location. In any case this re-analysis would suggest that the previously calculated LMED value of 1.635m ALD should be added to a datum that is at least 0.16 metres lower than the Environment Agency gauge datum. When this is done, the outcome is an LMED value of 33.556m AOD, which from the model rating would arise from a reduced QMED flow of 5.6m³/s (Figure 2-3). This represents an approximate 25% reduction in the 7.0m³/s flow that was used to inform the IAMP hydrology.

Although this reassessment of QMED is perhaps lacking in the certainty needed to rubber stamp a fresh calculation record with reduced flows, it is a further line of evidence that the IAMP model inflows will likely lead to a conservative assessment of the site risk. Therefore, we can be confident that, even if the Environment Agency were to request an updated hydrology report for the FRA, it would be lower than the fluvial flood risk that arises from the existing IAMP model inflows. Hence, the **minimum** design levels provided in this report

⁵ Note that a donor factor of 2.2 was derived for the Usworth Burn.

from running the IAMP inflows are considered very unlikely to have to be raised should any fresh hydrology calculations be undertaken in future.

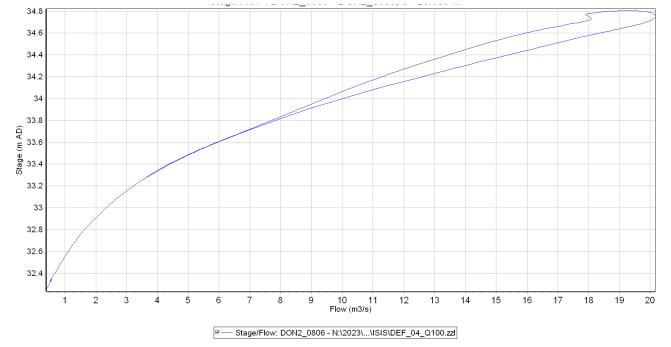
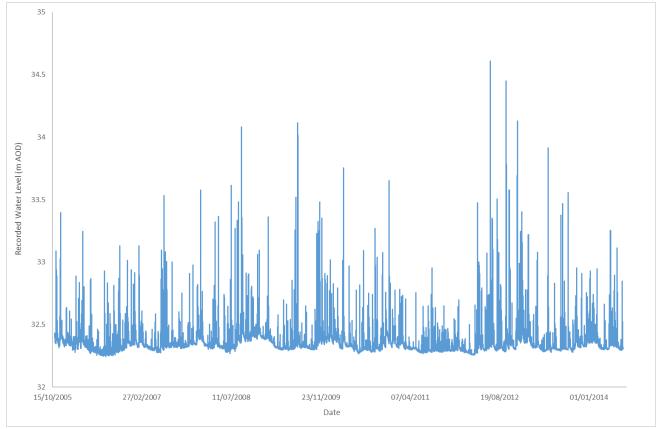



Figure 2-3: Model rating at the gauge location on the downstream face of Hylton Bridge

2.2.4 Hydrology Approach

The outcome of the hydrology review is that it is recommended that the following approach should be taken towards deriving the model inflows for the AESC Plant 3 site.

- The IAMP derived peak flows should be retained.
- The critical storm for the Usworth Burn alongside the AESC Plant 3 site should be tested and, if necessary, the IAMP model inflows should be adjusted to the modelled critical storm duration.

The main limitation of this approach is that the Environment Agency could request a full hydrology update due to uncertainties in the previous approach. If this were to be the case, then the Hylton Bridge donor adjustment would come under more scrutiny than in the previous IAMP hydrology calculations with the likelihood that the model inflows would ultimately be reduced, whether based on the FEH Statistical approach (with alternative donor factor) or unscaled ReFH2.

2.3 Hydraulic Model Review

Section 2.1 noted the history of flood modelling at this site. Given that the IAMP1 development has now been implemented but none of the works simulated by the IAMP2 model have yet been constructed, the more appropriate starting point for baseline (existing risk) modelling at the AESC Plant 3 site would be the post-development IAMP1 model scenario⁶. The Don STC model contains a larger reach of the River Don than the IAMP models but the Usworth Burn in the STC model is a straight copy of the Usworth Burn representation in the IAMP models. Therefore, given that the IAMP1 model has previously been signed off by the Environment Agency, uses a more conservative hydrology and has a higher floodplain definition, the IAMP1 model is considered more appropriate than the STC model for assessing the risk to the AESC Plant 3 site.

As the IAMP1 model was signed off by the Environment Agency in 2017, it should still be appropriate for assessing the risk to the AESC Plant 3 site subject to the following checks.

- The age of the data underpinning the model (i.e., has any new data become available since the IAMP1 model was produced).
- Floodplain development (i.e., have there been any changes on the floodplain since the IAMP1 model was produced).
- Modelling Standards (i.e., has anything changed in terms of standards that could mean that some changes are needed to the original modelling process e.g., new software versions, modelling techniques etc).
- Are any changes needed because the primary fluvial risk to the western extension will be from the Usworth Burn rather than the River Don.

⁶ Note that because the IAMP2 model predicted that the post-development IAMP1 and IAMP2 river levels along the Usworth Burn would be identical (i.e., there would be no impacts along the Usworth Burn due to the IAMP2 development), the risk to the western extension from any subsequent IAMP2 development should also be covered by the IAMP1 model.

2.3.1 Topographic Data

- **River Survey** The majority of the river channel survey in the IAMP model was collected by Academy Geometrics in November 2015. This was supplemented by some additional river survey downstream of Hylton Bridge that was collected in March 2017. The river survey is less than 10 years' old so should still be appropriate for evaluating the baseline site risk to a site in 2023 without the need for check survey.
- LIDAR The original model used a combination of LIDAR DTM and topographic survey to define the floodplain topography. Topographic survey was used across the southeastern corner of the model because the available LIDAR did not cover the full extent of the modelled flood outlines. it is believed that the LIDAR that was used in the IAMP1 model was flown in 2009.

1m composite LIDAR DTM now covers the whole of the model domain. This has been downloaded and cross-checked against the existing model topography, which shows that fresh LIDAR is available for the whole of the 2D model domain (i.e., the latest composite does not seem to contain any of the 2009 data). A check on LIDAR flight dates implies that the latest LIDAR was flown in 2021 as part of the National LIDAR programme.

• **Topographic Survey** - A large topographic survey was undertaken in 2015 that covers the whole of the IAMP1 and AESC Plant 3 sites. Since development has occurred across the IAMP1 site but not the Plot 2 site, then this topographic survey should still be relevant to the Plot 2 site but not for the developed parts of the IAMP1 site.

2.3.2 Recent Development

The main ground level changes to the floodplain associated with the IAMP1 site were implemented prior to 2017 so would have been in place by the time of the National LIDAR overflights in 2021. Therefore, subject to some checks (presented in Section 3.3), the 2021 LIDAR is expected to present an accurate picture of present-day floodplain elevations. This implies that the model can be safely updated with the latest LIDAR and that there is now no need to include the topographic patches that were used to define the proposed ground level changes that were read into the IAMP1 post-development scenario.

2.3.3 Modelling Standards

There have been no major changes in modelling guidelines that could impact on the suitability of the IAMP model. There have, however, been incremental improvements to the software. The IAMP1 model was previously run with ISIS v3.7 and TUFLOW 2016-03-AD-w64, whereas the updated model ought to be run with more recent versions of both software packages.

⁷ Some works are still ongoing, but these are outside of the floodplain so should not influence the fluvial flood modelling results.

2.3.4 Usworth Burn Risk

The only factor that might need to be changed as a consequence of the AESC Plant 3 site being located further upstream in the Usworth Burn relative to the main part the IAMP1 site is that the critical storm duration along the Usworth Burn might be shorter than along the River Don. Therefore, it is recommended that storm duration testing is carried to verify if the 12-hour storm used for the IAMP1 model is still appropriate for the AESC Plant 3 site. This is reported in Section 4.4.1.

2.3.5 Other issues noted during the model review.

- The 1D (channel) bed and bank roughnesses were previously accepted for the IAMP FRA modelling and seem reasonable so will be maintained for this study. Sensitivity testing of the roughness will be carried out to demonstrate the model sensitivities and to inform the Agency review.
- There are no structures in the model that could influence the risk along the Usworth Burn. Therefore, any modification of the existing structures would not influence the current study.
- The 2D domain is based on a cell size of 2 metres so there would be little benefit from reducing the cell size further to increase the model definition.
- The bank crests are currently based on the topographic survey that was undertaken in November 2017. This seems reasonable but, because it is recommended to update the floodplain to reflect the latest (2021) LIDAR DTM, it would also be appropriate to update the bank crests likewise. The 1 metre definition of the LIDAR should ensure that the crest height of the earth embankments is represented in the model to a reasonable level of accuracy, although ultimately the local embankments were previously shown to have little impact during major flood events.
- There will have been changes in roughness across the IAMP development area so a local update to the floodplain roughness will be needed. Floodplain roughness was previously determined by drawing a set of polygons around buildings, roads etc as depicted on an Open Source map background and this approach should be adequate to incorporate recent changes across the IAMP site.
- An HQ boundary was previously placed along part of the southern edge of the 2D domain to avoid undue ponding of water against the edge of the 2D domain in an 0.1% AEP event. This was necessary because there was no further topographic data (LIDAR or topo survey) available in this area. This could be rectified in the current study because the LIDAR is more extensive. However, because this floodwater was already within the adjacent catchment and will have no impact on the western extension, there is no necessity to update the model hereabouts.
- The IAMP currently contains several stability fixes (roughness patches and a Boundary Viscosity Factor = 2) to control 1D-2D oscillation. An updated model run with more recent software version may enable these stability fixes to be reduced in scale.

3 Methodology

3.1 Hydrology Updates

Section 2.2 provided a detailed summary of the status of the IAMP model hydrology and led to the following recommended approach for the assessing the risk to the AESC Plant 3 site.

- The peak flows derived for the IAMP study should be retained.
- The critical storm duration (CSD) along the Usworth Burn should be tested and, if necessary, a new set of inflow (IED) files should be created and run for the relevant CSD.
- Up to date climate change factors should be applied.

Section 4.4.1 lists the outcome of the storm duration testing, which verifies that the same 12-hour storm as was used for the IAMP assessment is still appropriate for the AESC Plant 3 site. Therefore, the only modification needed to the IAMP model inflows was to apply the updated uplifts for the climate change simulations (see Section 3.2).

The above approach is considered appropriate for an FRA at the AESC Plant 3 site, but the following potential limitations are noted.

- The inflows are likely to be conservative (based on the discussions in Section 2).
- The IAMP hydrology was calculated in 2017. The Environment Agency could request a fresh hydrology, but it is considered that the current hydrology is defensible on the grounds that it is relatively recent and likely to be conservative.

3.2 Climate change uplifts

The climate change uplifts required of an FRA are dependent on the nature of the development. The climate change guidance in relation to fluvial flows has changed across England since uplifts of +20, +25 and +50% were previously modelled for the IAMP study.

For the AESC Plant 3 site, it is expected that the site will be classified as 'highly vulnerable' because of the storage of certain hazardous materials that will be required to be used in the battery manufacturing process. An FRA for a 'highly vulnerable' development site would require an assessment of the 'Central' emissions climate change scenario, which evaluates to a +34% uplift for watercourses in the Tyne catchment. In addition to the 'Central' emissions scenario, the 'Higher Central' climate change allowance of +42% has also been modelled in this study to provide a steer should the Environment Agency wish to see the impact of development at this level of climate change uplift, which would normally only be required for developments categorised as 'essential infrastructure'. Hence, both uplifts have been modelled in conjunction with the 1% AEP event for this study. The central uplift was also run at the client's request for a 3.3% event

3.3 Data Checks

The original IAMP model grid was based primarily on the latest available LIDAR (1m DTM tiles) that was available at the time⁸ but with some topographic survey included where the LIDAR was absent. The proposed IAMP mitigation measures (platform raising and additional floodplain storage) were then included as topographic adjustments to this underlying ground level model.

A model should ideally use the most up-to-date available data (of suitable quality) and it is evident that LIDAR has been re-flown since the IAMP model was created. Therefore, the 1m LIDAR DTM (2022) composite across the IAMP model extent was downloaded in June 2023⁹. However, before updating the model to include for the most recent LIDAR, some checks were undertaken against the topographic datasets that had been used in the original IAMP model. This was to check for consistency between the datasets and highlight areas where ground level changes had taken place between the different data collections.

3.3.1 LIDAR (2023) vs LIDAR (2009)

The difference in elevation between the two LIDAR datasets is shown in Figure 3-1. This illustrates that, beyond the extent of the IAMP development, the two LIDAR datasets are generally consistent in that elevations are typically within ±0.1 metres of one another but there is a tendency for the most recent LIDAR DTM to be higher than the previous LIDAR¹⁰. This observation could help explain why the original study found some discrepancies between the (old) LIDAR and topographic survey across some areas (most notably on the left bank of the River Don downstream of Hylton Bridge). Across the IAMP development, there are clear differences between the two LIDAR datasets, which reflect the fact that the old LIDAR was flown before the IAMP development took place whilst the most recent LIDAR was flown after development. Hence the new LIDAR is higher across the raised platform of the IAMP site and lower across the areas where additional floodplain storage was created.

3.3.2 LIDAR 2023 versus 2015 topographic survey

An extensive topographic survey was collected by Academy Geomatics for the initial IAMP study in November 2015. Figure 3-2 shows a comparison between the elevations in the topographic survey and the 2022 LIDAR DTM. This was created by point inspecting the

⁸ From checking the LIDAR 'time stamped' extents at <u>https://environment.data.gov.uk/</u> DefraDataDownload/, this data would appear to have been flown in 2009.

⁹ The DEFRA website states that the composite dataset is derived from a combination of the 'time stamped' archive and 'National LIDAR Programme', and that where repeat surveys have been undertaken the newest, best resolution data is used. A look at the 'time stamped' and 'National' LIDAR coverage would, therefore, imply that the 2022 composite should be wholly (subject to no poor data quality defects) based on the 2021 National LIDAR across the IAMP model extent.

¹⁰ Note that the old LIDAR did not cover the south-eastern edge of the IAMP site, which is why the comparison figure exhibits a uniform colour across this region.

LIDAR at all points in the topographic survey, calculating the differences between the two datasets and creating a raster grid of these differences. This plot reveals a very similar pattern to the LIDAR comparison.

Because the 2015 topographic survey predated the IAMP development, significant topographic differences are again evident within the developed areas of the IAMP site. However, elsewhere the levels between the two datasets are generally consistent but with some evidence for the LIDAR tending to be slightly higher rather than lower than the topographic survey. Hence, Figure 3-2 shows that the LIDAR across most of the Plot 2 site is between 0.1 metres lower and 0.2 metres higher than the topographic survey yet no development has taken place across the area of Plot 2 site since the topographic survey.

It should be noted that the river survey was largely carried out at the same time as the site topographic survey so the fact that there is a reasonable consistency between the LIDAR and top of bank levels in the topographic survey suggests that there should also be consistency between the LIDAR with river cross-sections¹¹.

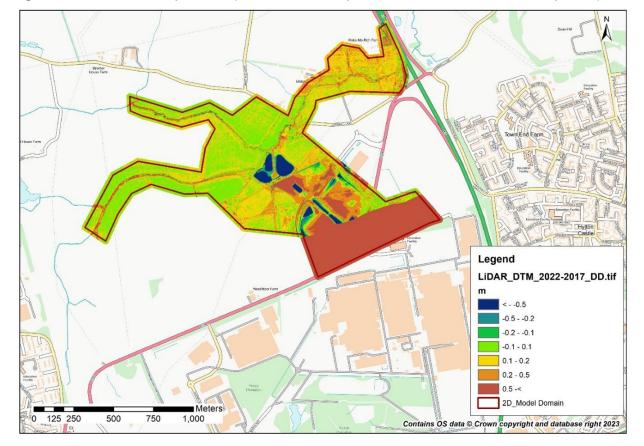
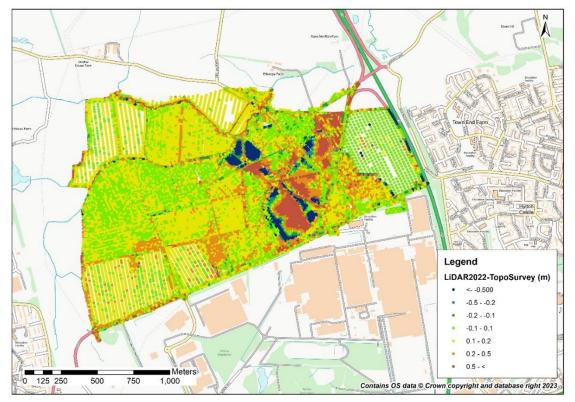



Figure 3-1: LIDAR comparison (2015 DTM composite versus 2022 DTM composite)

¹¹ Note that the LIDAR cannot be trusted with the in-channel geometry as it will be reflected from the water surface and the immediate banks are often lined with thick vegetation.

3.3.3 Summary of topographic checks

Given the relatively low magnitude of differences between the latest LIDAR and previous topographic datasets across the AESC Plant 3 site and the facts that the LIDAR is the most recent dataset and captures the post-development ground levels changes that have so far been involved across the IAMP site, it would seem reasonable to update the model topography to be based on the new LIDAR.

3.4 Hydraulic Model Updates

The following updates to the IAMP model were undertaken following the model review (summarised in Section 2.3) and data checks (summarised in Section 3.3).

- The entire floodplain topography was updated from the combination of sources (old LIDAR, local topographic survey and proposed ground level changes) that had been used to model the IAMP post-development scenario to the 1m composite (2022) LIDAR DTM, (believed based solely on National LIDAR Programme 2021 flights).
- The bank crest levels alongside the Usworth Burn and River Don were updated to reflect the elevations in the 1m composite (2022) LIDAR DTM.
- The floodplain roughness map was updated to reflect the current state of the IAMP1 development by stamping the polygons shown in Figure 3-3 to the general floodplain roughness of 0.05 that had previously been applied to this area of the IAMP baseline model. As with the previous model, these polygons (representing

obvious buildings, roads, hard standing areas and surface water) were traced from open-source maps.

Note that because no floodwater is modelled to flow towards the site from the upstream reaches of the Usworth Burn, there was no need to extend the active model domain from the existing model to cover the whole of the AESC Plant 3 site. Hence, the active extent of the model domain as shown in Figure 3-3 remains the same as that of the 2018 model. Extending the domain across the AESC Plant 3 site would have just created a larger model that would have taken longer to run.

Figure 3-3: Updates to the floodplain roughness map across the IAMP site

2= Hardstanding Area, 3 = Building, 4 = Surface Water

3.5 Model Simulations

Once the relevant changes to the model inflow files (listed in Section 3.1) and model (listed in Section 3.4), had been made, the following model simulations were undertaken.

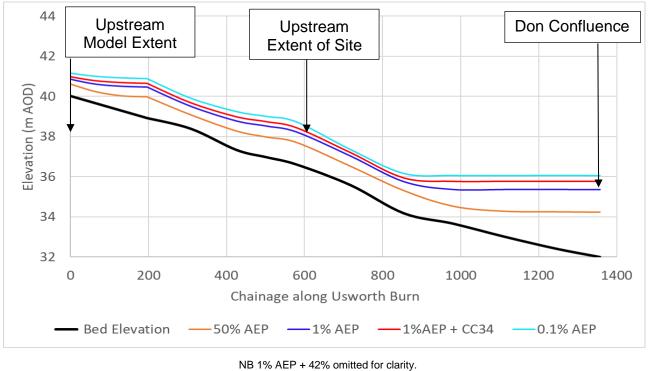
- Baseline (existing risk) AESC Plant 3 scenario (see Section 4.1).
 - Present day (i.e., without climate change) 50%, 3.3%, 1% and 0.1% AEP
 - Future (i.e., with climate change) 3.3% AEP Central (+34%), 1% AEP Central (+34%) and 1% AEP Higher Central (+42%)
- Undefended (Defence Failure) 1% AEP Central (+34%) event (see Section 4.2). The low-level 'defence' embankments alongside the Don and Usworth Burn (see Figure 1-1 for location) were removed from the model by re-using the defence

removal GIS layer that had previously been used to examine the impact of defence failure for the IAMP study.

- (AESC Plant 3) Site Fully Raised 1% AEP Central (+34%) event (see Section 4.3). The entire Plot 2 site polygon (as shown in Figure 1-1) was raised to above flood levels to quantify the likely worst-case impact of development if the whole site were to be removed from the floodplain.
- Sensitivity Tests (see Section 4.4) A small number of sensitivity tests were run to justify the current model configuration and enable the model to pass an external review.
 - Storm duration The updated model was tested against the five (4, 8, 12, 14 and 16-hour), unscaled ReFH, 1% AEP storms that had been created for the original model.
 - Flow ±20%
 - Roughness (channel and floodplain) ±20%
 - Downstream Boundary (steeper and gentler gradient).

4 Outcomes

4.1 Baseline (Existing) Flood Risk


The modelled peak river levels in the Usworth Burn for a select number of 1D model nodes alongside the site are shown in Table 4-1. These illustrate that whereas there is a quite a steep gradient in the peak river levels alongside the upstream part of the site, the peak river level gradient along the Usworth Burn flattens out downstream of the North Moor Farm (i.e., around node TRIB_0377). This pattern largely reflects the backwater influence of the River Don as can be seen in a long section profile of the Usworth Burn for a select number of the modelled flood events in Figure 4-1.

Model	Annual Exceedance Probability (%)						
Node	50	3.3	3.3+CC34%	1	1+CC34%	1+CC42%	0.1
TRIB_0855i	37.97	38.35	38.55	38.52	38.74	38.79	39.00
TRIB_0778	37.70	38.06	38.26	38.22	38.43	38.49	38.72
TRIB_0639	36.51	36.89	37.05	37.01	37.19	37.22	37.34
TRIB_0502	35.32	35.63	35.76	35.74	35.93	36.00	36.15
TRIB_0377	34.53	35.12	35.47	35.35	35.76	35.86	36.05
TRIB_0000	34.23	35.10	35.47	35.34	35.76	35.86	36.05

Table 4-1: Modelled peak river levels (m AOD) along the Usworth Burn for specified nodes

See Figure 4-2 for node locations.

The modelled flood outlines in the vicinity of the site are shown in Figure 4-2. These illustrate that only a very small area of the site between North Moor Farm and International Drive is modelled to be at fluvial flood risk. This implies that there will be some fluvial flood risk constraints on development on parts of the site but that development across most the site will not be constrained by fluvial flood risk (assuming that excavation below the modelled flood levels is not being planned).

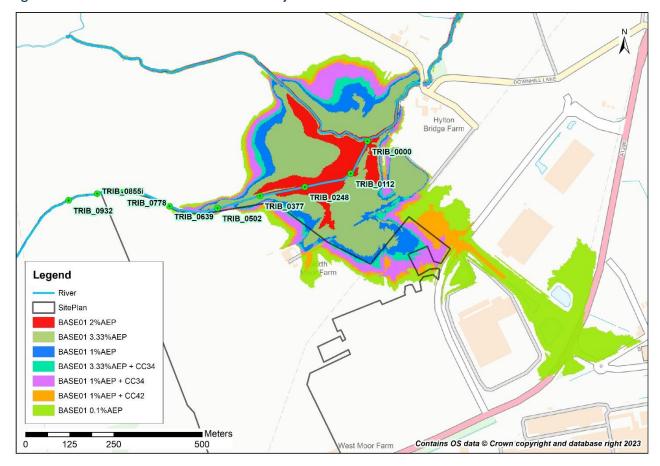


Figure 4-2: Modelled Flood Outlines adjacent to the IAMP site extension.

The design levels for the development proposed in an FRA would generally need to be based on the 1% with climate change (+34%) flood levels with resilience levels based on the 0.1% AEP flood levels. In addition, any off-site impacts would also need to be judged against the 1% with climate change (+34%) and lower events.

4.2 Defence Failure

The IAMP study demonstrated that the flood defence embankments that are depicted on the Environment Agency's Flood Maps (see Figure 1-1 for location) play no significant flood defence role. They are primarily low-lying earth embankments that were presumably constructed with the aim of reducing the frequency of flooding to some of the agricultural land adjacent to the River Don and Usworth Burn. Hence, Figure 4-2 shows that the embankments around the Don confluence are already modelled to be overtopped and/or bypassed in the 50% AEP event.

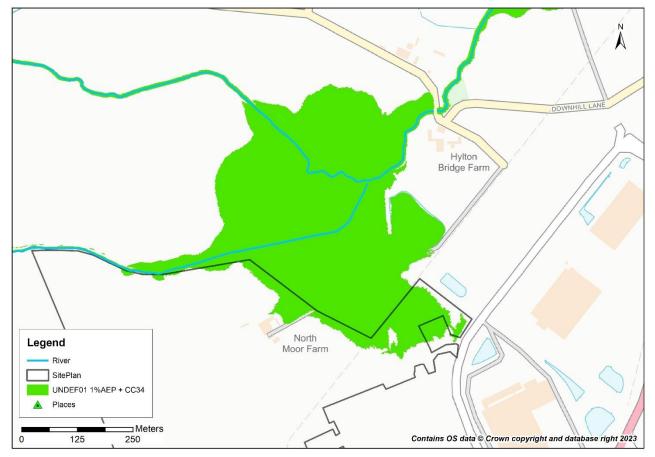
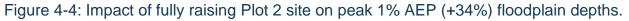

To confirm that the AESC Plant 3 site was not at increased risk from defence failure, a 1% AEP + 34% design event was run through an undefended version of the model (i.e., with embankment crests reduced to ground levels). The main outcomes of this model run are shown in Table 4-2 and Figure 4-3. Table 4-2 shows that defence failure would lead to some small, localised variations in the peak 1% AEP (+34%) river level alongside the Plot 2 site. Figure 4-3 shows that the undefended 1 % AEP (+34%) flood outline is almost identical to the defended flood outline (shown in Figure 4-2). This confirms the findings of the IAMP study that the residual risk from failure of the local earth embankments would not obviously increased relative to the existing (baseline) site risk.

Table 4-2: Modelled impact of removing the defence embankments on peak 1% AEP	
(+34%) river levels (m AOD)	

Scenario	Model Node							
	TRIB_0778	TRIB_0639	TRIB_0502	TRIB_0377	TRIB_0000	DON2_0813*		
Baseline	38.44	37.19	35.92	35.76	35.76	35.48		
Undefended	38.40	37.24	35.92	35.73	35.72	35.53		

* Hylton Bridge

Figure 4-3: Modelled undefended 1% AEP (+34%) flood outline.


4.3 Impact of Fully Land Raising

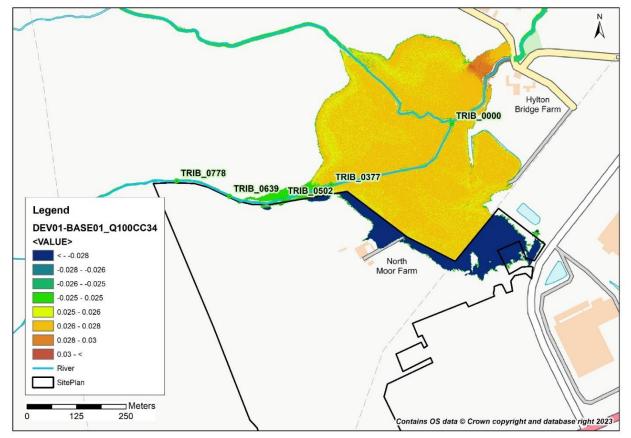

The impact of fully raising the AESC Plant 3 site polygon above all modelled flood levels is illustrated by reference to the changes in peak river level and flood outlines. Table 4-3 illustrates that the impact of fully raising the site would increase river levels by up to 0.03 metres downstream of North Moor Farm. Impacts are modelled to continue beyond Hylton Bridge to the downstream extent of the model where a 0.1 metre increase in the peak river level is modelled downstream of the A19. Figure 4-4 shows that the model predicts that the displaced floodwater would increase the peak flood depth across the nearby floodplain by between 0.025 and 0.03 metres.

Table 4-3: Modelled impact of fully raising the Plot 2 site on peak 1% AEP (+34%) river	
levels (m AOD)	

Scenario	Model Node							
	TRIB_0778	TRIB_0639	TRIB_0502	TRIB_0377	TRIB_0000	DON2_0813*		
Baseline	38.44	37.19	35.92	35.76	35.76	35.48		
Site Raised	38.44	37.19	35.94	35.79	35.78	35.51		

* Hylton Bridge

This map was obtained by subtracting the flood depths from the 'baseline' scenario from the those from the 'fully raised' scenario.

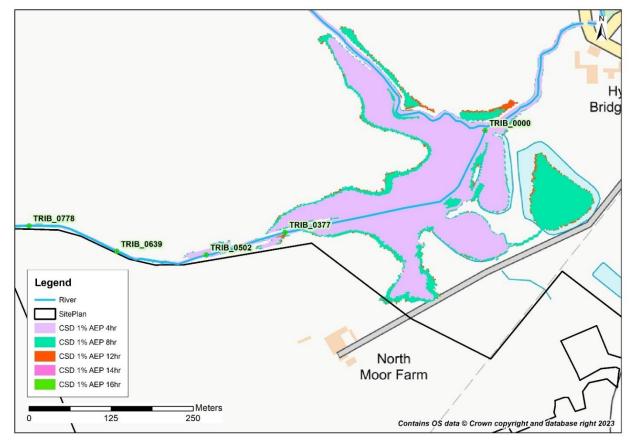
4.4 Sensitivity testing

Sensitivity testing for the AESC Plant 3 site was carried out to demonstrate that the updated model sensitivities have been tested in readiness for any Environment Agency review of the model. Hence the results of the sensitivity test are presented here with little commentary.

4.4.1 Storm Duration

The results of the storm duration testing revealed that an 8-hour storm produces the highest river levels on the Usworth Burn upstream of North Moor Farm but that a 12-hour storm produces the highest river levels downstream of that location (Table 4-4)¹². The modelled flood outlines (Figure 4-5) also show that a 12-hour storm led to the largest outline (albeit only subtly so) of the tested storms. Given that inundation of the floodplain is limited to the reach downstream of North Moor Farm, it was, therefore, considered appropriate to model design events for the AESC Plant 3 site based on the 12-hour storm, which is also consistent with the critical storm previously modelled for the IAMP site.

Model	Storm Duration						
Node	4	8	12	14	16		
TRIB_0855i	38.17	38.18	38.15	38.13	38.11		
TRIB_0778	37.86	37.87	37.85	37.83	37.82		
TRIB_0639	36.69	36.72	36.70	36.69	36.68		
TRIB_0502	35.47	35.48	35.45	34.44	35.42		
TRIB_0377	34.66	34.73	34.74	34.74	34.73		
TRIB_0000	34.39	34.59	34.60	34.59	34.58		


Table 4-4: Modelled peak river levels (m AOD) along the Usworth Burn for specified 1% AEP storm durations,

4.4.2 Other Tests

Note that the sensitivity tests were carried out on the 1% AEP (CC+34%) event because this is the key design event for an FRA so the outcomes of these tests show how the design levels and outlines might change in response to moderate changes to some of the model parameters.

The downstream boundary tests demonstrated that, because the boundary is downstream of the A19, there would be no downstream boundary impacts on the flood risk at the AESC Plant 3 site. Hence the modelled levels and outlines from this test were unchanged from those shown in Table 4-1 and Figure 4-2.

¹² Note that the storm duration testing was carried out on the (unscaled) 1% AEP event. Hence, the levels reported in Table 4-4 are noticeably lower than the design levels reported in Table 4-1, which were generated from the final design flows in which the ReFH hydrographs were scaled to match the estimated FEH Statistical peak flows.

Note that the 14- and 16-hour outlines are hidden behind the 12-hour outline because they are both smaller.

The flow and roughness tests did produce some observable changes to both the 1% AEP (CC+34%) peak river levels and outlines adjacent to the AESC Plant 3 site. The peak river levels are shown in Table 4-5, which shows that the model sensitivity to flow and roughness are generally quite similar with levels varying between \pm 0.2 metres in response to the \pm 20% change in parameters.

			, ,		•
Model Node	Baseline	Flow +20%	Flow -20%	Roughness +20%	Roughness -20%
TRIB_0855i	38.74	38.86	38.61	38.90	38.58
TRIB_0778	38.43	38.56	38.31	38.62	38.28
TRIB_0639	37.19	37.27	37.08	37.30	37.04
TRIB_0502	35.93	36.09	35.79	36.03	35.77
TRIB_0377	35.76	35.96	35.53	35.88	35.62
TRIB_0000	35.76	35.96	35.52	35.88	35.62

The flood outlines arising from the flow and roughness sensitivity tests are illustrated in Figure 4-6 and Figure 4-7, respectively. These demonstrate that the extent of inundation would not be greatly changed in response to changes in these model parameters with the at-risk area still limited to the north-eastern edge of the AESC Plant 3 site.

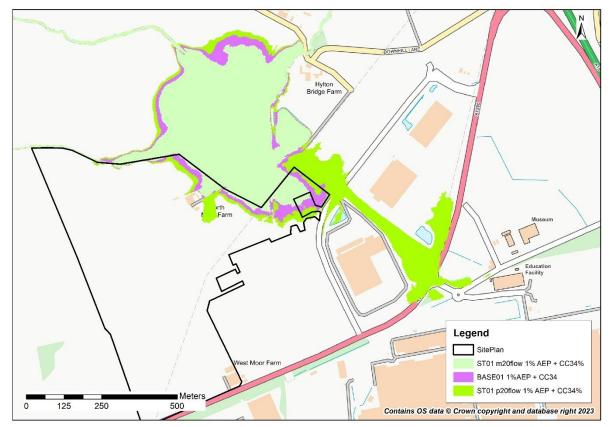
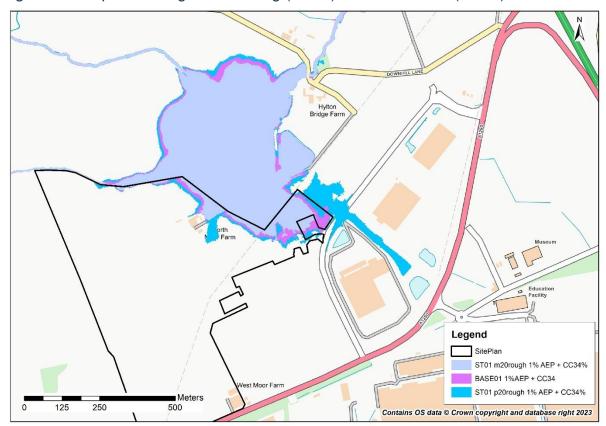



Figure 4-7: Impact of roughness testing (±20%) on the 1% AEP (+34%) flood outline.

In general, the sensitivity tests replicate the sensitivities documented in the IAMP modelling and imply that the flood risk would not be radically changed in response to moderate changes in the model parametrisation. These sensitivities would be covered by a standard (600mm) freeboard allowance.

4.5 Summary of modelling results and implications for development

The baseline (existing risk) model results predict that the majority of the AESC Plant 3 site would be at low risk of fluvial flooding (i.e., outside of Flood Zone 2). Therefore, there should be few fluvial flood risk constraints to development on much of the site. However, the 1% AEP with climate change (+34%) and 0.1% AEP flood outlines are modelled to flood a small part of the site along the north-eastern boundary of the site. There will consequently be some local constraints on development in these areas in that design floor levels of any buildings would likely need to be set above the 1% AEP with climate change (+34%) flood level (plus a freeboard). However, any ground raising across the flooded area could potentially lead to adverse off-site impacts (e.g., as modelled in Section 4.3).

From the site plan '204-P01-Proposed Site Layout' that was supplied in early July 2023 (Figure 1-2), it would not appear that any significant development features are planned within the areas that are modelled to be at flood risk except for a possible track around the circumference of the site that might be at risk in a major flood event. Therefore, the simplest solution to the modelled fluvial flood risk would be to avoid developing those parts within the site boundary that are within the modelled flood outlines, in which case there would be no off-site impacts from developing the AESC Plant 3 site. If these areas were to be developed, then some mitigation measures would likely be needed. However, an alternative approach before considering mitigation measures, would be undertake a fresh hydrology that would seek to downscale the importance of the Hylton Bridge adjustment factor that underpins the current model hydrology and has led to what is expected to be a conservative assessment of the flood risk.

4.5.1 Proposed Site Levels

Further detail of the site plan with some prospective site levels was supplied in mid-July 2023¹³. This shows that some of the proposed levels are close to the edge of the modelled flood outlines (Figure 4-8). The table on the right-hand side of Figure 4-8 shows that the proposed site levels grade up from 37.0m AOD in the east to 38.5m AOD in the west. The existing elevations at these locations (as derived from point inspecting the 2022 LIDAR composite DTM) are also shown Figure 4-8 and this shows that most of the points (SOP1 to SOP12) are proposed to be raised (some by up to 1.5 metres) around the north-eastern periphery of the proposed platform. None of these points is currently within the modelled 1% AEP with climate change flood outline but to avoid any offsite impacts from the

¹³ ENV3-RPS-ST-XX-SK-A-000086-P01-Northern boundary plateau level concept evaluation for purpose of flood modeling.pdf

development, the proposed ground levels would need to be tapered down to existing ground levels across the area of the modelled 1% AEP with climate change flood outline.

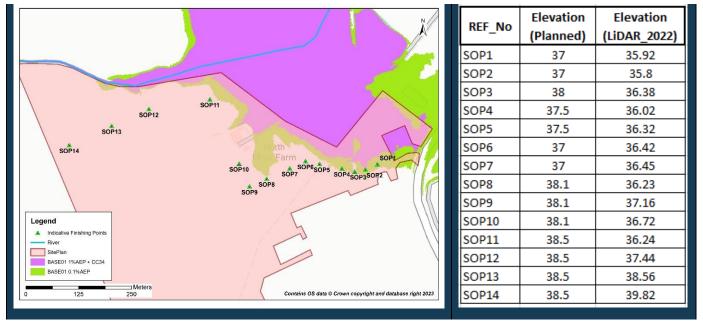


Figure 4-8: Proposed site elevations in the north-east of AESC Plant 3 site.

By contrast to the more easterly points, Figure 4-8 shows that the two most westerly points on the proposed site plan (SOP13 and SOP14) are proposed to be lowered relative to existing (LIDAR) ground levels. As the proposed levels are above the peak river levels in the adjacent Usworth Burn (Table 4-1), the site would remain safe from fluvial flooding. However, ground levels should not be excavated much lower than proposed because this could place the site at direct risk from the flood levels modelled for the Usworth Burn (as shown in Table 4-1).

4.5.2 Residual Risk

The residual risk to the site from the hydraulic modelling results is assessed as follows.

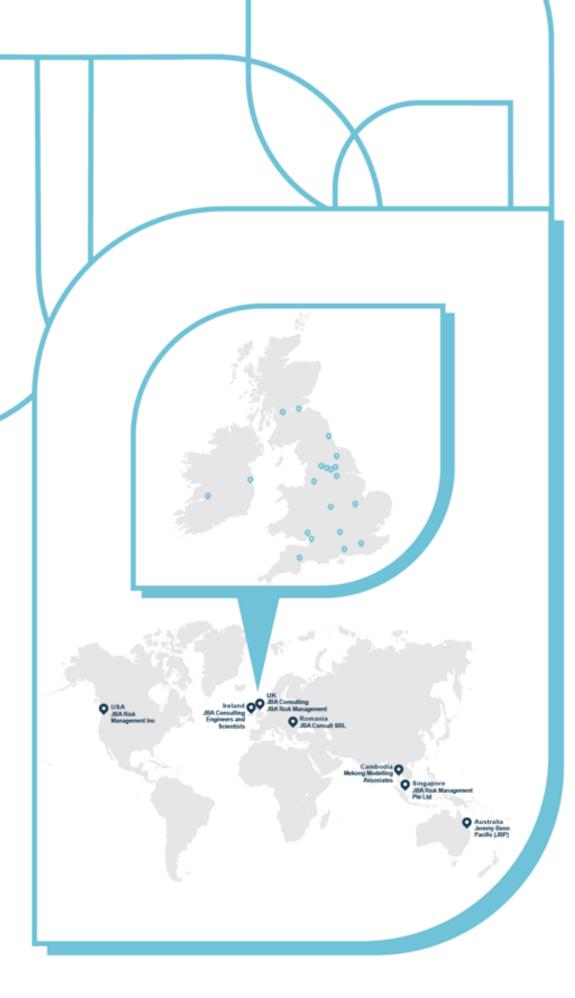
- Extreme Event the risk from an event more extreme than the design standard 1% AEP with climate change (+34%) event is covered by the results of the baseline 0.1% AEP scenario. This is modelled to place a slightly larger area of the AESC Plant 3 site at risk (Figure 4-2) but the extent is not dramatically increased so the best mitigation against an extreme event would simply be to avoid developing within the modelled 0.1% AEP flood extent. One might also consider making the development flood resilient to a level above the modelled 0.1% AEP level (see Table 4-1) with a suitable freeboard allowance.
- **Defence Failure** The modelling work has demonstrated that defence failure of the local earth embankments alongside the Usworth Burn and River Don would not noticeably increase the flood risk to the AESC Plant 3 site during a 1% AEP with climate change (+34%) event (see Section 4.2). Hence, the residual risk

from defence failure would be effectively unchanged from the baseline (existing) risk.

• **Blockage** - The residual risk from blockage is not a material concern for this site since there are no structures along the Usworth Burn that could block and any structures on the River Don are too far downstream to have any impact at the AESC Plant 3 site.

4.5.3 Emergency Access/Egress

Dry emergency access and egress via the main site access route onto International Drive and the A1290 is modelled in a 1% AEP with climate change event, which should be sufficient to cover the risk expected of an FRA. However, it should be noted that Figure 4-8 shows that the site access road and International Drive to the north of the site are modelled to flood in a 0.1% AEP event so there is a potential residual risk to the main access route. However, the 0.1% AEP flood depths are modelled to be shallow (less than 0.2 metres) and low velocity on the site access road so there should be little danger for either vehicular and/or pedestrian access from an emergency route along the main site access road and southwards along International Drive in an extreme event. To further minimise the risk, it would also be possible to have an evacuation route from the southern boundary of the site directly onto the A1290. Hence, the fluvial flood risk from the Usworth Burn and River Don should not pose a significant risk to emergency access/egress.



5 Assumptions and Limitations

This study has built on the existing IAMP1 model that JBA created for SYSTRA between 2015 and 2017. The model was reviewed by the Environment Agency in 2017 and the 1% and 0.1% AEP flood outlines were later subsequently used to update the Environment Agency's Flood Maps. Hence, because the model was considered appropriate for flood mapping and informing a site-specific FRA on the adjacent IAMP1 site as recently as 2017, a simple review and update approach has been taken to inform this report for the AESC Plant 3 site in 2023. However, we recognise that the Environment Agency may request to review the model prior to removing any objection to development on flood risk grounds. Reviews can be subjective so it is possible that the Environment Agency might request further updates to the model and/or hydrology at the review stage.

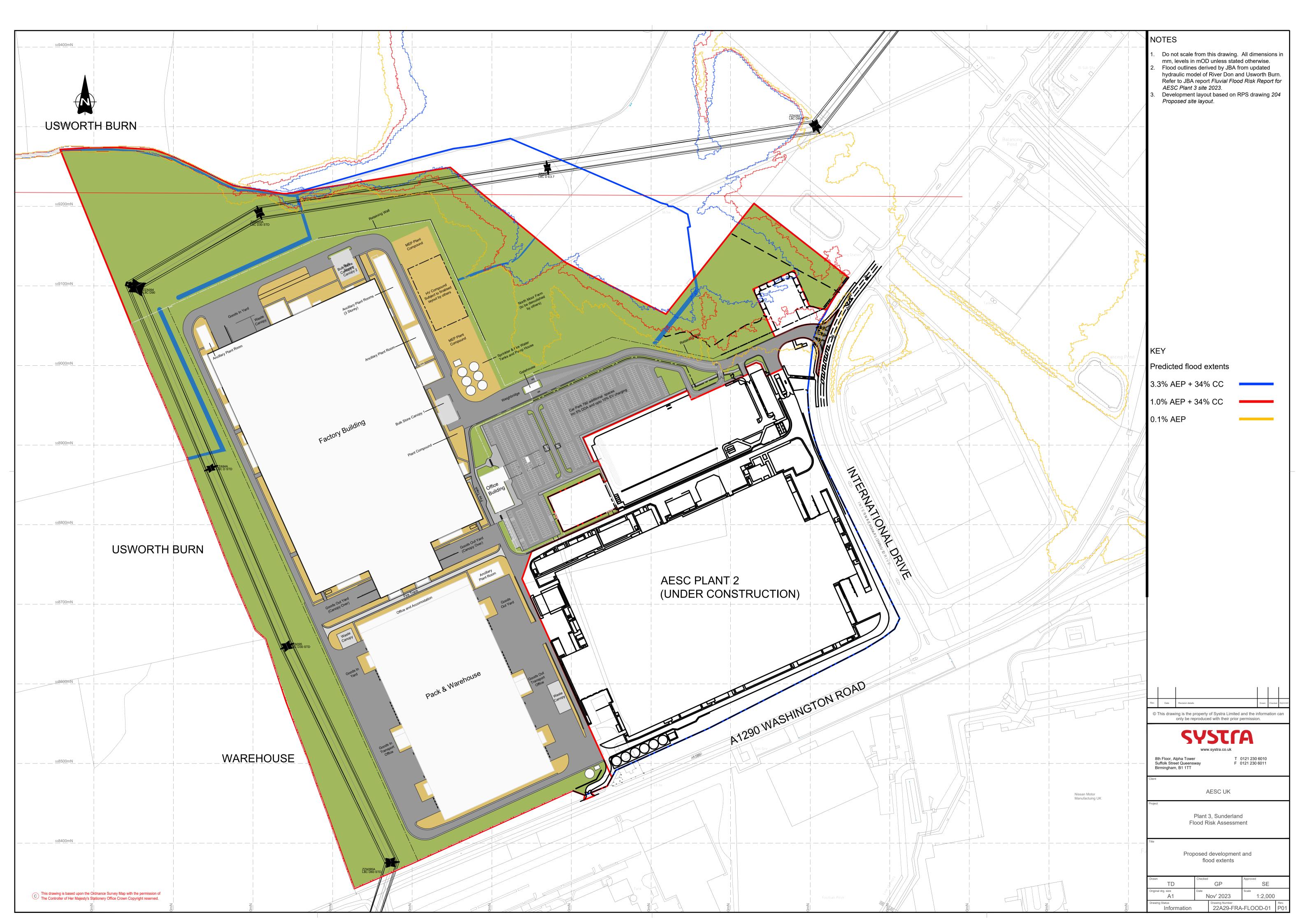
We would defend the current model for the reasons listed below.

- The IAMP model, which was the starting point for the AESC Plant 3 model, was signed off by the Environment Agency in 2017 so should be a good template for any revised model.
- We are aware that there are significant uncertainties in the hydrology, most notably with the Hylton Bridge donor factor. Having reviewed the previous hydrology calculations for the catchment, we believe that it was appropriate to retain the existing inflows from the IAMP model, given that a review suggests that the existing model inflows are conservative, and their re-use ensures a consistency of approach with the IAMP development. Note that any new hydrology would be faced with the (subjective) decision of whether to retain the Hylton Bridge donor factor, which would likely far outweigh the impacts of any other new hydrological information.
- Since National LIDAR, which was flown in 2021 after the primary IAMP earth movements had been completed, is now available across the whole study area, it was considered appropriate to update the topography of the model floodplain and bank crests to be based on this new LIDAR data. Checks have demonstrated a reasonable level of consistency with the existing (2015) topographic survey across the AESC Plant 3 site and, given that one would expect a greater degree of accuracy from the most recent LIDAR dataset, the replacement of the existing (2009) LIDAR seems justified. Any other model changes were sufficiently low key as to have very little impact on the model results.

JBA consulting

Offices at

Bristol Coleshill Doncaster Dublin Edinburgh Exeter Glasgow Haywards Heath Leeds Limerick Newcastle upon Tyne Newport Peterborough Portsmouth Saltaire Skipton Tadcaster Thirsk Wallingford Warrington

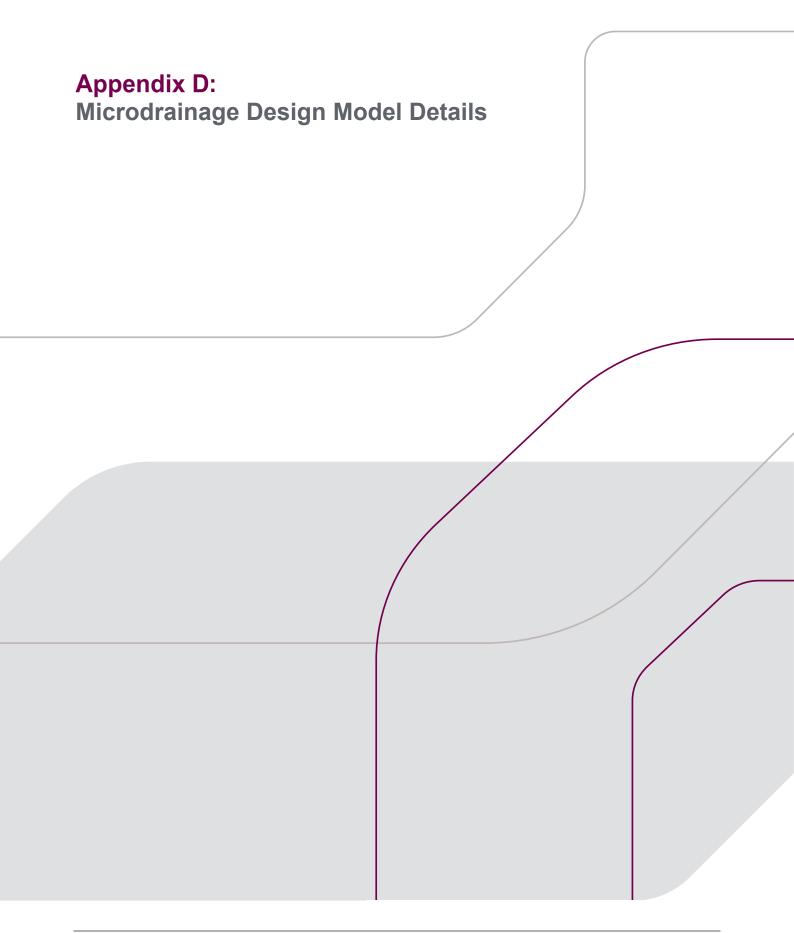

Registered Office 1 Broughton Park Old Lane North Broughton SKIPTON North Yorkshire BD23 3FD United Kingdom

+44(0)1756 799919 info@jbaconsulting.com www.jbaconsulting.com Follow us: 🎔 in

Jeremy Benn Associates Limited

Registered in England 3246693

JBA Group Ltd is certified to: ISO 9001:2015 ISO 14001:2015 ISO 27001:2013 ISO 45001:2018


Appendix E: Surface Drainage System Details

Appendix E: Contents

- RPS report AESC Giga Factories Plot 2 Planning Drainage Strategy Appendix D (MicroDrainage model details and results)
- RPS drg 251-P01-Proposed Site Surface Water Drainage Layout Sheet 1
- RPS drg 252-P01-Proposed Site Surface Water Drainage Layout Sheet 2
- RPS drg 253-P01-Proposed Site Surface Water Drainage Layout Sheet 3
- RPS drg 257-P01-Proposed Site Surface Water Drainage Exceedance Plan

Group De Hou ford W lton K	lse, Ca lood	-	Drive							P	age 1
e 21/0					Desi		Micro				
			50823 reduc	ed cat			Draina				
ovyze						ork 2020	.1.3				
				Manho	le Sch	edules f	or Storm	<u>n</u>			
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
OB1	38.657	0.992	Open Manhole	450	2.000	37.665	150				
OB2	38.310	0.992	Open Manhole	450	3.000	37.318	150				
S100	38.200	1.173	Open Manhole	1500	2.001	37.027	225	2.000	37.102	150	
ľ								3.000	37.102	150	
OB3	37.610	1.085	Open Manhole	450	4.000	36.525	225				
			Open Manhole	450	5.000	37.135	225				
S101	38.054	1.941	Open Manhole	1800	2.002	36.113	375	2.001	36.263	225	
ľ								4.000	36.263	225	
ľ								5.000	36.263	225	
			Open Manhole	450	6.000	37.135	300				
S102	38.386	2.719	Open Manhole	1500	2.003	35.667	450	2.002			
								6.000	35.817	300	
			Open Manhole	450	7.000	36.485	225				
OB7			Open Manhole	450	8.000	37.095	225	0.000	25 050	450	
5103	38.054	3.070	Open Manhole	1800	2.004	34.984	525	2.003	35.059		
								7.000	35.284	225 225	
S104	38 386	3 549	Open Manhole	1800	2.005	34.837	525			525	
			Open Manhole	450	9.000	37.408	150	2.004	54.057	520	
			Open Manhole		2.006			2.005	34.746	525	
				1000				9.000	36.771	150	1650
OB9	38.555	0.992	Open Manhole	450	10.000	37.563	150				
			Open Manhole		10.001	37.388		10.000	37.463	150	
			Open Manhole		11.000	37.563	225				
S107	38.597	2.142	Open Manhole		10.002	36.455	225	10.001	36.455	225	
								11.000	36.455	225	
OB11	38.550	0.987	Open Manhole	450	12.000	37.563	225				
ODII,		1	1	1	1			1			1
	38.597	2.917	Open Manhole	1500	10.003	35.680	300	10.002	35.755	225	

35.045

34.547

36.990

36.525

35.400

37.529

34.391

375 10.003

675 2.006

225 14.000

675 2.007

225

150

150

13.000

10.004

15.000

14.001

35.120

35.270

34.622

34.847

35.400

35.475

34.391

34.841

300

150

600

375

225

150

675

225

1500 10.004

1800 2.007

450 14.000

450 15.000

1500 14.001

450 16.000

1800 2.008

S109 38.557 3.512 Open Manhole

S110 38.557 4.010 Open Manhole

OB13 38.075 1.085 Open Manhole

OB14 37.610 1.085 Open Manhole

S111 38.300 2.900 Open Manhole

OB15 38.519 0.990 Open Manhole

S112 38.557 4.166 Open Manhole

RPS Group Plc		Page 2
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	•

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
									16.000	36.566	150	1650
OB16	38.519	0.990	Open	Manhole	450	17.000	37.529	150				
S113	38.557	4.406	Open	Manhole	1800	2.009	34.151	675	2.008	34.151	675	
									17.000	36.326	150	1650
OB17	38.519	0.990	Open	Manhole	450	18.000	37.529	150				
S114	38.557	4.647	Open	Manhole	1800	2.010	33.910	675	2.009	33.910	675	
									18.000	36.085	150	1650
	38.687			Manhole		19.000	37.695	150				
	38.727		-	Manhole	1500		37.350	150	19.000	37.350	150	
	38.687		-	Manhole		20.000	37.695	150				
S116	38.727	2.385	Open	Manhole	1500	19.002	36.342	225	19.001	36.417	150	
~					1500		05 0.00	0.05	20.000	36.417	150	
	37.727		-	Manhole		19.003	35.862		19.002	35.862	225	
	37.976		1	Manhole	450		36.984	150				
	38.220		-	Manhole		22.000	37.135	150	10 000	25 671	225	
5118	38.055	2.534	open	Manhole	1500	19.004	35.521	375	19.003	35.671	225	
									21.000	35.746	150	
0000	37.610	1 005	Onon	Manhole	450	23.000	36.525	225	22.000	35.746	150	
	38.220		-	Manhole		24.000	37.170	150				
	38.055		-	Manhole		19.005	35.463		19.004	35.463	375	
5115	50.055	2.552	open	Haimore	1000	19.005	55.405	575	23.000	35.613	225	
									24.000	35.688	150	
0B24	38.220	1.085	Open	Manhole	450	25.000	37.135	225	21.000		100	
	38.386			Manhole		19.006	35.128		19.005	35.203	375	
									25.000	35.353	225	
ов25	38.220	1.085	Open	Manhole	450	26.000	37.135	225				
	37.610		-	Manhole		27.000	36.525	225				
	38.055		-	Manhole		19.007	34.674		19.006	34.824	450	
									26.000	35.049	225	
									27.000	35.049	225	
S122	38.386	3.906	Open	Manhole	1800	19.008	34.480	600	19.007	34.480	600	
S123	38.608	4.400	Open	Manhole	1800	19.009	34.208	600	19.008	34.208	600	
0В27	38.605	0.992	Open	Manhole	450	28.000	37.613	150				
S124	38.660	4.675	Open	Manhole	1800	19.010	33.985	600	19.009	33.985	600	
									28.000	35.935	150	1500
OB28	38.519	2.083	Open	Manhole	450	29.000	36.436	150				
S125	38.557	4.979	Open	Manhole	1800	2.011	33.578	900	2.010	33.800	675	
									19.010	33.878	600	
									29.000	35.935	150	1607
ов29	37.610	1.085	Open	Manhole	450	30.000	36.525	150				

loble Hous	e. Car	ital	Drive										
inford Wo		JULAI	DIIVC										
		MTZ 1 A	COD										
Mitlton Ke	- ·				Designed by LARS ARMES								
ate 21/09					Designed by LARS.ARMES Draine								
	DRAIAG	E 250	823 reduced	d cat									
nnovyze					Netwo	rk 2020.2	1.3						
				Manhal		dulas fo							
				Mannole	e Sche	dules for	r Storm						
MH	МН	MH	мн	МН		Pipe Out			Pipes In				
Name	CL (m)	Depth	Connection	Diam.,L*W	PN	Invert	Diameter	PN	Invert	Diameter	Backdrop		
		(m)		(mm)		Level (m)	(mm)		Level (m)	(mm)	(mm)		
0.0.2.0	20 075	1 0 9 5	Open Manhole	450	31.000	36.990	225						
								30.000	26 105	150			
5126	38.180	2.070	Open Manhole	1500	30.001	36.110	225	31.000		150 225			
6107	20 525	1 0 6 2	Onen Manhala	1000	2 012	22 E.C.	000						
5127	30.325	4.903	Open Manhole	1800	2.012	33.562	900	2.011		900 225	1 5 0 0		
ተ እ ፣ ም ሶ 1	30 600	5 010	Open Martal	1000	2 012	22 200	900			225 900	1500 100		
			Open Manhole Open Manhole	1200	2.013		900 375	2.012	33.490	900	100		
			Open Manhole Open Manhole		33.000		150	33.000	27 070	1 5 0			
			Open Manhole Open Manhole		33.001 34.000		150 150	33.000	37.273	150			
								24 000	27 150	150			
			Open Manhole		34.001 35.000			34.000	37.158	150			
	39.000		Open Manhole	150			150	34.001	36.965	1 5 0			
BRANCH	38.695	1.730	Junction		34.002	36.965	150	35.000		150			
	20,000	1 250	Onen Manhala	150	26 000	27 (50	150	35.000	36.965	150			
			Open Manhole	150	36.000		150		26 330	150			
BRANCH	38.820	2.048	Junction		34.003	36.772	150	34.002		150			
DLID 0.0	20.050	1 000		150	27 000	27 650	150	36.000	36.772	150			
			Open Manhole		37.000		150	22.000	27 250	275	0.64		
S202 (V)	38.820	2.484	Open Manhole	2400	32.001	36.336	525	32.000		375	864		
								33.001		150			
								34.003	36.711	150			
0000	20 422	0.100		21.0.0	22 002	26.007	F 0 F	37.000	36.711	150			
			Open Manhole		32.002			32.001	36.297	525			
			Open Manhole	150	38.000		150	22 000	26 150	F 0 F			
BRANCH	38.433	2.281	Junction		32.003	36.152	525	32.002	36.152	525			
	20,000	1 250	Open Martal	150	20 000	27 650	150	38.000	36.527	150			
			Open Manhole	150	39.000		150	22 002	26 110	F 0 F			
BRANCH	38.433	2.314	Junction		32.004	36.119	525	32.003	36.119	525			
	20,000	1 250	Onon Martal	150	40.000	27 650	150	39.000	36.494	150			
	39.000				40.000		150	22 004		F 0 F			
S204	38.010	2.019	Open Manhole	2100	32.005	35.991	600	32.004	36.066	525			
00000	20,000	1 500		450	41 000		0.7.5	40.000	36.441	150			
			Open Manhole		41.000		375						
	39.000		-		42.000		150	40.000	27 070	1 = 0			
			Open Manhole		42.001	37.272		42.000	37.272	150			
	39.000			150		37.650	150						
	39.000		-		44.000	37.061	150						
	39.000		-	150			150			. –			
BRANCH	38.760	1.993	Junction		44.001	36.767	150	44.000	36.767	150			
								45.000	36.767	150			
S206(V)	38.825	2.564	Open Manhole	2400	41.001	36.261	450	41.000	37.350	375	1014		

Page 3

RPS Group Plc

KPS (Group	Plc									Pa	age 4
Noble	e Hous	se, Cap	pital	Drive								
Linfo	ord Wc	od										
Mitlt	ton Ke	eynes,	MK14	4 6QP								Micro
Date	21/09	/2023	13:5	7		Desig	ned by L	ARS.ARME	IS			Drainac
File	ENV3	DRAIA	GE 250	0823 reduce	d cat	Check	ed by					ר יווסות
Innov	vyze					Netwo	rk 2020.	1.3				
					Manhal	o Cabo	dules fo	r Storm				
					Mannol	e sche	dules lo	<u>r storm</u>				
	MH	MH	MH	мн	МН		Pipe Out			Pipes In		
	Name	CL (m)	Depth	Connection	Diam.,L*W	PN	Invert	Diameter	PN	Invert	Diameter	Backdrop
		,						Diamecer	EN		Dramecer	Backurop
			(m)		(mm)		Level (m)	(mm)	PN	Level (m)	(mm)	(mm)
			-							Level (m)	(mm)	-
•			-						42.001 43.000		(mm) 150	-
•			-						42.001	Level (m) 36.561 37.061	(mm) 150 150	(mm)
•	S207		(m)	Open Manhole	(mm)	32.006		(mm)	42.001 43.000	Level (m) 36.561 37.061 36.561	(mm) 150 150 150	(mm)
	S207		(m)		(mm)		Level (m)	(mm)	42.001 43.000 44.001	Level (m) 36.561 37.061 36.561	(mm) 150 150 150 600	(mm)
-		38.433	(m)		(mm) 2100		Level (m)	(mm)	42.001 43.000 44.001 32.005	Level (m) 36.561 37.061 36.561 35.720	(mm) 150 150 150 600	(mm)
	RWP13	38.433 38.850	(m) 2.863 1.350	Open Manhole	(mm) 2100 150	32.006	Level (m) 35.570	(mm) 750 150	42.001 43.000 44.001 32.005	Level (m) 36.561 37.061 36.561 35.720	(mm) 150 150 600 450	(mm)
	RWP13	38.433 38.850	(m) 2.863 1.350	Open Manhole Open Manhole	(mm) 2100 150	32.006	Level (m) 35.570 37.500	(mm) 750 150	42.001 43.000 44.001 32.005 41.001	Level (m) 36.561 37.061 36.561 35.720 35.870	(mm) 150 150 600 450 750	(mm)
	RWP13 S208	38.433 38.850 38.565	(m) 2.863 1.350 3.063	Open Manhole Open Manhole	(mm) 2100 150 2100	32.006	Level (m) 35.570 37.500	(mm) 750 150 750	42.001 43.000 44.001 32.005 41.001 32.006	Level (m) 36.561 37.061 36.561 35.720 35.870 35.502 37.102	(mm) 150 150 600 450 750 150	(mm)

32.009

48.001

49.000

48.002

50.000

51.000

50.001

50.002

53.000

50.003

32.010

54.000

32.011

55.000

32.012

32.013

150 56.000

150 57.000

1500 50.004

150 52.000

150 48.000

460

150

150

150

1500

150

2100

150

150

35.452

37.850

37.450

37.850

37.266

37.800

37.800

37.350

37.435

37.044

37.850

36.644

36.495

35.382

37.850

35.363

37.850

35.325

37,850

35,288

37.850

750 32.008

150 48.001

150 50.000

150

150

150

150

150

150

150

150

150

750

150

750

150

150

150

47.000

48.000

49.000

51.000

50.001

52.000

50.002

53.000

32.009

48.002

50.004

32.010

54.000

55.000

56.000

750 32.011

750 32.012

150 50.003

35.452

36.052

37.450

37.266

37.266

37.350

37.350

37.044

37.044

36.644

36.644

36.495

35.382

37.068

35.982

35.363

35.963

35.325

35.925

35.288

35.888

750

150

150

150

150

150

150

150

150

150

150

150

750

150

150

750

150

750

150

750

150

1086

BRANCH 38.719 3.267

38.800

BRANCH 38.800 1.534

RWP18 39.000 1.200

38.815

RWP19 38.850 1.415

S212 38.300 1.805

38.719

RWP21 39.000 1.150

BRANCH 38.719 3.356

RWP22 39.000 1.150

BRANCH 38.719 3.394

RWP23 39.000 1.150

BRANCH 38.719 3.432

BRANCH 38.600

BRANCH 38.250

S213

38.850 1.000

39.000 1.200

RWP15

S210

RWP16

RWP17

S211

Junction

Open Manhole

Open Manhole

Open Manhole

Open Manhole

Open Manhole

Open Manhole

Junction

Junction

Open Manhole

Open Manhole

Open Manhole

Open Manhole

Open Manhole

Junction

Junction

Junction

Junction

38.850 1.000 Open Manhole

1.350

1.465

1.556

RWP20 38.850 1.000 Open Manhole

1.606

3.337

RWP24 39.000 1.150 Open Manhole

RPS Group Plc		Page 5
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdro (mm)
BRANCH	38.719	3.468	Junction		32.014	35.251	750	32.013	35.251	750	
								57.000	35.851	150	
RWP25	39.000	1.150	Open Manhole	150	58.000	37.850	150				
BRANCH	38.719	3.508	Junction		32.015	35.211	750	32.014	35.211	750	
								58.000	35.811	150	
SDP12	39.000	1.650	Open Manhole	450	59.000	37.350	375				
SDP13	39.000	1.650	Open Manhole	450	60.000	37.350	300				
SDP14	39.000	1.650	Open Manhole	450	61.000	37.350	375				
RWP29	38.850	1.350	Open Manhole	150	62.000	37.500	150				
S214	38.590	1.490	Open Manhole	1500	62.001	37.100	150	62.000	37.100	150	
RWP30	38.850	1.000	Open Manhole	150	63.000	37.850	150				
S215(V)	38.590	3.095	Open Manhole	2700	61.001	35.495	525	61.000	36.837	375	119
								62.001	36.995	150	112
								63.000	35.870	150	
RWP27	38.850	1.500	Open Manhole	150	64.000	37.350	150				
S214a	38.590	1.490	Open Manhole	1500	64.001	37.100	150	64.000	37.100	150	
RWP28	38.850	1.000	Open Manhole	150	65.000	37.850	150				
S216(V)	38.590	3.275	Open Manhole	2700	59.001	35.315	675	59.000	36.837	375	122
								60.000	36.837	300	114
								61.001	35.460	525	
								64.001	36.935	150	109
								65.000	35.835	150	
RWP26	39.000	1.150	-	150	66.000	37.850	150				
S217	38.719	3.695	Open Manhole	2700	32.016	35.024	900		35.174	750	
								59.001	35.249	675	
								66.000	37.048	150	127
			Open Manhole	150	67.000	37.850	150				
BRANCH	38.719	3.729	Junction		32.017	34.990	900		34.990	900	
								67.000	35.740	150	
			Open Manhole	150	68.000	38.000	150				
BRANCH	38.719	3.762	Junction		32.018	34.957	900	32.017	34.957		
								68.000	35.707	150	
			Open Manhole	150	69.000	38.000	150				
BRANCH	38.719	3.799	Junction		32.019	34.920	900	32.018	34.920	900	
	20.055	1						69.000	35.670	150	
			Open Manhole	150	70.000	38.000	150	22 010	24 004	000	
BRANCH	38.719	3.828	Junction		32.020	34.891	900	32.019	34.891	900	
DUDOC	20.000	1 000		150	71 000	27 000	150	70.000	35.641	150	
			Open Manhole		71.000	37.800	150				
			Open Manhole		72.000		150	71 000	27 250	150	
SZ18	38.825	1.475	Open Manhole	1500	71.001	37.350	150	71.000	37.350	150	

PS Group Pl										Page	e 6
oble House,	-	cal Di	rive								
inford Wood	l										
itlton Keyr		4K14 (6QP							M	icro
ate 21/09/2	023 13	3:57			Designe		ainaq				
ile ENV3 DF	RAIAGE	25082	23 reduced	cat	Checked	1					uniug
nnovyze					Network						
				Manhole	e Schedu						
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L* (mm)	W PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdron (mm)
								72.000	37.350	150	
RWP.37	38,850	1.000	Open Manhole	15	73.000	37.850	150	, 2,0000		100	
	38.585		Junction		71.002	37.044		71.001	37.044	150	
								73.000	37.044	150	
RWP38	38.850	1.000	Open Manhole	15	74.000	37.850	150				
			Open Manhole	150	71.003	36.677	150	71.002	36.677	150	
								74.000	36.677	150	
RWP39	39.000	1.000	Open Manhole	15	75.000	38.000	150				
S220	38.719	3.871	Open Manhole	210	32.021	34.848	900	32.020	34.848	900	
								71.003	35.598	150	
								75.000	37.272	150	167
			Open Manhole	15	76.000	38.000	150				
BRANCH	38.719	3.890	Junction		32.022	34.829	900	32.021	34.829	900	
44	~ ~ ~ ~ ~					~~~~~	1.5.0	76.000	35.579	150	
			Open Manhole	15	77.000	38.000	150		24.007		
BRANCH	38.719	3.912	Junction		32.023	34.807	900	32.022	34.807	900	
DMD / 2	39 000	1 000	Open Manhole	1	78.000	38.000	150	77.000	35.557	150	
			Open Manhole		0 32.024	34.777		32.023	34.777	900	
0221 (0000)	50.715	5.512		100	52.021	51.777	500	78.000		150	167
SDP03	39.000	1.500	Open Manhole	45	79.000	37.500	375				
			Open Manhole		80.000	37.650	150				
	38.700				80.001	37.273	150	80.000	37.273	150	
RWP44	38.850	1.200	Open Manhole	15	81.000	37.650	150				
RWP45	39.000	1.350	Open Manhole	15	82.000	37.650	150				
S223	38.695	1.545	Open Manhole	150	82.001	37.150	150	82.000	37.150	150	
RWP46	39.000	1.350	Open Manhole	15	83.000	37.650	150				
BRANCH	38.695	1.725	Junction		82.002	36.970	150	82.001	36.970	150	
								83.000	36.970	150	
			Open Manhole	15	84.000	37.650	150				
BRANCH	38.825	2.035	Junction		82.003	36.790	150	82.002	36.790	150	
	20.077					00.000		84.000	36.790	150	
S224 (V)	38.820	2.461	Open Manhole	210	79.001	36.359	525	79.000	37.350	375	84
								80.001	36.734	150	
								81.000	36.734	150	
C005	38 433	2 166	Open Manhole	1.90	79.002	36.267	525	82.003 79.001	36.734 36.267	150 525	
			Open Manhole		79.002 85.000	36.267	150	, , , , 001	50.207	525	
	38.430		Junction		79.003	36.223		79.002	36.223	525	
Divinoli	20.100					55.225	525	85.000	36.598	150	
RWP49	38.250	1.000	Open Manhole	15	86.000	37.250	150			200	
			-	1				I			

RPS Group Plc		Page 7
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginarie
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
BRANCH	38.430	2.252	Junction		79.004	36.178	525	79.003	36.178	525	
								86.000	36.553	150	
RWP50	38.250	1.000	Open Manhole	150	87.000	37.250	150				
BRANCH	38.430	2.297	Junction		79.005	36.133	525	79.004	36.133	525	
								87.000	36.508	150	
RWP51	38.250	1.000	Open Manhole	150	88.000	37.250	150				
BRANCH	38.500	2.412	Junction		79.006	36.088	525	79.005	36.088	525	
								88.000	36.463	150	
			Open Manhole	150	89.000	37.700	150				
BRANCH	38.500	2.436	Junction		79.007	36.064	525		36.064	525	
								89.000	36.439	150	
			Open Manhole	150		37.555	150				
BRANCH	38.500	2.471	Junction		79.008	36.029	525	79.007	36.029	525	
								90.000	36.404	150	
			Open Manhole		91.000	37.100	150				
S226	38.010	2.068	Open Manhole	1800	79.009	35.942	525	79.008	35.942	525	
								91.000	36.317	150	
			Open Manhole		92.000	37.500	375				
			Open Manhole	150	93.000	37.650	150				
S227			Open Manhole	1500	93.001	37.272	150	93.000	37.272	150	
			Open Manhole		94.000	37.650	150				
			Open Manhole		95.000	37.650	150				
			Open Manhole	150	96.000	37.061	150				
BRANCH	38.760	1.993	Junction		95.001	36.767	150	95.000	36.767	150	
2000 (TA)	20 700	2 264		0100	00 001	26.226	275	96.000	36.767	150	1014
S228(V)	38.700	2.364	Open Manhole	2100	92.001	36.336	375	92.000	37.350	375	1014
								93.001	36.561	150	FOO
								94.000	37.061 36.561	150	500
6330	20 120	2 010	Open Manhole	2100	79.010	35.412	675	79.009	35.562	150 525	
5229	30.430	3.010	open Mannore	2100	/9.010	55.412	075	92.001	35.712	375	
6330 (GIIDG)	39 600	3 3 2 1	Open Manhole	3000	79.011	35.279	675	79.010	35.279	675	
			Open Manhole		32.025	34.763		32.024		900	
5251	50.700	5.557		2700	52.025	54.705	1	79.011		675	
\$232	38 790	5 761	Open Manhole	3000	2.014	33.029	1200	2.013		900	
5252	50.750	5.701		5000	2.014	55.025	1200	32.025		-1	1405
5233	38 571	5 664	Open Manhole	2400	2.015	32.907	1200		32.907	1200	1405
			Open Manhole		97.000	37.450	1200		02.007	1200	
			Open Manhole		98.000	37.450	150				
			Open Manhole	2400		32.780	1200	2.015	32.780	1200	
2201							_2000	97.000	35.449	150	1619
	,		'		,						
				©198	32-2020) Innovyz	e				

RPS Group i	10									Page o	
Noble House	e, Cap	ital	Drive								
Linford Woo	od										
Mitlton Key	ynes,	MK14	6QP							_ Micr	
Date 21/09,	/2023	13:57		De	esigned	by LARS	ARMES				
File ENV3 I	DRAIAG	E 250	823 reduced (necked i	-				Uldi	nage
Innovyze						2020.1.3					
]	Manhole S	Schedul	es for St	corm				
			-								
MH	МН	МН	МН	МН		Pipe Out			Pipes In	I	
Name	CL (m)	Depth	Connection	Diam.,L*W	PN	Invert	Diameter	PN	Invert	Diameter	
		(m)		(mm)		Level (m)	(mm)		Level (m)	(mm)	(mm)
								98.000	35.449	150	161
	37.908		Open Manhole	2400	2.017	32.669	1200	2.016	32.669	1200	
	38.800		Open Manhole	150	99.000	37.750	150				
	38.660		Open Manhole	460	99.001	37.595	150	99.000	37.595	150	
	38.800		Open Manhole	150		37.750	150				
BRANCH	38.660	1.222	Junction		99.002	37.438	150	99.001	37.438	150	
								100.000	37.438	150	
	38.660		Open Manhole	1200	99.003	37.203	150	99.002	37.203	150	
	38.800		Open Manhole	150		37.650	150				
BRANCH	39.100	2.029	Junction		99.004	37.071	150	99.003	37.071	150	
								101.000	37.071	150	
	38.800		Open Manhole		102.000	37.800	150				
S238	38.800	3.368	Sealed Manhole	1200	99.005	35.432	225	99.004	36.932	150	1425
								102.000	36.932	150	1425
	38.256		Open Manhole	150	103.000	37.056	150				
BRANCH	38.170	3.238	Junction		99.006	34.932	225		34.932		
								103.000	35.007	150	
	38.246		Open Manhole	150	104.000	37.046	150				
BRANCH	38.201	3.529	Junction		99.007	34.672	225	99.006	34.672	225	
								104.000	34.747	150	
	37.806				105.000	36.806					
S239	37.908	5.320	Open Manhole	2700	2.018	32.588	1200		32.588	1200	
								99.007	34.379		816
								105.000	34.799		1161
ATT INLET 01			Junction		2.019	32.575	1200	2.018	32.575	1200	
	39.000		Open Manhole		106.000	37.500	375				
S400 (V)			Open Manhole		106.001	36.825	525	106.000	37.350	375	375
	38.850		Open Manhole		107.000	37.650	150				
S401	38.647	2.163	Open Manhole	1800	106.002	36.484	525	106.001	36.484	525	
								107.000	36.859	150	
	38.850		Open Manhole	150	108.000	37.650	150				
BRANCH	38.647	2.200	Junction		106.003	36.447	525	106.002	36.447		
								108.000	36.822	150	
	38.850		Open Manhole	150	109.000	37.650	150				
BRANCH	38.647	2.292	Junction		106.004	36.355	525	106.003	36.355		
								109.000	36.730	150	
	38.850		Open Manhole		110.000	37.650	150				
S402	38.647	2.426	Open Manhole	1800	106.005	36.221	600	106.004	36.296	525	
								110.000	36.671	150	
RWP64	38.850		Open Manhole	150	111.000	37.650	150				
	38.647		Junction		106.006	36.190		106.005	36.190	600	

RPS Group Plc

Page 8

RPS Group Plc		Page 9
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginarie
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
								111.000	36.640	150	
RWP65	38.850	1.200	Open Manhole	150	112.000	37.650	150				
BRANCH	38.647	2.497	Junction		106.007	36.150	600	106.006	36.150	600	
								112.000	36.600	150	
SDP06	39.000	1.500	Open Manhole	450	113.000	37.500	375				
S403	38.647	2.616	Open Manhole	1800	106.008	36.031	675	106.007	36.106	600	
								113.000	37.350	375	1019
RWP66	38.850	1.200	Open Manhole	150	114.000	37.650	150				
BRANCH	38.647	2.642	Junction		106.009	36.005	675	106.008	36.005	675	
								114.000	36.530	150	
RWP67	38.850	1.200	Open Manhole	150	115.000	37.650	150				
BRANCH	38.647	2.677	Junction		106.010	35.970	675	106.009	35.970	675	
								115.000	36.495	150	
			Open Manhole	150	116.000	37.650	150				
BRANCH	38.647	2.715	Junction		106.011	35.932	675		35.932	675	
								116.000	36.457	150	
			Open Manhole		117.000	37.650	150				
S404	38.460	2.596	Open Manhole	1800	106.012	35.864	675		35.864	675	
								117.000	36.389	150	
			Open Manhole	150	118.000	37.850	150				
BRANCH	38.290	2.452	Junction		106.013	35.838	675	106.012	35.838	675	
a 4 0 F	20.120	0 015		1000	100 014	25 015	675	118.000	36.363	150	
			Open Manhole		106.014	35.815		106.013	35.815	675	
			Open Manhole		119.000	37.950	150	119.000	27 175	150	
			Open Manhole Open Manhole		119.001 120.000	37.475 37.950	150 150	119.000	37.475	150	
	38.730		-	150	119.002			119.001	27 165	150	
DRANCT	30.730	1.575	Junction		119.002	37.155	150	120.000	37.155 37.155	150	
DWD 7 3	39 000	1 050	Open Manhole	150	121.000	37.950	150	120.000	57.155	150	
			Open Manhole		119.003			119.002	36.795	150	
3407	50.750	1.955		1500	119.005	50.795	100	121.000	36.795	150	
S408	38 150	2 602	Open Manhole	1800	106.015	35.548	750	106.014	35.623	675	
5100	55.150	2.002	oren namore	1000		55.510	, 50	119.003	36.148	150	
RWP74	38,700	1.100	Open Manhole	150	122.000	37.600	150		00.110	100	
			Open Manhole		122.000	37.556		122.000	37.556	150	
			Open Manhole		123.000	37.700	150	122.000	2,.000	100	
	38.650		Junction	100	122.002	37.486		122.001	37.486	150	
							0	123.000	37.486	150	
RWP76	38.700	1.000	Open Manhole	150	124.000	37.700	150				
	38.650		Junction		122.003	37.416		122.002	37.416	150	
								124.000	37.416	150	

RPS Group Plc		Page 10
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginarie
Innovyze	Network 2020.1.3	·

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
SDP7	39.000	1.500	Open Manhole	600	125.000	37.500	450				
SDP8	39.000	1.500	Open Manhole	600	126.000	37.500	450				
6410(V)	38.650	2.330	Open Manhole	2400	122.004	36.320	750	122.003	37.370	150	450
								125.000	37.350	450	730
								126.000	37.350	450	730
SDP9	39.000	1.500	Open Manhole	600	127.000	37.500	450				
6411(V)	38.650	2.379	Open Manhole	2100	122.005	36.271	750	122.004	36.271	750	
								127.000	37.350	450	779
RWP77	38.700	1.000	Open Manhole	150	128.000	37.700	150				
BRANCH	38.650	2.513	Junction		122.006	36.137	750	122.005	36.137	750	
								128.000	36.737	150	
			Open Manhole	150	129.000	37.700	150				
BRANCH	38.650	2.750	Junction		122.007	35.900	750	122.006	35.900	750	
								129.000	36.500	150	
			Open Manhole		130.000	37.700	150				
	38.550		-		130.001	37.400		130.000	37.390	150	
	38.200		-		131.000	37.250	150				
S413	38.750	1.569	Open Manhole	1500	130.002	37.181	150	130.001	37.181	150	
								131.000	37.181	150	
	38.850		-		132.000	37.850	150	1.0.0.000	0.7.000	150	
BRANCH	38.750	1.712	Junction		130.003	37.038	150	130.002	37.038	150	
5175.0.0		1 000		150	100.000	07.000	150	132.000	37.038	150	
			Open Manhole	150	133.000	37.200	150	100.000	26.022	150	
BRANCH	38.750	1.81/	Junction		130.004	36.933	150	130.003	36.933	150	
0.000	20 050	1 000	Onen Manhala	150	124 000	37.850	150	133.000	36.933	150	
	38.600		Open Manhole	150	134.000		150	120 004	26 746	1 5 0	
BRANCH	38.600	1.854	Junction		130.005	36.746	150	130.004	36.746	150	
	20 050	1 000	Open Manhole	150	135.000	37.850	150	134.000	36.746	150	
			Open Manhole		130.006			130.005	36.496	150	
2414	50.750	2.234	open Mannore	1500	130.000	50.490	100	135.000	36.496	150	
\$415	38 650	2 945	Open Manhole	1800	122.008	35.705	750	122.007	35.705	750	
5415	50.050	2.945	open Mannore	1000	122.000	55.705	750	130.006	36.305	150	
S416	38,000	2.775	Open Manhole	2400	106.016	35.225	900	106.015	35.375	750	
0110		2.,,,,	opon namoro	2100	100.010	001220	500	122.008	35.375	750	
RWP85	38 200	1 350	Open Manhole	150	136.000	36.850	150	122.000	33.373	700	
			Open Manhole		106.017	35.143		106.016	35.143	900	
								136.000	35.893	150	
RWP86	38.200	1.350	Open Manhole	150	137.000	36.850	150				
			Open Manhole		106.018	35.081		106.017	35.081	900	
-								137.000	35.831	150	

RPS Group Plc		Page 11
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamaye
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdroy (mm)
S419	38.450	3.481	Open Manhole	2400	106.019	34.969	900	106.018	34.969	900	
RWP87	38.850	1.000	Open Manhole	150	138.000	37.850	150				
BRANCH	38.490	3.561	Junction		106.020	34.929	900	106.019	34.929	900	
								138.000	35.679	150	
RWP88	38.850	1.000	Open Manhole	150	139.000	37.850	150				
BRANCH	38.490	3.588	Junction		106.021	34.902	900	106.020	34.902	900	
								139.000	35.652	150	
RWP89	38.850	1.000	Open Manhole	150	140.000	37.850	150				
S420	38.490	3.630	Open Manhole	2400	106.022	34.860	900	106.021	34.860	900	
								140.000	35.610	150	
RWP90	38.850	1.000	Open Manhole	150	141.000	37.850	150				
BRANCH	38.490	3.662	Junction		106.023	34.828	900	106.022	34.828	900	
								141.000	35.578	150	
RWP91	38.850	1.000	Open Manhole	150	142.000	37.850	150				
BRANCH	38.490	3.687	Junction		106.024	34.803	900	106.023	34.803	900	
								142.000	35.553	150	
RWP92	38.850	1.000	Open Manhole	150	143.000	37.850	150				
BRANCH	38.490	3.715	Junction		106.025	34.775	900	106.024	34.775	900	
								143.000	35.525	150	
GULLEY			Open Manhole		144.000	37.800	150				
S421			Open Manhole		144.001	37.592		144.000	37.592	150	
S422	38.490	3.737	Open Manhole	2400	106.026	34.753	900	106.025	34.753	900	
								144.001	37.175	150	167
			Open Manhole	150	145.000	37.850	150				
BRANCH	38.490	3.747	Junction		106.027	34.743	900	106.026	34.743	900	
				150		05.050	150	145.000	35.493	150	
			Open Manhole	150	146.000	37.850	150		04 546		
BRANCH	38.490	3.774	Junction		106.028	34.716	900	106.027	34.716	900	
	20.050	1 000		150	147 000	27 050	1 5 0	146.000	35.466	150	
	38.850		Open Manhole Junction	120	147.000	37.850 34.678	150	106.028	34.678	900	
DRANCT	30.490	3.012			100.029	34.070	900	147.000	35.428	150	
DWD96	38 850	1 000	Open Manhole	150	148.000	37.850	150	147.000	55.420	100	
			Open Manhole		106.030	34.651		106.029	34.651	900	
5725	50.490		Spen mannore	2400	1 100.030	54.051	200	148.000	35.401	150	
BMDOC	38 850	1 000	Open Manhole	150	149.000	37.850	150	110,000	33.4UI	100	
	38.490		Junction	100	106.031	34.617		106.030	34.617	900	
						01.01/	500	149.000	35.367	150	
RWP97	38,850	1.000	Open Manhole	150	150.000	37.850	150			100	
	38.490		Junction		106.032	34.597		106.031	34.597	900	
							200	150.000	35.347	150	

	lc									Page	12
Noble House	, Capi	tal D	rive								
Linford Woo	d										-
Aitlton Key	nes,	MK14	6QP							_ Mic	
Date 21/09/	2023 1	3 : 57			Designe	d by LARS	S.ARMES				
File ENV3 D	RAIAGE	2508	23 reduced	cat	Checked	by				DIC	inage
Innovyze					Network	2020.1.3	3			I	
				Manhole	Schedu	les for S	Storm				
МН	MH	MH	МН	MH		Pipe Out			Pipes In		
Name	CL (m)	Depth	Connection	Diam.,L*W	I PN	Invert	Diameter	PN	Invert	Diameter	
		(m)		(mm)		Level (m)	(mm)		Level (m)	(mm)	(mm)
SDP10	39.000	1.500	Open Manhole	450	151.000	37.500	375				
S424 (V)	38.850	2.025	Open Manhole	2400	151.001	36.825	525	151.000	37.350	375	37
			-								
RWP98	38.850	1.000	Open Manhole	150	152.000	37.850	150				
			Open Manhole Open Manhole		152.000 151.002	37.850 36.787		151.001	36.787	525	
								151.001	36.787 37.162	525 150	
S425	38.850	2.063		1800							
S425 RWP99	38.850	2.063	Open Manhole	1800	151.002	36.787	525 150				
S425 RWP99	38.850 38.600	2.063	Open Manhole Open Manhole	1800	151.002 153.000	36.787	525 150	152.000	37.162	150	
S425 RWP99 BRANCH	38.850 38.600 38.580	2.063 1.000 1.862	Open Manhole Open Manhole	1800	151.002 153.000	36.787	525 150	152.000 151.002	37.162 36.718	150 525	
S425 RWP99 BRANCH RWP100	38.850 38.600 38.580	2.063 1.000 1.862 1.000	Open Manhole Open Manhole Junction	1800	 151.002 153.000 151.003 	36.787 37.600 36.718	525 150 525 150	152.000 151.002	37.162 36.718	150 525	
S425 RWP99 BRANCH RWP100	38.850 38.600 38.580 38.600	2.063 1.000 1.862 1.000	Open Manhole Open Manhole Junction Open Manhole	1800	 151.002 153.000 151.003 154.000 	36.787 37.600 36.718 37.600	525 150 525 150	152.000 151.002 153.000	37.162 36.718 37.093	150 525 150	
S425 RWP99 BRANCH RWP100 BRANCH	38.850 38.600 38.580 38.600 38.550	2.063 1.000 1.862 1.000 1.838	Open Manhole Open Manhole Junction Open Manhole	1800 150 150	 151.002 153.000 151.003 154.000 	36.787 37.600 36.718 37.600	525 150 525 150 525	152.000 151.002 153.000 151.003	37.162 36.718 37.093 36.712	150 525 150 525	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdr (mm)
SDP10	39.000	1.500	Open Manhole	450	151.000	37.500	375				
S424 (V)	38.850	2.025	Open Manhole	2400	151.001	36.825	525	151.000	37.350	375	3
RWP98	38.850	1.000	Open Manhole	150	152.000	37.850	150				
S425	38.850	2.063	Open Manhole	1800	151.002	36.787	525	151.001	36.787	525	
								152.000	37.162	150	
	38.600		Open Manhole	150	153.000	37.600	150				
BRANCH	38.580	1.862	Junction		151.003	36.718	525	151.002	36.718	525	
								153.000	37.093	150	
			Open Manhole	150	154.000	37.600	150				
BRANCH	38.550	1.838	Junction		151.004	36.712	525	151.003	36.712	525	
								154.000	37.087	150	
S426	38.490	4.025	Open Manhole	2400	106.033	34.465	975	106.032	34.540	900	
51151.01	20.050	1 000		150	1 0 0 0	27.050	150	151.004	36.690	525	1'
			Open Manhole		155.000	37.850	150	1	27 202	150	
	38.850 38.600		Open Manhole		155.001	37.382	150	155.000	37.382	150	
	38.580		Open Manhole Junction	1500	156.000	37.600 37.035	150	155.001	37.035	150	
DRANCH	30.300	1.545	Junceron		155.002	57.055	150	156.000	37.035	150	
	38 600	1 000	Open Manhole	150	157.000	37.600	150	130.000	57.055	150	
	38.550		Junction	150	155.003	37.004		155.002	37.004	150	
Divition		1.010	Gunderon		100.000	37.001	100	157.000	37.004	150	
S428	38.490	4.214	Open Manhole	2100	106.034	34.276	975	106.033	34.276	975	
								155.003	36.896	150	1
RWP106	38.850	1.050	Open Manhole	150	158.000	37.800	150				
	38.800		Open Manhole		158.001	37.659	150	158.000	37.659	150	
RWP107	38.850	1.000	Open Manhole	150	159.000	37.850	150				
SDP11	39.000	1.500	Open Manhole	450	160.000	37.500	375				
S430(V)	38.800	1.900	Open Manhole	2100	158.002	36.900	450	158.001	37.200	150	
								159.000	37.200	150	
								160.000	37.350	375	
S431	38.500	4.425	Open Manhole	2400	106.035	34.075	975	106.034	34.075	975	
								158.002	36.744	450	2
S432(SUDS)	38.500	4.483	Open Manhole	3600	106.036	34.017	975	106.035	34.017	975	
IT INLET 03	38.500	4.507	Junction		106.037	33.993	975	106.036	33.993	975	
OB31	38.555	1.050	Open Manhole	450	161.000	37.505	150				
	38.612		-	1500	161.001	37.362	225	161.000	37.437	150	
	38.555				162.000	37.505	150				
S301	38.612	2.125	Open Manhole	1500	161.002	36.487	225	161.001	36.487	225	
								162.000	36.562	150	
			Open Manhole	450	163.000	37.231	150				
BRANCH	38.288	2.207	Junction		161.003	36.081	225	161.002	36.081	225	

PS Group	Plc									Pag	ge 13
oble Hou inford W litlton K	lood	-									Micro
ate 21/0	9/2023	3 13 : 5	7		Desig	ned by L	ARS.ARME	IS			
File ENV3	DRAIA	AGE 25	0823 reduc	ed cat	Check	ed by					Drainag
Innovyze					Netwo	ork 2020.	1.3				
	I	I									1
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
		Depth		Diam.,L*W	PN	Invert		PN 163.000	Invert		(mm)
Name	CL (m)	Depth (m)		Diam.,L*W (mm)	PN 161.004	Invert Level (m)	(mm)		Invert Level (m)	(mm)	(mm)
Name S302	CL (m) 38.002	Depth (m) 2.149	Connection	Diam.,L*W (mm) 1500		Invert Level (m) 35.853	(mm)	163.000	Invert Level (m) 36.156	(mm) 150	(mm)
Name 5302 0B34	CL (m) 38.002	Depth (m) 2.149 1.050	Connection Open Manhole	Diam.,L*W (mm) 1500	161.004	Invert Level (m) 35.853 36.640	(mm) 300 225	163.000	Invert Level (m) 36.156	(mm) 150	(mm)
Name S302 OB34	CL (m) 38.002 37.690	Depth (m) 2.149 1.050	Connection Open Manhole Open Manhole	Diam.,L*W (mm) 1500	161.004 164.000	Invert Level (m) 35.853 36.640	(mm) 300 225	163.000 161.003	Invert Level (m) 36.156 35.928	(mm) 150 225	(mm)

								164.000	25 620	225		
0837	37.690	1 1 2 5	Open Manhole	450	165.000	36.565	150	164.000	35.639	225		
	37.610		Open Manhole	450	166.000	36.560	150					
	38.300		Open Manhole	1500		35.560		166.000	35.560	150		
	38.075		Open Manhole	450		36.950	225	100.000	33.300	100		
	37.743		Open Manhole	1500	161.006	34.851		161.005	35.001	300		
5501	57.715	2.052		1000	101.000	51.001	100	165.000	35.001	150		
								166.001	35.151	150		
								167.000	35.076	225		
OB38	37.690	1.125	Open Manhole	450	168.000	36.565	225					
	37.743		Open Manhole	1500	161.007	34.576		161.006	34.651	450		
			-					168.000	34.876	225		
OB39	37.690	1.125	Open Manhole	450	169.000	36.565	225					
BRANCH	37.743	3.338	Junction		161.008	34.405	525	161.007	34.405	525		
								169.000	34.705	225		
OB40	37.883	1.000	Open Manhole	450	170.000	36.883	150					
S306	37.743	3.385	Open Manhole	1800	161.009	34.358	525	161.008	34.358	525		
								170.000	36.383	150	1650	
OB40a	37.883	1.000	Open Manhole	450	171.000	36.883	150					
OB41	37.690	1.125	Open Manhole	450	172.000	36.565	225					
S307	37.743	3.547	Open Manhole	1800	161.010	34.196	600	161.009	34.271	525		
								171.000	36.296	150	1650	
								172.000	36.221	225	1650	
OB42	37.700	1.000	Open Manhole	450	173.000	36.700	150					
BRANCH	37.970	3.849	Junction		161.011	34.121	600	161.010	34.121	600		
								173.000	34.571	150		
OB43	38.265	1.000	Open Manhole	450	174.000	37.265	150					
S308	38.300	4.241	Open Manhole	1800	161.012	34.059	600	161.011	34.059	600		
								174.000	36.195	150	1686	
OB44	38.415	1.000	Open Manhole	450	175.000	37.415	150					
BRANCH	38.463	4.489	Junction		161.013	33.974	600	161.012	33.974	600		
								175.000	34.397	150		
OB45	38.415	1.000	Open Manhole	450	176.000	37.415	225					
S309	38.463	4.735	Open Manhole	1800	161.014	33.728	675	161.013	33.803	600		
								176.000	35.932	225	1754	
OB46	38.415	1.000	Open Manhole	450	177.000	37.415	150					
S310	38.463	4.887	Open Manhole	1800	161.015	33.576	675	161.014	33.576	675		
										·		
				0	1082-202							

RPS Group Pl Noble House,	, Capi	tal D	rive							Page	14
inford Wood											
litlton Keyr		MK14	6QP							— Mic	10
ate 21/09/2					-	d by LARS	S.ARMES				inaqo
ile ENV3 DF	RAIAGE	2508	23 reduced		Checked						
innovyze				1	letwork	2020.1.3	3				
				Manhole	Schedu	les for S	Storm				
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdro (mm)
								177.000	35.895	150	179
OB47	38.365	1.000	Open Manhole	450	178.000	37.365	150				
BRANCH	38.463	4.937	Junction		161.016	33.526	675	161.015	33.526	675	
								178.000	34.051	150	
OB48	38.400	1.000	Open Manhole	450	179.000	37.400	150				
OB49	38.518	1.000	Open Manhole	450	180.000	37.518	150				
S311	38.463	5.063	Open Manhole	1800	161.017	33.400	675	161.016	33.400	675	
								179.000	35.925	150	20
								180.000	35.925	150	20
OB50	38.517	1.050	Open Manhole	450	181.000	37.467	150				
S312	38.560	1.267	Open Manhole	1500	181.001	37.293	150	181.000	37.293	150	
OB51	38.517	1.000	Open Manhole	450	182.000	37.517	150				
S313	38.590	1.790	Open Manhole	1500	181.002	36.800	225	181.001	36.875	150	
								182.000	36.875	150	
OB52	38.480	1.050	Open Manhole	450	183.000	37.430	150				
BRANCH	38.520	2.379	Junction		181.003	36.141	225	181.002	36.141	225	
								183.000	36.216	150	
S314	38.500	2.645	Open Manhole		181.004	35.855	225	181.003	35.855	225	
			Open Manhole		184.000	37.380	150				
S315	38.600	5.415	Open Manhole	2400	161.018	33.185	750	161.017		675	
								181.004	35.654	225	19
								184.000	35.435	150	16
			Open Manhole		161.019	33.054		161.018	33.154	750	1
	38.700		-	2100	161.020	33.023		161.019	33.023	750	
ATT INLET 02			Junction		161.021	33.000		161.020	33.000	750	
ATT TANK 01	37.900	5.500	Open Manhole	1200	2.020	32.400	1200		32.500	1200	1
								106.037	33.846	975	12
								161.021	32.850	750	
			Open Manhole	1200		32.350	1200	2.020	32.350	1200	
			Open Manhole		185.000	37.299	300				
			Open Manhole		186.000	37.137	300	105 005	06.00-	0.05	
S500	38.512	1.692	Open Manhole	1500	185.001	36.820	375	185.000	36.895	300	
	20 525	1 077		1 = 0 =	105 000	0.0.005	0.7.5	186.000	36.895	300	
			Open Manhole		185.002	36.665		185.001	36.665	375	
			Open Manhole	450	187.000	36.978	300	105 000	26 405	075	
BRANCH	38.500	2.004	Junction		185.003	36.496	375	185.002	36.496	375	
00.00	27 001	1 000		450	100 000	26.001	1 = 0	187.000	36.571	300	
			Open Manhole		188.000	36.891	150				
OB64			Open Manhole Open Manhole		189.000 185.004	36.769 36.261	150	185.003	36.261	375	

ovyze

RPS Group Plc		Page 15
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginarie
Innovyze	Network 2020.1.3	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdron (mm)
								189.000	36.486	150	
OB65	37.619	1.050	Open Manhole	450	190.000	36.569	150				
BRANCH	37.500	1.367	Junction		185.005	36.133	375	185.004	36.133	375	
								190.000	36.358	150	
OB66	37.619	1.000	Open Manhole	450	191.000	36.619	150				
S503	37.580	1.571	Open Manhole	1500	185.006	36.009	450	185.005	36.084	375	
								191.000	36.309	150	
OB67	37.239	1.125	Open Manhole	450	192.000	36.114	225				
BRANCH	37.360	1.515	Junction		185.007	35.845	450	185.006	35.845	450	
								192.000	36.070	225	
OB68	37.566	1.000	Open Manhole	450	193.000	36.566	150				
BRANCH	37.600	1.899	Junction		185.008	35.701	450	185.007	35.701	450	
								193.000	36.001	150	
OB69	37.320	0.992	Open Manhole	450	194.000	36.328	150				
OB70	37.250	1.200	Open Manhole	450	195.000	36.050	300				
S504	37.380	1.500	Open Manhole	1500	194.001	35.880	300	194.000	36.030	150	
								195.000	35.880	300	
OB71	37.228	1.050	Open Manhole	450	196.000	36.178	150				
S505	37.380	1.635	Open Manhole	1500	194.002	35.745	300	194.001	35.745	300	
								196.000	35.895	150	
OB72	37.315	1.000	Open Manhole	450	197.000	36.315	150				
OB73	37.220	1.125	Open Manhole	450	198.000	36.095	300				
S506	37.320	1.833	Open Manhole	1500	194.003	35.487	450	194.002	35.637	300	
								197.000	35.787	150	
								198.000	35.637	300	
OB75	37.347	1.000	Open Manhole	450	199.000	36.347	150				
OB74	37.503	0.992	Open Manhole	450	200.000	36.511	150				
S507	37.535	1.278	Open Manhole	1500	200.001	36.257	150	200.000	36.257	150	
S508	37.410	1.522	Open Manhole	1500	199.001	35.888	150	199.000	35.888	150	
								200.001	35.888	150	
			Open Manhole		201.000	36.418	150				
S509	37.500	2.172	Open Manhole	1800	194.004	35.328	450	194.003	35.328	450	
								199.001	35.628	150	
								201.000	35.628	150	
			Open Manhole		194.005	35.247		194.004	35.247	450	
	37.649				202.000	36.599	150				
S511	37.687	2.582	Open Manhole	1800	194.006	35.105	450	194.005	35.105	450	
								202.000	35.405	150	
			Open Manhole		203.000	36.599	150				
S512	37.687	2.864	Open Manhole	1800	194.007	34.823	525	194.006	34.898	450	
								203.000	35.198	150	

RPS Group Plc	I	Page 16
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Mirro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	
Manhole	Schedules for Storm	
MH MH MH MH MH	Pipe Out Pipes In PN Invert Diameter PN Invert Diamet	B. J. J.

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S513	37.687	3.223	Open Manhole	1800	185.009	34.464	750	185.008	35.646	450	882
								194.007	34.688	525	
OB79	38.103	1.085	Open Manhole	450	204.000	37.018	300				
S514	38.200	1.500	Open Manhole	1500	204.001	36.700	300	204.000	36.700	300	
OB80	37.819	1.125	Open Manhole	450	205.000	36.694	225				
BRANCH	37.844	1.275	Junction		204.002	36.569	300	204.001	36.569	300	
								205.000	36.644	225	
S515	37.720	3.383	Open Manhole	2100	185.010	34.337	825	185.009	34.412	750	
								204.002	36.506	300	1644
	37.900		_		206.000	36.850	150				
	37.960		-	450		36.960	150				
	38.139		-	450		37.147	150				
	38.104		-	450		37.112	150	200 000		1 5 0	
5516	38.210	1.425	Open Manhole	1500	208.001	36.785	225	208.000	36.860 36.860	150	
CIITTV	20 225	1 000	Open Manhole	450	210.000	37.335	150	209.000	20.000	150	
	38.210		Junction	400	208.002	36.611	225	208.001	36.611	225	
SKANCH	50.210	1.399			200.002	50.011	225	210.000	36.686	150	
\$517	38 000	1 576	Open Manhole	1500	206.001	36.424	300	206.000	36.574	150	
0017	30.000	1.070		1000	200.001	50.121	500	207.000	36.574	150	
								208.002	36.499	225	
OB90A	38.200	1.400	Open Manhole	150	211.000	36.800	150				
	38.200		Open Manhole	150		36.800	150				
OB85	37.780	0.992	Open Manhole	450	213.000	36.788	150				
OB86	37.520	0.992	Open Manhole	450	214.000	36.528	150				
S518	37.680	1.500	Open Manhole	1500	213.001	36.180	225	213.000	36.255	150	
								214.000	36.255	150	
OB87	37.720	1.000	Open Manhole	450	215.000	36.720	150				
BRANCH	37.830	1.795	Junction		213.002	36.035	225	213.001	36.035	225	
								215.000	36.110	150	
OB88	37.897	1.050	Open Manhole	450	216.000	36.847	150				
OB89	37.886	1.000	Open Manhole	450	217.000	36.886	150				
S519	37.980	2.188	Open Manhole	1800	213.003	35.792	300	213.002	35.867	225	
								216.000	35.942	150	
								217.000	35.942	150	
S520	37.980	2.333	Open Manhole	1800	206.002	35.647	375	206.001	36.338	300	616
								211.000	35.872	150	
								212.000	35.872	150	
								213.003	35.722	300	
			Open Manhole		218.000	36.873	150				
OB91	37.350	0.992	Open Manhole	450	219.000	36.358	150				

lc									Page	17			
, Capi	tal D	rive											
d													
nes,	MK14	6QP							Mir				
2023 1	3 : 57			Designed	d by LARS	.ARMES							
RAIAGE	2508	23 reduced	cat	Checked	by				DIC	inage			
			L	Network	2020.1.3	3							
Manhole Schedules for Storm													
MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*1 (mm)	n Pn	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)			
37.250	1.085	Open Manhole	450	220.000	36.165	225							
37.500	2.277	Open Manhole	1800	206.003	35.223	450	206.002	35.298	375				
							218.000	35.523	150				
							219.000	35.523	150				
							220.000	35.448	225				
37.220	0.992	Open Manhole	450	221.000	36.228	225							
37.400	2.586	Junction		206.004	34.814	450	206.003	34.814	450				
							221.000	35.039	225				
		-			36.600	150							
37.400	3.185	Open Manhole	2400	185.011	34.215	900							
										8			
										8			
		-								335			
		-	2400										
			120										
57.300	5.000	open mannote	1200	2.022	52.500	525							
37,285	5.022	Open Manhole	1800	2 023	32 263	525							
		-											
		-				300							
37.350		Open Manhole			35.850	450	2.021	36.000	300				
							0			1			
	, Capi d nes, 2023 1 RAIAGE MH CL (m) 37.250 37.500 37.500 37.500 37.400 37.400 37.400 37.400 37.400 37.400 37.350 37.700 37.700 37.700 37.700 37.285 38.070 38.070	MH MH CL (m) MH 37.250 1.085 37.250 1.085 37.250 2.277 37.250 1.085 37.400 2.586 37.400 3.185 37.350 3.481 37.700 3.858 37.350 3.481 37.300 5.000 37.855 5.022 38.070 5.885	MH MH 6QP 2023 13:57 RAIAGE 250823 reduced MH Depth MH CL (m) Depth (m) MH 37.250 1.085 Open Manhole 37.500 2.277 Open Manhole 37.400 2.586 Junction 37.400 2.586 Junction 37.400 3.185 Open Manhole 37.400 3.185 Open Manhole 37.350 3.481 Open Manhole 37.350 3.481 Open Manhole 37.350 3.481 Open Manhole 37.700 3.876 Junction 37.300 5.000 Open Manhole 37.300 5.000 Open Manhole 37.300 5.000 Open Manhole 37.285 5.022 Open Manhole 37.285 5.022 Open Manhole 37.285 5.022 Open Manhole 38.070 5.885 Open Manhole	Main Mither Mither 2023 13:57 RAIAGE 250823 reduced cat Manhole Mither Mither Mither CL (m) Depth (m) Mither Mither Mither 37.250 1.085 Open Manhole 450 37.250 1.085 Open Manhole 450 37.250 2.277 Open Manhole 450 37.400 2.586 Junction 450 37.400 2.586 Junction 450 37.400 3.185 Open Manhole 2400 37.350 3.481 Open Manhole 2400 37.700 3.858 Open Manhole 1200 37.300 5.000 Open Manhole 2400 37.285 5.022 Open Manhole 2400 38.070 5.885 Open Manhole 2400	, Capital Drive	Mile Mile Mile Mile Designed by LARS MAIAGE 250823 reduced cat Designed by LARS Checked by Network 2020.1.3 Manhole Schedules for S Mile MH MH Cl (m) Depth Connection MH Mile Connection Mile Pipe Out 37.250 1.085 Open Manhole 450 220.000 36.165 37.500 2.277 Open Manhole 450 221.000 36.228 37.400 2.586 Junction 450 222.000 36.600 37.400 3.185 Open Manhole 2400 185.011 34.215 37.300 3.481 Open Manhole 2400 185.013 3.8424	MRI MK14 GQP 2023 13:57 Designed by LARS.ARMES RAIAGE 250823 reduced cat Checked by Network 2020.1.3 Manhole Schedules for Storm MH MH MH PN Pipe Out 1.085 Open Manhole 450 220.000 36.165 225 37.250 1.085 Open Manhole 450 221.000 36.228 225 37.400 2.586 Junction 450 222.000 36.600 150 37.400 1.000 Open Manhole 450 222.000 36.600 150 37.400 3.185 Open Manhole 450 222.000 36.600 150 37.400 3.858 Open Manhole 450 222.000 36.600 150 37.400 3.858 Open Manhole 2400 185.011 34.215 900 37.300 3.00 Open Manhole 1200 185.013 33.842 900 37.300 5.000 Open Manhole 1200 2.023 32.263	MR14 GQP 2023 13:57 Designed by LARS.ARMES RAIAGE 250823 reduced cat Designed by LARS.ARMES RAIAGE 250823 reduced cat Designed by LARS.ARMES Manhole Schedules for Storm MH MH Connection MH PN Pipe Out Invert Diameter PN 37.250 1.085 Open Manhole 450 220.000 36.165 225 37.500 2.277 Open Manhole 1800 206.003 35.223 450 206.002 37.200 0.992 Open Manhole 450 221.000 36.228 225 37.400 2.586 Junction 206.004 34.814 450 206.003 37.400 3.185 Open Manhole 450 222.000 36.600 150 37.400 3.841 Open Manhole 2400 185.011 34.215 900 185.010 37.400 3.841 Open Manhole 1200 185.013 33.842 900 185.013 37.300 3.000 Open Ma	MK14 Gapital Drive d nes, MK14 GQP 2023 13:57 RAIAGE 250823 reduced cat Designed by LARS.ARMES Checked by Network 2020.1.3 Manhole Schedules for Storm Min Depth Connection (mm) Min (mm) Pipe Out (mm) Pipe Out (mm) Pipes In Invert (mm) 37.250 1.085 Open Manhole 450 220.000 36.165 225 37.250 2.277 Open Manhole 450 220.000 36.228 225 37.220 0.992 Open Manhole 450 221.000 36.228 225 37.400 2.586 Junction 206.004 34.814 450 206.003 34.814 37.400 3.185 Open Manhole 450 222.000 36.600 150 34.814 37.400 3.185 Open Manhole 450 222.000 36.600 150 222.000 34.814 210.00 34.290 37.400 3.881 Open Manhole 200 185.011 34.204 34.204 33.842 900 185.011 34.204 37.700 3.876 <td>MI ME Designed by LARS.ARMES Capital Drive Checked by 2023 13:57 Designed by LARS.ARMES RAIAGE 250823 reduced cat Checked by Network 2020.1.3 Manhole Schedules for Storm Manhole Schedules for Storm MH MH Connection MH PN Pipe Out Invert PN Pipes In Level (m) Invert Diameter 37.250 1.085 Open Manhole 450 220.000 36.165 225 37.250 0.932 Open Manhole 450 221.000 36.228 225 37.400 2.586 Junction 206.004 34.814 450 220.003 36.488 225 37.400 3.185 Open Manhole 450 222.000 36.600 150 37.400 3.185 Open Manhole 450 222.000 36.600 150 37.400 3.185 Open Manhole 2400 185.011 34.215 900 185.010 34.290 37.700 3.481 Open Manhole 2400 185.013 33.8</td>	MI ME Designed by LARS.ARMES Capital Drive Checked by 2023 13:57 Designed by LARS.ARMES RAIAGE 250823 reduced cat Checked by Network 2020.1.3 Manhole Schedules for Storm Manhole Schedules for Storm MH MH Connection MH PN Pipe Out Invert PN Pipes In Level (m) Invert Diameter 37.250 1.085 Open Manhole 450 220.000 36.165 225 37.250 0.932 Open Manhole 450 221.000 36.228 225 37.400 2.586 Junction 206.004 34.814 450 220.003 36.488 225 37.400 3.185 Open Manhole 450 222.000 36.600 150 37.400 3.185 Open Manhole 450 222.000 36.600 150 37.400 3.185 Open Manhole 2400 185.011 34.215 900 185.010 34.290 37.700 3.481 Open Manhole 2400 185.013 33.8			

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
OB1	432926.589	558417.741	432926.589	558417.741	Required	
OB2	432904.611	558421.682	432904.611	558421.682	Required	•
S100	432913.751	558427.466	432913.751	558427.466	Required	
OB3	432925.361	558446.461	432925.361	558446.461	Required	
OB4	432899.079	558442.204	432899.079	558442.204	Required	•
S101	432905.727	558445.210	432905.727	558445.210	Required	1

RPS Group Plc		Page 43
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	
Manhole	e Schedules for Storm	
MH Manhole Manho Name Easting North (m) (m)	ing Easting Northing Access (North)	
458 432963.975 559109	.920 432963.975 559109.920 Required	
432966.471 559111	.049 No Entry	
Free Flowing	Outfall Details for Storm	
Outfall Outfall Pipe Number Name	C. Level I. Level Min D,L W (m) (m) I. Level (mm) (mm) (m)	
2.026	36.250 35.800 34.600 30 0	
Simulati	on Criteria for Storm	
Volumetric Runoff Coeff Areal Reduction Factor Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/s) Number of Input Hydrographs 0 Number	1.000MADD Factor * 10m³/ha Storage 2.0000Inlet Coefficcient 0.8000Flow per Person per Day (l/per/day) 0.0000.500Run Time (mins) 60	ams 0
	of Storage Structures 2 Number of Real Time Contro	
Synthe	tic Rainfall Details	
Rainfall Model Return Period (years) Region Eng: M5-60 (mm) Ratio R	FSR Profile Type Summer 5 Cv (Summer) 1.000 Land and Wales Cv (Winter) 0.840 18.300 Storm Duration (mins) 30 0.350	

RPS Group Pl	С							I	Page 44
Noble House, Linford Wood	-								
Aitlton Keyn		6QP							Micro
Date 21/09/2	023 13:57			Designe	ed by LAR	S.ARMES			Drainage
File ENV3 DR.	AIAGE 250	823 redu	ced cat	Checked	d by				Diamage
Innovyze				Network	x 2020.1.	3			
	P	ump Manh	Onlin ole: SWPS0		ols for S [.] N: 2.025,		(m³): 28.	<u>6</u>	
			In	vert Level	L (m) 32.18	5			
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Oepth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
Depth (m) 0.200	Flow (1/s)	Depth (m) 1.400	Flow (1/s) I 138.4000	Depth (m) 2.600	Flow (l/s) 165.3000	Depth (m) 3.800	Flow (1/s) 165.3000	_	Flow (1/s) 165.3000
_		_		_		3.800	165.3000	5.000 5.200	165.3000 165.3000
0.200	68.2000	1.400	138.4000	2.600	165.3000	3.800 4.000	165.3000 165.3000	5.000 5.200	165.3000 165.3000
0.200 0.400 0.633 0.650	68.2000 68.2000 68.2000 138.4000	1.400 1.600 1.801 2.000	138.4000 138.4000 165.3000 165.3000	2.600 2.800 3.000 3.200	165.3000 165.3000 165.3000 165.3000	3.800 4.000 4.200 4.400	165.3000 165.3000 165.3000 165.3000	5.000 5.200 5.400 5.600	165.3000 165.3000 165.3000 165.3000
0.200 0.400 0.633	68.2000 68.2000 68.2000	1.400 1.600 1.801	138.4000 138.4000 165.3000 165.3000	2.600 2.800 3.000	165.3000 165.3000 165.3000	3.800 4.000 4.200 4.400 4.600	165.3000 165.3000 165.3000 165.3000 165.3000	5.000 5.200 5.400 5.600 5.800	165.3000 165.3000 165.3000 165.3000 165.3000

RPS Group Plc				Page 45
Noble House, Capital Drive				
Linford Wood				
Mitlton Keynes, MK14 6QP				Micro
Date 21/09/2023 13:57	Designed by LAR	S.ARMES		Drainage
File ENV3 DRAIAGE 250823 reduced cat				Diamage
Innovyze	Network 2020.1.	3		
Storage	e Structures for	Storm		
Tank or Pond Man	hole: ATT TANK 0	1, DS/PN: 2.	.020	
In	vert Level (m) 32.40	0		
Depth (m) Area (m²)	Depth (m) Area (m²)	Depth (m) Area	(m²)	
0.000 2808.9	2.490 2808.9	2.491	0.0	
Tank or Pond Man	hole: ATT TANK 0	2, DS/PN: 2.	.022	
 	vert Level (m) 32.30	10		
Depth (m) Area (m ²)				
0.000 5517.0	2.490 5517.0	2.491	0.0	

PS Gro	-									Page	-
		Capita	l Drive								
inford	Wood										
itlton	Keyn	es, MK	L4 6QP							— Mic	10
ate 21	/09/2	023 13:	57		I	Designed by LAR	RS.ARMES				
ile EN	V3 DR	AIAGE 2	50823 r	educed		Checked by		inag			
nnovyz						Network 2020.1.	3				
-		Poturn I	Period	Summary	of Crit	cical Results by	v Mavimum		(Pank	1) for St	orm
<u> </u>	year .	<u>keturn E</u>	reriod	summary			y Maximum	l Level	(Rank	I) IOT St	LOIM
		Foul	Hot e Headlc Sewage	Hot Sta Start I oss Coeff per hect	on Factor art (mins) evel (mm) (Global) are (l/s)	0 0.500 Flow per Per 0.000	Factor * 10r Inlet rson per Day	n³/ha Stor Coeffiect 7 (l/per/c	cage 2.0 Lent 0.8 day) 0.0	000 300 000	
						r of Offline Contro of Storage Structur				-	
					Synthe	etic Rainfall Deta					
			Rainfall		haland and	FSR M5-60 (mm) Wales Batio B	18.300 Cv (0.350 Cv (
			ł	vediou El	ngland and	wales katio K	U.350 CV (winter) 1	.000		
			Mar	gin for 1	Flood Risk	Warning (mm) 300.0	0 DVD S	tatus ON			
					Analy	ysis Timestep Fine		tatus ON			
						DTS Status OF	F				
						. ,	mmer and Wi				
				D	uration(s)	(mins) 15, 30, 60	, 120, 240,	360			
				Return	Period(s)	(years)	1, 30,	100			
				Return		(years)		100			
				Return	Period(s)	(years)	1, 30,	100			
				Return C	Period(s) limate Chan	(years)	1, 30, 0, 0	100 , 45		Surcharged	
	US/MH			Return C	Period(s) limate Char First (3	(years) nge (%) X) First (Y)	1, 30, 0, 0 First (Z)	100 , 45 Overflow	Level	Depth	Volum
PN	US/MH Name	Storm	Return Period	Return C	Period(s) limate Chan	(years) nge (%) X) First (Y)	1, 30, 0, 0	100 , 45		-	Floode Volum (m³)
PN 2.000	Name	Storm 15 Summe:	Period	Return C Climate Change	Period(s) limate Char First (3	(years) nge (%) X) First (Y) ge Flood	1, 30, 0, 0 First (Z)	100 , 45 Overflow	Level	Depth	Volum
	Name OB1		Period	Return C Climate Change	Period(s) limate Char First () Surcharg 100/15 Sur	(years) nge (%) X) First (Y) ge Flood	1, 30, 0, 0 First (Z) Overflow	100 , 45 Overflow	Level (m)	Depth (m)	Volum (m³)
2.000	Name OB1 OB2	15 Summe:	Period 1 1	Return C Climate Change +0% +0%	Period(s) limate Char First () Surcharg 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer	1, 30, 0, 0 First (Z) Overflow	100 , 45 Overflow	Level (m) 37.717	Depth (m) -0.098	Volum (m ³) 0.0
2.000	Name OB1 OB2 S100	15 Summe: 15 Summe:	Period 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0%	Period(s) limate Char First () Surcharg 100/15 Sur 30/15 Sur 100/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer	1, 30, 0, 0 First (Z) Overflow	100 , 45 Overflow	Level (m) 37.717 37.388	Depth (m) -0.098 -0.080	Volum (m ³) 0.0 0.0
2.000 3.000 2.001	Name OB1 OB2 S100 OB3	15 Summe: 15 Summe: 15 Summe:	Period 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0%	Period(s) limate Char First () Surcharg 100/15 Sur 30/15 Sur 100/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer	1, 30, 0, 0 First (Z) Overflow	100 , 45 Overflow	Level (m) 37.717 37.388 37.094	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171	Volum (m ³) 0.0 0.0
2.000 3.000 2.001 4.000	Name OB1 OB2 S100 OB3 OB4	 Summe: Summe: Summe: Summe: 	Period 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer	1, 30, 0, 0 First (Z) Overflow	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613	Depth (m) -0.098 -0.080 -0.158 -0.137	Volum (m ³) 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000	Name OB1 OB2 S100 OB3 OB4 S101	 Summe: Summe: Summe: Summe: Summe: 	Period 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171	Volum (m ³) 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002	Name OB1 OB2 S100 OB3 OB4 S101 OB5	 Summe: Summe: Summe: Summe: Summe: Summe: 	Period (1) (Return C Climate Change +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/30 Summer mmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6	 Summe: 	Period Period 1 1 1 1 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Sunmer nmer 100/15 Sunmer nmer nmer 100/15 Sunmer nmer 100/15 Sunmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6	 Summe: Summe: Summe: Summe: Summe: Summe: Summe: Summe: Summe: 	Period Period 1 1 1 1 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/30 Summer mmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271	Volur (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7	 Summe: 	Period Period 1 1 1 1 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Sunmer nmer 100/15 Sunmer nmer 100/15 Sunmer nmer 100/15 Sunmer mmer 100/15 Sunmer mmer 100/15 Sunmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104	 Summe: 	Period Period 1 1 1 1 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer nmer nmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8	 Summe: 	Period Period 1 1 1 1 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer nmer nmer nmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 35.184	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107	Volur (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105	 Summe: 	Period Period 1 1 1 1 1 1 1 1 1 1 1 1 1	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer nmer nmer nmer nmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 35.184 37.451 35.014	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9	 Summe: 	Period Period	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer mmer mmer mmer 100/15 Summer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 35.184 37.451 35.014 37.660	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106	 Summe: 	Period Period	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer mmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer nmer nmer nmer nmer 100/15 Summer nmer nmer nmer 100/15 Summer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.660 37.465	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10	 Summe: 	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer numer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.660 37.465 37.612	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176	Volur (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107	 Summe: 	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer mmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer nmer nmer 100/15 Summer nmer nmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.600 37.465 37.612 36.579	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11	 15 Summe: 	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer mmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer nmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/30 Summer mmer mmer 100/30 Summer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.460 37.465 37.612 36.579 37.606	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108	15 Summe:	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer mmer 100/15 Summer nmer 100/15 Summer mmer 100/30 Summer mmer nmer nmer 100/30 Summer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.600 37.465 37.612 36.579 37.606 35.822	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12	15 Summe:	Period Period Period	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/30 Summer mmer mmer mmer mmer mmer mmer mmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.460 37.465 37.612 36.579 37.606 35.822 37.597	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158 -0.116	Volur (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109	15 Summe:	Period Period Period	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer mmer 100/15 Summer nmer 100/30 Summer mmer nmer nmer nmer nmer nmer nmer nmer nmer nmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.600 37.465 37.612 36.579 37.606 35.822 37.597 35.193	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158 -0.116 -0.227	Volur (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110	15 Summer 15	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surcharg 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer mmer 100/15 Summer nmer 100/30 Summer mmer nmer nmer nmer nmer nmer nmer nmer nmer nmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.600 37.465 37.612 36.579 37.606 35.822 37.597 35.193 34.883	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158 -0.116 -0.227 -0.339	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13	15 Summe:	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/30 Summer mmer 100/30 Summer mmer mmer mmer 100/30 Summer mmer mmer mmer mmer mmer mmer mmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.460 37.465 37.612 36.579 37.606 35.822 37.597 35.193 34.883 37.058	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158 -0.116 -0.227 -0.339 -0.157	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14	15 Summe:	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/15 Summer mmer 100/30 Summer mmer 100/30 Summer mmer mmer 100/30 Summer mmer mmer mmer 100/30 Summer mmer mmer mmer 100/30 Summer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.600 37.465 37.612 36.579 37.606 35.822 37.597 35.193 34.883 37.058 36.560	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158 -0.116 -0.227 -0.339 -0.157 -0.115	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000 14.001	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111	15 Summe: 15	Period Period Period	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer nmer 100/15 Summer mmer 100/30 Summer mmer nmmer mmer 100/30 Summer mmer nmmer 100/30 Summer mmer nmmer nmmer 100/30 Summer mmer nmmer nmmer 100/30 Summer mmer nmmer nmmer nmmer nmmer nmmer 100/30 Summer mmer 100/15 Summer mmer nmmer 100/15 Summer mmer nmmer nm	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.600 37.465 37.612 36.579 37.606 35.822 37.597 35.193 34.883 37.058 36.560 35.514	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158 -0.116 -0.227 -0.339 -0.157 -0.115 -0.111	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000 14.001 16.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111 OB15	15 Summe: 15	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/30 Summer mmer mmer 100/30 Summer mmer mmer 100/30 Summer mmer mmer 100/30 Summer mmer mmer mmer 100/30 Summer mmer mmer mmer mmer mmer mmer mmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.600 37.465 37.612 36.579 37.606 35.822 37.597 35.193 34.883 37.058 36.560 35.514 37.570	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158 -0.116 -0.227 -0.339 -0.157 -0.115 -0.111 -0.109	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000 14.001	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111 OB15 S112	15 Summe: 15	Period Period Pe	Return C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	Period(s) limate Char First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	(years) nge (%) X) First (Y) ge Flood mmer mmer 100/15 Summer mmer 100/30 Summer mmer mmer 100/30 Summer mmer mmer 100/30 Summer mmer mmer 100/30 Summer mmer mmer mmer 100/30 Summer mmer mmer mmer mmer mmer mmer mmer	1, 30, 0, 0	100 , 45 Overflow	Level (m) 37.717 37.388 37.094 36.613 37.189 36.272 37.209 35.846 36.580 37.169 35.336 35.184 37.451 35.014 37.451 35.014 37.600 37.465 37.612 36.579 37.606 35.822 37.597 35.193 34.883 37.058 36.560 35.514	Depth (m) -0.098 -0.080 -0.158 -0.137 -0.171 -0.216 -0.226 -0.271 -0.130 -0.151 -0.173 -0.178 -0.107 -0.257 -0.053 -0.148 -0.176 -0.101 -0.182 -0.158 -0.116 -0.227 -0.339 -0.157 -0.115 -0.111	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

RPS Group Plc		Page 47
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

				Half Drain	Pipe		
	US/MH	Flow /	Overflow	Time	Flow		Level
PN	Name	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
2.000	OB1	0.26			7.9	OK	
3.000	OB2	0.44			10.0	OK	2
2.001	S100	0.19			17.7	OK	1
4.000	OB3	0.32			17.6	OK	7
5.000	OB4	0.13			17.5	OK	
2.002	S101	0.36			51.4	OK	3
6.000	OB5	0.14			40.0	OK	3
2.003	S102	0.32			87.6	OK	
7.000	OB6	0.37			44.7	OK	7
8.000	OB7	0.23			44.4	OK	5
2.004	S103	0.75			166.9	OK	
2.005	S104	0.76			159.3	OK	
9.000	OB8	0.18			9.1	OK	
2.006	S105	0.62			162.7	OK	
10.000	OB9	0.73			14.5	OK	5
10.001	S106	0.25			14.2	OK	
11.000	OB10	0.11			15.7	OK	1
10.002	S107	0.56			28.4	OK	
12.000	OB11	0.08			15.7	OK	
10.003	S108	0.44			41.8	OK	
13.000	OB12	0.12			11.0	OK	
10.004	S109	0.33			51.2	OK	
2.007	S110	0.49			202.6	OK	
14.000	OB13	0.20			34.7	OK	4
15.000	OB14	0.12			4.6	OK	6
14.001	S111	0.50			39.0	OK	
16.000	OB15	0.17			10.2	OK	
2.008	S112	0.42			218.7	OK	
17.000	OB16	0.15			10.4	OK	

RPS Group Plc		Page 48
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	St	torm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)
2.009	0112	20 0	Summer	1	+0%	30/15 Summer				34.465	-0.361	0.000
18.000			Summer	1	+0%	SU/15 Summer				37.566	-0.113	0.000
2.010			Summer	1	+0%	30/15 Summer				34.342	-0.243	0.000
19.000			Summer	1	+0%		100/15 Summer			37.759	-0.086	0.000
19.000			Summer	1	+0%	30/15 Summer	100710 Dulliner			37.444	-0.056	0.000
20.000			Summer	1		100/15 Summer				37.740	-0.105	0.000
19.002			Summer	1	+0%	30/15 Summer				36.467	-0.100	0.000
19.003			Summer	1	+0%		100/15 Summer			35.988	-0.099	0.000
21.000			Summer	1	+0%	100/15 Summer				37.026	-0.108	0.000
22.000	OB21	15 \$	Summer	1	+0읭	100/15 Summer				37.172	-0.113	0.000
19.004	S118	15 \$	Summer	1	+0%	30/15 Summer				35.714	-0.182	0.000
23.000	OB22	15 \$	Summer	1	+0%	100/15 Summer	100/15 Summer			36.591	-0.159	0.000
24.000	OB23	15 \$	Summer	1	+0읭	100/15 Summer	100/15 Summer			37.220	-0.100	0.000
19.005	S119	15 \$	Summer	1	+0읭	30/15 Summer				35.682	-0.156	0.000
25.000	OB24	15 \$	Summer	1	+0%	100/15 Summer				37.197	-0.163	0.000
19.006	S120	15 \$	Summer	1	+0읭	30/15 Summer				35.360	-0.218	0.000
26.000	OB25	15 \$	Summer	1		100/15 Summer				37.203	-0.157	0.000
27.000			Summer	1			100/15 Summer			36.615	-0.135	0.000
19.007			Summer	1	+0%	30/15 Summer				34.967	-0.307	0.000
19.008			Summer	1	+0%	30/15 Summer				34.713	-0.367	0.000
19.009			Summer	1	+0%	30/15 Summer				34.450	-0.358	0.000
28.000			Summer	1	+0%	20/15 0				37.660	-0.103	0.000
19.010			Summer	1	+0%	30/15 Summer				34.364	-0.221	0.000
29.000			Summer	1		100/15 Summer				36.479	-0.107	0.000
2.011			Summer	1 1	+0응	30/15 Summer				34.301	-0.177	0.000
30.000 31.000			Summer Summer	1		100/15 Summer 100/15 Summer				36.574 37.064	-0.101 -0.151	0.000
30.001			Summer	1	+0%	30/15 Summer				36.218	-0.131	0.000
2.012			Summer	1	+0%	30/15 Summer				34.063	-0.399	0.000
2.012			Summer	1	+0%	30/15 Summer				33.887	-0.403	0.000
32.000			Summer	1	+0%		100/15 Summer			37.943	0.068	0.000
33.000	RWP01			1	+0응	30/15 Summer	100,10 044401			37.666	-0.134	0.000
33.001			Summer	1	+0%	30/15 Summer				37.290	-0.133	0.000
34.000	RWP03			1	+0%	30/15 Summer				37.687	-0.113	0.000
34.001	S201	15 \$	Summer	1	+0읭	30/15 Summer	100/15 Summer			37.211	-0.097	0.000
35.000	RWP04	15 \$	Summer	1	+0%	30/15 Summer				37.683	-0.117	0.000
34.002	BRANCH	15 \$	Summer	1	+0%					37.037	-0.078	0.000
36.000	RWP05	15 \$	Summer	1	+0읭	30/15 Summer				37.682	-0.118	0.000
34.003	BRANCH	15 \$	Summer	1	+0%					36.904	-0.018	0.000
37.000	RWP02	15 \$	Summer	1	+0%	30/15 Summer				37.662	-0.138	0.000
32.001	S202 (V)	15 \$	Summer	1	+0응	30/15 Summer				36.861	0.000	0.000
32.002	S203	15 \$	Summer	1	+0%	30/15 Summer	100/15 Summer			36.688	-0.134	0.000
38.000	RWP06			1	+0%	30/15 Summer				37.671	-0.129	0.000
32.003	BRANCH			1	+0응					36.494	-0.183	0.000
39.000			Summer	1	+0%	30/15 Summer				37.670	-0.130	0.000
32.004	BRANCH			1	+0응					36.448	-0.196	0.000
40.000			Summer	1	+0응	30/15 Summer	100/15 0			37.671	-0.129	0.000
32.005			Summer	1	+0응		100/15 Summer			36.302	-0.289	0.000
41.000			Summer	1	+0% +0%		100/15 Summer			37.947	0.072	0.000
42.000			Summer	1 1	+0% +0%	30/15 Summer	100/15 Summer			37.666	-0.134	0.000
42.001 43.000			Summer Summer	1	+0	30/15 Summer 30/15 Summer	TOOLTO SUIMMEL			37.289 37.665	-0.133 -0.135	0.000 0.000
43.000	RWP10 RWP11			1	+0%	30/15 Summer				37.005	-0.135	0.000
45.000			Summer	1	+0%	30/15 Summer				37.670	-0.120	0.000
	1.011 12		- annie r				000 -			5	0.100	
						©1982-2	020 Innovyze	2				

RPS Group Plc		Page 49
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

	US/MH	Flow /	Ha: Overflow	lf Drain Time	Pipe Flow		Level
PN	Name	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
2.009	S113	0.41			214.1	OK	
18.000	OB17	0.14			10.6	OK	
2.010	S114	0.46			211.5	OK	
19.000	OB18	0.38			13.9	OK	7
19.001	S115	0.67			13.2	OK	
20.000	OB19	0.20			13.9	OK	
19.002	S116	0.58			25.8	OK	
19.003	S117	0.60			25.6	OK	7
21.000	OB20	0.17			11.2	OK	
22.000	OB21	0.14			7.8	OK	
19.004	S118	0.42			41.9	OK	
23.000	OB22	0.19			19.1	OK	7
24.000	OB23	0.24			16.4	OK	5
19.005	S119	0.61			72.9	OK	
25.000	OB24	0.17			31.7	OK	
19.006	S120	0.50			95.5	OK	
26.000	OB25	0.20			40.5	OK	
27.000	OB26	0.34			44.7	OK	6
19.007	S121	0.46			164.1	OK	
19.008	S122	0.32			162.9	OK	
19.009	S123	0.34			162.3	OK	
28.000	OB27	0.22			13.7	OK	
19.010	S124	0.62			156.3	OK	
29.000	OB28	0.18			7.9	OK	
2.011	S125	1.14			341.4	OK	
30.000	OB29	0.23			4.5	OK	
31.000	OB30	0.24			31.2	OK	
30.001	S126	0.46			35.4	OK	
2.012	S127	0.60			349.7	OK	
2.013	INT01	0.46			347.9	OK	
32.000	SDP01	1.20				SURCHARGED	7
33.000	RWP01	0.03			1.0	OK	
33.001	S200	0.03			1.0	OK	
34.000	RWP03	0.13			4.8	OK	
34.001	S201	0.26			4.6	OK	7
35.000	RWP04	0.11			4.6	OK	
34.002	BRANCH	0.44			9.1	OK*	
36.000	RWP05	0.10			4.8	OK	
34.003	BRANCH	0.83			12.8	OK*	
37.000	RWP02	0.02			1.0	OK	
32.001	S202 (V)	1.11			188.8	OK	
32.002	S203	0.84			179.9	OK	7
38.000	RWP06	0.05			2.8	OK	
32.003	BRANCH	0.75			178.5	OK*	
39.000	SWP07	0.04			2.5	OK	
32.004	BRANCH	0.72			178.6	OK*	
40.000	RWP08	0.05			2.5	OK	
32.005	S204	0.47			160.2	OK	7
41.000	SDP02	1.21			183.0	SURCHARGED	7
42.000	RWP09	0.03			1.0	OK	
42.001	S205	0.03			1.0	OK	1
43.000	RWP10	0.02			1.0	OK	
44.000	RWP11	0.09			2.5	OK	
			©1982-2020) Trancer			
			ST JOZ-ZOZ(, TUUOA	улс		

RPS Group Plc		Page 50
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
45.000	RWP12	0.04			2.5	OK	

RPS Group Plc		Page 51
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	Sto	orm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
44.001	BRANCH	15 Sı	ummer	1	+0%					36.810	-0.107	0.000
	S206(V)			1	+0%	30/15 Summer				36.497	-0.214	0.000
32.006		15 Sı		1	+0%		100/15 Summer			36.053	-0.267	0.000
46.000	RWP13			1	+0%	30/15 Summer	-			37.522	-0.128	0.000
32.007		15 Sı		1	+0%	30/15 Summer				36.016	-0.236	0.000
32.008	S209	15 Sı	ummer	1	+0%	30/15 Summer				35.985	-0.225	0.000
47.000	RWP14	15 Sı	ummer	1	+0%	100/15 Summer				37.866	-0.134	0.000
32.009	BRANCH	15 Sı	ummer	1	+0%					35.904	-0.298	0.000
48.000	RWP15	15 Sı	ummer	1	+0%	100/15 Summer				37.875	-0.125	0.000
48.001	S210	15 Sı	ummer	1	+0%	100/15 Summer				37.478	-0.122	0.000
49.000	RWP16	15 Sı	ummer	1	+0%	100/15 Summer				37.870	-0.130	0.000
48.002	BRANCH	15 Sı	ummer	1	+0응					37.305	-0.111	0.000
50.000	RWP17	15 Sı	ummer	1	+0%	100/15 Summer				37.830	-0.120	0.000
51.000	RWP18	15 Sı	ummer	1	+0응	100/15 Summer				37.827	-0.123	0.000
50.001	S211	15 Sı	ummer	1	+0%	100/15 Summer				37.398	-0.102	0.000
52.000	RWP19	15 Sı	ummer	1	+0%	100/15 Summer				37.456	-0.129	0.000
50.002	BRANCH	15 Sı	ummer	1	+0%					37.097	-0.097	0.000
53.000	RWP20	15 Sı	ummer	1	+0응	100/15 Summer				37.866	-0.134	0.000
50.003	BRANCH	15 Sı	ummer	1	+0%					36.709	-0.085	0.000
50.004	S212	15 Sı	ummer	1	+0%	30/15 Summer	100/30 Summer			36.570	-0.075	0.000
32.010	S213	15 Sı	ummer	1	+0%	30/15 Summer				35.866	-0.266	0.000
54.000	RWP21	15 Sı	ummer	1	+0%	100/15 Summer				37.868	-0.132	0.000
32.011	BRANCH	15 Sı	ummer	1	+0%					35.842	-0.271	0.000
55.000	RWP22	15 Sı	ummer	1	+0%	100/15 Summer				37.868	-0.132	0.000
32.012	BRANCH	15 Sı	ummer	1	+0%					35.815	-0.260	0.000
56.000	RWP23	15 Sı	ummer	1	+0%	100/15 Summer				37.868	-0.132	0.000
32.013	BRANCH	30 Sı	ummer	1	+0%					35.785	-0.253	0.000
57.000	RWP24	15 Sı	ummer	1	+0응	100/15 Summer				37.868	-0.132	0.000
32.014	BRANCH	30 Sı	ummer	1	+0%					35.762	-0.239	0.000
58.000	RWP25	15 Sı	ummer	1	+0%	100/30 Summer				37.868	-0.132	0.000
32.015	BRANCH	30 Sı	ummer	1	+0%					35.736	-0.225	0.000
59.000	SDP12	15 Sı	ummer	1	+0%	30/15 Summer	100/15 Summer			37.598	-0.127	0.000
60.000	SDP13			1	+0%	100/15 Summer				37.439	-0.211	0.000
61.000	SDP14	15 Sı	ummer	1	+0%	30/15 Summer	100/15 Summer			37.598	-0.127	0.000
62.000	RWP29			1	+0%	100/15 Summer				37.515	-0.135	0.000
62.001		15 Sı		1	+0응	30/30 Summer				37.126	-0.124	0.000
63.000	RWP30			1		100/15 Summer				37.857	-0.143	0.000
	S215(V)			1	+0%	1/15 Summer				36.041	0.021	0.000
64.000	RWP27			1		100/15 Summer				37.367	-0.133	0.000
64.001	S214a			1		100/15 Summer				37.124	-0.126	0.000
65.000	RWP28			1		100/15 Summer				37.858	-0.142	0.000
	S216(V)			1	+0%	30/15 Summer				35.861	-0.129	0.000
66.000	RWP26			1		100/30 Summer				37.873	-0.127	0.000
32.016		30 Si		1	+0%	30/15 Summer				35.710	-0.214	0.000
67.000	RWP31			1	+0%					37.867	-0.133	0.000
32.017	BRANCH			1	+0%					35.605	-0.285	0.000
68.000	RWP32			1	+0%					38.018	-0.132	0.000
32.018	BRANCH			1	+0%					35.582	-0.275	0.000
69.000	RWP33			1	+0%					38.018	-0.132	0.000
32.019	BRANCH			1	+0%					35.559	-0.261	0.000
70.000	RWP34			1	+0%					38.017	-0.133	0.000
32.020	BRANCH			1	+0%					35.542	-0.249	0.000
71.000	RWP36			1	+0%					37.829	-0.121	0.000
72.000	RWP35	15 Si	ummer	1	+0%					37.831	-0.119	0.000
						©1982-20)20 Innovyze	2				

RPS Group Plc		Page 52
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flow / Cap.	I Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
		-					
44.001	BRANCH	0.17			4.9	OK*	
	S206(V)	0.54			189.8	OK	0
32.006	S207	0.51			237.4	OK	2
46.000	RWP13	0.05			2.1	OK	
32.007	S208	0.60			227.8	OK	
32.008	S209	0.83			228.7	OK	
47.000	RWP14	0.02			2.1	OK	
	BRANCH	0.37			227.3	OK*	
48.000	RWP15	0.06			2.1	OK	
48.001	S210	0.07			2.0	OK	
49.000	RWP16	0.04			2.1	OK	
48.002	BRANCH	0.14			4.0	OK*	
50.000	RWP17	0.08			2.7	OK	
51.000	RWP18	0.08			2.7	OK	
50.001	S211	0.21			5.3	OK	
52.000	RWP19	0.05			1.8	OK	
50.002	BRANCH	0.25			7.1	OK*	
53.000	RWP20	0.03			1.8	OK	
50.003	BRANCH	0.37			9.0	OK*	
50.004	S212	0.50			8.9	OK	3
32.010	S213	0.79			232.2	OK	
54.000	RWP21	0.03			3.0	OK	
32.011	BRANCH	0.44			234.0	OK*	
55.000	RWP22	0.04			3.1	OK	
32.012	BRANCH	0.45			237.9	OK*	
56.000	RWP23	0.03			2.9	OK	
32.013	BRANCH	0.46			245.0	OK*	
57.000	RWP24	0.03			3.1	OK	
32.014	BRANCH	0.46			251.2	OK*	
58.000	RWP25	0.03			2.9	OK	
32.015	BRANCH	0.48			258.4	OK*	
59.000	SDP12	0.73			204.6	OK	6
60.000	SDP13	0.19			33.9	OK	
61.000	SDP14	0.73			204.6	OK	6
62.000	RWP29	0.02			0.9	OK	
62.001	S214	0.07			0.8	OK	
63.000	RWP30	0.01			0.9	OK	
	S215 (V)	1.39				SURCHARGED	
64.000	RWP27	0.03			0.9	OK	
64.001	S214a	0.06			0.8	OK	
65.000	RWP28	0.01			0.9	OK	
	S216(V)	0.97			449.9	OK	
66.000	RWP26	0.06			3.2	OK	
32.016	S217	0.00			441.0	OK	
67.000	RWP31	0.03			2.8	OK	
32.017	BRANCH	0.03			437.9	OK*	
68.000	RWP32	0.03			3.0	OK	
32.018	BRANCH	0.03			432.5	OK*	
69.000	RWP33	0.03			432.5 3.1		
	BRANCH					OK OK*	
32.019		0.56			429.1 2.8	OK*	
70.000	RWP34 BRANCH	0.03 0.49			428.3	OK OK*	
33 030		0.49			440.0	UK^	
32.020 71.000	RWP36	0.08			3.0	OK	

RPS Group Plc		Page 53
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
72.000	RWP35	0.09			3.0	OK	

RPS Group Plc		Page 54
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	5	Storm		Climate Change	First Surch		First Floo		First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
71.001	S218	15	Summer	1	+0%	100/15	Summer					37.399	-0.101
73.000	RWP37	15	Summer	1	+0읭							37.868	-0.132
71.002	BRANCH	15	Summer	1	+0읭							37.098	-0.096
74.000	RWP38	15	Summer	1	+0읭							37.866	-0.134
71.003	S219	15	Summer	1	+0읭	100/15	Summer					36.740	-0.087
75.000	RWP39	15	Summer	1	+0%							38.000	-0.150
32.021	S220	30	Summer	1	+0%	30/15	Summer					35.512	-0.236
76.000	RWP40	15	Summer	1	+0%							38.018	-0.132
32.022	BRANCH	30	Summer	1	+0%							35.473	-0.256
77.000	RWP41	15	Summer	1	+0응							38.018	-0.132
32.023	BRANCH	30	Summer	1	+0읭							35.461	-0.246
78.000	RWP42	15	Summer	1	+0%							38.023	-0.127
32.024	S221 (SUDS)	30	Summer	1	+0읭	30/15	Summer					35.443	-0.234
79.000	SDP03	15	Summer	1	+0읭	1/15	Summer	100/15 S	ummer			37.947	0.072
80.000	RWP43	15	Summer	1	+0읭	30/15	Summer					37.666	-0.134
80.001	S222	15	Summer	1	+0읭	30/15	Summer					37.290	-0.133
81.000			Summer	1	+0응	30/15	Summer					37.662	-0.138
82.000	RWP45	15	Summer	1	+0읭	30/15	Summer					37.685	-0.115
82.001			Summer	1	+0응	30/15	Summer	100/15 S	ummer			37.202	-0.098
83.000	RWP46	15	Summer	1	+0읭	30/15	Summer					37.685	-0.115
82.002	BRANCH	15	Summer	1	+0응							37.045	-0.075
84.000	RWP47	15	Summer	1	+0읭	30/15	Summer					37.681	-0.119
82.003	BRANCH	15	Summer	1	+0응							36.918	-0.022
79.001	S224 (V)	15	Summer	1	+0응		Summer					36.910	0.026
79.002	S225	15	Summer	1	+0%	30/15	Summer	100/30 S	ummer			36.792	0.000
85.000	RWP48	15	Summer	1	+0응	30/15	Summer	100/15 S	ummer			37.475	-0.125
79.003	BRANCH			1	+0%							36.563	-0.185
86.000			Summer	1	+0%	30/15	Summer					37.281	-0.119
79.004	BRANCH			1	+0%							36.515	-0.188
87.000			Summer	1	+0%	30/15	Summer					37.281	-0.119
79.005	BRANCH			1	+0%							36.479	-0.179
88.000			Summer	1		100/15	Summer					37.275	-0.125
79.006			Summer	1	+0%							36.435	-0.178
89.000			Summer	1	+0%							37.720	-0.130
79.007	BRANCH			1	+0%							36.410	-0.179
90.000			Summer	1		100/30	Summer					37.575	-0.130
79.008			Summer	1	+0%							36.373	-0.181
91.000			Summer	1		100/15						37.123	-0.127
79.009			Summer	1	+0%		Summer	100/15 -				36.257	-0.210
92.000			Summer	1	+0%			100/15 S	ummer			37.947	0.072
93.000			Summer	1		100/15						37.666	-0.134
93.001			Summer	1		100/15						37.288	-0.134
94.000			Summer	1		100/15						37.665	-0.135
95.000			Summer	1		100/15						37.670	-0.130
96.000			Summer	1	+0%	30/15	Summer					37.091	-0.120
95.001	BRANCH			1	+0%	20/17	~					36.810	-0.107
92.001	S228 (V)			1	+0%		Summer					36.550	-0.161
79.010			Summer	1	+0%		Summer					35.794	-0.293
79.011	S230 (SUDS)			1	+0%		Summer					35.580	-0.374
32.025			Summer	1	+0%		Summer					35.423	-0.240
2.014			Summer	1	+0%		Summer					33.852	-0.377
2.015			Summer	1	+0%	30/15	Summer					33.771	-0.336
97.000			Summer	1	+0%							37.470	-0.130
98.000	RWP60	12	Summer	1	+0읭							37.479	-0.121

RPS Group Plc		Page 55
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
71.001	S218	0.000	0.22			5.7	OK	
73.000	RWP37	0.000	0.03			1.8	OK	
71.002	BRANCH	0.000	0.03			7.5	OK*	
74.002	RWP38	0.000	0.03			1.8	OK	
	S219		0.03			1.0 9.5	OK	
71.003		0.000						
75.000	RWP39	0.000	0.00			0.0	OK	
32.021	S220	0.000	1.07			430.2	OK	
76.000	RWP40	0.000	0.03			3.2	OK	
32.022	BRANCH	0.000	0.57			432.2	OK*	
77.000	RWP41	0.000	0.03			3.2	OK	
32.023	BRANCH	0.000	0.57			433.7	OK*	
78.000	RWP42	0.000	0.06			3.2	OK	
32.024	S221 (SUDS)	0.000	0.89			437.0	OK	
79.000	SDP03	0.000	1.21			183.0	SURCHARGED	6
80.000	RWP43	0.000	0.03			1.0	OK	
80.001	S222	0.000	0.03			0.9	OK	
81.000	RWP44	0.000	0.02			1.0	OK	
82.000	RWP45	0.000	0.12			4.4	OK	
82.001	s223	0.000	0.25			4.2	OK	6
83.000	RWP46	0.000	0.23			5.2	OK	0
82.002			0.12			9.3	OK*	
	BRANCH BWD 47	0.000						
84.000	RWP47	0.000	0.10			4.5	OK	
82.003	BRANCH	0.000	0.91			13.5	OK*	
79.001	S224 (V)	0.000	0.76				SURCHARGED	
79.002	S225	0.000	1.05			181.4	OK	3
85.000	RWP48	0.000	0.06			2.7	OK	6
79.003	BRANCH	0.000	0.74			184.7	OK*	
86.000	RWP49	0.000	0.10			3.7	OK	
79.004	BRANCH	0.000	0.75			186.2	OK*	
87.000	RWP50	0.000	0.09			3.7	OK	
79.005	BRANCH	0.000	0.75			186.0	OK*	
88.000	RWP51	0.000	0.06			2.7	OK	
79.006	BRANCH	0.000	0.76			188.5	OK*	
89.000	RWP52	0.000	0.04			2.7	OK	
79.007	BRANCH	0.000	0.77			190.5	OK*	
90.000	RWP53	0.000	0.04			2.5	OK	
90.000 79.008	BRANCH	0.000	0.04			190.2	OK*	
91.000	RWP54	0.000	0.06			2.5	OK	
79.009	S226	0.000	0.61			175.9	OK	-
92.000	SDP04	0.000	1.21				SURCHARGED	5
93.000	RWP55	0.000	0.03			1.0	OK	
93.001	S227	0.000	0.03			0.9	OK	
94.000	RWP56	0.000	0.02			1.0	OK	
95.000	RWP57	0.000	0.04			2.5	OK	
96.000	RWP58	0.000	0.09			2.5	OK	
95.001	BRANCH	0.000	0.17			4.9	OK*	
92.001	S228 (V)	0.000	0.61			189.7	OK	
79.010	S229	0.000	0.60			277.7	OK	
79.011	S230 (SUDS)	0.000	0.41			280.8	OK	
32.025	S231	0.000	1.04			670.7	OK	
2.014	S232	0.000	0.63			967.8	OK	
2.014	S232	0.000	0.63			918.6	OK	
	S255 RWP59	0.000	0.07			2.6	OK	
97.000			0.01			2.0	010	

RPS Group Plc		Page 56
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	·

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
98.000	RWP60	0.000	0.08			5.0	OK	

RPS Group Plc		Page 57
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	St	orm		Climate Change	First Surcl	: (X) harge	First Flo	t (Y) ood	First (Z) Overflow	Overflow Act.		Surcharged Depth (m)
2.016	S234	30 S	Summer	1	+0%	30/15	Summer					33.678	-0.302
2.017	S235	30 S	Summer	1	+0읭	30/15	Summer					33.582	-0.287
99.000	RWP61	15 S	Summer	1	+0읭	100/15	Summer					37.783	-0.117
99.001	S236	15 S	Summer	1	+0%	100/15	Summer					37.635	-0.110
100.000	RWP62	15 S	Summer	1	+0읭	100/15	Summer					37.784	-0.116
99.002	BRANCH	15 S	Summer	1	+0%							37.502	-0.086
99.003	S237	15 S	Summer	1	+0%	30/15	Summer					37.272	-0.081
101.000	RWP63	15 S	Summer	1	+0%							37.669	-0.131
99.004	BRANCH	15 S	Summer	1	+0%							37.144	-0.077
102.000	RWP64	15 S	Summer	1	+0%							37.817	-0.133
99.005	S238	15 S	Summer	1	+0%							35.492	-0.165
103.000	RWP65	15 S	Summer	1	+0%							37.081	-0.125
99.006	BRANCH	15 S	Summer	1	+0%							35.006	-0.151
104.000	RWP66	15 S	Summer	1	+0%							37.065	-0.131
99.007	BRANCH	15 S	Summer	1	+0%							34.754	-0.143
105.000	RWP67	15 S	Summer	1	+0%							36.822	-0.134
2.018	S239	30 S	Summer	1	+0%	30/15	Summer					33.496	-0.292
2.019	ATT INLET 01	30 S	Summer	1	+0%							33.127	-0.648
106.000	SDP05	15 S	Summer	1	+0%	1/15	Summer	100/15	Summer			37.926	0.051
106.001	S400(V)	15 S	Summer	1	+0%	30/15	Summer	100/15	Summer			37.123	-0.227
107.000	RWP60	15 S	Summer	1	+0%	30/15	Summer					37.668	-0.132
106.002	S401	15 S	Summer	1	+0%	30/15	Summer	100/15	Summer			36.836	-0.173
108.000	RWP61	15 S	Summer	1	+0%	30/15	Summer					37.668	-0.132
106.003	BRANCH	15 S	Summer	1	+0%							36.752	-0.220
109.000	RWP62	15 S	Summer	1	+0%	30/15	Summer					37.662	-0.138
106.004	BRANCH	15 S	Summer	1	+0%							36.672	-0.208
110.000	RWP63	15 S	Summer	1	+0읭	100/15	Summer					37.667	-0.133
106.005	S402	15 S	Summer	1	+0읭	30/15	Summer	100/30	Summer			36.630	-0.191
111.000	RWP64	15 S	Summer	1	+0읭	100/15	Summer					37.667	-0.133
106.006	BRANCH	15 S	Summer	1	+0읭							36.607	-0.183
112.000	RWP65	15 S	Summer	1	+0읭	100/15	Summer					37.650	-0.150
106.007	BRANCH	15 S	Summer	1	+0읭							36.576	-0.174
113.000	SDP06	15 S	Summer	1	+0읭	1/15	Summer	100/15	Summer			37.923	0.048
106.008	S403	15 S	Summer	1	+0%	30/15	Summer	100/30	Summer			36.540	-0.166
114.000	RWP66	15 S	Summer	1	+0읭	100/15	Summer					37.666	-0.134
106.009	BRANCH	15 S	Summer	1	+0%							36.475	-0.205
115.000	RWP67	15 S	Summer	1	+0%	100/15	Summer					37.667	-0.133
106.010	BRANCH	15 S	Summer	1	+0%							36.453	-0.192
116.000	RWP68	15 S	Summer	1	+0%	100/15	Summer					37.666	-0.134
106.011	BRANCH	15 S	Summer	1	+0%							36.429	-0.178
117.000	RWP69	15 S	Summer	1	+0%	100/15	Summer					37.678	-0.122
106.012	S404	15 S	Summer	1	+0%	30/15	Summer					36.379	-0.160
118.000	RWP70	15 S	Summer	1	+0%	100/15	Summer					37.875	-0.125
106.013	BRANCH	30 S	Summer	1	+0%							36.213	-0.300
106.014	S405	30 S	Summer	1	+0%	30/15	Summer	100/15	Summer			36.178	-0.312
119.000	RWP71	15 S	Summer	1	+0%	100/15	Summer					37.987	-0.113
119.001	S406	15 S	Summer	1	+0%	30/15	Summer	100/15	Summer			37.526	-0.099
120.000	RWP72	15 S	Summer	1	+0%	100/15	Summer					37.986	-0.114
119.002	BRANCH	15 S	Summer	1	+0%							37.230	-0.075
121.000	RWP73	15 S	Summer	1	+0%	100/15	Summer					37.987	-0.113
119.003	S407	15 S	Summer	1	+0%	30/15	Summer	100/30	Summer			36.905	-0.040
106.015	S408	30 S	Summer	1	+0%	30/15	Summer	100/15	Winter			35.889	-0.409
122.000	RWP74	15 S	Summer	1	+0%	30/15	Summer	100/30	Summer			37.658	-0.092
122.001	S409	15 S	Summer	1	+0%	30/15	Summer	100/15	Summer			37.615	-0.091
					ര1	982-20	120 Tr	novyze	1				

RPS Group Plc		Page 58
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

	US/MH	Flooded Volume	Flow /	Half Dr Overflow Time	ain Pipe Flow		Level
PN	Name	(m³)	Cap.	(1/s) (mins	s) (l/s)	Status	Exceeded
2.016	C224	0 000	0 7 2		075 /	OK	
2.018	S234 S235	0.000	0.72 0.78		875.4 851.1	OK OK	
99.000	SZ35 RWP61	0.000	0.11		2.6	OK	
	S236		0.11		2.6	OK	
99.001		0.000					
100.000	RWP 62	0.000	0.12		4.1	OK	
99.002	BRANCH	0.000	0.37		6.6	OK*	
99.003	S237	0.000	0.44		6.7	OK	
101.000	RWP63	0.000	0.04		1.8	OK	
99.004	BRANCH	0.000	0.47		8.4	OK*	
102.000	RWP 64	0.000	0.03		1.8	OK	
99.005	S238	0.000	0.16		10.1	OK	
103.000	RWP65	0.000	0.06		5.8	OK	
99.006	BRANCH	0.000	0.23		15.7	OK*	
104.000	RWP66	0.000	0.04		3.6	OK	
99.007	BRANCH	0.000	0.28		19.1	OK*	
105.000	RWP67	0.000	0.02		2.0	OK	
2.018	S239	0.000	0.93		854.2	OK	
2.019	ATT INLET 01	0.000	0.43		852.4	OK*	
106.000	SDP05	0.000	1.14		173.4	SURCHARGED	7
L06.001	S400(V)	0.000	0.57		156.8	OK	7
107.000	RWP60	0.000	0.03		1.8	OK	
106.002	S401	0.000	0.77		147.0	OK	7
108.000	RWP61	0.000	0.03		1.8	OK	
106.003	BRANCH	0.000	0.59		146.2	OK*	
109.000	RWP 62	0.000	0.02		0.9	OK	
106.004	BRANCH	0.000	0.60		148.2	OK*	
10.000	RWP 63	0.000	0.03		1.8	OK	
106.005	S402	0.000	0.71		154.6	OK	1
111.000	RWP 64	0.000	0.03		1.8	OK	_
106.006	BRANCH	0.000	0.46		158.8	OK*	
112.000	RWP 65	0.000	0.00		0.0	OK	
106.007	BRANCH	0.000	0.47		162.5	OK*	
L13.000	SDP06	0.000	1.14			SURCHARGED	6
106.008	S403	0.000	0.91		225.6	OK	0
	RWP 66	0.000	0.03		1.8		
114.000	BRANCH				223.2	OK OK*	
L06.009		0.000	0.55			OK*	
115.000	RWP67	0.000	0.03		1.9	OK	
L06.010	BRANCH	0.000	0.54		217.5	OK*	
L16.000	RWP68	0.000	0.03		1.8	OK	
L06.011	BRANCH	0.000	0.45		212.0	OK*	
117.000	RWP69	0.000	0.08		4.3	OK	
106.012	S404	0.000	0.93		211.7	OK	
18.000	RWP70	0.000	0.07		4.3	OK	
L06.013	BRANCH	0.000	0.59		211.5	OK*	-
106.014	S405	0.000	0.54		204.7	OK	7
119.000	RWP71	0.000	0.13		5.5	OK	
119.001	S406	0.000	0.24		5.3	OK	5
120.000	RWP72	0.000	0.13		6.8	OK	
119.002	BRANCH	0.000	0.47		11.8	OK*	
121.000	RWP73	0.000	0.13		8.3	OK	
121.000	S407	0.000	0.87		20.4	OK	2
119.003							
	S408	0.000 0.000	0.40 0.31		205.2 4.1	OK	

RPS Group Plc		Page 59
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

		Flooded			Half Drain	Pipe			
PN	US/MH Name	Volume (m³)	Flow / Cap.	Overflow (l/s)	Time (mins)	Flow (l/s)	Status	Level Exceeded	
122.001	S409	0.000	0.31			4.0	OK	5	

RPS Group Plc		Page 60
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginada
Innovyze	Network 2020.1.3	

PN	US/MH Name	:	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)
123.000	RWP75	15	Summer	1	+0%	100/15 Summer	100/30 Summer			37.734	-0.116	0.000
122.002	BRANCH	15	Summer	1	+0%					37.557	-0.079	0.000
124.000	RWP76	15	Summer	1	+0%	100/15 Summer				37.730	-0.120	0.000
122.003	BRANCH	15	Summer	1	+0%					37.515	-0.051	0.000
125.000	SDP7	15	Summer	1	+0%	30/15 Summer	100/15 Summer			37.830	-0.120	0.000
126.000	SDP8	15	Summer	1	+0%	100/15 Summer				37.610	-0.340	0.000
	S410(V)			1	+0%		100/15 Summer			36.728	-0.342	0.000
127.000			Summer	1	+0%		100/15 Summer			37.830	-0.120	0.000
	S411(V)			1	+0%		100/15 Summer			36.717	-0.304	0.000
128.000			Summer	1		100/15 Summer				37.728	-0.122	0.000
122.006			Summer	1	+0%	100/15				36.519	-0.368	0.000
129.000			Summer	1		100/15 Summer				37.726	-0.124	0.000
122.007			Summer	1 1	+0%	100/15 0				36.311	-0.339	0.000
130.000			Summer	1		100/15 Summer 100/15 Summer				37.716 37.421	-0.134 -0.129	0.000
131.000			Summer	1		100/15 Summer	100/15 Summer			37.306	-0.094	0.000
130.002			Summer	1		100/15 Summer	100715 Buillier			37.240	-0.091	0.000
132.000			Summer	1		100/15 Summer				37.864	-0.136	0.000
130.003	BRANCH			1	+0%	100,10 000000				37.100	-0.088	0.000
133.000			Summer	1	+0%	100/15 Summer	100/15 Summer			37.239	-0.111	0.000
130.004			Summer	1	+0%					37.015	-0.068	0.000
134.000			Summer	1	+0%	100/15 Summer				37.860	-0.140	0.000
130.005	BRANCH	15	Summer	1	+0%					36.831	-0.065	0.000
135.000	RWP84	15	Summer	1	+0%	100/15 Summer				37.859	-0.141	0.000
130.006	S414	15	Summer	1	+0%	30/15 Summer				36.594	-0.052	0.000
122.008	S415	15	Summer	1	+0%	30/15 Summer				36.067	-0.388	0.000
106.016			Summer	1	+0%		100/15 Summer			35.747	-0.378	0.000
136.000			Summer	1		100/15 Summer				36.874	-0.126	0.000
106.017			Summer	1	+0%		100/15 Summer			35.666	-0.377	0.000
137.000			Summer	1		100/15 Summer	100/15 0			36.874	-0.126	0.000
106.018			Summer Summer	1 1	+0응 +0응	30/15 Summer 30/15 Summer	100/15 Summer			35.608 35.530	-0.373 -0.339	0.000 0.000
138.000			Summer	1	+0%	JU/IJ JUILLIEI				37.875	-0.125	0.000
106.020	BRANCH			1	+0%					35.483	-0.346	0.000
139.000			Summer	1	+0%					37.879	-0.121	0.000
106.021			Summer	1	+0%					35.467	-0.335	0.000
140.000			Summer	1	+0%					37.875	-0.125	0.000
106.022	S420	30	Summer	1	+0응	30/15 Summer				35.444	-0.316	0.000
141.000	RWP90	15	Summer	1	+0%					37.872	-0.128	0.000
106.023	BRANCH	30	Summer	1	+0응					35.343	-0.385	0.000
142.000	RWP91	15	Summer	1	+0%					37.871	-0.129	0.000
106.024	BRANCH	30	Summer	1	+0%					35.325	-0.378	0.000
143.000			Summer	1	+0%					37.871	-0.129	0.000
106.025			Summer	1	+0%					35.305	-0.370	0.000
144.000			Summer	1	+0%		100/15 Summer			37.866	-0.084	0.000
144.001			Summer	1	+0%	30/15 Summer				37.667	-0.075	0.000
106.026			Summer Summer	1 1	+0응 +0응	30/15 Summer				35.292	-0.361	0.000
145.000			Summer	1	+0% +0%					37.850 35.272	-0.150 -0.371	0.000 0.000
146.000			Summer	1	+0					37.850	-0.371	0.000
146.000			Summer	1	+0%					35.253	-0.363	0.000
147.000			Summer	1	+0%					37.850	-0.150	0.000
106.029			Summer	1	+0응					35.231	-0.347	0.000
148.000			Summer	1	+0%					37.850	-0.150	0.000
						©1982-20	20 Innovyze					

RPS Group Plc		Page 61
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
100.000							0
123.000	RWP75	0.11			3.3	OK	3
122.002					7.2	OK*	
124.000	RWP76	0.08			2.8	OK	
122.003		0.75			10.0	OK*	-
125.000	SDP7	0.84			174.9	OK	5
126.000	SDP8	0.13			26.9	OK	-
	S410(V)	0.39			215.4	OK	5
127.000	SDP9	0.84			174.9	OK	5
	S411(V)	0.65			394.6	OK	4
128.000	RWP77	0.08			3.7	OK	
122.006		0.52			396.7	OK*	
129.000	RWP78	0.07			3.7	OK	
122.007					390.9	OK*	
130.000	RWP79	0.03			0.8	OK	
130.001	S412	0.05			0.8	OK	
131.000	RWP80	0.30			4.3	OK	6
130.002	S413	0.31			5.1	OK	
132.000	RWP81	0.02			1.1	OK	
130.003		0.35			6.2	OK*	
133.000	RWP82	0.15			4.3	OK	6
130.004					10.2	OK*	
134.000	RWP83	0.01			0.9	OK	
130.005		0.59			10.4	OK*	
135.000	RWP84	0.01			0.9	OK	
130.006	S414	0.74			11.5	OK	
122.008	S415	0.45			403.4	OK	
106.016	S416	0.59			422.7	OK	5
136.000	RWP85	0.06			3.8	OK	
106.017	S417	0.57			384.0	OK	6
137.000	RWP86	0.06			3.9	OK	
106.018	S418	0.48			369.3	OK	2
106.019	S419	0.64			350.5	OK	
138.000	RWP87	0.06			5.4	OK	
106.020	BRANCH	0.45			345.3	OK*	
139.000	RWP88	0.08			6.9	OK	
106.021	BRANCH	0.40			344.3	OK*	
140.000	RWP89	0.06			5.5	OK	
106.022	S420	0.75			344.6	OK	
141.000	RWP90	0.05			4.3	OK	
106.023	BRANCH	0.45			342.4	OK*	
142.000	RWP91	0.05			4.1	OK	
106.024	BRANCH	0.45			342.5	OK*	
143.000	RWP92	0.05			4.2	OK	
106.025	BRANCH	0.45			342.4	OK*	
144.000	GULLEY	0.39			11.2	OK	1
144.001	S421	0.47			10.8	OK	
106.026	S422	0.67			343.2	OK	
145.000	RWP93	0.00			0.0	OK	
106.027	BRANCH	0.44			343.0	OK*	
146.000	RWP94	0.00			0.0	OK	
106.028	BRANCH	0.42			341.2	OK*	
147.000	RWP95	0.00			0.0	OK	
106.029	BRANCH	0.44			339.5	OK*	
		©1	982-202	0 Innovyz	e		

RPS Group Plc		Page 62
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	•	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
148.000	RWP96	0.00			0.0	OK	

RPS Group Plc		Page 63
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	S	torm		Climate Change	First (X) Surcharge		t (Y) ood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
106.030	\$423	30	Summer	1	+0%	30/30 Summ	۶r				35.215	-0.336
149.000			Summer	1	+0%		-				37.874	-0.126
106.031	BRANCH			1	+0%						35.032	-0.485
150.000			Summer	1	+0%						37.874	-0.126
106.032	BRANCH			1	+0%						34.972	-0.525
151.000	SDP10	15	Summer	1	+0%	1/15 Summ	er 100/15	Summer			37.921	0.046
151.001	S424 (V)	15	Summer	1	+0%	30/15 Summ	er				37.350	0.000
152.000			Summer	1	+0읭	100/15 Summ	er				37.873	-0.127
151.002	S425	15	Summer	1	+0읭	30/15 Summ	er				37.165	-0.147
153.000	RWP99	15	Summer	1	+0%	100/15 Summ	er				37.625	-0.125
151.003	BRANCH	15	Summer	1	+0%						37.038	-0.205
154.000	RWP100	15	Summer	1	+0%						37.615	-0.135
151.004	BRANCH	15	Summer	1	+0읭						37.030	-0.207
106.033	S426	30	Summer	1	+0읭	100/15 Summ	er				34.835	-0.605
155.000	RWP101	15	Summer	1	+0%						37.876	-0.124
155.001	S427	15	Summer	1	+0%						37.419	-0.113
156.000	RWP102	15	Summer	1	+0%						37.625	-0.125
155.002	BRANCH	15	Summer	1	+0%						37.114	-0.071
157.000	RWP103	15	Summer	1	+0읭						37.615	-0.135
155.003	BRANCH			1	+0읭						37.064	-0.090
106.034			Summer	1		100/15 Summ	er				34.693	-0.558
158.000	RWP106			1	+0%						37.819	-0.131
158.001			Summer	1	+0%	30/15 Summ	er				37.676	-0.133
159.000	RWP107			1	+0%						37.862	-0.138
160.000			Summer	1	+0%	1/15 Summ		Summer			37.923	0.048
158.002	S430(V)			1	+0%	30/15 Summ					37.226	-0.124
106.035			Summer	1	+0%	30/30 Summ					34.600	-0.450
106.036	S432 (SUDS)			1		100/15 Summ	er				34.547	-0.445
	ATT INLET 03			1	+0%	20/15 0	100/15	~			34.371	-0.597
161.000			Summer	1	+0%	30/15 Summ		Summer			37.620	-0.035
161.001			Summer	1		100/15 Summ		C			37.443	-0.144
162.000			Summer	1 1	+0	100/15 Summ		Summer			37.544	-0.111
161.002 163.000			Summer Summer	1		30/15 Summ 100/15 Summ					36.597 37.256	-0.115 -0.125
161.003	BRANCH			1	+0%	100/15 50000	51				36.198	-0.125
161.003			Summer	1		100/15 Summ	ar				35.958	-0.195
164.000			Summer	1		100/15 Summ		Summer			36.702	-0.163
161.005	BRANCH			1	+0%	100/15 5000	91 100/15	Summer			35.695	-0.169
165.000			Summer	1		100/15 Summ	-r 100/15	Summer			36.614	-0.101
166.000			Summer	1		100/15 Summ					36.605	-0.105
166.001			Summer	1	+0응	30/15 Summ		04111101			35.633	-0.077
167.000			Summer	1		100/15 Summ		Summer			37.014	-0.161
161.006			Summer	1	+0%	30/15 Summ					35.106	-0.195
168.000			Summer	1		100/15 Summ		Summer			36.631	-0.159
161.007			Summer	1	+0%	30/15 Summ					34.856	-0.245
169.000			Summer	1		100/15 Summ					36.622	-0.168
161.008	BRANCH			1	+0%						34.719	-0.211
170.000	OB40	15	Summer	1	+0%	100/30 Summ	er				36.919	-0.114
161.009	S306	15	Summer	1	+0응	30/15 Summ					34.680	-0.203
171.000			Summer	1	+0응						36.923	-0.110
172.000	OB41	15	Summer	1	+0%	100/15 Summ	er				36.640	-0.150
161.010	S307	15	Summer	1	+0%	30/15 Summ	er				34.506	-0.290
173.000	OB42	15	Summer	1	+0%						36.700	-0.150
161.011	BRANCH	15	Summer	1	+0%						34.422	-0.299
					@1	982-2020	[nnovvz4					
L								-				

RPS Group Plc		Page 64
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitage
Innovyze	Network 2020.1.3	1

	US/MH	Flooded Volume	Flow /	Half Drain Overflow Time	Pipe Flow		Level
PN	Name	(m ³)	Cap.	(1/s) (mins)	(1/s)	Status	Exceeded
0.000	6400	0 000	0 71		220 0	07	
L06.030	S423	0.000	0.71		338.9	OK	
149.000	RWP96	0.000	0.06		5.6	OK	
106.031	BRANCH	0.000	0.44		339.1	OK*	
150.000	RWP97	0.000	0.06		5.6	OK	
106.032	BRANCH	0.000	0.36		340.1	OK*	
151.000	SDP10	0.000	1.14			SURCHARGED	5
151.001	S424 (V)	0.000	1.04		165.9	OK	
152.000	RWP98	0.000	0.06		2.9	OK	
151.002		0.000	0.84		168.3	OK	
153.000	RWP99	0.000	0.07		3.0	OK	
151.003		0.000	0.69		170.5	OK*	
154.000	RWP100	0.000	0.02		0.9	OK	
51.004	BRANCH	0.000	0.68		170.2	OK*	
06.033	S426	0.000	0.31		360.9	OK	
155.000	RWP101	0.000	0.07		2.9	OK	
55.001	S427	0.000	0.13		2.8	OK	
156.000	RWP102	0.000	0.06		2.9	OK	
155.002	BRANCH	0.000	0.53		5.8	OK*	
157.000	RWP103	0.000	0.02		0.9	OK	
155.003	BRANCH	0.000	0.33		6.8	OK*	
106.034	S428	0.000	0.30		357.4	OK	
158.000	RWP106	0.000	0.04		0.9	OK	
158.001	S429	0.000	0.03		0.8	OK	
59.000	RWP107	0.000	0.02		0.9	OK	
60.000	SDP11	0.000	1.14		173.1	SURCHARGED	5
158.002	S430(V)	0.000	0.88		172.9	OK	
06.035	S431	0.000	0.56		374.2	OK	
106.036	S432(SUDS)	0.000	0.57		373.4	OK	
106.037	ATT INLET 03	0.000	0.32		374.0	OK*	
61.000	OB31	0.000	0.93		15.2	OK	5
61.001	S300	0.000	0.27		14.8	OK	
62.000	OB32	0.000	0.15		9.4	OK	3
61.002	S301	0.000	0.47		23.3	OK	
63.000	OB33	0.000	0.07		4.3	OK	
61.003	BRANCH	0.000	0.53		27.3	OK*	
61.004	S302	0.000	0.27		27.5	OK	
64.000	OB34	0.000	0.17		23.5	OK	5
61.005	BRANCH	0.000	0.38		48.5	OK*	
65.000	OB37	0.000	0.24		17.6	OK	5
66.000	OB35	0.000	0.19		8.2	OK	5
L66.001	S303	0.000	0.48		8.3	OK	
67.000	OB36	0.000	0.18		31.8	OK	2
61.006	S304	0.000	0.59		100.6	OK	
68.000	OB38	0.000	0.19		34.0	OK	2
61.007		0.000	0.53		124.8	OK	2
69.000	OB39	0.000	0.15		27.9	OK	
61.008		0.000	0.57		141.3	OK*	
70.000	OB40	0.000	0.13		4.8	OK	
L61.009		0.000	0.68		141.2	OK	
L71.000	0B40a	0.000	0.16		6.0	OK	
L72.000	OB41	0.000	0.24		19.8	OK	
L61.010	S307	0.000	0.52		152.1	OK	
73.000	OB42	0.000	0.00		0.0	OK	
	0042	0.000		-2020 Innovyze	5.0	01	

RPS Group Plc		Page 65
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	·

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
161.011	BRANCH	0.000	0.43			150.1	OK*	

RPS Group Plc		Page 66
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	S	torm		Climate Change	First (X) Surcharge	First Flo		First (Z) Overflow	Overflow Act.		Surcharged Depth (m)
174.000	OB43	15	Summer	1	+0%	100/15 Summe	r				37.319	-0.096
161.012	S308		Summer	1		100/15 Summe					34.367	-0.292
175.000	OB44		Summer	1	+0%						37.456	-0.109
161.013	BRANCH	30	Summer	1	+0%						34.252	-0.322
176.000	OB45	15	Summer	1	+0%	100/15 Summe	r				37.488	-0.152
161.014	S309	30	Summer	1	+0%	100/15 Summe	r				34.033	-0.370
177.000	OB46	15	Summer	1	+0%						37.439	-0.126
161.015	S310	30	Summer	1	+0%	100/15 Summe	r				33.906	-0.345
178.000	OB47	15	Summer	1	+0%						37.394	-0.121
161.016	BRANCH	30	Summer	1	+0%						33.821	-0.380
179.000	OB48	15	Summer	1	+0%						37.425	-0.125
180.000	OB49	15	Summer	1	+0%	100/15 Summe	r				37.571	-0.097
161.017	S311	30	Summer	1	+0%	100/15 Summe	r				33.701	-0.374
181.000	OB50	15	Summer	1	+0%	100/15 Summe	r				37.527	-0.090
181.001	S312	15	Summer	1	+0%	100/15 Summe	r				37.359	-0.084
182.000	OB51	15	Summer	1	+0%						37.553	-0.114
181.002	S313	15	Summer	1	+0%	100/15 Summe	r				36.874	-0.151
183.000	OB52	15	Summer	1	+0%						37.468	-0.112
181.003	BRANCH	15	Summer	1	+0%						36.236	-0.130
181.004	S314	15	Summer	1	+0%	30/15 Summe	r				35.965	-0.115
184.000	OB53	15	Summer	1	+0%						37.407	-0.123
161.018	S315	30	Summer	1	+0%	100/15 Summe	r				33.559	-0.376
161.019	INTO2 (SUDS)	30	Summer	1	+0%	30/15 Summe	r				33.505	-0.299
161.020	S316	30	Summer	1	+0%	100/15 Summe	r				33.485	-0.288
161.021	ATT INLET 02	30	Summer	1	+0%						33.277	-0.473
2.020	ATT TANK 01	240	Summer	1	+0읭	30/60 Summe	r				33.035	-0.565
2.021	CONNECTION	240	Summer	1	+0읭	100/30 Summe	r				32.843	-0.707
185.000	OB60	15	Summer	1	+0읭	100/15 Summe	r 100/15	Summer			37.388	-0.211
186.000	OB61	15	Summer	1	+0%	30/15 Summe	r 100/15	Summer			37.228	-0.209
185.001	S500	15	Summer	1	+0%	30/15 Summe	r				36.985	-0.210
185.002	S501	15	Summer	1	+0%	30/15 Summe	r				36.827	-0.213
187.000	OB62	15	Summer	1	+0%	100/15 Summe	r 100/15	Summer			37.051	-0.227
185.003	BRANCH	15	Summer	1	+0%						36.664	-0.207
188.000	OB63	15	Summer	1	+0%	100/15 Summe	r				36.923	-0.118
189.000	OB64	15	Summer	1	+0%	30/15 Summe	r 100/15	Summer			36.832	-0.087
185.004	S502	15	Summer	1	+0%	30/15 Summe	r				36.480	-0.156
190.000	OB65	15	Summer	1	+0%	30/15 Summe	r 100/15	Summer			36.618	-0.101
185.005	BRANCH	15	Summer	1	+0%						36.408	-0.100
191.000	OB66		Summer	1		100/15 Summe					36.642	-0.127
185.006	S503	15	Summer	1	+0%	30/15 Summe	r				36.227	-0.232
192.000	OB67	15	Summer	1	+0%	30/15 Summe	r				36.247	-0.092
185.007	BRANCH	15	Summer	1	+0%						36.078	-0.217
193.000	OB68	15	Summer	1	+0%						36.600	-0.116
185.008	BRANCH	15	Summer	1	+0%						35.977	-0.174
194.000	OB69	15	Summer	1	+0%	30/15 Summe	r 100/15	Summer			36.390	-0.088
195.000	OB70	15	Summer	1	+0응	30/15 Summe	r 100/15	Summer			36.160	-0.190
194.001	S504		Summer	1	+0응	30/15 Summe					36.028	-0.152
196.000	OB71	15	Summer	1	+0%	30/15 Summe	r 100/15	Summer			36.235	-0.093
194.002	S505		Summer	1	+0%	30/15 Summe					35.918	-0.127
197.000	OB72		Summer	1		100/15 Summe					36.338	-0.127
198.000	OB73		Summer	1	+0응	30/15 Summe		Summer			36.200	-0.195
194.003	S506		Summer	1	+0응	30/15 Summe					35.694	-0.243
199.000	OB75		Summer	1	+0응	30/15 Summe		Summer			36.398	-0.099
200.000	OB74	15	Summer	1	+0응	30/15 Summe	r				36.548	-0.113
					©1	982-2020 In	nnovyze					
L							4					

RPS Group Plc		Page 67
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

	US/MH			Overflow	Half Drain Time	Flow	.	Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
174.000	OB43	0.000	0.28			17.9	OK	
161.012	S308	0.000	0.52			155.4	OK	
175.000	OB44	0.000	0.16			17.8	OK	
161.013	BRANCH	0.000	0.44			159.2	OK*	
176.000	OB45	0.000	0.23			39.6	OK	
161.014	S309	0.000	0.39			168.6	OK	
177.000	OB46	0.000	0.06			4.9	OK	
161.015	s310	0.000	0.48			168.6	OK	
178.000	OB47	0.000	0.08			9.3	OK	
161.016	BRANCH	0.000	0.36			170.0	OK*	
179.000	OB48	0.000	0.06			4.8	OK	
180.000	OB 10 OB 4 9	0.000	0.27			21.0	OK	
161.017	S311	0.000	0.41			173.6	OK	
181.000	OB50	0.000	0.33			8.7	OK	
181.001	S312	0.000	0.40			8.7	OK	
181.001	0B51	0.000	0.40			0./ 6.4	OK	
181.002	S313 OB52	0.000	0.24			15.1	OK	
183.000 181.003	BRANCH	0.000	0.15 0.37			10.2 25.0	OK OK*	
		0.000				25.0		
181.004	S314		0.48				OK	
184.000	OB53	0.000	0.08			6.4	OK	
161.018	\$315	0.000	0.50			178.9	OK	
	INT02 (SUDS)	0.000	0.50			179.0	OK	
161.020	S316	0.000	0.70			179.0	OK	
	ATT INLET 02	0.000	0.29			178.8	OK*	
2.020	ATT TANK 01	0.000	0.55			451.1	OK	
2.021	CONNECTION	0.000	0.36			451.6	OK	4
185.000	OB60	0.000	0.19			27.6	OK	4
186.000	OB61	0.000	0.20			24.7	OK	5
185.001	S500	0.000	0.39			51.8	OK	
185.002	S501	0.000	0.39			52.4	OK	-
187.000	OB62	0.000	0.13			21.4	OK	5
185.003	BRANCH	0.000	0.42			72.9	OK*	
188.000	OB63	0.000	0.10			4.0	OK	-
189.000	OB64	0.000	0.37			12.2	OK	5
185.004	S502	0.000	0.63			87.5	OK	-
190.000	OB65	0.000	0.24			6.8	OK	3
185.005	BRANCH	0.000	0.88			94.6	OK*	
191.000	OB66	0.000	0.06			1.3	OK	
185.006	S503	0.000	0.47			95.9	OK	
192.000	OB67	0.000	0.64			19.2	OK	
185.007	BRANCH	0.000	0.53			112.9	OK*	
193.000	OB68	0.000	0.12			5.6	OK	
185.008	BRANCH	0.000	0.69			117.0	OK*	
194.000	OB69	0.000	0.36			9.2	OK	5
195.000	OB70	0.000	0.29			29.7	OK	5
194.001	S504	0.000	0.48			38.6	OK	
196.000	OB71	0.000	0.31			9.4	OK	5
194.002	S505	0.000	0.63			48.4	OK	
197.000	OB72	0.000	0.06			2.5	OK	
	OB73	0.000	0.26			44.8	OK	5
198.000								
198.000 194.003 199.000	S506 OB75	0.000	0.43 0.25			95.3 10.6	OK OK	5

RPS Group Plc		Page 68
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

		Flooded			Half Drain	Pipe		
PN	US/MH Name	Volume (m³)	Flow / Cap.	Overflow (l/s)	Time (mins)	Flow (l/s)	Status	Level Exceeded
200.000	OB74	0.000	0.14			4.2	OK	

RPS Group Plc		Page 69
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	St	orm		Climate Change	First Surcl	: (X) harge	First Flo		First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
200.001	S507	15 \$	Summer	1	+0%	30/15	Summer					36.305	-0.102
199.001	S508	15 \$	Summer	1	+0%	30/15	Summer					35.989	-0.049
201.000	OB76	15 \$	Summer	1	+0%	100/15	Summer					36.455	-0.113
194.004	S509	15 \$	Summer	1	+0%	30/15	Summer					35.625	-0.153
194.005	S510	15 \$	Summer	1	+0%	30/15	Summer					35.549	-0.148
202.000	OB77	15 \$	Summer	1	+0%	100/15	Summer					36.637	-0.112
194.006	S511	15 \$	Summer	1	+0%	30/15	Summer					35.380	-0.175
203.000	OB78	15 \$	Summer	1	+0%							36.633	-0.116
194.007	S512	15 \$	Summer	1	+0%	30/15	Summer					35.102	-0.246
185.009	S513	15 \$	Summer	1	+0%	30/15	Summer					35.004	-0.210
204.000	OB79	15 \$	Summer	1	+0%	30/15	Summer	100/15	Summer			37.128	-0.190
204.001	S514	15 \$	Summer	1	+0%	30/15	Summer					36.857	-0.143
205.000	OB80	15 \$	Summer	1	+0%	30/15	Summer	100/15	Summer			36.823	-0.096
204.002	BRANCH	15 \$	Summer	1	+0%							36.796	-0.073
185.010	S515	15 \$	Summer	1	+0%	30/15	Summer					34.979	-0.183
206.000	OB83	15 \$	Summer	1	+0%	30/15	Summer	100/15	Summer			36.921	-0.079
207.000	OB84	15 \$	Summer	1	+0%	100/15	Summer					37.012	-0.098
208.000	OB81	15 \$	Summer	1	+0%	30/15	Summer	100/15	Summer			37.227	-0.070
209.000	OB82	15 \$	Summer	1	+0%	100/15	Summer					37.161	-0.101
208.001	S516	15 \$	Summer	1	+0%	30/15	Summer					36.899	-0.111
210.000	GULLY	15 \$	Summer	1	+0%	100/15	Summer					37.335	-0.150
208.002	BRANCH	15 \$	Summer	1	+0%							36.715	-0.121
206.001	S517	15 \$	Summer	1	+0%	30/15	Summer					36.601	-0.123
211.000	OB90A		Summer	1	+0%	100/15	Summer					36.814	-0.136
212.000	OB90	15 \$	Summer	1	+0%	100/15	Summer					36.814	-0.136
213.000	OB85	15 \$	Summer	1	+0%	100/15	Summer					36.834	-0.104
214.000	OB86	15 \$	Summer	1	+0%	30/15	Summer	100/15	Summer			36.591	-0.087
213.001	S518	15 \$	Summer	1	+0%	30/15	Summer					36.295	-0.110
215.000	OB87		Summer	1		100/15	Summer	100/15	Summer			36.760	-0.110
213.002	BRANCH	15 \$	Summer	1	+0%							36.166	-0.094
216.000	OB88		Summer	1		100/15						36.891	-0.106
217.000	OB89	15 \$	Summer	1	+0%	100/15	Summer					36.919	-0.117
213.003	S519		Summer	1	+0%		Summer					35.952	-0.140
206.002	S520		Summer	1		100/15	Summer					35.807	-0.215
218.000	OB92		Summer	1	+0%							36.898	-0.125
219.000	OB91		Summer	1		100/15						36.394	-0.114
220.000	OB93		Summer	1		100/15						36.229	-0.161
206.003	S521		Summer	1		100/15						35.394	-0.279
221.000	OB94		Summer	1		100/15	Summer					36.296	-0.157
206.004				1	+0%							35.074	
222.000			Summer	1	+0%							36.622	-0.128
185.011			Summer	1	+0%		Summer					34.957	
	INT03 (SUDS)			1	+0%		Summer					34.540	-0.229
185.013			Summer	1	+0%	30/15	Summer					34.511	
	ATT INLET 04			1	+0%	/						34.035	
	ATT TANK 02			1	+0%		Summer					32.808	-0.017
2.023			Summer	1		1/360						32.813	
	S524 (SUDS)			1	+0%		Summer					32.755	
2.025				1	+0%	1/120	Summer					32.751	
2.026	458	360 1	Winter	1	+0%							36.075	-0.225

©1982-2020 Innovyze

RPS Group Plc		Page 70
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginada
Innovyze	Network 2020.1.3	

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	- Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
200.001	S507	0.000	0.22			4.1	OK	
199.001	S508	0.000	0.78			14.6	OK	
201.000	OB76	0.000	0.14			7.7	OK	
194.004	S509		0.74			115.6	OK	
194.005	S510	0.000	0.76			111.1	OK	
202.000	OB77	0.000	0.14			9.7	OK	
194.006	S511	0.000	0.66			112.6	OK	
203.000	OB78	0.000	0.12			8.8	OK	
194.007	S512	0.000	0.50			115.2	OK	
185.009	S513	0.000	0.46			220.6	OK	
204.000	OB79	0.000	0.29			39.2	OK	3
204.001	S514	0.000	0.53			39.0	OK	
205.000	OB80	0.000	0.61			19.4	OK	1
204.002	BRANCH	0.000	0.93			58.4	OK*	
185.010	S515	0.000	0.45			257.1	OK	
206.000	OB83	0.000	0.44			8.8	OK	3
207.000	OB84	0.000	0.26			9.7	OK	
208.000	OB81	0.000	0.55			11.7	OK	3
209.000	OB82	0.000	0.23			7.0	OK	
208.001	S516	0.000	0.50			18.6	OK	
210.000	GULLY	0.000	0.00			0.0	OK	
208.002	BRANCH	0.000	0.44			18.7	OK*	
206.001	S517	0.000	0.65			36.8	OK	
211.000	OB90A	0.000	0.02			1.2	OK	
212.000	OB90	0.000	0.02			1.2	OK	
213.000	OB85	0.000	0.20			8.5	OK	
214.000	OB86	0.000	0.36			8.2	OK	4
213.001	S518	0.000	0.51			16.5	OK	
215.000	OB87	0.000	0.16			7.2	OK	1
213.002	BRANCH	0.000	0.63			23.0	OK*	
216.000	OB88	0.000	0.19			6.8	OK	
217.000	OB89	0.000	0.11			6.7	OK	
213.003	S519	0.000	0.54			35.2	OK	
206.002	S520	0.000	0.38			74.3	OK	
218.000	OB92	0.000	0.06			2.9	OK	
219.000	OB91	0.000	0.13			7.5	OK	
220.000	OB93	0.000	0.18			21.4	OK	
206.003	S521	0.000	0.30			103.6	OK	
221.000	OB94	0.000	0.20			29.6	OK	
206.004	BRANCH	0.000	0.62			131.2	OK*	
222.000	OB95	0.000	0.05			4.3	OK	
185.011	S522	0.000	1.00			350.6	OK	
	INT03 (SUDS)	0.000	0.92			350.6	OK	
185.013	S523	0.000	0.95			350.2	OK	
	ATT INLET 04	0.000	0.13			349.7	OK*	
2.022	ATT TANK 02	0.000	0.65			76.7	OK	
2.023	S523	0.000	0.38				SURCHARGED	
2.024		0.000	0.62				SURCHARGED	
2.025	SWPS01	0.000	2.06 0.50			68.2 68.2	SURCHARGED	
2.026	458	0.000	0.50			00.2	OK	

©1982-2020 Innovyze

	up Pl										Page	
			apital	Drive								
inford												
	-		MK1								— Mic	10
			3 13:5				Designed by LA	ARS.ARMES				inag
ile EN	V3 DR	AIA	AGE 25	0823 r	educed	cat 0	Checked by					nay
nnovyz	е]	Network 2020.1	L.3			·	
<u>30</u>	year	Ret	curn P	eriod	Summar	y of Crit	tical Results	by Maximu	m Level	(Rank	1) for St	torm
			Foul of Inp	Hot Headlo Sewage out Hydr	Hot Sta Start L ss Coeff per hect ographs	on Factor rt (mins) evel (mm) (Global) are (l/s) 0 Number	0 MADD 0 0.500 Flow per Pe	al Flow - % Factor * 10 Inlet erson per Da rols 0 Numbe	m³/ha Stor Coeffiect y (l/per/c er of Time,	rage 2.0 ient 0.8 day) 0.0 /Area Di	000 000 agrams 0	
			Ra	ainfall F			netic Rainfall Det FSR M5-60 (mm) Wales Ratio R	18.300 Cv	. ,			
				Maro	gin for H		Warning (mm) 300 ysis Timestep Fin DTS Status OI	ne Inertia S				
					Return i	Period(s)	(years)	50, 120, 240, 1, 30,	100			
	US/MH			Return		limate Cha	nge (%)	1, 30, 0, (, 100), 45		Surcharged Depth	
PN	US/MH Name	S	Storm		C.	limate Cha	x) First (Y)	1, 30, 0, (, 100), 45		Surcharged Depth (m)	Volum
PN 2.000	Name		Storm Summer		C. Climate Change	limate Cha: First (:	x) First (Y) ge Flood	1, 30, 0, (First (Z)	. 100), 45 Overflow	Level	Depth	Volum (m³)
	Name OB1	15		Period	C. Climate Change	limate Cha: First (1 Surchar 100/15 Sum	x) First (Y) ge Flood	1, 30, 0, (First (Z) Overflow	. 100), 45 Overflow	Level (m)	Depth (m)	Volum (m ³) 0.0
2.000 3.000 2.001	Name OB1 OB2 S100	15 15 15	Summer Summer Summer	Period 30 30 30	C Climate Change +0% +0% +0%	limate Cha: First (: Surchar 100/15 Su 30/15 Su 100/15 Su	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135	Depth (m) -0.063 0.033 -0.117	Volum (m ³) 0.0 0.0
2.000 3.000 2.001 4.000	Name OB1 OB2 S100 OB3	15 <mark>15</mark> 15 15	Summer Summer Summer Summer	Period 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0%	First (2 Surchar 100/15 Su 30/15 Su 100/15 Su 100/15 Su	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678	Depth (m) -0.063 0.033 -0.117 -0.072	Volum (m ³) 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000	Name OB1 OB2 S100 OB3 OB4	15 15 15 15 15	Summer Summer Summer Summer	Period 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0%	First (: Surchar 100/15 Su 30/15 Su 100/15 Su 100/15 Su 100/15 Su	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137	Volum (m ³) 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002	Name OB1 OB2 S100 OB3 OB4 S101	15 15 15 15 15 15	Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0%	First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056	Volum (m ³) 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5	15 15 15 15 15 15 15	Summer Summer Summer Summer	Period 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0%	First (2 Surchar 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102	15 15 15 15 15 15 15 15	Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0%	First () Surchar 100/15 Su 30/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7	15 15 15 15 15 15 15 15 15	Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102	Volur (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103	15 15 15 15 15 15 15 15 15 15	Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104	15 15 15 15 15 15 15 15 15 15 30	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchard 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8	15 15 15 15 15 15 15 15 15 15 30 15	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchard 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105	15 15 15 15 15 15 15 15 15 15 30 15 30	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchard 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer mmer 100/15 Summe mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9	15 15 15 15 15 15 15 15 15 15 30 15 30	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	First () Surchard 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10	15 15 15 15 15 15 15 15 15 15 30 15 30 15 15 15	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.516	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.000 11.000 10.002	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107	15 15 15 15 15 15 15 15 15 30 15 30 15 15 15	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.516 37.641 37.076	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.000 11.000 10.002 12.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11	15 15 15 15 15 15 15 15 15 15 30 15 15 15 15 15 15	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe mmer 100/30 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.478 35.664 37.930 37.516 37.516 37.641 37.076 37.632	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396 -0.156	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108	15 15 15 15 15 15 15 15 15 30 15 30 15 15 15 15 15 30	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe mmer 100/30 Summe mmer 100/30 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.516 37.641 37.076	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.000 10.001 11.000 10.002 12.000 10.003 13.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe mmer 100/30 Summe mmer 100/30 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.516 37.641 37.076 37.632 35.935	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396 -0.156 -0.045	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe mmer 100/30 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.478 35.664 37.930 37.516 37.611 37.632 35.935 37.617	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396 -0.156 -0.045 -0.096	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer Summer	Period 30 30 30 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.641 37.641 37.676 37.632 35.935 37.617 35.750 35.750 35.620 37.100	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396 -0.156 -0.045 -0.096 0.330 0.398 -0.115	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Summer Summer	Period 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.641 37.641 37.676 37.632 35.935 37.617 35.750 35.750 35.620 37.100 36.581	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396 -0.156 -0.045 -0.096 0.330 0.398 -0.115 -0.094	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Summer Summer	Period 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.611 37.632 35.935 37.617 35.750 35.750 35.620 37.100 36.581 35.901	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396 -0.156 -0.045 -0.096 0.330 0.398 -0.115 -0.094 0.276	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111 OB15	15 15 15 15 15 15 15 15 15 15 15 15 15 1	Summer Summer	Period 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.641 37.641 37.632 35.935 37.617 35.750 35.750 35.620 37.100 36.581 35.901 37.595	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396 -0.156 -0.045 -0.096 0.330 0.398 -0.115 -0.094 0.276 -0.084	Volum (m ³) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111 OB15 S112	15 15 15 15 15 15 15 15 15 15	Summer Summer	Period 30 30 30 30 30 30 30 30 30 30	C Climate Change +0% +0% +0% +0% +0% +0% +0% +0% +0% +0%	limate Char First () Surchar 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 100/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur 100/15 Sur 30/15 Sur	X) First (Y) rge Flood mmer 100/15 Summe	1, 30, 0, 0 First (Z) Overflow	. 100), 45 Overflow	Level (m) 37.752 37.501 37.135 36.678 37.223 36.432 37.256 36.238 36.720 37.218 35.962 35.756 37.478 35.664 37.930 37.516 37.611 37.632 35.935 37.617 35.750 35.750 35.620 37.100 36.581 35.901	Depth (m) -0.063 0.033 -0.117 -0.072 -0.137 -0.056 -0.179 0.121 0.010 -0.102 0.453 0.394 -0.080 0.393 0.217 -0.097 -0.147 0.396 -0.156 -0.045 -0.096 0.330 0.398 -0.115 -0.094 0.276	Volum (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

RPS Group Plc		Page 72
Noble House, Capital Drive Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitage
Innovyze	Network 2020.1.3	

				Half Drain	-		
			Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
2.000	OB1	0.63			19.4	OK	
3.000	OB2	1.07			24.2	SURCHARGED	2
2.001	S100	0.46			43.3	OK	1
4.000	OB3	0.79			43.0	OK	7
5.000	OB4	0.32			42.8	OK	
2.002	S101	0.87			124.2	OK	3
6.000	OB5	0.34			98.0	OK	3
2.003	S102	0.68			184.7	SURCHARGED	
7.000	OB6	0.89			106.5	SURCHARGED	7
8.000	OB7	0.57			108.8	OK	5
2.004	S103	1.59			352.5	SURCHARGED	
2.005	S104	1.59			334.2	SURCHARGED	
9.000	OB8	0.45			22.3	OK	
2.006	S105	1.29			339.8	SURCHARGED	
10.000	OB9	1.78			35.2	SURCHARGED	5
10.001	S106	0.60			34.2	OK	
11.000	OB10	0.26			38.5	OK	1
10.002	S107	1.23			62.1	SURCHARGED	
12.000	OB11	0.20			38.5	OK	
10.003	S108	0.92			87.8	OK	
13.000	OB12	0.28			26.9	OK	
10.004	S109	0.69			108.4	SURCHARGED	
2.007	S110	0.95			397.1	SURCHARGED	
14.000	OB13	0.48			85.1	OK	4
15.000	OB14	0.30			11.1	OK	6
14.001	S111	1.22			95.5	SURCHARGED	
16.000	OB15	0.40			24.9	OK	
2.008	S112	0.79			412.4	SURCHARGED	
17.000	OB16	0.37			25.5	OK	

RPS Group Plc		Page 73
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	c	Storm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)
EN	Manie	-		1 81 100	change	Surch		2 1000	CAGITION	ALL.	()	()	()
2.009			Summer	30	+0응	30/15	Summer				35.420	0.594	0.000
18.000	OB17	15	Summer	30	+0응						37.590	-0.089	0.000
2.010	S114	30	Summer	30	+0응	30/15	Summer				35.306	0.721	0.000
19.000	OB18	15	Summer	30	+0%	30/15	Summer	100/15 Summer			38.332	0.487	0.000
19.001			Summer	30	+0응		Summer				38.181	0.681	0.000
20.000			Summer	30		100/15					37.769	-0.076	0.000
19.002			Summer	30	+0응		Summer				36.918	0.351	0.000
19.003			Summer	30	+0%			100/15 Summer			36.356	0.269	0.000
21.000			Summer	30		100/15					37.052	-0.082	0.000
22.000			Summer	30		100/15					37.196	-0.089	0.000
19.004			Summer	30	+0응		Summer				36.148	0.252	0.000
23.000			Summer	30				100/15 Summer			36.632	-0.118	0.000
24.000			Summer	30				100/15 Summer			37.253	-0.067	0.000
19.005			Summer	30	+0응		Summer				36.061	0.223	0.000
25.000			Summer	30		100/15					37.236	-0.124	0.000
19.006			Summer	30	+0응		Summer				35.794	0.216	0.000
26.000			Summer	30		100/15					37.246	-0.114	0.000
27.000			Summer	30				100/15 Summer			36.682	-0.068	0.000
19.007			Summer	30	+0%		Summer				35.675	0.401	0.000
19.008			Summer	30	+0%	, -	Summer				35.616	0.536	0.000
19.009			Summer	30	+0%	30/15	Summer				35.437	0.629	0.000
28.000			Summer	30	+0%						37.691	-0.072	0.000
19.010			Summer	30	+0%		Summer				35.290	0.705	0.000
29.000			Summer	30		100/15					36.506	-0.080	0.000
2.011			Summer	30	+0%		Summer				35.247	0.769	0.000
30.000			Summer	30		100/15					36.607	-0.068	0.000
31.000			Summer	30		100/15					37.114	-0.101	0.000
30.001			Summer	30	+0%		Summer				36.432	0.097	0.000
2.012			Summer	30	+0%		Summer				35.205	0.743	0.000
2.013			Summer	30	+0%		Summer	100/15 0			35.146	0.856	0.000
32.000			Summer	30 30	+0%			100/15 Summer			38.852	0.977	0.000
33.000			Summer		+0%		Summer				38.263	0.463	0.000
33.001			Summer	30 30	+0%		Summer				38.261	0.838	0.000
34.000			Summer	30	+0%		Summer	100/15 0			38.292	0.492	0.000
34.001			Summer	30	+0응 +0응		Summer	100/15 Summer			38.278	0.970	0.000
			Summer			20/12	Summer				38.269	0.469	
34.002 36.000	BRANCH			30 30	+0응 +0응	20/15	Cummon				37.115	0.000	0.000
36.000	BRANCH		Summer	30	+0	20/12	Summer				38.258 36.922	0.458	0.000
34.003			Summer	30	+0% +0%	30/15	Summer				38.304	0.504	0.000
	S202 (V)			30	+0%		Summer				38.299	1.438	0.000
32.001			Summer	30	+0%			100/15 Summer			38.248	1.426	0.000
38.000			Summer	30	+0%		Summer	100/15 Builder			38.108	0.308	0.000
32.003	BRANCH			30	+0%	50/15	Dunnier				36.677	0.000	0.000
39.000			Summer	30	+0%	30/15	Summer				37.983	0.183	0.000
32.004	BRANCH			30	+0%	50/15	Dunnier				36.644	0.000	0.000
40.000			Summer	30	+0%	30/15	Summer				37.926	0.126	0.000
32.005			Summer	30	+0%			100/15 Summer			37.920	1.322	0.000
41.000			Summer	30	+0%			100/15 Summer			38.877	1.002	0.000
42.000			Summer	30	+0%		Summer	100,10 Dummer			37.938	0.138	0.000
42.001			Summer	30	+0%			100/15 Summer			37.936	0.514	0.000
43.000			Summer	30	+0%		Summer				37.922	0.122	0.000
44.000			Summer	30	+0%		Summer				37.933	0.722	0.000
45.000			Summer	30	+0%		Summer				37.931	0.131	0.000
			,									0.101	
						©1	982-20	020 Innovyze					

RPS Group Plc		Page 74
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Desinado
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
		-					
2.009	S113	0.78			406.0	SURCHARGED	
18.000	OB17	0.34			25.9	OK	
2.010	S114				410.3	SURCHARGED	
19.000	OB18	0.73			27.0	SURCHARGED	7
19.001	S115				23.2	SURCHARGED	
20.000	OB19	0.48			34.0	OK	
19.002	S116	1.07			48.1	SURCHARGED	-
19.003	S117	1.31			56.0	SURCHARGED	7
21.000	OB20	0.42			27.3	OK	
22.000	OB21	0.34			19.1	OK	
19.004	S118	0.81			81.2	SURCHARGED	
23.000	OB22				46.7	OK	
24.000	OB23	0.58			40.2	OK	5
19.005	S119	1.29			153.4	SURCHARGED	
25.000	OB24	0.41			77.6	OK	
19.006	S120	1.03			196.8	SURCHARGED	
26.000	OB25	0.49			99.1	OK	
27.000	OB26	0.82			109.3	OK	6
19.007	S121	0.99			352.4	SURCHARGED	
19.008	S122	0.63			320.7	SURCHARGED	
19.009	S123	0.59			278.1	SURCHARGED	
28.000	OB27	0.53			33.4	OK	
19.010	S124	1.13			283.2	SURCHARGED	
29.000	OB28	0.44			19.4	OK	
2.011	S125	2.09			624.5	SURCHARGED	
30.000	OB29	0.57			11.0	OK	
31.000	OB30	0.58			76.5	OK	
30.001	S126	1.13			87.1	SURCHARGED	
2.012	S127	1.11			651.0	SURCHARGED	
2.013	INT01	0.86			649.6	SURCHARGED	
32.000	SDP01	2.74			414.9	FLOOD RISK	7
33.000	RWP01	0.06			2.5	SURCHARGED	
33.001	S200	0.37			12.2	SURCHARGED	
34.000	RWP03	0.33			11.7	SURCHARGED	
34.001	S201	0.78			13.9	SURCHARGED	7
35.000	RWP04	0.27			11.3	SURCHARGED	
34.002	BRANCH					SURCHARGED*	
36.000	RWP05	0.25			11.7	SURCHARGED	
34.003	BRANCH	1.98			30.6	SURCHARGED*	
37.000	RWP02	0.04			2.5	SURCHARGED	
	S202 (V)	2.33			395.4		
32.002	S203	1.53			327.3		7
38.000	RWP06	0.11			6.8	SURCHARGED	
32.003		1.28				SURCHARGED*	
39.000	SWP07	0.10			6.2	SURCHARGED	
32.004						SURCHARGED*	
40.000	RWP08	0.11			6.2	SURCHARGED	
32.005	S204	0.11			266.4		7
41.000	SDP02	2.76			418.7		
42.000	RWP09	0.06			2.5	SURCHARGED	'
42.000	S205	0.08			11.7		1
42.001		0.32			2.5		Ť
43.000	RWP10 PWP11	0.05			2.5 6.2		
44.000	RWP11	0.22				SURCHARGED	
 			©1982-2	020 Inno	vyze		

RPS Group Plc		Page 75
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name		Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded	
45.000	RWP12	0.11			6.2	SURCHARGED		

RPS Group Plc		Page 76
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

	US/MH				Climate	First (X)	First (Y)	First (Z)		Level	Surcharged Depth	Volume
PN	Name	5	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
44.001	BRANCH	15	Summer	30	+0%					36.917	0.000	0.000
41.001	S206(V)	15	Summer	30	+0응	30/15 Summer				37.920	1.209	0.000
32.006	S207	15	Summer	30	+0%	30/15 Summer	100/15 Summer			37.740	1.420	0.000
46.000	RWP13	15	Summer	30	+0응	30/15 Summer				37.684	0.034	0.000
32.007			Summer	30	+0응	30/15 Summer				37.677	1.425	0.000
32.008			Summer	30	+0응	30/15 Summer				37.624	1.414	0.000
47.000			Summer	30		100/15 Summer				37.874	-0.126	0.000
32.009	BRANCH			30	+0%	100/15 5				36.202	0.000	0.000
48.000			Summer	30		100/15 Summer				37.890	-0.110	0.000
48.001			Summer	30		100/15 Summer				37.538	-0.062	0.000
49.000	BRANCH		Summer	30 30	+0%	100/15 Summer				37.883	-0.117	0.000
50.000			Summer	30		100/15 Summer				37.416 37.847	0.000 -0.103	0.000
51.000			Summer	30		100/15 Summer				37.844	-0.105	0.000
50.001			Summer	30		100/15 Summer				37.468	-0.032	0.000
52.000			Summer	30		100/15 Summer				37.469	-0.116	0.000
50.002	BRANCH			30	+0응					37.194	0.000	0.000
53.000			Summer	30	+0%	100/15 Summer				37.875	-0.125	0.000
50.003	BRANCH			30	+0%					36.794	0.000	0.000
50.004	S212	15	Summer	30	+0응	30/15 Summer	100/30 Summer			37.443	0.798	0.000
32.010	S213	15	Summer	30	+0%	30/15 Summer				37.501	1.369	0.000
54.000	RWP21	15	Summer	30	+0읭	100/15 Summer				37.880	-0.120	0.000
32.011	BRANCH	15	Summer	30	+0%					36.113	0.000	0.000
55.000	RWP22	15	Summer	30	+0%	100/15 Summer				37.880	-0.120	0.000
32.012	BRANCH			30	+0응					36.075	0.000	0.000
56.000			Summer	30		100/15 Summer				37.879	-0.121	0.000
32.013	BRANCH			30	+0%					36.038	0.000	0.000
57.000			Summer	30		100/15 Summer				37.879	-0.121	0.000
32.014	BRANCH			30	+0%	100/00 0				36.001	0.000	0.000
58.000			Summer	30		100/30 Summer				37.879	-0.121	0.000
32.015 59.000	BRANCH		Summer	30 30	+0응 +0응	30/15 Summor	100/15 Summer			35.961 38.549	0.000 0.824	0.000
60.000			Summer	30		100/15 Summer	100/15 Summer			37.496	-0.154	0.000
61.000			Summer	30	+0%		100/15 Summer			38.550	0.825	0.000
62.000			Summer	30		100/15 Summer	100,10 Dammer			37.523	-0.127	0.000
62.001			Summer	30	+0응	30/30 Summer				37.288	0.038	0.000
63.000			Summer	30	+0%	100/15 Summer				37.866	-0.134	0.000
61.001	S215(V)			30	+0응	1/15 Summer				37.258	1.238	0.000
64.000	RWP27	15	Summer	30	+0%	100/15 Summer				37.376	-0.124	0.000
64.001	S214a	30	Summer	30	+0응	100/15 Summer				37.183	-0.067	0.000
65.000	RWP28	15	Summer	30	+0응	100/15 Summer				37.866	-0.134	0.000
	S216(V)			30	+0응	30/15 Summer				37.176	1.186	0.000
66.000			Summer	30	+0응	100/30 Summer				37.887	-0.113	0.000
32.016			Summer	30	+0%	30/15 Summer				37.057	1.133	0.000
67.000			Summer	30	+0%					37.878	-0.122	0.000
32.017			Summer	30	+0%					35.890	0.000	0.000
68.000 32.018			Summer Summer	30 <mark>30</mark>	+0응 +0응					38.028 35.857	-0.122 0.000	0.000
69.000			Summer	30	+0% +0%					38.028	-0.122	0.000
32.019			Summer	30	+0% +0%					35.820	0.000	0.000
70.000			Summer	30	+0%					38.026	-0.124	0.000
32.020			Summer	30	+0%					35.791	0.000	0.000
71.000			Summer	30	+0응					37.846	-0.104	0.000
72.000			Summer	30	+0%					37.848	-0.102	0.000
						@1982_20)20 Innovyze	2				
						ST 202 20	20 111100920	•				

RPS Group Plc		Page 77
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitacje
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
44.001	DDANCU	0.54			15 2	SURCHARGED*	
	BRANCH S206 (V)				407.4		
32.006	S200(V) S207	1.16 1.05			407.4		2
46.000		0.13			5.1		2
32.007	RWP13 <u> \$208</u>	1.34			508.1		
32.007	S208	1.91			525.6		
		0.06			525.0	OK	
47.000	RWP14						
32.009		0.88				SURCHARGED*	
	RWP15	0.16			5.1	OK	
48.001	S210	0.18			4.9	OK	
49.000	RWP16	0.11			5.1	OK	
48.002	BRANCH	0.35				SURCHARGED*	
50.000	RWP17	0.21			6.7	OK	
51.000	RWP18	0.18			6.7	OK	
50.001	S211	0.51			13.0	OK	
52.000	RWP19	0.11			4.5	OK	
50.002	BRANCH	0.61				SURCHARGED*	
53.000	RWP20	0.07			4.5	OK	
50.003	BRANCH	0.84				SURCHARGED*	
50.004	S212	1.10			19.6		3
32.010	S213	1.94			571.9	SURCHARGED	
54.000	RWP21	0.08			7.3	OK	
32.011	BRANCH	1.09			578.5	SURCHARGED*	
55.000	RWP22	0.09			7.5	OK	
32.012	BRANCH	1.10			585.0	SURCHARGED*	
56.000	RWP23	0.08			7.1	OK	
32.013	BRANCH	1.11			591.2	SURCHARGED*	
57.000	RWP24	0.08			7.5	OK	
32.014	BRANCH	1.09			597.3	SURCHARGED*	
58.000	RWP25	0.08			7.2	OK	
32.015	BRANCH	1.13			601.5	SURCHARGED*	
59.000	SDP12	1.61			452.1	SURCHARGED	6
60.000	SDP13	0.46			83.2	OK	
61.000	SDP14	1.61			452.1	SURCHARGED	6
62.000	RWP29	0.05			2.1	OK	
62.001	S214	0.35			4.1	SURCHARGED	
63.000	RWP30	0.02			2.1	OK	
61.001	S215(V)	2.55			375.9	SURCHARGED	
64.000	RWP27	0.07			2.1	OK	
64.001	S214a	0.12			1.7	OK	
65.000	RWP28	0.03			2.1		
59.001	S216(V)	1.74			810.2	SURCHARGED	
66.000	RWP26	0.14			7.7		
32.016	S217	2.03			956.8		
67.000	RWP31	0.08			7.0	OK	
32.017	BRANCH	1.24				SURCHARGED*	
68.000	RWP32	0.08			7.5	OK	
32.018	BRANCH	1.17				SURCHARGED*	
69.000	RWP33	0.08			7.6	OK	
32.019	BRANCH	1.24				SURCHARGED*	
70.000	RWP34	0.07			6.8	OK	
32.020	BRANCH	1.10				SURCHARGED*	
	Diamon						
71.000	RWP36	0.20			7.2	OK	

RPS Group Plc		Page 78
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	•	Overflow (1/s)	Half Drain Time (mins)	Flow	Status	Level Exceeded
72.000	RWP35	0.22			7.2	OK	

RPS Group Plc		Page 79
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Mirro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	s	Storm		Climate Change	First Surch		First Flo		First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
71.001	S218	15	Summer	30	+0%	100/15	Summer					37.432	-0.068
73.000			Summer	30	+0%							37.879	-0.121
71.002	BRANCH	15	Summer	30	+0%							37.137	-0.057
74.000	RWP38	15	Summer	30	+0%							37.875	-0.125
71.003	S219	15	Summer	30	+0%	100/15	Summer					36.788	-0.039
75.000	RWP39	15	Summer	30	+0%							38.000	-0.150
32.021	S220	30	Summer	30	+0읭	30/15	Summer					36.375	0.627
76.000	RWP40	15	Summer	30	+0%							38.029	-0.121
32.022	BRANCH	15	Summer	30	+0응							35.729	0.000
77.000	RWP41	15	Summer	30	+0%							38.028	-0.122
32.023	BRANCH			30	+0%							35.707	0.000
78.000			Summer	30	+0%							38.038	-0.112
	S221 (SUDS)			30	+0읭		Summer					35.865	0.188
79.000			Summer	30	+0%			100/15	Summer			38.936	1.061
80.000			Summer	30	+0%		Summer					38.137	0.337
80.001			Summer	30	+0%		Summer					38.135	0.712
81.000			Summer	30	+0응		Summer					38.132	0.332
82.000			Summer	30	+0응		Summer	100/15	Cummon			38.216	0.416
82.001			Summer Summer	30 30	+0응 +0응		Summer	100/15	Summer			38.199 38.205	0.899
83.000 82.002	BRANCH			30	+0%	30/13	Summer					37.120	0.405
84.000			Summer	30	+0%	30/15	Summer					38.165	0.365
82.003	BRANCH			30	+0%	50715	Summer					36.940	0.000
79.001	S224 (V)			30	+0%	1/15	Summer					38.130	1.246
79.002			Summer	30	+0%			100/30	Summer			37.982	1.190
85.000			Summer	30	+0응			100/15				37.845	0.245
79.003	BRANCH			30	+0%							36.748	0.000
86.000			Summer	30	+0%	30/15	Summer					37.685	0.285
79.004	BRANCH			30	+0%							36.703	0.000
87.000	RWP50	15	Summer	30	+0%	30/15	Summer					37.507	0.107
79.005	BRANCH	15	Summer	30	+0%							36.658	0.000
88.000	RWP51	15	Summer	30	+0%	100/15	Summer					37.295	-0.105
79.006	BRANCH	15	Summer	30	+0%							36.613	0.000
89.000	RWP52	15	Summer	30	+0읭							37.732	-0.118
79.007	BRANCH	15	Summer	30	+0읭							36.589	0.000
90.000			Summer	30	+0%	100/30	Summer					37.587	-0.118
79.008	BRANCH			30	+0%							36.554	0.000
91.000			Summer	30		100/15						37.137	-0.113
79.009			Summer	30	+0%		Summer		_			36.735	0.268
92.000			Summer	30	+0%			100/15	Summer			38.877	1.002
93.000			Summer	30		100/15						37.675	-0.125
93.001			Summer	30		100/15						37.311	-0.111
94.000			Summer Summer	30		100/15						37.672	-0.128
95.000				30		100/15						37.683	-0.117
96.000 95.001	BRANCH		Summer	30 30	+0응 +0응	20/I3	Summer					37.362 36.917	0.151 0.000
92.001	S228 (V)			30	+0% +0%	30/15	Summer					37.310	0.599
79.010			Summer	30	+0% +0%		Summer					36.207	0.120
79.010	S230 (SUDS)			30	+0응		Summer					35.971	0.017
32.025			Summer	30	+0%		Summer					35.710	0.047
2.014			Summer	30	+0응		Summer					35.107	0.878
2.015			Summer	30	+0%		Summer					34.990	0.883
97.000			Summer	30	+0%							37.482	-0.118
98.000			Summer	30	+0응							37.496	-0.104
					C	1982-2	2020 II	nnovyz	9				

RPS Group Plc		Page 80
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
71.001	S218	0.000	0.55			14.0	OK	
73.000	RWP37	0.000	0.08			4.5	OK	
71.002	BRANCH	0.000	0.65			18.3	OK*	
74.000	RWP38	0.000	0.07			4.5	OK	
71.003	S219	0.000	0.88			23.1	OK	
75.000	RWP39	0.000	0.00			0.0	OK	
32.021	\$220	0.000	2.39			961.1	SURCHARGED	
76.000	RWP40	0.000	0.08			7.8	OK	
32.022	BRANCH	0.000	1.25				SURCHARGED*	
77.000	RWP41	0.000	0.08			7.8	OK	
32.023	BRANCH	0.000	1.25				SURCHARGED*	
78.000	RWP42	0.000	0.14			7.8	OK	
	S221 (SUDS)	0.000	1.96			959.4		6
79.000	SDP03	0.000	2.66			402.7		Ø
80.000	RWP43 S222	0.000	0.06			2.4 11.6	SURCHARGED SURCHARGED	
80.001		0.000	0.36					
81.000	RWP44	0.000	0.04			2.4		
82.000 82.001	RWP45	0.000	0.30			10.8		6
82.001	S223		0.71			12.2		0
	RWP46	0.000	0.30			12.7		
82.002	BRANCH	0.000	1.06				SURCHARGED*	
84.000	RWP47	0.000	0.24			11.1	SURCHARGED	
82.003	BRANCH	0.000	1.95				SURCHARGED*	
79.001	S224 (V)	0.000	1.43			355.7		2
79.002	S225	0.000	1.95			337.7		3
85.000	RWP48	0.000	0.15			6.6	SURCHARGED	6
79.003	BRANCH	0.000	1.36				SURCHARGED*	
86.000	RWP49	0.000	0.23			9.1	SURCHARGED	
79.004	BRANCH	0.000	1.37				SURCHARGED*	
87.000	RWP50	0.000	0.23			9.2	SURCHARGED	
79.005	BRANCH	0.000	1.37				SURCHARGED*	
88.000	RWP51	0.000	0.16			6.6	OK	
79.006	BRANCH	0.000	1.36				SURCHARGED*	
89.000	RWP52	0.000	0.10			6.7	OK	
79.007	BRANCH	0.000	1.35				SURCHARGED*	
90.000	RWP53	0.000	0.10			6.2	OK	
79.008	BRANCH	0.000	1.36				SURCHARGED*	
91.000	RWP54	0.000	0.14			6.2	OK	
79.009	S226	0.000	1.12			322.3		_
92.000	SDP04	0.000	2.76			418.7	FLOOD RISK	5
93.000	RWP55	0.000	0.06			2.4	OK	
93.001	S227	0.000	0.06			2.3	OK	
94.000	RWP56	0.000	0.05			2.4	OK	
95.000	RWP57	0.000	0.11			6.2	OK	
96.000	RWP58	0.000	0.22			6.2	SURCHARGED	
95.001	BRANCH	0.000	0.53				SURCHARGED*	
92.001	S228 (V)	0.000	1.36			421.1	SURCHARGED	
79.010	S229	0.000	1.32			617.4	SURCHARGED	
79.011	S230(SUDS)	0.000	0.91			624.0	SURCHARGED	
32.025	S231	0.000	2.45			1575.9		
2.014	S232	0.000	1.37			2112.5	SURCHARGED	
2.015	S233	0.000	1.52			2071.0	SURCHARGED	
97.000	RWP59	0.000	0.11			6.4	OK	
			@1.0.0	2-2020	_			

RPS Group Plc		Page 81
Noble House, Capital Drive		
Linford Wood Mitlton Keynes, MK14 6QP		Micco
Date 21/09/2023 13:57	Designed by LARS.ARMES	
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	•

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
98.000	RWP60	0.000	0.20			12.2	OK	

RPS Group Plc		Page 82
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitage
Innovyze	Network 2020.1.3	

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y Flood	?) First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
2.016	S234	30 Summe	r 30	+0%	30/15 Summer				34.741	0.761
2.017	S235	30 Summe	r 30	+0응	30/15 Summer				34.435	0.566
99.000	RWP61	15 Summe	r 30	+0%	100/15 Summer				37.802	-0.098
99.001	S236	15 Summe	r 30	+0%	100/15 Summer				37.660	-0.085
100.000	RWP62	15 Summe	r 30	+0%	100/15 Summer				37.805	-0.095
99.002	BRANCH	15 Summe	r 30	+0%					37.552	-0.036
99.003	S237	15 Summe	r 30	+0%	30/15 Summer				37.371	0.018
101.000	RWP63	15 Summe	r 30	+0%					37.681	-0.119
99.004	BRANCH	15 Summe	r 30	+0응					37.221	0.000
102.000		15 Summe		+0응					37.828	-0.122
99.005	S238	15 Summe	r 30	+0응					35.526	-0.131
103.000		15 Summe		+0응					37.096	-0.110
99.006		15 Summe		+0%					35.050	-0.107
104.000		15 Summe		+0%					37.077	-0.119
99.007		15 Summe		+0%					34.808	-0.089
105.000		15 Summe		+0%					36.830	-0.126
2.018		30 Summe		+0%	30/15 Summer				34.150	0.362
	ATT INLET 01			+0%					33.775	0.000
106.000		15 Summe		+0%	1/15 Summer	100/15 Sum	mer		38.885	1.010
106.001		15 Summe		+0%	30/15 Summer				38.414	1.064
107.000		15 Summe		+0%	30/15 Summer				38.135	0.335
106.002		15 Summe		+0%	30/15 Summer		mer		38.126	1.117
108.000		15 Summe		+0%	30/15 Summer				37.972	0.172
106.003		15 Summe		+0%	00,10 00000				36.972	0.000
109.000		15 Summe		+0%	30/15 Summer				37.855	0.055
106.004		15 Summe		+0%					36.880	0.000
110.000		15 Summe			100/15 Summer				37.738	-0.062
106.005		15 Summe		+0%	30/15 Summer		mer		37.735	0.914
111.000		15 Summe			100/15 Summer				37.697	-0.103
106.006		15 Summe		+0%					36.790	0.000
112.000		15 Summe		+0응	100/15 Summer				37.656	-0.144
106.007		15 Summe		+0%	,				36.750	0.000
113.000	SDP06	15 Summe	r 30	+0%	1/15 Summer	100/15 Sum	mer		38.804	0.929
106.008		15 Summe		+0%	30/15 Summer				37.550	0.844
114.000	RWP66	15 Summe	r 30	+0응	100/15 Summer				37.675	-0.125
106.009		15 Summe		+0%					36.680	0.000
115.000	RWP67	15 Summe	r 30	+0%	100/15 Summer				37.676	-0.124
106.010		15 Summe		+0응					36.645	0.000
116.000		15 Summe		+0응	100/15 Summer				37.675	-0.125
106.011		15 Summe		+0%					36.607	0.000
117.000		15 Summe			100/15 Summer				37.695	-0.105
106.012		30 Summe		+0%	30/15 Summer				37.081	0.542
118.000		15 Summe			100/15 Summer				37.891	-0.109
106.013		15 Summe		+0%					36.513	0.000
106.014		30 Summe		+0%	30/15 Summer	: 100/15 Sum	mer		36.844	0.354
119.000		15 Summe		+0%	100/15 Summer				38.010	-0.090
119.001		15 Summe		+0%	30/15 Summer		mer		37.836	0.211
120.000		15 Summe		+0%	100/15 Summer				38.008	-0.092
119.002		15 Summe		+0%					37.305	0.000
121.000		15 Summe			100/15 Summer				38.010	-0.090
119.003		15 Summe		+0%	30/15 Summer		mer		37.593	0.648
106.015		30 Summe		+0%	30/15 Summer				36.551	0.253
122.000		15 Summe		+0%	30/15 Summer				37.751	0.001
122.001		15 Summe		+0%	30/15 Summer				37.736	0.030
				@1						
				U.	.982-2020 Ir	movyze				

RPS Group Plc		Page 83
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitacje
Innovyze	Network 2020.1.3	

PN	US/MH Name	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
			-		,			
2.016	S234	0.000	1.69			2045.5	SURCHARGED	
2.017 99.000	<mark>S235</mark> RWP61	0.000	1.86 0.26			2023.4	SURCHARGED OK	
99.000 99.001	S236	0.000	0.20			6.4	OK	
100.000	RWP62	0.000	0.39			10.0	OK	
99.002	BRANCH	0.000	0.29			16.2	OK*	
99.002 99.003	S237	0.000	1.01			15.4	SURCHARGED	
101.000	RWP63	0.000	0.09			4.5	OK	
99.004	BRANCH	0.000	1.08				SURCHARGED*	
102.000	RWP64	0.000	0.08			4.5		
							OK	
99.005	S238	0.000	0.36 0.16			22.9 14.2	OK	
103.000	RWP65	0.000					OK	
99.006	BRANCH	0.000	0.54			36.3	OK*	
104.000	RWP66	0.000	0.09			8.7	OK	
99.007	BRANCH	0.000	0.67			44.8	OK*	
105.000	RWP67	0.000	0.06			4.8	OK	
2.018	S239	0.000	2.20			2024.9	SURCHARGED	
	ATT INLET 01	0.000	1.03				SURCHARGED*	-
106.000	SDP05	0.000	2.54			384.4	FLOOD RISK	7
106.001	S400(V)	0.000	1.10			303.6	FLOOD RISK	7
107.000	RWP60	0.000	0.08			4.5	SURCHARGED	_
106.002	S401	0.000	1.52			288.8	SURCHARGED	7
108.000	RWP61	0.000	0.08			4.5	SURCHARGED	
106.003	BRANCH	0.000	1.16				SURCHARGED*	
109.000	RWP62	0.000	0.04			2.2	SURCHARGED	
106.004	BRANCH	0.000	1.16				SURCHARGED*	
110.000	RWP63	0.000	0.07			4.5	OK	
106.005	S402	0.000	1.32			286.9	SURCHARGED	1
111.000	RWP64	0.000	0.07			4.5	OK	
106.006	BRANCH	0.000	0.83				SURCHARGED*	
112.000	RWP65	0.000	0.00			0.0	OK	
106.007	BRANCH	0.000	0.85				SURCHARGED*	
113.000	SDP06	0.000	2.67			404.0	FLOOD RISK	6
106.008	S403	0.000	2.12			524.0	SURCHARGED	
114.000	RWP66	0.000	0.07			4.3	OK	
106.009	BRANCH	0.000	1.29				SURCHARGED*	
115.000	RWP67	0.000	0.07			4.5	OK	
106.010	BRANCH	0.000	1.26				SURCHARGED*	
116.000	RWP68	0.000	0.07			4.5	OK	
106.011	BRANCH	0.000	1.07			496.7	SURCHARGED*	
117.000	RWP69	0.000	0.19			10.5	OK	
106.012	S404	0.000	2.21			502.1	SURCHARGED	
118.000	RWP70	0.000	0.16			10.5	OK	
106.013	BRANCH	0.000	1.40			501.4	SURCHARGED*	
106.014	S405	0.000	1.24			466.8	SURCHARGED	7
119.000	RWP71	0.000	0.33			13.4	OK	
119.001	S406	0.000	0.49			10.8	SURCHARGED	5
120.000	RWP72	0.000	0.31			16.6	OK	
119.002	BRANCH	0.000	0.77			19.6	SURCHARGED*	
121.000	RWP73	0.000	0.33			20.2	OK	
119.003	S407	0.000	1.41			33.2	SURCHARGED	2
106.015	S408	0.000	0.91			468.3	SURCHARGED	
122.000	RWP74	0.000	0.74			9.8	SURCHARGED	1
				2-2020 I				

RPS Group Plc		Page 84
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	·

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
122.001	S409	0.000	0.69			8.8	SURCHARGED	5

RPS Group Plc		Page 85
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginada
Innovyze	Network 2020.1.3	

PN	US/MH Name	5	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m³)
123.000	RWP75	15	Summer	30	+0%	100/15 Summer	100/30 Summer			37.754	-0.096	0.000
122.002	BRANCH	15	Summer	30	+0응					37.636	0.000	0.000
124.000	RWP76	15	Summer	30	+0%	100/15 Summer				37.746	-0.104	0.000
122.003	BRANCH	15	Summer	30	+0응					37.566	0.000	0.000
125.000	SDP7	15	Summer	30	+0응	30/15 Summer	100/15 Summer			38.434	0.484	0.000
126.000	SDP8	15	Summer	30	+0응	100/15 Summer				37.679	-0.271	0.000
	S410(V)			30	+0%		100/15 Summer			37.499	0.429	0.000
127.000			Summer	30	+0%		100/15 Summer			38.436	0.486	0.000
	S411(V)			30	+0%		100/15 Summer			37.459	0.438	0.000
128.000			Summer	30 30	+0% +0%	100/15 Summer				37.744	-0.106	0.000
122.000	BRANCH		Summer	30		100/15 Summer				36.887 37.742	0.000 -0.108	0.000
129.000	BRANCH			30	+0%	100/15 Summer				36.650	0.000	0.000
130.000			Summer	30		100/15 Summer				37.725	-0.125	0.000
130.001			Summer	30		100/15 Summer				37.434	-0.116	0.000
131.000	RWP80	15	Summer	30	+0%	100/15 Summer	100/15 Summer			37.347	-0.053	0.000
130.002	S413	15	Summer	30	+0%	100/15 Summer				37.295	-0.036	0.000
132.000	RWP81	15	Summer	30	+0%	100/15 Summer				37.871	-0.129	0.000
130.003	BRANCH	15	Summer	30	+0%					37.188	0.000	0.000
133.000			Summer	30		100/15 Summer	100/15 Summer			37.263	-0.087	0.000
130.004	BRANCH			30	+0%					37.083	0.000	0.000
134.000			Summer	30		100/15 Summer				37.868	-0.132	0.000
130.005	BRANCH			30	+0%	100/15 0				36.896	0.000	0.000
135.000			Summer Summer	30 30	+0% +0%	100/15 Summer 30/15 Summer				37.867 36.763	-0.133 0.117	0.000
122.008			Summer	30	+0%	30/15 Summer				36.498	0.043	0.000
106.016			Summer	30	+0%		100/15 Summer			36.440	0.315	0.000
136.000			Summer	30	+0%	100/15 Summer				36.889	-0.111	0.000
106.017	S417	15	Summer	30	+0응	30/15 Summer	100/15 Summer			36.284	0.241	0.000
137.000	RWP86	15	Summer	30	+0%	100/15 Summer				36.889	-0.111	0.000
106.018	S418	30	Summer	30	+0응	30/15 Summer	100/15 Summer			36.161	0.180	0.000
106.019	S419	30	Summer	30	+0응	30/15 Summer				36.063	0.194	0.000
138.000			Summer	30	+0%					37.890	-0.110	0.000
106.020	BRANCH			30	+0%					35.829	0.000	0.000
139.000			Summer	30 30	+0%					37.895	-0.105	0.000
106.021	BRANCH		Summer	30	+0% +0%					35.802 37.890	0.000 -0.110	0.000
140.000			Summer	30	+0%	30/15 Summer				35.930	0.170	0.000
141.000			Summer	30	+0%	Se, ie bunnet				37.885	-0.115	0.000
106.023	BRANCH			30	+0%					35.728	0.000	0.000
142.000			Summer	30	+0읭					37.884	-0.116	0.000
106.024	BRANCH	15	Summer	30	+0%					35.703	0.000	0.000
143.000			Summer	30	+0%					37.884	-0.116	0.000
106.025	BRANCH			30	+0응					35.675	0.000	0.000
144.000	GULLEY			30	+0%		100/15 Summer			37.994	0.044	0.000
144.001			Summer	30	+0%	30/15 Summer				37.811	0.069	0.000
106.026			Summer	30	+0%	30/15 Summer				35.781	0.128	0.000
145.000	RWP93 BRANCH		Summer	30 30	+0응 +0응					37.850 35.643	-0.150 0.000	0.000
146.000			Summer	30	+0					37.850	-0.150	0.000
106.028			Summer	30	+0%					35.616	0.000	0.000
147.000			Summer	30	+0%					37.850	-0.150	0.000
106.029			Summer	30	+0읭					35.578	0.000	0.000
148.000	RWP96	15	Summer	30	+0%					37.850	-0.150	0.000
						©1982-20	20 Innovyze					

RPS Group Plc		Page 86
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

	US/MH	Flow /	Overflow	Half Drain Time	Pipe Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
23.000	RWP75	0.28			8.0	OK	3
.22.002	BRANCH	0.20				SURCHARGED*	5
24.002	RWP76	0.94			6.9	OK	
		1.61					
.22.003	BRANCH					SURCHARGED*	F
25.000	SDP7	2.03			422.5	SURCHARGED	5
26.000	SDP8	0.32			65.9	OK	-
	S410(V)	0.87			480.5		5
27.000	SDP 9	2.04			422.3		5
	S411(V)	1.46			884.6		4
28.000	RWP77	0.19			9.1	OK	
22.006	BRANCH	1.17				SURCHARGED*	
29.000	RWP78	0.17			9.1	OK	
22.007	BRANCH	1.31				SURCHARGED*	
30.000	RWP79	0.06			2.0	OK	
30.001	S412	0.11			1.9	OK	
31.000	RWP80	0.72			10.7	OK	6
30.002	S413	0.72			11.7	OK	
32.000	RWP81	0.05			2.7	OK	
30.003	BRANCH	0.67			12.0	SURCHARGED*	
33.000	RWP82	0.36			10.5	OK	6
30.004	BRANCH	1.09			19.3	SURCHARGED*	
34.000	RWP83	0.03			2.3	OK	
30.005	BRANCH	1.06			18.9	SURCHARGED*	
35.000	RWP84	0.03			2.3	OK	
30.006	S414	1.27			19.5	SURCHARGED	
22.008	S415	0.87			784.3	SURCHARGED	
06.016	S416	1.28			928.1	SURCHARGED	5
36.000	RWP85	0.15			9.3	OK	
06.017	S417	1.33			905.2	SURCHARGED	6
37.000	RWP86	0.15			9.5	OK	
06.018	S418	1.11			846.0	SURCHARGED	2
06.019	S419	1.55			844.6	SURCHARGED	
38.000	RWP87	0.16			13.3	OK	
06.020	BRANCH	1.07			819.0	SURCHARGED*	
39.000	RWP88	0.20			16.9	OK	
06.021	BRANCH	0.96			827.3	SURCHARGED*	
40.000	RWP89	0.16			13.6	OK	
06.022	S420	1.81			831.0	SURCHARGED	
41.000	RWP90	0.12			10.6	OK	
	BRANCH					SURCHARGED*	
42.000	RWP91	0.11			10.0	OK	
06.024	BRANCH					SURCHARGED*	
43.000	RWP92	0.12			10.4	OK	
06.025	BRANCH					SURCHARGED*	
44.000	GULLEY				25.9		1
44.001	\$421	1.08				SURCHARGED	T
.06.026	S421	1.65				SURCHARGED	
45.000	RWP93	0.00			0.0	OK	
.06.027	BRANCH					SURCHARGED*	
46.000	RWP94	0.00			0.0	OK	
.46.000	BRANCH	0.00				SURCHARGED*	
	RWP95	0.00			0.0	OK	
<u>47</u> 000	1/V/E 20	0.00			0.0	UK	
47.000 06.029	BRANCH	0.99			766 2	SURCHARGED*	

RPS Group Plc		Page 87
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Pipe Flow (l/s)	Status	Level Exceeded
148.000	RWP96	0.00		0.0	OK	

RPS Group Plc		Page 88
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micco
Date 21/09/2023 13:57	Designed by LARS.ARMES	Desinado
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginada
Innovyze	Network 2020.1.3	1

PN	US/MH Name	s	Storm		Climate Change	First Surcha		First Flc		First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
106.030	\$423	30	Summer	30	+0%	30/30 5	Summer					35.585	0.034
149.000			Summer	30	+0%							37.889	-0.111
106.031	BRANCH	30	Summer	30	+0%							35.517	0.000
150.000	RWP97	15	Summer	30	+0읭							37.889	-0.111
106.032	BRANCH	30	Summer	30	+0%							35.497	0.000
151.000	SDP10	15	Summer	30	+0%	1/15 5	Summer	100/15	Summer			38.946	1.071
151.001	S424 (V)	15	Summer	30	+0%	30/15 5	Summer					38.088	0.738
152.000	RWP98	15	Summer	30	+0%	100/15 5	Summer					37.887	-0.113
151.002			Summer	30	+0%	30/15 \$	Summer					37.867	0.555
153.000	RWP99	15	Summer	30		100/15 5	Summer					37.655	-0.095
151.003	BRANCH			30	+0%							37.243	0.000
154.000	RWP100			30	+0%							37.622	-0.128
151.004	BRANCH			30	+0%							37.237	0.000
106.033			Summer	30		100/15 5	Summer					35.363	-0.077
155.000	RWP101			30	+0%							37.892	-0.108
155.001			Summer	30	+0%							37.441	-0.091
156.000 155.002	RWP102			30	+0%							37.640	-0.110
155.002	BRANCH RWP103			<mark>30</mark> 30	+0% +0%							37.185 37.621	0.000 -0.129
157.000	BRANCH			30	+0%							37.109	-0.045
106.034			Summer	30		100/15 s	Summer					35.251	0.000
158.000	RWP106			30	+0%	100/15 0	Juniner					37.831	-0.119
158.001			Summer	30	+0%	30/15 s	Summer					37.819	0.010
159.000	RWP107			30	+0%	00,10 0	, analio 1					37.870	-0.130
160.000			Summer	30	+0%	1/15 5	Summer	100/15	Summer			38.814	0.939
158.002	S430(V)	15	Summer	30	+0%	30/15 5						37.811	0.461
106.035	S431	30	Summer	30	+0%	30/30 5	Summer					35.104	0.054
106.036	S432(SUDS)	60	Summer	30	+0%	100/15 5	Summer					34.992	0.000
106.037	ATT INLET 03	30	Summer	30	+0%							34.648	-0.320
161.000	OB31	15	Summer	30	+0%	30/15 5	Summer	100/15	Summer			37.933	0.278
161.001	S300	15	Summer	30		100/15 5						37.498	-0.089
162.000			Summer	30		100/15 5		100/15	Summer			37.569	-0.086
161.002			Summer	30	+0%	30/15 5						36.827	0.115
163.000			Summer	30		100/15 5	Summer					37.271	-0.110
161.003	BRANCH			30	+0%	100/15 0						36.306	0.000
161.004			Summer	30		100/15 \$		100/15	0			36.118	-0.035
164.000 161.005	BRANCH		Summer	30 30	+0% +0%	100/15 5	summer	100/15	Summer			36.740 35.864	-0.125 0.000
165.000			Summer	30		100/15 s	lummor	100/15	Summor			36.647	-0.068
166.000			Summer	30		100/15 5						36.633	-0.077
166.001			Summer	30	+0%	30/15 5		100/10	buildings			35.992	0.282
167.000			Summer	30		100/15 5		100/15	Summer			37.055	-0.120
161.006			Summer	30	+0%	30/15 5						35.674	0.373
168.000	OB38	15	Summer	30	+0읭	100/15 5	Summer	100/15	Summer			36.672	-0.118
161.007	S305	15	Summer	30	+0%	30/15 5	Summer					35.397	0.296
169.000	OB39	15	Summer	30	+0%	100/15 5	Summer					36.658	-0.132
161.008	BRANCH	15	Summer	30	+0%							34.930	0.000
170.000	OB40	15	Summer	30	+0%	100/30 5	Summer					36.941	-0.092
161.009	S306	30	Summer	30	+0읭	30/15 5	Summer					35.046	0.163
171.000			Summer	30	+0%							36.948	-0.085
172.000			Summer	30		100/15 5						36.690	-0.100
161.010			Summer	30	+0%	30/15 5	Summer					34.874	0.078
173.000			Summer	30	+0%							36.700	-0.150
161.011	BRANCH	12	summer	30	+0응							34.721	0.000
					©1	982-202	20 In:	novyze					

RPS Group Plc		Page 89
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

-	US/MH			Half Drain Overflow Time	Flow	<i>a</i> , .	Level
PN	Name	(m³)	Cap.	(1/s) (mins)	(1/s)	Status	Exceeded
106.030	S423	0.000	1.77		842.3	SURCHARGED	
149.000	RWP96	0.000	0.15		13.6	OK	
106.031	BRANCH	0.000	1.09		829.4	SURCHARGED*	
150.000	RWP97	0.000	0.15		13.6	OK	
106.032	BRANCH	0.000	0.88		823.1	OK*	
151.000	SDP10	0.000	2.40		363.3	FLOOD RISK	5
151.001	S424 (V)	0.000	2.20		350.3	SURCHARGED	
152.000	RWP98	0.000	0.14		7.2	OK	
151.002	S425	0.000	1.79		358.1	SURCHARGED	
153.000	RWP99	0.000	0.16		7.2	OK	
151.003	BRANCH	0.000	1.46		362.6	SURCHARGED*	
154.000	RWP100	0.000	0.05		2.3	OK	
151.004	BRANCH	0.000	1.46		362.9	SURCHARGED*	
106.033	S426	0.000	0.74		869.4	OK	
155.000	RWP101	0.000	0.17		7.2	OK	
155.001	S427	0.000	0.31		6.9	OK	
156.000	RWP102	0.000	0.15		7.2	OK	
155.002	BRANCH	0.000	1.30		14.4	SURCHARGED*	
157.000	RWP103	0.000	0.05		2.3	OK	
155.003	BRANCH	0.000	0.81		16.8	OK*	
106.034	S428	0.000	0.73		860.6	OK	
158.000	RWP106	0.000	0.09		2.1	OK	
158.001	S429	0.000	0.07		2.1	SURCHARGED	
159.000	RWP107	0.000	0.04		2.1	OK	
160.000	SDP11	0.000	2.59		393.2	FLOOD RISK	5
158.002	S430(V)	0.000	2.00		390.7	SURCHARGED	
106.035	S431	0.000	1.38		914.5	SURCHARGED	
106.036	S432 (SUDS)	0.000	1.37		895.0	OK	
	ATT INLET 03	0.000	0.79		918.9	OK*	
161.000	OB31	0.000	2.25		36.8	SURCHARGED	5
161.001	S300	0.000	0.66		35.7	OK	
162.000	OB32	0.000	0.38		23.0	OK	3
161.002	S301	0.000	1.07		52.8	SURCHARGED	
163.000	OB33	0.000	0.16		10.4	OK	
161.003	BRANCH	0.000	1.16			SURCHARGED*	
161.004	S302	0.000	0.61		62.3	OK	
164.000	OB34	0.000	0.41		57.5	OK	5
161.005	BRANCH	0.000	0.81			SURCHARGED*	
165.000	OB37	0.000	0.58		43.1	OK	5
166.000	OB35	0.000	0.47		20.1	OK	5
166.001	s303	0.000	0.97		16.7	SURCHARGED	
167.000	OB36	0.000	0.44		78.0	OK	2
161.006	S304	0.000	1.25		214.0	SURCHARGED	
168.000	OB38	0.000	0.46		83.3	OK	2
161.007	S305	0.000	1.12		261.3	SURCHARGED	_
169.000	OB39	0.000	0.36		68.3	OK	
161.008	BRANCH	0.000	1.23			SURCHARGED*	
170.000	OB40	0.000	0.32		11.9	OK	
161.009	S306	0.000	1.46		301.8	SURCHARGED	
171.000	0B40a	0.000	0.39		14.7	OK	
172.000	OB40a OB41	0.000	0.59		48.5	OK	
161.010	S307	0.000	1.13		330.8	SURCHARGED	
173.000	OB42	0.000	0.00		0.0	OK	
2,3.000	0042	0.000		-2020 Innovyze	0.0	UK	

RPS Group Plc		Page 90
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

		Flooded			Half Drain	Pipe			
PN	US/MH Name	Volume (m³)	Flow / Cap.	Overflow (l/s)	Time (mins)	Flow (l/s)	Status	Level Exceeded	
161.011	BRANCH	0.000	0.90			312.8	SURCHARGED*		

RPS Group Plc		Page 91
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitacje
Innovyze	Network 2020.1.3	1

PN	US/MH Name	St	corm		Climate Change	First Surcha		First Flo	: (Y) ood	First (Z) Overflow	Overflow Act.		Surcharged Depth (m)
174.000	OB43	15	Summer	30	+0%	100/15 s	Summer					37.356	-0.059
161.012	S308		Winter	30		100/15 S						34.659	0.000
175.000	OB44		Summer	30	+0%							37.481	-0.084
161.013	BRANCH		Summer	30	+0%							34.439	-0.135
176.000	OB45		Summer	30	+0%	100/15 s	Summer					37.537	-0.103
161.014	S309	30	Summer	30	+0읭	100/15 S	Summer					34.279	-0.124
177.000	OB46	15	Summer	30	+0읭							37.454	-0.111
161.015	S310	30	Summer	30	+0읭	100/15 S	Summer					34.183	-0.068
178.000	OB47	15	Summer	30	+0읭							37.411	-0.104
161.016	BRANCH	30	Summer	30	+0%							34.101	-0.100
179.000	OB48	15	Summer	30	+0읭							37.440	-0.110
180.000	OB49	15	Summer	30	+0읭	100/15 S	Summer					37.608	-0.060
161.017	S311	30	Summer	30	+0읭	100/15 S	Summer					34.007	-0.068
181.000	OB50	15	Summer	30	+0읭	100/15 S	Summer					37.571	-0.046
181.001	S312	15	Summer	30	+0읭	100/15 S	Summer					37.412	-0.031
182.000	OB51	15	Summer	30	+0읭							37.575	-0.092
181.002	S313	15	Summer	30	+0읭	100/15 S	Summer					36.924	-0.101
183.000	OB52	15	Summer	30	+0읭							37.492	-0.088
181.003	BRANCH	15	Summer	30	+0%							36.360	-0.006
181.004	S314	15	Summer	30	+0읭	30/15 S	Summer					36.132	0.052
184.000	OB53	15	Summer	30	+0%							37.423	-0.107
161.018	S315	30	Winter	30	+0읭	100/15 s	Summer					33.899	-0.036
161.019	INT02 (SUDS)	30	Winter	30	+0응	30/15 s	Summer					33.806	0.002
161.020	S316	60	Winter	30	+0읭	100/15 s	Summer					33.773	0.000
161.021	ATT INLET 02	120	Summer	30	+0%							33.750	0.000
2.020	ATT TANK 01	120	Summer	30	+0응	30/60 S	Summer					33.625	0.025
2.021	CONNECTION	360	Winter	30	+0%	100/30 S	Summer					33.433	-0.117
185.000	OB60	15	Summer	30	+0%	100/15 S	Summer	100/15	Summer			37.444	-0.155
186.000	OB61	15	Summer	30	+0%	30/15 S	Summer	100/15	Summer			37.563	0.126
185.001	S500	15	Summer	30	+0읭	30/15 S	Summer					37.391	0.196
185.002	S501	15	Summer	30	+0%	30/15 S	Summer					37.270	0.230
187.000	OB62	15	Summer	30	+0%	100/15 S	Summer	100/15	Summer			37.183	-0.095
185.003	BRANCH	15	Summer	30	+0읭							36.871	0.000
188.000	OB63	15	Summer	30	+0%	100/15 S	Summer					37.017	-0.024
189.000	OB64	15	Summer	30	+0읭	30/15 S	Summer	100/15	Summer			37.168	0.249
185.004	S502	15	Summer	30	+0%	30/15 S	Summer					36.998	0.362
190.000	OB65	15	Summer	30	+0%	30/15 S	Summer	100/15	Summer			36.856	0.137
185.005	BRANCH	15	Summer	30	+0%							36.508	0.000
191.000	OB66	15	Summer	30		100/15 5						36.656	-0.113
185.006	S503	15	Summer	30	+0%	30/15 S	Summer					36.565	0.106
192.000	OB67	15	Summer	30	+0%	30/15 S	Summer					36.520	0.181
185.007	BRANCH	15	Summer	30	+0읭							36.295	0.000
193.000	OB68	15	Summer	30	+0읭							36.621	-0.095
185.008	BRANCH	15	Summer	30	+0응							36.151	0.000
194.000	OB69	15	Summer	30	+0읭	30/15 S	Summer	100/15	Summer			36.735	0.257
195.000	OB70	15	Summer	30	+0%	30/15 S	Summer	100/15	Summer			36.734	0.384
194.001	S504		Summer	30	+0%	30/15 S						36.593	0.413
196.000	OB71	15	Summer	30	+0%	30/15 S		100/15	Summer			36.581	0.253
194.002	S505		Summer	30	+0응	30/15 S						36.480	0.435
197.000	OB72		Summer	30		100/15 S						36.352	-0.113
198.000	OB73		Summer	30	+0%	30/15 S		100/15	Summer			36.564	0.169
194.003	S506		Summer	30	+0응	30/15 S						36.337	0.400
199.000	OB75	15	Summer	30	+0%	30/15 S		100/15	Summer			36.719	0.222
200.000	OB74	15	Summer	30	+0응	30/15 S	Summer					36.683	0.022
					©1	982-202	0 Inr	novyze					
L								<u> </u>					

RPS Group Plc		Page 92
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Mirro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitacje
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
	1121110	()	cap.	(1/3)	((1/3)	Julus	Luceeueu
174.000	OB43	0.000	0.68			43.8	OK	
161.012	S308	0.000	1.04			311.1	OK	
175.000	OB44	0.000	0.40			43.5	OK	
161.013	BRANCH	0.000	0.94			343.5	OK*	
176.000	OB45	0.000	0.56			96.9	OK	
161.014	S309	0.000	0.83			360.5	OK	
177.000	OB46	0.000	0.15			11.9	OK	
161.015	S310	0.000	1.00			351.5	OK	
178.000	OB47	0.000	0.20			22.8	OK	
161.016	BRANCH	0.000	0.76			356.4	OK*	
179.000	OB48	0.000	0.16			11.9	OK	
180.000	OB49	0.000	0.66			51.4	OK	
161.017	S311	0.000	0.86			368.8	OK	
181.000	OB50	0.000	0.82			21.4	OK	
181.001	S312	0.000	0.97			21.3	OK	
182.000	OB51	0.000	0.31			15.7	OK	
181.002	S313	0.000	0.58			36.8	OK	
183.000	OB52	0.000	0.36			24.9	OK	
181.003	BRANCH	0.000	0.89			59.6	OK*	
181.004	S314	0.000	1.14			59.7	SURCHARGED	
184.000	OB53	0.000	0.18			15.7	OK	
161.018	S315	0.000	1.07			385.9	OK	
	INT02 (SUDS)	0.000	1.07			386.0	SURCHARGED	
161.020	\$316	0.000	1.41			361.5	OK	
	ATT INLET 02	0.000	0.52				SURCHARGED*	
2.020	ATT TANK 01	0.000	1.61			1322.2	SURCHARGED	
2.021	CONNECTION	0.000	0.65			820.8	OK	4
185.000	OB60	0.000	0.47			67.6	OK	4
186.000	OB61	0.000	0.49			60.5	SURCHARGED	5
185.001	S500	0.000	0.86			113.6	SURCHARGED	
185.002	S501	0.000	0.73			98.6	SURCHARGED	F
187.000 185.003	OB62	0.000	0.33			52.4	OK	5
	BRANCH	0.000	0.81 0.25			142.0 9.9	SURCHARGED*	
188.000 189.000	OB63 OB64	0.000	0.25			27.1	OK SURCHARGED	5
185.000	S502	0.000	1.26			174.2	SURCHARGED	5
190.000	OB65	0.000	0.54			15.5	SURCHARGED	3
185.005	BRANCH	0.000	1.75				SURCHARGED*	5
191.000	OB66	0.000	0.14			3.1	OK	
185.006	S503	0.000	0.94			191.1		
192.000	OB67	0.000	1.57			46.9	SURCHARGED SURCHARGED	
185.007	BRANCH	0.000	1.07				SURCHARGED*	
193.000	OB68	0.000	0.29			13.6	OK	
185.008	BRANCH	0.000	1.41				SURCHARGED*	
194.000	OB69	0.000	0.80			20.4	SURCHARGED	5
195.000	OB70	0.000	0.59			61.3	SURCHARGED	5
194.001	S504	0.000	0.91			73.9	SURCHARGED	-
196.000	OB71	0.000	0.70			21.3	SURCHARGED	5
194.002	S505	0.000	1.16			89.9	SURCHARGED	-
197.000	OB72	0.000	0.13			6.1	OK	
198.000	OB73	0.000	0.62			104.6	SURCHARGED	5
194.003	S506	0.000	0.85			189.6	SURCHARGED	-
199.000	OB75	0.000	0.56			24.0	SURCHARGED	5
			©1982	2-2020 I	Innovyze			

RPS Group Plc		Page 93
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

	Flooded				Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
200.000	OB74	0.000	0.34			10.2	SURCHARGED	

RPS Group Plc		Page 94
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	S	torm		Climate Change	First Surcl	: (X) narge	First Flood	• •	First (Z) Overflow	Overflow Act.		Surcharged Depth (m)
200.001	S507	15	Summer	30	+0읭	30/15	Summer					36.665	0.258
199.001	S508	15	Summer	30	+0%	30/15	Summer					36.624	0.586
201.000	OB76	15	Summer	30	+0%	100/15	Summer					36.478	-0.090
194.004	S509	15	Summer	30	+0%	30/15	Summer					36.203	0.425
194.005	S510	15	Summer	30	+0%	30/15	Summer					36.051	0.354
202.000	OB77	15	Summer	30	+0%	100/15	Summer					36.660	-0.089
194.006	S511	15	Summer	30	+0응	30/15	Summer					35.762	0.207
203.000	OB78	15	Summer	30	+0%							36.654	-0.095
194.007	S512	15	Summer	30	+0응	30/15	Summer					35.404	0.056
185.009	S513	15	Summer	30	+0%	30/15	Summer					35.273	0.059
204.000	OB79	15	Summer	30	+0%	30/15	Summer	100/15 Su	ummer			37.449	0.131
204.001	S514	15	Summer	30	+0응	30/15	Summer					37.267	0.267
205.000	OB80	15	Summer	30	+0응	30/15	Summer	100/15 Su	ummer			37.180	0.261
204.002	BRANCH	15	Summer	30	+0응							36.869	0.000
185.010	S515	15	Summer	30	+0%	30/15	Summer					35.225	0.063
206.000	OB83	15	Summer	30	+0응	30/15	Summer	100/15 Su	ummer			37.099	0.099
207.000	OB84	15	Summer	30	+0%	100/15	Summer					37.047	-0.063
208.000	OB81	15	Summer	30	+0%	30/15	Summer	100/15 Su	ummer			37.565	0.268
209.000	OB82	15	Summer	30	+0%	100/15	Summer					37.196	-0.066
208.001	S516	15	Summer	30	+0응	30/15	Summer					37.128	0.118
210.000	GULLY	15	Summer	30	+0%	100/15	Summer					37.335	-0.150
208.002	BRANCH	15	Summer	30	+0응							36.836	0.000
206.001	S517	15	Summer	30	+0응	30/15	Summer					36.804	0.080
211.000	OB90A	15	Summer	30	+0%	100/15	Summer					36.821	-0.129
212.000	OB90	15	Summer	30	+0%	100/15	Summer					36.821	-0.129
213.000	OB85	15	Summer	30	+0%	100/15	Summer					36.863	-0.075
214.000	OB86	15	Summer	30	+0%	30/15	Summer	100/15 Su	ummer			36.806	0.128
213.001	S518	15	Summer	30	+0응	30/15	Summer					36.635	0.230
215.000	OB87	15	Summer	30	+0%	100/15	Summer	100/15 Su	ummer			36.786	-0.084
213.002	BRANCH	15	Summer	30	+0응							36.260	0.000
216.000	OB88	15	Summer	30	+0%	100/15	Summer					36.918	-0.079
217.000	OB89	15	Summer	30	+0%	100/15	Summer					36.939	-0.097
213.003	S519	15	Summer	30	+0응	30/15	Summer					36.123	0.031
206.002	S520	15	Summer	30	+0%	100/15	Summer					35.913	-0.109
218.000	OB92	15	Summer	30	+0%							36.912	-0.111
219.000	OB91	15	Summer	30	+0%	100/15	Summer					36.417	-0.091
220.000	OB93	15	Summer	30	+0%	100/15	Summer					36.270	-0.120
206.003	S521	15	Summer	30	+0%	100/15	Summer					35.619	-0.054
221.000	OB94		Summer	30		100/15	Summer					36.339	-0.114
206.004	BRANCH	15	Summer	30	+0응							35.264	0.000
222.000	OB95	15	Summer	30	+0%							36.636	-0.114
185.011	S522	15	Summer	30	+0응	30/15	Summer					35.178	0.063
	INT03 (SUDS)		Summer	30	+0응	30/15	Summer					34.881	0.112
185.013	S523	15	Summer	30	+0응	30/15	Summer					34.776	0.034
185.014	ATT INLET 04	15	Summer	30	+0%							34.164	-0.560
	ATT TANK 02	360	Winter	30	+0%	30/60	Summer					33.393	
2.023			Winter		+0%		Summer					33.663	0.875
2.024	S524 (SUDS)	360	Winter	30	+0%		Summer					33.914	
2.025			Winter		+0응	1/120	Summer					33.949	
2.026	458	360	Winter	30	+0%							36.207	-0.093

RPS Group Plc		Page 95
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitage
Innovyze	Network 2020.1.3	·

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(1/s)	Status	Exceeded
200.001	S507	0.000	0.45			8.6	SURCHARGED	
199.001	S508	0.000	1.31			24.5	SURCHARGED	
201.000	OB76	0.000	0.34			18.7	OK	
194.004	S509	0.000	1.41			218.9	SURCHARGED	
194.005	S510	0.000	1.43			210.4	SURCHARGED	
202.000	OB77	0.000	0.35			23.8	OK	
194.006	S511	0.000	1.28			219.3	SURCHARGED	
203.000	OB78	0.000	0.29			21.5	OK	
194.007	S512	0.000	1.02			233.4	SURCHARGED	
185.009	S513	0.000	0.95			453.4	SURCHARGED	
204.000	OB79	0.000	0.65			88.9	SURCHARGED	3
204.001	S514	0.000	1.18			87.1	SURCHARGED	
205.000	OB80	0.000	1.44			45.5	SURCHARGED	1
204.002	BRANCH	0.000	2.08			130.9	SURCHARGED*	
185.010	S515	0.000	0.98			562.3	SURCHARGED	
206.000	OB83	0.000	1.04			20.6	SURCHARGED	3
207.000	OB84	0.000	0.63			23.8	OK	
208.000	OB81	0.000	1.22			26.1	SURCHARGED	3
209.000	OB82	0.000	0.56			17.2	OK	
208.001	S516	0.000	1.11			41.1	SURCHARGED	
210.000	GULLY	0.000	0.00			0.0	OK	
208.002	BRANCH	0.000	1.00				SURCHARGED*	
206.001	S517	0.000	1.44			81.4	SURCHARGED	
211.000	OB90A	0.000	0.05			2.9	OK	
212.000	OB90	0.000	0.05			2.9	OK	
213.000	OB85	0.000	0.50			20.8	OK	
214.000	OB86	0.000	0.82			18.4	SURCHARGED	4
213.001	S518	0.000	1.10			35.7	SURCHARGED	
215.000	OB87	0.000	0.40			17.7	OK	1
213.002	BRANCH	0.000	1.39			50.7	SURCHARGED*	
216.000	OB88	0.000	0.46			16.7	OK	
217.000	OB89	0.000	0.27			16.4	OK	
213.003	S519	0.000	1.24			80.9	SURCHARGED	
206.002	S520	0.000	0.85			167.1	OK	
218.000	OB92	0.000	0.16			7.2	OK	
219.000	OB91	0.000	0.32			18.4	OK	
220.000	OB93	0.000	0.44			52.4	OK	
206.003	S521	0.000	0.67			229.6	OK	
221.000	OB94	0.000	0.48			72.4	OK	
206.004	BRANCH	0.000	1.36			287.8	SURCHARGED*	
222.000	OB95	0.000	0.13			10.6	OK	
185.011	S522	0.000	2.42			848.8		
	INT03 (SUDS)	0.000	2.23			848.8	SURCHARGED	
185.013	\$523	0.000	2.31			846.1	SURCHARGED	
	ATT INLET 04	0.000	0.30			840.4	OK*	
2.022		0.000	1.36			160.8	SURCHARGED	
2.023	S523	0.000	0.80			158.6		
2.024		0.000	1.23			143.8		
2.025	SWPS01	0.000	4.07			135.0	SURCHARGED	
2.026	458	0.000	0.99			135.1	OK	

PS Gro	-									Page	
		Capital	Drive								
inford	Wood										
itlton	Keyn	es, MK1	4 6QP							Mic	10
ate 21	/09/2	023 13:5	7			Designed by L					
ile EN	V3 DR	AIAGE 25	0823 r	educed	cat	Checked by					inag
nnovyz						Network 2020.					
Innovyze Network 2020.1.5											
<u>100</u>	Nur	Manhol Foul Nber of Ing Number of (Areal Hot e Headlo Sewage Dut Hydr Dnline C ainfall F	Reducti Hot Sta Start I ss Coeff per hect ographs ontrols Model Legion En	<u>S</u> on Factor rt (mins) eevel (mm) (Global) are (l/s) 0 Number 1 Number (<u>Synth</u> ngland and Flood Risk Anal	0 0.500 Flow per 1 0.000 r of Offline Cont of Storage Struct hetic Rainfall De FSR M5-60 (mm d Wales Ratio t Warning (mm) 30 Lysis Timestep F DTS Status	ia nal Flow - % D Factor * 10 Inlet Person per Da trols 0 Numbe tures 2 Numbe etails n) 18.300 Cv R 0.350 Cv 00.0 DVD 5	of Total F m ³ /ha Stor Coeffieci y (l/per/d r of Time/ r of Real (Summer) 1 (Winter) 1 Status ON Status ON	low 0.0 age 2.0 ent 0.8 ay) 0.0 Area Di Time Co .000	00 00 00 00 agrams 0	torm
				Return	uration(s) Period(s)) (mins) 15, 30, (years)	60, 120, 240, 1, 30,	360 100			
PN	US/MH Name	Storm		Return	uration(s) Period(s) limate Cha) (mins) 15, 30, (years) ange (%) (X) First (Y)	60, 120, 240, 1, 30, 0, 0	360		Surcharged Depth (m)	Floode Volum (m ³)
	Name		Period	Return C C Climate Change	uration(s) Period(s) limate Cha First (Surchar) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood	60, 120, 240, 1, 30, 0, 0	<pre>, 360 , 100 , 45 Overflow Act.</pre>	Level (m)	Depth (m)	Volum (m³)
2.000	Name OB1	15 Summer	Period	Return C C Climate Change +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood	60, 120, 240, 1, 30, 0, 0 First (Z) Overflow	<pre>, 360 , 100 , 45 Overflow Act.</pre>	Level (m) 38.635	Depth (m) 0.820	Volum (m ³) 0.0
2.000 3.000	Name OB1 OB2	15 Summer 30 Summer	Period 100 100	Return C C Climate Change +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635 38.311	Depth (m) 0.820 0.843	Volum (m ³) 0.0 1.0
2.000	Name OB1 OB2 S100	15 Summer	Period	Return C Climate Change +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 30/15 Su 100/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood	60, 120, 240, 1, 30, 0, () First (Z) Overflow	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635	Depth (m) 0.820	Volur (m ³) 0.0 1.0 0.0
2.000 3.000 2.001	Name OB1 OB2 S100 OB3	15 Summer 30 Summer 30 Summer	Period 100 100 100	Return C Climate Change +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 30/15 Su 100/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow	<pre>360 100 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200	Depth (m) 0.820 0.843 0.948	Volur (m ³) 0.0 1.0 0.0 46.1
2.000 3.000 2.001 4.000	Name OB1 OB2 S100 OB3 OB4	 Summer Summer Summer Summer 	Period 100 100 100 100	Return C Climate Change +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, (0 First (Z) Overflow mer mer	<pre>, 360 , 100 0, 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656	Depth (m) 0.820 0.843 0.948 0.906	Volum (m ³) 0.0 1.0 0.0 46.1 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5	 Summer Summer Summer Summer Summer Summer Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, (0 First (Z) Overflow mer mer mer	<pre>, 360 , 100 0, 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790	Volum (m ³) 0.0 1.0 0.0 46.1 0.0 3.5 4.9
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102	 Summer Summer Summer Summer Summer Summer Summer Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/30 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037	Volum (m ³) 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6	 Summer Summer Summer Summer Summer Summer Summer Summer Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, (0 First (Z) Overflow mer mer mer mer	<pre>, 360 , 100 0, 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954	Volum (m ³) 0.00 1.00 0.00 46.1 0.00 3.55 4.9 0.00 54.1
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7	 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, (0 First (Z) Overflow mer mer mer mer	<pre>, 360 , 100 0, 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908	Volum (m ³ 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103	 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, (0 First (Z) Overflow mer mer mer mer	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521	Volum (m ³ 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104	 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, (0 First (Z) Overflow mer mer mer mer	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908	Volum (m ³) 0.00 1.00 0.00 46.1 0.00 3.55 4.9 0.00 54.1 7.8 0.00 0.00
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8	 Summer 	Period 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer ummer ummer ummer	60, 120, 240, 1, 30, 0, (0 First (Z) Overflow mer mer mer mer	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594	Volum (m ³ 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer 100/15 Summ ummer ummer ummer 100/15 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.835 38.565	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852	Volum (m ³) 0.00 1.00 0.00 46.1 0.00 3.55 4.9 0.00 54.1 7.8 0.00 0.00 0.00 0.00 0.00
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.835 38.565 38.570	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957	Volum (m ³ 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer	, 360 , 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.835 38.565 38.570 38.556	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768	Volum (m ³ 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 54.1 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer	, 360 , 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.955 38.565 38.570 38.556 38.542	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862	Volum (m ³ 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha Surchar 100/15 Su 30/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer	<pre>, 360 , 100), 45 Overflow Act.</pre>	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.955 38.565 38.570 38.556 38.542 38.268	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480	Volum (m ³ 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 54.1 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha Surchar 100/15 Su 30/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/30 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer	, 360 , 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.956 37.955 38.565 38.570 38.556 38.542 38.248	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480 2.268	Volum (m ³ 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 54.1 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha Surchar 100/15 Su 30/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 100/15 Su	<pre>(mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/30 Summ ummer ummer ummer 100/30 Summ</pre>	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer	, 360 , 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.956 37.956 38.565 38.570 38.556 38.570 38.556 38.542 38.248 38.248 38.059	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480 2.268 0.346	Volum (m ³) 0.00 1.00 0.00 46.1 0.00 3.55 4.9 0.00 54.1 7.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha Surchar 100/15 Su 30/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/30 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer	, 360 , 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.956 37.955 38.565 38.570 38.556 38.542 38.248	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480 2.268	Volum (m ³) 0.00 1.00 0.00 46.1 0.00 3.55 4.9 0.00 54.1 7.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	uration(s) Period(s) limate Cha Surchar 100/15 Su 30/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 30/15 Su 30/15 Su) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/30 Summ	60, 120, 240, 1, 30, 0, () First (Z) Overflow mer mer mer mer mer mer mer	. 360 . 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.956 37.956 38.565 38.570 38.556 38.570 38.556 38.542 38.248 38.248 38.248 38.059 37.977	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480 2.268 0.346 2.557	Volum (m ³) 0.00 1.00 0.00 46.1 0.00 3.55 4.9 0.00 54.1 7.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	<pre>uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 100/15</pre>) (mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ	60, 120, 240, 1, 30, 0, 6 First (Z) Overflow mer mer mer mer mer mer mer mer	. 360 . 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.058 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.956 37.956 38.565 38.565 38.570 38.556 38.542 38.268 38.248 38.248 38.059 37.977 37.787	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480 2.268 0.346 2.557 2.565	Volum (m ³) 0.00 1.00 0.00 46.1 0.00 3.55 4.9 0.00 54.1 7.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	<pre>uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 100/15</pre>	<pre>(mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ</pre>	60, 120, 240, 1, 30, 0, 6 First (Z) Overflow mer mer mer mer mer mer mer mer	, 360 , 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.956 37.956 37.955 38.565 38.570 38.556 38.542 38.248 38.248 38.248 38.248 38.248 38.259 37.977 37.787 38.077 37.617 37.890	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480 2.268 0.346 2.557 2.565 0.862 0.942 2.265	Volum (m ³) 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 54.1 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111 OB15	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	<pre>uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 100/15</pre>	<pre>(mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ</pre>	60, 120, 240, 1, 30, 0, 6 First (Z) Overflow mer mer mer mer mer mer mer mer	, 360 , 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.956 37.956 37.956 38.565 38.565 38.570 38.556 38.542 38.248 38.259 37.956 37.957 38.570 37.977 37.787 38.077 37.877 37.877 37.890 37.890	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480 2.268 0.346 2.557 2.565 0.862 0.942 2.265 0.128	Volum (m ³) 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 0.0 54.1 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
2.000 3.000 2.001 4.000 5.000 2.002 6.000 2.003 7.000 8.000 2.004 2.005 9.000 2.006 10.000 10.001 11.000 10.002 12.000 10.003 13.000 10.004 2.007 14.000 15.000	Name OB1 OB2 S100 OB3 OB4 S101 OB5 S102 OB6 OB7 S103 S104 OB8 S105 OB9 S106 OB10 S107 OB11 S108 OB12 S109 S110 OB13 OB14 S111 OB15 S112	 15 Summer 30 Summer 	Period 100 100 100 100 100 100 100 100 100 10	Return C Climate Change +45% +45% +45% +45% +45% +45% +45% +45%	<pre>uration(s) Period(s) limate Cha First (Surchar 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 100/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 30/15 Su 100/15 Su 30/15 Su 100/15 Su 100/15</pre>	<pre>(mins) 15, 30, (years) ange (%) (X) First (Y) rge Flood ummer ummer 100/15 Summ ummer 100/15 Summ</pre>	60, 120, 240, 1, 30, 0, 6 First (Z) Overflow mer mer mer mer mer mer mer mer	, 360 , 100 0, 45 Overflow Act.	Level (m) 38.635 38.311 38.200 37.656 38.216 38.225 38.154 37.664 38.228 38.030 37.956 37.956 37.956 37.956 37.956 37.955 38.565 38.570 38.556 38.542 38.248 38.248 38.248 38.248 38.248 38.259 37.977 37.787 38.077 37.617 37.890	Depth (m) 0.820 0.843 0.948 0.906 0.856 1.570 0.790 2.037 0.954 0.908 2.521 2.594 0.398 2.564 0.852 0.957 0.768 1.862 0.480 2.268 0.346 2.557 2.565 0.862 0.942 2.265	Volum (m ³) 0.0 1.0 0.0 46.1 0.0 3.5 4.9 0.0 54.1 7.8 0.0 54.1 7.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

RPS Group Plc		Page 97
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitacje
Innovyze	Network 2020.1.3	1

		,		Half Drain	-		
	•	•	Overflow	Time	Flow		Level
PN	Name	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
2.000	OB1	1.01			31.2	FLOOD RISK	
3.000	OB2	1.55			35.1	FLOOD	2
2.001	S100	0.62			57.9	FLOOD	1
4.000	OB3	1.81			98.4	FLOOD	7
5.000	OB4	0.50			65.2	FLOOD RISK	
2.002	S101	0.94			133.8	FLOOD	3
6.000	OB5	0.53			153.0	FLOOD	3
2.003	S102	0.90			244.1	FLOOD RISK	
7.000	OB6	1.02			122.2	FLOOD	7
8.000	OB7	0.82			155.1	FLOOD	5
2.004	S103	2.05			454.1	FLOOD RISK	
2.005	S104	1.94			407.7	SURCHARGED	
9.000	OB8	0.78			38.8	SURCHARGED	
2.006	S105	1.56			411.3	SURCHARGED	
10.000	OB9	2.36			46.7	FLOOD	5
10.001	S106	0.74			41.9	FLOOD RISK	
11.000	OB10	0.40			58.7	FLOOD	1
10.002	S107	1.34			67.7	FLOOD RISK	
12.000	OB11	0.35			67.1	FLOOD RISK	
10.003	S108	1.10			104.8	SURCHARGED	
13.000	OB12	0.49			46.9	SURCHARGED	
10.004	S109	0.84			131.4	SURCHARGED	
2.007	S110	1.17			486.6	SURCHARGED	
14.000	OB13	0.68			121.6	FLOOD	4
15.000	OB14	0.87			32.3	FLOOD	6
14.001	S111	1.66			129.7	SURCHARGED	
16.000	OB15	0.71			43.3	SURCHARGED	
2.008	S112	1.11			580.1	SURCHARGED	
17.000	OB16	0.70			47.8	OK	

RPS Group Plc		Page 98
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	5	Storm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)
2.009	S113	30	Summer	100	+45%	30/15	Summer				37.481	2.655	0.000
18.000			Summer	100	+45%	50715	building1				37.617	-0.062	0.000
2.010			Summer	100	+45%	30/15	Summer				37.245	2.660	0.000
19.000			Summer	100	+45%			100/15 Summer			38.698	0.853	11.345
19.001			Summer	100	+45%		Summer				38.677	1.177	0.000
20.000	OB19	15	Summer	100	+45%	100/15	Summer				38.687	0.842	0.000
19.002	S116	30	Summer	100	+45%	30/15	Summer				38.358	1.791	0.000
19.003	S117	30	Summer	100	+45%	30/15	Summer	100/15 Summer			37.748	1.661	21.006
21.000	OB20	30	Summer	100	+45%	100/15	Summer				37.975	0.841	0.000
22.000	OB21	30	Summer	100	+45%	100/15	Summer				38.087	0.802	0.000
19.004			Summer	100	+45%	30/15	Summer				37.830	1.934	0.000
23.000			Summer	100				100/15 Summer			37.635	0.885	25.447
24.000			Summer	100				100/15 Summer			38.222	0.902	2.013
19.005			Summer	100	+45%		Summer				37.823	1.985	0.000
25.000			Summer	100		100/15					38.087	0.727	0.000
19.006			Summer	100	+45%		Summer				37.810	2.232	0.000
26.000	OB25		Summer	100 100		100/15		100/15 Summor			37.993	0.633	0.000
19.007			Summer Summer	100	+45%		Summer	100/15 Summer			37.633 37.683	0.883 2.409	23.402 0.000
19.007			Summer	100	+45%		Summer				37.585	2.409	0.000
19.009			Summer	100	+45%		Summer				37.418	2.505	0.000
28.000			Summer	100	+45%	50715	ounner				37.740	-0.023	0.000
19.010			Summer	100	+45%	30/15	Summer				37.277	2.692	0.000
29.000			Summer	100		100/15					37.131	0.545	0.000
2.011	S125	30	Summer	100	+45%	30/15	Summer				37.068	2.590	0.000
30.000	OB29	15	Summer	100	+45%	100/15	Summer				37.548	0.873	0.000
31.000	OB30	15	Summer	100	+45%	100/15	Summer				38.058	0.843	0.000
30.001	S126	30	Summer	100	+45%	30/15	Summer				37.260	0.925	0.000
2.012			Summer	100	+45%		Summer				36.926	2.464	0.000
2.013			Summer	100	+45%		Summer				36.714	2.424	0.000
32.000			Summer	100	+45%			100/15 Summer			39.089	1.214	88.654
33.000			Summer	100	+45%		Summer				38.635	0.835	0.000
33.001 34.000			Summer Summer	100 100	+45% +45%		Summer Summer				38.628 38.877	1.205 1.077	0.000
34.000			Winter	100	+45%			100/15 Summer			38.699	1.391	4.125
35.000			Summer	100	+45%		Summer	100/15 Summer			38.948	1.148	0.000
34.002	BRANCH			100	+45%	50715	ounner				37.115	0.000	0.000
36.000			Summer	100	+45%	30/15	Summer				38.881	1.081	0.000
34.003	BRANCH			100	+45%						36.922	0.000	0.000
37.000	RWP02	60	Summer	100	+45%	30/15	Summer				38.598	0.798	0.000
32.001	S202 (V)	60	Summer	100	+45%	30/15	Summer				38.597	1.736	0.000
32.002	S203	60	Summer	100	+45%	30/15	Summer	100/15 Summer			38.477	1.655	43.987
38.000	RWP06	60	Summer	100	+45%	30/15	Summer				38.370	0.570	0.000
32.003	BRANCH	15	Summer	100	+45%						36.677	0.000	0.000
39.000			Summer	100	+45%	30/15	Summer				38.328	0.528	0.000
32.004			Summer	100	+45%	00/1-	~				36.644	0.000	0.000
40.000			Summer	100	+45%		Summer	100/15 0			38.219	0.419	0.000
32.005			Summer	100	+45%			100/15 Summer			38.214		205.731
41.000			Summer	100	+45% +45%			100/15 Summer			39.080 38 704	1.205	80.125 0.000
42.000			Summer Summer	100 100	+45% +45%		Summer	100/15 Summer			38.704 38.700	0.904 1.278	0.000
42.001			Summer	100	+45%		Summer	TOOLTO SUUMEL			38.700	0.875	0.014
43.000			Winter	100	+45%		Summer				38.737	1.526	0.000
45.000			Winter	100	+45%		Summer				38.730	0.930	0.000
		-) 20 T					
						01	202-20)20 Innovyze	;				

RPS Group Plc		Page 99
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
2 . 0 0 0	0110	1 10			574 0		
2.009	S113	1.10 0.64			574.9	SURCHARGED	
18.000 2.010	OB17 S114				48.5 583.1	OK	
						SURCHARGED	7
19.000 19.001	OB18 S115	0.91 1.34			33.6 26.4	FLOOD FLOOD RISK	1
20.000	OB19	0.75			53.2	FLOOD RISK	
19.002	S116	1.12			50.2	SURCHARGED	
19.002	S110 S117	1.92			82.0	FLOOD	7
21.000	OB20	0.64			41.7	FLOOD RISK	1
22.000	OB20	0.55			30.3	FLOOD RISK	
19.004	S118	0.92			92.5	FLOOD RISK	
23.000	OB22	0.76			77.2	FLOOD FLOOD	7
24.000	OB22 OB23	0.81			56.2	FLOOD	5
19.005	S119	1.46			173.5	FLOOD RISK	5
25.000	OB24	0.71			132.8	FLOOD RISK	
19.006	S120	1.38			264.4	SURCHARGED	
26.000	OB25	0.83			169.6	FLOOD RISK	
27.000	OB25	1.09			145.1	FLOOD	6
19.007	S121				508.8	SURCHARGED	Ŭ
19.008	S121	0.93			475.4	SURCHARGED	
19.009	S122				444.4	SURCHARGED	
28.000	OB27	0.99			62.3	OK	
19.010	S124	1.79			449.4	SURCHARGED	
29.000	OB28	0.76			33.8	SURCHARGED	
2.011	S125	3.38			1011.9	SURCHARGED	
30.000	OB29	0.93			18.1	FLOOD RISK	
31.000	OB30	0.95			124.9	FLOOD RISK	
30.001	S126	1.76			135.7	SURCHARGED	
2.012	S127	1.88			1103.2	SURCHARGED	
2.013	INT01	1.45			1095.6	SURCHARGED	
32.000	SDP01	2.63			398.8	FLOOD	7
33.000	RWP01	0.11			4.1	FLOOD RISK	
33.001	S200	0.59			19.3	FLOOD RISK	
34.000	RWP03	0.50			17.8	FLOOD RISK	
34.001	S201	1.00			17.8	FLOOD	7
35.000	RWP04	0.41			17.3	FLOOD RISK	
34.002		1.16			23.9	SURCHARGED*	
36.000	RWP05	0.33			15.8	FLOOD RISK	
34.003	BRANCH	2.11			32.7	SURCHARGED*	
37.000	RWP02	0.04			2.5	FLOOD RISK	
	S202 (V)	1.74			296.1	FLOOD RISK	
32.002	S203	1.24			264.6	FLOOD	7
38.000	RWP06	0.12			7.0	SURCHARGED	
32.003	BRANCH	1.20			286.6	SURCHARGED*	
39.000	SWP07	0.10			6.4	SURCHARGED	
32.004	BRANCH	1.19			295.8	SURCHARGED*	
40.000	RWP08	0.11			6.4	SURCHARGED	
32.005	S204	1.37			464.9	FLOOD	7
41.000	SDP02	2.95			447.3	FLOOD	7
42.000	RWP09	0.12			4.6	FLOOD RISK	
42.001	S205	0.31			11.6	FLOOD	1
43.000	RWP10	0.09			4.4	SURCHARGED	
44.000	RWP11	0.30			8.6	FLOOD RISK	
			©1982-2	020 Inno	vyze		

RPS Group Plc		Page 100
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	•	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
45.000	RWP12	0.15			8.7	FLOOD RISK	

RPS Group Plc		Page 101
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

	US/MH				Climate	First (X)	First (Y)	First (Z)		Level	Surcharged Depth	Volume
PN	Name	S	torm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)
44.001	BRANCH	15	Summer	100	+45%					36.917	0.000	0.000
41.001	S206(V)	15	Summer	100	+45%	30/15 Summer				38.672	1.961	0.000
32.006	S207	15	Summer	100	+45%	30/15 Summer	100/15 Summer			38.445	2.125	12.170
46.000	RWP13	15	Winter	100	+45%	30/15 Summer				38.460	0.810	0.000
32.007	S208	15	Winter	100	+45%	30/15 Summer				38.444	2.192	0.000
32.008	S209	15	Winter	100	+45%	30/15 Summer				38.411	2.201	0.000
47.000	RWP14	15	Winter	100	+45%	100/15 Summer				38.387	0.387	0.000
32.009	BRANCH	15	Summer	100	+45%					36.202	0.000	0.000
48.000	RWP15	15	Summer	100	+45%	100/15 Summer				38.441	0.441	0.000
48.001	S210	15	Summer	100	+45%	100/15 Summer				38.411	0.811	0.000
49.000			Summer	100		100/15 Summer				38.407	0.407	0.000
48.002	BRANCH			100	+45%					37.416	0.000	0.000
50.000			Winter	100		100/15 Summer				38.522	0.572	0.000
51.000			Winter	100		100/15 Summer				38.519	0.569	0.000
50.001			Winter	100		100/15 Summer				38.503	1.003	0.000
52.000			Winter	100		100/15 Summer				38.461	0.876	0.000
50.002	BRANCH			100	+45%	100/15 0				37.194	0.000	0.000
53.000			Winter	100		100/15 Summer				38.373	0.373	0.000
50.003	BRANCH			100	+45%	20/15 Common	100/20 Common			36.794	0.000	0.000
50.004 32.010			Winter Winter	100 100	+45% +45%	30/15 Summer	100/30 Summer			38.301 38.341	1.656 2.209	0.649 0.000
54.000			Winter	100		100/15 Summer				38.337	0.337	0.000
32.011	BRANCH			100	+45%	100/15 Summer				36.113	0.000	0.000
55.000			Summer	100		100/15 Summer				38.252	0.252	0.000
32.012	BRANCH			100	+45%	100/15 Summer				36.075	0.232	0.000
56.000			Winter	100		100/15 Summer				38.206	0.206	0.000
32.013	BRANCH			100	+45%	100,10 Duniner				36.038	0.000	0.000
57.000			Winter	100		100/15 Summer				38.185	0.185	0.000
32.014	BRANCH			100	+45%					36.001	0.000	0.000
58.000			Winter	100	+45%	100/30 Summer				38.159	0.159	0.000
32.015	BRANCH	15	Summer	100	+45%					35.961	0.000	0.000
59.000	SDP12	30	Summer	100	+45%	30/15 Summer	100/15 Summer			39.074	1.349	73.860
60.000	SDP13	30	Summer	100	+45%	100/15 Summer				38.650	1.000	0.000
61.000	SDP14	30	Summer	100	+45%	30/15 Summer	100/15 Summer			39.085	1.360	84.676
62.000	RWP29	30	Summer	100	+45%	100/15 Summer				38.561	0.911	0.000
62.001	S214	30	Summer	100	+45%	30/30 Summer				38.558	1.308	0.000
63.000	RWP30	30	Summer	100	+45%	100/15 Summer				38.546	0.546	0.000
61.001	S215(V)	30	Summer	100	+45%	1/15 Summer				38.543	2.523	0.000
64.000			Summer	100		100/15 Summer				38.417	0.917	0.000
64.001			Summer	100		100/15 Summer				38.414	1.164	0.000
65.000			Winter	100		100/15 Summer				38.406	0.406	0.000
	S216(V)			100	+45%	30/15 Summer				38.400	2.410	0.000
66.000			Winter	100		100/30 Summer				38.132	0.132	0.000
32.016			Winter	100	+45%	30/15 Summer				38.117	2.193	0.000
67.000			Summer	100	+45%					37.964	-0.036	0.000
32.017	BRANCH			100	+45%					35.890	0.000	0.000
68.000	RWP32 BRANCH		Summer	100	+45%					38.039	-0.111	0.000
32.018 69.000				100	+45% +45%					35.857	0.000	0.000
32.019	BRANCH		Summer	100 100	+45% +45%					38.039 35.820	-0.111 0.000	0.000
70.000			Summer	100	+45%					38.037	-0.113	0.000
32.020	BRANCH			100	+45%					35.791	0.000	0.000
71.000			Summer	100	+45%					37.864	-0.086	0.000
72.000			Summer	100	+45%					37.868	-0.082	0.000
		-				<u>A1000 01</u>						
						@1982-20	020 Innovyze	;				

RPS Group Plc		Page 102
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Desinado
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
44 001	BRANCH	0.44			12 5	SURCHARGED*	
	S206 (V)	1.11			390.1		
32.006	S200(V)				636.2	FLOOD	2
46.000	RWP13	0.19			7.4		-
32.007	S208				626.0		
32.008	S200	2.27			625.6		
47.000	RWP14	0.10			8.0		
	BRANCH	1.01				SURCHARGED*	
48.000	RWP15	0.30			9.5		
48.001	S210	0.35			9.3		
49.000	RWP16	0.20			9.5		
	BRANCH	0.20				SURCHARGED*	
48.002					20.5		
50.000	RWP17	0.24					
51.000	RWP18	0.21			7.7		
50.001	S211	0.54			13.7		
52.000	RWP19	0.12			4.7		
	BRANCH	0.84				SURCHARGED*	
53.000	RWP20	0.07			5.1	SURCHARGED	
50.003						SURCHARGED*	2
50.004	S212	1.13			20.2	FLOOD	3
32.010	S213				623.1		
54.000	RWP21	0.13			11.5		
	BRANCH					SURCHARGED*	
55.000	RWP22	0.16			14.1		
	BRANCH					SURCHARGED*	
56.000	RWP23	0.09			8.1		
32.013						SURCHARGED*	
57.000	RWP24	0.10			8.5		
32.014	BRANCH	1.13			618.4	SURCHARGED*	
58.000	RWP25	0.09			8.2	SURCHARGED	
32.015	BRANCH	1.16			620.3	SURCHARGED*	
59.000	SDP12	1.73			484.9	FLOOD	6
60.000	SDP13	0.61			109.2	SURCHARGED	
61.000	SDP14	1.61			451.7	FLOOD	6
62.000	RWP29	0.07			2.7	FLOOD RISK	
62.001	S214	0.44			5.2	FLOOD RISK	
63.000	RWP30	0.03			2.8	SURCHARGED	
61.001	S215(V)	2.59			381.8	FLOOD RISK	
64.000	RWP27	0.09			2.9	SURCHARGED	
64.001	S214a	0.34			4.7	FLOOD RISK	
65.000	RWP28	0.03			2.2	SURCHARGED	
59.001	S216(V)	1.73			804.8	FLOOD RISK	
66.000	RWP26	0.16			8.8	SURCHARGED	
32.016	S217	2.38			1122.0	SURCHARGED	
67.000	RWP31	0.08			7.5	OK	
32.017	BRANCH	1.42			1083.3	SURCHARGED*	
68.000	RWP32	0.15			14.0	OK	
32.018	BRANCH	1.33			1079.5	SURCHARGED*	
69.000	RWP33	0.15			14.3	OK	
32.019	BRANCH	1.41			1075.1	SURCHARGED*	
70.000	RWP34	0.13			12.8	OK	
32.020	BRANCH	1.25				SURCHARGED*	
71.000	RWP36	0.37			13.6	OK	

RPS Group Plc		Page 103
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	·

PN	US/MH Name		Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
72.000	RWP35	0.42			13.6	OK	

RPS Group Plc		Page 104
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diginada
Innovyze	Network 2020.1.3	1

PN	US/MH Name	5	Storm		Climate Change	First Surch		First (Flood		First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
71.001	S218	30	Summer	100	+45%	100/15	Summer					37.705	0.205
73.000	RWP37	15	Summer	100	+45%							37.889	-0.111
71.002	BRANCH	15	Summer	100	+45%							37.194	0.000
74.000	RWP38	15	Summer	100	+45%							37.885	-0.115
71.003	S219	60	Summer	100	+45%	100/15	Summer					37.534	0.707
75.000	RWP39	15	Summer	100	+45%							38.000	-0.150
32.021			Summer	100	+45%	30/15	Summer					37.395	1.647
76.000	RWP40	15	Summer	100	+45%							38.039	-0.111
32.022	BRANCH			100	+45%							35.729	
77.000			Summer	100	+45%							38.039	
32.023	BRANCH			100	+45%							35.707	
78.000			Summer	100	+45%	00/15	-					38.053	-0.097
	S221 (SUDS)			100	+45%		Summer					36.839	1.162
79.000			Summer	100	+45%			100/15 St	ummer			39.085	
80.000			Summer	100	+45%		Summer Summer					38.594	0.794
80.001 81.000			Summer Summer	100	+45% +45%	, -	Summer					38.589	1.166 0.781
81.000			Summer	100 100	+45%		Summer					38.581 38.831	1.031
82.000			Summer	100	+45%	, -		100/15 Su	mmor			38.698	1.398
83.000			Summer	100	+45%		Summer	100/15 50	initine r			38.969	1.169
82.002	BRANCH			100	+45%	50715	building1					37.120	0.000
84.000			Summer	100	+45%	30/15	Summer					38.857	1.057
82.003	BRANCH			100	+45%	00/10	0 animo 1					36.940	0.000
79.001	S224 (V)			100	+45%	1/15	Summer					38.579	1.695
79.002			Winter	100	+45%			100/30 Su	ummer			38.437	
85.000	RWP48	60	Summer	100	+45%			100/15 St				38.253	0.653
79.003	BRANCH	15	Summer	100	+45%							36.748	0.000
86.000	RWP49	30	Summer	100	+45%	30/15	Summer					38.241	0.841
79.004	BRANCH	15	Summer	100	+45%							36.703	0.000
87.000	RWP50	30	Summer	100	+45%	30/15	Summer					38.118	0.718
79.005	BRANCH	15	Summer	100	+45%							36.658	0.000
88.000	RWP51	30	Summer	100	+45%	100/15	Summer					37.983	0.583
79.006	BRANCH			100	+45%							36.613	0.000
89.000			Summer	100	+45%							37.846	
79.007	BRANCH			100	+45%							36.589	
90.000			Summer	100		100/30	Summer					37.722	
79.008	BRANCH			100	+45%	4 0 0 / 4 5	~					36.554	0.000
91.000			Summer	100		100/15						37.593	0.343
79.009			Summer	100	+45%		Summer	100/15 0				37.585	1.118
92.000 93.000			Summer	100	+45%			100/15 Su	uuner.			39.062	1.187
93.000			Summer Summer	100 100		100/15 100/15						38.124 38.123	0.324 0.701
93.001			Summer	100		100/15						38.123	0.324
95.000			Summer	100		100/15						38.135	0.335
96.000			Summer	100	+45%		Summer					38.137	0.926
95.001	BRANCH			100	+45%		,					36.917	0.000
92.001	S228 (V)			100	+45%	30/15	Summer					38.123	1.412
79.010			Summer	100	+45%		Summer					37.206	1.119
79.011	S230 (SUDS)			100	+45%		Summer					36.931	0.977
32.025			Summer	100	+45%		Summer					36.650	0.987
2.014	S232	30	Summer	100	+45%		Summer					36.522	2.293
2.015	S233	30	Summer	100	+45%	30/15	Summer					36.094	1.987
07 000	RWP59	15	Summer	100	+45%							37.495	-0.105
97.000													

RPS Group Plc		Page 105
RFS GLOUP FIC		Page 105
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	·

PN	US/MH Name	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
71.001	S218	0.000	0.81			20.7	SURCHARGED	
73.000	RWP37	0.000	0.15			8.4	OK	
71.002	BRANCH	0.000	0.95			26.8	SURCHARGED*	
74.000	RWP38	0.000	0.12			8.4	OK	
71.003	S219	0.000	0.74			19.6	SURCHARGED	
75.000	RWP39	0.000	0.00			0.0	OK	
32.021	S220	0.000	2.87			1155.8		
76.000	RWP40	0.000	0.15			14.7	OK	
32.022	BRANCH	0.000	1.46				SURCHARGED*	
77.000	RWP41	0.000	0.15			14.7	OK	
32.023	BRANCH	0.000	1.46				SURCHARGED*	
78.000	RWP42	0.000	0.26			14.6	OK	
	S221 (SUDS)	0.000	2.37			1157.4		
79.000	SDP03		2.70			410.0	FLOOD	6
80.000	RWP43	0.000	0.08			3.2		Ŭ
80.001	S222	0.000	0.20			6.4		
81.000	RWP44	0.000	0.06			3.3		
82.000	RWP45	0.000	0.45			16.1	FLOOD RISK	
82.000	S223	3.189	1.02			17.6	FLOOD	6
83.000	RWP46	0.000	0.44			18.6	FLOOD RISK	Ŭ
82.002	BRANCH		1.22				SURCHARGED*	
84.000	RWP47	0.000	0.35			16.5	FLOOD RISK	
82.003	BRANCH	0.000	2.08				SURCHARGED*	
79.001	S224 (V)	0.000	1.43			356.4	FLOOD RISK	
79.001	S224(V) S225	3.838	1.93			334.2	FLOOD FLOOD	3
85.000	RWP48	3.309	0.55			23.7	FLOOD	6
79.003	BRANCH	0.000	1.38				SURCHARGED*	0
86.000	RWP49	0.000	0.30				FLOOD RISK	
79.004	BRANCH	0.000	1.38				SURCHARGED*	
87.000	RWP50	0.000	0.29			11.8	FLOOD RISK	
79.005	BRANCH		1.42				SURCHARGED*	
88.000	RWP51	0.000	0.23			9.5	FLOOD RISK	
79.006	BRANCH	0.000	1.44				SURCHARGED*	
89.000	RWP52	0.000	0.16			10.3	OK	
79.007	BRANCH		1.46				SURCHARGED*	
90.000	RWP53	0.000	0.16			9.6	SURCHARGED	
79.008	BRANCH		1.47				SURCHARGED*	
91.000	RWP54	0.000	0.21			9.6	SURCHARGED	
79.009	S226	0.000	1.23			351.9		
92.000		62.081	2.99				FLOOD	5
93.000	RWP55	0.000	0.10			3.7		
93.000	S227		0.32			11.6		
94.000	RWP56	0.000	0.08			3.7		
95.000	RWP57	0.000	0.00			9.4		
96.000	RWP58	0.000	0.10			9.3		
95.000	BRANCH		0.52				SURCHARGED*	
92.001	S228 (V)	0.000	1.46			452.3	SURCHARGED	
79.010	S228 (V)	0.000	1.40			790.9		
79.010	S230 (SUDS)	0.000	1.14			777.5		
32.025	S230 (S0DS) S231	0.000	2.98			1918.2		
2.014	S231	0.000	1.79			2769.1		
2.014	S232	0.000	1.99			2709.1		
97.000	8255 RWP59	0.000	0.20			12.1	OK	

RPS Group Plc		Page 106
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Dcainago
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
98.000	RWP60	0.000	0.38			22.9	OK	:

RPS Group Plc		Page 107
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micco
Date 21/09/2023 13:57	Designed by LARS.ARMES	Desinado
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Storm		Climate Change	First Surch	: (X) harge	First Flo	: (Y) ood	First (Z) Overflow	Overflow Act.		Surcharged Depth (m)
2.016	S234	30 Summer	100	+45%	30/15	Summer					35.611	1.631
2.017		120 Summer		+45%		Summer					35.069	1.200
99.000	RWP61	15 Summer			100/15						38.288	0.388
99.001	S236	15 Summer			100/15						38.270	0.525
100.000	RWP62	15 Summer			100/15						38.274	0.374
99.002	BRANCH	15 Summer		+45%							37.588	0.000
99.003	S237	15 Summer		+45%	30/15	Summer					37.798	0.445
101.000	RWP63	15 Summer		+45%							37.692	-0.108
99.004	BRANCH	15 Summer	100	+45%							37.221	0.000
102.000	RWP64	15 Summer	100	+45%							37.838	-0.112
99.005	S238	15 Summer	100	+45%							35.556	-0.101
103.000	RWP65	15 Summer	100	+45%							37.112	-0.094
99.006	BRANCH	15 Summer	100	+45%							35.153	-0.004
104.000	RWP66	15 Summer	100	+45%							37.088	-0.108
99.007	BRANCH	15 Summer	100	+45%							34.897	0.000
105.000	RWP67	15 Summer	100	+45%							36.839	-0.117
2.018	S239	120 Summer	100	+45%	30/15	Summer					34.765	0.977
2.019	ATT INLET 01	15 Summer	100	+45%							33.775	0.000
106.000	SDP05	30 Summer	100	+45%	1/15	Summer	100/15	Summer			39.090	1.215
106.001	S400(V)	60 Summer	100	+45%	30/15	Summer	100/15	Summer			38.752	1.402
107.000	RWP60	60 Summer	100	+45%	30/15	Summer					38.699	0.899
106.002	S401	60 Summer	100	+45%	30/15	Summer	100/15	Summer			38.697	1.688
108.000	RWP61	60 Summer	100	+45%	30/15	Summer					38.680	0.880
106.003	BRANCH	15 Summer	100	+45%							36.972	0.000
109.000	RWP62	30 Summer		+45%	30/15	Summer					38.658	0.858
106.004	BRANCH	15 Summer		+45%							36.880	0.000
110.000	RWP63	30 Summer			100/15						38.661	0.861
106.005	S402	30 Summer		+45%			100/30	Summer			38.649	1.828
111.000	RWP64	30 Summer			100/15	Summer					38.591	0.791
106.006	BRANCH	15 Summer		+45%	4 0 0 / 4 5						36.790	0.000
112.000	RWP65	30 Summer			100/15	Summer					38.570	0.770
106.007	BRANCH	15 Summer		+45%	1 /1 5	a	100/15	0			36.750	0.000
113.000	SDP06	30 Summer		+45%			100/15				39.062	1.187
106.008	S403	30 Summer		+45%			100/30	Summer			38.569	1.863
114.000	RWP66	30 Summer		+45%	100/15	Summer					38.561 36.680	0.761 0.000
106.009 115.000	BRANCH	15 Summer 30 Summer			100/15	Cummon						0.000
106.010	RWP67 BRANCH	15 Summer		+45%	100/15	Summer					38.531 36.645	0.000
116.000	RWP68	30 Winter			100/15	Summer					38.431	0.631
106.011		15 Summer		+45%	T00/T3	Summer					36.607	0.000
117.000	RWP 69	60 Winter			100/15	Summer					38.378	0.578
106.012	S404	60 Winter			30/15						38.340	1.801
118.000	RWP70	60 Winter			100/15						38.306	0.306
106.013	BRANCH	15 Summer		+45%	, 10	,					36.513	0.000
106.014	S405	60 Summer		+45%	30/15	Summer	100/15	Summer			38.174	1.684
119.000	RWP71	15 Summer			100/15						38.890	0.790
119.001	S406	30 Summer		+45%			100/15	Summer			38.733	1.108
120.000	RWP72	15 Summer			100/15						38.979	0.879
119.002	BRANCH	15 Summer		+45%							37.305	0.000
121.000	RWP73	30 Summer			100/15	Summer					38.843	0.743
119.003	S407	30 Summer		+45%			100/30	Summer			38.730	1.785
106.015	S408	30 Summer		+45%	30/15	Summer	100/15	Winter			38.128	1.830
122.000	RWP74	30 Summer	100	+45%	30/15	Summer	100/30	Summer			38.700	0.950
122.001	S409	30 Winter	100	+45%	30/15	Summer	100/15	Summer			38.654	0.948
				©1	982-20	20 In	novyze					

RPS Group Plc		Page 108
		_
Noble House, Capital Drive		
_		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	
		Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Didirideje
Innovyze	Network 2020.1.3	

PN	US/MH Name	Flooded Volume (m ³)	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
	Name	(111)	-	(1/3)	(11113)	(1/3)	Status	Exceeded
2.016	S234	0.000	2.23			2692.7	SURCHARGED	
2.017	S235	0.000	2.24			2428.4	SURCHARGED	
99.000	RWP61	0.000	0.44			10.7	SURCHARGED	
99.001	S236	0.000	0.62			10.1	SURCHARGED	
100.000	RWP62	0.000	0.48			16.9	SURCHARGED	
99.002	BRANCH	0.000	1.36			24.1	SURCHARGED*	
99.003	S237	0.000	1.58			24.1	SURCHARGED	
101.000	RWP63	0.000	0.18			8.4	OK	
99.004	BRANCH	0.000	1.66			29.6	SURCHARGED*	
102.000	RWP64	0.000	0.14			8.4	OK	
99.005	S238	0.000	0.58			36.3	OK	
103.000	RWP65	0.000	0.30			26.5	OK	
99.006	BRANCH	0.000	0.88			59.4	OK*	
104.000	RWP66	0.000	0.17			16.3	OK	
99.007	BRANCH	0.000	1.09			73.5	SURCHARGED*	
105.000	RWP67	0.000	0.11			9.1	OK	
2.018	S239	0.000	2.67			2455.8	SURCHARGED	
	ATT INLET 01	0.000	1.35			2650.5	SURCHARGED*	
106.000	SDP05	90.184	2.46			373.6	FLOOD	7
106.001		105.545	0.94			260.1	FLOOD	7
107.000	RWP60	0.000	0.07			4.1	FLOOD RISK	
106.002	S401	50.366	1.62			307.4	FLOOD	7
108.000	RWP61	0.000	0.07			4.0	FLOOD RISK	
106.003	BRANCH	0.000	1.11				SURCHARGED*	
109.000	RWP 62	0.000	0.05			2.7	FLOOD RISK	
105.000	BRANCH	0.000	1.08				SURCHARGED*	
110.000	RWP63	0.000	0.09			5.8	FLOOD RISK	
106.005	S402	2.375	1.13			244.7	FLOOD	1
111.000	RWP64	0.000	0.09			5.9	FLOOD RISK	-
106.006	BRANCH	0.000	0.73				SURCHARGED*	
112.000	RWP65	0.000	0.00			0.1	FLOOD RISK	
106.007	BRANCH	0.000	0.72				SURCHARGED*	
113.000	SDP06	62.407	2.93			444.5	FLOOD	6
106.008	S403	0.032	2.93			595.0	FLOOD	Ŭ
114.000	RWP66	0.000	0.10			6.5	FLOOD RISK	
106.009	BRANCH	0.000	1.48				SURCHARGED*	
115.000	RWP67	0.000	0.10			6.8	SURCHARGED	
106.010	BRANCH	0.000	1.47				SURCHARGED*	
116.000	RWP 68	0.000	0.07			5.1	SURCHARGED	
	BRANCH	0.000	1.23				SURCHARGED*	
106.011 117.000	RWP69	0.000	0.14			7.7		
106.012	S404	0.000	2.15			486.7		
118.000	RWP70	0.000	0.12			400.7	SURCHARGED	
106.013	BRANCH	0.000	1.56				SURCHARGED*	
106.013	S405	45.101	1.17			439.1	FLOOD	7
119.000	RWP71	0.000	0.50			20.5	FLOOD RISK	1
119.000	S406	3.306	0.50			13.1	FLOOD RISK FLOOD	5
	S406 RWP72	0.000				25.0	FLOOD RISK	5
120.000 119.002		0.000	0.47 0.88				SURCHARGED*	
	BRANCH RWP73	0.000				22.2		
121.000 119.003	S407	0.000	0.45 1.58			37.0	FLOOD RISK	2
							FLOOD PISK	2
106.015 122.000	S408	0.000	0.81 1.04			421.2	FLOOD RISK	1
122.000	RWP74	0.001	1.04			13.6	FLOOD	T

RPS Group Plc		Page 109
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
122.001	S409	3.601	1.69			21.7	FLOOD	5

RPS Group Plc		Page 110
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	5	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)	Flooded Volume (m ³)
123.000	RWP75	30	Winter	100	+45%	100/15 Summer	100/30 Summer			38.700	0.850	0.057
122.002	BRANCH	15	Summer	100	+45%					37.636	0.000	0.000
124.000	RWP76	30	Summer	100	+45%	100/15 Summer				38.694	0.844	0.000
122.003	BRANCH	15	Summer	100	+45%					37.566	0.000	0.000
125.000	SDP7	15	Summer	100	+45%	30/15 Summer	100/15 Summer			39.038	1.088	37.937
126.000	SDP8	30	Winter	100	+45%	100/15 Summer				38.794	0.844	0.000
	S410(V)			100	+45%		100/15 Summer			38.669	1.599	18.998
127.000			Summer	100	+45%		100/15 Summer			39.036	1.086	36.085
	S411(V)			100	+45%		100/15 Summer			38.651	1.630	1.418
128.000	BRANCH		Summer	100 100	+45%	100/15 Summer				38.558 36.887	0.708 0.000	0.000
122.000			Winter	100		100/15 Summer				38.385	0.000	0.000
129.000	BRANCH			100	+45%	100/15 Summer				36.650	0.000	0.000
130.000			Winter	100		100/15 Summer				38.242	0.392	0.000
130.001			Winter	100		100/15 Summer				38.236	0.686	0.000
131.000	RWP80	60	Summer	100	+45%	100/15 Summer	100/15 Summer			38.202	0.802	2.440
130.002	S413	30	Winter	100	+45%	100/15 Summer				38.228	0.897	0.000
132.000	RWP81	30	Winter	100	+45%	100/15 Summer				38.235	0.235	0.000
130.003	BRANCH	15	Summer	100	+45%					37.188	0.000	0.000
133.000			Summer	100		100/15 Summer	100/15 Summer			38.202	0.852	1.630
130.004	BRANCH			100	+45%	/				37.083	0.000	0.000
134.000			Summer	100		100/15 Summer				38.215	0.215	0.000
130.005 135.000	BRANCH		Summer	100 100	+45%	100/15 Summer				36.896 38.211	0.000	0.000
130.006			Summer	100	+45%	30/15 Summer				38.208	0.211	0.000
122.008			Summer	100	+45%	30/15 Summer				38.194	1.739	0.000
106.016			Winter	100	+45%		100/15 Summer			38.002	1.877	2.234
136.000			Summer	100	+45%	100/15 Summer				37.835	0.835	0.000
106.017	S417	60	Summer	100	+45%	30/15 Summer	100/15 Summer			37.826	1.783	82.262
137.000	RWP86	60	Summer	100	+45%	100/15 Summer				37.777	0.777	0.000
106.018			Summer	100	+45%		100/15 Summer			37.755	1.774	13.350
106.019			Summer	100	+45%	30/15 Summer				37.750	1.881	0.000
138.000			Summer	100	+45%					37.906	-0.094	0.000
106.020	BRANCH			100	+45%					35.829	0.000	0.000
139.000 106.021	BRANCH		Summer	100 100	+45% +45%					37.914 35.802	-0.086 0.000	0.000
140.000			Summer	100	+45%					37.906	-0.094	0.000
106.022			Winter	100	+45%	30/15 Summer				37.379	1.619	0.000
141.000			Summer	100	+45%					37.899	-0.101	0.000
106.023	BRANCH	15	Summer	100	+45%					35.728	0.000	0.000
142.000	RWP91	15	Summer	100	+45%					37.897	-0.103	0.000
106.024	BRANCH	15	Summer	100	+45%					35.703	0.000	0.000
143.000			Summer	100	+45%					37.898	-0.102	0.000
106.025	BRANCH			100	+45%					35.675	0.000	0.000
144.000	GULLEY			100	+45%		100/15 Summer			38.850	0.900	0.291
144.001			Summer	100	+45% +45%	30/15 Summer				38.483	0.741	0.000
106.026 145.000			Winter Summer	100 100	+45% +45%	30/15 Summer				37.143 37.850	1.490 -0.150	0.000 0.000
145.000	BRANCH			100	+45%					35.643	0.000	0.000
146.000			Summer	100	+45%					37.850	-0.150	0.000
106.028	BRANCH			100	+45%					35.616	0.000	0.000
147.000			Summer	100	+45%					37.850	-0.150	0.000
106.029	BRANCH	15	Summer	100	+45%					35.578	0.000	0.000
148.000	RWP96	15	Summer	100	+45%					37.850	-0.150	0.000
						©1982-20	20 Innovyze					
L							<u>~</u>					

RPS Group Plc		Page 111
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	

PN	US/MH Name	-	Overflow (1/s)		Flow	Status	Level Exceeded
PN	Name	Cap.	(1/8)	(mins)	(l/s)	Status	Fxceeded
123.000	RWP75	0.30			8.6	FLOOD	3
122.002	BRANCH	1.06			17.6	SURCHARGED*	
124.000	RWP76	0.27			9.0	FLOOD RISK	
122.003	BRANCH	1.77			23.8	SURCHARGED*	
125.000	SDP7	2.70			561.2	FLOOD	5
126.000		0.36			74.5	FLOOD RISK	
122.004	S410(V)	0.85			474.0	FLOOD	5
127.000		2.74			569.1	FLOOD	5
	S411(V)	1.48			899.8	FLOOD	4
128.000	RWP77	0.18			8.8	FLOOD RISK	
122.006		1.44				SURCHARGED*	
129.000		0.20			10.5	SURCHARGED	
122.007		1.60				SURCHARGED*	
130.000		0.07			2.3		
130.001		0.13			2.2		<i>c</i>
131.000		0.87			12.8	FLOOD	6
130.002		1.02			16.6		
132.000		0.06			3.2	SURCHARGED	
130.003		0.72				SURCHARGED*	c
133.000		0.35			10.1	FLOOD	6
130.004		1.25				SURCHARGED*	
134.000		0.05			3.5		
130.005						SURCHARGED*	
135.000		0.03			2.5	SURCHARGED	
130.006		1.76			27.2		
122.008		0.91			821.9		F
106.016		1.77			1279.5	FLOOD	5
136.000		0.16			10.0		C
106.017		1.54			1048.5	FLOOD	6
137.000		0.16			10.3		2
106.018	S418	1.37			1046.8	FLOOD	2
106.019		1.82 0.29			990.4	SURCHARGED OK	
138.000		1.33			25.0	SURCHARGED*	
106.020 139.000		0.37			31.6	OK	
106.021		1.20				SURCHARGED*	
140.000		0.29			25.4	OK	
106.022		2.07			949.7		
141.000	RWP 90	0.23			19.8	OK	
	BRANCH					SURCHARGED*	
142.000		0.21			18.8	OK	
106.024		1.29				SURCHARGED*	
143.000	RWP 92	0.22			19.4	OK	
106.025		1.30				SURCHARGED*	
144.000		1.46			41.8	FLOOD	1
144.001	S421	1.66			38.7		-
106.026	S422	1.86				SURCHARGED	
145.000	RWP93	0.00			0.0	OK	
106.027		1.26				SURCHARGED*	
146.000		0.00			0.0	OK	
106.028		1.19				SURCHARGED*	
147.000	RWP95	0.00			0.0	OK	
106.029		1.24				SURCHARGED*	
			@1982-2	2020 Innov	7V7.0		
					1-0		

RPS Group Plc		Page 112
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	·

PN	US/MH Name	Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
148.000	RWP96	0.00			0.0	OK	

RPS Group Plc		Page 113
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	S	torm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
106.030	S423	60	Summer	100	+45%	30/30 Summer				36.752	1.201
149.000			Summer	100	+45%					37.905	-0.095
106.031	BRANCH			100	+45%					35.517	0.000
150.000	RWP97	15 :	Summer	100	+45%					37.905	-0.095
106.032	BRANCH	15 :	Summer	100	+45%					35.497	0.000
151.000	SDP10	15 :	Summer	100	+45%	1/15 Summer	100/15 Summer	:		39.069	1.194
151.001	S424 (V)	15	Summer	100	+45%	30/15 Summer				38.185	0.835
152.000	RWP98	15 :	Summer	100	+45%	100/15 Summer				38.010	0.010
151.002	S425	15	Summer	100	+45%	30/15 Summer				37.961	0.649
153.000	RWP99	15 :	Summer	100	+45%	100/15 Summer				37.764	0.014
151.003	BRANCH	15	Summer	100	+45%					37.243	0.000
154.000	RWP100	15 :	Summer	100	+45%					37.632	-0.118
151.004	BRANCH	15 :	Summer	100	+45%					37.237	0.000
106.033			Summer	100		100/15 Summer				36.501	1.061
155.000	RWP101			100	+45%					37.908	-0.092
155.001			Summer	100	+45%					37.501	-0.031
156.000	RWP102			100	+45%					37.655	-0.095
155.002	BRANCH			100	+45%					37.185	0.000
157.000	RWP103			100	+45%					37.631	-0.119
155.003	BRANCH			100	+45%	100/15 0				37.154	0.000
106.034			Summer	100		100/15 Summer				36.249	0.998
158.000	RWP106			100	+45%	20/15 0				37.936	-0.014
158.001			Summer	100	+45%	30/15 Summer				37.929	0.120
159.000	RWP107			100 100	+45% +45%	1/15 Cummon	100/15 Cummon			37.914	-0.086
160.000 158.002	S430 (V)		Summer	100	+45%	30/15 Summer	100/15 Summer			39.060 37.910	1.185 0.560
106.035			Summer	100	+45%	30/30 Summer				36.001	0.951
106.035	S432 (SUDS)			100		100/15 Summer				35.588	0.596
	ATT INLET 03			100	+45%	100/15 Summer				34.968	0.000
161.000			Summer	100	+45%	30/15 Summer	100/15 Summer			38.562	0.907
161.001			Summer	100		100/15 Summer	100,10 Duninei			38.517	0.930
162.000			Summer	100		100/15 Summer	100/15 Summer			38.556	0.901
161.002			Summer	100	+45%	30/15 Summer				38.441	1.729
163.000			Summer	100		100/15 Summer				38.163	0.782
161.003	BRANCH			100	+45%					36.306	0.000
161.004			Summer	100	+45%	100/15 Summer				37.895	1.742
164.000	OB34	30	Summer	100	+45%	100/15 Summer	100/15 Summer			37.706	0.841
161.005	BRANCH	15	Summer	100	+45%					35.864	0.000
165.000	OB37	30	Summer	100	+45%	100/15 Summer	100/15 Summer			37.697	0.982
166.000	OB35	30	Summer	100	+45%	100/15 Summer	100/15 Summer			37.614	0.904
166.001	S303	30	Summer	100	+45%	30/15 Summer				37.619	1.909
167.000	OB36	30	Summer	100	+45%	100/15 Summer	100/15 Summer	2		38.076	0.901
161.006	S304	30	Summer	100	+45%	30/15 Summer				37.638	2.337
168.000	OB38	30	Summer	100	+45%	100/15 Summer	100/15 Summer	2		37.693	0.903
161.007			Summer	100	+45%	30/15 Summer				37.495	2.394
169.000	OB39	30	Summer	100	+45%	100/15 Summer				37.547	0.757
161.008	BRANCH			100	+45%					34.930	0.000
170.000			Summer	100		100/30 Summer				37.133	0.100
161.009			Summer	100	+45%	30/15 Summer				37.096	2.213
171.000			Summer	100	+45%	100/15				36.979	-0.054
172.000			Summer	100		100/15 Summer				36.977	0.187
161.010			Summer	100	+45%	30/15 Summer				36.838	2.042
173.000			Summer	100	+45%					36.700	-0.150
161.011	BRANCH	12	summer	100	+45%					34.721	0.000
					©1	982-2020 In	novyze				

RPS Group Plc		Page 114
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitacje
Innovyze	Network 2020.1.3	1

	US/MH	Flooded Volume	Flow /	Half Drain Overflow Time	Pipe Flow		Level
PN	Name	(m ³)	Cap.	(1/s) (mins)	(1/s)	Status	Exceeded
L06.030	S423	0.000	2.03		964.1	SURCHARGED	
L49.000	RWP96	0.000	0.28		25.5	OK	
L06.031	BRANCH	0.000	1.27			SURCHARGED*	
150.000	RWP97	0.000	0.28		25.5	OK	
L06.032	BRANCH	0.000	1.04			SURCHARGED*	
L51.000	SDP10	69.428	2.58		391.0	FLOOD	5
L51.000	S424 (V)	0.000	2.33		372.0	SURCHARGED	5
152.000	RWP98	0.000	0.25		12.8	SURCHARGED	
L51.002	S425	0.000	1.89		377.3	SURCHARGED	
153.000	RWP 99	0.000	0.29		12.8	SURCHARGED	
L51.003	BRANCH	0.000	1.57			SURCHARGED*	
L54.000	RWP100	0.000	0.10		4.2	OK	
L51.004	BRANCH	0.000	1.58			SURCHARGED*	
			1.09		1268.0	SURCHARGED	
L06.033	S426	0.000					
L55.000	RWP101	0.000	0.32		13.5 12.5	OK	
L55.001	S427	0.000	0.56			OK	
L56.000	RWP102		0.29		13.4	OK SURCHARGED*	
L55.002	BRANCH	0.000			24.5 4.3		
L57.000	RWP103	0.000	0.09			OK SURCHARGED*	
L55.003	BRANCH	0.000					
L06.034	S428	0.000	1.10		1306.6	SURCHARGED	
L58.000	RWP106	0.000	0.17		4.0	OK	
L58.001	S429	0.000	0.12		3.8	SURCHARGED	
L59.000	RWP107	0.000	0.08		4.0	OK	-
L60.000	SDP11	59.746	2.77		420.2	FLOOD	5
L58.002	S430(V)	0.000	2.17		425.0	SURCHARGED	
L06.035	S431	0.000	2.55		1688.9	SURCHARGED	
L06.036	S432 (SUDS)	0.000	2.60		1692.7	SURCHARGED	
	ATT INLET 03	0.000	1.25			SURCHARGED*	-
L61.000	OB31	7.290	3.20		52.3	FLOOD	5
L61.001	S300	0.000	0.77		41.5	FLOOD RISK	2
L62.000	OB32	0.689	0.60		36.2	FLOOD	3
L61.002	S301	0.000	1.31		64.8	FLOOD RISK	
L63.000	OB33	0.000	0.28		18.3	FLOOD RISK	
L61.003	BRANCH	0.000	1.48			SURCHARGED*	
L61.004	S302	0.000	0.86		88.2	FLOOD RISK	-
L64.000	OB34	16.272	0.73		102.4	FLOOD	5
L61.005	BRANCH	0.000	1.19			SURCHARGED*	-
165.000	OB37	6.780	0.84		62.3	FLOOD	5
L66.000	OB35	4.507	0.69		29.2	FLOOD	5
L66.001	S303	0.000	1.72		29.7	SURCHARGED	-
L67.000	OB36	1.126	0.67		118.0	FLOOD	2
L61.006	S304	0.000	1.44		247.1	FLOOD RISK	-
.68.000	OB38	3.190	0.69		126.8	FLOOD	2
161.007	S305	0.000	1.43		334.0	FLOOD RISK	
L69.000	OB39	0.000	0.61		117.0	FLOOD RISK	
L61.008	BRANCH	0.000	1.82			SURCHARGED*	
L70.000	OB40	0.000	0.55		20.7	SURCHARGED	
L61.009	S306	0.000	2.02		416.8	SURCHARGED	
L71.000	OB40a	0.000	0.73		27.6	OK	
L72.000	OB41	0.000	1.02		84.0	SURCHARGED	
161.010	S307	0.000	1.71		499.1	SURCHARGED	
L73.000	OB42	0.000	0.00		0.0	OK	

	Page 115
	Micro
Designed by LARS.ARMES	Drainage
Checked by	Diamage
Network 2020.1.3	
	Checked by

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
161.011	BRANCH	0.000	1.46			508.3	SURCHARGED*	

RPS Group Plc		Page 116
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Dialitage
Innovyze	Network 2020.1.3	1

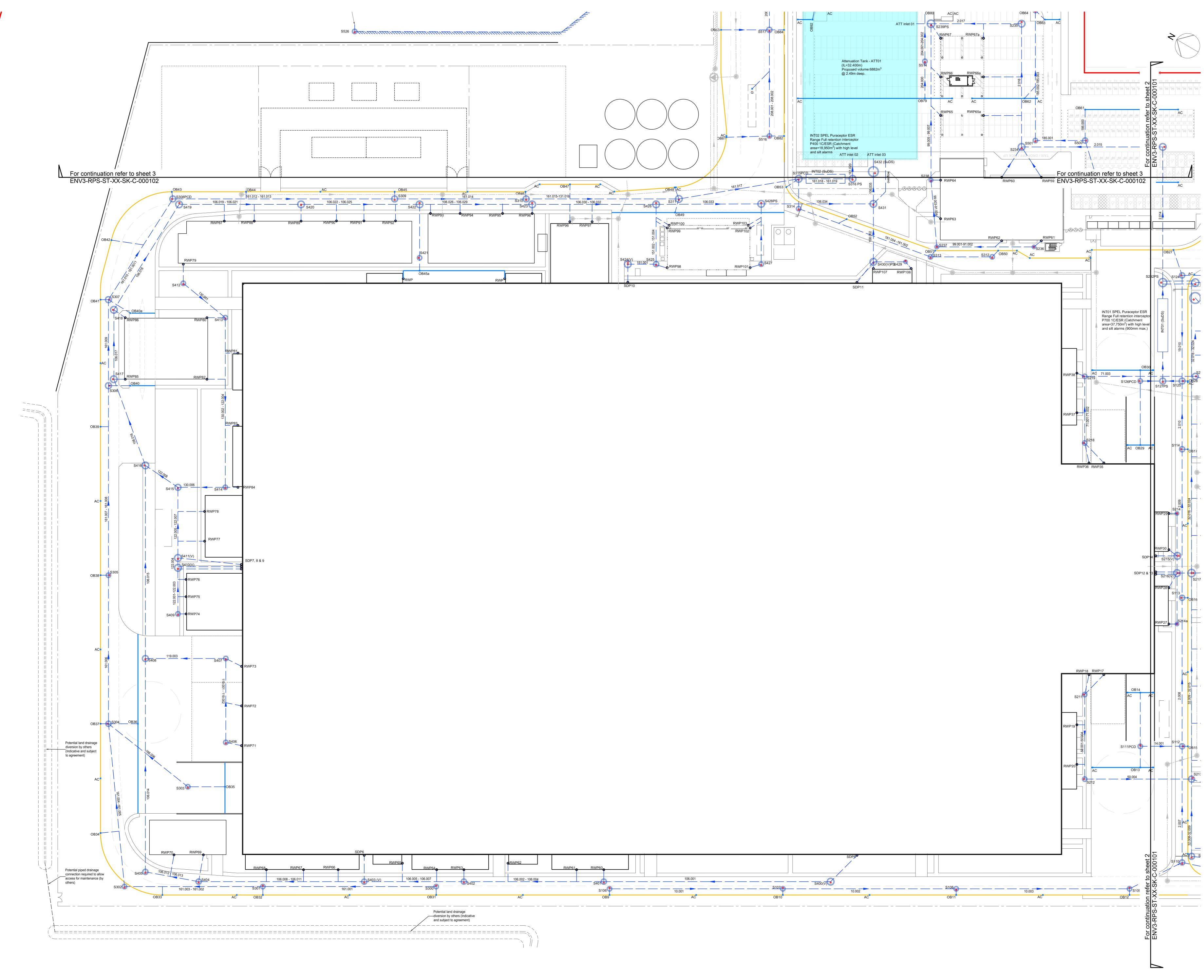
PN	US/MH Name	Stor		Climate Change	First (X) Surcharge	First Flc		First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
174.000	OB43	15 Sum	mer 100	+45%	100/15 Summer					37.868	0.453
161.012	S308	30 Sum			100/15 Summer					36.483	1.824
175.000	OB44	15 Sum		+45%						37.513	-0.052
161.013	BRANCH	15 Sum		+45%						34.574	0.000
176.000	OB45	15 Sum	mer 100	+45%	100/15 Summer					37.724	0.084
161.014	S309	30 Sum	mer 100	+45%	100/15 Summer					35.912	1.509
177.000	OB46	15 Sum	mer 100	+45%						37.470	-0.095
161.015	S310	30 Sum	mer 100	+45%	100/15 Summer					35.584	1.333
178.000	OB47	15 Sum	mer 100	+45%						37.429	-0.086
161.016	BRANCH	15 Sum	mer 100	+45%						34.201	0.000
179.000	OB48	15 Sum	mer 100	+45%						37.455	-0.095
180.000	OB49	15 Sum	mer 100	+45%	100/15 Summer					38.152	0.484
161.017	S311	30 Sum	mer 100	+45%	100/15 Summer					35.028	0.953
181.000	OB50	15 Sum	mer 100	+45%	100/15 Summer					38.458	0.841
181.001	S312	15 Sum	mer 100	+45%	100/15 Summer					38.219	0.776
182.000	OB51	15 Sum	mer 100	+45%						37.608	-0.059
181.002	S313	15 Sum	mer 100	+45%	100/15 Summer					37.442	0.417
183.000	OB52	15 Sum		+45%						37.521	-0.059
181.003	BRANCH	15 Sum		+45%						36.366	0.000
181.004	S314	15 Sum		+45%	30/15 Summer					36.472	0.392
184.000	OB53	15 Sum		+45%						37.441	-0.089
161.018	S315	30 Sum			100/15 Summer					34.638	0.703
	INT02 (SUDS)			+45%	30/15 Summer					34.443	0.639
161.020		360 Win			100/15 Summer					34.442	0.669
	ATT INLET 02	15 Sum		+45%	20/60 0					33.750	0.000
2.020	ATT TANK 01			+45%	30/60 Summer					34.438	0.838
2.021	CONNECTION				100/30 Summer	100/15	0			34.431	0.881
185.000	OB60 OB61	15 Sum 15 Sum		+45%	100/15 Summer 30/15 Summer					38.427 38.275	0.828 0.838
185.000	S500	15 Sum 15 Sum		+45%	30/15 Summer	100/13	Summer			38.268	1.073
185.001	S500	15 Sum 15 Sum		+45%	30/15 Summer					38.164	1.124
187.000	OB62	15 Sum 15 Sum			100/15 Summer	100/15	Summer			38.107	0.829
185.003	BRANCH	15 Sum 15 Sum		+45%	100/10 builder	100/10	Dunner			36.871	0.000
188.000	OB63	30 Sum			100/15 Summer					37.846	0.805
189.000	OB64	15 Sum		+45%	30/15 Summer	100/15	Summer			37.825	0.906
185.004	s502	15 Sum		+45%	30/15 Summer	200720	o ununo 1			37.764	1.128
190.000	OB65	15 Sum		+45%	30/15 Summer	100/15	Summer			37.619	0.900
185.005	BRANCH	15 Sum		+45%	00,20 0411102	200720	0 diluito 1			36.508	0.000
191.000	OB66	15 Sum			100/15 Summer					37.095	0.326
185.006	S503	15 Sum		+45%	30/15 Summer					37.067	0.608
192.000	OB67	15 Sum		+45%	30/15 Summer					37.184	0.845
185.007	BRANCH	15 Sum		+45%						36.295	0.000
193.000	OB68	15 Sum	mer 100	+45%						36.645	-0.071
185.008	BRANCH	15 Sum	mer 100	+45%						36.151	0.000
194.000	OB69	30 Sum	mer 100	+45%	30/15 Summer	100/15	Summer			37.325	0.847
195.000	OB70	30 Sum	mer 100	+45%	30/15 Summer	100/15	Summer			37.273	0.923
194.001	S504	15 Sum	mer 100	+45%	30/15 Summer					37.261	1.081
196.000	OB71	30 Sum	mer 100	+45%	30/15 Summer	100/15	Summer			37.233	0.905
194.002	S505	15 Sum	mer 100	+45%	30/15 Summer					37.217	1.172
197.000	OB72	15 Sum	mer 100	+45%	100/15 Summer					37.171	0.706
198.000	OB73	15 Sum		+45%	30/15 Summer	100/15	Summer			37.236	0.841
194.003	S506	15 Sum		+45%	30/15 Summer					37.140	1.203
199.000	OB75	30 Sum		+45%	30/15 Summer	100/15	Summer			37.353	0.856
200.000	OB74	15 Sum	mer 100	+45%	30/15 Summer					37.501	0.840
				©1	982-2020 In:	novyze					

RPS Group Plc		Page 117
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

	US/MH			Overflow		Flow	.	Level
PN	Name	(m³)	Cap.	(l/s)	(mins)	(1/s)	Status	Exceeded
174.000	OB43	0.000	1.18			76.5	SURCHARGED	
161.012	S308	0.000	1.78			530.7	SURCHARGED	
175.000	OB44	0.000	0.75			81.5	OK	
161.013	BRANCH	0.000	1.59			583.1	SURCHARGED*	
176.000	OB45	0.000	1.03			176.5	SURCHARGED	
161.014	S309	0.000	1.53			664.6	SURCHARGED	
177.000	OB46	0.000	0.29			22.3	OK	
161.015	S310	0.000	1.89			665.7	SURCHARGED	
178.000	OB47	0.000	0.38			42.8	OK	
161.016	BRANCH	0.000	1.38			644.8	SURCHARGED*	
179.000	OB48	0.000	0.29			22.2	OK	
180.000	OB49	0.000	1.13			87.8	SURCHARGED	
161.017	S311	0.000	1.68			720.4	SURCHARGED	
181.000	OB50	0.000	1.31			34.3	FLOOD RISK	
181.001	S312	0.000	1.39			30.5	SURCHARGED	
182.000	OB51	0.000	0.58			29.4	OK	
181.002	S313	0.000	0.84			53.5	SURCHARGED	
183.000	OB52	0.000	0.67			46.6	OK	
181.003	BRANCH	0.000	1.35				SURCHARGED*	
181.004	S314	0.000	1.74			90.8	SURCHARGED	
184.000	OB53	0.000	0.35			29.4	OK	
161.018	S315	0.000	2.25			808.8		
	INT02 (SUDS)	0.000	0.64			230.6	SURCHARGED	
161.020	S316	0.000	0.90			230.3	SURCHARGED	
	ATT INLET 02	0.000	1.24				SURCHARGED*	
2.020	ATT TANK 01	0.000	2.15			1767.3	SURCHARGED	
2.021	CONNECTION	0.000	1.39			1765.2	SURCHARGED	
185.000	OB60	3.141	0.66			95.0	FLOOD	4
186.000	OB61	13.254	0.77			94.3	FLOOD	5
185.001	S500	0.000	1.04			137.4	FLOOD RISK	
185.002	S501	0.000	0.95			128.1	SURCHARGED	_
187.000	OB62	4.320	0.44			70.3	FLOOD	5
185.003	BRANCH	0.000	1.09				SURCHARGED*	
188.000	OB63	0.000	0.42			16.8	FLOOD RISK	-
189.000	OB64	5.539	1.37			45.7	FLOOD	5
185.004	S502	0.000	1.67			231.4	FLOOD RISK	3
190.000	OB65 BRANCH	0.261	0.95			27.3	FLOOD SURCHARGED*	3
185.005 191.000	OB66	0.000	0.23			5.1	SURCHARGED	
185.006	S503	0.000	1.24			250.3	SURCHARGED	
192.000	OB67	0.000	2.73			81.5	FLOOD RISK	
185.007	BRANCH	0.000	1.54				SURCHARGED*	
193.000	OB68	0.000	0.54			25.5	OK	
185.008	BRANCH	0.000	2.08				SURCHARGED*	
194.000	OB69	5.000	1.07			27.3	FLOOD	5
195.000	OB70	22.633	0.84			86.3	FLOOD	5
194.001	S504	0.000	1.15			93.6	FLOOD RISK	-
196.000	OB71	5.386	1.07			32.7	FLOOD	5
194.002	S505	0.000	1.44			111.8	FLOOD RISK	
197.000	OB72	0.000	0.22			10.0	FLOOD RISK	
198.000	OB73	16.041	0.81			137.9	FLOOD	5
194.003	S506	0.000	1.08			238.8	FLOOD RISK	
199.000	OB75	5.902	0.74			31.4	FLOOD	5
			©1982	2-2020 I	Innovyze			

RPS Group Plc		Page 118
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	·

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
200.000	OB74	0.000	0.48			14.5	FLOOD RISK	


RPS Group Plc		Page 119
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	1

PN	US/MH Name	Sto	rm		Climate Change	First Surch		First Flo		First (Z) Overflow	Overflow Act.		Surcharged Depth (m)
200.001	S507	15 Sı	ummer	100	+45%	30/15	Summer					37.482	1.075
199.001	S508	15 Sı	ummer	100	+45%	30/15	Summer					37.334	1.296
201.000	OB76	15 Sı	ummer	100	+45%	100/15	Summer					37.308	0.740
194.004	S509	15 Sı	ummer	100	+45%	30/15	Summer					37.041	1.263
194.005	S510	15 Sı	ummer	100	+45%	30/15	Summer					36.901	1.204
202.000	OB77	15 Sı	ummer	100	+45%	100/15	Summer					36.952	0.203
194.006	S511	15 Sı	ummer	100	+45%	30/15	Summer					36.640	1.085
203.000	OB78	15 Sı	ummer	100	+45%							36.678	-0.071
194.007	S512	15 Sı	ummer	100	+45%	30/15	Summer					36.209	0.861
185.009	S513	15 Sı	ummer	100	+45%	30/15	Summer					35.993	0.779
204.000	OB79	15 Sı	ummer	100	+45%	30/15	Summer	100/15	Summer			38.110	0.792
204.001	S514	15 Wi	inter	100	+45%	30/15	Summer					37.848	0.848
205.000	OB80	15 Sı	ummer	100	+45%	30/15	Summer	100/15	Summer			37.819	0.900
204.002	BRANCH	15 Sı	ummer	100	+45%							36.869	0.000
185.010	S515	15 Sı	ummer	100	+45%	30/15	Summer					35.832	0.670
206.000	OB83	15 Sı	ummer	100	+45%	30/15	Summer	100/15	Summer			37.901	0.901
207.000	OB84		ummer	100		100/15	Summer					37.661	0.551
208.000	OB81			100	+45%			100/15	Summer			38.142	0.845
209.000	OB82			100		100/15						37.961	0.699
208.001	S516		ummer	100	+45%		Summer					37.795	0.785
210.000	GULLY			100		100/15	Summer					37.502	0.017
208.002	BRANCH		ummer	100	+45%							36.836	0.000
206.001	S517		ummer	100	+45%		Summer					37.354	0.630
211.000	OB90A			100		100/15						37.033	0.083
212.000	OB90	15 Sı		100		100/15						37.032	0.082
213.000	OB85	15 Si		100		100/15			~			37.779	0.841
214.000	OB86		ummer	100	+45%			100/15	Summer			37.526	0.848
213.001	S518		ummer	100	+45%		Summer	100/15	~			37.567	1.162
215.000	OB87			100		100/15	Summer	100/15	Summer			37.720	0.850
213.002	BRANCH			100	+45%	100/15	~					36.260	0.000
216.000	OB88	15 Si		100		100/15						37.559	0.562
217.000	OB89	15 Si		100		100/15						37.333	0.297
213.003	S519 S520			100	+45%	30/15	Summer					37.185 37.025	1.093 1.003
206.002 218.000	0B92	15 Si		100 100	+45%	100/15	Summer					36.928	-0.095
218.000	0B92 0B91	15 Si 15 Si		100		100/15	Summor					36.770	0.262
220.000	OB91 OB93			100		100/15						36.878	0.282
206.003	S521	15 St 15 St		100		100/15						36.599	0.488
221.000	0B94		ummer	100		100/15						36.848	0.395
206.004				100	+45%	100/15	Summer					35.264	0.000
222.000		15 St		100	+45%							36.651	-0.099
185.011		15 St 15 St		100	+45%	30/15	Summer					35.638	0.523
	INT03 (SUDS)			100	+45%		Summer					35.318	0.549
185.013		15 St 15 St		100	+45%		Summer					34.997	
	ATT INLET 04			100	+45%	00/10	Sananor					34.425	-0.299
	ATT TANK 02			100	+45%	30/60	Summer					34.425	1.600
2.023		360 Si		100		1/360						34.747	1.959
	S524 (SUDS)			100		1/240						34.901	2.181
2.021				100	+45%		Summer					35.025	2.540
2.026	458			100	+45%	_,						36.300	0.000

©1982-2020 Innovyze

RPS Group Plc		Page 120
Noble House, Capital Drive		
Linford Wood		
Mitlton Keynes, MK14 6QP		Micro
Date 21/09/2023 13:57	Designed by LARS.ARMES	Drainage
File ENV3 DRAIAGE 250823 reduced cat	Checked by	Diamage
Innovyze	Network 2020.1.3	·

		Flooded			Half Drain	Pipe		
	US/MH	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m³)	Cap.	(1/s)	(mins)	(l/s)	Status	Exceeded
200.001	S507	0.000	0.65			12.4	FLOOD RISK	
199.001	S508	0.000	1.74			32.6	FLOOD RISK	
201.000	OB76	0.000	0.54			30.3	FLOOD RISK	
194.004	S509	0.000	1.71			265.0	SURCHARGED	
194.005	S510	0.000	1.69			247.8	SURCHARGED	
202.000	OB77	0.000	0.65			44.6	SURCHARGED	
194.006	S511	0.000	1.52			260.5	SURCHARGED	
203.000	OB78	0.000	0.54			40.2	OK	
194.007	S512	0.000	1.23			281.7	SURCHARGED	
185.009	S513	0.000	1.30			623.3	SURCHARGED	
204.000	OB79	7.466	0.94			128.1	FLOOD	3
204.001	S514	0.000	1.76			130.3	SURCHARGED	
205.000	OB80	0.447	2.62			82.5	FLOOD	1
204.002	BRANCH	0.000	3.29			207.0	SURCHARGED*	
185.010	S515	0.000	1.44			826.2	SURCHARGED	
206.000	OB83	0.693	1.69			33.5	FLOOD	3
207.000	OB84	0.000	1.04			39.6	FLOOD RISK	
208.000	OB81	3.449	1.73			36.9	FLOOD	3
209.000	OB82	0.000	0.94			28.8	FLOOD RISK	
208.001	S516	0.000	1.45			53.9	SURCHARGED	
210.000	GULLY	0.000	0.01			0.3		
208.002	BRANCH	0.000	1.29				SURCHARGED*	
206.001	S517	0.000	2.08			117.4	SURCHARGED	
211.000	OB90A	0.000	0.09			5.5	SURCHARGED	
212.000	OB90	0.000	0.09			5.5		
213.000	OB85	0.000	0.70			29.1	FLOOD RISK	
214.000	OB86	5.981	1.65			37.3	FLOOD	4
213.001	S518	0.000	1.52			49.3	FLOOD RISK	
215.000	OB87	0.006	0.61			27.2	FLOOD	1
213.002	BRANCH	0.000	1.61			59.0	SURCHARGED*	
216.000	OB88	0.000	0.79			29.0	SURCHARGED	
217.000	OB89	0.000	0.51			30.5	SURCHARGED	
213.003	S519	0.000	1.51			97.9	SURCHARGED	
206.002	S520	0.000	1.21			237.4	SURCHARGED	
218.000	OB92	0.000	0.29			13.4	OK	
219.000	OB91	0.000	0.59			33.6		
220.000	OB93	0.000	0.75			90.1	SURCHARGED	
206.003	S521	0.000	0.95			325.2	SURCHARGED	
221.000	OB94	0.000	0.80			120.8	SURCHARGED	
206.004	BRANCH	0.000	2.05				SURCHARGED*	
222.000	OB95	0.000	0.25			19.8	OK	
185.011	S522	0.000	3.62			1269.5		
	INT03 (SUDS)	0.000	3.35			1270.4		
185.013	S523	0.000	3.46			1268.7	SURCHARGED	
	ATT INLET 04	0.000	0.11			306.7	OK*	
2.022		0.000	1.75			207.5		
2.023	s523	0.000	0.97			193.1	SURCHARGED	
2.023		0.000	1.45			168.9		
2.024	SWPS01	0.000	4.56			151.2		
2.025	458	0.000	1.06			144.7	OK	
2.020	-30	0.000	1.00			± 17•/	UK	

- appointment with its client and is subject to the terms and conditions of that appointment. RPS accepts no liability for any use of this document other
- than by its client and only for the purposes for which it was prepared and
- If received electronically it is the recipients responsibility to print to correct scale. Only written dimensions should be used. 3. This drawing should be read in conjunction with all other relevant drawings
- and specifications. 4. The scheme is subject to statutory approvals, surveys and design
- development.
- <u>Drawing to be read in conjunction with:</u> 252 Proposed Surface Water Drainage Layout Sheet 2
- 253 Proposed Surface Water Drainage Layout Sheet 3
- 254 Proposed Foul Water Drainage Layout Sheet 1 255 - Proposed Foul Water Drainage Layout Sheet 2 256 - Proposed Foul Water Drainage Layout Sheet 3
- 257 Surface Water Drainage Exceedance Plan
- Surface Water Drainage Requirements
- 1. Outfall rates limited during all events and surcharged during 1in100+45%cc event as per ENV1 agreed discharge rates.
- 2. Internal manholes to be double sealed with internal plates. 3. Pump Stations:
- 3.1. Duty and standby pump arrangements in pump stations. 3.2. Variable pump rates where required (i.e. duty, standby and
- assist). 3.3. ATEX rated chambers.
- 3.4. Pumps to be linked to BMS/Gatehouse for remote shut down in emergencies. 3.5. Back up power supply to be provided for pumpstations/ provision
- for standby generators to be brought to site in even of power outage.
- 4. Pollution Containment Device locations are subject to detail design / operations review. 5. Fire Fighting Water
- 5.1. The volume of firefighting water required to be attenuated is subject to agree loment withcal fire authority No allowance is made for a dedicated spent fire water tank.
- SuDS features SuDS feature Schedule - Vortex separator (Stormcleanser by
- FPMCCANN) 1. SuDS feature 1 (S221) - 1No. vortex separator 410I/s treatment flow
- 1156 max. flow (4.0m• •chamber or equal approved).
- 2. SuDS feature 2 (S230) 1No. vortex separator 253I/s treatment flow 737I/s max flow (3.0m• •chamber or equal approved).
- 3. SuDS feature 3 (S433) 1No. vortex separators 3011/s treatment flow 1662I/s max flow (3.6m• •chamber (with 525mm• •bypass pipe).
- 4. SuDS feature 4 (S524) 1No. vortex separator 131I/s treatment flow
- 196l/s max. flow (2.1m• •chamber or equal approved). Spel SuDS features are as indicated within the drawing.

🛛 OB

•_{RWP}

⁸ G

PCD

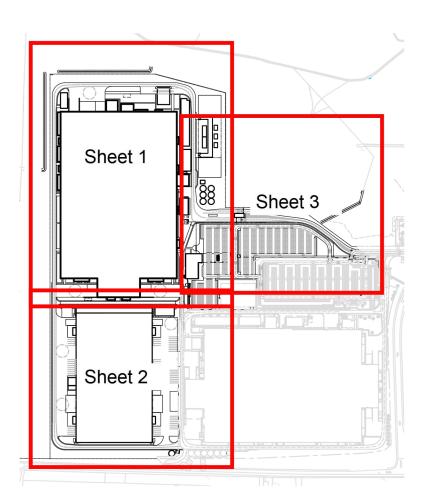
PS

🛛 AC

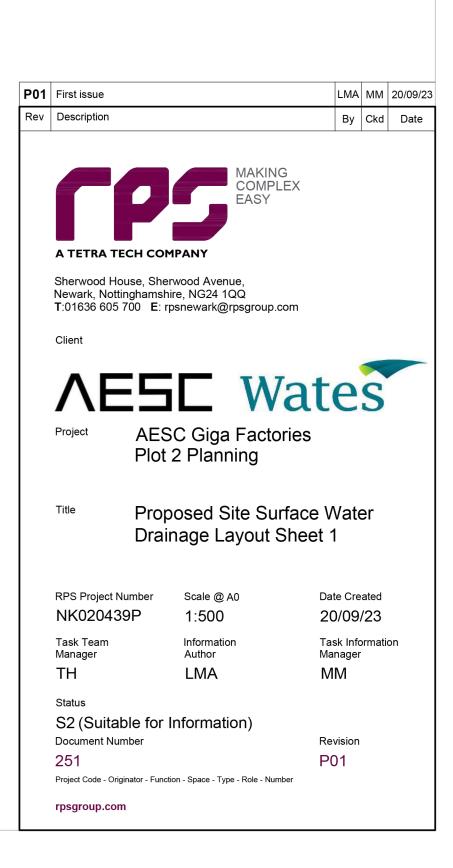
- ____ SW Sewer (I/D & Gradient) S100 SW Manhole ----- Pump station Pressure main
- Existing SW sewer Linear drain

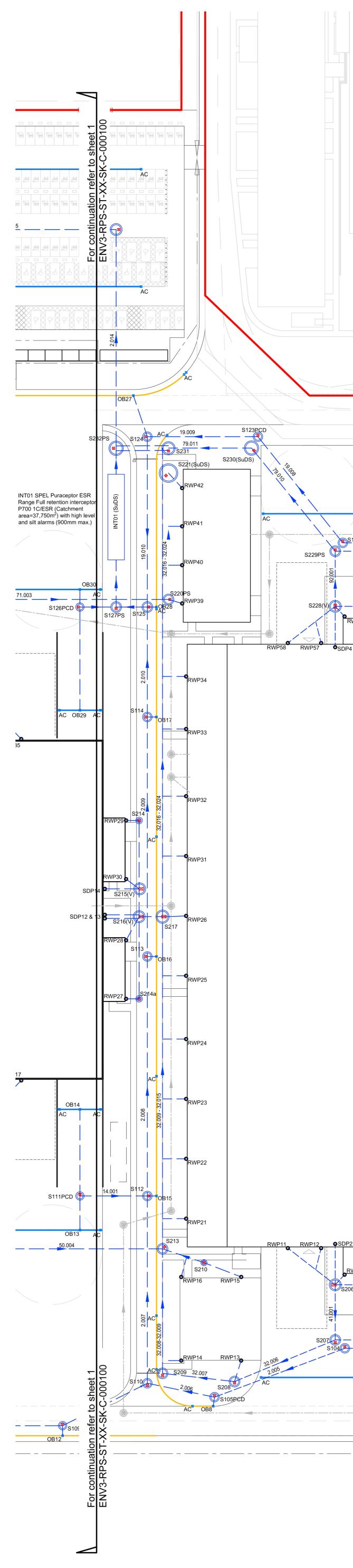
Kerb drain

Class Z surround (& trench fill to underside of foundation where adjacent foundations)

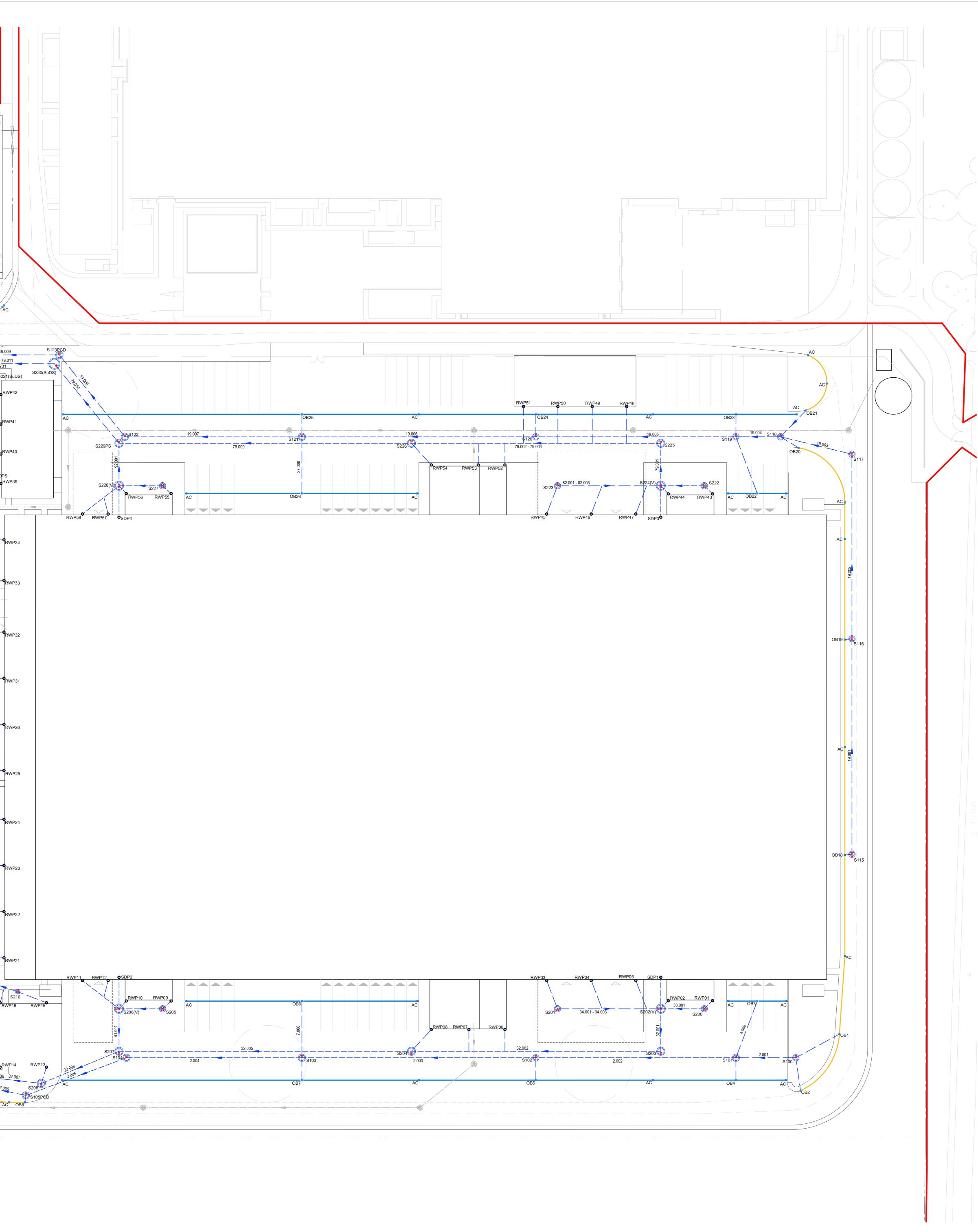

> Outlet Box Access chamber for linear drain

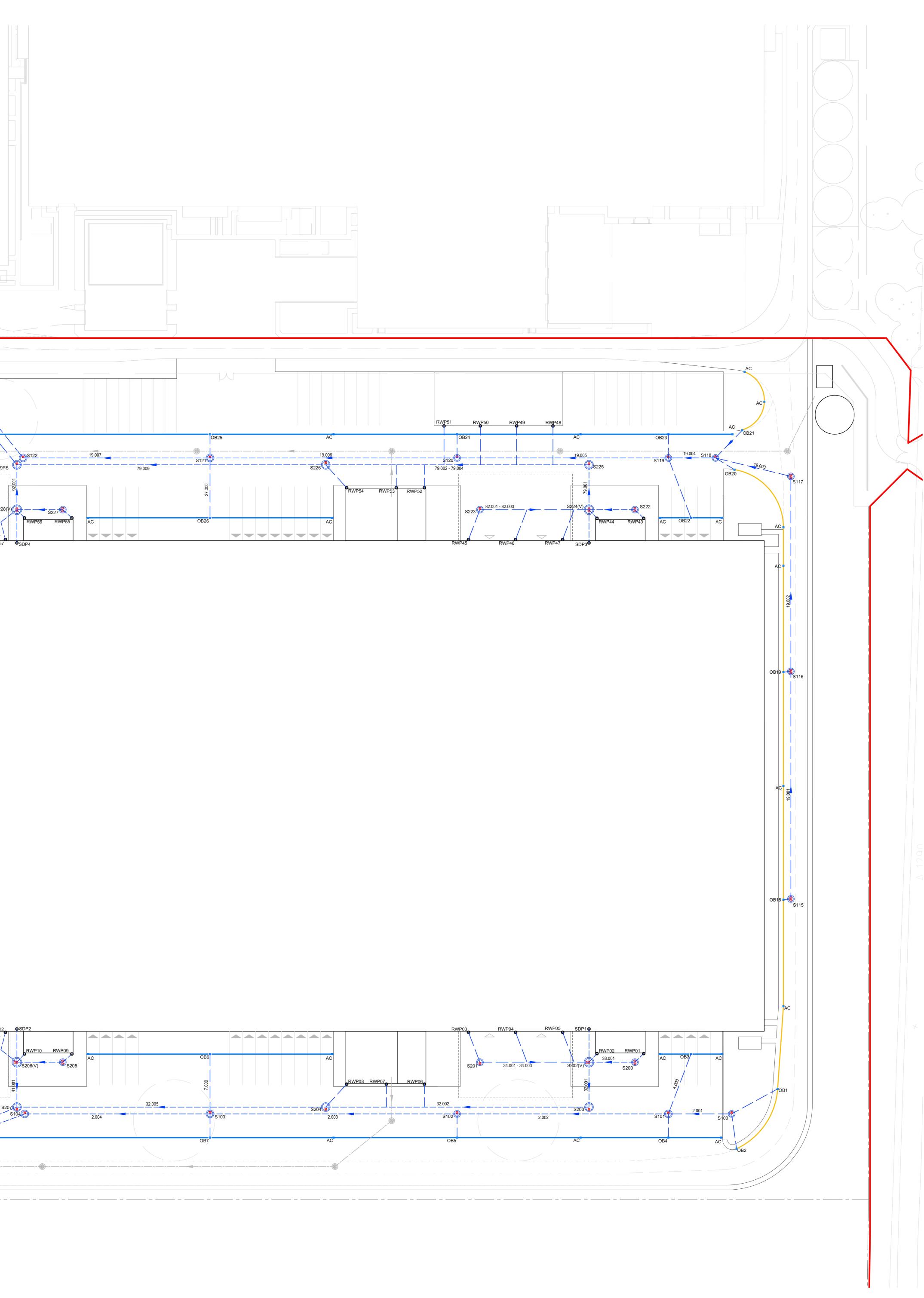
Rainwater Pipe (c/w RE) Gully


Pollution Containment Device with manual / remotely actuatable valve subject to agreement with AESC


Penstock, manual operation to facilitate maintenance operations.

Surface Water Attenuation tank

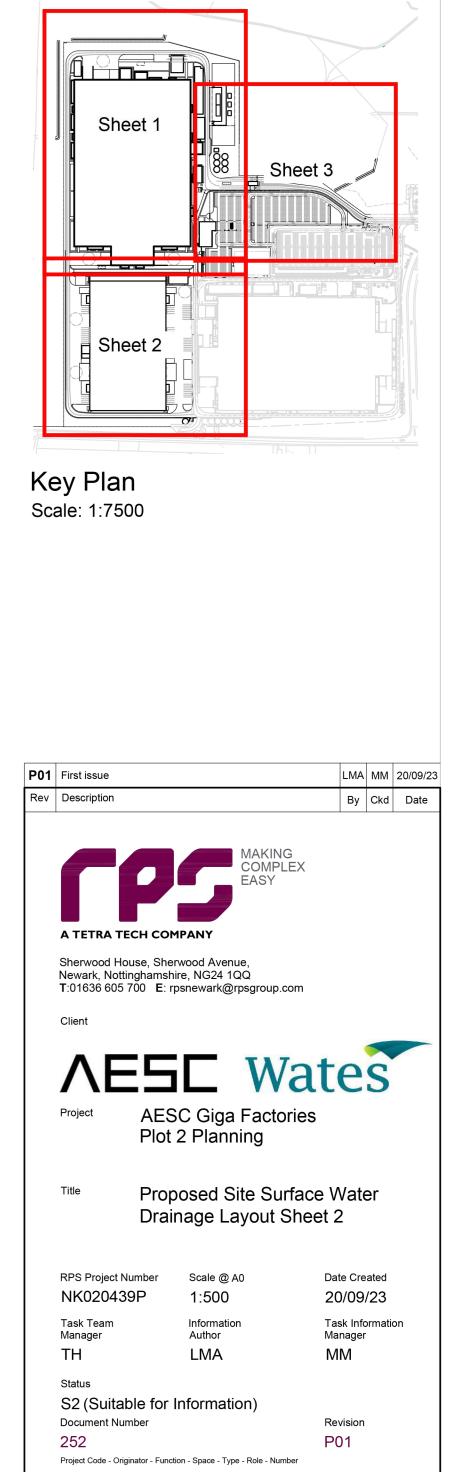



Key Plan Scale: 1:7500

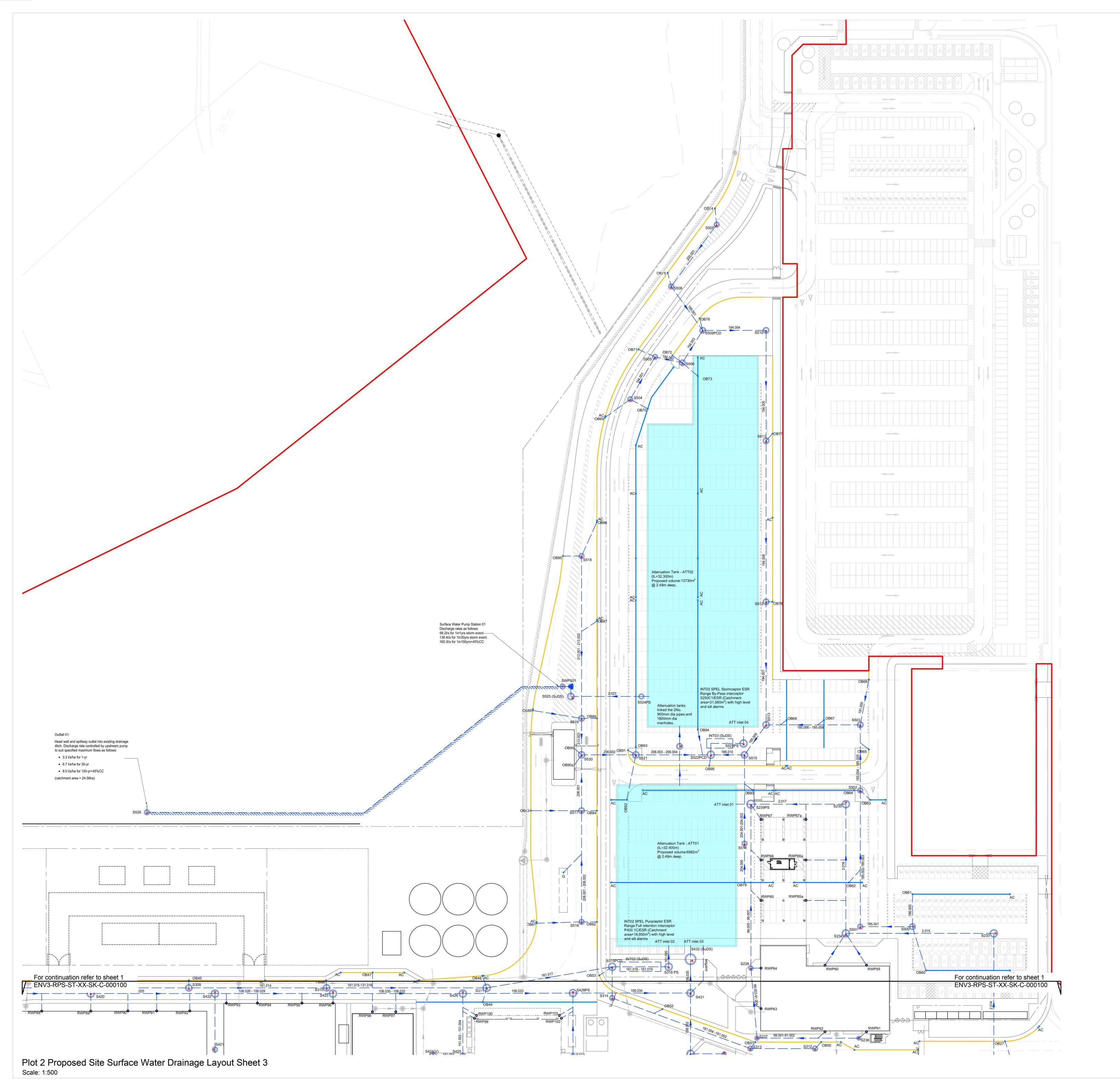
Plot 2 Proposed Site Surface Water Drainage Layout Sheet 2 Scale: 1:500

Notes

- appointment with its client and is subject to the terms and conditions of that appointment. RPS accepts no liability for any use of this document other than by its client and only for the purposes for which it was prepared and
- provided. If received electronically it is the recipients responsibility to print to correct scale. Only written dimensions should be used.
- 3. This drawing should be read in conjunction with all other relevant drawings and specifications.
- 4. The scheme is subject to statutory approvals, surveys and design development.


Drawing to be read in conjunction with: 251 - Proposed Surface Water Drainage Layout Sheet 1

253 - Proposed Surface Water Drainage Layout Sheet 3 254 - Proposed Foul Water Drainage Layout Sheet 1


255 - Proposed Foul Water Drainage Layout Sheet 2 256 - Proposed Foul Water Drainage Layout Sheet 3 257 - Surface Water Drainage Exceedance Plan

Key: _____ SW Sewer (I/D & Gradient) S100 SW Manhole ----- Pump station Pressure main ---- Existing SW sewer Linear drain Kerb drain Class Z surround (& trench fill to underside of foundation where adjacent foundations) OB Outlet Box 🛛 AC Access chamber for linear drain • RWP Rainwater Pipe (c/w RE) [⊠]G Gully Pollution Containment Device with manual / PCD remotely actuatable valve subject to agreement with AESC . Penstock, manual operation to facilitate PS maintenance operations.

Surface Water Attenuation tank

rpsgroup.com

*

Notes

 environment with its client and is subject to the terms and conditions of that appointment. RPS accepts no liability for any use of this document other than by its client and only for the purposes for which it was prepared and

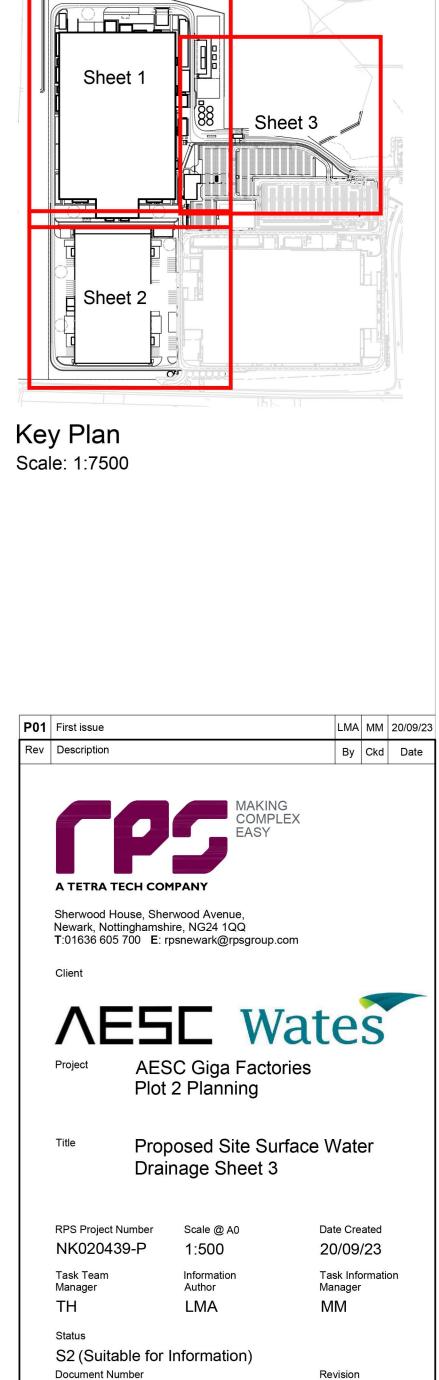
provided.2. If received electronically it is the recipients responsibility to print to correct scale. Only written dimensions should be used.

 This drawing should be read in conjunction with all other relevant drawings and specifications.

 The scheme is subject to statutory approvals, surveys and design development.

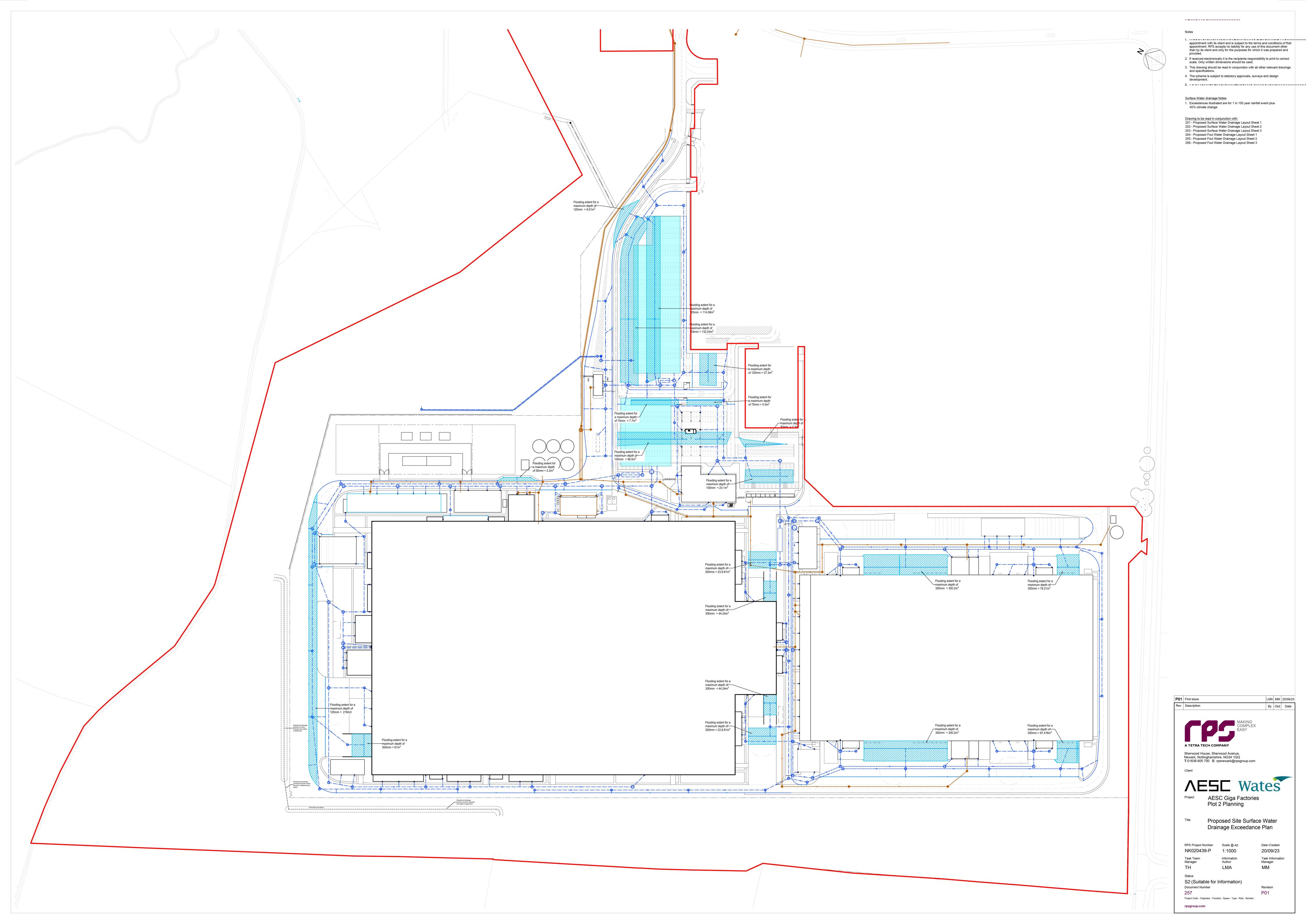
 Drawing to be read in conjunction with:

 251 - Proposed Surface Water Drainage Layout Sheet 1


 252 - Proposed Surface Water Drainage Layout Sheet 2

 254 - Proposed Foul Water Drainage Layout Sheet 1

 255 - Proposed Foul Water Drainage Layout Sheet 1


255 - Proposed Foul Water Drainage Layout Sheet 2 256 - Proposed Foul Water Drainage Layout Sheet 3 257 - Surface Water Drainage Exceedance Plan

Key:	
	SW Sewer (I/D & Gradient)
	SW Manhole
— —	Pump station
	Pressure main
	Existing SW sewer
	Linear drain
	Kerb drain
	Class Z surround (& trench fill to underside of foundation where adjacent foundations)
[⊠] OB	Outlet Box
[⊠] AC	Access chamber for linear drain
• _{RWP}	Rainwater Pipe (c/w RE)
S G	Gully
PCD	Pollution Containment Device with manual remotely actuatable valve subject to agreement with AESC.
PS	Penstock, manual operation to facilitate maintenance operations.
	Surface Water Attenuation tank

rpsgroup.com

P01

SYSTRA provides advice on transport, to central, regional and local government, agencies, developers, operators and financiers.

A diverse group of results-oriented people, we are part of a strong team of professionals worldwide. Through client business planning, customer research and strategy development we create solutions that work for real people in the real world.

For more information visit www.systra.co.uk

Birmingham – 5th floor Alpha Tower Crowne Plaza, Suffolk Street, Birmingham B1 1TT T: +44 (0)121 393 4841

Dublin 2nd Floor, Riverview House, 21-23 City Quay Dublin 2,Ireland T: +353 (0) 1 566 2028

Edinburgh Prospect House, 5 Thistle Street, Edinburgh EH2 1DF United Kingdom T: +44 (0)131 460 1847

Glasgow Seventh Floor, 124 St Vincent Street Glasgow G2 5HF United Kingdom T: +44 (0)141 468 4205

Leeds 100 Wellington Street, Leeds, LS1 1BA T: +44 (0)113 360 4842

London 3rd Floor, One Carey Lane, London EC2V 8AE, United Kingdom T: +44 (0)20 3855 0079

Manchester 4 Hardman Street, Manchester M3 3HF, United Kingdom T: +44 (0)161 504 5026

Newcastle Floor B, South Corridor, Milburn House, Dean Street, Newcastle, NE1 1LE United Kingdom T: +44 (0)191 249 3816 **Perth** 13 Rose Terrace, Perth PH1 5HA T: +44 (0)131 460 1847

Woking Dukes Court, Duke Street Woking, Surrey GU21 5BH United Kingdom T: +44 (0)1483 357705

Other locations:

France: Bordeaux, Lille, Lyon, Marseille, Paris

Northern Europe: Astana, Copenhagen, Kiev, London, Moscow, Riga, Wroclaw

Southern Europe & Mediterranean: Algiers, Baku, Bucharest, Madrid, Rabat, Rome, Sofia, Tunis

Middle East: Cairo, Dubai, Riyadh

Asia Pacific: Bangkok, Beijing, Brisbane, Delhi, Hanoi, Hong Kong, Manila, Seoul, Shanghai, Singapore, Shenzhen, Taipei

Africa: Abidjan, Douala, Johannesburg, Kinshasa, Libreville, Nairobi

Latin America: Lima, Mexico, Rio de Janeiro, Santiago, São Paulo

North America: Little Falls, Los Angeles, Montreal, New-York, Philadelphia, Washington

