

BUILDING REGULATIONS Part L1 SAP ASSESSMENT

DEVELOPMENT

COMMISSIONED BY

New Dwelling Rear of 189 Newark Road North Hykeham Lincoln Adam Wilson Wilson Architects Think Tank Ruston Way Lincoln

Our Ref: 23-262

Barlings kwa have been appointed by Adam Wilson to carry out a Standard Assessment Procedure (SAP) and Energy Performance Certificate (EPC) for the proposed New Dwelling to the rear of 189 Newark Road, North Hykeham, Lincoln.

The report demonstrates compliance within the regulations. Therefore, it is important that you read through all the information supplied and contact us to amend any information that is incorrect. If you do you decide to make changes to the details included in this assessment, then please let us know so we can check your dwelling is still compliant.

24 Fiskerton Road, Reepham, Lincoln, LN3 4EB 01522 797344

Summary of Design SAP

Element	Target	DESCRIPTION
External Wall	0.18 U-VALUE W/M ² K	100mm Brick, 5mm Cavity, 100mm Unilin Cavity Therm CT/PIR, 100mm Blockwork (conductivity 0.18) Dot & Dab, Plasterboard, Skim
Plane Roof	0.10 U-Value W/m²K	450mm Mineral Wool between and over joists, 12.5mm Plasterboard, 3mm Skim
Slope Floor	0.14 U-Value W/m ² K	125mm Unilin ECO MA between Rafters, 50mm ECO MA under Rafters 12.5mm Plasterboard, 3mm Skim
Ground Floor	0.11 U-Value W/m²K	75mm Screed, Unilin Thin-R Plus XT/HYF, 150mm Concrete
Wall to Loft Space	0.14 U-VALUE W/M ² K	
Windows & Roof Lights	1.0 U-VALUE W/M ² K	
Doors	1.0 U-VALUE W/M ² K	
Design Air Permeability Rate	1.0 m³/(h.m²)	Due to the very low design rate, we would recommend more than one air test, with the first one to be carried out as soon as the dwelling air barrier is complete.

The SAP assessment has been completed using the following elements within the dwelling.

Heating, L	Heating, Lighting, Ventilation & Hot Water				
		A Mitsubishi Electric Ecodan 6KW PUZ-WM60VAA has been include in this assessment.			
Main Heating	Air Source Heat Pump with Radiators & Underfloor	<u>NOTE</u> if this unit is not suitable and an alternative is specified, please let us know so we can check if compliance is still achieved.			
		The controls for the heating system should include Time and temperature zone control with Radiators and Underfloor			
Hot Water	150 Ltr Cylinder	Heat loss per day of 1.86Kw/day with fully insulated primary pipework.			
Baths	1 No Baths				
Showers	1 No Showers	Mixer showers with 10 litres per minute flow rate			
Lighting		Lighting within the dwelling should have an efficiency not below 95 Lumens per Circuit Watt			
		A Vent Axia Sentinel Kinetic FH 408167A system has been included in the assessment.			
Ventilation System	Mechanical ventilation with heat recovery	NOTE if this unit is not suitable and an alternative is specified, please let us know so we can check if compliance is still achieved. This system has been located within the insulated envelope.			
Renewable Technologies	Photo-Voltaic Array	A 5.4Kwp PV Array has been included on the Southwest Roof Elevation.			

Assumptions Made

The following assumptions have been made within the SAP assessment:

- Main Heating/Domestic Hot Water.
- Heating Controls.
- Ventilation System.
- Number and type of Baths, Showers and flow rate.
- Lighting minimum efficacy at 95 l/w.
- Insulation to primary pipe work.
- Thermal bridging details.

Planning Conditions

This dwelling is subject to the Central Lincolnshire Local Plan.

The separately attached Full SAP Calculations confirm that both the Space Heating Demand and total Energy Demands are below the requirements and that the inclusion of the 5.4Kwp PV array compensates for both the unregulated and regulated loads. See below table for details.

Space Heating Demand		19.70Kwh/m²/yr	
Energy Demand Loads		5.4Kwp Photo-Vo	ltaic Array
Regulated 27.12Kwh/m²/yr			
Unregulated	16.30Kwh/m²/yr		
Total Deman	d 43.42Kwh/m²/yr	Generates 44.50k	(wh/m²/yr

As-Built Stage

It is important that you agree with the design parameters and assumptions made, as changes to the design parameters during the construction of the dwelling may affect the overall As-Built SAP Assessment.

Any proposed changes could result in enhancements having to be made to bring the As-Built SAP back into compliance and may delay the issuing of a completion certificate from the building control body. Therefore, it is important that any changes are reported to us so we can model the overall effect on the assessment and relay any changes that may be required.

Upon completion of the works an As-Built SAP will be required, taking into account the As-Built construction and any changes or modifications on site. We will ask you to confirm in writing that the As-Built dwelling has been constructed as detailed.

We will require the following documentary evidence before we can formally issue the final Energy Performance Certificate.

- Photographic Evidence of thermal bridging details required throughout the whole project.
- Completed air pressure test certificate.
- Thermal Bridging Construction Details.
- The full postal address of the dwelling.
- A declaration that the construction conforms to the design stage SAP Assessment.

Without the above information we will not be able to issue the As-Built SAP Assessment and Energy Performance Certificate.

Conclusion

We have been able to demonstrate that the proposed dwelling complies with the requirements of Approved Document L1 of the 2021 Building Regulations, based on the information supplied and the assumptions detailed in this report.

On-Site Construction Details

Default Construction, Hi-Therm and Unilin Details have been included within this assessment, it is very important that these details are followed.

<u>Please Note</u>: Evidence will be required at completion of the development, therefore it is very important that these details are followed and any changes to our assumed details are noted in the process of the development on site to prevent problems at completion.

Photographs should be taken of the Heating/Lighting/Hot Water System/Ventilation System as well as the fabric construction. Using the thermal bridging sheet within this report will help highlight which areas require photographic evidence. All photographs are to be geotagged showing location, date and time for each image, plot number and detail reference to show which thermal bridge detail is being captured. All images are to be issued to Barlings kwa as soon as possible at each stage of the build, so we can update the assessment if they don't match the design specifications listed in this report – any changes to specification could cause issues with compliance.

Thermal Bridging Details

Thermal Bridging

Property Re	ference	23-262				Issued on Date	9 10/0	1/2024
Assessment Reference 23-262		Prop Ty	pe Ref	Detached Bunga	low			
Property	Property rear of 189, Newark Road, North Hykeham, Lincoln, Lincs, LN6 8							
SAP Rating			99 A	DER -	1.79	TER	1	0.54
Environmer	ıtal		102 A	% DER < TER			1	16.98
CO ₂ Emissio	ons (t/year)		-0.22	DFEE 4	3.76	TFEE	5	2.77
Compliance	Check		See BREL	% DFEE < TFEE			1	7.06
% DPER < T	PER		91.88	DPER 4	.62	TPER	5	6.92
Assessor D	etails	Mrs. Kerry Simpson				Assesso	r ID Y	750-0001
Client		23-262, Adam Wilson	n					
	Junction	details		Source Type	Psi (W/mł	Length (m)	Result	Reference
External wall	E2 Other	lintels (including of	ther steel lintels)	Independently assessed	0.060) 13.88	0.83	hi therm
External wall	E3 Sill			Independently assessed	0.016	6.80	0.11	Unilin CTPIR
External wall	E4 Jamb			Independently assessed	0.018	3 26.81	0.48	Unilin CTPIR
External wall	E5 Ground floor (normal)		Independently assessed	0.058	3 44.38	2.57	Unilin CTPIR	
External wall	E16 Corn	er (normal)		Independently assessed	0.042	2 14.40	0.60	Unilin CTPIR
External roof	R1 Head	of roof window		Independently assessed	0.06	1 3.60	0.22	Unilin GEN R1
External roof	R2 Sill of	roof window		Independently assessed	0.060	3.60	0.22	Unilin Gen R2
External roof	R3 Jamb	of roof window		Independently assessed	0.056	9.60	0.54	Unilin Gen R3
External wall	E17 Corn external a		nal area greater than	Independently assessed	-0.07	0 4.80	-0.34	Unilin CTPIR
External wall	E10 Eave	E10 Eaves (insulation at ceiling level)		Independently assessed	0.055	5 15.66	0.86	Unilin CTPIR
External wall	E12 Gable (insulation at ceiling level)		Independently assessed	0.057	7 8.30	0.47	Unilin CTPIR	
External wall	E11 Eave	Eaves (insulation at rafter level)		Independently assessed	0.052	2 12.12	0.63	Unilin CTPIR
External wall	E13 Gable	e (insulation at raft	er level)	Independently assessed	0.063	3 11.97	0.75	Unilin CTPIR
External roof	R4 Ridge	(vaulted ceiling)		Table K1 - Defaul	t 0.120	6.06	0.73	
External roof	R10 All ot	her roof or room-ir	n-roof junctions	Table K1 - Defaul	t 0.320) 2.33	0.75	

Total:	184.31	W/mK:
Y-Value:	0.03	W/m²K:

BREL Compliance & Summary Report

Building Regulations England Part L (BREL) Compliance Report

Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array

Date: Wed 10 Jan 2024 15:09:12

Project Information			
Assessed By	William Simpson	Building Type	Bungalow, Detached
OCDEA Registration	EES/014130	Assessment Date	2024-01-10

Dwelling Details				
Assessment Type	As designed	Total Floor Area	100 m ²	
Site Reference	23-262	Plot Reference	23-262	
Address	rear of 189 Newark Road, North Hykeham, Lincoln, LN6 8			

Client Details	
Name	Adam Wilson
Company	Wilson Architects
Address	Think Tank, Ruston Way, Lincoln, LN6 7FL

This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.

1a Target emission rate and dwelling emission rate				
Fuel for main heating system	Electricity			
Target carbon dioxide emission rate	Target carbon dioxide emission rate 10.54 kgCO ₂ /m ²			
Dwelling carbon dioxide emission rate	-1.79 kgCO ₂ /m ²	OK		
1b Target primary energy rate and dwelling primary energy				
Target primary energy	56.92 kWh _{PE} /m ²			
Dwelling primary energy	4.62 kWh _{PE} /m ²	OK		
1c Target fabric energy efficiency and dwelling fabric energy efficiency				
Target fabric energy efficiency 52.8 kWh/m²				
Dwelling fabric energy efficiency	43.8 kWh/m ²	OK		

2a Fabric U-values				
Element	Maximum permitted average U-Value [W/m ² K]	Dwelling average U-Value [W/m ² K]	Element with highest individual U-Value	
External walls	0.26	0.17	Walls (1) (0.18)	OK
Party walls	0.2	N/A	N/A	N/A
Curtain walls	1.6	N/A	N/A	N/A
Floors	0.18	0.11	Ground Floor (0.11)	OK
Roofs	0.16	0.12	Roof (2) (0.14)	OK
Windows, doors,	1.6	1	S/E (1)	OK
and roof windows				
Rooflights	2.2	N/A	N/A	N/A

2b Envelope elements (better than typically expected values are flagged with a subsequent (!))				
Name	Net area [m ²]	U-Value [W/m ² K]		
Exposed wall: Walls (1)	91.512	0.18		
Sheltered wall: Walls (2)	10.17	0.13 (!)		
Ground floor: Ground Floor, Ground Floor	99.9	0.11		
Exposed roof: Roof (1)	56.28	0.1 (!)		
Exposed roof: Roof (2)	42.7	0.14		

2c Openings (better than typically expected values are flagged with a subsequent (!))				
Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]
S/E, Door	2.1	South East	N/A	1 (!)
S/E, Glazing	1.62	South East	0.7	1 (!)
S/E, Glazing	1.62	South East	0.7	1 (!)
S/E, Glazing	1.62	South East	0.7	1 (!)
N/E, Glazing	0.735	North East	0.7	1 (!)
N/E, Glazing	0.735	North East	0.7	1 (!)
S/E, Roof Windows	1.08	South East	0.7	1 (!)
S/E, Roof Windows	1.08	South East	0.7	1 (!)
S/W, Glazing	1.62	South West	0.7	1 (!)
S/W, Roof Windows	1.08	South West	0.7	1 (!)
S/W, Roof Windows	1.08	South West	0.7	1 (!)
N/W above patio door, Glazing	2.35	North West	0.7	1 (!)

Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]
N/W, Glazing	7.098	North West	0.7	1 (!)
N/W, Glazing	5.67	North West	0.7	1 (!)

N/W, Glazing	5.6	/	North West	0.7		1 (!)
2d Thermal brid	dging (better than typically	expected	I values are flagged with	a subse	equent (!))	
	Main Dwelling: Thermal brid					ch junction
Main element	Junction detail	~ ~ ~	Source		Psi value	Drawing /
					[W/mK]	reference
External wall	E2: Other lintels (including	other C	Calculated by person with	suitable		hi therm
	steel lintels)		expertise			
External wall	E3: Sill	0	Calculated by person with	suitable	0.016 (!)	Unilin CTPIR
			expertise			
External wall	E4: Jamb		Calculated by person with	suitable	0.018 (!)	Unilin CTPIR
			expertise			
External wall	E5: Ground floor (normal)	0	Calculated by person with	suitable	0.058	Unilin CTPIR
			expertise			
External wall	E16: Corner (normal)	0	Calculated by person with	suitable	0.042	Unilin CTPIR
			expertise			
Roof	R1: Head of roof window		Calculated by person with	suitable	0.061	Unilin GEN R
			expertise			
Roof	R2: Sill of roof window	C	Calculated by person with	suitable	0.06	Unilin Gen R2
			expertise			
Roof	R3: Jamb of roof window		Calculated by person with	suitable	0.056	Unilin Gen R3
			expertise			
External wall	E17: Corner (inverted - inte	rnal (Calculated by person with	suitable	-0.07	Unilin CTPIR
	area greater than external a		expertise			
External wall	E10: Eaves (insulation at ce		Calculated by person with	suitable	0.055	Unilin CTPIR
	level)		expertise			
External wall	E12: Gable (insulation at ce		Calculated by person with	suitable	0.057	Unilin CTPIR
	level)		expertise			
External wall	E11: Eaves (insulation at ra		Calculated by person with	suitable	0.052	Unilin CTPIR
	level)		expertise			
External wall	E13: Gable (insulation at ra		Calculated by person with	suitable	0.063	Unilin CTPIR
	level)		expertise			
Roof	R4: Ridge (vaulted ceiling)		SAP table default		0.12	
Roof	R10: All other roof or room-		SAP table default		0.32	
	iunctions					
				ī .		
	lity (better than typically ex			subséqu	uent (!))	
	itted air permeability at 50Pa		$3 m^3 / hm^2$.		01/
	meability at 50Pa	1	m³/hm², Design value (!)		OK
Air permeability	test certificate reference					
4 Space heating						
	ystem 1: Heat pump with radi	iators or u	underfloor heating - Electri	icity		
Efficiency		3.8%	<u> </u>	-		
Emitter type	Bot	h radiator	s and underfloor			
Flow temperatur						
System type		at Pump				
Manufacturer			ectric Europe B.V.			

System type	Heat Pump
Manufacturer	Mitsubishi Electric Europe B.V.
Model	Ecodan 6.0 kW
Commissioning	
Secondary heating system:	N/A
Fuel	N/A
Efficiency	N/A
Commissioning	

5 Hot water	
Cylinder/store - type: Cylinder	
Capacity	150 litres
Declared heat loss	1.86 kWh/day
Primary pipework insulated	Yes
Manufacturer	
Model	
Commissioning	

Waste water heat recovery system 1 -	type: N/A		
Efficiency			
Manufacturer			
Model			
6 Controls			
	ature zone control by	arrangement of plumbing and electrical se	Prvices
Function			
Ecodesign class			
Manufacturer			
Model			
Water heating - type: Cylinder thermosta	at and HW separately	r timed	
Manufacturer			
Model			
7 Linhting			
7 Lighting	75 lm/W		
Minimum permitted light source efficacy			01/
Lowest light source efficacy	95 lm/W		OK
External lights control	N/A		
8 Mechanical ventilation			
System type: Balanced whole-house me	echanical ventilation	with heat recoverv	
Maximum permitted specific fan power	1.5 W/(I/s)	,	
Specific fan power	0.54 W/(l/s)		OK
Minimum permitted heat recovery	73%		•
efficiency	10,0		
Heat recovery efficiency	88%		ОК
Manufacturer/Model	Sentinel Kinetic FH,	408167A	U.V.
Commissioning		40010///	
Commissioning			
9 Local generation			
Technology type: Photovoltaic system			
Peak power	5.4 kWp		
Orientation	South West		
Pitch	30°		
Overshading	None or very little		
Manufacturer			
MCS certificate			
10 Heat networks			
N/A			
11 Supporting documentary evidence			
N/A			
12 Declarations			
a. Assessor Declaration			
	infirmation that the co	ontents of this BREL Compliance Report	
-			
		nformation submitted for this dwelling for	
		and that the supporting documentary	
evidence (SAP Conventions, Append			
documentary evidence required) has	been reviewed in the	course of preparing this BREL	
Compliance Report.			
Signed:		Assessor ID:	
Name:		Date:	
b. Client Declaration			
N/A			

Property Reference	23-2	262							lssu	ied on Da	ite	10/01/	2024	
Assessment Reference	23-2	23-262 Prop Type Ref Bun					Bunga	alow						
Property	rear	r of 189	9, Newark Roa	ad, North Hykeham, Lin	coln, Lir	ics, LN6	8							
SAP Rating				99 A	DER		-1.7	70		TER		10.	E 4	
Environmental						R < TER		9		IER				
				102 A	DFEE			70		TFEE			5.98	
CO ₂ Emissions (t/year)				-0.22			43.	/6		IFEE		52.		
Compliance Check				See BREL		EE < TFI				TDED		17.		
% DPER < TPER				91.88	DPER		4.6	2		TPER		56.	.92	
Assessor Details	Mrs. Ker	rry Sim	ipson							Assess	sor ID	Y7	50-000	1
Client	23-262,	Adam	Wilson											
SUMMARY FOR INPL	JT DATA F	OR: N	New Build (As Designed)										
Orientation				Southeast										
Property Tenture				ND										
Transaction Type				6										
Terrain Type				Urban										
1.0 Property Type				Bungalow, Detached										
2.0 Number of Storeys				1										
3.0 Date Built				2024										
4.0 Sheltered Sides				2										
5.0 Sunlight/Shade				Average or unknown										
6.0 Thermal Mass Parame	otor			Precise calculation										
	eter													
7.0 Electricity Tariff				Standard										
Smart electricity meter	fitted			No										
Smart gas meter fitted				No										
7.0 Measurements														
					llar	41				-			C4	و الما ما ا
				Ground floo		it Loss 44.38	Perimete 3 m	er In		Floor Are 00 m²	a A		Store 2.89 m	
8.0 Living Area				Ground floo				er In			a A			
								er In		90 m²	a A			
	Туре	Co	onstruction		U-Valu	44.38	3 m Gross	Nett Area	99.9	90 m²			2.89 m	alculation
9.0 External Walls	Type Cavity Wall	Ca	avity wall : plaster	43.63	r:	44.38	3 m Gross	Nett Area	99.9	00 m ²	ter (2.89 m	alculation Type
9.0 External Walls Description		Ca fille	avity wall : plaster ed cavity, any out	43.63	U-Valu (W/m²H	44.38	3 m Gross () Area(m²	Nett Area) (m²)	99.9 Shelter Res	90 m² m² Shelt	ter (Openings	2.89 m	alculation Type Gross Area
Description External Wall wall to loft space 9.2 Internal Walls	Cavity Wall	Ca fille	wity wall : plasteri ed cavity, any outs nber framed wall	43.63 board on dabs, AAC block, side structure (one layer of plasterboard)	U-Valu (W/m²H 0.18	44.38 Kappa (kJ/m ² k 60.00	Gross () Area(m ² 116.68	Nett Area) (m²) 91.51	99.9 Shelter Res 0.00	00 m² m² Shelt	ter (Dpenings 25.17 0.00	Area C Enter	Calculatior Type Gross Area Gross Area
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description	Cavity Wall	Ca fille	avity wall : plasteri ed cavity, any outs nber framed wall Construc	43.63 board on dabs, AAC block, side structure (one layer of plasterboard) tion	U-Valu (W/m²ł 0.18	44.38 Kappa (kJ/m ² k 60.00	Gross () Area(m ² 116.68	Nett Area) (m²) 91.51	99.9 Shelter Res 0.00	00 m² m² Shelt	ter (25.17 0.00 Kap (kJ/m	2.89 m Area (Enter Enter pa	Salculatior Type Gross Area Gross Area Area (m ²
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1	Cavity Wall	Ca fille	avity wall : plasteri ed cavity, any outs nber framed wall Construc	43.63 board on dabs, AAC block, side structure (one layer of plasterboard)	U-Valu (W/m²ł 0.18	44.38 Kappa (kJ/m ² k 60.00	Gross () Area(m ² 116.68	Nett Area) (m²) 91.51	99.9 Shelter Res 0.00	00 m² m² Shelt	ter (25.17 0.00	2.89 m Area (Enter Enter pa	alculatior
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs	Cavity Wall Timber Frame	Ca fille	avity wall : plastern ed cavity, any outs mber framed wall Construc Plasterboa	43.63	U-Valu (W/m²ł 0.18 0.14	44.38 Kappa (kJ/m ² / 60.00 9.00	Gross () Area(m ² 116.68 10.17	Nett Area) (m²) 91.51 10.17	99.5 Shelter Res 0.00 0.50	00 m² m² Sheli Non Room In	e Roof	25.17 0.00 Kap (kJ/m 9.0	2.89 m Area (Enter Enter pa A 1 ² K) 0	alculatior Type Gross Area Gross Area Area (m ² 162.19
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1	Cavity Wall	Ca fille	avity wall : plasteri ed cavity, any outs nber framed wall Construc	43.63	U-Valu (W/m²µ 0.18 0.14	44.38 Kappa (kJ/m ² K 60.00 9.00 J-Value	Gross) Area(m ² 116.68 10.17	Nett Area) (m²) 91.51 10.17	99.5 Shelter Res 0.00 0.50	00 m² m² Shelt	e Roof	25.17 0.00 (kJ/m 9.0 r Calcu	2.89 m Area (Enter Enter pa A 1 ² K) 0	alculatior Type Gross Area Gross Area Area (m ² 162.19
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs	Cavity Wall Timber Frame Type External P	Ca fille Tin	vity wall : plasteri ed cavity, any out nber framed wall Construc Plasterboa Construction	43.63	U-Valu (W/m²k 0.18 0.14	44.38 Kappa (kJ/m ² K 60.00 9.00 J-Value	Gross) Area(m ² 116.68 10.17	Nett Areaa) (m²) 91.51 10.17 Gross	99.5 Shelter Res 0.00 0.50	00 m ² m ² Shelt Shelter	ter (e Roof Shelte	Dpenings 25.17 0.00 (kJ/m 9.0 r Calcu r Ty Enter	2.89 m Area (Enter) pa A 1 ² K) 0 lation(pe Gross	alculatior Type Gross Area Gross Area Area (m ² 162.19
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs Description	Cavity Wall Timber Frame	Ca fille Tin Plane	vity wall : plastert ed cavity, any out mber framed wall Construct Plasterboard Plasterboard	43.63 board on dabs, AAC block, side structure (one layer of plasterboard) tion ard on timber frame	U-Valu (W/m²k 0.18 0.14	44.38 Kappa (kJ/m ² k 60.00 9.00 J-Value W/m ² K)	3 m Gross 3 Area(m ² 116.68 10.17 Kappa (kJ/m ² K)	Nett Area) (m?) 91.51 10.17 Gross Area(m²)	99.5 Shelter Res 0.00 0.50 Nett Area (m ²)	00 m ² m ² Shelt Room In Shelter Code	ter (e Roof Shelte Factor	Dpenings 25.17 0.00 (kJ/m 9.0 r Calcu r Ty	2.89 m Area (Enter (pa A 1 ² K) 0 lation(pe Gross ea	alculation Type Gross Area Gross Area Area (m ² 162.19 Dpening
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs Description Plane Roof	Cavity Wall Timber Frame Type External P Roof	Ca fille Tin Plane	vity wall : plastert ed cavity, any out mber framed wall Construct Plasterboard Plasterboard	43.63 board on dabs, AAC block, side structure (one layer of plasterboard) tion ard on timber frame n	U-Valu (W/m²k 0.18 0.14	44.38 Kappa (kJ/m ² H 60.00 9.00 J-Value W/m²K) 0.10	3 m Gross () Area(m ² 116.68 10.17 (Kappa (kJ/m ² K) 9.00	Nett Area) (m²) 91.51 10.17 Gross Area(m²) 56.28	99.5 Shelter Res 0.00 0.50 Nett Area (m ²) 56.28	00 m ² m ² Shelt Room In Shelter Code None	e Roof Shelte Factor 0.00	Dpenings 25.17 0.00 (kJ/m 9.0 r Calcu r Ty Enter Ar	2.89 m Enter Enter pa A 1 ² K) 0 lation pe Gross ea Gross	Calculation Type Gross Area Area (m ² 162.19 Dpening 0.00
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs Description Plane Roof Slope Roof 11.0 Heat Loss Floors	Cavity Wall Timber Frame Type External P Roof External S Roof	Ca fille Tin Plane Slope	vivity wall : plastern ed cavity, any out mber framed wall Construct Plasterboard Plasterboard	43.63	U-Valu (W/m²k 0.18 0.14	44.38 Kappa (kJ/m ² H 60.00 9.00 J-Value W/m²K) 0.10	3 m Gross () Area(m ² 116.68 10.17 (kJ/m ² K) 9.00 9.00	Nett Area) (m²) 91.51 10.17 Gross Area(m²) 56.28 47.02	99.5 Shelter Res 0.00 0.50 Nett Area (m ²) 56.28 42.70	00 m ² m ² Shelt Room In Shelter Code None None	ter (e Roof Shelte Factor 0.00 0.00	Dpenings 25.17 0.00 (kJ/m 9.0 r Calcu r Ty Enter Ar Enter Ar Enter Ar	2.89 m Area Q Enter P Pa A 1 ² K) 0 lation pe Gross ea Gross ea	alculation Type Gross Area Area (m ² 162.19 Dpening 0.00 4.32
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs Description Plane Roof Slope Roof 11.0 Heat Loss Floors Description	Cavity Wall Timber Frame Type External P Roof External S Roof Type	Ca fille Tin Plane Slope	vity wall : plastert ed cavity, any out mber framed wall Construct Plasterboard Plasterboard Plasterboard Storey Index	43.63	U-Valu (W/m²H 0.18 0.14	44.38 Kappa (KJ/m ¹ /k 60.00 9.00 9.00 9.00 0.10 0.14	3 m Gross () Area(m ² 116.68 10.17 Kappa (kJ/m ² K) 9.00 9.00	Nett Area) (m ²) 91.51 10.17 Gross Area(m ²) 56.28 47.02	99.5 Shelter Res 0.00 0.50 Nett Area (m ²) 56.28 42.70 She	00 m ² m ² Shelt Room In Shelter Code None None	ter (e Roof Shelte Factor 0.00 0.00	Dpenings 25.17 0.00 (kJ/m 9.0 r Calcu r Ty Enter Ar Enter Ar Shelter Factor	2.89 m Enter Enter Pa Pa Pa Pa Pa Pa Pa Bation Gross ea Gross ea Kappa (kJ/m²K	alculation Type Gross Area Gross Area Area (m ² 162.19 Dpening 0.00 4.32 Area (m
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs Description Plane Roof Slope Roof 11.0 Heat Loss Floors Description Ground Floor	Cavity Wall Timber Frame Type External P Roof External S Roof Type	Ca fille Tin Plane Slope	vivity wall : plastern ed cavity, any out mber framed wall Construct Plasterboard Plasterboard	43.63	U-Valu (W/m²H 0.18 0.14	44.38 Kappa (KJ/m ¹ /k 60.00 9.00 9.00 9.00 0.10 0.14	3 m Gross () Area(m ² 116.68 10.17 Kappa (kJ/m ² K) 9.00 9.00	Nett Areaa) (m²) 91.51 10.17 Gross Area(m²) 56.28 47.02	99.5 Shelter Res 0.00 0.50 Nett Area (m ²) 56.28 42.70 She	00 m ² m ² Shelt Room In Shelter Code None None	ter (e Roof Shelte Factor 0.00 0.00	Dpenings 25.17 0.00 Kap (KJ/m 9.0 r Calcu r Ty Enter Ar Enter Ar Shelter	2.89 m Factor of the second s	alculation Type Gross Area Gross Area Area (m ² 162.19 Dpening 0.00 4.32 Area (m
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs Description Plane Roof Slope Roof 11.0 Heat Loss Floors Description	Cavity Wall Timber Frame Type External P Roof External S Roof Type	Ca fille Tin Plane Slope	vity wall : plastert ed cavity, any out mber framed wall Construct Plasterboard Plasterboard Plasterboard Storey Index	43.63	U-Valu (W/m²H 0.18 0.14	44.38 Kappa (KJ/m ¹ /k 60.00 9.00 9.00 9.00 0.10 0.14	3 m 3 Gross 3 Area(m ² 116.68 10.17 (kJ/m ² K) 9.00 9.00 (() Glazi	Nett Area) (m ³) 91.51 10.17 Gross Area(m ²) 56.28 47.02 I-Value Wm ² K) 0.11	99.5 Shelter Res 0.00 0.50 Nett Area (m ²) 56.28 42.70 She ing	00 m ² m ² Shelt Room In Shelter Code None None	shelte Factor 0.00 0.00	Dpenings 25.17 0.00 (kJ/m 9.0 r Calcu r Ty Enter Ar Enter Ar Enter Ar Enter Factor 0.00	2.89 m Enter (Enter (Enter (Enter (Pa / 1 ² K) 0 lation(pe Gross ea Gross ea (kJ/m²K 110.00 Imme	alculation Type Gross Area Area (m ² 162.19 Dpening 0.00 4.32 Area (m 99.90
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs Description Plane Roof Slope Roof 11.0 Heat Loss Floors Description Ground Floor	Cavity Wall Timber Frame Type External P Roof External S Roof External S Roof	Ca fille Tin Plane Slope r - Solid	vity wall : plastert ed cavity, any out nber framed wall Construct Plasterboard Plasterboard Plasterboard Storey Index Lowest occupied	43.63 Doard on dabs, AAC block, side structure (one layer of plasterboard) tion ard on timber frame n insulated at ceiling lev insulated slope Construction Slab on ground, screed of Glazing	U-Valu (W/m ² H 0.18 0.14	44.38 Kappa (KJ/m ¹ /k 60.00 9.00 9.00 9.00 0.10 0.14	3 m Gross () Area(m ² 116.68 10.17 (kJ/m ² K) 9.00 9.00	Nett Area) (m ²) 91.51 10.17 Gross Area(m ²) 56.28 47.02 I-Value N/m ² K) 0.11 mg Fill	99.5 Shelter Res 0.00 0.50 Nett Area (m ²) 56.28 42.70 She ing	00 m ² m ² Shelt Non Room In Shelter Code None None None	ter (e Roof Shelte Factor 0.00 0.00	Dpenings 25.17 0.00 (kJ/m 9.0 r Calcu r Ty Enter Ar Enter Ar Enter Ar Shelter Factor 0.00	Area C Enter C Enter C Enter C Pa A 1 ² K) 0 Iation pe Gross ea Gross ea Gross ea Kappa (kJ/m ² K 110.00	alculation Type Gross Area Gross Area Area (m ² 162.19 Dpening 0.00 4.32 Area (m 99.90 U Value (W/m ² K)
9.0 External Walls Description External Wall wall to loft space 9.2 Internal Walls Description Internal Wall 1 10.0 External Roofs Description Plane Roof Slope Roof 11.0 Heat Loss Floors Description Ground Floor	Cavity Wall Timber Frame Type External P Roof External S Roof Type Ground Floor	Ca fille Tin Plane Slope r - Solid urce turer	vity wall : plastert ed cavity, any out mber framed wall Construct Plasterboard Plasterboard Plasterboard Storey Index Lowest occupied	43.63 board on dabs, AAC block, side structure (one layer of plasterboard) tion ard on timber frame n insulated at ceiling lev insulated slope Construction Slab on ground, screed of Glazing Triple Low-E H	U-Valu (W/m ² H 0.18 0.14	44.38 Kappa (KJ/m ¹ /k 60.00 9.00 9.00 9.00 0.10 0.14	3 m 3 Gross 3 Area(m ² 116.68 10.17 (kJ/m ² K) 9.00 9.00 (() Glazi	Nett Area) (m ³) 91.51 10.17 Gross Area(m ²) 56.28 47.02 I-Value Wm ² K) 0.11	99.5 Shelter Res 0.00 0.50 Nett Area (m ²) 56.28 42.70 She ing	00 m² m² Shelt Non Room In Shelter Code None None	shelte Factor 0.00 0.00	Dpenings 25.17 0.00 Kap (kJ/m 9.0 r Calcu r Ty Enter Ar Enter Ar Enter Factor 0.00 Fra Fac 0.	2.89 m Enter (Enter (Enter (Enter (Pa / 1 ² K) 0 lation(pe Gross ea Gross ea (kJ/m²K 110.00 Imme	alculation Type Gross Area Area (m ² 162.19 Dpening 0.00 4.32 Area (m) 99.90

Name	Opening Type	Location			tation	Area (m²)	Pitch
S/E S/E	Door Glazing	External Wall External Wall			h East h East	2.10 4.86	
N/E	Glazing	External Wall			n East	1.47	
S/E S/W	Roof Windows Glazing	Slope Roof External Wall			h East n West	2.16 1.62	30
S/W	Roof Windows	Slope Roof		South	n West	2.16	30
N/W above patio door N/W	Glazing Glazing	External Wall External Wall			n West n West	2.35 12.77	
14.0 Conservatory		None					
15.0 Draught Proofing		100				%	
16.0 Draught Lobby		No					
17.0 Thermal Bridging		Calculate Bridges				\neg	
17.1 List of Bridges		<u> </u>					
Bridge Type E2 Other lintels (including o	other steel lintels)	Source Type Independently assessed	Length 13.88	Psi 0.06	Adjusted 0.06	l Reference: hi therm	Importe Yes
E3 Sill		Independently assessed	6.80	0.00	0.00	Unilin CTPIR	No
E4 Jamb		Independently assessed	26.81	0.02	0.02		No
E5 Ground floor (normal) E16 Corner (normal)		Independently assessed Independently assessed	44.38 14.40	0.06 0.04	0.06 0.04	Unilin CTPIR Unilin CTPIR	Yes No
R1 Head of roof window		Independently assessed	3.60	0.06	0.06	Unilin GEN R1	Yes
R2 Sill of roof window R3 Jamb of roof window		Independently assessed Independently assessed	3.60 9.60	0.06 0.06	0.06 0.06	Unilin Gen R2 Unilin Gen R3	Yes Yes
E17 Corner (inverted – inte	rnal area greater than	Independently assessed	4.80	-0.07	-0.07	Unilin CTPIR	No
external area) E10 Eaves (insulation at ce	iling level)	Independently assessed	15.66	0.06	0.06	Unilin CTPIR	No
E12 Gable (insulation at ce	iling level)	Independently assessed	8.30	0.06	0.06	Unilin CTPIR	No
E11 Eaves (insulation at rat E13 Gable (insulation at rat		Independently assessed Independently assessed	12.12 11.97	0.05 0.06	0.05 0.06	Unilin CTPIR Unilin CTPIR	No No
R4 Ridge (vaulted ceiling)	lei level)	Table K1 - Default	6.06	0.00	0.00		No
R10 All other roof or room-i	n-roof junctions	Table K1 - Default	2.33	0.32	0.32		No
Y-value		0.03				W/m²K	
18.0 Pressure Testing		Yes					
Designed AP50		1.00				m³/(h.m²) @ 50 Pa	
Test Method		Blower Door					
19.0 Mechanical Ventilation							
Mechanical Ventilation							
Mechanical Ventilation	n System Present	Yes					
Approved Installation		Yes					
Mechanical Ventilation	n data Type	Database					
Туре		Balanced mechanical v	entilation with h	eat recov	very		
MV Reference Number	er	500811					
Configuration		2					
Manufacturer SFP		0.54					
Duct Type		Flexible					
MVHR Efficiency		88.00					
Wet Rooms		2					
SFP from Installer Co	mmissioning Certificate	No					
MVHR System Locati	on	Inside heated envelope	e (installed exclu	sively)			
Duct Installation Spec	dia ati an	Level 1				1	

SFP	Fan/Room Type	Cou
0.13	In Room Fan Kitchen	1
0.11	In Room Fan Other Wet Room	2
0.00	In Duct Fan Kitchen	0
0.00	In Duct Fan Other Wet Room	0
0.10	Through Wall Fan Kitchen	0
0.10	Through Wall Fan Other Wet Room	0

20.0 Fans, Open Fireplaces, Flues

21.0 Fixed Cooling System	No				
22.0 Lighting					
No Fixed Lighting	No				
	Name Lighting 1	Efficacy 95.00	Power 5	Capacity 475	Count 40
24.0 Main Heating 1	Database				
Percentage of Heat	100.00			%	
Database Ref. No.	104638				
Fuel Type	Electricity				
In Winter	343.85				
In Summer	190.05				
Model Name	Ecodan 6.0 kW				
Manufacturer	Mitsubishi Electri	c Europe B.V.			
System Type	Heat Pump				
Controls SAP Code	2207				
Is MHS Pumped	Pump in heated s	space			
Heating Pump Age	2013 or later				
Heat Emitter	Radiators and Ur	Iderfloor			
Underfloor Heating	Yes - Pipes in thi	n screed			
Flow Temperature	Enter value				
Flow Temperature Value	35.00				
25.0 Main Heating 2	None				
26.0 Heat Networks	None			7	
Heat Source Fuel Type Heating I	L	Percentage Of H	eat Heat El	ectrical Fuel Factor	Efficiency typ
	,	Heat	Power Ratio		
Heat source 1			Ratio		
Heat source 2 Heat source 3					
Heat source 4 Heat source 5					
28.0 Water Heating					
Water Heating	Main Heating 1				
SAP Code					
SAF Code	901				
Flue Gas Heat Recovery System	901 No				
Flue Gas Heat Recovery System	No				
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1	No No				
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2	No No				
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System	No No No				
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel	No No No No No				
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day	No No No No Yes				
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Cold Water Source	No No No No Yes				
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Cold Water Source Bath Count	No No No No Yes From mains 1				
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Cold Water Source Bath Count Immersion Only Heating Hot Water	NoNoNoNoYesFrom mains1Yes	Flow R		Connected Connect	ed To
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Cold Water Source Bath Count Immersion Only Heating Hot Water 28.1 Showers Description Shower Typ	NoNoNoNoYesFrom mains1Yes	Flow R		Connected Connect	ed To
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Cold Water Source Bath Count Immersion Only Heating Hot Water 28.1 Showers Description Shower Type	NoNoNoNoYesFrom mains1Yes			Connected Connect	ed To
Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Cold Water Source Bath Count Immersion Only Heating Hot Water 28.1 Showers	NoNoNoNoYesFrom mains1Yes	[l/mir		Connected Connect	ed To

Yes

Yes

Cylinder In Heated Space Independent Time Control

Jan	1 60	IVICI	Арі	way Juli	Jui	Aug	Seh	00		Dec
34.0 Small-scale H Jan	lydro Feb	Mar	Apr	None May Jun	ı Jul	Aug	Sep	Oc	t Nov	Dec
5.40		South West	30°	None Or Littl	e	No	1.00		Reference	
PV Cells	kWp	Orientation	Elevation	Overshading	g FGHRS	MCS Certificate	Over: Facto	shading or	Certificate	Panel Manufacturer
Battery Capacity	y [kWh]			0.00						
Diverter				No						
Connected To D	Owelling			Yes						
Export Capable	Meter?			Yes						
32.0 Photovoltaic	Unit			One Dwelling						
31.0 Thermal Store	e			None						
In Airing Cupboa	ard			No						
Pipes insulation	l			Fully insulated pri	imary pipework					
Loss				1.86				kWh/da	ау	
Cylinder Volume	e			150.00				L		
Insulation Type				Measured Loss						

Recommendations Lower cost measures

None Further measures to achieve even higher standards

Turning Coast	Turnian Languin na manuaran	Ratings after improvement				
Typical Cost	Typical savings per year	SAP rating	Environmental Impact			
£4,000 - £6,000	£63	A 101	A 102			
		0	0			
		0	0			

U-Value Calculations

AP Rating Invironmental CO ₂ Emissions (t/year General Requirement Assessor Details M Wi Client Client Cuilding Elements Vall Cavity Walls Vall Type: Standard V Over Description	r. William Simpson, Barlings Kwa Limir illiam@barlingskwa.co.uk	DER % DER <te DFEE % DFEE<ti ted, Tel: 0152279</ti </te 	FEE	T	FEE	H077-000
Calculation Type Calculation Type CAP Rating Co2 Emissions (t/year	r) ts Compliance r. William Simpson, Barlings Kwa Limir illiam@barlingskwa.co.uk Vall	% DER <te DFEE % DFEE<ti< th=""><th>FEE</th><th>T</th><th>FEE</th><th>H077-000</th></ti<></te 	FEE	T	FEE	H077-000
Environmental CO ₂ Emissions (t/year General Requirement Assessor Details M Wi Client Suilding Elements Wall Cavity Walls Vall Cavity Walls Vall Type: Standard V ayer Description	r) ts Compliance r. William Simpson, Barlings Kwa Limir illiam@barlingskwa.co.uk Vall	% DER <te DFEE % DFEE<ti< th=""><th>FEE</th><th>T</th><th>FEE</th><th>H077-000</th></ti<></te 	FEE	T	FEE	H077-000
CO2 Emissions (t/year General Requirement Assessor Details M Wi Client Building Elements Wall Cavity Walls Vall Type: Standard V ayer Description	r. William Simpson, Barlings Kwa Limir illiam@barlingskwa.co.uk	% DER <te DFEE % DFEE<ti< th=""><th>FEE</th><th>T</th><th>FEE</th><th>H077-000</th></ti<></te 	FEE	T	FEE	H077-000
Assessor Details M Wi Client Building Elements Wall Cavity Walls Vall Type: Standard V ayer Description	r. William Simpson, Barlings Kwa Limir illiam@barlingskwa.co.uk	DFEE % DFEE <ti< td=""><td>FEE</td><td></td><td></td><td>H077-000</td></ti<>	FEE			H077-000
General Requirement Assessor Details M Wi Client Building Elements Wall Cavity Walls Vall Type: Standard V ayer Description	r. William Simpson, Barlings Kwa Limir illiam@barlingskwa.co.uk	% DFEE <t< td=""><td></td><td></td><td></td><td>H077-000</td></t<>				H077-000
Vilient Building Elements Wall Cavity Walls Vall Type: Standard V ayer Description	r. William Simpson, Barlings Kwa Limi illiam@barlingskwa.co.uk Vall			A	Assessor ID	H077-000
Vilient Building Elements Wall Cavity Walls Vall Type: Standard V ayer Description	illiam@barlingskwa.co.uk	ted, Tel: 0152279	97344,	A	Assessor ID	H077-000
Wall Cavity Walls Vall Type: Standard V ayer Descripti						
Vall Type: Standard V ayer Descripti						
ayer Descripti						
	on					
to de la configura a		Thickness (mm)	Conductivity (W/m²K)	(m²K/W)	Fraction (%)	
ixt surface				0.0400		
ayer 1 Brick, ou		100	0 7700	0.4000	00.04	
Main con		100	0.7700	0.1299	82.81	
Main con		100	0.9407	0.1063	17.19	
	nerm 5mm cavity	F	0.0455	0 1100	100.00	
Main con	struction rections - Cavity Unventilated, Emissivity:	5	0.0455	0.1100	100.00	
Normal	rections - cavity onventilated, emissivity.					
	herm CT/PIR					
Main con		100	0.0210	4.7619	100.00	
	rections - Air Gap: Level 1, Fasteners: Wall		0.0210	4.7015	100.00	
	tional area: 12.50 mm², Lambda: 17.000 V					
per m²: 2						
ayer 4 Blockwo	ork, light					
Main con	struction	100	0.1800	0.5556	93.43	
Main con		100	0.8803	0.1136	6.57	
ayer 5 airspace	/plaster dabs					
Main con	struction	15	0.0882	0.1700	80.00	
	struction rections - Cavity Unventilated, Emissivity:	15	0.0882	0.1700	20.00	
Normal	and standard					
ayer 6 Plasterb Main con	oard, standard		0.3400	0.0505	100.00	
		12.5	0.2100	0.0595	100.00	
ayer 7 Plaster, Main con	standard	3	0.4000	0.0075	100.00	
nt surface	Struction	3	0.4000	0.1300	100.00	
otal resistance: Upp	per limit = 5.929 m ² K/W Lower	r limit = 5.847 m ²	K/W	Average =	5.888 m² K/W	
Tot	al correction = $0.0093 \text{ m}^2 \text{ K/W}$	U-value (i	unrounded) =	0.18 W/m ²	K	
		0-value (l	aniounideuj –	0.10 00/11	IX.	
	one					
Total thickne		0.18 W/m² K		appa: n/a		

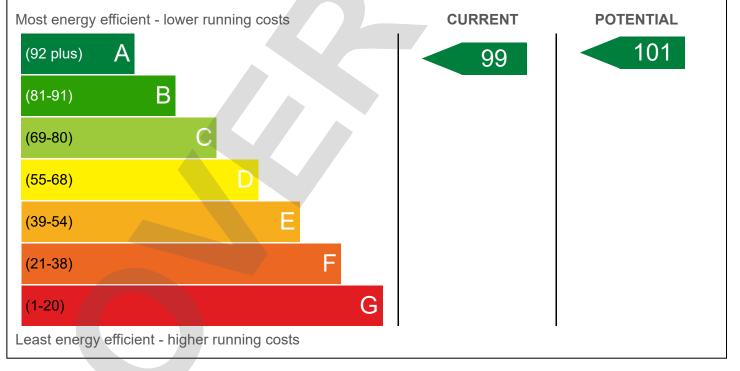
Property Re	ference 23-262				lssu	ed on Date	05/01/202		
Assessment R	Reference Prop Type Ref								
Project									
Calculation 1	Type New Build (As Designed)								
SAP Rating			DER		Т	ER			
Environmen	tal		% DER <te< td=""><td>R</td><td></td><td></td><td></td></te<>	R					
CO ₂ Emissio	ns (t/year)		DFEE		Т	FEE			
General Req	uirements Compliance		% DFEE <t< th=""><th>EE</th><th></th><th></th><th></th></t<>	EE					
Assessor De	tails Mr. William Simpson, Barlings william@barlingskwa.co.uk	Kwa Limited, T	el: 0152279	7344,	A	Assessor ID	H077-000		
Client									
Building Eler	nents								
Roof Cold Ro									
Roof Type: Pi	itched Roof, insulated flat ceiling								
ayer	Description		Thickness (mm)	Conductivity (W/m ² K)	Resistance (m ² K/W)	Fraction (%)			
Ext surface					0.0400				
ayer 1	Mineral wool								
	Main construction		200	0.0400	5.0000	100.00			
	Corrections - Air Gap: Level 1, Fast	eners: None or							
-	plastic								
ayer 2	Mineral wool								
	Main construction		150	0.0400	3.7500	100.00			
	Corrections - Air Gap: Level 1, Fast	eners: None or							
avor 2	plastic Mineral wool								
ayer 3	Main construction		100	0.0400	2 5000	01.67			
	Main construction		100 100	0.0400 0.1300	2.5000 0.7692	91.67 8.33			
	Corrections - Air Gap: Level 1, Fast	eners: None or	100	0.1500	0.7092	0.55			
	plastic	chers. None of							
Layer 4	Plasterboard, standard								
-	Main construction		12.5	0.2100	0.0595	100.00			
ayer 5	Plaster, standard								
-	Main construction		3	0.4000	0.0075	100.00			
nt surface					0.1000				
otal resistanc	Upper limit = 11.290 m ² K/W	Lower limit	= 11.062 m ²	K/W	Average =	11.176 m² K/W			
	Total correction = 0.0065 m ² K/W		U-value (u	inrounded) =	0.1 W/m² k	<			
Unheated sp	bace: None								
Tota	al thickness: 466 mm	U-value: 0.10	W/m ² K	Ka	appa: n/a				

Property Re	ference 2	23-262			_		ed on Date	05/01/2024	
Assessment F	Reference	Prop Type Ref							
Project									
Calculation	Туре	New Build (As Designed)							
SAP Rating				DER		Т	'ER		
Environmen	ital			% DER <te< td=""><td>R</td><td></td><td></td><td></td></te<>	R				
CO₂ Emissio	ns (t/vear)			DFEE		Т	FEE		
	uirements Co	ompliance		% DFEE <tf< th=""><th>EE</th><th></th><th></th><th></th></tf<>	EE				
	-								
Assessor De		/illiam Simpson, Barlings	Kwa Limited, 1	el: 0152279	7344,	A	ssessor ID	H077-0001	
	williar	m@barlingskwa.co.uk							
Client									
Building Ele	ments								
Roof Slope I	Roof								
		in substant allowing a siling							
коот туре: Р	itched Root,	insulated sloping ceiling		Thickness	Conductivity	Desistance	Fraction		
Layer	Description			(mm)	Conductivity (W/m ² K)	(m ² K/W)	(%)		
Ext surface				()	(11)111	0.0400	(*-7		
Layer 1	ECO MA(RO	OFS)							
	Main constru	ction		125	0.0200	6.2500	91.67		
	Main constru	ction		125	0.1300	0.9615	8.33		
	Correcti	ions - Air Gap: Level 1, Faste	eners: None or						
	plastic								
Layer 2	-	OFS) 50mm							
	Main constru			50	0.0230	2.1739	100.00		
		ions - Air Gap: Level 1, Faste	eners: None or						
Layer 3	plastic Plasterboar	d standard							
Layers	Main constru	•		12.5	0.2100	0.0595	100.00		
Layer 4	Plaster, star			12.3	0.2100	0.0555	100.00		
Layer	Main constru			3	0.4000	0.0075	100.00		
Int surface	mani consti u	0001		5	0.4000	0.1000	100.00		
Total resistan	ce: Upper li	imit = 7.626 m ² K/W	Lower limit	= 6.667 m ² k	<td>Average =</td> <td>7.146 m² K/V</td> <td>V</td>	Average =	7.146 m² K/V	V	
	Total co	prrection = 0.0045 m ² K/W		U-value (u	inrounded) =	0.14 W/m ²	K		
Unheated s	pace: None								
Tot	al thickness:	191 mm	U-value: 0.14	W/m² K	K	appa: n/a			
				,		11			

Property Ref	ference	23-262					ied on Date	05/01/2024		
Assessment R	eference	Prop Type Ref								
Project										
Calculation 1	Calculation Type New Build (As Designed)									
				2.52						
SAP Rating				DER			TER			
Environment				% DER <te< td=""><td>R</td><td></td><td></td><td></td></te<>	R					
CO ₂ Emission				DFEE		T	FEE			
General Req	uirements	Compliance		% DFEE <tf< td=""><td>EE</td><td></td><td></td><td></td></tf<>	EE					
Assessor Det		William Simpson, Barlings am@barlingskwa.co.uk	Kwa Limited, T	el: 0152279	7344,	A	Assessor ID	H077-0001		
Client										
Building Eler	nents									
Floor Ground	d Floor									
Horizontal ed	m², Perime Ige insulati	eter = 44.38 m, Wall thick		.0 mm, Lam	ıbda = 0.022					
Layer	Description	1		(mm)	Conductivity (W/m ² K)	(m ² K/W)	(%)			
Ext surface						0.0400				
Layer 1	Concrete,	medium density								
	Main const			150	1.3500	0.1111	100.00			
Layer 2	Thin-R Plu			450	0.024.0	74400	100.00			
	Main const Corre plastic	ruction ctions - Air Gap: Level 1, Fast	eners: None or	150	0.0210	7.1429	100.00			
Layer 3	Screed									
Int surface	Main const	ruction		75	1.1500	0.0652 0.1700	100.00			
Total resistanc	e: Uppe	r limit = 7.319 m² K/W	Lower limit	= 7.319 m ² k	<td>Average =</td> <td>7.319 m² K/W</td> <td></td>	Average =	7.319 m² K/W			
Total correction = 0.0095 m ² K/W U-value (unrounded) = 0.11 W/m ² K										
Unheated sp	bace: Non	e								
Tota	l thickness	:: 375 mm	U-value: 0.11	W/m² K	Ка	appa: n/a				

Overview Report & Predicted EPC

Overview Report



Dwelling Address	rear of 189, Newark Road, North Hykeham, Lincoln, Lincs, LN6 8
Report Date	10/01/2024
Property Type	Bungalow, Detached
Floor Area [m ²]	100

This document is not an Energy Performance Certificate (EPC) as required by the Energy Performance of Buildings Regulations

Energy Rating

The current energy rating represents the overall energy efficiency of the dwelling. The potential energy rating is the overall energy rating of the dwelling after all of the recommend measures provided on the next page have been installed. A higher score represents a more energy efficient dwelling with lower fuel bills.

Breakdown of property's energy performance

Each feature is assessed as one of the following:

Very Poor	Poor	Average	Good	Very Good
Feature	Description			Energy Performance
Walls	Average thermal transmi	ttance 0.17 W/m²K		Very Good
Roof	Average thermal transmi	ttance 0.12 W/m²K		Very Good
Floor	Average thermal transmi	Very Good		
Windows	High performance glazing	Very Good		
Main heating	Air source heat pump, ra	diators and underfloor, electr	с	Very Good
Main heating controls	Time and temperature zo	Very Good		
Secondary heating	None			
Hot water	From main system	Average		
Lighting	Excelent lighting efficience	Very Good		
Air tightness	Air permeability [AP50] =	= 1.0 m³/h.m² (assumed)		Very Good

Primary Energy use

The primary energy use for this property per year is 2 kilowatt hour (kWh) per square metre

Estimated CO₂ emissions of the dwelling

The estimated CO rating provides an indication of the dwelling's impact on the environment in terms of carbon dioxide emissions; the higher the rating the less impact it has on the environment.

The	estimated	СО	emissions	for	this	dwellings	is:
-----	-----------	----	-----------	-----	------	-----------	-----

-0.2 per year

With the recommended measures the potential CO emissions could be:

per year

0.0

Recommendations

The recommended measures provided below will help to improve the energy efficiency of the dwelling. To reach the dwelling's potential energy rating all of the recommended measures shown below would need to be installed. Having these measures installed individually or in any other order may give a different result when compared with the cumulative potential rating.

Recommended measure	Typical Yearly Saving	Potential Rating after measure installed	Cumulative savings (per year)	Cumulative Potential Rating
Solar water heating	£63	2	£63	A 101
Photovoltaic		-101	£73	G 0

Estimated energy use and potential savings

how much the average household would spend in this property for heating, lighting and hot water. It is not based on how energy is used by the people living at the property.

Contacting the assessor and the accreditation scheme

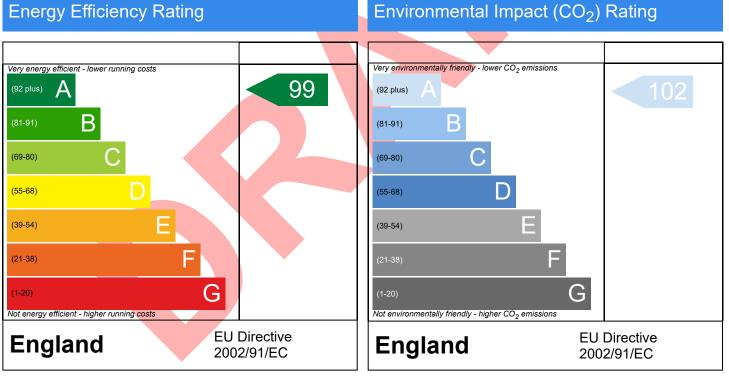
Overview Report

Assessor contact details						
Assessor name	Mrs. Kerry Simpson					
Assessor's accreditation number	EES/014130					
Email Address	william@barlingskwa.co.uk					

Accreditation scheme contact details					
Accreditation scheme	Elmhurst Energy Systems Ltd				
Telephone	01522 797344				
Email Address	william@barlingskwa.co.uk				

Assessment details						
Related party disclosure	No related party					
Date of assessment	10/01/2024					
Date of certificate	10/01/2024					
Type of assessment	SAP, new dwelling					

.



rear of 189, Newark Road, North Hykeham, Lincoln, Lincs, LN6 8

Dwelling type: Date of assessment: Produced by: Total floor area: DRRN: Bungalow, Detached 10/01/2024 Kerry Simpson 99.9 m²

This document is a Predicted Energy Assessment for properties marketed when they are incomplete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, this rating will be updated and an official Energy Performance Certificate will be created for the property. This will include more detailed information about the energy performance of the completed property.

The energy performance has been assessed using the Government approved SAP 10 methodology and is rated in terms of the energy use per square meter of floor area; the energy efficiency is based on fuel costs and the environmental impact is based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO_2) emissions. The higher the rating the less impact it has on the environment.