

6 Hydrology

6.1 Water Network (OS MasterMap)

Records within 250m

Detailed water network of Great Britain showing the flow and precise central course of every river, stream, lake and canal.

Features are displayed on the Hydrology map on page 106 >

ID	Location	Type of water feature	Ground level	Permanence	Name
1	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Longmoor Brook

ID	Location	Type of water feature	Ground level	Permanence	Name
2	On site	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
3	On site	Inland river not influenced by normal tidal action.	Not provided	Watercourse contains water year round (in normal circumstances)	-
4	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
5	On site	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	-
Α	On site	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
A	On site	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
В	3m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
В	10m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
В	10m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
A	12m S	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
11	19m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
В	21m NW	Inland river not influenced by normal tidal action.	Not provided	Watercourse contains water year round (in normal circumstances)	-
В	22m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

ID	Location	Type of water feature	Ground level	Permanence	Name
С	27m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
С	31m SE	Inland river not influenced by normal tidal action.	Underground	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
12	36m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
13	37m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
14	40m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Colliter's Brook
15	42m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	River Avon
16	54m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	River Avon
17	54m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
18	56m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	River Avon
D	63m N	Foreshore. Watercourse flows over the foreshore between mean high water and mean low water.	On ground surface	Watercourse contains water year round (in normal circumstances)	Longmoor Brook
19	63m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
D	67m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	Longmoor Brook
20	88m N	Foreshore. Watercourse flows over the foreshore between mean high water and mean low water.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

ID	Location	Type of water feature	Ground level	Permanence	Name
D	95m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	Longmoor Brook
21	102m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	River Avon
E	104m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
F	107m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
G	107m NW	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
Η	130m N	Lock or flight of locks. An enclosure in a canal or navigable river with gates and sluices at either end.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
I	163m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Longmoor Brook
	168m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Longmoor Brook
23	171m S	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	Longmoor Brook
К	179m N	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
К	193m N	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
К	198m N	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
К	214m N	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-

ID	Location	Type of water feature	Ground level	Permanence	Name
Μ	240m SE	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
Ν	243m N	Inland river not influenced by normal tidal action.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
Ν	246m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	-
24	248m N	Tidal river or stream.	On ground surface	Watercourse contains water year round (in normal circumstances)	River Avon

This data is sourced from the Ordnance Survey.

6.2 Surface water features

Records within 250m

Covering rivers, streams and lakes (some overlap with OS MasterMap Water Network data in previous section) but additionally covers smaller features such as ponds. Rivers and streams narrower than 5m are represented as a single line. Lakes, ponds and rivers or streams wider than 5m are represented as polygons.

Features are displayed on the Hydrology map on page 106 >

This data is sourced from the Ordnance Survey.

6.3 WFD Surface water body catchments

The Water Framework Directive is an EU-led framework for the protection of inland surface waters, estuaries, coastal waters and groundwater through river basin-level management planning. In terms of surface water, these basins are broken down into smaller units known as management, operational and water body catchments.

Features are displayed on the Hydrology map on page 106 >

ID	Location	Туре	Water body catchment	Water body ID	Operational catchment	Management catchment
6	On site	Coastal Catchment	Not part of a river WB catchment	157	Bristol Avon Rural	Avon Bristol and North Somerset Streams

This data is sourced from the Environment Agency and Natural Resources Wales.

11

2

2

6.4 WFD Surface water bodies

Records identified

Surface water bodies under the Directive may be rivers, lakes, estuary or coastal. To achieve the purpose of the Directive, environmental objectives have been set and are reported on for each water body. The progress towards delivery of the objectives is then reported on by the relevant competent authorities at the end of each six-year cycle. The river water body directly associated with the catchment listed in the previous section is detailed below, along with any lake, canal, coastal or artificial water body within 250m of the site. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each water body listed.

Features are displayed on the Hydrology map on page 106 >

ID	Location	Туре	Name	Water body ID	Overall rating	Chemical rating	Ecological rating	Year
9	13m N	Transi	BRISTOL AVON	GB530905415405 7	Moderate	Fail	Moderate	2019
22	125m N	Canal	Bristol Floating Harbour	<u>GB70910601</u> 7	Moderate	Fail	Moderate	2019

This data is sourced from the Environment Agency and Natural Resources Wales.

6.5 WFD Groundwater bodies

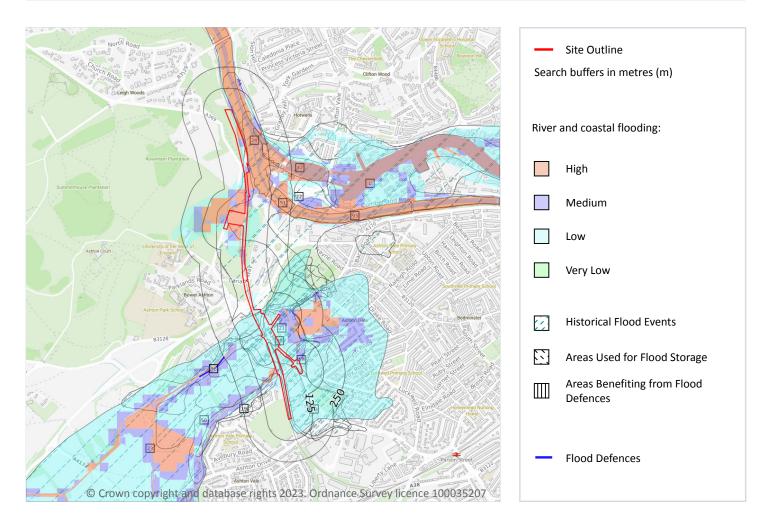
Records on site

Groundwater bodies are also covered by the Directive and the same regime of objectives and reporting detailed in the previous section is in place. Click on the water body ID in the table to visit the EA Catchment Explorer to find out more about each groundwater body listed.

Features are displayed on the Hydrology map on page 106 >

ID	Location	Name	Water body ID	Overall rating	Chemical rating	Quantitative	Year
7	On site	Bristol Triassic	<u>GB40902G804800</u> 7	Good	Good	Good	2019
8	On site	Carboniferous Limestone (Bristol)	<u>GB40901G806800</u> ス	Good	Good	Good	2019

This data is sourced from the Environment Agency and Natural Resources Wales.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

7 River and coastal flooding

7.1 Risk of flooding from rivers and the sea

Records within 50m

67

The chance of flooding from rivers and/or the sea in any given year, based on cells of 50m within the Risk of Flooding from Rivers and Sea (RoFRaS)/Flood Risk Assessment Wales (FRAW) models. Each cell is allocated one of four flood risk categories, taking into account flood defences and their condition. The risk categories for RoFRaS for rivers and the sea and FRAW for rivers are; Very low (less than 1 in 1000 chance in any given year), Low (less than 1 in 100 but greater than or equal to 1 in 1000 chance). Medium (less than 1 in 30 but greater than or equal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 0 requal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 1 in 1000 chance), Medium (less than 1 in 200 but greater than or equal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 1 in 1000 chance), Medium (less than 1 in 200 but greater than or equal to 1 in 30 chance). The risk categories for FRAW for the sea are; Very low (less than 1 in 1000 chance), Medium (less than 1 in 200 but greater than or equal to 1 in 30 chance). Or High (greater than or equal to 1 in 30 chance) or High (greater than or equal to 1 in 30 but greater than or equal to 1 in 200 chance) or High (greater than or equal to 1 in 30 chance).

Features are displayed on the River and coastal flooding map on page 112 >

14

Distance	Flood risk category
On site	High
0 - 50m	High

This data is sourced from the Environment Agency and Natural Resources Wales.

7.2 Historical Flood Events

Records within 250m

Records of historic flooding from rivers, the sea, groundwater and surface water. Records began in 1946 when predecessor bodies started collecting detailed information about flooding incidents, although limited details may be included on flooding incidents prior to this date. Takes into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding, and includes flood extents that may have been affected by overtopping, breaches or blockages.

Features are displayed on the River and coastal flooding map on page 112 >

ID	Location	Event name	Date of flood	Flood source	Flood cause	Type of flood
17	On site	Ea112_Collitersbrook_Ashton_ Vale_Bristol	1965-12-18 1965-12-19	Main river	Channel capacity exceeded (no raised defences)	Fluvial
18	On site	Ea112_Colliters Brook_Ashton Vale_1960	1960-12-04 1960-12-05	Main river	Channel capacity exceeded (no raised defences)	Fluvial
19	On site	Ea112_Colliters Brook_Ashton Vale_1960	1960-12-04 1960-12-05	Main river	Channel capacity exceeded (no raised defences)	Fluvial
20	On site	Ea112_Bristol_Ashtonvale_Col liters Brook	1971-06-10 1971-06-11	Main river	Channel capacity exceeded (no raised defences)	Fluvial
21	On site	Ea112_Collitersbrook_Ashtonv ale_Bristol	1954-06-11 1954-06-11	Main river	Channel capacity exceeded (no raised defences)	Fluvial
22	On site	Ea112_Bristol - November 1703	1703-11-13 1703-11-14	Main river	Channel capacity exceeded (no raised defences)	Fluvial
23	On site	Ea112_Collitersbrook_Ashton_ Vale_Bristol	1968-07-10 1968-07-10	Main river	Channel capacity exceeded (no raised defences)	Fluvial
К	On site	Ea112_Collitersbrook_Ashtonv ale_Bristol	1958-01-01 1958-01-01	Main river	Channel capacity exceeded (no raised defences)	Fluvial
L	On site	Ea112_Bristol _ Bedminster_St Philips_1896	1896-10-07 1896-10-07	Main river	Channel capacity exceeded (no raised defences)	Fluvial
24	4m N	Ea112_Avon_Clfton_To Ashton Avenue Bridge	1960-12-04 1960-12-05	Main river	Channel capacity exceeded (no raised defences)	Tidal

ID	Location	Event name	Date of flood	Flood source	Flood cause	Type of flood
42	75m N	Ea112_Bristol, Cumberland 1999	1999-12-24 1999-12-24	Main river	Overtopping of defences	Tidal
50	116m S	Ea112_Collitersbrook_Ashton_ Vale_Bristol	1965-12-18 1965-12-19	Main river	Channel capacity exceeded (no raised defences)	Fluvial
51	119m N	Ea112_Avon_Clfton_To Ashton Avenue Bridge	1960-12-04 1960-12-05	Main river	Channel capacity exceeded (no raised defences)	Tidal
93	247m NE	Ea112_Avon_Foot_Br_Ashton_ Ave_Br_Bristol	1960-12-04 1960-12-05	Main river	Channel capacity exceeded (no raised defences)	Fluvial

This data is sourced from the Environment Agency and Natural Resources Wales.

7.3 Flood Defences

Records within 250m	1

Records of flood defences owned, managed or inspected by the Environment Agency and Natural Resources Wales. Flood defences can be structures, buildings or parts of buildings. Typically these are earth banks, stone and concrete walls, or sheet-piling that is used to prevent or control the extent of flooding.

Features are displayed on the River and coastal flooding map on page 112 >

This data is sourced from the Environment Agency and Natural Resources Wales.

7.4 Areas Benefiting from Flood Defences

Records within 250m

Areas that would benefit from the presence of flood defences in a 1 in 100 (1%) chance of flooding each year from rivers or 1 in 200 (0.5%) chance of flooding each year from the sea.

This data is sourced from the Environment Agency and Natural Resources Wales.

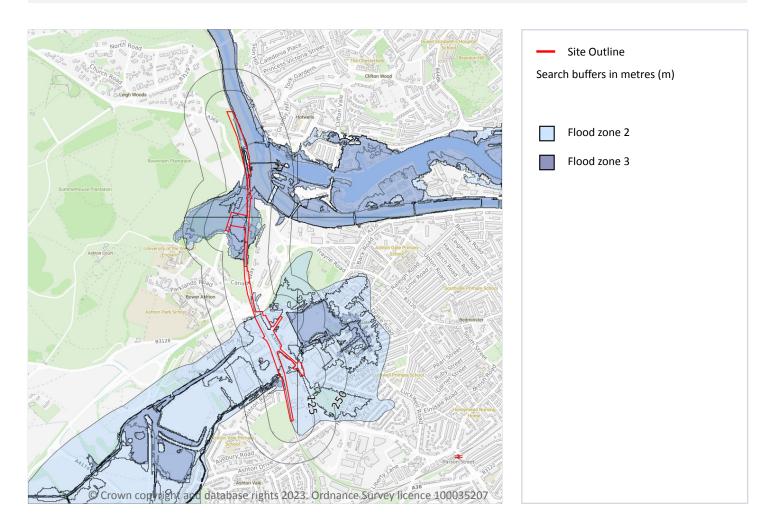
7.5 Flood Storage Areas

Records within 250m

Areas that act as a balancing reservoir, storage basin or balancing pond to attenuate an incoming flood peak to a flow level that can be accepted by the downstream channel or to delay the timing of a flood peak so that its volume is discharged over a longer period.

0

This data is sourced from the Environment Agency and Natural Resources Wales.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

River and coastal flooding - Flood Zones

7.6 Flood Zone 2

Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land between Flood Zone 3 (see next section) and the extent of the flooding from rivers or the sea with a 1 in 1000 (0.1%) chance of flooding each year.

Features are displayed on the River and coastal flooding map on page 112 >

Location	Туре
On site	Zone 2 - (Fluvial /Tidal Models)

This data is sourced from the Environment Agency and Natural Resources Wales.

1

7.7 Flood Zone 3

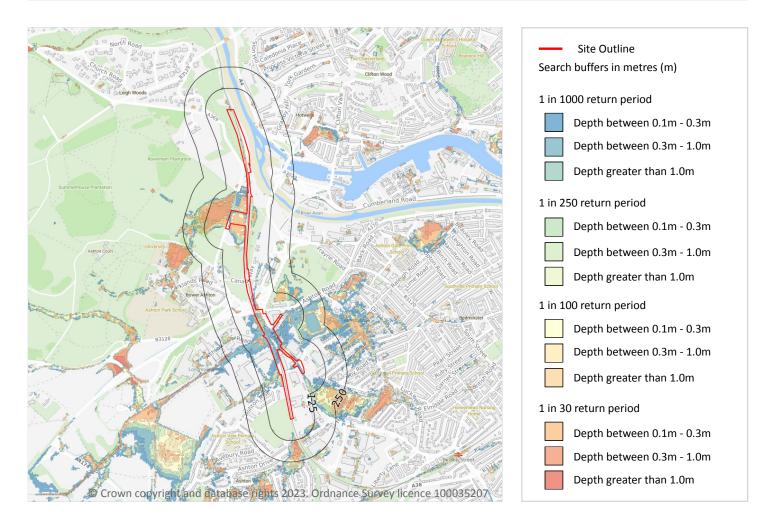
Records within 50m

Areas of land at risk of flooding, when the presence of flood defences are ignored. Covering land with a 1 in 100 (1%) or greater chance of flooding each year from rivers or a 1 in 200 (0.5%) or greater chance of flooding each year from the sea.

Features are displayed on the River and coastal flooding map on page 112 >

Location	Туре	
On site	Zone 3 - (Fluvial /Tidal Models)	

This data is sourced from the Environment Agency and Natural Resources Wales.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

8 Surface water flooding

8.1 Surface water flooding

Highest risk on site

1 in 30 year, Greater than 1.0m

Highest risk within 50m

1 in 30 year, Greater than 1.0m

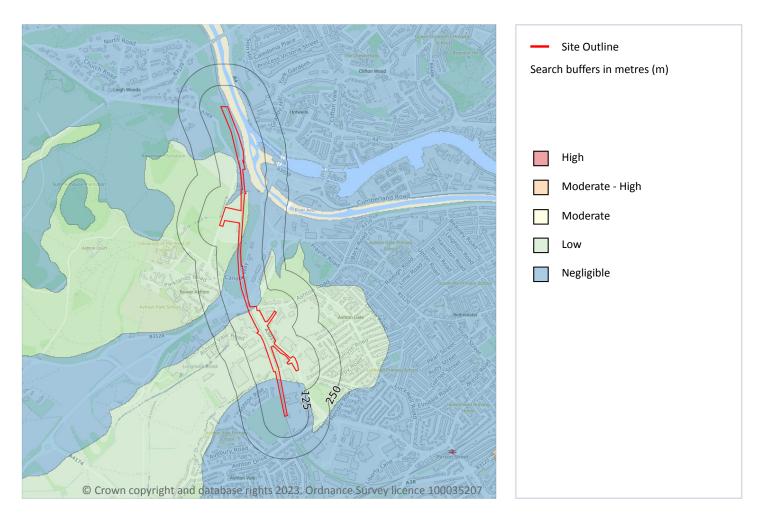
Ambiental Risk Analytics surface water (pluvial) FloodMap identifies areas likely to flood as a result of extreme rainfall events, i.e. land naturally vulnerable to surface water ponding or flooding. This data set was produced by simulating 1 in 30 year, 1 in 100 year, 1 in 250 year and 1 in 1,000 year rainfall events. Modern urban drainage systems are typically built to cope with rainfall events between 1 in 20 and 1 in 30 years, though some older ones may flood in a 1 in 5 year rainfall event.

Features are displayed on the Surface water flooding map on page 118 >

The data shown on the map and in the table above shows the highest likelihood of flood events happening at the site. Lower likelihood events may have greater flood depths and hence a greater potential impact on a site.

The table below shows the maximum flood depths for a range of return periods for the site.

Return period	Maximum modelled depth
1 in 1000 year	Greater than 1.0m
1 in 250 year	Greater than 1.0m
1 in 100 year	Greater than 1.0m
1 in 30 year	Greater than 1.0m


This data is sourced from Ambiental Risk Analytics.

9 Groundwater flooding

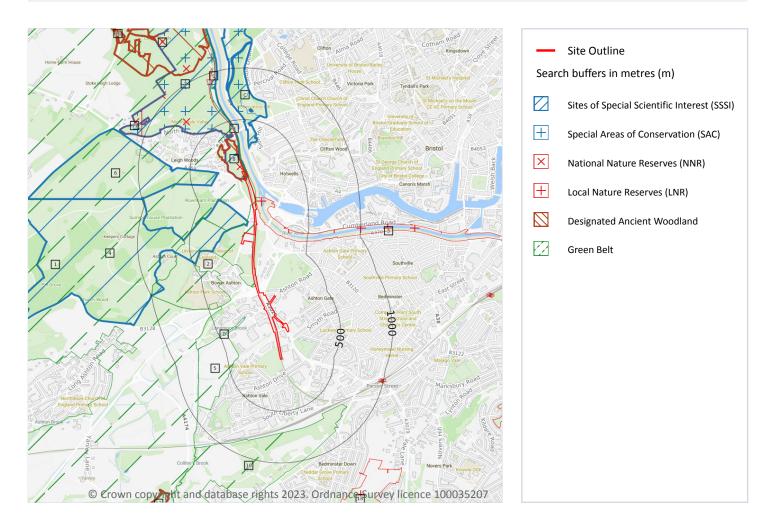
9.1 Groundwater flooding

Highest risk on site	Low
Highest risk within 50m	Low

Groundwater flooding is caused by unusually high groundwater levels. It occurs when the water table rises above the ground surface or within underground structures such as basements or cellars. Groundwater flooding tends to exhibit a longer duration than surface water flooding, possibly lasting for weeks or months, and as a result it can cause significant damage to property. This risk assessment is based on a 1 in 100 year return period and a 5m Digital Terrain Model (DTM).

Features are displayed on the Groundwater flooding map on page 120 >

This data is sourced from Ambiental Risk Analytics.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

10 Environmental designations

10.1 Sites of Special Scientific Interest (SSSI)

Records within 2000m

Sites providing statutory protection for the best examples of UK flora, fauna, or geological or physiographical features. Originally notified under the National Parks and Access to the Countryside Act 1949, SSSIs were renotified under the Wildlife and Countryside Act 1981. Improved provisions for the protection and management of SSSIs were introduced by the Countryside and Rights of Way Act 2000 (in England and Wales) and (in Scotland) by the Nature Conservation (Scotland) Act 2004 and the Wildlife and Natural Environment (Scotland) Act 2010.

Features are displayed on the Environmental designations map on page 121 >

ID	Location	Name	Data source
Α	On site	Avon Gorge	Natural England

0

3

ID	Location	Name	Data source
4	61m N	Ashton Court	Natural England
6	229m NW	Ashton Court	Natural England
С	236m N	Avon Gorge	Natural England
E	797m N	Avon Gorge	Natural England

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.2 Conserved wetland sites (Ramsar sites)

Records within 2000m

Ramsar sites are designated under the Convention on Wetlands of International Importance, agreed in Ramsar, Iran, in 1971. They cover all aspects of wetland conservation and wise use, recognizing wetlands as ecosystems that are extremely important for biodiversity conservation in general and for the well-being of human communities. These sites cover a broad definition of wetland; marsh, fen, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, and even some marine areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.3 Special Areas of Conservation (SAC)

Records within 2000m

Areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive.

ID	Location	Name	Features of interest	Habitat description	Data source
A	On site	Avon Gorge Woodland s	Dry grasslands and scrublands on chalk or limestone; Mixed woodland on base-rich soils associated with rocky slopes; Lesser horseshoe bat; Greater horseshoe bat.	Dry grassland, Steppes; Inland rocks, Screes, Sands, Permanent Snow and ice; Humid grassland, Mesophile grassland; Broad-leaved deciduous woodland; Heath, Scrub, Maquis and Garrigue, Phygrana; Mixed woodland; Coniferous woodland	Natural England

Features are displayed on the Environmental designations map on page 121 >

ID	Location	Name	Features of interest	Habitat description	Data source
С	236m N	Avon Gorge Woodland s	Dry grasslands and scrublands on chalk or limestone; Mixed woodland on base-rich soils associated with rocky slopes; Lesser horseshoe bat; Greater horseshoe bat.	Dry grassland, Steppes; Inland rocks, Screes, Sands, Permanent Snow and ice; Humid grassland, Mesophile grassland; Broad-leaved deciduous woodland; Heath, Scrub, Maquis and Garrigue, Phygrana; Mixed woodland; Coniferous woodland	Natural England
E	797m N	Avon Gorge Woodland s	Dry grasslands and scrublands on chalk or limestone; Mixed woodland on base-rich soils associated with rocky slopes; Lesser horseshoe bat; Greater horseshoe bat.	Dry grassland, Steppes; Inland rocks, Screes, Sands, Permanent Snow and ice; Humid grassland, Mesophile grassland; Broad-leaved deciduous woodland; Heath, Scrub, Maquis and Garrigue, Phygrana; Mixed woodland; Coniferous woodland	Natural England

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.4 Special Protection Areas (SPA)

Records within 2000m

Sites classified by the UK Government under the EC Birds Directive, SPAs are areas of the most important habitat for rare (listed on Annex I to the Directive) and migratory birds within the European Union.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.5 National Nature Reserves (NNR)

Records within 2000m

Sites containing examples of some of the most important natural and semi-natural terrestrial and coastal ecosystems in Great Britain. They are managed to conserve their habitats, provide special opportunities for scientific study or to provide public recreation compatible with natural heritage interests.

Features are displayed on the Environmental designations map on page 121 >

ID	Location	Name	Data source
В	On site	Leigh Woods	Natural England
7	372m N	Leigh Woods	Natural England
11	1025m NW	Leigh Woods	Natural England

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

0

10.6 Local Nature Reserves (LNR)

Records within 2000m

Sites managed for nature conservation, and to provide opportunities for research and education, or simply enjoying and having contact with nature. They are declared by local authorities under the National Parks and Access to the Countryside Act 1949 after consultation with the relevant statutory nature conservation agency.

Features are displayed on the Environmental designations map on page 121 >

ID	Location	Name	Data source
3	1m N	Avon New Cut	Natural England
13	1282m SE	Manor Woods Valley	Natural England

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.7 Designated Ancient Woodland

Records within 2000m

Ancient woodlands are classified as areas which have been wooded continuously since at least 1600 AD. This includes semi-natural woodland and plantations on ancient woodland sites. 'Wooded continuously' does not mean there is or has previously been continuous tree cover across the whole site, and not all trees within the woodland have to be old.

Features are displayed on the Environmental designations map on page 121 >

ID	Location	Name	Woodland Type
В	On site	Rownham Wood	Ancient & Semi-Natural Woodland
12	1080m N	Leigh Woods/oak Wood	Ancient Replanted Woodland
14	1308m NW	Leigh Woods/oak Wood	Ancient & Semi-Natural Woodland
-	1517m N	Clifton Down Wood	Ancient & Semi-Natural Woodland
-	1598m N	Leigh Woods/oak Wood	Ancient & Semi-Natural Woodland
17	1683m S	Hanging Hill Wood	Ancient & Semi-Natural Woodland
18	1703m NW	Leigh Woods/oak Wood	Ancient Replanted Woodland
-	1931m NW	Leigh Woods/oak Wood	Ancient & Semi-Natural Woodland

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

2

10.8 Biosphere Reserves

Records within 2000m

Biosphere Reserves are internationally recognised by UNESCO as sites of excellence to balance conservation and socioeconomic development between nature and people. They are recognised under the Man and the Biosphere (MAB) Programme with the aim of promoting sustainable development founded on the work of the local community.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.9 Forest Parks

Records within 2000m

These are areas managed by the Forestry Commission designated on the basis of recreational, conservation or scenic interest.

This data is sourced from the Forestry Commission.

10.10 Marine Conservation Zones

Records within 2000m

A type of marine nature reserve in UK waters established under the Marine and Coastal Access Act (2009). They are designated with the aim to protect nationally important, rare or threatened habitats and species.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

10.11 Green Belt

Records within 2000m	10
Areas designated to prevent urban sprawl by keeping land permanently open.	

Features are displayed on the Environmental designations map on page 121 >

ID	Location	Name	Local Authority name
1	On site	Bath and Bristol	North Somerset
2	On site	Bath and Bristol	Bristol, City of
5	196m S	Bath and Bristol	Bristol, City of
8	385m N	Bath and Bristol	Bristol, City of
D	442m SW	Bath and Bristol	North Somerset
9	503m N	Bath and Bristol	Bristol, City of

0

0

0

0

0

ID	Location	Name	Local Authority name
D	506m SW	Bath and Bristol	North Somerset
10	655m SE	Bath and Bristol	Bristol, City of
-	1635m N	Bath and Bristol	Bristol, City of
-	1917m S	Bath and Bristol	Bristol, City of

This data is sourced from the Ministry of Housing, Communities and Local Government.

10.12 Proposed Ramsar sites

Records within 2000m

Ramsar sites are areas listed as a Wetland of International Importance under the Convention on Wetlands of International Importance especially as Waterfowl Habitat (the Ramsar Convention) 1971. The sites here supplied have a status of 'Proposed' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.13 Possible Special Areas of Conservation (pSAC)

Records within 2000m

Special Areas of Conservation are areas which have been identified as best representing the range and variety within the European Union of habitats and (non-bird) species listed on Annexes I and II to the Directive. SACs are designated under the EC Habitats Directive. Those sites supplied here are those with a status of 'Possible' having been identified for potential adoption under the framework.

This data is sourced from Natural England and Natural Resources Wales.

10.14 Potential Special Protection Areas (pSPA)

Records within 2000m

Special Protection Areas (SPAs) are areas designated (or 'classified') under the European Union Wild Birds Directive for the protection of nationally and internationally important populations of wild birds. Those sites supplied here are those with a status of 'Potential' having been identified for potential adoption under the framework.

This data is sourced from Natural England.

10.15 Nitrate Sensitive Areas

Records within 2000m

0

0

Areas where nitrate concentrations in drinking water sources exceeded or was at risk of exceeding the limit of 50 mg/l set by the 1980 EC Drinking Water Directive. Voluntary agricultural measures as a means of reducing the levels of nitrate were introduced by DEFRA as MAFF, with payments being made to farmers who complied. The scheme was started as a pilot in 1990 in ten areas, later implemented within 32 areas. The scheme was closed to further new entrants in 1998, although existing agreements continued for their full term. All Nitrate Sensitive Areas fell within the areas designated as Nitrate Vulnerable Zones (NVZs) in 1996 under the EC Nitrate Directive (91/676/EEC).

This data is sourced from Natural England.

10.16 Nitrate Vulnerable Zones

Records within 2000m

Areas at risk from agricultural nitrate pollution designated under the EC Nitrate Directive (91/676/EEC). These areas of land that drain into waters polluted by nitrates. Farmers operating within these areas have to follow mandatory rules to tackle nitrate loss from agriculture.

This data is sourced from Natural England and Natural Resources Wales.

SSSI Impact Zones and Units

10.17 SSSI Impact Risk Zones

Records on site

10

Developed to allow rapid initial assessment of the potential risks to SSSIs posed by development proposals. They define zones around each SSSI which reflect the particular sensitivities of the features for which it is notified and indicate the types of development proposal which could potentially have adverse impacts.

Features are displayed on the SSSI Impact Zones and Units map on page 128 >

ID	Location	Type of developments requiring consultation
1	On site	All applications - All planning applications - except householder applications.

ID	Location	Type of developments requiring consultation
2	On site	Infrastructure - Pipelines, pylons and overhead cables. any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where net additional gross internal floorspace is > 1,000m ² or footprint exceeds 0.2ha. Residential - Residential development of 100 units or more. Rural residential - Any residential development of 50 or more houses outside existing settlements/urban areas. Air pollution - Any development that could cause air pollution (incl: industrial/commercial processes, livestock & poultry units, slurry lagoons & digestate stores, manure stores). Combustion - All general combustion processes. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Mechanical and biological waste treatment, inert landfill, non-hazardous landfill, hazardous landfill, household civic amenity recycling facilities construction, demolition and excavation waste, other waste management. Composting - Any composting proposal. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Discharges - Any discharge of water or liquid waste of more than 2m³/day to ground (ie to seep away) or to surface water, such as a beck or stream. Water supply - Large infrastructure such as warehousing / industry where net additional gross internal floorspace is > 1,000m ² or any development needing its own water supply .
3	On site	 Infrastructure - Pipelines, pylons and overhead cables. any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where footprint exceeds 1ha. Residential - Residential development of 100 units or more. Rural residential - Any residential development of 50 or more houses outside existing settlements/urban areas. Air pollution - Any industrial/agricultural development that could cause air pollution (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons & digestate stores > 200m², manure stores > 250t). Combustion - General combustion processes >20mw energy input. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Landfill. incl: inert landfill, non-hazardous landfill, hazardous landfill. Composting - Any composting proposal with more than 500 tonnes maximum annual operational throughput. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Discharges - Any discharge of water or liquid waste of more than 5m³/day to ground (ie to seep away) or to surface water, such as a beck or stream. Water supply - Large infrastructure such as warehousing / industry where net additional gross internal floorspace is > 1,000m² or any development needing its own water supply .

ID	Location	Type of developments requiring consultation
4	On site	 Infrastructure - Pipelines, pylons and overhead cables. any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where net additional gross internal floorspace is > 1,000m² or footprint exceeds 0.2ha. Residential - Residential development of 100 units or more. Rural residential - Any residential development of 50 or more houses outside existing settlements/urban areas. Air pollution - Any industrial/agricultural development that could cause air pollution (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons & digestate stores > 200m², manure stores > 250t). Combustion - General combustion processes >20mw energy input. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Landfill. incl: inert landfill, non-hazardous landfill, hazardous landfill. Composting - Any composting proposal with more than 500 tonnes maximum annual operational throughput. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Discharges - Any discharge of water or liquid waste of more than 2m³/day to ground (ie to seep away) or to surface water, such as a beck or stream. Water supply - Large infrastructure such as warehousing / industry where net additional gross internal floorspace is > 1,000m² or any development needing its own water supply .
5	On site	 Infrastructure - Pipelines, pylons and overhead cables. any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where footprint exceeds 1ha. Rural residential - Any residential development of 100 or more houses outside existing settlements/urban areas. Air pollution - Any industrial/agricultural development that could cause air pollution (incl: industrial processes, livestock & poultry units with floorspace > 500m², slurry lagoons & digestate stores > 200m², manure stores > 250t). Combustion - General combustion processes >20mw energy input. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Landfill. incl: inert landfill, non-hazardous landfill, hazardous landfill. Composting - Any composting proposal with more than 75000 tonnes maximum annual operational throughput. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Discharges - Any discharge of water or liquid waste of more than 5m³/day to ground (ie to seep away) or to surface water, such as a beck or stream. Water supply - Large infrastructure such as warehousing / industry where total net additional gross internal floorspace following development is 1,000m² or more.

ID	Location	Type of developments requiring consultation
6	On site	 Infrastructure - Pipelines, pylons and overhead cables. any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where net additional gross internal floorspace is > 1,000m² or footprint exceeds 0.2ha. Residential - Residential development of 50 units or more. Rural residential - Any residential development of 10 or more houses outside existing settlements/urban areas. Air pollution - Any development that could cause air pollution or dust either in its construction or operation (incl: industrial/commercial processes, livestock & poultry units, slurry lagoons & digestate stores, manure stores). Combustion - All general combustion processes. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Mechanical and biological waste treatment, inert landfill, non-hazardous landfill, hazardous landfill, household civic amenity recycling facilities construction, demolition and excavation waste, other waste management. Composting - Any composting proposal. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Discharges - Any discharge of water or liquid waste that is discharged to ground (ie to seep away) or to surface water, such as a beck or stream. Water supply - Large infrastructure such as warehousing / industry where net additional gross internal floorspace is > 1,000m² or any development needing its own water supply .
7	On site	 Infrastructure - Pipelines, pylons and overhead cables. any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where net additional gross internal floorspace is > 1,000m² or footprint exceeds 0.2ha. Residential - Residential development of 100 units or more. Rural residential - Any residential development of 50 or more houses outside existing settlements/urban areas. Air pollution - Any development that could cause air pollution (incl: industrial/commercial processes, livestock & poultry units, slurry lagoons & digestate stores, manure stores). Combustion - All general combustion processes. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Mechanical and biological waste treatment, inert landfill, non-hazardous landfill, hazardous landfill, household civic amenity recycling facilities construction, demolition and excavation waste, other waste management. Composting - Any composting proposal. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Discharges - Any discharge of water or liquid waste that is discharged to ground (ie to seep away) or to surface water, such as a beck or stream. Water supply - Large infrastructure such as warehousing / industry where net additional gross internal floorspace is > 1,000m² or any development needing its own water supply .

ID	Location	Type of developments requiring consultation
8	On site	Infrastructure - Pipelines, pylons and overhead cables. any transport proposal including road, rail and by water (excluding routine maintenance). airports, helipads and other aviation proposals. Minerals, Oil and Gas - Planning applications for quarries, including: new proposals, review of minerals permissions (romp), extensions, variations to conditions etc. oil & gas exploration/extraction. Rural non-residential - Large non residential developments outside existing settlements/urban areas where net additional gross internal floorspace is > 1,000m ² or footprint exceeds 0.2ha. Residential - Residential development of 50 units or more. Rural residential - Any residential development of 10 or more houses outside existing settlements/urban areas. Air pollution - Any development that could cause air pollution or dust either in its construction or operation (incl: industrial/commercial processes, livestock & poultry units, slurry lagoons & digestate stores, manure stores). Combustion - All general combustion processes. incl: energy from waste incineration, other incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage treatment works, other incineration/ combustion. Waste - Mechanical and biological waste treatment, inert landfill, non-hazardous landfill, hazardous landfill, household civic amenity recycling facilities construction, demolition and excavation waste, other waste management. Composting - Any composting proposal. incl: open windrow composting, in-vessel composting, anaerobic digestion, other waste management. Discharges - Any discharge of water or liquid waste of more than 2m ³ /day to ground (ie to seep away) or to surface water, such as a beck or stream. Water supply - Large infrastructure such as warehousing / industry where net additional gross internal floorspace is > 1,000m ² or any development needing its own water supply .
Α	On site	All applications - All planning applications - except householder applications.
Α	On site	All applications - All planning applications.

This data is sourced from Natural England.

10.18 SSSI Units

Records within 2000m

24

Divisions of SSSIs used to record management and condition details. Units are the smallest areas for which Natural England gives a condition assessment, however, the size of units varies greatly depending on the types of management and the conservation interest.

Features are displayed on the SSSI Impact Zones and Units map on page 128 >

ID:	В
Location:	On site
SSSI name:	Avon Gorge
Unit name:	2
Broad habitat:	Inland Rock
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	23/06/2009
H6210 Semi-natural dry grasslands and scrubland facies: on calcareous substrates (Festuco-Brometalia), (note that this includes the priority feature important orchid rich sites)	Unfavourable - Recovering	23/06/2009
H9180 Tilio-Acerion forests of slopes, screes and ravines	Favourable	23/06/2009
Lowland calcareous grassland (CG1)	Unfavourable - Recovering	23/06/2009
Lowland calcareous grassland (CG3-5)	Unfavourable - Recovering	23/06/2009
Population of RDB plant - Sorbus eminens, Whitebeam	Favourable	23/06/2009
Vascular plant assemblage	Favourable	23/06/2009

ID:	9
Location:	1m N
SSSI name:	Avon Gorge
Unit name:	1
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	09/06/2009
H9180 Tilio-Acerion forests of slopes, screes and ravines	Unfavourable - Recovering	09/06/2009
Lowland mixed deciduous woodland	Favourable	09/06/2009
Vascular plant assemblage	Favourable	09/06/2009

ID:	12
Location:	61m N
SSSI name:	Ashton Court
Unit name:	Rownham And Clannage Field
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900

Feature name	Feature condition	Date of assessment
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	15
Location:	229m NW
SSSI name:	Ashton Court
Unit name:	Clifton Lodge Area
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	16
Location:	236m N
SSSI name:	Avon Gorge
Unit name:	17
Broad habitat:	Inland Rock
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	01/07/2010
H6210 Semi-natural dry grasslands and scrubland facies: on calcareous substrates (Festuco-Brometalia), (note that this includes the priority feature important orchid rich sites)	Unfavourable - Recovering	01/07/2010
Lowland calcareous grassland (CG1)	Unfavourable - Recovering	01/07/2010
Lowland calcareous grassland (CG3-5)	Unfavourable - Recovering	01/07/2010
Population of Schedule 8 plant - Allium sphaerocephalon, Round-headed Leek	Unfavourable - Recovering	01/07/2010
Vascular plant assemblage	Unfavourable - Recovering	01/07/2010

ID:	17
Location:	364m N
SSSI name:	Avon Gorge
Unit name:	3
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Not Recorded	01/01/1900
H9180 Tilio-Acerion forests of slopes, screes and ravines	Not Recorded	01/01/1900
Lowland mixed deciduous woodland	Favourable	16/06/2009
Vascular plant assemblage	Favourable	15/10/2010

ID:	E
Location:	551m N
SSSI name:	Avon Gorge
Unit name:	Observatory Hill
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	01/07/2010
H6210 Semi-natural dry grasslands and scrubland facies: on calcareous substrates (Festuco-Brometalia), (note that this includes the priority feature important orchid rich sites)	Unfavourable - Recovering	01/07/2010
Vascular plant assemblage	Unfavourable - Recovering	01/07/2010

18
557m W
Ashton Court
Summerhouse Area
Broadleaved, Mixed And Yew Woodland - Lowland
Favourable

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900

Feature name	Feature condition	Date of assessment
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	21
Location:	641m N
SSSI name:	Avon Gorge
Unit name:	4
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Not Recorded	01/01/1900
H9180 Tilio-Acerion forests of slopes, screes and ravines	Not Recorded	01/01/1900
Lowland mixed deciduous woodland	Favourable	04/06/2009
Population of RDB plant - Sorbus bristoliensis, Bristol Whitebeam	Favourable	15/10/2010
Population of RDB plant - Sorbus eminens, Whitebeam	Not Recorded	01/01/1900
Vascular plant assemblage	Not Recorded	01/01/1900

ID:	24
Location:	797m N
SSSI name:	Avon Gorge
Unit name:	Clifton Down
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	01/07/2010
H6210 Semi-natural dry grasslands and scrubland facies: on calcareous substrates (Festuco-Brometalia), (note that this includes the priority feature important orchid rich sites)	Unfavourable - Recovering	01/07/2010
Vascular plant assemblage	Favourable	01/07/2010

ID:	25
Location:	864m W
SSSI name:	Ashton Court
Unit name:	Showground
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	28
Location:	996m N
SSSI name:	Avon Gorge
Unit name:	6
Broad habitat:	Inland Rock
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	23/06/2009
H6210 Semi-natural dry grasslands and scrubland facies: on calcareous substrates (Festuco-Brometalia), (note that this includes the priority feature important orchid rich sites)	Unfavourable - Recovering	23/06/2009
H9180 Tilio-Acerion forests of slopes, screes and ravines	Favourable	23/06/2009
Lowland calcareous grassland (CG1)	Unfavourable - Recovering	23/06/2009
Lowland calcareous grassland (CG3-5)	Unfavourable - Recovering	23/06/2009
Lowland mixed deciduous woodland	Favourable	23/06/2009
Population of RDB plant - Sorbus wilmottiana, Whitebeam	Favourable	23/06/2009
Vascular plant assemblage	Favourable	23/06/2009

ID:	29
Location:	998m NW
SSSI name:	Ashton Court
Unit name:	Golf Course
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	30
Location:	1030m NW
SSSI name:	Avon Gorge
Unit name:	5
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Not Recorded	01/01/1900
H9180 Tilio-Acerion forests of slopes, screes and ravines	Not Recorded	01/01/1900
Lowland mixed deciduous woodland	Favourable	10/06/2009
Vascular plant assemblage	Not Recorded	01/01/1900

ID:	31
Location:	1072m W
SSSI name:	Ashton Court
Unit name:	Keepers Wood
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900

Feature name	Feature condition	Date of assessment
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	32
Location:	1092m N
SSSI name:	Avon Gorge
Unit name:	14
Broad habitat:	Inland Rock
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	01/07/2010
H6210 Semi-natural dry grasslands and scrubland facies: on calcareous substrates (Festuco-Brometalia), (note that this includes the priority feature important orchid rich sites)	Unfavourable - Recovering	01/07/2010
Lowland calcareous grassland (CG1)	Unfavourable - Recovering	01/07/2010
Lowland calcareous grassland (CG3-5)	Unfavourable - Recovering	01/07/2010
Vascular plant assemblage	Unfavourable - Recovering	01/07/2010

ID:	34
Location:	1189m W
SSSI name:	Ashton Court
Unit name:	Deer Park
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	37
Location:	1263m W
SSSI name:	Ashton Court
Unit name:	Keepers Wood
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	39
Location:	1457m W
SSSI name:	Ashton Court
Unit name:	Barn Field
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	-
Location:	1476m N
SSSI name:	Avon Gorge
Unit name:	Walcombe Slade
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Favourable
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	20/08/2009
H6210 Semi-natural dry grasslands and scrubland facies: on calcareous substrates (Festuco-Brometalia), (note that this includes the priority feature important orchid rich sites)	Favourable	20/08/2009

Feature name	Feature condition	Date of assessment
Lowland calcareous grassland (CG3-5)	Favourable	20/08/2009
Population of RDB plant - Sorbus bristoliensis, Bristol Whitebeam	Favourable	20/08/2009
Population of RDB plant - Sorbus eminens, Whitebeam	Favourable	20/08/2009
Population of RDB plant - Sorbus wilmottiana, Whitebeam	Favourable	20/08/2009
Vascular plant assemblage	Favourable	20/08/2009

41
1489m W
Ashton Court
New Graze
Broadleaved, Mixed And Yew Woodland - Lowland
Favourable

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

ID:	42
Location:	1529m W
SSSI name:	Ashton Court
Unit name:	Clerkencombe Wood
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
Invert. assemblage A211 heartwood decay	Not Recorded	01/01/1900
Invert. assemblage A212 bark and sapwood decay	Not Recorded	01/01/1900
Invert. assemblage A213 fungal fruiting body	Not Recorded	01/01/1900

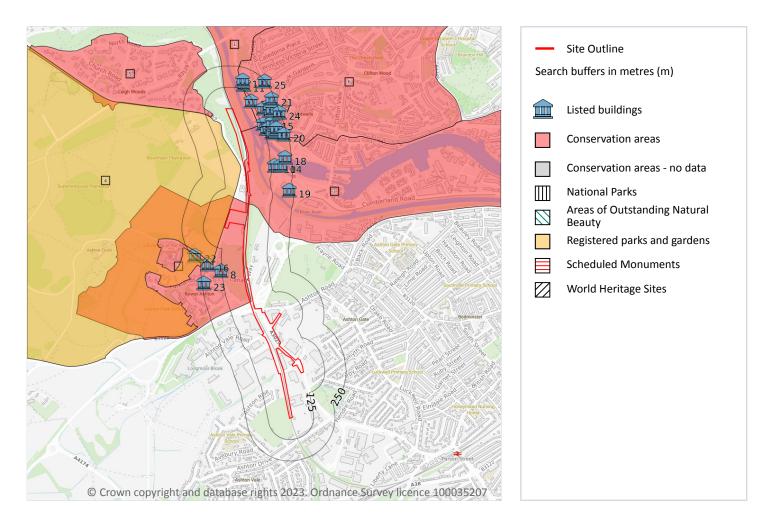
ID:	-
Location:	1620m N
SSSI name:	Avon Gorge
Unit name:	7
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	27/05/2009
H9180 Tilio-Acerion forests of slopes, screes and ravines	Unfavourable - Recovering	27/05/2009
Lowland mixed deciduous woodland	Unfavourable - Recovering	27/05/2009
Vascular plant assemblage	Favourable	27/05/2009

ID:	-
Location:	1829m N
SSSI name:	Avon Gorge
Unit name:	Gully Outcrop
Broad habitat:	Broadleaved, Mixed And Yew Woodland - Lowland
Condition:	Unfavourable - Recovering
Reportable features:	

Feature name	Feature condition	Date of assessment
EO - Dinantian	Favourable	20/08/2009
H6210 Semi-natural dry grasslands and scrubland facies: on calcareous substrates (Festuco-Brometalia), (note that this includes the priority feature important orchid rich sites)	Unfavourable - Recovering	20/08/2009
Lowland calcareous grassland (CG1)	Unfavourable - Recovering	20/08/2009
Lowland calcareous grassland (CG3-5)	Unfavourable - Recovering	20/08/2009
Population of RDB plant - Sorbus bristoliensis, Bristol Whitebeam	Favourable	20/08/2009
Population of RDB plant - Sorbus eminens, Whitebeam	Favourable	20/08/2009
Population of RDB plant - Sorbus wilmottiana, Whitebeam	Favourable	20/08/2009
Population of Schedule 8 plant - Allium sphaerocephalon, Round-headed Leek	Favourable	20/08/2009
Vascular plant assemblage	Unfavourable - Recovering	20/08/2009

This data is sourced from Natural England and Natural Resources Wales.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

11 Visual and cultural designations

11.1 World Heritage Sites

Records within 250m

Sites designated for their globally important cultural or natural interest requiring appropriate management and protection measures. World Heritage Sites are designated to meet the UK's commitments under the World Heritage Convention.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.2 Area of Outstanding Natural Beauty

Records within 250m

Areas of Outstanding Natural Beauty (AONB) are conservation areas, chosen because they represent 18% of the finest countryside. Each AONB has been designated for special attention because of the quality of their flora, fauna, historical and cultural associations, and/or scenic views. The National Parks and Access to the Countryside Act of 1949 created AONBs and the Countryside and Rights of Way Act, 2000 added further regulation and protection. There are likely to be restrictions to some developments within these areas.

This data is sourced from Natural England, Natural Resources Wales and Scottish Natural Heritage.

11.3 National Parks

Records within 250m

In England and Wales, the purpose of National Parks is to conserve and enhance landscapes within the countryside whilst promoting public enjoyment of them and having regard for the social and economic wellbeing of those living within them. In Scotland National Parks have the additional purpose of promoting the sustainable use of the natural resources of the area and the sustainable social and economic development of its communities. The National Parks and Access to the Countryside Act 1949 established the National Park designation in England and Wales, and The National Parks (Scotland) Act 2000 in Scotland.

This data is sourced from Natural England, Natural Resources Wales and the Scottish Government.

11.4 Listed Buildings

Records within 250m

Buildings listed for their special architectural or historical interest. Building control in the form of 'listed building consent' is required in order to make any changes to that building which might affect its special interest. Listed buildings are graded to indicate their relative importance, however building controls apply to all buildings equally, irrespective of their grade, and apply to the interior and exterior of the building in its entirety, together with any curtilage structures.

Features are displayed on the Visual and cultural designations map on page 143 >

ID	Location	Name	Grade	Reference Number	Listed date
7	118m N	St Vincent's Parade, And Attached Front Area Railings And Gates		1202312	08/01/1959
8	133m W	Bower Cottage Double House	11	1280645	04/03/1977
9	134m N	16-19, Freeland Place	11	1202223	06/09/1974
А	144m N	20 And 21, Freeland Place		1282268	06/09/1974
10	146m N	Brunel's South Entrance Lock	*	1207824	18/02/1972

Contact us with any questions at: info@groundsure.com ↗ 01273 257 755 Date: 14 June 2023

27

0

ID	Location	Name		Reference Number	Listed date
11	156m N	Rock House And Attached Front Pavement And Basement Area Railings And Gates	11	1292966	08/01/1959
A	158m N	Freeland House Attached Front Garden Walls Piers And Basement Area Railings	11	1202224	06/09/1974
В	171m N	Freeland Court	*	1282232	06/09/1974
12	171m N	Numbers 1 To 10 (Consecutive) And Attached Front Basement Area Railings		1282030	08/01/1959
13	178m N	The Colonnade And Attached Front Garden Railings	*	1208848	08/01/1959
В	178m N	Numbers 302 And 304 And Attached Front Area Walls And Piers	11	1202310	06/09/1974
14	181m N	Swing Bridge Over Brunel's South Entrance Lock	*	1207851	18/02/1972
15	187m N	Numbers 1 To 15 (Consecutive) And Attached Front Basement Walls And Railings		1202222	06/09/1974
В	194m N	3, Granby Hill		1187386	30/12/1994
В	200m N	5, Granby Hill	11	1202239	04/03/1977
С	202m N	Revetment Wall, Entrance Screen, Gate Piers And Railings To Windsor Terrace	11	1202706	04/03/1977
16	208m W	Former Perimeter Wall Of Ashton Court Estate		1282235	04/03/1977
17	208m N	11, Windsor Terrace	11	1291025	04/03/1977
18	213m N	Swing Bridge Over North Entrance Lock	*	1202186	18/02/1972
С	215m N	Gas Lamp Post Approximately 1 Metre North East Of Gateway To Windsor Terrace	II	1220382	30/12/1994
19	226m N	B Bond Tobacco Warehouse	11	1208330	03/05/1988
20	231m N	Stork House		1282230	04/03/1977
21	234m N	15, The Paragon	*	1202628	08/01/1959
22	237m W	Kennel Lodge And Attached Walls		1209478	30/12/1994
23	238m W	Oakleigh		1202425	04/03/1977
24	247m N	Number 27 And Attached Walls And Piers		1187394	04/03/1977
25	248m N	Number 16 (Part)		1209543	08/01/1959

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.5 Conservation Areas

Records within 250m

Local planning authorities are obliged to designate as conservation areas any parts of their own area that are of special architectural or historic interest, the character and appearance of which it is desirable to preserve or enhance. Designation of a conservation area gives broader protection than the listing of individual buildings. All the features within the area, listed or otherwise, are recognised as part of its character. Conservation area designation is the means of recognising the importance of all factors and of ensuring that planning decisions address the quality of the landscape in its broadest sense.

Features are displayed on the Visual and cultural designations map on page 143 >

ID	Location	Name	District	Date of designation
1	On site	The Downs	City of Bristol	18/02/1981
2	On site	Bower Ashton	City of Bristol	18/02/1981
3	On site	City Docks	City of Bristol	19/09/1979
5	82m N	Leighwoods	North Somerset	28/09/1977
6	103m N	Clifton	City of Bristol	26/09/1972

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.6 Scheduled Ancient Monuments

Records within 250m

A scheduled monument is an historic building or site that is included in the Schedule of Monuments kept by the Secretary of State for Digital, Culture, Media and Sport. The regime is set out in the Ancient Monuments and Archaeological Areas Act 1979. The Schedule of Monuments has c.20,000 entries and includes sites such as Roman remains, burial mounds, castles, bridges, earthworks, the remains of deserted villages and industrial sites. Monuments are not graded, but all are, by definition, considered to be of national importance.

This data is sourced from Historic England, Cadw and Historic Environment Scotland.

11.7 Registered Parks and Gardens

Records within 250m

Parks and gardens assessed to be of particular interest and of special historic interest. The emphasis being on 'designed' landscapes, rather than on planting or botanical importance. Registration is a 'material consideration' in the planning process, meaning that planning authorities must consider the impact of any proposed development on the special character of the landscape.

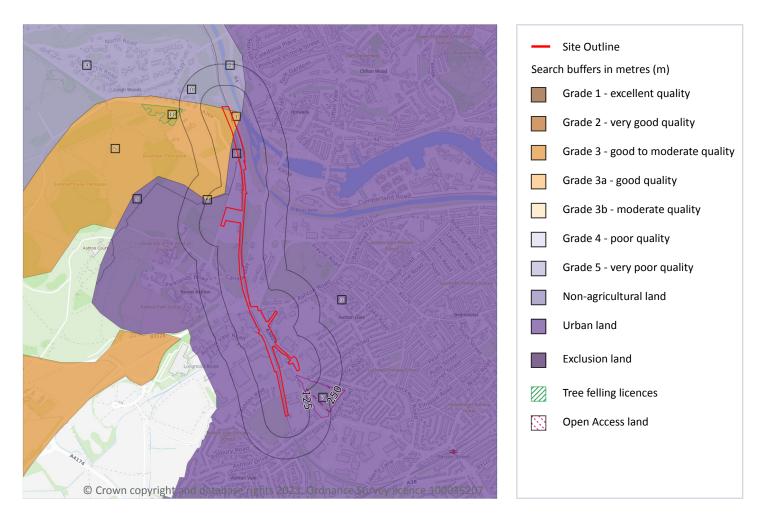
Features are displayed on the Visual and cultural designations map on page 143 >

5

0

ID	Location	Name	Grade
4	4m NW	Ashton Court	*

This data is sourced from Historic England, Cadw and Historic Environment Scotland.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

12 Agricultural designations

12.1 Agricultural Land Classification

Records within 250m

Classification of the quality of agricultural land taking into consideration multiple factors including climate, physical geography and soil properties. It should be noted that the categories for the grading of agricultural land are not consistent across England, Wales and Scotland.

Features are displayed on the Agricultural designations map on page 148 >

ID	Location	Classification	Description
1	On site	Grade 3	Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.

ID	Location	Classification	Description	
2	On site	Non Agricultural	-	
3	On site	Urban	-	
4	On site	Non Agricultural	-	
5	On site	Grade 3	Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.	
6	On site			
	On site	Urban	-	
8	111m NW	Urban Grade 3	- Good to moderate quality agricultural land. Land with moderate limitations which affect the choice of crops, timing and type of cultivation, harvesting or the level of yield. Where more demanding crops are grown yields are generally lower or more variable than on land in Grades 1 and 2.	

This data is sourced from Natural England.

12.2 Open Access Land

Records within 250m	1	

The Countryside and Rights of Way Act 2000 (CROW Act) gives a public right of access to land without having to use paths. Access land includes mountains, moors, heaths and downs that are privately owned. It also includes common land registered with the local council and some land around the England Coast Path. Generally permitted activities on access land are walking, running, watching wildlife and climbing.

Features are displayed on the Agricultural designations map on page 148 >

ID	Location	Name	Classification	Other relevant legislation
7	25m S	Gore's Marsh Common	Section 15 Land	1899

This data is sourced from Natural England and Natural Resources Wales.

12.3 Tree Felling Licences

Records within 250m	2
---------------------	---

Felling Licence Application (FLA) areas approved by Forestry Commission England. Anyone wishing to fell trees must ensure that a licence or permission under a grant scheme has been issued by the Forestry Commission before any felling is carried out or that one of the exceptions apply.

3

0

Features are displayed on the Agricultural designations map on page 148 >

ID	Location	Description	Reference	Application date
10	189m N	Selective Fell/Thin (Unconditional)	018/116/05-06	20/10/2005
11	229m NW	Selective Fell/Thin (Unconditional)	018/116/05-06	20/10/2005

This data is sourced from the Forestry Commission.

12.4 Environmental Stewardship Schemes

Records within 250m

Environmental Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. The schemes identified may be historical schemes that have now expired, or may still be active.

Location	Reference	Scheme	Start Date	End date
0m N	AG00384129	Higher Level Stewardship	01/03/2012	28/02/2022
2m NW	AG00508886	Higher Level Stewardship	01/12/2013	30/11/2023
209m N	AG00284455	Higher Level Stewardship	01/02/2009	31/01/2021

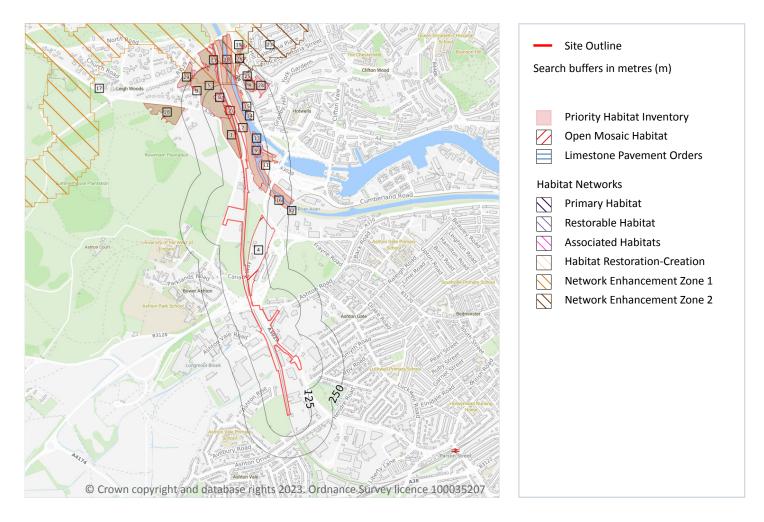
This data is sourced from Natural England.

12.5 Countryside Stewardship Schemes

Records within 250m

Countryside Stewardship covers a range of schemes that provide financial incentives to farmers, foresters and land managers to look after and improve the environment. Main objectives are to improve the farmed environment for wildlife and to reduce diffuse water pollution.

This data is sourced from Natural England.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

13 Habitat designations

13.1 Priority Habitat Inventory

Records within 250m

Habitats of principal importance as named under Natural Environment and Rural Communities Act (2006) Section 41.

Features are displayed on the Habitat designations map on page 151 >

ID	Location	Main Habitat	Other habitats
1	On site	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
2	On site	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
3	On site	Deciduous woodland	Main habitat: DWOOD (INV > 50%); Additional: LCGRA (ENSIS L2); UCGRA (ENSIS L2)

ID	Location	Main Habitat	Other habitats	
5	1m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%, ENSIS L1); Additional: LCGRA (FEP 50%)	
6	5m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%, ENSIS L1); Additional: LCGRA (FEP 50%)	
7	6m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
8	22m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%, ENSIS L1); Additional: LCGRA (FEP 50%)	
9	46m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
10	58m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
11	64m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
12	65m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
13	66m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
14	77m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
15	82m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
16	118m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
А	136m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
20	137m N	Mudflats	Main habitat: MUDFL (INV > 50%)	
21	1 139m N Deciduous woodland		Main habitat: DWOOD (INV > 50%); Additional: LCGRA (ENSIS L2, FEP 50%); UCGRA (ENSIS L2)	
22	152m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
А	158m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
В	173m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%); Additional: LCGRA (FEP 50%)	
24	174m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
25	177m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
В	189m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
26	193m N	No main habitat but additional habitats present	Additional: LCGRA (ENSIS L2); UCGRA (ENSIS L2)	
27	193m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)	
С	223m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%, ENSIS L1); Additional: LCGRA (FEP 50%)	
28	229m NW	Deciduous woodland	Main habitat: DWOOD (INV > 50%); Additional: LCGRA (FEP 50%); LMEAD (FEP 50%)	

ID	Location	Main Habitat	Other habitats
29	230m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
30	243m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)
31	244m N	Mudflats	Main habitat: MUDFL (INV > 50%)
32	249m NE	Mudflats	Main habitat: MUDFL (INV > 50%)
С	249m N	Deciduous woodland	Main habitat: DWOOD (INV > 50%)

This data is sourced from Natural England.

13.2 Habitat Networks

Records within 250m	4
---------------------	---

Habitat networks for 18 priority habitat networks (based primarily, but not exclusively, on the priority habitat inventory) and areas suitable for the expansion of networks through restoration and habitat creation.

Features are displayed on the Habitat designations map on page 151 >

ID	Location	Туре	Habitat
17	133m N	Network Enhancement Zone 1	Not specified
18	133m N	Network Enhancement Zone 2	Not specified
19	133m N	Network Enhancement Zone 1	Not specified
23	160m N	Network Enhancement Zone 2	Not specified

This data is sourced from Natural England.

13.3 Open Mosaic Habitat

Records within 250m	1

Sites verified as Open Mosaic Habitat. Mosaic habitats are brownfield sites that are identified under the UK Biodiversity Action Plan as a priority habitat due to the habitat variation within a single site, supporting an array of invertebrates.

Features are displayed on the Habitat designations map on page 151 >

ID	Location	Site reference	ldentificati on confidence	Primary source	Secondary source	Tertiary source
4	On site	NLUD Ref: 11600332	Low	National Land Use Database - Previously Developed Land	UK Perspectives Aerial Photography	-

0

This data is sourced from Natural England.

13.4 Limestone Pavement Orders

Records within 250m

Limestone pavements are outcrops of limestone where the surface has been worn away by natural means over millennia. These rocks have the appearance of paving blocks, hence their name. Not only do they have geological interest, they also provide valuable habitats for wildlife. These habitats are threatened due to their removal for use in gardens and water features. Many limestone pavements have been designated as SSSIs which affords them some protection. In addition, Section 34 of the Wildlife and Countryside Act 1981 gave them additional protection via the creation of Limestone Pavement Orders, which made it a criminal offence to remove any part of the outcrop. The associated Limestone Pavement Priority Habitat is part of the UK Biodiversity Action Plan priority habitat in England.

This data is sourced from Natural England.

Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

14 Geology 1:10,000 scale - Availability

14.1 10k Availability

Records within 500m

An indication on the coverage of 1:10,000 scale geology data for the site, the most detailed dataset provided by the British Geological Survey. Either 'Full', 'Partial' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:10,000 scale - Availability map on page 155 >

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	Full	ST57SE

This data is sourced from the British Geological Survey.

Geology 1:10,000 scale - Artificial and made ground

14.2 Artificial and made ground (10k)

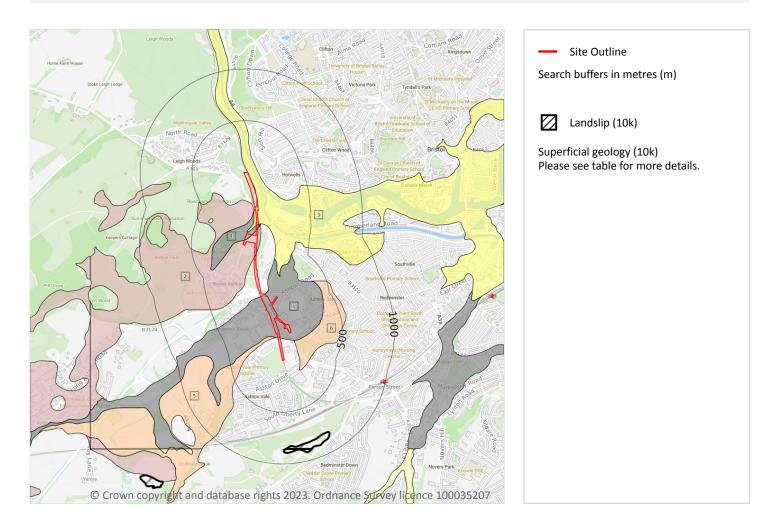
Records within 500m

Details of made, worked, infilled, disturbed and landscaped ground at 1:10,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability.

Features are displayed on the Geology 1:10,000 scale - Artificial and made ground map on page 156 >

ID	Location	LEX Code	Description	Rock description
1	On site	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
2	On site	WMGR-ARTDP	Infilled Ground	Artificial Deposit
3	On site	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
4	On site	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit

ID	Location	LEX Code	Description	Rock description
5	On site	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
6	9m N	WGR-VOID	Worked Ground (Undivided)	Void
А	81m N	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
7	96m N	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
8	97m N	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
9	147m S	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
10	160m SW	WGR-VOID	Worked Ground (Undivided)	Void
11	173m N	WMGR-ARTDP	Infilled Ground	Artificial Deposit
12	277m S	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
13	342m N	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
14	406m SE	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
15	442m N	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit
16	442m NE	MGR-ARTDP	Made Ground (Undivided)	Artificial Deposit



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

Geology 1:10,000 scale - Superficial

14.3 Superficial geology (10k)

Records within 500m

Superficial geological deposits at 1:10,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:10,000 scale - Superficial map on page 158 >

ID	Location	LEX Code	Description	Rock description
1	On site	ALV-XSWCV	Alluvium - Sand With Clay And Gravel	Sand With Clay And Gravel [unlithified Deposits Coding Scheme - Extended]
2	On site	HEAD- DMTN	Head - Diamicton	Diamicton

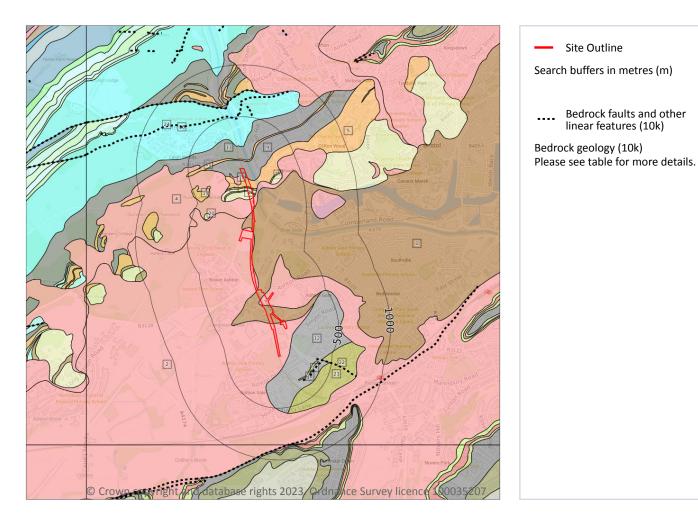
ID	Location	LEX Code	Description	Rock description
3	On site	TFD-XCZ	Tidal Flat Deposits - Clay And Silt	Clay And Silt
4	On site	ALV-XSWCV	Alluvium - Sand With Clay And Gravel	Sand With Clay And Gravel [unlithified Deposits Coding Scheme - Extended]
5	16m S	RTD1-XSV	River Terrace Deposits, 1 - Sand And Gravel	Sand And Gravel
6	83m SE	RTD1-XSV	River Terrace Deposits, 1 - Sand And Gravel	Sand And Gravel

This data is sourced from the British Geological Survey.

14.4 Landslip (10k)

Records within 500m	0

Mass movement deposits on BGS geological maps at 1:10,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

Bedrock faults and other

linear features (10k)

Geology 1:10,000 scale - Bedrock

14.5 Bedrock geology (10k)

Records within 500m

Bedrock geology at 1:10,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 160 >

ID	Location	LEX Code	Description	Rock age
1	On site	RESA-SDST	Redcliffe Sandstone Member - Sandstone	Triassic Period
2	On site	MMG- MDST	Mercia Mudstone Group - Mudstone	Rhaetian Age - Early Triassic Epoch
3	On site	QSG-SDST	Quartzitic Sandstone Formation - Sandstone	Yeadonian Sub-age - Pendleian Sub-age

Contact us with any questions at: info@groundsure.com ↗ 01273 257 755

ID	Location	LEX Code	Description	Rock age
4	On site	MMMF- CONG	Mercia Mudstone Group (marginal Facies) - Conglomerate	Triassic Period
5	On site	CHSA-SDST	Cromhall Sandstone Formation - Sandstone	Brigantian Age - Arundian Age
6	On site	QSG-MDST	Quartzitic Sandstone Formation - Mudstone	Yeadonian Sub-age - Pendleian Sub-age
7	On site	QSG-MDST	Quartzitic Sandstone Formation - Mudstone	Yeadonian Sub-age - Pendleian Sub-age
8	On site	QSG-SDST	Quartzitic Sandstone Formation - Sandstone	Yeadonian Sub-age - Pendleian Sub-age
9	On site	OHL-LSMD	Oxwich Head Limestone Formation - Interbedded Limestone And Mudstone	Brigantian Age - Asbian Age
10	25m N	MMMF- CONG	Mercia Mudstone Group (marginal Facies) - Conglomerate	Triassic Period
11	71m N	CHSA-SDST	Cromhall Sandstone Formation - Sandstone	Brigantian Age - Arundian Age
12	73m S	SWMCM- MDSS	South Wales Middle Coal Measures Formation - Mudstone, Siltstone And Sandstone	Bolsovian Sub-age - Duckmantian Sub-age
13	85m N	OHL-LSMD	Oxwich Head Limestone Formation - Interbedded Limestone And Mudstone	Brigantian Age - Asbian Age
14	183m N	QSG-MDST	Quartzitic Sandstone Formation - Mudstone	Yeadonian Sub-age - Pendleian Sub-age
15	192m N	QSG-SDST	Quartzitic Sandstone Formation - Sandstone	Yeadonian Sub-age - Pendleian Sub-age
16	213m N	CDL-LMST	Clifton Down Limestone Formation - Limestone	Holkerian Age - Arundian Age
17	289m S	SWMCM- SDST	South Wales Middle Coal Measures Formation - Sandstone	Bolsovian Sub-age - Duckmantian Sub-age
19	331m NW	CHSA-SDST	Cromhall Sandstone Formation - Sandstone	Brigantian Age - Arundian Age
20	341m NW	QSG-SDST	Quartzitic Sandstone Formation - Sandstone	Yeadonian Sub-age - Pendleian Sub-age
23	381m S	DN-SDST	Downend Member - Sandstone	Bolsovian Sub-age

14.6 Bedrock faults and other linear features (10k)

Records within 500m

4

Linear features at the ground or bedrock surface at 1:10,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

Features are displayed on the Geology 1:10,000 scale - Bedrock map on page 160 >

ID	Location	Category	Description
18	317m S	ROCK	Coal seam, inferred
21	345m SE	ROCK	Coal seam, inferred
22	351m SE	FAULT	Normal fault, inferred
24	484m N	FAULT	Normal fault, inferred

Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

15 Geology 1:50,000 scale - Availability

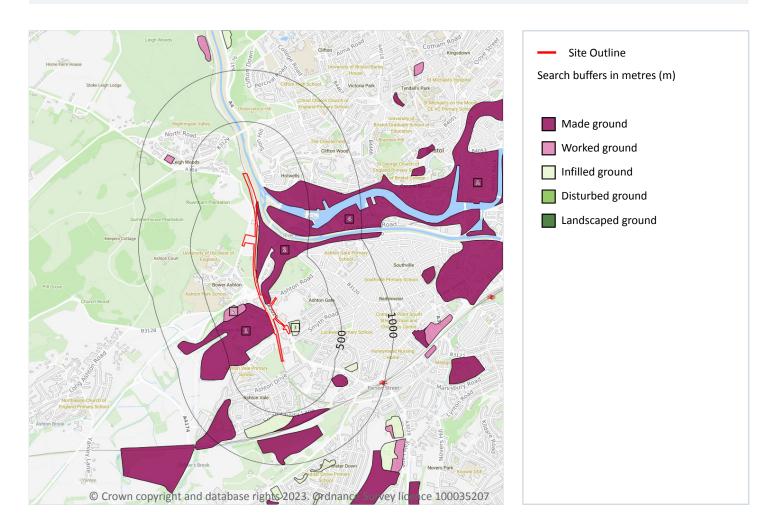
15.1 50k Availability

Records within 500m

An indication on the coverage of 1:50,000 scale geology data for the site. Either 'Full' or 'No coverage' for each geological theme.

Features are displayed on the Geology 1:50,000 scale - Availability map on page 163 >

ID	Location	Artificial	Superficial	Bedrock	Mass movement	Sheet No.
1	On site	Full	Full	Full	Full	EW264_bristol_v4


This data is sourced from the British Geological Survey.

Geology 1:50,000 scale - Artificial and made ground

15.2 Artificial and made ground (50k)

Records within 500m

Details of made, worked, infilled, disturbed and landscaped ground at 1:50,000 scale. Artificial ground can be associated with potentially contaminated material, unpredictable engineering conditions and instability. Features are displayed on the Geology 1:50,000 scale - Artificial and made ground map on page 164 >

ID	Location	LEX Code	Description	Rock description
1	On site	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
2	On site	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
3	15m SE	WMGR-ARTDP	INFILLED GROUND	ARTIFICIAL DEPOSIT
4	88m N	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT

ID	Location	LEX Code	Description	Rock description
А	104m N	MGR-ARTDP	MADE GROUND (UNDIVIDED)	ARTIFICIAL DEPOSIT
5	159m SW	WGR-VOID	WORKED GROUND (UNDIVIDED)	VOID

This data is sourced from the British Geological Survey.

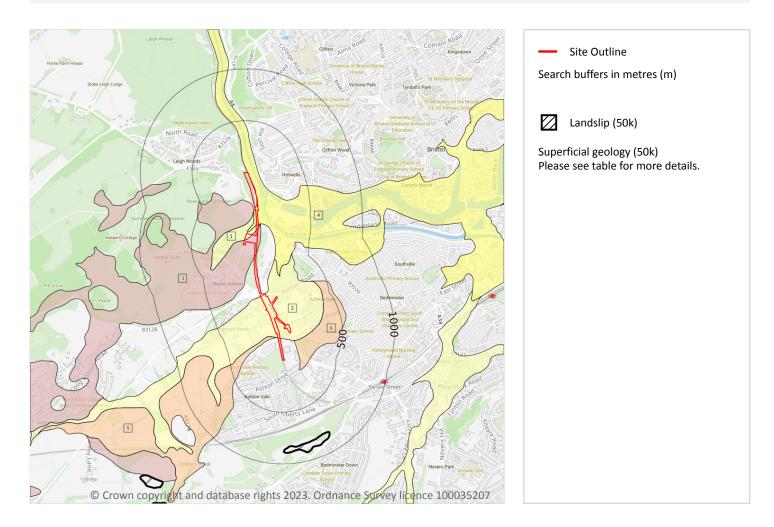
15.3 Artificial ground permeability (50k)

Records within 50m

3

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any artificial deposits (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability
On site	Mixed	Very High	Low
On site	Mixed	Very High	Low



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

Geology 1:50,000 scale - Superficial

15.4 Superficial geology (50k)

Records within 500m

Superficial geological deposits at 1:50,000 scale. Also known as 'drift', these are the youngest geological deposits, formed during the Quaternary. They rest on older deposits or rocks referred to as bedrock.

Features are displayed on the Geology 1:50,000 scale - Superficial map on page 166 >

ID	Location	LEX Code	Description	Rock description
1	On site	ALV-XCZSV	ALLUVIUM	CLAY, SILT, SAND AND GRAVEL
2	On site	ALV-XCZSV	ALLUVIUM	CLAY, SILT, SAND AND GRAVEL
3	On site	HEAD- XCZSV	HEAD	CLAY, SILT, SAND AND GRAVEL

Ref: GSIP-2023-13765-14374 G Your ref: Portishead Grid ref: 356700 171641

ID	Location	LEX Code	Description	Rock description
4 On site TFD-XCZ TIDAL FLAT DEPOSITS		TIDAL FLAT DEPOSITS	CLAY AND SILT	
5	16m S	RTD1-XSV	RIVER TERRACE DEPOSITS, 1	SAND AND GRAVEL
6	83m SE	RTD1-XSV	RIVER TERRACE DEPOSITS, 1	SAND AND GRAVEL

This data is sourced from the British Geological Survey.

15.5 Superficial permeability (50k)

Records within 50m

5

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any superficial deposits (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability	
On site	Intergranular	High	Very Low	
On site	Intergranular	High	Very Low	
o ::	late revenue le r	Low	Vory Low	
On site	Intergranular	LOW	Very Low	
On site	Mixed	High	Very Low	

This data is sourced from the British Geological Survey.

15.6 Landslip (50k)

Records within 500m

Mass movement deposits on BGS geological maps at 1:50,000 scale. Primarily superficial deposits that have moved down slope under gravity to form landslips. These affect bedrock, other superficial deposits and artificial ground.

This data is sourced from the British Geological Survey.

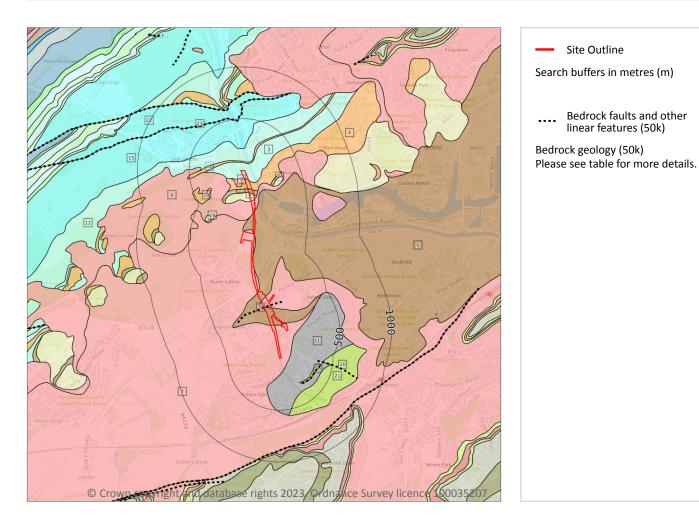
15.7 Landslip permeability (50k)

Records within 50m

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of any landslip deposits (the zone between the land surface and the water table).

This data is sourced from the British Geological Survey.

0


Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

Site Outline

Bedrock faults and other

linear features (50k)

Geology 1:50,000 scale - Bedrock

15.8 Bedrock geology (50k)

Records within 500m

Bedrock geology at 1:50,000 scale. The main mass of rocks forming the Earth and present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 168 >

ID	Location	LEX Code	Description	Rock age
1	On site	QSG-SDST	QUARTZITIC SANDSTONE FORMATION - SANDSTONE	NAMURIAN
2	On site	QSG-MDST	QUARTZITIC SANDSTONE FORMATION - MUDSTONE	NAMURIAN
3	On site	OHL- LMOOL	OXWICH HEAD LIMESTONE FORMATION - LIMESTONE, OOIDAL	VISEAN

ID	Location	LEX Code	Description	Rock age
4	On site	CHSA-SDST	CROMHALL SANDSTONE FORMATION - SANDSTONE	VISEAN
5	On site	RESA-SDST	REDCLIFFE SANDSTONE MEMBER - SANDSTONE	-
6	On site	MMMF- CONG	MERCIA MUDSTONE GROUP (MARGINAL FACIES) - CONGLOMERATE	-
7	On site	MMG- MDHA	MERCIA MUDSTONE GROUP - MUDSTONE AND HALITE- STONE	-
9	25m N	MMMF- CONG	MERCIA MUDSTONE GROUP (MARGINAL FACIES) - CONGLOMERATE	-
10	71m N	CHSA-SDST	CROMHALL SANDSTONE FORMATION - SANDSTONE	VISEAN
11	73m S	SWMCM- MDSS	SOUTH WALES MIDDLE COAL MEASURES FORMATION - MUDSTONE, SILTSTONE AND SANDSTONE	WESTPHALIAN
12	85m N	OHL-LMOOL	OXWICH HEAD LIMESTONE FORMATION - LIMESTONE, OOIDAL	VISEAN
13	183m N	QSG-MDST	QUARTZITIC SANDSTONE FORMATION - MUDSTONE	NAMURIAN
14	200m N	QSG-SDST	QUARTZITIC SANDSTONE FORMATION - SANDSTONE	NAMURIAN
15	213m N	CDL-LMST	CLIFTON DOWN LIMESTONE FORMATION - LIMESTONE	VISEAN
16	300m S	SWMCM- SDST	SOUTH WALES MIDDLE COAL MEASURES FORMATION - SANDSTONE	WESTPHALIAN
18	331m NW	CHSA-SDST	CROMHALL SANDSTONE FORMATION - SANDSTONE	VISEAN
19	341m NW	QSG-SDST	QUARTZITIC SANDSTONE FORMATION - SANDSTONE	NAMURIAN
21	381m S	PES-SDST	PENNANT SANDSTONE FORMATION - SANDSTONE	WESTPHALIAN
22	483m N	CDL-LMST	CLIFTON DOWN LIMESTONE FORMATION - LIMESTONE	VISEAN

This data is sourced from the British Geological Survey.

15.9 Bedrock permeability (50k)

Records within	າ 50m
-----------------------	-------

A qualitative classification of estimated rates of vertical movement of water from the ground surface through the unsaturated zone of bedrock (the zone between the land surface and the water table).

Location	Flow type	Maximum permeability	Minimum permeability	
On site	Fracture	Low	Low	
On site	Fracture	Very High	Very High	

Location	Flow type	Maximum permeability	Minimum permeability
On site Fracture		Very High	High
On site	Fracture	High	Moderate
On site	Fracture	Low	Low
On site	Intergranular	High	Moderate
On site	Fracture	High	Moderate
25m N	Fracture	Very High	Very High

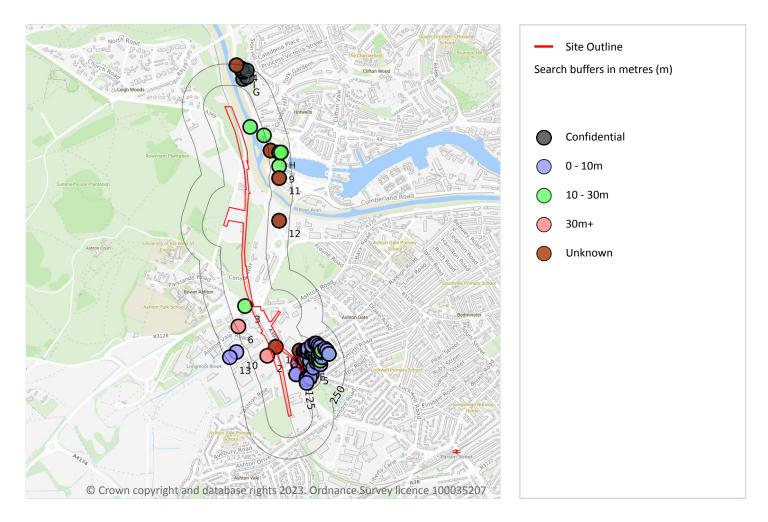
This data is sourced from the British Geological Survey.

15.10 Bedrock faults and other linear features (50k)

Records within 500m	4

Linear features at the ground or bedrock surface at 1:50,000 scale of six main types; rock, fault, fold axis, mineral vein, alteration area or landform. Features are either observed or inferred, and relate primarily to bedrock.

Features are displayed on the Geology 1:50,000 scale - Bedrock map on page 168 >


ID	Location	Category	Description
8	On site	ROCK	Coal seam, inferred
17	317m S	ROCK	Coal seam, inferred
20	351m SE	FAULT	Fault, inferred, displacement unknown
23	483m N	FAULT	Fault, inferred, displacement unknown

16 Boreholes

16.1 BGS Boreholes

Records within 250m

The Single Onshore Boreholes Index (SOBI); an index of over one million records of boreholes, shafts and wells from all forms of drilling and site investigation work held by the British Geological Survey. Covering onshore and nearshore boreholes dating back to at least 1790 and ranging from one to several thousand metres deep.

Features are displayed on the Boreholes map on page 171 >

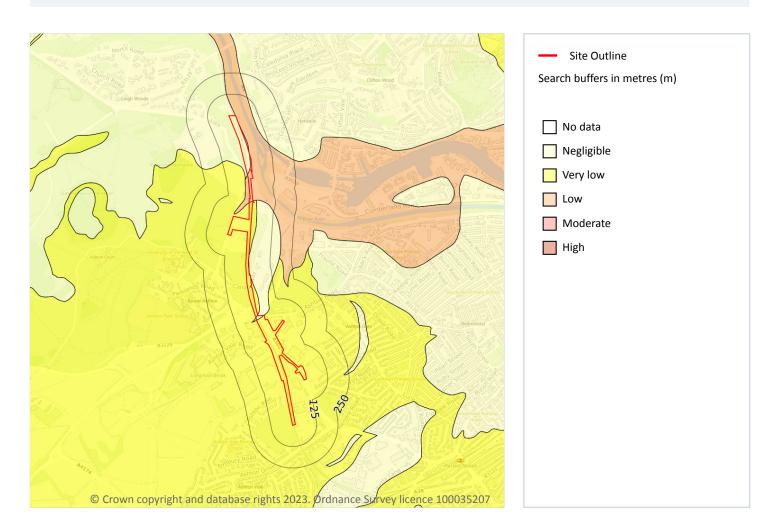
ID	Location	Grid reference	Name	Length	Confidential	Web link
A	On site	356910 171160	WINTERSTOKE ROAD BRISTOL MP5	9.5	Ν	<u>18478493</u> 7
Α	On site	356910 171170	WINTERSTOKE ROAD BRISTOL TP15	2.0	Ν	<u>18478515</u> 7

ID	Location	Grid reference	Name	Length	Confidential	Web link
В	On site	356930 171140	WINTERSTOKE ROAD BRISTOL C	5.0	Ν	<u>18478499</u> 7
1	2m S	356780 171260	MARSH PIT	-1.0	Ν	<u>388661</u> 7
В	5m SE	356940 171130	WINTERSTOKE ROAD BRISTOL DIS 37	3.0	Ν	<u>18478540</u> ⁄7
С	14m SE	356930 171200	WINTERSTOKE ROAD BRISTOL DIS 33	4.0	Ν	<u>18478539</u> 7
С	20m SE	356940 171190	WINTERSTOKE ROAD BRISTOL DIS 32	2.8	Ν	<u>18478538</u> 7
В	21m SE	356950 171110	WINTERSTOKE ROAD BRISTOL 9	11.0	Ν	<u>18478508</u> 7
В	25m SE	356960 171120	WINTERSTOKE ROAD BRISTOL DIS 38	4.0	Ν	<u>18478541</u> 7
С	28m SE	356930 171220	WINTERSTOKE ROAD BRISTOL TP18	3.0	Ν	<u>18478517</u> 7
С	28m SE	356940 171210	WINTERSTOKE ROAD BRISTOL 7	12.5	Ν	<u>18478506</u> 7
2	28m S	356730 171210	FRAYNES PIT	163.67	Ν	<u>388663</u> 7
В	29m SE	356950 171100	WINTERSTOKE ROAD BRISTOL DIS 39	3.0	Ν	<u>18478542</u> 7
С	29m SE	356950 171190	WINTERSTOKE ROAD BRISTOL B	5.0	Ν	<u>18478498</u> 7
D	31m S	356900 171100	NO.4 BOND WINTERSTOKE ROAD ASHTON TP 3	2.0	Ν	<u>388848</u> 7
D	31m S	356900 171100	NO.4 BOND WINTERSTOKE ROAD ASHTON TP 2	4.0	Ν	<u>388847</u> 7
D	31m S	356900 171100	NO.4 BOND WINTERSTOKE ROAD ASHTON TP 1	3.0	Ν	<u>388846</u> 7
3	34m S	356600 171500	ASHTON GATE	15.84	Ν	<u>388687</u> 7
С	39m SE	356920 171240	NEW LAND PIT	-1.0	Ν	<u>388662</u> 7
С	41m SE	356940 171230	WINTERSTOKE ROAD BRISTOL TP17	3.0	Ν	<u>18478516</u> 7
С	42m SE	356950 171220	WINTERSTOKE ROAD BRISTOL 6	12.5	Ν	<u>18478505</u> 7
В	42m SE	356970 171100	WINTERSTOKE ROAD BRISTOL DIS 41	3.0	Ν	<u>18478544</u> ⁄7
С	42m SE	356960 171200	WINTERSTOKE ROAD BRISTOL DIS 31	3.0	Ν	<u>18478537</u> 7

ID	Location	Grid reference	Name	Length	Confidential	Web link
E	49m SE	356980 171160	WINTERSTOKE ROAD BRISTOL 8	12.5	Ν	<u>18478507</u> 7
В	51m SE	356960 171080	WINTERSTOKE ROAD BRISTOL 10	10.0	Ν	<u>18478509</u> 7
E	54m SE	356980 171180	WINTERSTOKE ROAD BRISTOL DIS 11	4.0	Ν	<u>18478519</u> 刁
С	55m SE	356950 171240	WINTERSTOKE ROAD BRISTOL MP6	10.0	Ν	<u>18478494</u> 7
4	59m N	356630 172550	(BOX SITE) HOTWELLS TUNNEL A-I	18.89	Ν	<u>388685</u> 7
В	60m SE	356990 171100	WINTERSTOKE ROAD BRISTOL MP3	8.9	Ν	<u>18478490</u> 7
В	60m SE	356960 171070	WINTERSTOKE ROAD BRISTOL DIS 40	1.9	Ν	<u>18478543</u> 7
С	62m SE	356960 171240	WINTERSTOKE ROAD BRISTOL DIS 30	4.0	Ν	<u>18478536</u> 7
В	63m SE	356980 171080	WINTERSTOKE ROAD BRISTOL DIS 44	3.0	Ν	<u>18478545</u> 7
С	64m SE	356970 171230	WINTERSTOKE ROAD BRISTOL TP19	3.0	Ν	<u>18478518</u> 7
5	65m SE	357000 171140	WINTERSTOKE ROAD BRISTOL DIS 12	3.0	Ν	<u>18478520</u> 7
С	76m SE	356970 171250	WINTERSTOKE ROAD BRISTOL TP7	3.0	Ν	<u>18478512</u> 7
С	78m SE	356990 171220	WINTERSTOKE ROAD BRISTOL DIS 29	4.0	Ν	<u>18478535</u> 7
В	79m SE	356960 171050	WINTERSTOKE ROAD BRISTOL MP4	9.6	Ν	<u>18478492</u> 刁
С	87m SE	357000 171220	WINTERSTOKE ROAD BRISTOL DIS 26	5.0	Ν	<u>18478532</u> ⁄7
С	89m SE	357010 171200	WINTERSTOKE ROAD BRISTOL TP8	3.0	Ν	<u>18478513</u> 7
С	90m SE	357020 171170	WINTERSTOKE ROAD BRISTOL TP9	3.0	Ν	<u>18478514</u> 7
С	95m SE	357020 171190	WINTERSTOKE ROAD BRISTOL 4	12.5	Ν	<u>18478503</u> 7
F	100m SE	357000 171250	WINTERSTOKE ROAD BRISTOL 5	12.5	Ν	<u>18478504</u> 7

ID	Location	Grid reference	Name	Length	Confidential	Web link
С	104m SE	357030 171190	WINTERSTOKE ROAD BRISTOL DIS 24	5.0	Ν	<u>18478523</u> 7
F	105m SE	356990 171270	WINTERSTOKE ROAD BRISTOL DIS 28	3.0	Ν	<u>18478534</u> 刁
С	108m SE	357040 171160	WINTERSTOKE ROAD BRISTOL MP2	10.0	Ν	<u>18478489</u> 7
С	111m SE	357040 171180	WINTERSTOKE ROAD BRISTOL 3	12.5	Ν	<u>18478502</u> 7
6	115m S	356560 171380	ASHTON VALE NEW PIT	375.81	Ν	<u>388664</u> 7
F	115m SE	357030 171220	WINTERSTOKE ROAD BRISTOL DIS 25	4.0	Ν	<u>18478531</u> 7
7	119m N	356710 172500	BRISTOL HARBOUR IMPROVEMENTS A	16.15	Ν	<u>388642</u> 7
F	126m SE	357010 171280	WINTERSTOKE ROAD BRISTOL MP7	10.0	Ν	<u>18478495</u> 7
С	126m SE	357050 171200	WINTERSTOKE ROAD BRISTOL DIS 23	3.5	Ν	<u>18478522</u> 7
F	128m SE	357040 171230	WINTERSTOKE ROAD BRISTOL A	5.0	Ν	<u>18478497</u> 7
F	134m SE	357020 171280	WINTERSTOKE ROAD BRISTOL DIS 27	3.0	Ν	<u>18478533</u> 7
F	136m SE	357030 171270	WINTERSTOKE ROAD BRISTOL TP3	3.0	Ν	<u>18478511</u> 7
8	137m N	356750 172410	CUMBERLAND BASIN BRISTOL 1-3	-1.0	Ν	<u>388722</u> 7
F	139m SE	357040 171260	WINTERSTOKE ROAD BRISTOL MP8	10.0	Ν	<u>18478496</u> 7
F	141m SE	357050 171240	WINTERSTOKE ROAD BRISTOL 1	12.5	Ν	<u>18478500</u> 7
F	163m SE	357070 171250	WINTERSTOKE ROAD BRISTOL TP2	3.0	Ν	<u>18478510</u> 7
F	169m SE	357080 171240	WINTERSTOKE ROAD BRISTOL DIS 20	4.0	Ν	<u>18478521</u> 7
F	171m SE	357090 171220	WINTERSTOKE ROAD BRISTOL 2	12.5	Ν	<u>18478501</u> 刁
F	171m SE	357090 171220	WINTERSTOKE ROAD BRISTOL MP1	8.8	Ν	<u>18478488</u> 7
G	177m N	356590 172830	GRAND SPA HOTEL CLIFTON BRISTOL 12	-	Y	N/A

ID	Location	Grid reference	Name	Length	Confidential	Web link
9	177m N	356800 172320	DEEP SEWER TRIALS HOTWELLS	20.42	Ν	<u>388684</u> 7
10	182m S	356550 171230	HMSO STORE 1	9.44	Ν	<u>388681</u> 7
11	184m N	356800 172250	CUMBERLAND BASIN PROJECT	-1.0	Ν	<u>388688</u> 7
Н	187m N	356800 172400	GRANBY HILL BRISTOL	17.0	Ν	<u>388754</u> 7
12	190m NE	356800 172000	BORING V	-1.0	Ν	<u>388595</u> 7
G	194m N	356610 172840	GRAND SPA HOTEL CLIFTON BRISTOL 11	-	Υ	N/A
Н	196m N	356810 172400	BRISTOL HARBOUR IMPROVEMENTS B	12.95	Ν	388643 7
Ι	214m N	356590 172870	GRAND SPA HOTEL CLIFTON BRISTOL 18	-	Υ	N/A
I	221m N	356580 172880	CLIFTON GRAND SPA	27.61	Ν	<u>388880</u> 7
I	230m N	356580 172890	GRAND SPA HOTEL CLIFTON BRISTOL 14	-	Υ	N/A
I	231m N	356610 172880	GRAND SPA HOTEL CLIFTON BRISTOL 13	-	Υ	N/A
13	232m S	356510 171200	HMSO STORE 3	9.9	Ν	<u>388682</u> 7
14	245m N	356550 172910	CLIFTON BRISTOL	-1.0	Ν	<u>388640</u> 7



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

17 Natural ground subsidence - Shrink swell clays

17.1 Shrink swell clays

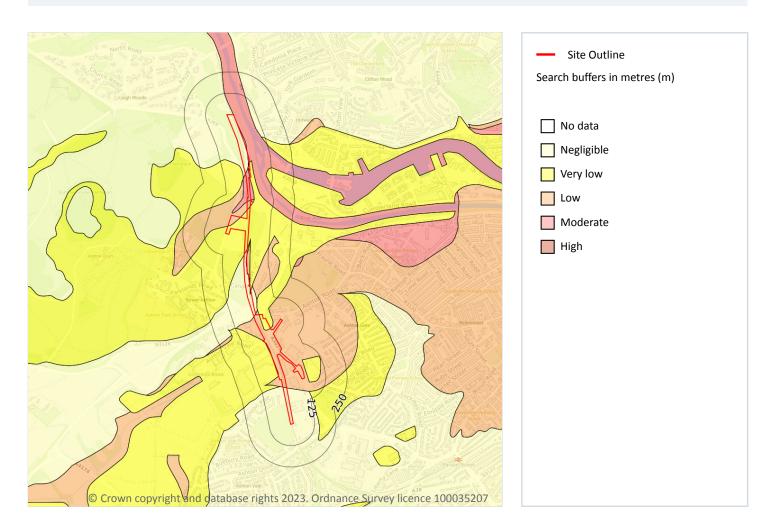
Records within 50m

The potential hazard presented by soils that absorb water when wet (making them swell), and lose water as they dry (making them shrink). This shrink-swell behaviour is controlled by the type and amount of clay in the soil, and by seasonal changes in the soil moisture content (related to rainfall and local drainage).

Features are displayed on the Natural ground subsidence - Shrink swell clays map on page 176 >

Location	Hazard rating	Details
On site	Negligible	Ground conditions predominantly non-plastic.
On site	Very low	Ground conditions predominantly low plasticity.
On site	Low	Ground conditions predominantly medium plasticity.

Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

Natural ground subsidence - Running sands

17.2 Running sands

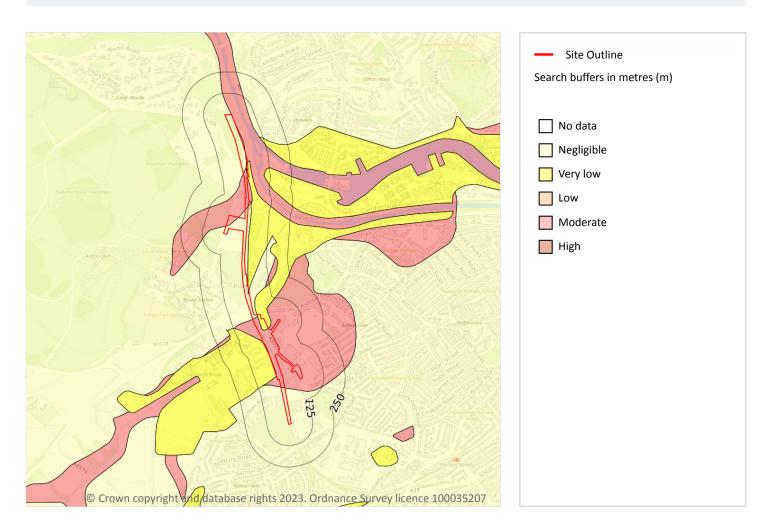
Records within 50m

The potential hazard presented by rocks that can contain loosely-packed sandy layers that can become fluidised by water flowing through them. Such sands can 'run', removing support from overlying buildings and causing potential damage.

Features are displayed on the Natural ground subsidence - Running sands map on page 178 >

Location	Hazard rating	Details
On site	Negligible	Running sand conditions are not thought to occur whatever the position of the water table. No identified constraints on lands use due to running conditions.

Location	Hazard rating	Details	
On site Very low Running sand conditions are unlikely. No identified constraints on land use due to runnin conditions unless water table rises rapidly.		Running sand conditions are unlikely. No identified constraints on land use due to running conditions unless water table rises rapidly.	
On site Low Running sand conditions may be present. Constraints may apply to land uses involving or the addition or removal of water.			
On site Moderate Running sand conditions are probably present. Constraints may apply to land uses involve excavation or the addition or removal of water.			
On site	Moderate	Running sand conditions are probably present. Constraints may apply to land uses involving excavation or the addition or removal of water.	
On site 14m SW	Moderate Low		


This data is sourced from the British Geological Survey.

Natural ground subsidence - Compressible deposits

17.3 Compressible deposits

Records within 50m

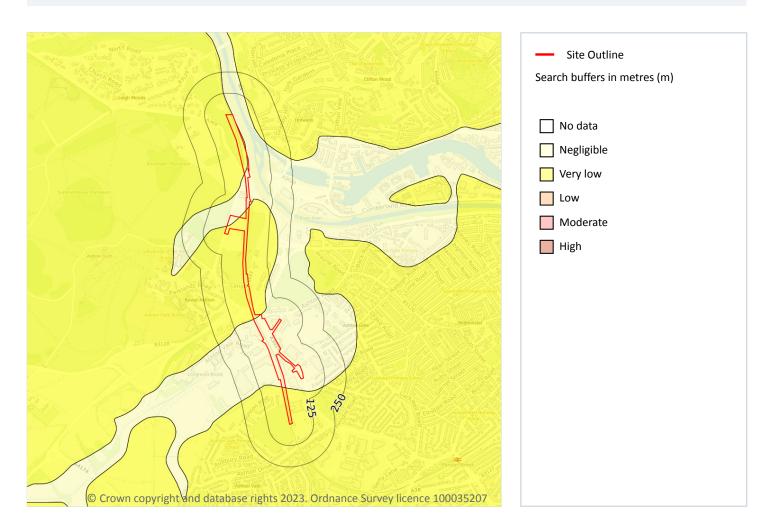
The potential hazard presented by types of ground that may contain layers of very soft materials like clay or peat and may compress if loaded by overlying structures, or if the groundwater level changes, potentially resulting in depression of the ground and disturbance of foundations.

Features are displayed on the Natural ground subsidence - Compressible deposits map on page 180 >

Location	Hazard rating	Details		
On site Negligible Compressible strata are not thought to occur.				
On site Very low		Compressibility and uneven settlement problems are not likely to be significant on the site for most land uses.		

Location	Hazard rating	Details
On site	Moderate	Compressibility and uneven settlement hazards are probably present. Land use should consider specifically the compressibility and variability of the site.

This data is sourced from the British Geological Survey.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

Natural ground subsidence - Collapsible deposits

17.4 Collapsible deposits

Records within 50m

The potential hazard presented by natural deposits that could collapse when a load (such as a building) is placed on them or they become saturated with water.

Features are displayed on the Natural ground subsidence - Collapsible deposits map on page 182 >

Location	Hazard rating	Details
On site	Negligible	Deposits with potential to collapse when loaded and saturated are believed not to be present.
On site	Very low	Deposits with potential to collapse when loaded and saturated are unlikely to be present.

This data is sourced from the British Geological Survey.

Natural ground subsidence - Landslides

17.5 Landslides

Records within 50m

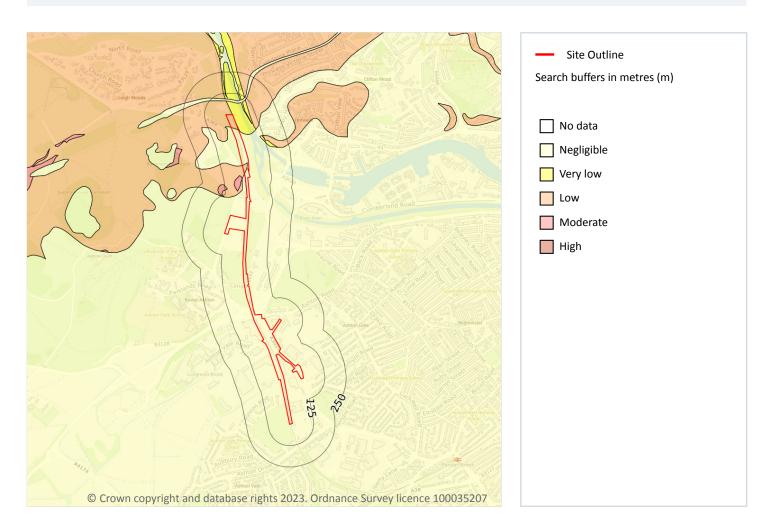
9

The potential for landsliding (slope instability) to be a hazard assessed using 1:50,000 scale digital maps of superficial and bedrock deposits, combined with information from the BGS National Landslide Database and scientific and engineering reports.

Features are displayed on the Natural ground subsidence - Landslides map on page 183 >

Location	Hazard rating	Details
On site	Negligible	Slope instability problems are not thought to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.

Location	Hazard rating	Details	
On site	On site Very low Slope instability problems are not likely to occur but consideration to potential probler adjacent areas impacting on the site should always be considered.		
-		Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.	
On site	Moderate	Slope instability problems are probably present or have occurred in the past. Land use should consider specifically the stability of the site.	
12m N	Low	Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.	
14m N	Low	Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.	
25m N	Negligible	Slope instability problems are not thought to occur but consideration to potential problems of adjacent areas impacting on the site should always be considered.	
34m N	Low	Slope instability problems may be present or anticipated. Site investigation should consider specifically the slope stability of the site.	
45m N	Moderate	Slope instability problems are probably present or have occurred in the past. Land use should consider specifically the stability of the site.	


This data is sourced from the British Geological Survey.

Natural ground subsidence - Ground dissolution of soluble rocks

17.6 Ground dissolution of soluble rocks

Records within 50m

The potential hazard presented by ground dissolution, which occurs when water passing through soluble rocks produces underground cavities and cave systems. These cavities reduce support to the ground above and can cause localised collapse of the overlying rocks and deposits.

Features are displayed on the Natural ground subsidence - Ground dissolution of soluble rocks map on page 185 >

Location	Hazard rating	Details
On site	Negligible	Soluble rocks are either not thought to be present within the ground, or not prone to dissolution. Dissolution features are unlikely to be present.

Location	Hazard rating	Details
On site	Very low	Soluble rocks are present within the ground. Few dissolution features are likely to be present. Potential for difficult ground conditions or localised subsidence are at a level where they need not be considered.
		Caluble made and manager to the state and Course disabilities for the state who are state. Determined
On site	Low	Soluble rocks are present within the ground. Some dissolution features may be present. Potential for difficult ground conditions are at a level where they may be considered, localised subsidence need not be considered except in exceptional circumstances.

This data is sourced from the British Geological Survey.

18 Mining and ground workings

18.1 BritPits

Records within 500m

BritPits (an abbreviation of British Pits) is a database maintained by the British Geological Survey of currently active and closed surface and underground mineral workings. Details of major mineral handling sites, such as wharfs and rail depots are also held in the database.

Features are displayed on the Mining and ground workings map on page 187 >

ID	Location	Details	Description
Q	191m N	Name: Ashton Hill Quarry Address: Nightingale Vallley, BRISTOL, Avon Commodity: Limestone Status: Ceased	Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority
0	285m SW	Name: South Liberty Claypit Address: South Liberty, Ashton Vale, BRISTOL, Avon Commodity: Clay & Shale Status: Ceased	Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority
Х	314m N	Name: Ashton Hill Quarry Address: Nightingale Vallley, BRISTOL, Avon Commodity: Limestone Status: Ceased	Type: A surface mineral working. It may be termed Quarry, Sand Pit, Clay Pit or Opencast Coal Site Status description: Site which, at date of entry, has ceased to extract minerals. May be considered as Closed by operator. May be considered to have Active, Dormant or Expired planning permissions by Mineral Planning Authority

This data is sourced from the British Geological Survey.

18.2 Surface ground workings

Records within 250m	129
---------------------	-----

Historical land uses identified from Ordnance Survey mapping that involved ground excavation at the surface. These features may or may not have been subsequently backfilled.

Features are displayed on the Mining and ground workings map on page 187 >

ID	Location	Land Use	Year of mapping	Mapping scale
1	On site	Cuttings	1883	1:10560
Α	On site	Disused Colliery	1905	1:10560
Α	On site	Disused Colliery	1883	1:10560
Α	On site	Disused Colliery	1913	1:10560
Α	On site	Disused Colliery	1883	1:10560
Α	On site	Disused Colliery	1887	1:10560
В	On site	Colliery	1905	1:10560

ID	Location	Land Use	Year of mapping	Mapping scale
В	On site	Colliery	1883	1:10560
В	On site	Colliery	1902	1:10560
В	On site	Brick and Tiles Works	1930	1:10560
В	On site	Brick and Tile Works	1938	1:10560
В	On site	Colliery	1887	1:10560
С	On site	Refuse Heap	1905	1:10560
С	On site	Refuse Heap	1913	1:10560
С	On site	Refuse Heap	1913	1:10560
С	On site	Refuse Heap	1902	1:10560
С	On site	Gravel Pit	1930	1:10560
С	On site	Unspecified Ground Workings	1887	1:10560
D	On site	Cuttings	1905	1:10560
D	On site	Cuttings	1883	1:10560
D	On site	Cuttings	1938	1:10560
D	On site	Cuttings	1913	1:10560
D	On site	Cuttings	1938	1:10560
D	On site	Cuttings	1930	1:10560
D	On site	Cuttings	1930	1:10560
D	On site	Cuttings	1913	1:10560
D	On site	Cuttings	1913	1:10560
D	On site	Cuttings	1902	1:10560
D	On site	Cuttings	1938	1:10560
D	On site	Cuttings	1883	1:10560
D	On site	Cuttings	1887	1:10560
Е	On site	Cuttings	1883	1:10560
Е	On site	Cuttings	1887	1:10560
F	On site	Cuttings	1938	1:10560
F	On site	Cuttings	1913	1:10560

ID	Location	Land Use	Year of mapping	Mapping scale
F	On site	Cuttings	1930	1:10560
F	On site	Cuttings	1913	1:10560
G	On site	Old Colliery	1913	1:10560
А	2m S	Disused Colliery	1902	1:10560
G	6m S	Old Colliery	1938	1:10560
G	6m S	Old Colliery	1913	1:10560
В	10m S	Brick and Tile Works	1938	1:10560
А	12m S	Disused Colliery	1938	1:10560
А	12m S	Disused Colliery	1913	1:10560
А	18m S	Unspecified Ground Workings	1902	1:10560
	19m N	Unspecified Pit	1938	1:10560
	19m N	Unspecified Pit	1913	1:10560
А	21m S	Unspecified Heap	1905	1:10560
	23m N	Unspecified Pit	1930	1:10560
	23m N	Unspecified Pit	1913	1:10560
	23m N	Unspecified Pit	1883	1:10560
	24m N	Unspecified Quarry	1905	1:10560
J	24m S	Refuse Heap	1905	1:10560
F	25m SW	Cuttings	1938	1:10560
	26m N	Unspecified Ground Workings	1938	1:10560
С	26m SE	Gravel Pit	1930	1:10560
Ι	26m N	Unspecified Pit	1990	1:10000
1	26m N	Unspecified Pit	1973	1:10000
F	27m SW	Cuttings	1938	1:10560
J	27m S	Refuse Heap	1902	1:10560
	27m N	Unspecified Pit	1902	1:10560
Ι	30m N	Unspecified Pit	1938	1:10560
I	33m N	Unspecified Pit	1963	1:10560

ID	Location	Land Use	Year of mapping	Mapping scale
I	33m N	Unspecified Pit	1955	1:10560
С	35m SE	Refuse Heap	1913	1:10560
В	35m S	Unspecified Heap	1913	1:10560
С	41m SE	Refuse Heap	1913	1:10560
В	41m S	Unspecified Heap	1938	1:10560
В	41m S	Unspecified Heap	1913	1:10560
В	48m S	Unspecified Heap	1905	1:10560
В	62m S	Unspecified Ground Workings	1902	1:10560
С	87m SE	Unspecified Ground Workings	1887	1:10560
С	94m SE	Unspecified Ground Workings	1883	1:10560
5	95m N	Unspecified Wharf	1883	1:10560
В	104m S	Unspecified Heap	1938	1:10560
В	106m S	Unspecified Heap	1930	1:10560
В	106m S	Unspecified Heap	1938	1:10560
К	116m S	Unspecified Ground Workings	1930	1:10560
К	118m S	Unspecified Ground Workings	1938	1:10560
L	118m S	Pond	1930	1:10560
L	118m S	Pond	1913	1:10560
Μ	121m N	Unspecified Wharf	1938	1:10560
Μ	121m N	Unspecified Wharf	1913	1:10560
К	125m S	Unspecified Heap	1938	1:10560
Ν	126m N	Cave	1913	1:10560
0	136m SW	Unspecified Pit	1913	1:10560
0	139m SW	Unspecified Pit	1905	1:10560
0	146m SW	Unspecified Pit	1902	1:10560
\mathbb{M}	170m N	Unspecified Wharf	1887	1:10560
Ρ	174m NE	Unspecified Ground Workings	1990	1:10000
Ρ	174m NE	Unspecified Ground Workings	1973	1:10000

ID	Location	Land Use	Year of mapping	Mapping scale
Q	175m N	Unspecified Quarry	1902	1:10560
Μ	175m N	Unspecified Wharf	1938	1:10560
Q	177m N	Unspecified Quarry	1905	1:10560
Q	179m N	Unspecified Quarry	1930	1:10560
Q	179m N	Unspecified Old Quarry	1913	1:10560
Q	181m N	Unspecified Quarry	1883	1:10560
Q	182m N	Unspecified Quarry	1887	1:10560
Ν	183m N	Cave	1902	1:10560
Q	184m N	Unspecified Old Quarry	1938	1:10560
Q	184m N	Unspecified Old Quarry	1913	1:10560
6	187m NW	Pond	1930	1:10560
Q	188m N	Unspecified Quarry	1883	1:10560
0	191m SW	Unspecified Pit	1938	1:10560
0	192m SW	Unspecified Pit	1938	1:10560
0	192m SW	Unspecified Pit	1930	1:10560
Ν	192m N	Cave	1938	1:10560
Ν	192m N	Cave	1902	1:10560
Ν	192m N	Cave	1883	1:10560
7	198m S	Old Coal Pit	1905	1:10560
R	198m NE	Unspecified Ground Workings	1990	1:10000
R	198m NE	Unspecified Ground Workings	1973	1:10000
S	204m NE	Unspecified Disused Wharf	1887	1:10560
S	205m NE	Unspecified Wharf	1883	1:10560
R	206m NE	Unspecified Heap	1967	1:10560
0	219m SW	Unspecified Ground Workings	1967	1:10560
Ν	220m N	Cave	1913	1:10560
Μ	221m NE	Unspecified Disused Wharf	1902	1:10560
0	224m SW	Unspecified Pit	1963	1:10560

ID	Location	Land Use	Year of mapping	Mapping scale
0	224m SW	Unspecified Pit	1955	1:10560
Т	227m SE	Pond	1930	1:10560
Т	227m SE	Pond	1913	1:10560
Μ	228m N	Unspecified Wharf	1938	1:10560
Ν	229m N	Cave	1930	1:10560
0	238m SW	Pond	1930	1:10560
Ν	240m N	Cave	1887	1:10560
Ν	240m N	Cave	1887	1:10560
Ν	245m N	Cave	1883	1:10560
U	247m N	Unspecified Ground Workings	1913	1:10560

This is data is sourced from Ordnance Survey/Groundsure.

18.3 Underground workings

Records within 1000m

Historical land uses identified from Ordnance Survey mapping that indicate the presence of underground workings e.g. mine shafts.

Features are displayed on the Mining and ground workings map on page 187 >

ID	Location	Land Use	Year of mapping	Mapping scale
А	On site	Disused Colliery	1905	1:10560
А	On site	Disused Colliery	1883	1:10560
А	On site	Disused Colliery	1913	1:10560
А	On site	Disused Colliery	1883	1:10560
В	On site	Colliery	1905	1:10560
В	On site	Colliery	1883	1:10560
В	On site	Colliery	1902	1:10560
G	On site	Old Colliery	1913	1:10560
А	2m S	Disused Colliery	1902	1:10560
G	6m S	Old Colliery	1938	1:10560

G6mSOld Colliery19131:10560A12mSDisused Colliery19381:10560A12mSDisused Colliery19131:1056010217mNTunnel19021:10560W281mSOld Coal Pit18831:10560W292mSOld Coal Pit19021:10560W295mSOld Coal Pit19021:10560W295mSOld Coal Pit19131:10560W295mSOld Coal Pit19381:10560W300mSOld Coal Pit19381:10560V300mSOld Coal Pit19381:10560AC337mNTunnel19901:10000AC337mNTunnel19921:10500AC337mNTunnel19921:10560AK885mSColliery18831:10560AK887mSColliery19381:10560AX593mSColliery19921:10560AX993mSColliery19921:10560AX593mSColliery19931:10560AX593mSColliery19931:10560AX593mSColliery19301:10560AX593mSColliery19301:10560AX593mSColliery19301:10560AX593mSColliery19301:10560B8617mNTunnel19301:10560B8 <th>ID</th> <th>Location</th> <th>Land Use</th> <th>Year of mapping</th> <th>Mapping scale</th>	ID	Location	Land Use	Year of mapping	Mapping scale																																																																																																
AIzm SDisused Colliery19131:1056010217m NTunnel19021:10560W281m SOld Coal Pit18831:10560W292m SOld Coal Pit18831:10560W295m SOld Coal Pit19021:10560W295m SOld Coal Pit19131:10560W295m SOld Coal Pit19131:10560W300m SOld Coal Pit19131:10560V300m SOld Coal Pit19901:10000AC337m NTunnel19901:10000AC337m NTunnel19021:10560AC337m NTunnel19021:10560AC337m NTunnel19021:10560AC357m SColliery18831:10560AK583m SColliery19031:10560AK593m SColliery19031:10560AK593m SColliery19381:10560AK593m SColliery19301:10560AK593m SColliery19301:10560AK593m SColliery19301:10560AK593m SColliery19301:10560AK593m SColliery19301:10560AK593m SColliery19301:10560AK593m SColliery19301:10560AK617m NDissed Tunnel19301:10560<	G	6m S	Old Colliery	1913	1:10560																																																																																																
10217m NTunnel19021:10560W281m SOld Coal Pit18831:10560W292m SOld Coal Pit18831:10560W295m SOld Coal Pit19021:10560W295m SOld Coal Pit19131:10560W300m SOld Coal Pit19131:10560W300m SOld Coal Pit19131:10560V300m SOld Coal Pit19131:10560AC337m NTunnel19901:10000AC337m NTunnel19901:10000AC335m NTunnel19021:10560AK438m SEColliery18831:10560AK583m SColliery19131:10560AK593m SColliery19021:10560AK593m SColliery19381:10560AK593m SColliery19331:10560AK593m SColliery19331:10560AK593m SColliery19331:10560AK593m SColliery19301:10500AK593m SColliery19331:10500AK593m SColliery19301:10500AK593m SColliery19301:10500AK593m SColliery19301:10500AK617m NDissed Tunnel19301:10500BB619m NTunnel19311:10500<	А	12m S	Disused Colliery	1938	1:10560																																																																																																
W281m SOld Coal Pit18831.10560W292m SOld Coal Pit18831.10560W295m SOld Coal Pit19021.10560W300m SOld Coal Pit19131.10560W300m SOld Coal Pit19381.10560W300m SOld Coal Pit19131.10560AC337m NTunnel19901.1000AC337m NTunnel19021.10560AC337m NTunnel19021.10560AC385m SColliery18831.10560AZ583m SColliery19131.10560AX583m SColliery19021.10560AX59m SColliery19021.10560AX59m SColliery19031.10560AX59m SColliery19131.10560AX59m SColliery19131.10560AX59m SColliery19131.10560BB617m NDissed Tunnel19001.1000BB617m NDissed Tunnel19301.10560BB617m NDissed Tunnel19301.10560BB617m NColliery19301.10560BB617m NDissed Tunnel19301.10560BB617m NDissed Tunnel19301.10560BB617m NTunnel19301.10560BB617m NTunnel19301.10	А	12m S	Disused Colliery	1913	1:10560																																																																																																
W292m SOld Coal Pit18831.10560W295m SOld Coal Pit19021.10560W295m SOld Coal Pit19131.10560W300m SOld Coal Pit19381.10560W300m SOld Coal Pit19131.10560AC337m NTunnel19901.10000AC337m NTunnel19021.10500AC385m NTunnel19021.10560AC385m NTunnel19021.10560AC385m SCollery18331.10560AX583m SCollery19031.10560AX593m SCollery19021.10560AX593m SCollery19031.10560AX593m SCollery19031.10560AX593m SCollery19131.10560AX593m SCollery19131.10560AX593m SCollery19131.10560AX593m SCollery19131.10500AX593m SCollery19131.10500BB617m NDissed Tunnel19301.10500BB619m NTunnel19301.10500BB619m NTunnel19301.10500BB619m NTunnel19301.10500BB621m NTunnel19321.10500BB621m NTunnel19321.10500BB62	10	217m N	Tunnel	1902	1:10560																																																																																																
W295m SOld Coal Pit19021:10560W295m SOld Coal Pit19131:10560W300m SOld Coal Pit19381:10560W300m SOld Coal Pit19131:10500AC337m NTunnel19901:10000AC337m NTunnel19021:10500AC385m NTunnel19021:10500AC385m SColliery18831:10560AX583m SColliery19051:10560AX593m SColliery19021:10560AX593m SColliery19031:10560AX593m SColliery19031:10560AX593m SColliery19031:10560AX593m SColliery19031:10560AX593m SColliery19031:10560AX593m SColliery19031:10560BB617m NDisused Tunnel19031:10500BB619m NTunnel19031:10560BB619m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB <t< th=""><th>W</th><th>281m S</th><th>Old Coal Pit</th><th>1883</th><th>1:10560</th></t<>	W	281m S	Old Coal Pit	1883	1:10560																																																																																																
W295m SOld Coal Pit19131:10560W300m SOld Coal Pit19381:10560W300m SOld Coal Pit19131:10500AC337m NTunnel19901:10000AC337m NTunnel19731:10000AC337m NTunnel19021:10560AC385m NTunnel19021:10560AE438m SEColliery18831:10560AX583m SColliery19051:10560AX593m SColliery19021:10560AX593m SColliery19021:10560AX593m SColliery19031:10560AX599m SColliery19131:10560AX599m SColliery19131:10560AX599m SColliery19131:10560AX599m SColliery19131:10560AX599m SColliery19131:10560AX599m SColliery19131:10500AX617m NDisued Tunnel19201:10560BB619m NTunnel19131:10560BB619m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB <td< th=""><th>W</th><th>292m S</th><th>Old Coal Pit</th><th>1883</th><th>1:10560</th></td<>	W	292m S	Old Coal Pit	1883	1:10560																																																																																																
W300m SOld Coal Plt19381:10560W300m SOld Coal Plt19131:10500AC337m NTunnel19901:10000AC337m NTunnel19731:10000AC385m NTunnel19021:10560AC385m SColliery18831:10560AX583m SColliery19131:10560AX593m SColliery19021:10560AX593m SColliery19021:10560AX593m SColliery19021:10560AX593m SColliery19131:10560AX593m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB619m NTunnel19301:10560BB619m NTunnel19301:10560BB619m NTunnel19301:10560BB621m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m N<	W	295m S	Old Coal Pit	1902	1:10560																																																																																																
W300m SOld Coal Pit19131:10560AC337m NTunnel19901:10000AC337m NTunnel19731:10000AC385m NTunnel19021:10560AE438m SEColliery18831:10560AX583m SColliery19131:10560AX587m SColliery19021:10560AX593m SColliery19021:10560AX599m SColliery19031:10560AX599m SColliery19131:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB619m NTunnel19131:10560BB619m NTunnel19201:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NT	W	295m S	Old Coal Pit	1913	1:10560																																																																																																
AC337m NTunnel19901:1000AC337m NTunnel19731:1000AC385m NTunnel19021:10560AE438m SEColliery18831:10560AX583m SColliery19131:10560AX587m SColliery19021:10560AX593m SColliery19021:10560AX593m SColliery19021:10560AX599m SColliery19131:10560AX599m SColliery19131:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:1000BB619m NTunnel19301:10560BB619m NTunnel19021:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel<	W	300m S	Old Coal Pit	1938	1:10560																																																																																																
AC337m NTunnel19731:1000AC385m NTunnel19021:10560AE438m SEColliery18831:10560AX583m SColliery19131:10560AX587m SColliery19051:10560AX593m SColliery19021:10560AX599m SColliery19031:10560AX599m SColliery19131:10560AX599m SColliery19131:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19301:10560BB619m NTunnel19131:10560BB619m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m N<	W	300m S	Old Coal Pit	1913	1:10560																																																																																																
AC385m NTunnel19021:10560AE438m SEColliery18831:10560AX583m SColliery19131:10560AX587m SColliery19021:10560AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560AX599m SColliery19131:10500BB617m NDisused Tunnel19901:10000BB619m NTunnel19301:10500BB619m NTunnel19301:10500BB621m NTunnel19021:10500BB621m NTunnel	AC	337m N	Tunnel	1990	1:10000																																																																																																
AE438m SEColliery18831:10560AX583m SColliery19131:10560AX587m SColliery19051:10560AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560AX599m SColliery19131:10000BB617m NDisused Tunnel19901:10000BB619m NTunnel19301:10560BB619m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560 <tr <td="">19381:10560<th>AC</th><th>337m N</th><th>Tunnel</th><th>1973</th><th>1:10000</th></tr> <tr><th>AX583m SColliery19131:10560AX587m SColliery19051:10560AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560B8617m NDisused Tunnel19901:10000B8617m NDisused Tunnel19731:10000B8619m NTunnel19301:10560B8619m NTunnel19131:10560B8621m NTunnel19021:10560B8621m NTunnel19021:10560B8621m NTunnel19021:10560AX621m SColliery18831:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NT</th><th>AC</th><th>385m N</th><th>Tunnel</th><th>1902</th><th>1:10560</th></tr> <tr><th>AX587m SColliery19051:10560AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19301:10000BB619m NTunnel19301:10560BB619m NTunnel19021:10560BB621m SColliery18831:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB634m NTunnel19381:10560</th><th>AE</th><th>438m SE</th><th>Colliery</th><th>1883</th><th>1:10560</th></tr> <tr><th>AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19281:10560BB621m NTunnel<</th><th>AX</th><th>583m S</th><th>Colliery</th><th>1913</th><th>1:10560</th></tr> <tr><th>AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:10560AX621m NTunnel19381:10560</th><th>AX</th><th>587m S</th><th>Colliery</th><th>1905</th><th>1:10560</th></tr> <tr><th>AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:10560AK621m NTunnel19211:10560</th><th>AX</th><th>593m S</th><th>Colliery</th><th>1902</th><th>1:10560</th></tr> <tr><th>BB 617m N Disused Tunnel 1990 1:10000 BB 617m N Disused Tunnel 1973 1:10000 BB 619m N Tunnel 1930 1:10560 BB 619m N Tunnel 1902 1:10560 BB 621m N Tunnel 1902 1:10560 AX 621m S Colliery 1883 1:10560 BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560</th><th>AX</th><th>599m S</th><th>Colliery</th><th>1938</th><th>1:10560</th></tr> <tr><th>BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560</th><th>AX</th><th>599m S</th><th>Colliery</th><th>1913</th><th>1:10560</th></tr> <tr><th>BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560</th><th>BB</th><th>617m N</th><th>Disused Tunnel</th><th>1990</th><th>1:10000</th></tr> <tr><th>BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560</th><th>BB</th><th>617m N</th><th>Disused Tunnel</th><th>1973</th><th>1:10000</th></tr> <tr><th>BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560</th><th>BB</th><th>619m N</th><th>Tunnel</th><th>1930</th><th>1:10560</th></tr> <tr><th>AX 621m S Colliery 1883 1:10560 BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560</th><th>BB</th><th>619m N</th><th>Tunnel</th><th>1913</th><th>1:10560</th></tr> <tr><th>BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560</th><th>BB</th><th>621m N</th><th>Tunnel</th><th>1902</th><th>1:10560</th></tr> <tr><th>17 634m N Tunnel 1938 1:10560</th><th>AX</th><th>621m S</th><th>Colliery</th><th>1883</th><th>1:10560</th></tr> <tr><th></th><th>BB</th><th>621m N</th><th>Tunnel</th><th>1921</th><th>1:10560</th></tr> <tr><th>AX 640m S Colliery 1883 1:10560</th><th>17</th><th>634m N</th><th>Tunnel</th><th>1938</th><th>1:10560</th></tr> <tr><th></th><th>AX</th><th>640m S</th><th>Colliery</th><th>1883</th><th>1:10560</th></tr>	AC	337m N	Tunnel	1973	1:10000	AX583m SColliery19131:10560AX587m SColliery19051:10560AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560B8617m NDisused Tunnel19901:10000B8617m NDisused Tunnel19731:10000B8619m NTunnel19301:10560B8619m NTunnel19131:10560B8621m NTunnel19021:10560B8621m NTunnel19021:10560B8621m NTunnel19021:10560AX621m SColliery18831:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NT	AC	385m N	Tunnel	1902	1:10560	AX587m SColliery19051:10560AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19301:10000BB619m NTunnel19301:10560BB619m NTunnel19021:10560BB621m SColliery18831:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB634m NTunnel19381:10560	AE	438m SE	Colliery	1883	1:10560	AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19281:10560BB621m NTunnel<	AX	583m S	Colliery	1913	1:10560	AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:10560AX621m NTunnel19381:10560	AX	587m S	Colliery	1905	1:10560	AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:10560AK621m NTunnel19211:10560	AX	593m S	Colliery	1902	1:10560	BB 617m N Disused Tunnel 1990 1:10000 BB 617m N Disused Tunnel 1973 1:10000 BB 619m N Tunnel 1930 1:10560 BB 619m N Tunnel 1902 1:10560 BB 621m N Tunnel 1902 1:10560 AX 621m S Colliery 1883 1:10560 BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560	AX	599m S	Colliery	1938	1:10560	BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560	AX	599m S	Colliery	1913	1:10560	BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560	BB	617m N	Disused Tunnel	1990	1:10000	BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560	BB	617m N	Disused Tunnel	1973	1:10000	BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560	BB	619m N	Tunnel	1930	1:10560	AX 621m S Colliery 1883 1:10560 BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560	BB	619m N	Tunnel	1913	1:10560	BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560	BB	621m N	Tunnel	1902	1:10560	17 634m N Tunnel 1938 1:10560	AX	621m S	Colliery	1883	1:10560		BB	621m N	Tunnel	1921	1:10560	AX 640m S Colliery 1883 1:10560	17	634m N	Tunnel	1938	1:10560		AX	640m S	Colliery	1883	1:10560
AC	337m N	Tunnel	1973	1:10000																																																																																																	
AX583m SColliery19131:10560AX587m SColliery19051:10560AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560B8617m NDisused Tunnel19901:10000B8617m NDisused Tunnel19731:10000B8619m NTunnel19301:10560B8619m NTunnel19131:10560B8621m NTunnel19021:10560B8621m NTunnel19021:10560B8621m NTunnel19021:10560AX621m SColliery18831:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19211:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NTunnel19381:10560B8621m NT	AC	385m N	Tunnel	1902	1:10560																																																																																																
AX587m SColliery19051:10560AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19301:10000BB619m NTunnel19301:10560BB619m NTunnel19021:10560BB621m SColliery18831:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19211:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB621m NTunnel19381:10560BB634m NTunnel19381:10560	AE	438m SE	Colliery	1883	1:10560																																																																																																
AX593m SColliery19021:10560AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19211:10560BB621m NTunnel19281:10560BB621m NTunnel<	AX	583m S	Colliery	1913	1:10560																																																																																																
AX599m SColliery19381:10560AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:10560AX621m NTunnel19381:10560	AX	587m S	Colliery	1905	1:10560																																																																																																
AX599m SColliery19131:10560BB617m NDisused Tunnel19901:10000BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:10560AK621m NTunnel19211:10560	AX	593m S	Colliery	1902	1:10560																																																																																																
BB 617m N Disused Tunnel 1990 1:10000 BB 617m N Disused Tunnel 1973 1:10000 BB 619m N Tunnel 1930 1:10560 BB 619m N Tunnel 1902 1:10560 BB 621m N Tunnel 1902 1:10560 AX 621m S Colliery 1883 1:10560 BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560	AX	599m S	Colliery	1938	1:10560																																																																																																
BB617m NDisused Tunnel19731:10000BB619m NTunnel19301:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560	AX	599m S	Colliery	1913	1:10560																																																																																																
BB619m NTunnel19301:10560BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560	BB	617m N	Disused Tunnel	1990	1:10000																																																																																																
BB619m NTunnel19131:10560BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560	BB	617m N	Disused Tunnel	1973	1:10000																																																																																																
BB621m NTunnel19021:10560AX621m SColliery18831:10560BB621m NTunnel19211:1056017634m NTunnel19381:10560	BB	619m N	Tunnel	1930	1:10560																																																																																																
AX 621m S Colliery 1883 1:10560 BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560	BB	619m N	Tunnel	1913	1:10560																																																																																																
BB 621m N Tunnel 1921 1:10560 17 634m N Tunnel 1938 1:10560	BB	621m N	Tunnel	1902	1:10560																																																																																																
17 634m N Tunnel 1938 1:10560	AX	621m S	Colliery	1883	1:10560																																																																																																
	BB	621m N	Tunnel	1921	1:10560																																																																																																
AX 640m S Colliery 1883 1:10560	17	634m N	Tunnel	1938	1:10560																																																																																																
	AX	640m S	Colliery	1883	1:10560																																																																																																

ID	Location	Land Use	Year of mapping	Mapping scale
BB	707m N	Tunnel	1921	1:10560
BB	719m N	Tunnel	1930	1:10560
BB	719m N	Tunnel	1913	1:10560
BB	721m N	Tunnel	1938	1:10560
BB	721m N	Tunnel	1902	1:10560
BB	724m N	Tunnel	1902	1:10560
BB	724m N	Tunnel	1938	1:10560
AX	808m S	Unspecified Old Shaft	1930	1:10560
-	931m N	Tunnel	1990	1:10000
-	931m N	Tunnel	1973	1:10000
-	931m N	Tunnel	1938	1:10560
-	931m N	Tunnel	1938	1:10560
-	933m N	Tunnel	1921	1:10560
-	934m N	Tunnel	1902	1:10560
-	940m N	Tunnel	1938	1:10560
-	969m N	Tunnel	1904	1:10560

This is data is sourced from Ordnance Survey/Groundsure.

18.4 Underground mining extents

Records within 500m

This data identifies underground mine workings that could present a potential risk, including adits and seam workings. These features have been identified from BGS Geological mapping and mine plans sourced from the BGS and various collections and sources.

This data is sourced from Groundsure.

18.5 Historical Mineral Planning Areas

Records within 500m

Boundaries of mineral planning permissions for England and Wales. This data was collated between the 1940s (and retrospectively to the 1930s) and the mid 1980s. The data includes permitted, withdrawn and refused permissions.

0

This data is sourced from the British Geological Survey.

18.6 Non-coal mining

Records within 1000m 13

The potential for historical non-coal mining to have affected an area. The assessment is drawn from expert knowledge and literature in addition to the digital geological map of Britain. Mineral commodities may be divided into seven general categories - vein minerals, chalk, oil shale, building stone, bedded ores, evaporites and 'other' commodities (including ball clay, jet, black marble, graphite and chert).

Features are displayed on the Mining and ground workings map on page 187 >

ID	Location	Name	Commodity	Class	Likelihood
2	On site	Not available	Vein Mineral	A	Underground mine workings are uncommon, although the geology is similar to that worked elsewhere. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
3	On site	Not available	Vein Mineral	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
4	73m S	Not available	Iron Ore (Bedded)	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
8	206m N	Not available	Vein Mineral	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
9	208m N	Not available	Vein Mineral	А	Underground mine workings are uncommon, although the geology is similar to that worked elsewhere. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
11	300m S	Not available	Iron Ore (Bedded)	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.

ID	Location	Name	Commodity	Class	Likelihood
AB	331m NW	Not available	Vein Mineral	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
12	341m NW	Not available	Vein Mineral	A	Underground mine workings are uncommon, although the geology is similar to that worked elsewhere. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
AY	596m NE	Not available	Vein Mineral	A	Underground mine workings are uncommon, although the geology is similar to that worked elsewhere. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
25	731m W	Not available	Vein Mineral	A	Underground mine workings are uncommon, although the geology is similar to that worked elsewhere. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
BT	797m NW	Not available	Vein Mineral	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
33	948m W	Not available	Vein Mineral	A	Underground mine workings are uncommon, although the geology is similar to that worked elsewhere. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.
34	959m NW	Not available	Vein Mineral	В	Underground mine workings may have occurred in the past or current mines may be working at significant depth to modern engineering standards. Potential for difficult ground conditions are unlikely and are at a level where they need not be considered.

This data is sourced from the British Geological Survey.

18.7 JPB mining areas

unavailable to the Coal Authority.

Records on site	0	
Areas which could be affected by former coal and other mining. This data includes some mine plans		

This data is sourced from Johnson Poole and Bloomer.

2

18.8 The Coal Authority non-coal mining

Records within 500m

This data provides an indication of the potential zone of influence of recorded underground non-coal mining workings. Any and all analysis and interpretation of Coal Authority Data in this report is made by Groundsure, and is in no way supported, endorsed or authorised by the Coal Authority. The use of the data is restricted to the terms and provisions contained in this report. Data reproduced in this report may be the copyright of the Coal Authority and permission should be sought from Groundsure prior to any re-use.

Features are displayed on the Mining and ground workings map on page 187 >

ID	Location	Mineral type	Mineral
Н	On site	Stone	Fireclay
н	On site	Stone	Fireclay

This data is sourced from The Coal Authority.

18.9 Researched mining

Records within 500m 8

This data indicates areas of potential mining identified from alternative or archival sources, including; BGS Geological paper maps, Lidar data, aerial photographs (from World War II onwards), archaeological data services, websites, Tithe maps, and various text/plans from collected books and reports. Some of this data is approximate and Groundsure have interpreted the resultant risk area and, where possible, specific areas of risk have been captured.

Location	Mineral type
On site	Unspecified
On site	Unspecified
On site	Unspecified
31m S	Unspecified
237m S	Unspecified
254m S	Unspecified
295m N	Unspecified
361m SE	Unspecified

This data is sourced from Groundsure.

18.10 Mining record office plans

Records within 500m

This dataset is representative of Mining Record Office and/or plan extents held by Groundsure and should be considered approximate. Where possible, plans have been located and any specific areas of risk they depict have been captured.

This data is sourced from Groundsure.

18.11 BGS mine plans

Records within 500m

This dataset is representative of BGS mine plans held by Groundsure and should be considered approximate. Where possible, plans have been located and any specific areas of risk they depict have been captured.

This data is sourced from Groundsure.

18.12 Coal mining

Records on site

Areas which could be affected by past, current or future coal mining.

Location	Details
On site	The site is located within a coal mining area as defined by the Coal Authority. A Consultants Coal Mining Report is recommended to further assess coal mining issues at the site. This can be ordered directly through Groundsure or your preferred search provider.

This data is sourced from the Coal Authority.

18.13 Brine areas

Records on site

The Cheshire Brine Compensation District indicates areas that may be affected by salt and brine extraction in Cheshire and where compensation would be available where damage from this mining has occurred. Damage from salt and brine mining can still occur outside this district, but no compensation will be available.

This data is sourced from the Cheshire Brine Subsidence Compensation Board.

0

1

Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

18.14 Gypsum areas

Records on site

Generalised areas that may be affected by gypsum extraction.

This data is sourced from British Gypsum.

18.15 Tin mining

Records on site

Generalised areas that may be affected by historical tin mining.

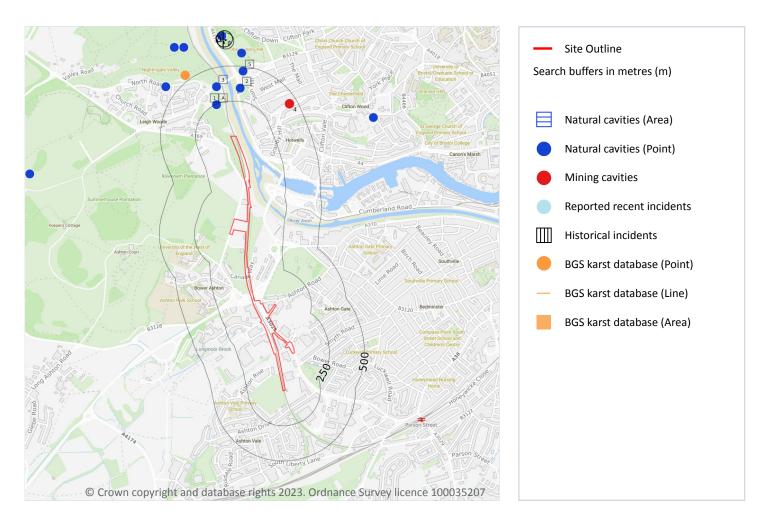
This data is sourced from Groundsure.

18.16 Clay mining

Records on site

Generalised areas that may be affected by kaolin and ball clay extraction.

This data is sourced from the Kaolin and Ball Clay Association (UK).



0

19 Ground cavities and sinkholes

19.1 Natural cavities

Records within 500m

Industry recognised national database of natural cavities. Sinkholes and caves are formed by the dissolution of soluble rock, such as chalk and limestone, gulls and fissures by cambering. Ground instability can result from movement of loose material contained within these cavities, often triggered by water.

Features are displayed on the Ground cavities and sinkholes map on page 201 >

ID	Location	Details	Source
A	245m N	Type: Vadose Cave x 1 Superficial Geology: - Bedrock Geology: Carboniferous Limestone Supergroup, Millstone Grit Group, Upper Carboniferous Limestone	Simple Bibliography: - Full Bibliography: RODWAY SCHOOL SPELEOLOGICAL GROUP, Rodway School, Bristol., 1973; The caves of the Avon Gorge Part 1 Confidentiality: Data source can be revealed, data can be used freely
1	275m N	Type: Spring Outlet Cave x 1 Superficial Geology: - Bedrock Geology: Carboniferous Limestone Supergroup, Millstone Grit Group, Upper Carboniferous Limestone	Simple Bibliography: - Full Bibliography: RODWAY SCHOOL SPELEOLOGICAL GROUP, Rodway School, Bristol., 1973; The caves of the Avon Gorge Part 1 Confidentiality: Data source can be revealed, data can be used freely
2	344m N	Type: Vadose Cave x 1 Superficial Geology: - Bedrock Geology: Carboniferous Limestone Supergroup, Millstone Grit Group, Upper Carboniferous Limestone	Simple Bibliography: - Full Bibliography: RODWAY SCHOOL SPELEOLOGICAL GROUP, Rodway School, Bristol., 1974; Caves of the Avon Gorge. Part 2 Confidentiality: Data source can be revealed, data can be used freely
3	367m N	Type: Solution Widened Joint or Fissure x 2 Superficial Geology: - Bedrock Geology: Carboniferous Limestone Supergroup	Simple Bibliography: Mottram, J.R. (1973). An investigation into the soundness of the rock underlying the Leigh Woods abutment of the Clifton Suspension Bridge. Full Bibliography: - Confidentiality: Data source can be revealed, data can be used freely
5	465m N	Type: Gulls/Fissures due to Cambering x 3 Superficial Geology: - Bedrock Geology: Upper Carboniferous Limestone	Simple Bibliography: - Full Bibliography: DONOVAN, D.T. AND KELLAWAY, D.T., HMSO London, 1984; Geology of the Bristol District: The Lower Jurassic Rocks Confidentiality: Data source can be revealed, data can be used freely

This data is sourced from Stantec UK Ltd.

19.2 Mining cavities

Records within 1000m	1
Industry recognised national database of mining cavities. Degraded mines may result in hazardous su	ubsidence

(crown holes). Climatic conditions and water escape can also trigger subsidence over mine entrances and workings.

Features are displayed on the Ground cavities and sinkholes map on page 201 >

1[D	Location	Mine Address	Mineral	Data source	Publish er
4		445m N	Royal York Crescent, Bristol, Avon	Magnatite, Marcasite, Siderite, Ironstone	BRISTOL CAVE REGISTER. CAVES OF THE BRISTOL REGION	PRIVATE

This data is sourced from Stantec UK Ltd.

19.3 Reported recent incidents

Records within 500m

This data identifies sinkhole information gathered from media reports and Groundsure's own records. This data goes back to 2014 and includes relative accuracy ratings for each event and links to the original data sources. The data is updated on a regular basis and should not be considered a comprehensive catalogue of all sinkhole events. The absence of data in this database does not mean a sinkhole definitely has not occurred during this time.

This data is sourced from Groundsure.

19.4 Historical incidents

Records within 500m

This dataset comprises an extract of 1:10,560, 1:10,000, 1:2,500 and 1:1,250 scale historical Ordnance Survey maps held by Groundsure, dating back to the 1840s. It shows shakeholes, deneholes and other 'holes' as noted on these maps. Dene holes are medieval chalk extraction pits, usually comprising a narrow shaft with a number of chambers at the base of the shaft. Shakeholes are an alternative name for suffusion sinkholes, most commonly found in the limestone landscapes of North Yorkshire but also extensively noted around the Brecon Beacons National Park.

Not all 'holes' noted on Ordnance Survey mapping will necessarily be present within this dataset.

This data is sourced from Groundsure.

19.5 National karst database

Records within 500m

This is a comprehensive database of national karst information gathered from a wide range of sources. BGS have collected data on five main types of karst feature: Sinkholes, stream links, caves, springs, and incidences of associated damage to buildings, roads, bridges and other engineered works.

Since the database was set up in 2002 data covering most of the evaporite karst areas of the UK have now been added, along with data covering about 60% of the Chalk, and 35% of the Carboniferous Limestone outcrops. Many of the classic upland karst areas have yet to be included. Recorded so far are: Over 800 caves,

0

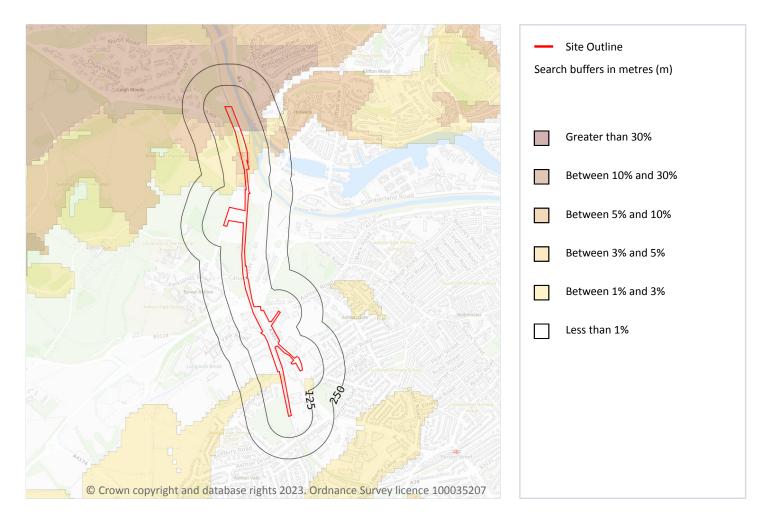
1

1300 stream sinks, 5600 springs, 10,000 sinkholes.

The database is not yet complete, and not all records have been verified. The absence of data does not mean that karst features are not present at a site. A reliability rating is included with each record.

Features are displayed on the Ground cavities and sinkholes map on page 201 >

ID	Location	Name	Reliability
А	254m N	Burwalls Cave	Good


This data is sourced from the British Geological Survey.

20 Radon

20.1 Radon

Records on site

5

The Radon Potential data classifies areas based on their likelihood of a property having a radon level at or above the Action Level in Great Britain. The dataset is intended for use at 1:50,000 scale and was derived from both geological assessments and indoor radon measurements (more than 560,000 records). A minimum 50m buffer should be considered when searching the maps, as the smallest detectable feature at this scale is 50m. The findings of this section should supersede any estimations derived from the Indicative Atlas of Radon in Great Britain (1:100,000 scale).

Features are displayed on the Radon map on page 205 >

Location	Estimated properties affected	Radon Protection Measures required		
On site	Less than 1%	None		

Location	Estimated properties affected	Radon Protection Measures required
On site	Between 5% and 10%	Basic
On site	Between 3% and 5%	Basic
On site	Between 1% and 3%	None
On site	Between 10% and 30%	Full

This data is sourced from the British Geological Survey and UK Health Security Agency.

52

21 Soil chemistry

21.1 BGS Estimated Background Soil Chemistry

Records within 50m

The estimated values provide the likely background concentration of the potentially harmful elements Arsenic, Cadmium, Chromium, Lead and Nickel in topsoil. The values are estimated primarily from rural topsoil data collected at a sample density of approximately 1 per 2 km². In areas where rural soil samples are not available, estimation is based on stream sediment data collected from small streams at a sampling density of 1 per 2.5 km²; this is the case for most of Scotland, Wales and southern England. The stream sediment data are converted to soil-equivalent concentrations prior to the estimation.

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmiu m	Chromium	Nickel
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmiu m	Chromium	Nickel
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	50 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 - 200 mg/kg	50 - 100 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	35 - 45 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	35 - 45 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	35 - 45 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	35 - 45 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	35 - 45 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmiu m	Chromium	Nickel
On site	35 - 45 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
On site	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
2m S	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
4m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
5m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
10m N	15 - 25 mg/kg	No data	100 - 200 mg/kg	60 - 120 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
12m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
12m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
14m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
14m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
16m S	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
19m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
23m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
25m N	15 - 25 mg/kg	No data	100 - 200 mg/kg	60 - 120 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
29m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
29m S	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
30m SE	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg

Location	Arsenic	Bioaccessible Arsenic	Lead	Bioaccessible Lead	Cadmiu m	Chromium	Nickel
45m N	15 - 25 mg/kg	No data	100 - 200 mg/kg	60 - 120 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
45m N	15 mg/kg	No data	100 - 200 mg/kg	60 - 120 mg/kg	1.8 mg/kg	90 - 120 mg/kg	15 - 30 mg/kg
46m N	15 - 25 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg
49m N	15 mg/kg	No data	100 mg/kg	60 mg/kg	1.8 mg/kg	60 - 90 mg/kg	15 - 30 mg/kg

This data is sourced from the British Geological Survey.

21.2 BGS Estimated Urban Soil Chemistry

Records within 50m 0

Estimated topsoil chemistry of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc and bioaccessible Arsenic and Lead in 23 urban centres across Great Britain. These estimates are derived from interpolation of the measured urban topsoil data referred to above and provide information across each city between the measured sample locations (4 per km²).

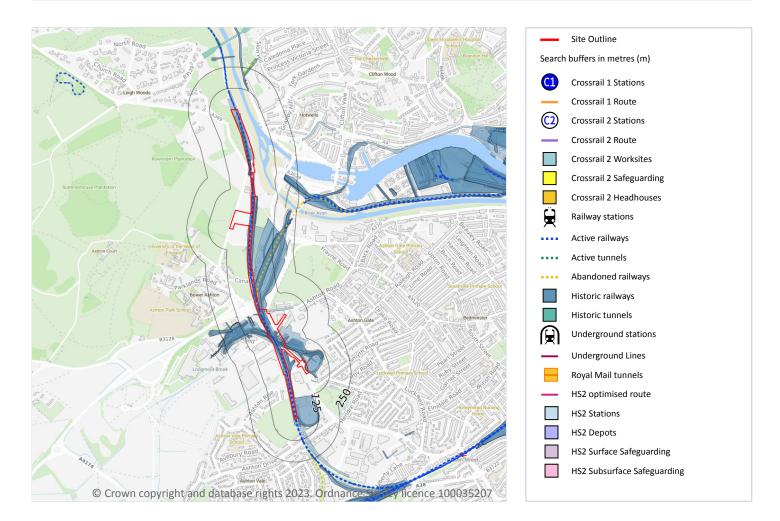
This data is sourced from the British Geological Survey.

21.3 BGS Measured Urban Soil Chemistry

Records within 50m

The locations and measured total concentrations (mg/kg) of Arsenic, Cadmium, Chromium, Copper, Nickel, Lead, Tin and Zinc in urban topsoil samples from 23 urban centres across Great Britain. These are collected at a sample density of 4 per km².

This data is sourced from the British Geological Survey.



Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

22 Railway infrastructure and projects

22.1 Underground railways (London)

Records within 250m

Details of all active London Underground lines, including approximate tunnel roof depth and operational hours.

This data is sourced from publicly available information by Groundsure.

22.2 Underground railways (Non-London)

Records within 250m

Details of the Merseyrail system, the Tyne and Wear Metro and the Glasgow Subway. Not all parts of all systems are located underground. The data contains location information only and does not include a depth assessment.

0

This data is sourced from publicly available information by Groundsure.

22.3 Railway tunnels

Records within 250m	2
Railway tunnels taken from contemporary Ordnance Survey mapping.	
Features are displayed on the Railway infrastructure and projects map on page 211 >	

Location	Туре
On site	Railway Tunnel
On site	Railway Tunnel

This data is sourced from the Ordnance Survey.

22.4 Historical railway and tunnel features

Records within 250m	121

Railways and tunnels digitised from historical Ordnance Survey mapping as scales of 1:1,250, 1:2,500, 1:10,000 and 1:10,560.

Features are displayed on the Railway infrastructure and projects map on page 211 >

Location	Land Use	Year of mapping	Mapping scale
On site	Railway Sidings	1965	2500
On site	Railway Sidings	1966	2500
On site	Railway Sidings	1974	1250
On site	Railway Sidings	1948	1250
On site	Railway Sidings	1952	1250
On site	Railway Sidings	1968	2500
On site	Railway Sidings	1967	1250
On site	Railway Sidings	1934	2500
On site	Railway Sidings	1904	2500
On site	Railway Sidings	1886	2500
On site	Railway Sidings	1885	2500
On site	Railway Sidings	1917	2500

Location	Land Use	Year of mapping	Mapping scale
On site	Railway Sidings	1952	2500
On site	Railway Sidings	1968	1250
On site	Railway Sidings	1963	1250
On site	Railway Sidings	1994	1250
On site	Railway Sidings	1996	1250
On site	Railway Sidings	1983	1250
On site	Railway Sidings	1987	1250
On site	Railway Sidings	1989	1250
On site	Railway Sidings	1884	500
On site	Railway Sidings	1972	1250
On site	Railway Sidings	1992	1250
On site	Railway Sidings	1999	1250
On site	Tramway Sidings	1884	500
On site	Tramway Sidings	1886	2500
On site	Mineral Railway Sidings	1990	10000
On site	Mineral Railway Sidings	1973	10000
On site	Railway Sidings	1938	10560
On site	Railway Sidings	1913	10560
On site	Railway Sidings	1905	10560
On site	Railway Sidings	1883	10560
On site	Railway Sidings	1930	10560
On site	Railway Sidings	1902	10560
On site	Railway Sidings	1887	10560
On site	Railway Sidings	1967	10560
On site	Tramway Sidings	1883	10560
On site	Railway Sidings	1963	10560
On site	Railway Sidings	1955	10560
1m S	Railway Sidings	1948	2500

AnilowaRaiwayRaiwayRaiwayRaiwayRaiwayRaiwayAniwayRaiwayRaiwayRaiwayRaiwayRaiwayRaiwaySin AliwayRaiway<	Location	Land Use	Year of mapping	Mapping scale
Sn SRalway Sidings19931250Sm SRalway Sidings19841250Gm SRalway Sidings19481250Sm SRalway Sidings19671050Tm SRalway Sidings190425010m SOl Tramway Sidings190425010m SRalway Sidings1968125010m SRalway Sidings1968125010m SRalway Sidings190425010m SRalway Sidings190425020m SRalway Sidings190325020m SRalway Sidings190325020m SRalway Sidings191325020m SRalway Sidings191325020m SRalway Sidings19325020m SRalway Sidings19325	3m S	Railway	1883	-
Sm SRailway Sidings19591250Gm SRailway Sidings19481250Gm SRailway Sidings1967105607m SRailway Sidings1968250010m SOld Tramway Sidings1904250015m SOld Tramway Sidings1904250016m SRailway Sidings1904250016m SOld Tramway Sidings19051056022m SRailway Sidings1903250022m SRailway Sidings1903250022m SRailway Sidings1918250027m SERailway Sidings1918250027m SERailway Sidings19131056027m SERailway Sidings193250027m SERailway Sidings1903250027m SERailway Sidings1918250027m SERailway Sidings1928250027m SERailway Sidings1938250027m SERailway Sidings1938250027m SERailway Sidings1938250027m SERailway Sidings <td>3m NW</td> <td>Railway Sidings</td> <td>1884</td> <td>500</td>	3m NW	Railway Sidings	1884	500
Anilway Sidings194812506m SRailway Sidings1967105607m SRailway Sidings1904250010m SOld Tramway Sidings1904250015m SOld Tramway Sidings1968125016m SRailway Sidings1968125016m SOld Tramway Sidings1904250016m SOld Tramway Sidings19051056022m SRailway Sidings1903250022m SRailway Sidings1918250027m SERailway Sidings19381056027m SERailway Sidings1934250027m SERailway Sidings1934250027m SERailway Sidings1934250027m SERailway Sidings1904250027m SERailway Sidings1934250027m SERailway Sidings1904250027m SERailway Sidings1903250027m SERailway Sidings	5m S	Railway Sidings	1993	1250
6m SRailway Sidings1967105607m SRailway Sidings1968125010m SOld Tramway Sidings1904250015m SOld Tramway Sidings1904250016m SRailway Sidings1908125016m SOld Tramway Sidings19051056022m SRailway Sidings1903250022m SRailway Sidings1913250022m SRailway Sidings1918250027m SERailway Sidings19131056027m SERailway Sidings19131056027m SERailway Sidings1934250027m SERailway Sidings1934250027m SERailway Sidings1903250027m SERailway Sidings1903250027m SERailway Sidings1903250027m SERailway Sidings1903250027m SERailway Sidings1903250027m SERailway Sidings1903250027m SERailway Sidings1918250027m SERailway Sidings193250027m SERailway Sidings <td>5m S</td> <td>Railway Sidings</td> <td>1959</td> <td>1250</td>	5m S	Railway Sidings	1959	1250
Tm SRailway Sidings1968125010m SOld Tramway Sidings1904260015m SOld Tramway Sidings1968125016m SOld Tramway Sidings19051056020m SRailway Sidings1903250022m SRailway Sidings1903250022m SRailway Sidings1903250023m SRailway Sidings1918250027m SERailway Sidings19381056027m SERailway Sidings1934250027m SERailway Sidings1934250026m SERailway Sidings1934250027m SERailway Sidings1934250027m SERailway Sidings1934250028m SERailway Sidings1936250029m SERailway Sidings1936250040m SERailway Sidings1936250040m SERailway Sidings1936250040m SERailway Sidings1937250040m SRailway Sidings1936250040m SRailway Sidings<	6m S	Railway Sidings	1948	1250
10m SOld Tramway Sidings1904250015m SOld Tramway Sidings1904250016m SRailway Sidings1908125016m SOld Tramway Sidings19051056022m SRailway Sidings1903250022m SRailway Sidings1918250027m SERailway Sidings1918250027m SERailway Sidings19131056027m SERailway Sidings1914250026m SERailway Sidings1904250027m SERailway Sidings1904250028m SERailway Sidings1904250029m SERailway Sidings1903250040m SERailway Sidings19051056041m SERailway Sidings1903250045m SRailway Sidings1903250045m SRailway Sidings1913250045m SRailway Sidings1983250045m SRailway Sidings<	6m S	Railway Sidings	1967	10560
15m SOld Tramway Sidings1904250016m SRailway Sidings1968125016m SOld Tramway Sidings19051056022m SRailway Sidings1903250022m SRailway Sidings1918250027m SERailway Sidings19381056027m SERailway Sidings19131056027m SERailway Sidings19131056027m SERailway Sidings1904250027m SERailway Sidings1904250027m SERailway Sidings1904250027m SERailway Sidings1904250027m SERailway Sidings1903250027m SERailway Sidings1905250040m SERailway Sidings1918250041m SARailway Sidings1918250045m SRailway Sidings1918250045m SRailway Sidings1983125048m SRailway Sidings1981125048m SRailway Sidings1981125049m SRailway Sidings1963250049m SRailway Sidings1963250049m SRailway Sidings1981125049m SRailway Sidings1963250049m SRailway Sidings1963250049m SRailway Sidings1963250049m SRailway Sidings1963250049m SRailway Sidings <t< td=""><td>7m S</td><td>Railway Sidings</td><td>1968</td><td>1250</td></t<>	7m S	Railway Sidings	1968	1250
16m SRailway Sidings1968125016m SOld Tramway Sidings19051056022m SRailway Sidings1903250022m SRailway Sidings19051056023m SRailway Sidings1918250027m SERailway Sidings1918056027m SERailway Sidings1913056027m SERailway Sidings1913056027m SERailway Sidings1904250027m SERailway Sidings1903250038m SERailway Sidings1903250040m SERailway Sidings1918250045m SRailway Sidings1918250045m SRailway Sidings1918250045m SRailway Sidings1918250045m SRailway Sidings1918250045m SRailway Sidings1983250045m SRailway Sidings1983 <td>10m S</td> <td>Old Tramway Sidings</td> <td>1904</td> <td>2500</td>	10m S	Old Tramway Sidings	1904	2500
16m SOld Tramway Sidings19051056022m SRailway Sidings1903250022m SRailway Sidings1916250023m SRailway Sidings1918250027m SERailway Sidings19381056027m SERailway Sidings19131056027m SERailway Sidings19131056027m SERailway Sidings1904250036m SERailway Sidings1903250040m SERailway Sidings19051056042m SERailway Sidings1903250045m SRailway Sidings1918250045m SRailway Sidings1913250045m SRailway Sidings1913250048m SRailway Sidings1983125048m SRailway Sidings1983125049m SRailway Sidings1963250049m SRailway Sidings1983125049m SRailway Sidings1963250049m SRailway Sidings1963125049m SRailway Sidings1963125049m SRailway Sidings1963125049m SWRailway Sidings1963125049m SWRailway Sidings1963125049m SWRailway Sidings1963125049m SWRailway Sidings1963125049m SWRailway Sidings1963125049m SWRailway Sidings <td< td=""><td>15m S</td><td>Old Tramway Sidings</td><td>1904</td><td>2500</td></td<>	15m S	Old Tramway Sidings	1904	2500
22m SRailway Sidings1903250022m SRailway Sidings19051056023m SRailway Sidings1918250027m SERailway Sidings19381056027m SERailway Sidings19131056027m SERailway Sidings1904250036m SERailway Sidings1904250036m SERailway Sidings1903250040m SERailway Sidings19051056042m SERailway Sidings1885250045m SRailway Sidings1913250045m SRailway Sidings1903250048m SRailway Sidings1983125048m SRailway Sidings1987250049m SRailway Sidings1983125049m SRailway Sidings1968250049m SRailway Sidings1963125049m SRailway Sidings1963<	16m S	Railway Sidings	1968	1250
22m SRailway Sidings19051056023m SRailway Sidings1918250027m SERailway Sidings19381056027m SERailway Sidings19131056036m SERailway Sidings1904250038m SERailway Sidings1903250040m SERailway Sidings19051056042m SERailway Sidings1905250045m SRailway Sidings1918250045m SRailway Sidings1918250048m SRailway Sidings1903250048m SRailway Sidings1983125048m SRailway Sidings1987250048m SRailway Sidings1987250049m SRailway Sidings1987250049m SRailway Sidings1983125049m SRailway Sidings1963250049m SRailway Sidings1963 <t< td=""><td>16m S</td><td>Old Tramway Sidings</td><td>1905</td><td>10560</td></t<>	16m S	Old Tramway Sidings	1905	10560
23m SRailway Sidings1918250027m SERailway Sidings19381056027m SERailway Sidings19131050036m SERailway Sidings1904250038m SERailway Sidings1903250040m SERailway Sidings19051056042m SERailway Sidings1885250045m SRailway Sidings1913250045m SRailway Sidings1903250048m SRailway Sidings1933250048m SRailway Sidings1983250049m SRailway Sidings1987250049m SRailway Sidings1963250049m SRailway Sidings19632500400 SRailway Sidings1963 <td< td=""><td>22m S</td><td>Railway Sidings</td><td>1903</td><td>2500</td></td<>	22m S	Railway Sidings	1903	2500
27m SERailway Sidings19381056027m SERailway Sidings19131056036m SERailway Sidings1904250038m SERailway Sidings1903250040m SERailway Sidings19051056042m SERailway Sidings1903250045m SRailway Sidings1918250045m SRailway Sidings1918250048m SRailway Sidings1903250048m SRailway Sidings1983125049m SRailway Sidings1963250049m SRailway Sidings1963125049m SRailway Sidings1963125049m SRailway Sidings1963125049m SWRailway Sidings19631250	22m S	Railway Sidings	1905	10560
27m SERailway Sidings19131056036m SERailway Sidings1904250038m SERailway Sidings1903250040m SERailway Sidings19051056042m SERailway Sidings1885250045m SRailway Sidings1918250045m SRailway Sidings1918250045m SRailway Sidings1918250048m SRailway Sidings1983250048m SRailway Sidings1983250049m SRailway Sidings1987250049m SRailway Sidings1963250049m SWRailway Sidings19632500	23m S	Railway Sidings	1918	2500
36m SERailway Sidings1904250038m SERailway Sidings1903250040m SERailway Sidings19051056042m SERailway Sidings1885250045m SRailway Sidings1918250045m SRailway Sidings1903250048m SRailway Sidings1983125048m SRailway Sidings1987125049m SRailway Sidings1963250049m SRailway Sidings1963250049m SRailway Sidings19632500	27m SE	Railway Sidings	1938	10560
38m SERailway Sidings1903250040m SERailway Sidings19051056042m SERailway Sidings1885250045m SRailway Sidings1918250045m SRailway Sidings1903250048m SRailway Sidings1983125048m SRailway Sidings1987250049m SRailway Sidings1987125049m SRailway Sidings1963125049m SRailway Sidings19631250	27m SE	Railway Sidings	1913	10560
40m SERailway Sidings19051056042m SERailway Sidings1885250045m SRailway Sidings1918250045m SRailway Sidings1903250048m SRailway Sidings1983125048m SRailway Sidings1968250049m SRailway Sidings1963250049m SRailway Sidings1963250049m SWRailway Sidings19631250	36m SE	Railway Sidings	1904	2500
42m SERailway Sidings1885250045m SRailway Sidings1918250045m SRailway Sidings1903250048m SRailway Sidings1983125048m SRailway Sidings1987250049m SRailway Sidings1968250049m SRailway Sidings1963125049m SWRailway Sidings1963125049m SWRailway Sidings19891250	38m SE	Railway Sidings	1903	2500
45m SRailway Sidings1918250045m SRailway Sidings1903250048m SRailway Sidings1983125048m SRailway Sidings1987125049m SRailway Sidings1968250049m SRailway Sidings1963125049m SWRailway Sidings19891250	40m SE	Railway Sidings	1905	10560
45m SRailway Sidings1903250048m SRailway Sidings1983125048m SRailway Sidings1987125049m SRailway Sidings1968250049m SRailway Sidings1963125049m SWRailway Sidings19891250	42m SE	Railway Sidings	1885	2500
48m SRailway Sidings1983125048m SRailway Sidings1987125049m SRailway Sidings1968250049m SRailway Sidings1963125049m SWRailway Sidings19891250	45m S	Railway Sidings	1918	2500
48m SRailway Sidings1987125049m SRailway Sidings1968250049m SRailway Sidings1963125049m SWRailway Sidings19891250	45m S	Railway Sidings	1903	2500
49m SRailway Sidings1968250049m SRailway Sidings1963125049m SWRailway Sidings19891250	48m S	Railway Sidings	1983	1250
49m SRailway Sidings1963125049m SWRailway Sidings19891250	48m S	Railway Sidings	1987	1250
49m SWRailway Sidings19891250	49m S	Railway Sidings	1968	2500
	49m S	Railway Sidings	1963	1250
58m S Railway Sidings 1983 1250	49m SW	Railway Sidings	1989	1250
	58m S	Railway Sidings	1983	1250

Location	Land Use	Year of mapping	Mapping scale
58m S	Railway Sidings	1987	1250
59m S	Railway Sidings	1963	1250
79m S	Railway Sidings	1902	10560
101m S	Railway Sidings	1904	2500
128m N	Tramway Sidings	1885	2500
128m N	Railway Sidings	1903	2500
128m N	Railway Sidings	1916	2500
144m NE	Railway Sidings	1917	2500
172m N	Railway Sidings	1963	10560
172m N	Railway Sidings	1955	10560
173m N	Railway Sidings	1938	10560
173m N	Railway Sidings	1913	10560
175m N	Railway Sidings	1938	10560
175m N	Railway Sidings	1938	10560
175m SW	Railway Sidings	1930	10560
176m N	Railway Sidings	1930	10560
176m N	Railway Sidings	1913	10560
178m SW	Railway Sidings	1938	10560
178m N	Tramway Sidings	1884	500
178m N	Railway Sidings	1952	2500
179m N	Railway Sidings	1952	1250
179m N	Railway Sidings	1948	1250
179m SW	Railway Sidings	1934	2500
179m SW	Railway Sidings	1938	10560
180m SW	Railway Sidings	1966	2500
182m N	Railway Sidings	1917	2500
187m NE	Railway Sidings	1904	2500
187m NE	Old Tramway Sidings	1904	2500

Location	Land Use	Year of mapping	Mapping scale
188m NE	Tramway Sidings	1883	10560
190m NE	Tramway Sidings	1887	10560
191m NE	Tramway Sidings	1886	2500
199m NE	Railway Sidings	1952	1250
199m NE	Railway Sidings	1948	1250
200m N	Tunnel	1904	2500
202m N	Tunnel	1903	2500
202m NE	Railway Sidings	1965	2500
202m NE	Railway Sidings	1966	2500
202m NE	Railway Sidings	1952	2500
202m N	Disused Tunnel	1984	1250
202m N	Disused Tunnel	1983	1250
202m N	Disused Tunnel	1989	1250
203m N	Disused Tunnel	1992	1250
203m N	Tunnel	1965	2500
203m N	Tunnel	1952	2500
203m N	Tunnel	1966	2500
203m NE	Railway Sidings	1983	1250
204m N	Tunnel	1973	1250
204m N	Tunnel	1949	1250
204m N	Tunnel	1952	1250
204m NE	Tramway Sidings	1884	500
217m N	Tunnel	1902	10560
218m N	Railway Sidings	1918	2500
220m N	Tunnel	1916	2500

This data is sourced from Ordnance Survey/Groundsure.

0

7

22.5 Royal Mail tunnels

Records within 250m

The Post Office Railway, otherwise known as the Mail Rail, is an underground railway running through Central London from Paddington Head District Sorting Office to Whitechapel Eastern Head Sorting Office. The line is 10.5km long. The data includes details of the full extent of the tunnels, the depth of the tunnel, and the depth to track level.

This data is sourced from Groundsure/the Postal Museum.

22.6 Historical railways

Records within 250m

Former railway lines, including dismantled lines, abandoned lines, disused lines, historic railways and razed lines.

Features are displayed on the Railway infrastructure and projects map on page 211 >

Location	Description
On site	Dismantled
5m S	Dismantled
43m S	Dismantled
219m N	Abandoned
222m NE	Dismantled
226m S	Abandoned
239m NE	Dismantled

This data is sourced from OpenStreetMap.

22.7 Railways

Records within 250m	40

Currently existing railway lines, including standard railways, narrow gauge, funicular, trams and light railways. Features are displayed on the Railway infrastructure and projects map on <u>page 211</u> >

Location	Name	Туре
On site	Portishead Branch Line	rail
On site	Portishead Branch Line	rail

Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

Location	Name	Туре
On site	Portishead Branch Line	rail
On site	Portishead Branch Line	rail
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
On site	Not given	Single Track
20m S	Not given	Single Track
24m N	Not given	Single Track
45m S	Not given	Single Track
96m N	Not given	Single Track
123m S	Not given	Single Track
131m S	Portishead Branch Line	rail
131m S	Not given	Single Track
132m S	Pill Branch Line	rail
140m N	Not given	Single Track
		5
143m S	Portishead Branch Line	rail

Location	Name	Туре
143m S	Portishead Branch Line	rail
144m S	Not given	Single Track
146m S	Not given	Single Track
183m S	Not given	Single Track
185m NE	Not given	Single Track
186m NE	Not given	Single Track
207m S	Not given	Single Track
212m NE	Not given	Single Track
220m NE	Not given	Single Track
231m S	Not given	Single Track

This data is sourced from Ordnance Survey and OpenStreetMap.

22.8 Crossrail 1

Records within 500m 0

The Crossrail railway project links 41 stations over 100 kilometres from Reading and Heathrow in the west, through underground sections in central London, to Shenfield and Abbey Wood in the east.

This data is sourced from publicly available information by Groundsure.

22.9 Crossrail 2

Records within 500m 0

Crossrail 2 is a proposed railway linking the national rail networks in Surrey and Hertfordshire via an underground tunnel through London.

This data is sourced from publicly available information by Groundsure.

22.10 HS2

Records within 500m

HS2 is a proposed high speed rail network running from London to Manchester and Leeds via Birmingham. Main civils construction on Phase 1 (London to Birmingham) of the project began in 2019, and it is currently anticipated that this phase will be fully operational by 2026. Construction on Phase 2a (Birmingham to Crewe) is anticipated to commence in 2021, with the service fully operational by 2027. Construction on Phase 2b (Crewe to Manchester and Birmingham to Leeds) is scheduled to begin in 2023 and be operational by 2033.

Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

This data is sourced from HS2 ltd.

Ref: GSIP-2023-13765-14374_G Your ref: Portishead Grid ref: 356700 171641

Data providers

Groundsure works with respected data providers to bring you the most relevant and accurate information. To find out who they are and their areas of expertise see <u>https://www.groundsure.com/sources-reference</u> \nearrow .

Terms and conditions

Groundsure's Terms and Conditions can be accessed at this link: <u>https://www.groundsure.com/terms-and-conditions-april-2023/</u> 7.

