

METROWEST PHASE 1B - SITE 13

FACTUAL GROUND INVESTIGATION REPORT

Prepared for VOLKERFITZPATRICK LIMITED

Report Ref: 37628

Geotechnical Engineering Ltd Centurion House, Olympus Park Quedgeley, Gloucester. GL2 4NF

01452 527743 www.geoeng.co.uk

METROWEST PHASE 1B - SITE 13

FACTUAL GROUND INVESTIGATION REPORT

Prepared for VOLKERFITZPATRICK LIMITED

Report Ref: 37628

PROJECT: New Railway

CONSULTANT: Arup

VOLUME - VERSION	STATUS	ORIGINATOR	CHECKER	APPROVED	DATE		
1 of 1 – A	DRAFT	JS	JH	-	12/03/2024		
1 of 1 – A	FINAL	JS	JH	JH	27/03/2024		
ORIGINATOR			APPROVER				
J SURMAN			J HANSON				
Senior Engineering Ge	eologist		Director				

The report is not to be used for contractual or engineering purposes unless this sheet is signed and the report designated "Final".

The report has been prepared for the sole use and reliance by VolkerFitzpatrick Limited. GEL accepts no liability as a result of the use or reliance of this report by any other parties.

CONTENTS

REPO	RT		PAGE
1.	INTRODU	JCTION	1
2.	SITE LOC	ATION AND GEOLOGY	1
3.	GROUND	INVESTIGATION	2
3.1	Fieldw	vork	2
3.2	Loggin	ng	4
3.4	Labora	atory Testing	4
4.	REFEREN	ICES	6
FIGUF	RES		Nos.
EXPLC	DRATORY H	HOLE LOCATION PLAN	1
APPEI	NDICES		
APPE	NDIX A	FIELDWORK DATA	
APPE	NDIX B	LABORATORY TESTING	
APPE	NDIX C	CHEMICAL ANALYSES	

1. INTRODUCTION

It is proposed to reconnect the rail junction at Parson Street to Portishead, Somerset. Geotechnical Engineering Limited (GEL) was instructed by VolkerFitzpatrick (the Client and Principal Contractor, hereafter referred to as the Client) acting on behalf of Network Rail to carry out an investigation to determine the ground conditions. Arup were appointed to the contract as the Consultant.

The scope of works and terms and conditions of appointment were specified by the Client and GEL correspondence reference T33803 Rev2 dated 13th November 2022. Arup provided the specification (referenced 140569-VLF-WST-POD-SPE-ESU-000005-P03_Ver3). The investigation was carried out under direction and supervision of the Consultant and the Client.

This report describes the investigation and presents the findings.

This report should be read in conjunction with GEL report reference 37506 dated 25th October 2023. The Site 13 site works contained in this report, are a continuation of the Metrowest Phase 1B works covered in the 37506 report.

2. SITE LOCATION AND GEOLOGY

The site is situated to the east of the A369 Clanage Road, Bristol and may be located by its National Grid co-ordinates ST 565 720.

British Geological Survey (BGS) England and Wales (Sheet No. 264, 1:50 000, 2004 and Sheet No. ST57SE, 1:10 000) and the BGS online geology (1:50,000) indicate the site is underlain by Head deposits across the majority of the site with some Alluvium in the north-west corner of the site. Bedrock geology is recorded as the Mercia Mudstone group.

3. GROUND INVESTIGATION

3.1 Fieldwork

The fieldwork was carried out in general accordance with BS5930:2015+A1:2020 during the period 15th and 16th January 2024 and comprised four windowless sample boreholes with dynamic cone penetrometer tests in two locations, and two dynamic cone penetrometer tests.

The exploratory hole locations were selected by the Consultant and set out by this Company and are shown on Figure 1. The ground level and co-ordinates at each exploratory hole were established by this Company using GPS techniques.

The boreholes, referenced S13-WS/DP01, S13-WS/DP02, TP01 and TP02 (Appendix A), were formed using a Dart 380 rig. Initially, an inspection pit was hand excavated at each borehole location to a depth of 1.20m to check for buried services. Disturbed samples were taken and retained in a combination of plastic tubs, bags and glass jars. Dynamic sampling techniques were then employed to produce a continuous disturbed sample of 73mm diameter reducing to 43mm as the borehole was advanced. The samples were recovered in semi-rigid plastic liner.

The samples were extracted horizontally from the sampler, labelled and sealed at each end to retain moisture.

Standard penetration tests (SPT) were carried out in general accordance with BS EN ISO 22476-3:2005+A1:2011. A split barrel was used depending upon the materials encountered and the split barrel samples retained in airtight jars. The SPT N value was taken as the number of blows to penetrate the 300mm test drive following a 150mm seating drive. Where low penetration was recorded the seating drive was terminated at 25 blows and the test drive completed after

a further 50 blows. Detailed SPT results, together with the energy ratio (E_r), are presented in Appendix A and summarised as uncorrected N values on the borehole logs.

Boreholes were monitored for groundwater ingress as dynamic sampling proceeded.

On completion, the boreholes were backfilled with arisings and bentonite pellets and the surface reinstated.

Dynamic probeholes, referenced S13-WS/DP01 DP and S13-WS/DP2 DP (Appendix A), were carried out using a Dart 380 rig and operated in general accordance with the DPH/DPSH(B) specification given in BS EN ISO 22476-2:2005+A1:2011. Sacrificial cones were used along with 32mm diameter x 1.00m long driving rods.

Probe depths were measured with respect to ground level and the number of blows, n_{10} , recorded for each 100mm penetration of the probe. At the end of each 1m penetration the maximum torque acting on the rods was measured.

Dynamic Cone Penetrometer tests (DCP), referenced TP01 DCP and TP02 DCP (Appendix A), were carried out using a CNS Farnell A2465 dynamic cone penetrometer. Probe depths were measured with respect to ground level and the number of blows for the penetration of the probe was recorded. Equivalent CBR values have been calculated and presented with the results in Appendix A.

Samples for chemical analyses were dispatched to i2 Analyytical, Watford under a Chain of Custody. The remaining samples were brought to this Company's laboratory for testing and storage.

3.2 Logging

The logging of soils was carried out by an Engineering Geologist in general accordance with BS5930:2015+A1:2020. A key to the exploratory hole logs is presented in Appendix A.

Detailed descriptions of the samples are given in the borehole logs, Appendix A, along with details of sampling, in situ testing, groundwater ingress and relevant comments on drilling techniques.

A hand vane test was carried out. The result is presented on the borehole log and tabulated in Appendix A.

Prior to logging, photographs of the core were taken and are presented separately.

3.4 Laboratory Testing

A schedule of laboratory tests was prepared by the Consultant, the results are presented in Appendix B.

The natural water content was determined on fifteen selected samples in accordance with BS EN ISO 17892-1:2014.

Liquid limit and plastic limit tests were carried out on eleven selected samples in accordance with BS EN ISO 17892-12:2018:5.3 & 5.5. An Atterberg line plot has also been presented.

Particle size distributions were determined in accordance with BS EN ISO 17892-4:2016 for three samples by wet sieving [5.2]. The fine fractions of one of these samples was further

analysed by sedimentation using the pipette method [5.4]. The results are presented as grading curves.

The BRE SD1 (2005) suite of tests was carried out on four samples by Eurofins Chemtest, Newmarket using in-house methods.

Selected samples were despatched to i2 Analytical, Watford, where chemical analyses were carried out to in-house methods for a suite of contaminants. The results are presented in Appendix C.

GEOTECHNICAL ENGINEERING LIMITED

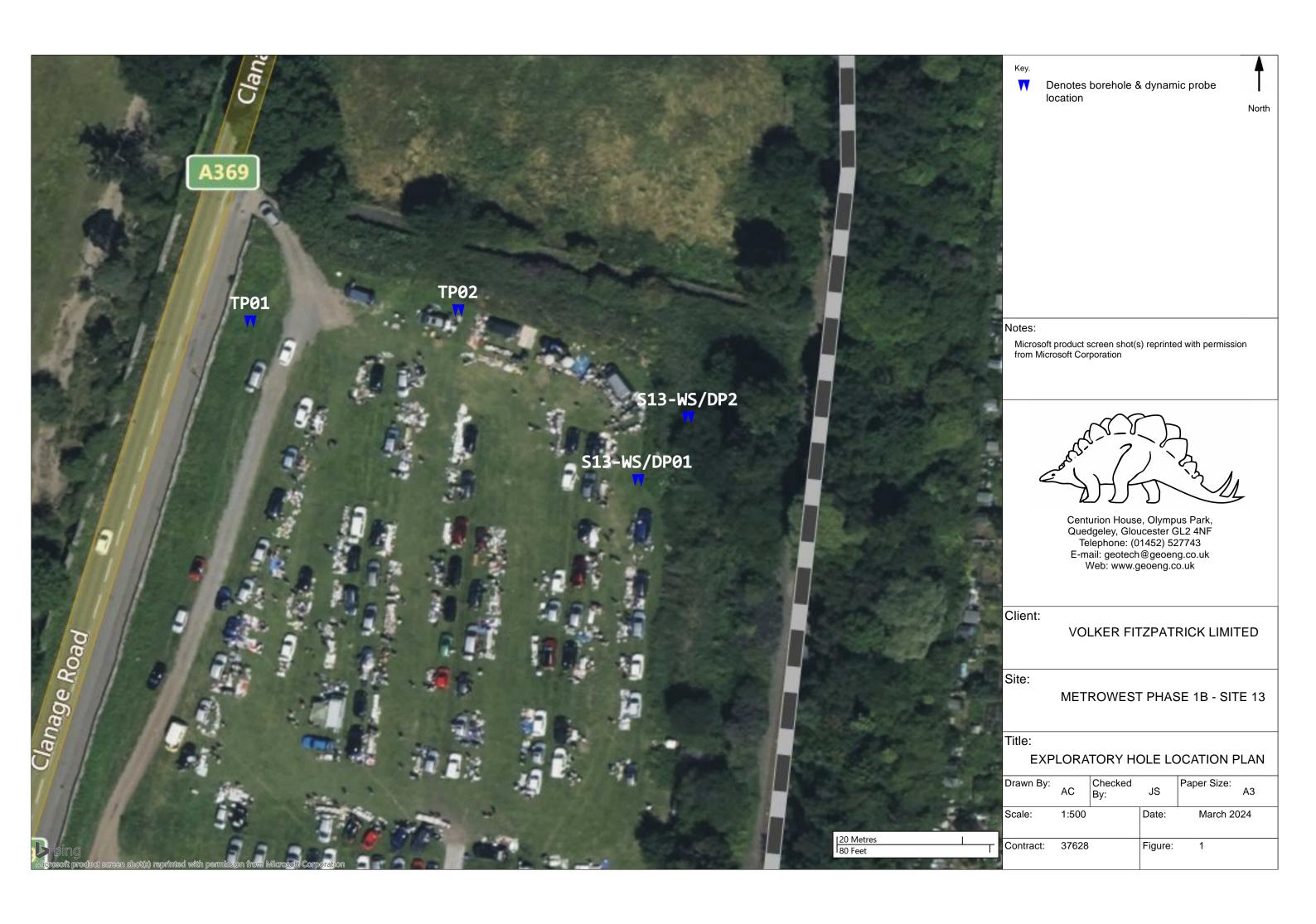
FRT01 v14 19/08/21 JH

4. REFERENCES

British Standards Institution (2012): Geotechnical investigation and testing. Field testing. Dynamic probing. BS EN ISO 22476-2:2005+A1:2011.

British Standards Institution (2012): Geotechnical investigation and testing. Field testing. Standard penetration test. BS EN ISO 22476-3:2005+A1:2011.

British Standards Institution (2015): Code of practice for ground investigations. BS 5930:2015+A1:2020.


British Standards Institution (2014): Geotechnical investigation and testing – Laboratory testing of soil. Part 1: Determination of water content. BS EN ISO 17892-1:2014.

British Standards Institution (2016): Geotechnical investigation and testing – Laboratory testing of soil. Part 4: Determination of particle size distribution. BS EN ISO 17892-4:2016.

British Standards Institution (2018): Geotechnical investigation and testing – Laboratory testing of soil. Part 12: Determination of liquid and plastic limits. BS EN ISO 17892-12:2018.

British Standards Institution (2016): Methods of test for soils for civil engineering purposes – Part 1: General requirements and sample preparation. BS1377-1:2016.

Building Research Establishment (2005): Concrete in aggressive ground. BRE Special Digest 1. Third Edition.

APPENDIX A

FIELDWORK DATA

KEY TO EXPLORATORY HOLE LOGS

Sample type

D Small disturbed U Undisturbed L Dynamic ES Environmental - soil CS Core subsample (prepared)

B Bulk disturbed UT Undisturbed thin wall C Core EW Environmental - water LS Dynamic subsample (prepared)

LB Large bulk disturbed P Piston W Water

Test type

- S SPT Split spoon sampler followed by uncorrected SPT 'N' Value
- C SPT Solid cone followed by uncorrected SPT 'N' Value

(*250 - Where full test drive not completed, linearly extrapolated 'N' value reported, ** - Denotes no effective penetration). Arrow length reflects test depth range.

- Hand vane direct reading in kPa not corrected for BS1377 (1990). Re* denotes refusal. Where the limit of the equipment is reached during a test, the reported value is the minimum recorded shear strength of the material.
- M Mackintosh probe number of blows to achieve 100mm penetration
- Mx Mexe cone average reading of equivalent CBR value in %
- PP Pocket penetrometer calculated reading in kPa
- Vo Headspace vapour reading, uncorrected peak values in ppm, using a PID (calibrated with isobutylene, using a 10.6eV bulb)
- TR In situ thermal resistivity by needle probe in mK/W

---- Estimated boundary

Sample/core range/I_f

Dynamic sample Undisturbed sample - open drive including thin wall. Symbol length reflects recovery

- x = Total Core Recovery (TCR) as percentage of core run
- y = Solid Core Recovery (SCR) as percentage of core run. Assessment of core is based on full diameter
- z = Rock Quality Designation (RQD). The amount of solid core greater then 100mm expressed as percentage of core run

Where SPT has been carried out at the beginning of core run, disturbed section of core excluded from SCR and RQD assessment

I₁ - fracture spacing - the modal fracture spacing (mm) over the indicated length of core. Where spacing varies significantly, the minimum, mode and maximum values are also given. NI = non-intact core NA = not applicable NR = no recovery

Instrumentation

Piezometer	Perforated standpipe	Inclinometer	Extensomete	er			
Backfill Granular response zone	Bentonite seal	Cement/ bentonite grout	Soil backfill	Concrete	Cover	instru -ment Raised cover	instru stopcock cover
Stratum boundaries							

Logging

The logging of soils and rocks has been carried out in general accordance with BS 5930:2015+A1:2020

Chalk is logged in general accordance with Lord et al (2002) CIRIA C574. Where possible, dynamic samples in chalk have been logged in accordance with CIRIA C574; descriptions and gradings (if presented) should be treated with caution given the potential for sample disturbance.

Grading boundary

For rocks the term fracture has been used to identify a mechanical break within the core. Where possible incipient and drilling induced fractures have been excluded from the assessment of fracture state. Where doubt exists, a note has been made in the descriptions. All fractures are considered to be continuous unless otherwise reported.

Made Ground is readily identified when, within the natural make up, man made constituents are evident. Where Made Ground appears to be reworked natural material the differentiation between in situ natural deposits and Made Ground is much more difficult to ascertain. The interpretation of Made Ground within the logs should therefore be treated with caution.

The descriptors "topsoil" and "tarmacadam" are used as generic terms and do not imply conformation to any particular standard or composition.

Rootlets are defined as being less than 2mm in diameter, roots are defined as in excess of 2mm diameter.

General comments

The process of drilling and sampling will inevitably lead to sample disturbance, mixing or loss of material in some soil and rocks.

Indicated water levels are those recorded during the process of drilling or excavating exploratory holes and may not represent standing water levels.

All depths are measured along the axis of the borehole and are related to ground level at the point of entry. All inclinations are measured normal to the axis of the core.

Where provided, the stratigraphical names/geological rock units are for guidance only and may not be wholly accurate.

Key to Exploratory Hole Logs v08 17/08/2023 11:20 DC: E

type from to (m) range	sample no &	sample depth (m)	casing depth	samp. /core
	type	from to	(m)	range
			<u> </u>	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			F	
			Ė	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			L	
			L	
			_	
			L	
- - - - - - - - - - - - - - - - - - -			H	
- - - - - - - - - - - - - - - - - - -				
- - - - - - - - - - - - - - - - - - -				
			L	
			-	
			L	
			H	
1 1 1			F	
			_	

DYNAMIC PROBE RESULTS

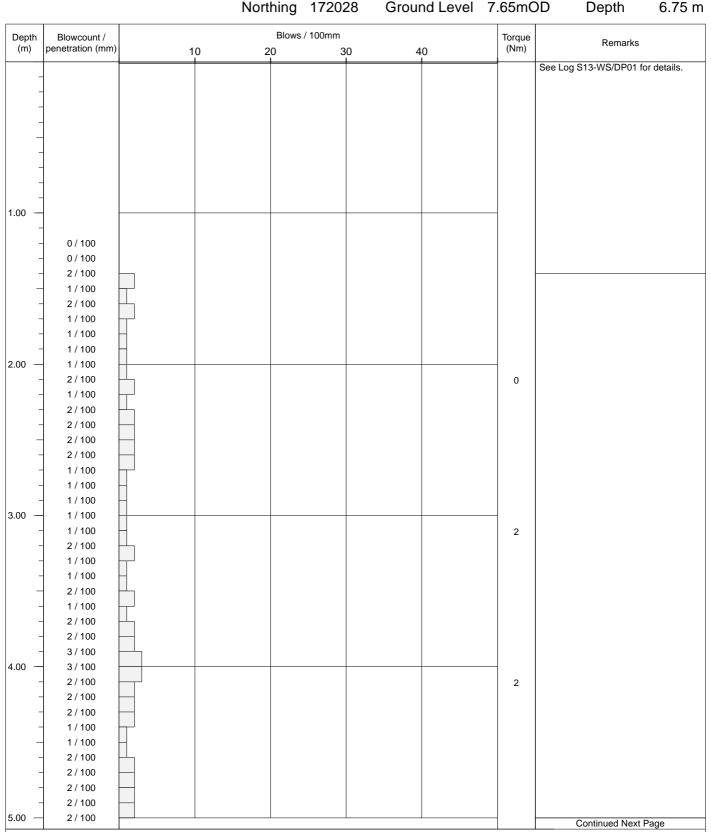
CLIENT VOLKER FITZPATRICK LIMITED

S13-WS/DP01 DP

SITE METROWEST PHASE 1B - SITE 13

Sheet

1 of 2


1:25

Date 15 January 2024

Easting 356577

Ground Level 7.65mOD

Scale Depth 6.75 m

CONTRACT

CHECKED

37628

JH

Date

DYNAMIC PROBE RESULTS

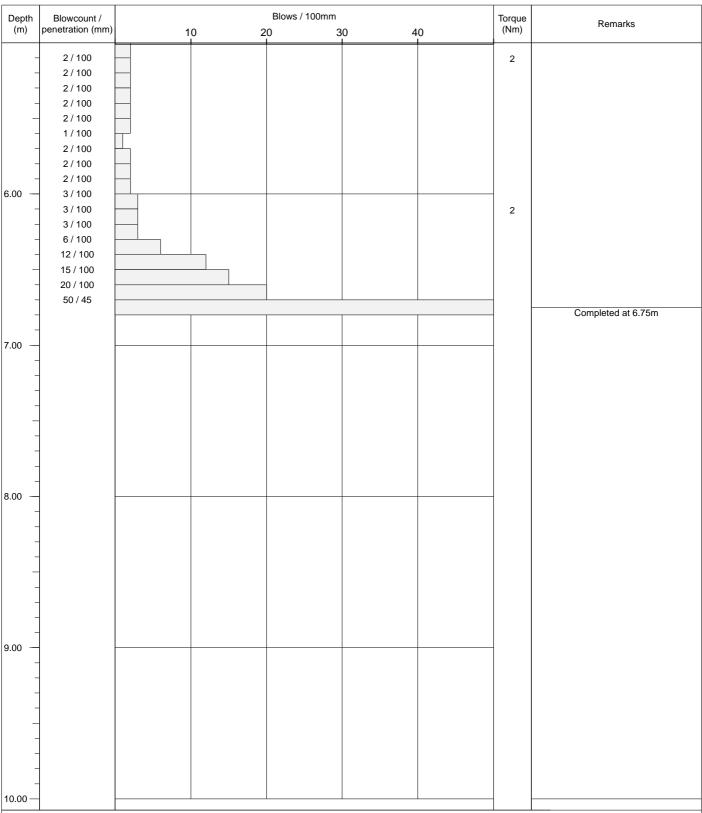
CLIENT VOLKER FITZPATRICK LIMITED

15 January 2024

S13-WS/DP01 DP

SITE METROWEST PHASE 1B - SITE 13

Sheet 2 of 2


Easting 356577

Scale 1:25

Northing 172028

Ground Level 7.65mOD

Depth 6.75 m

Method: Undertaken in accordance with BS EN ISO 22476-2

Probe type: Superheavy (63.5kg hammer mass/750mm drop)

AGS 3

CONTRACT CHECKED

37628

JH

type from to (m) range	sample no &	sample depth (m)	casing depth	samp. /core
	type	from to	(m)	range
			<u> </u>	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			F	
			Ė	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			_	
			L	
			L	
			_	
			L	
- - - - - - - - - - - - - - - - - - -			H	
- - - - - - - - - - - - - - - - - - -			E	
- - - - - - - - - - - - - - - - - - -				
			L	
			-	
			L	
			H	
1 1 1			F	
			_	

Date

DYNAMIC PROBE RESULTS

CLIENT VOLKER FITZPATRICK LIMITED

15 January 2024

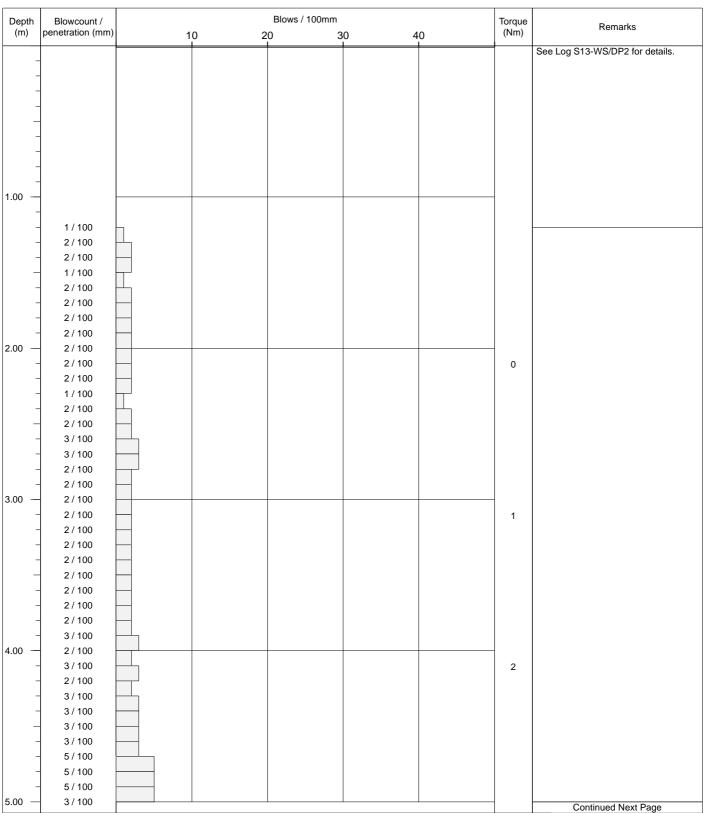
Easting

S13-WS/DP2 DP

SITE METROWEST PHASE 1B - SITE 13

Sheet 1 of 2

Scale


1:25

Northing 172038

356585

Ground Level 7.50mOD

Depth 6.41 m

Method: Undertaken in accordance with BS EN ISO 22476-2

Probe type: Superheavy (63.5kg hammer mass/750mm drop)

CONTRACT

37628

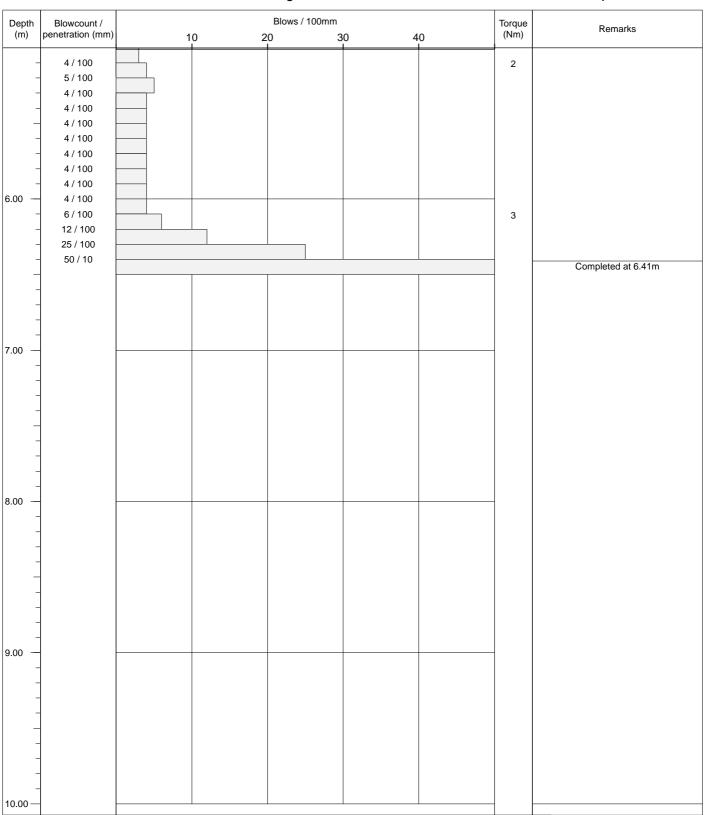
CHECKED

Date

DYNAMIC PROBE RESULTS

CLIENT VOLKER FITZPATRICK LIMITED

15 January 2024


S13-WS/DP2 DP

SITE METROWEST PHASE 1B - SITE 13

> Sheet 2 of 2

1:25

Scale Easting 356585 Ground Level 7.50mOD Northing 172038 Depth 6.41 m

Method: Undertaken in accordance with BS EN ISO 22476-2

Probe type: Superheavy (63.5kg hammer mass/750mm drop)

CONTRACT

CHECKED

37628

JH

sample no & type	sample depth (m) from to	casing depth (m)	samp. /core range
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_ _ _	
		_	
		_	

sample no & type	sample depth (m) from to	casing depth (m)	samp. /core range
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_	
		_ _ _	
		_	
		_	

STANDARD PENETRATION TEST

CLIENT VOLKER FITZPATRICK LIMITED

SITE METROWEST PHASE 1B - SITE 13

borobolo no	borehole	s.w.p	base	casing	water	s	seating drive		test drive					test	N	energy				
borehole no.	depth (m)	(mm)	depth (m)	depth (m)	level (m)	blo	ows		en m)		blo	ws			pen ((mm))	type	IN	ratio %
S13-WS/DP01	1.20		1.65	Nil	Dry	1	1	75	75	1	1	1	2	75	75	75	75	S	5	66
S13-WS/DP01	2.00		2.45	2.00	Dry	1	1	75	75	0	1	0	0	75	75	75	75	S	1	66
S13-WS/DP01	3.00	450	3.45	3.00	0.00	0	0			0	0	0	0					S	<1	66
S13-WS/DP01	4.00	450	4.45	3.00	0.00	0	0			0	0	0	0					S	<1	66
S13-WS/DP01	5.00		5.45	3.00	0.00	2	3	75	75	2	2	2	3	75	75	75	75	S	9	66
S13-WS/DP01	6.00		6.20	3.00	0.00	15	10	75	25	38	12			75	25			S	150	66
S13-WS/DP2	1.20		1.65	Nil	Dry	1	1	75	75	1	2	2	2	75	75	75	75	S	7	66
S13-WS/DP2	2.00		2.45	2.00	Dry	0	0	75	75	0	0	0	1	75	75	75	75	S	1	66
S13-WS/DP2	3.00		3.45	3.00	0.00	0	0	75	75	0	0	0	1	75	75	75	75	S	1	66
S13-WS/DP2	4.00		4.45	3.00	0.00	1	1	75	75	1	1	2	1	75	75	75	75	S	5	66
S13-WS/DP2	5.00		5.45	3.00	0.00	2	2	75	75	1	2	1	2	75	75	75	75	S	6	66
S13-WS/DP2	6.00		6.24	3.00	0.00	5	9	75	75	35	15			75	15			S	167	66
TP01	1.20		1.65	Nil	0.00	0	0	75	75	0	0	0	1	75	75	75	75	S	1	66
TP01	2.00		2.45	2.00	0.00	2	1	75	75	2	2	2	2	75	75	75	75	S	8	66
TP01	3.00		3.45	2.00	0.00	0	0	75	75	0	0	0	1	75	75	75	75	S	1	66
TP02	1.20		1.65	Nil	0.00	0	0	75	75	0	1	1	2	75	75	75	75	S	4	66
TP02	2.00		2.45	2.00	0.00	0	1	75	75	2	1	2	2	75	75	75	75	S	7	66
TP02	3.00		3.45	2.00	0.00	0	0	75	75	0	0	0	1	75	75	75	75	S	1	66

notes:

1. Test carried out in general accordance with BS EN ISO 22476-3:2005 + A1:2011

2. s.w.p = self weight penetration.

3. N values have not been subjected to any correction.

4. Test carried out using split spoon S, solid cone C.

5. Where full test drive not completed, linearly extrapolated N value reported.

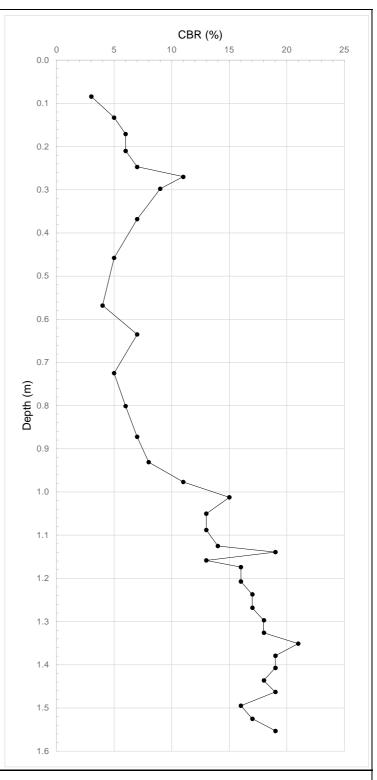
6. ** Denotes no effective penetration.

CONTRACT CHECKED

37628 JH

DYNAMIC CONE PENETROMETER TESTING

CLIENT VOLKER FITZPATRICK LIMITED


SITE METROWEST PHASE 1B - SITE 13

TP01 DCP

Test date 16/01/2024 Test No. 1

Initial Scale Reading (mm) -295 Datum bgl (mm) 0

nitiai s	Scale Readi	ng (mm)	-295	Datum bgl (m			
no. of blows	Scale reading (mm)	Penetration Increment (mm)	Depth bgl (m)	DCP (mm/blow)	CBR (%)		
1	-211	84	0.08	84	3		
1	-162	49	0.13	49	5		
1	-124	38	0.17	38	6		
1	-85	39	0.21	39	6		
1	-48	37	0.25	37	7		
1	-25	23	0.27	23	11		
1	3	28	0.30	28	9		
2	73	70	0.37	35	7		
2	163	90	0.46	45	5		
2	273	110	0.57	55	4		
2	340	67	0.64	34	7		
2	430	90	0.73	45	5		
2	506	76	0.80	38	6		
2	577	71	0.87	36	7		
2	636	59	0.93	30	8		
2	682	46	0.98	23	11		
2	717	35	1.01	18	15		
2	755	38	1.05	19	13		
2	793	38	1.09	19	13		
2	830	37	1.13	19	14		
1	844	14	1.14	14	19		
1	863	19	1.16	19	13		
1	879	16	1.17	16	16		
2	912	33	1.21	17	16		
2	942	30	1.24	15	17		
2	973	31	1.27	16	17		
2	1002	29	1.30	15	18		
2	1031	29	1.33	15	18		
2	1056	25	1.35	13	21		
2	1084	28	1.38	14	19		
2	1112	28	1.41	14	19		
2	1141	29	1.44	15	18		
2	1168	27	1.46	14	19		
2	1200	32	1.50	16	16		
2	1230	30	1.53	15	17		
2	1258	28	1.55	14	19		

Remarks:

CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by

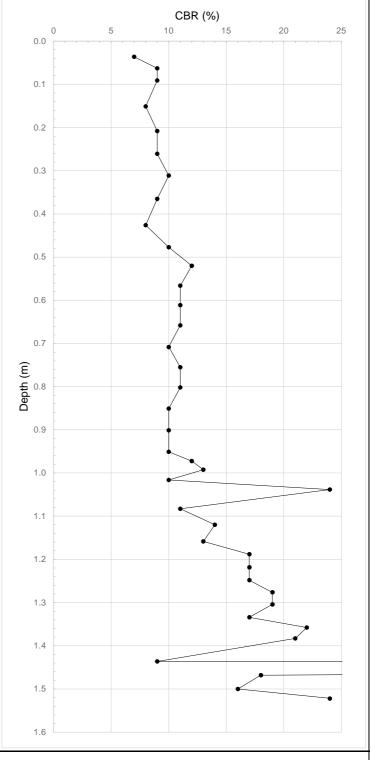
TRL taken from Highways England CS229: Data for Pavement Assessment (2020).

CONTRACT CHECKED

37628 JH

DYNAMIC CONE PENETROMETER TESTING

CLIENT VOLKER FITZPATRICK LIMITED


SITE METROWEST PHASE 1B - SITE 13

TP02 DCP

Test date 16/01/2024 Test No. 1

Initial Scale Reading (mm) -126 Datum bgl (mm) 0

miliai	scale Readi	rig (min)	-126	Datum bgi (mm			
no. of blows	Scale reading (mm)	Penetration Increment (mm)	Depth bgl (m)	DCP (mm/blow)	CBR (%)		
1	-90	36	0.04	36	7		
1	-63 27		0.06	27	9		
1	-35	28	0.09	28	9		
2	25	60	0.15	30	8		
2	82	57	0.21	29	9		
2	135	53	0.26	27	9		
2	185	50	0.31	25	10		
2	239	54	0.37	27	9		
2	300	61	0.43	31	8		
2	351	51	0.48	26	10		
2	394	43	0.52	22	12		
2	440	46	0.57	23	11		
2	485	45	0.61	23	11		
2	532	47	0.66	24	11		
2	582	50	0.71	25	10		
2	629	47	0.76	24	11		
2	676	47	0.80	24	11		
2	725	49	0.85	25	10		
2	775	50	0.90	25	10		
2	825	50	0.95	25	10		
1	846	21	0.97	21	12		
1	866	20	0.99	20	13		
1	890	24	1.02	24	10		
2	912	22	1.04	11	24		
2	957	45	1.08	23	11		
2	994	37	1.12	19	14		
2	1032	38	1.16	19	13		
2	1062	30	1.19	15	17		
2	1092	30	1.22	15	17		
2	1122	30	1.25	15	17		
2	1150	28	1.28	14	19		
2	1178	28	1.30	14	19		
2	1208	30	1.33	15	17		
2	1232	24	1.36	12	22		
2	1257	25	1.38	13	21		
2	1310	53	1.44	27	9		
2	1313	3	1.44	2	197		
2	1342	29	1.47	15	18		
2	1374	32	1.50	16	16		
2	1396	22	1.52	11	24		
	1000 22						
	:						

Remarks:

CBR correlation based on the relationship Log10 (CBR) = 2.48 - 1.057 * Log10 (mm/blow) developed by

TRL taken from Highways England CS229: Data for Pavement Assessment (2020).

CONTRACT CHECKED

37628 JH

IN-SITU HAND VANE/POCKET PENETROMETER

CLIENT VOLKER FITZPATRICK LIMITED
SITE METROWEST PHASE 1B - SITE 13

Borehole /trial pit no.	Depth (m)	Hand vane peak (kPa)	Average hand vane peak (kPa)	Hand vane remoulded (kPa)	Average hand vane remoulded (kPa)	Pocket penetrometer (kPa)	Average pocket penetrometer (kPa)	Remarks
S13-WS/DP2	1.10	59	59	0	0			
Hand vane and pocket penetrometer test results reported as undrained shear strength								CHECKED
								JH

APPENDIX B

LABORATORY TESTING

GEOTECHNICAL ENGINEERING LIMITED

Version No.

Date of Issue

1 N/A

For the attention of Chris Morgan / Megan Mac Court

Reason for update N/A Page No. 1 of 11

06/03/2024

TEST REPORT

PROJECT/SITE	METRO WEST SITE 13	Samples received	16/01/2024
GEL REPORT NUMBER	37628	Schedule received	24/01/2024
Your ref/PO:		Testing commenced	02/02/2024
Test report refers to	Schedule 1	Status	Final

SUMMARY OF RESULTS ATTACHED

TEST METHOD & DESCRIPTION		QUANTITY	ACCREDITED
(S) denotes testing was subcontracted			TEST
BS EN ISO 17892-1: 2014:5, Water Content		15	YES
BS EN ISO 17892-12:2018, Liquid & Plastic Limits		11	YES
BS EN ISO 17892-4: 2016: 5.2, Particle Size Distribution - Wet Sieve		3	YES
BS EN ISO 17892-4: 2016: 5.4, Particle Size Distribution - Pipette		1	YES
BRE SD1 Suite	(S)	4	YES/NO

General Remarks

This report may not be partially reproduced without written permission from this laboratory.

The results reported relate to samples received in the laboratory and the items tested.

Geotechnical Engineering Ltd

Centurion House Olympus Park, Quedgeley Gloucester GL2 4NF

www.geoeng.co.uk

geotech@geoeng.co.uk TEL: 01452 527743 Approved Signatories:

W Jones (Laboratory Manager) J Hanson (Director)
T Best (Deputy Laboratory Manager) N Parry (Director)

Doc TR01 Re

Rev No. 24

Revision date 19/05/23

DC:JH/WJ

LIQUID AND PLASTIC LIMITS

BS EN ISO 17892-12:2018

CLIENT NETWORK RAIL

SITE METROWEST PHASE 1B - HIGHWAYS / WECA / NSC SCOPE - SITE 13

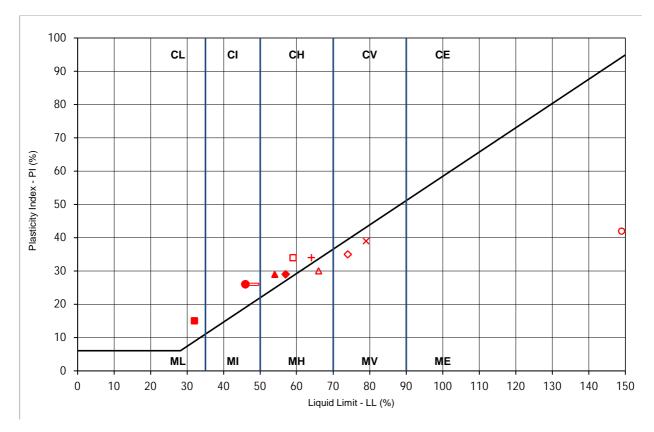
borehole	san	nple	specimen	natural	specimen	fraction	liquid	plastic	plasticity	
/trial pit	no./type	depth	depth	water content	preparation and test	>0.425 mm	limit	limit	index	description and remarks
no.		(m)	(m)		method		(%)	(%)	(%)	decomplient and remarks
				(%)		(%)				
S13- WS/DP01	7B	1.00	1.00	28.8	BXE	0	59	25	34	Brown mottled orange and grey slightly sandy silty CLAY
S13- WS/DP01	14D	2.40	2.40	37.4	E					Brown slightly gravelly slightly sandy silty CLAY
S13- WS/DP01	18D	3.40	3.40	96.8	BXD	1	74	39	35	Brown and grey slightly sandy organic clayey SILT
S13- WS/DP01	21D	4.90	4.90	62.2	BXE	3	66	36	30	Greyish brown slightly gravelly slightly sandy organic clayey SILT
S13- WS/DP01	25D	6.00	6.00	19.0	Е					Light grey slightly sandy clayey SILT
S13-WS/DP2	8D	1.00	1.00	25.1	BXE	4	79	40	39	Brown mottled orange and grey slightly gravelly slightly sandy clayey SILT
S13-WS/DP2	12D	2.00	2.00	36.5	E					Brown slightly sandy clayey SILT
S13-WS/DP2	15D	3.00	3.00	55.7	BXD	3	64	30	34	Grey and brown slightly gravelly slightly sandy organic silty CLAY
S13-WS/DP2	17D	3.50	3.50	222	BYD	0	149	107	42	Dark brown slightly gravelly slightly sandy organic clayey SILT
S13-WS/DP2	21D	5.00	5.00	24.6	BXE	1	32	17	15	Brown and bluish grey slightly sandy silty CLAY
TP01	6D	0.90	0.90	36.3	BXE	1	57	28	29	Brown slightly sandy silty CLAY
TP01	12D	2.60	2.60	37.6	BXD	1	54	25	29	Greyish brown slightly sandy silty CLAY
TP02	9D	1.50	1.50	32.7	BXE	4	46	20	26	Brown mottled orange and grey slightly sandy silty CLAY
TP02	10D	2.00	2.00	31.5	E					Brown mottled grey slightly sandy silty CLAY
TP02	13D	3.00	3.00	66.8	BXE	4	48	22	26	Brown and grey slightly gravelly slightly sandy organic silty CLAY

general remarks

natural water content determined in accordance with BS EN ISO 17892 - 1 : 2014 (unless specified)

NP denotes non plastic

denotes sample tested is smaller than that which is recommended in accordance with BS EN ISO 17892 or BS1377


specimen preparation		test method	CONTRACT	CHECKED
A - as received	D - oven dried (60°C)	X - cone penetrometer (4 point)		
B - washed on 0.425mm sieve	E - oven dried (105°C)	Y - cone penetrometer (1 point)	37628	WNJ
C - air dried	F - not known	Z - casagrande apparatus		

ATTERBERG LINE PLOT

CLIENT NETWORK RAIL

SITE METROWEST PHASE 1B - HIGHWAYS / WECA / NSC SCOPE - SITE 13

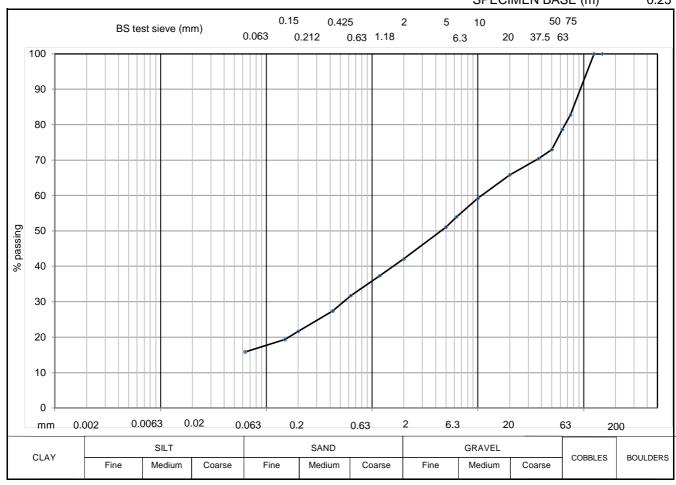
	BH/TP No.	depth (m)	LL	PL	PI	remarks
0	S13-WS/DP01	1.00	59	25	34	
\downarrow	S13-WS/DP01	3.40	74	39	35	
r	S13-WS/DP01	4.90	66	36	30	
∉	S13-WS/DP2	1.00	79	40	39	
\circ	S13-WS/DP2	3.00	64	30	34	
0	S13-WS/DP2	3.50	149	107	42	
n	S13-WS/DP2	5.00	32	17	15	
u	TP01	0.90	57	28	29	
р	TP01	2.60	54	25	29	
1	TP02	1.50	46	20	26	
þ	TP02	3.00	48	22	26	

CONTRACT	CHECKED
37628	WNJ

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

CLIENT NETWORK RAIL BH/TP No. \$13-WS/DP01


SITE METROWEST PHASE 1B - HIGHWAYS / WECA / NSC SCOPE - SAMPLE No./TYPE 3B

SITE 13

SAMPLE DEPTH (m) 0.15

DESCRIPTION Dark brown clayey very sandy GRAVEL with high cobble content SPECIMEN TOP (m) 0.15

SPECIMEN BASE (m) 0.25

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY							
SILT		150	100	5	51	20	
SILT & CLAY	16						
SAND	26	75	83	2	42	6	
GRAVEL	37						
COBBLE & BOULDER	21	63	79	1.18	37	2	
test method(s)	5.2	50	73	0.63	32		
test method		1					
		37.5	70	0.425	27		
5.2 - sieving							
		20	66	0.2	22		
5.3 - sedimentation by hy	drometer						
		10	59	0.15	19		
5.4 - sedimentation by pip	pette						
		6.3	54	0.063	16		
remarks						CONTRACT	CHECKE

remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

CHECKED

37628

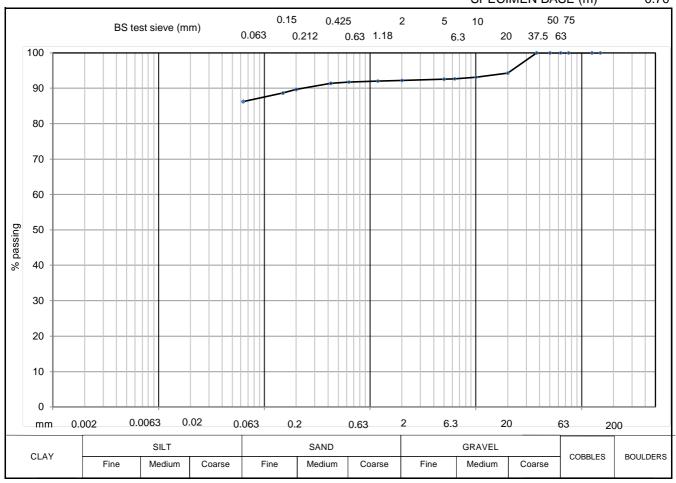
WNJ

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4:2016:5

CLIENT NETWORK RAIL BH/TP No. TP01

SITE METROWEST PHASE 1B - HIGHWAYS / WECA / NSC SCOPE - SAMPLE No./TYPE 3B


SITE 13

SAMPLE DEPTH (m) 0.50

DESCRIPTION Brown slightly gravelly slightly sandy silty CLAY

SPECIMEN TOP (m) 0.50

SPECIMEN BASE (m) 0.70

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY							
SILT		150		5	93	20	
SILT & CLAY	86						
SAND	6	75		2	92	6	
GRAVEL	8						
COBBLE & BOULDER	0	63		1.18	92	2	
test method(s)	5.2	50		0.63	92		
test method							
		37.5	100	0.425	91		
5.2 - sieving							
		20	94	0.2	90		
5.3 - sedimentation by hy	drometer						
		10	93	0.15	89		
5.4 - sedimentation by pip	pette						
		6.3	93	0.063	86		
					1		T
remarks						CONTRACT	CHECKE

remarks
denotes sample tested is smaller than that which is recommended in accordance with BS EN 17892
Particle density assigned an assumed value of 2.70 Mg/m3

CHECKED

WNJ

PARTICLE SIZE DISTRIBUTION

BS EN ISO 17892 - 4: 2016: 5

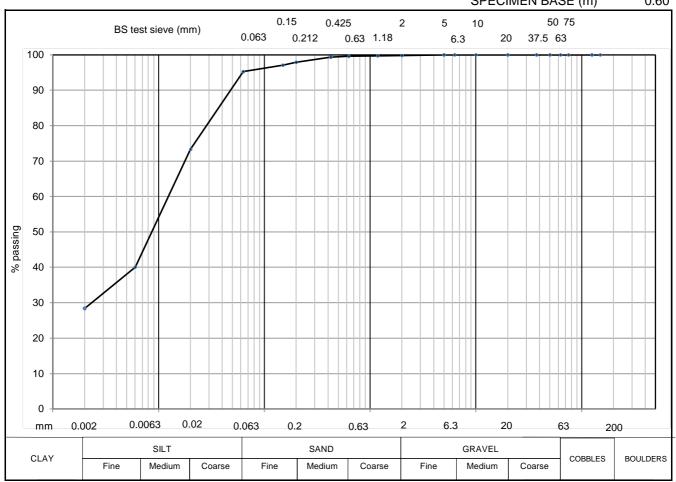
CLIENT NETWORK RAIL BH/TP No. TP02

SITE METROWEST PHASE 1B - HIGHWAYS / WECA / NSC SCOPE - SAMPLE No./TYPE 4B

SITE 13

Particle density assigned an assumed value of 2.70 Mg/m3

SAMPLE DEPTH (m) 0.50


DESCRIPTION Brown slightly sandy silty CLAY

SPECIMEN TOP (m) 0.50

SPECIMEN BASE (m) 0.60

37628

WNJ

soil type	% fraction	BS test sieve (mm)	% passing	BS test sieve (mm)	% passing	BS test sieve (µm)	% finer
CLAY	28						
SILT	67	150		5	100	20	73
SILT & CLAY	95						
SAND	5	75		2	100	6	40
GRAVEL	0						
COBBLE & BOULDER	0	63		1.18	100	2	28
test method(s)	5.2 & 5.4	50		0.63	100		
test method							
		37.5		0.425	99		
5.2 - sieving							
		20		0.2	98		
5.3 - sedimentation by hy	drometer						
		10		0.15	97		
5.4 - sedimentation by pip	ette						
		6.3		0.063	95		
remarks						CONTRACT	CHECKE

eurofins Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.: 24-04321-1
Initial Date of Issue: 19-Feb-2024

Re-Issue Details:

Client Geotechnical Engineering Ltd

Client Address: Centurion House, Olympus Park

Quedgeley Gloucester Gloucestershire

GL2 4NF

Contact(s): GEL

Tom Best

Project 37628 METRO WEST SITE 13

Quotation No.: Date Received: 14-Feb-2024

Order No.: 8221 Date Instructed: 14-Feb-2024

No. of Samples: 4

Turnaround (Wkdays): 5 Results Due: 20-Feb-2024

Date Approved: 19-Feb-2024

Approved By:

Details: Stuart Henderson, Technical

Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

Results - Soil

Project: 37628 METRO WEST SITE 13

Client: Geotechnical Engineering Ltd			Che	mtest Jo	ob No.:	24-04321	24-04321	24-04321	24-04321
Quotation No.:		Chemtest Sample ID.:			1766095	1766096	1766097	1766098	
Order No.: 8221			Clie	nt Samp	le Ref.:	4	19	11	3
			Sa	ample Lo	ocation:	S13-WS/DP01	S13-WS/DP2	TP01	TP02
				Sampl	е Туре:	SOIL	SOIL	SOIL	SOIL
				Top De	oth (m):	0.15	4.00	2.00	0.40
			Bot	tom De	oth (m):	0.25	5.00	3.00	0.60
				Date Sa	ampled:	09-Feb-2024	09-Feb-2024	09-Feb-2024	09-Feb-2024
				Time Sa	ampled:	9:00	9:00	9:00	9:00
Determinand	HWOL Code	Accred.	SOP	Units	LOD				
Moisture		N	2030	%	0.020	27	51	25	20
Soil Colour		N	2040		N/A	Brown	Brown	Brown	Brown
Other Material		N	2040		N/A	Roots and Stones	Stones	Stones	Stones
Soil Texture		N	2040		N/A	Sand	Clay	Clay	Sand
pH (2.5:1) at 20C		N	2010		4.0	8.6	7.8	8.2	8.4
Magnesium (Water Soluble)		N	2120	g/l	0.010	0.090	0.090	0.018	< 0.010
Sulphate (2:1 Water Soluble) as SO4		М	2120	g/l	0.010	0.76	0.76	0.087	< 0.010
Total Sulphur		U	2175	%	0.010	0.14	1.2	0.081	0.019
Chloride (Water Soluble)		М	2220	g/l	0.010	< 0.010	0.19	0.28	< 0.010
Nitrate (Water Soluble)		N	2220	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010
Sulphate (Acid Soluble)		U	2430	%	0.010	0.084	0.059	0.040	0.063

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2175	Total Sulphur in Soils	Total Sulphur	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2220	Water soluble Chloride in Soils	Chloride	Aqueous extraction and measuremernt by 'Aquakem 600' Discrete Analyser using ferric nitrate / mercuric thiocyanate.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	

Report Information

Key	
U	UKAS accredited
M	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt

All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water

GW - Ground Water

LE - Land Leachate

NA - Not Applicable

PL - Prepared Leachate

PW - Processed Water

Report Information

RE - Recreational Water

SA - Saline Water

SW - Surface Water

TE - Treated Effluent

TS - Treated Sewage

UL - Unspecified Liquid

Clean Up Codes

NC - No Clean Up

MC - Mathematical Clean Up

FC - Florisil Clean Up

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX C

CHEMICAL ANALYSES

FRT01 v14 19/08/21 JH Report Ref: 37628

Justine Surman

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

t: 01452 527 743 f: 01452 729 314

e: justine.surman@geoeng.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 24-78835

Project / Site name: Metro West Site 13 Samples received on: 17/01/2024

Your job number: 37628 Samples instructed on/ 18/01/2024

Analysis started on:

Your order number: 37628-CMO Analysis completed by: 25/01/2024

Report Issue Number: 1 Report issued on: 25/01/2024

Samples Analysed: 1 leachate sample - 2 soil samples

Ben Wilding Technical Reviewer

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 24-78835 Project / Site name: Metro West Site 13 Your Order No: 37628-CMO

_ab Sample Number				2931488	2931489
Sample Reference				TP02	TP01
Sample Number				1	1
Depth (m)				0.10-0.20	0.10-0.20
Date Sampled				16/01/2024	16/01/2024
Time Taken				None Supplied	None Supplie
		Ē			
		n i	Accreditation Status		
Analytical Parameter	Units	of d	reditat Status		
(Soil Analysis)	ङ	etec	us		
		Limit of detection	9		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	21	19
Total mass of sample received	kg	0.001	NONE	1.3	1.2
, , , , , , , , , , , , , , , , , , ,				-	
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detecte
Asbestos Analyst ID	N/A	N/A	N/A	WEM	WEM
issosios maryst is	l l			***	***
General Inorganics					
bH - Automated	pH Units	N/A	MCERTS	8	8
Fotal Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Fotal Organice Fotal Organic Carbon (TOC) - Automated	// // // // // // // // // // // // //	0.1	MCERTS	2.5	2.9
iotal Organic Carbon (100) - Automated				2.5	2.7
Total Phenols					
Total Phenois (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
rotal i fieriois (monoriyane)	3 3			< 1.0	< 1.0
Speciated PAHs					
	mg/kg	0.05	MCERTS	- O OF	- O OF
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene		0.05	MCERTS	< 0.05	< 0.05
Acenaphthene 	mg/kg mg/kg	0.05	MCERTS	< 0.05	< 0.05
luorene		0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg mg/kg	0.05	MCERTS	< 0.05	0.51
Anthracene	mg/kg	0.05	MCERTS	< 0.05	0.17
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	1.9
Pyrene	mg/kg	0.05	MCERTS	< 0.05	1.6
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	1.7
Chrysene	mg/kg	0.05	ISO 17025	< 0.05	4
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	1.5
	mg/kg	0.05	MCERTS	< 0.05	3.9
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	2.1
ndeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.52
Benzo(ghi)perylene	mg/kg	0.05	MCERTS		2.2
serizo(grii) per yierie	59			< 0.05	2.2
Fotal PAH					
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	22
speciated Total ELA-TOTALIS	3 3			< 0.60	22
Heavy Metals / Metalloids					
	mg/kg	1	ISO 17025	3.7	3.4
Antimony (aqua regia extractable)	mg/kg	1	MCERTS	19	18
Arsenic (aqua regia extractable) Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	1.1
Boron (water soluble)	mg/kg	0.06	MCERTS	1.7	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.7	1
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	
Chromium (nexavaient) Chromium (aqua regia extractable)	mg/kg	1.0	MCERTS	34	30
Copper (aqua regia extractable)	mg/kg	1	MCERTS	29	24
.ead (aqua regia extractable)	mg/kg	1	MCERTS	110	110
lead (aqua regia extractable) Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3
viercury (aqua regia extractable) Vickel (aqua regia extractable)	mg/kg	1	MCERTS	< 0.3 30	< 0.3 26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
/anadium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0 47	42
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	140	180
(aqua regia extractable)	55			140	100
Monoaromatics & Oxygenates					

Analytical Report Number: 24-78835 Project / Site name: Metro West Site 13 Your Order No: 37628-CMO

Lab Sample Number	2931488	2931489			
Sample Reference	TP02	TP01			
Sample Number				1	1
Depth (m)				0.10-0.20	0.10-0.20
Date Sampled				16/01/2024	16/01/2024
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Toluene	μg/kg	5	MCERTS	< 5.0	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	< 5.0
p & m-xylene	μg/kg	5	MCERTS	< 5.0	< 5.0
o-xylene	μg/kg	5	MCERTS	< 5.0	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	< 5.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	< 0.020
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	< 0.020
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	< 0.050	< 0.050
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	< 10

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	< 0.010
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	< 0.010
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	< 0.050	< 0.050
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	18
TPH-CWG - Aromatic > EC35 - EC44 EH_CU_1D_AR	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	21
TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	23

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

4041

Analytical Report Number: 24-78835 Project / Site name: Metro West Site 13

Your Order No: 37628-CMO

1041 01401 1101 07020 01110				
Lab Sample Number		2931490		
Sample Reference				TP01
Sample Number				1
Depth (m)	0.10-0.20			
Date Sampled	16/01/2024			
Time Taken	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH (automated)	pH Units	N/A	ISO 17025	7.9
Total Cyanide	μg/l	10	ISO 17025	< 10
Chloride	mg/l	0.15	ISO 17025	2.7
Ammoniacal Nitrogen as N	μg/l	15	NONE	85

Total Phenols

Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10

Speciated PAHs

Naphthalene	μg/l	0.01	NONE	< 0.01
Acenaphthylene	μg/l	0.01	NONE	< 0.01
Acenaphthene	μg/l	0.01	NONE	< 0.01
Fluorene	μg/l	0.01	NONE	< 0.01
Phenanthrene	μg/l	0.01	NONE	< 0.01
Anthracene	μg/l	0.01	NONE	< 0.01
Fluoranthene	μg/l	0.01	NONE	< 0.01
Pyrene	μg/l	0.01	NONE	< 0.01
Benzo(a)anthracene	μg/l	0.01	NONE	< 0.01
Chrysene	μg/l	0.01	NONE	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	NONE	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	NONE	< 0.01
Benzo(a)pyrene	μg/l	0.01	NONE	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01

Total PAH

Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2

Heavy Metals / Metalloids

Antimony (dissolved)	µg/1	1.7	150 17025	< 1.7
Arsenic (dissolved)	μg/l	1	ISO 17025	2
Beryllium (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08
Chromium (dissolved)	μg/l	0.4	ISO 17025	4
Copper (dissolved)	μg/l	0.7	ISO 17025	37
Lead (dissolved)	μg/l	1	ISO 17025	9.4
Manganese (dissolved)	μg/l	0.06	ISO 17025	46
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	3.1
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0
Vanadium (dissolved)	μg/l	1.7	ISO 17025	6.4
Zinc (dissolved)	μg/l	0.4	ISO 17025	34

Monoaromatics & Oxygenates

Calcium (dissolved)

Benzene	μg/l	3	NONE	< 3.0
Toluene	μg/l	3	NONE	< 3.0
Ethylbenzene	μg/l	3	NONE	< 3.0
p & m-xylene	μg/l	3	NONE	< 3.0
o-xylene	μg/I	3	NONE	< 3.0

21

Analytical Report Number: 24-78835 Project / Site name: Metro West Site 13

Your Order No: 37628-CMO

Lab Sample Number	2931490			
Sample Reference				TP01
Sample Number				1
Depth (m)				0.10-0.20
Date Sampled	16/01/2024			
Time Taken	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	

Analytical Report Number : 24-78835 Project / Site name: Metro West Site 13

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2931488	TP02	1	0.10-0.20	Brown clay and loam with vegetation.
2931489	TP01	1	0.10-0.20	Brown clay and loam with vegetation.

Analytical Report Number: 24-78835 Project / Site name: Metro West Site 13

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
3S EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	by ICP-OES in leachate Determination of metals in leachate by acidification followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.		L039-PL	w	ISO 17025
Boron, water soluble, in soil	water soluble, in soil Determination of water soluble boron in soil by hot water extract followed by ICP-OES. In-house method based on Second Site Properties version 3		L038-PL	D	MCERTS
Moisture Content			L019-UK/PL	W	NONE
Monohydric phenols in leachate	Determination of phenols in leachate by distillation followed by colorimetry. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)		L080-PL	w	ISO 17025
Monohydric phenols in soil	Determination of phenois in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)		L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270		W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Refer to CoA for analyte specific accreditation.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate (automated)	Determination of pH in leachate by electrometric measurement.	In house method.	L099B	W	ISO 17025
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in leachate	tal cyanide in leachate Determination of total cyanide by distillation followed by colorimetry. In-house method based and Wastewater 20th Ed & Eaton (Skalar)		L080-PL	W	ISO 17025
Total cyanide in soil	yanide in soil Determination of total cyanide by distillation followed by colorimetry. In-house method based on Exand Wastewater 20th Edition: & Eaton (Skalar)		L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073B-PL	W	MCERTS

Analytical Report Number : 24-78835 Project / Site name: Metro West Site 13

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX in leachates (Monoaromatics)	Determination of BTEX in leachates by headspace GC-MS.	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073B-PL	W	NONE
Ammoniacal Nitrogen as N in leachate	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID. Refer to CoA for band specific accreditation.	In-house method with silica gel split/clean up.	L088/76-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
Chloride in leachate	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 300C.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

	List of HWOL Acronyms and Operators
Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Justine Surman

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

t: 01452 527 743 f: 01452 729 314

e: justine.surman@geoeng.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 24-78836

Project / Site name: Metro West Site 13 Samples received on: 17/01/2024

Your job number: 37628 Samples instructed on/ 18/01/2024

Analysis started on:

Your order number: 37628-CMO Analysis completed by: 25/01/2024

Report issued on: **Report Issue Number:** 1 25/01/2024

Samples Analysed: 1 leachate sample - 1 soil sample

Ben Wilding Technical Reviewer

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical F	(Courto	24.7	8836					
Report No:		24-7	8836					
					Ollows	OFOFNIO		
					Client:	GEOENG		
		M-4 14/-	-1 611- 12					
Location		wetro we	est Site 13		1 16111		0.11	
Lab Reference (Sample Number)		2931491	/ 2931492		Landfill	Waste Acceptance	ce Criteria	
	16/01/2024			Limits Stable Non-				
Sampling Date						reactive		
Sample ID		TPO)2 1		Inert Waste	HAZARDOUS	Hazardous	
Death (a)		0.10	-0.20		Landfill	waste in non-	Waste Landfill	
Depth (m)		0.10	-0.20			hazardous		
Calla Marata Arabinia			1	1		Landfill		
Solid Waste Analysis	2.5				3%	5%	6%	
TOC (%)**	2.5				3%			
Loss on Ignition (%) **				-			10%	
BTEX (μg/kg)**	< 5.0			-	6000			
Sum of PCBs (mg/kg)**	< 0.007		 	!	1			
Mineral Oil (mg/kg) EH_1D_CU_AL	< 10			-	500			
Total PAH (WAC-17) (mg/kg)	< 0.85				100			
pH (units)**	-					>6		
Acid Neutralisation Capacity (mmol / kg)	-					To be evaluated	To be evaluated	
Flueto Apolysis					Limit value	s for compliance le	arhing tost	
Eluate Analysis	10:1			10:1	Limit values for compliance leaching tes			
(BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN 12457-2 at L/S 10 l/kg (mg/kg)				
procedure)	mg/l			mg/kg				
Arsenic *	< 0.0010			< 0.0100	0.5	2	25	
Barium *	0.0848			0.849	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	0.0019			0.019	0.5	10	70	
Copper *	0.0019			0.019	2	50	100	
	< 0.0005			< 0.0050	0.01	0.2	2	
Mercury *							30	
Molybdenum *	0.0011			0.0110	0.5	10		
Nickel *	0.0010			0.0099	0.4	10	40	
Lead *	0.0032			0.032	0.5	10	50	
Antimony *	0.0022			0.022	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0088			0.088	4	50	200	
Chloride *	0.60			6.0	800	15000	25000	
Fluoride*	0.22			2.2	10	150	500	
Sulphate *	0.98			9.8	1000	20000	50000	
TDS*	69			690	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	13.4			134	500	800	1000	
500				17.				
				ļ				
Leach Test Information				ļ				
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.3							
Dry Matter (%)	79							
Moisture (%)	21							
Results are expressed on a dry weight basis, after correction for mois	sture content where	applicable.			*= UKAS accredite	ed (liquid eluate ana	lysis only)	
		es with current legis			** = MCERTS accr			

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 24-78836 Project / Site name: Metro West Site 13

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2931491	TP02	1	0.10-0.20	Brown clay and loam with vegetation.

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Analytical Report Number: 24-78836 Project / Site name: Metro West Site 13

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

	1	1			
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270.	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation		L073B-PL	w	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil***	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil*"	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031-PL	w	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).
For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).
For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Analytical Report Number : 24-78836 Project / Site name: Metro West Site 13

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Megan Mac Court

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

t: 01452 527 743 f: 01452 729 314

e: megan.mac.court@geoeng.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts,

WD18 8YS t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 24-78980

Replaces Analytical Report Number: 24-78980, issue no. 1 Client references/information amended. Sample ID amended to all samples as per client's request

Project / Site name: Metro West Site 13 Samples received on: 17/01/2024

Your job number: 37628 Samples instructed on/ 18/01/2024

Analysis started on:

Your order number: 37628 CMO Analysis completed by: 25/01/2024

Report Issue Number: 2 Report issued on: 26/01/2024

Samples Analysed: 1 leachate sample - 2 soil samples

Joanna Szwagrzak Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 24-78980 Project / Site name: Metro West Site 13 Your Order No: 37628 CMO

Lab Sample Number				2932490	2932491
Sample Reference				S13-WS/DP01	S13-WS/DP01
Sample Number				1	2
Depth (m)				0.05-0.10	0.15-0.25
				15/01/2024	15/01/2024
Date Sampled					
Time Taken				None Supplied	None Supplied
		Limit of detection	≥		
Analytical December	_	it of	Accreditation Status		
Analytical Parameter (Soil Analysis)	Units	de	reditat Status		
(Soli Alialysis)	0,	tec	atic		
		tion	5		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	12	17
Total mass of sample received	kg	0.001	NONE	1.3	1.2
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	WEM	WEM
Aspestos Analyst ID				VVLIVI	VVLIVI
Conoral Ingraphics					
General Inorganics	pH Units	N/A	MCERTS	0 4	0.2
pH - Automated			MCERTS	8.4	8.3
Total Cyanide	mg/kg %	0.1	MCERTS	< 1.0	< 1.0
Total Organic Carbon (TOC) - Automated	70	0.1	WICERIS	0.6	3.2
Total Phenois			MCEDIC		
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
Speciated PAHs					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	0.17
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	0.38
Pyrene	mg/kg	0.05	MCERTS	< 0.05	0.36
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.21
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.22
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	0.27
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05	0.11
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	0.12
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.14
Benzo(grii) per yiene	5 5			< 0.03	0.14
Total PAH					
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80	2.18
Specialed Total ELA-TOTALIS	3. 3			< 0.60	2.10
Heavy Metals / Metalloids					
	ma/ka	1	ISO 17025	2.0	2.2
Antimony (aqua regia extractable)	mg/kg mg/kg	1		2.8	3.2
Arsenic (aqua regia extractable)			MCERTS	13	19
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	0.3	0.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	1
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	29	43
Copper (aqua regia extractable)	mg/kg	1	MCERTS	11	33
Lead (aqua regia extractable)	mg/kg	1	MCERTS	21	76
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	13	28
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	34	39
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	40	110
	-				_
Monoaromatics & Oxygenates					
		_	MCEDIC		

μg/kg

MCERTS

< 5.0

< 5.0

Benzene

Analytical Report Number: 24-78980 Project / Site name: Metro West Site 13 Your Order No: 37628 CMO

Lab Sample Number					2932490	2932491
Sample Reference	S13-WS/DP01	S13-WS/DP01				
Sample Number	1	2				
Depth (m)	0.05-0.10	0.15-0.25				
Date Sampled	15/01/2024	15/01/2024				
Time Taken					None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units		Limit of detection	Accreditation Status		
Toluene	μg/kg		5	MCERTS	< 5.0	< 5.0
Ethylbenzene	μg/kg		5	MCERTS	< 5.0	< 5.0
p & m-xylene	μg/kg		5	MCERTS	< 5.0	< 5.0
o-xylene	μg/kg		5	MCERTS	< 5.0	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg		5	NONE	< 5.0	< 5.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	< 0.020
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	< 0.020
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	< 0.050	< 0.050
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0
TPH-CWG - Aliphatic > EC35 - EC44 EH_CU_1D_AL	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	< 10
TPH-CWG - Aliphatic (EC5 - EC44) EH_CU+HS_1D_AL	mg/kg	10	NONE	< 10	< 10

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	< 0.010
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	< 0.010
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.05	NONE	< 0.050	< 0.050
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10
TPH-CWG - Aromatic > EC35 - EC44 EH_CU_1D_AR	mg/kg	8.4	NONE	< 8.4	< 8.4
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC44) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

4041

Analytical Report Number: 24-78980 Project / Site name: Metro West Site 13

Your Order No: 37628 CMO

Lab Sample Number	2932492			
Sample Reference				S13-WS/DP01
Sample Number				2
Depth (m)				0.15-0.25
Date Sampled	15/01/2024			
Time Taken	None Supplied			
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	

General Inorganics

pH (automated)	pH Units	N/A	ISO 17025	7.8
Total Cyanide	μg/l	10	ISO 17025	< 10
Chloride	mg/l	0.15	ISO 17025	1.3
Ammoniacal Nitrogen as N	μg/I	15	NONE	190

Total Phenols

Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10

Speciated PAHs

Naphthalene	μg/l	0.01	NONE	< 0.01
Acenaphthylene	μg/l	0.01	NONE	< 0.01
Acenaphthene	μg/l	0.01	NONE	< 0.01
Fluorene	μg/l	0.01	NONE	< 0.01
Phenanthrene	μg/l	0.01	NONE	< 0.01
Anthracene	μg/l	0.01	NONE	< 0.01
Fluoranthene	μg/l	0.01	NONE	< 0.01
Pyrene	μg/l	0.01	NONE	< 0.01
Benzo(a)anthracene	μg/l	0.01	NONE	< 0.01
Chrysene	μg/l	0.01	NONE	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	NONE	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	NONE	< 0.01
Benzo(a)pyrene	μg/l	0.01	NONE	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01
Benzo(ghi)perylene	μg/I	0.01	NONE	< 0.01

Total PAH

Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2

Heavy Metals / Metalloids

Calcium (dissolved)

Antimony (dissolved)	μg/l	1.7	ISO 17025	< 1.7
Arsenic (dissolved)	μg/l	1	ISO 17025	2.5
Beryllium (dissolved)	μg/l	0.2	ISO 17025	< 0.2
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08
Chromium (dissolved)	μg/l	0.4	ISO 17025	3.7
Copper (dissolved)	μg/l	0.7	ISO 17025	21
Lead (dissolved)	μg/l	1	ISO 17025	2.6
Manganese (dissolved)	μg/l	0.06	ISO 17025	49
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	2.2
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0
Vanadium (dissolved)	μg/l	1.7	ISO 17025	7.3
Zinc (dissolved)	μg/l	0.4	ISO 17025	26

20

Analytical Report Number: 24-78980 Project / Site name: Metro West Site 13

Your Order No: 37628 CMO

Lab Sample Number				2932492
Sample Reference				S13-WS/DP01
Sample Number				2
Depth (m)				0.15-0.25
Date Sampled				15/01/2024
Time Taken				None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	
Monoaromatics & Oxygenates				
Benzene	μg/l	3	NONE	< 3.0
Toluene	μg/l	3	NONE	< 3.0
Ethylbenzene	μg/l	3	NONE	< 3.0
p & m-xylene	μg/l	3	NONE	< 3.0
o-xylene	μg/l	3	NONE	< 3.0

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \quad \text{I/S} = \quad \text{Insufficient Sample} \quad \text{ND} = \quad \text{Not detected}$

Analytical Report Number: 24-78980 Project / Site name: Metro West Site 13

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2932490	S13-WS/DP01	1	0.05-0.10	Brown loam with brick and vegetation.
2932491	S13-WS/DP01	2	0.15-0.25	Brown gravelly sand with vegetation.

^{*} These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Analytical Report Number: 24-78980 Project / Site name: Metro West Site 13

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

	_			1	
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
BS EN 12457-1 (2:1) Leachate Prep	2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	W	NONE
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soll by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in leachate	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenois in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards. Refer to CoA for analyte specific accreditation.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
pH at 20oC in leachate (automated)	Determination of pH in leachate by electrometric measurement.	In house method.	L099B	W	ISO 17025
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	ISO 17025
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073B-PL	W	MCERTS

Analytical Report Number : 24-78980 Project / Site name: Metro West Site 13

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

			1		
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX in leachates (Monoaromatics)	Determination of BTEX in leachates by headspace GC-MS.	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073B-PL	W	NONE
Ammoniacal Nitrogen as N in leachate	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the discrete analyser (colorimetric) salicylate/nitroprusside method.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID. Refer to CoA for band specific accreditation.	In-house method with silica gel split/clean up.	L088/76-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	NONE
Chloride in leachate	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 300C.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

	List of HWOL Acronyms and Operators
Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Megan Mac Court

Geotechnical Engineering Ltd Centurion House Olympus Park Quedgeley Gloucester GL2 4NF

t: 01452 527 743 f: 01452 729 314

e: megan.mac.court@geoeng.co.uk

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts,

WD18 8YS t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 24-78982

Project / Site name: Metro West Site 13 Samples received on: 17/01/2024

Your job number: 37628 Samples instructed on/ 18/01/2024 Analysis started on:

Your order number: 37628 CMO Analysis completed by: 26/01/2024

Report Issue Number: 1 Report issued on: 26/01/2024

Samples Analysed: 10:1 WAC sample

Signed:

Joanna Szwagrzak Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical I	\csuits	04.70	000		1			
Report No:	24-78982							
					Client:	GEOENG		
					Cilent.	GEOEING		
Location		Metro Wes	t Site 13					
	Wetto West Site 13			Landfill Waste Acceptance Criteria				
Lab Reference (Sample Number)	2932499 / 2932500		Limits					
Sampling Date		15/01/	2024			Stable Non-		
Sample ID	S13-WS/DP01 1				reactive			
Depth (m)	0.05-0.10			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis								
TOC (%)**	0.6				3%	5%	6%	
Loss on Ignition (%) **	-						10%	
BTEX (µg/kg)**	< 5.0				6000			
Sum of PCBs (mg/kg)**	< 0.007				1			
Mineral Oil (mg/kg) _{EH_1D_CU_AL}	< 10				500			
Total PAH (WAC-17) (mg/kg)	< 0.85				100			
pH (units)**	-					>6		
Acid Neutralisation Capacity (mmol / kg)	-					To be evaluated	To be evaluated	
Eluate Analysis	10:1			10:1	Limit value	es for compliance le	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching			using BS EN 12457-2 at L/S 10 l/kg (mg/kg)					
procedure)	mg/l			mg/kg				
Arsenic *	0.0028			0.0285	0.5	2	25	
Barium *	0.0730			0.730	20	100	300	
Cadmium *	< 0.0001			< 0.0008	0.04	1	5	
Chromium *	< 0.0004			< 0.0040	0.5	10	70	
Copper *	0.0068			0.068	2	50	100	
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2	
Molybdenum *	0.0010			0.0100	0.5	10	30	
Nickel *	< 0.0003			< 0.0030	0.4	10	40	
Lead *	0.0019			0.019	0.5	10	50	
Antimony *	0.0052			0.052	0.06	0.7	5	
Selenium *	< 0.0040			< 0.040	0.1	0.5	7	
Zinc *	0.0014			0.014	4	50	200	
Chloride *	0.56			5.6	800	15000	25000	
Fluoride*	0.20			2.0	10	150	500	
Sulphate *	1.9			19	1000	20000	50000	
TDS*	65			650	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-	
DOC	13.0			130	500	800	1000	
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.3							
Dry Matter (%)	88							
Moisture (%)	12							
				I	ı			
Results are expressed on a dry weight basis, after correction for moi-	sture content where	applicable.			*= UKAS accredite	ed (liquid eluate ana	lysis only)	
Stated limits are for guidance only and i2 cannot be held responsible	for any discrepenci	es with current legisla	tion		** = MCERTS accr	edited		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 24-78982 Project / Site name: Metro West Site 13

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2932499	S13-WS/DP01	1	0.05-0.10	Brown loam with brick and vegetation.

Analytical Report Number : 24-78982 Project / Site name: Metro West Site 13

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

			1		
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	w	NONE
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270.	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073B-PL	w	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260. Refer to CoA for analyte specific accreditation	L073-PL	w	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil*"	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	w	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil***	L039-PL	w	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031-PL	W	ISO 17025
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	w	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	w	NONE
<u> </u>					

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).
For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).
For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.
Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Analytical Report Number: 24-78982 Project / Site name: Metro West Site 13

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total