

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK

DRAINAGE AND SUDS STRATEGY

166 Leatherhead Road, Chessington, KT9 2HU

Unit 24 Sarum Complex, Salisbury Road, Uxbridge, UB8 2RZ www.jomasassociates.com info@jomasassociates.com

Report Title: Report Status: Job No:	Report Title: Drainage and SUDS Strategy for 166 Leatherhead Road, Chessington, KT9 2HU Report Status: Final Iob No: P5581J2966					
Date:	Warch 2024					
Control: Revisio	ons					
Version		Date	Issued By			
V1.0		08/03/2024	A Wallace			
	Prepared by: JOMAS ASSOCIATES LTD For: JDT Properties Limited					

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0843 289 2187

info@jomasassociates.com

TABLE OF CONTENTS

EX	ECUTIVE SUMMARY
1	INTRODUCTION7
1.1	Background7
2	SITE DESCRIPTION
2.2	Topography8
3	DESIGN PRINCIPLES AND POLICY REQUIREMENTS9
3.2	General Principles for Surface Water Drainage9
4	SITE DRAINAGE INFORMATION 10
4.1	Discharge to Ground10
4.2	Discharge to Surface Water Body10
4.3	Discharge to Surface Water Sewer/Combined Sewer10
4.4	Sustainable Drainage Systems (SuDS)11
5	SURFACE WATER DRAINAGE DESIGN12
5.1	Site Areas12
5.2	Design Considerations12
5.3	Greenfield Run-Off Rates12
5.4	Existing Run-Off Rates12
5.5	Attenuation13
5.6	Consents, Offsite Works and Diversions13
5.7	Maintenance14
5.8	Exceedance Flooding and Overland Flow14
5.9	Foul Drainage14
6	WATER QUALITY15

6.1	Post-Development Water Quality Treatment15
7	DRAINAGE DURING CONSTRUCTION
7.1	Construction Run-off Management19
7.2	Management of Construction (Including Drainage)19
7.3	Temporary Drainage During Construction19
7.4	Protection of Drainage Infrastructure during Construction20

List of Tables

Table 1: SuDS Selection Based on the SuDS Hierarchy	.11
Table 2: Site Areas	.12
Table 3: Existing Run-off Rates	.13
Table 4: Pollution Hazard Indices from 2015 SuDS Manual (C753)	.16
Table 5: Indicative SuDS Mitigation Indices from 2015 SuDS Manual (C753)	.17
Table 6: Roof Space Water Quality Mitigation Summary	.17
Table 7: Roof Space Water Quality Mitigation Summary	.18

LIST OF APPENDICES

APPENDIX A: PROPOSED DEVELOPMENT DETAILS	21
APPENDIX B: DRAINAGE DRAWINGS AND CALCULATIONS	22
APPENDIX C: DRAINAGE MAINTENANCE PLAN	23

Quality Standards Control

JUMAS ENGINEERING LAND REMEDIATION

The signatories below verify that this document has been prepared in accordance with our quality control requirements. These procedures do not affect the content and views expressed by the originator.

This document must only be treated as a draft unless it has been signed by the originators and approved by a director.

Revision	V01	
Date	08/03/2024	
Prepared by	A Wallace	
Checked by	A Alsop	
Authorised by	A Wallace	

Limitations

JOMAS ASSOCIATES Ltd ("JA") has prepared this report for the sole use of the client in accordance with the agreement under which our services were performed. No other warranty, expressed or implied, is made as to the professional advice included in this report or any other services provided by JA.

The conclusions and recommendations contained in this report are based upon information provided by others and upon the assumption that all relevant information has been provided by those parties from whom it has been requested and that such information is accurate. Information obtained by SC has not been independently verified by JA, unless otherwise stated in the report.

The methodology adopted and the sources of information used by JA in providing its services are outlined in this report. The work described in this report was undertaken in **March 2024** and is based on the conditions encountered and the information available during the said period of time. The scope of this report and the services are accordingly factually limited by these circumstances.

Where assessments of works or costs identified in this report are made, such assessments are based upon the information available at the time and where appropriate are subject to further investigations or information which may become available.

JA disclaim any undertaking or obligation to advise any person of any change in any matter affecting the report, which may come or be brought to JA's attention after the date of the report.

Certain statements made in the report that are not historical facts may constitute estimates, projections or other forward-looking statements and even though they are based on reasonable assumptions as of the date of the report, such forward-looking statements by their nature involve risks and uncertainties that could cause actual results to differ materially from the results predicted. JA specifically does not guarantee or warrant any estimate or projections contained in this report.

Costs may vary outside the ranges quoted. Whilst cost estimates are provided for individual issues in this report these are based upon information at the time which can be incomplete. Cost estimates for such issues may therefore vary from those provided. Where costs are supplied, these estimates should be considered in aggregate only. No reliance should be made in relation to any division of aggregate costs, including in relation to any issue, site or other subdivision.

No allowance has been made for changes in prices or exchange rates or changes in any other conditions which may result in price fluctuations in the future. Where assessments of works or costs necessary to achieve compliance have been made, these are based upon measures which, in JA's experience, could normally be negotiated with the relevant authorities under present legislation and enforcement practice, assuming a proactive and reasonable approach by site management.

Forecast cost estimates do not include such costs associated with any negotiations, appeals or other nontechnical actions associated with the agreement on measures to meet the requirements of the authorities, nor are potential business loss and interruption costs considered that may be incurred as part of any technical measures.

Copyright

© This report is the copyright of JA. Any unauthorised reproduction or usage by any person other than the addressee is strictly prohibited.

EXECUTIVE SUMMARY

ITIMAS ENGINEERING ENVIRONMENTAL LAND REMEDIATION

This Drainage Assessment reviews the existing drainage arrangement at the application site and proposes a surface water drainage strategy in line with Local Authority and Lead Local Flood Authority (LLFA) guidance.

The site is currently occupied by a building and is located at 166 Leatherhead Rd, Chessington, KT9 2HU.

The proposed development comprises the construction of a new multi unit residential development and associated external works.

Surface Water Drainage

The proposed strategy presented in detail in this report aims to use tanked permeable paving to store water and discharge at a maximum of 5I/s to the existing sewer in the street.

Storage is provided for all storm events up to and including the 1 in 100-year storm plus 40% allowance for climate change.

All external areas will be constructed with permeable materials where possible to limit the flow into the sewer system.

Maintenance/management of all onsite drainage infrastructure has been considered within a separate maintenance plan appended to this report. This will be updated through the development process.

The proposed drainage strategy is entirely based on-site with the exception of the new sewer connections if required.

Overall, the proposals provide a high level of water treatment, runoff reduction and flooding protection for the proposed development and are in accordance with all requirements of the Lead Local Flood Authority (LLFA).

Foul Drainage

It is proposed to discharge the foul drainage from the site into the existing Thames Water sewer.

1 INTRODUCTION

1.1 Background

- 1.1.1 Jomas was commissioned to undertake a Drainage Assessment for the proposed development of land located at 166 Leatherhead Rd, Chessington, KT9 2HU.
- 1.1.2 The proposed development comprises the construction of a new multi unit residential development and associated external works.
- 1.1.3 This Drainage Assessment has been produced in support of a planning application and should be read in conjunction with the other planning documents.

2 SITE DESCRIPTION

- 2.1.1 The site is located at 166 Leatherhead Rd, Chessington, KT9 2HU.
- 2.1.2 The site is approximately 1462 square metres in size and is occupied by an existing building.
- 2.1.3 Pre-development, the site is approximately 31% impermeable (460 square metres). Post development, the impermeable area will increase to 68% (996 square metres).
- 2.1.4 The site location information is as follows:
 - Nearest Postcode: KT9 2HU.

2.2 Topography

Site Topography

2.2.1 The topographic survey plan is provided in appendix B. The site is irregular in shape and falls gently from east to west.

3 DESIGN PRINCIPLES AND POLICY REQUIREMENTS

- 3.1.1 Since April 2015, Lead Local Flood Authorities (LLFA's) have become a statutory consultee on surface water drainage for many planning applications. For this site, the following is considered to be the required level of detail required for planning approval:
- 3.1.2 Report to be prepared in accordance with the National Planning Policy Framework (NPPF), the accompanying Planning Practice Guidance (PPG), Local Authority and Lead Local Flood Authority (LLFA) guidance and Strategic Flood Risk Assessments.

3.2 General Principles for Surface Water Drainage

- 3.2.1 The DEFRA Sustainable Drainage Systems Non-Statutory Technical Standards for Sustainable Drainage Systems (March, 2015), the Local Authority Flood Risk Management Strategy, Level 2 Strategic Flood Risk Assessment and the Local Flood Risk Management Strategy require sustainable drainage systems in all development to reduce surface water runoff and provide water treatment on site. This includes but is not limited to addressing the following issues in order of preference:
 - Store rainwater for later use.
 - Use infiltration techniques, such as porous surfaces in non-clay areas.
 - Attenuate rainwater in ponds or open water features for gradual release.
 - Attenuate rainwater by storing in tanks or sealed water features for gradual release.
 - Discharge rainwater direct to a watercourse.
 - Discharge rainwater to a surface water sewer/drain.
 - Discharge rainwater to the combined sewer.
- 3.2.2 Consideration must be given to the direction of water flow across the site and where this may be dispersed and incorporating any features that will help reduce surface water run-off. All developments should follow the drainage hierarchy and aim to achieve greenfield run off with at least a 50% reduction in surface water discharge and this needs to be demonstrated as part of the planning submission.

SITE DRAINAGE INFORMATION 4

- 4.1.1 The DEFRA Sustainable Drainage Systems Non-Statutory Technical Standards for Sustainable Drainage Systems (March, 2015) states that the following options must be considered for disposal of surface water runoff in order of preference:
 - Discharge to ground
 - Discharge to a surface water body
 - Discharge to a surface water sewer
 - Discharge to a combined sewer

4.1 **Discharge to Ground**

- 4.1.1The potential for surface water to discharge to ground has been assessed through a review of the likely ground conditions and possible infiltration structures.
- 4.1.2 The British Geological Survey (BGS) mapping available on line suggests that the area is underlain by:

Bedrock of London Clay Formation - Clay, Silt And Sand. Sedimentary Bedrock formed approximately 48 to 56 million years ago in the Palaeogene Period. Local environment previously dominated by deep seas.

Superficial Geology - None recorded.

- 4.1.3It is noted that the site and surrounds are urban in nature and are likely to have existing surface water sewer connections. Based on the impermeable geology it is unlikely that infiltration will work.
- 4.1.4 Infiltration testing will be completed prior to construction and the design revised as necessary should infiltration prove to be viable.

4.2 **Discharge to Surface Water Body**

4.2.1 There are no suitable surface water bodies near to the site that can be used for surface water discharge.

4.3 **Discharge to Surface Water Sewer/Combined Sewer**

- 4.3.1 Discharge to the public sewer network should only be considered once all other options for draining surface water from the site have been exhausted.
- 4.3.2 As there are sewers in the street, it is proposed to connect into the surface water sewer.

4.4 Sustainable Drainage Systems (SuDS)

4.4.1 To maximise the potential use of SuDS at the site, a review has been undertaken as shown in Table 1 in accordance with the SuDS Hierarchy. This review highlights the components referenced in the SuDS Hierarchy and provides recommendations on whether the components could be incorporated into the development.

Component	Recommendation
Green/Blue roofs	Whilst the use of green and blue roofs provides additional environmental benefits such as enhanced aesthetics and ecology, its exposure to wind and orientation must be considered. Access to undertake the construction and maintenance easily and safely is also a high priority.
	If feasible, depending on the roof design, a green/blue roof will provide water quality, biodiversity and aesthetic benefits to the site. Additionally, the green/blue roof/s will offer some attenuation for run-off, reducing volumes of run-off and in higher frequency events (i.e. 1in2 year storms) will result in no run-off for the building.
	Green roofs are not suitable for the proposed pitched roofs.
Basins and Ponds	Ponds and attenuation basins can provide overland storage of surface water whilst also providing additional biodiversity and aesthetic/amenity value.
	There are no open areas on the site which are suitable for basins or ponds.
Filter Strips and Swales	Swales are linear vegetated drainage features, which provide overland conveyance and storage of surface water whilst trapping sediments and hydrocarbons within run-off. They also create biodiverse areas for planting and habitat.
	Swales are not considered suitable for this site.
Infiltration Devices	Infiltration devices are likely to be suitable for the main drainage system due to the permeable nature of the existing ground.
	Infiltration is not possible for this site.
Permeable Paving	Whilst incorporating attenuation storage, permeable paving also provides treatment through filtration of silt (and attached pollutants), settlement and retention of solids, adsorption of pollutants and biodegradation of organic pollutants, including petrol and diesel.
	Tanked permeable paving will be used for the extensive driveway area.
Tanked Systems	This is the least sustainable option in terms of the SuDS Hierarchy. However, the use of tanked systems would still be of benefit compared to traditional drainage systems as it does allow run-off to be slowed down to an acceptable discharge rate.
	There are no tanks proposed.

Table 1: SuDS Selection Based on the SuDS Hierarchy

5 SURFACE WATER DRAINAGE DESIGN

5.1 Site Areas

5.1.1 The development area currently comprises an existing dwelling. The existing and proposed areas are summarised below.

Parameter	Existing (m2)	Existing (%)	Proposed (m2)	Proposed (%)
Impermeable area	460	31	996	68
Permeable area	1002	69	466	32
Total area	1462	100	1462	100

Table 2: Site Areas

5.1.2 It is assumed that the surface water runoff from the site currently discharges into the sewers in the street.

5.2 Design Considerations

- 5.2.1 Consideration has been given to the following when calculating the proposed impermeable areas.
 - The 2013 EA 'Rainfall Run-off Management for Developments' Report (SC030219) states that urban creep, the process of gradually increasing impermeable area within an urban area (through paving soft landscaped surfaces and constructed outbuildings etc), is an acknowledged issue. To include an allowance for urban creep, the impermeable area used in the drainage calculations would normally be increased by 10% in accordance with the recommendation made in SC030219, however as the site is already 100% impermeable, there is no need to increase the impermeable area.
- 5.2.2 The climate change allowance used in the Drainage Strategy is in line with updated EA guidance values published in February 2016 for increased rainfall intensities by 2115.

5.3 Greenfield Run-Off Rates

5.3.1 The greenfield run off rates have been calculated using the Wallingford method. Calculations are provided in Appendix C and summarised in the table below.

5.4 Existing Run-Off Rates

- 5.4.1 The existing run-off rates for a variety of return periods have been calculated using the Wallingford method.
- 5.4.2 The total site area is 1462 square metres and is 31% impermeable, resulting in an impermeable area of 460 square metres. Taking conservative peak 1 year, 30 year and 100 year rainfall rates of 50mm/hr, 125mm/hr and 185mm/hr respectively, the maximum existing peak discharge rates have been calculated as follows.

Contributing Area (ha) x 1 yr Rainfall (mm/hr) x 2.78 460/1000 x 50 x 2.78 = 6.4 l/s Contributing Area (ha) x 30 yr Rainfall (mm/hr) x 2.78 460/1000 x 125 x 2.78 = 16.0 l/s Contributing Area (ha) x 100yr Rainfall (mm/hr) x 2.78 460/1000 x 185 x 2.78 = 23.7 I/s

5.4.3 The discharge rates for the existing and proposed site are summarised below.

Parameter	Greenfield Discharge (I/s)	Existing Discharge (I/s)	Proposed Discharge Total (I/s)
QBAR	0.63	-	NA
1 year	0.54	6.4	3.9
30 year	1.46	16.0	4.3
100 year	2.02	23.7	4.5
100 year +40%	NA	NA	4.9

Table 3: Existing Run-off Rates

5.4.4 Site discharge should be as close to the greenfield rates as possible. However as the discharge rates are low, discharge will be reduced to less than 5l/s.

5.5 Attenuation

ICIMAS

- 5.5.1 It is proposed to discharge to the existing sewer as close to greenfield rates as possible. In accordance with best practice, outflow controls will be set to discharge at a rate of 5 litres/second or less which is less than existing for all storm events.
- 5.5.2 Calculations for the required attenuation is provided in Appendix C. The total attenuation volume is approximately 40 cubic metres to cater for the 100 year +40% storm event. Storage will be provided within the voids of tanked permeable paving.
- 5.5.3 Discharge is proposed to limited to 5l/s or less for all storm events up to and including the 100 year + 40% storm.
- 5.5.4 Thames Water will be contacted for approval of the discharge to their sewer if required. See Appendix C for calculations and Thames Water sewer locations.

5.6 **Consents, Offsite Works and Diversions**

- 5.6.1 The proposed surface water drainage strategy is accommodated entirely on site.
- 5.6.2 Consent will be required for the discharge to the sewer.

5.7 Maintenance

5.7.1 A SuDS maintenance plan has been prepared to outline the management of the potential SuDS features. The maintenance plan is provided in Appendix D.

5.8 Exceedance Flooding and Overland Flow

- 5.8.1 The drainage system has been designed to cater for the 1 in 100 year + 40% climate change storm. ie in this storm event all surface water will be collected on site and slowly released. Thus, the overland flow route for the site drainage will only be in use in the event of drainage network failure, storms in excess of the 1 in 100 year + 40% climate change storm or flows from offsite flowing through the site.
- 5.8.2 Overland flow will discharge towards the west and out to Nigel Fisher Way
- 5.8.3 See Appendix C for overland flow plan.

5.9 Foul Drainage

5.9.1 Foul drainage will discharge to the existing sewer in the street. A Sewer connection application will be submitted for approval.

6 WATER QUALITY

6.1 Post-Development Water Quality Treatment

- 6.1.1 In line with the 2015 SuDS Manual (CIRIA C753), certain criteria should be applied to manage the quality of run-off to support and protect the natural environment effectively. Treatment design, wherever practicable, should be based on good practice, comprising the following principles:
 - Manage surface water run-off close to source
 - Treat surface water run-off on the surface
 - Treat surface water run-off to remove a range of contaminants
 - Minimise risk of sediment remobilisation
 - Minimise impacts from accidental spills
- 6.1.2 Managing pollution close to the source can help keep pollutant levels and accumulation rates low, essentially allowing natural treatment processes to be effective. This in turn can help maximise the amenity and biodiversity value of downstream surface SuDS components and keep maintenance activities straightforward and cost-effective.
- 6.1.3 The proposed development comprises two types of land use; residential roofs and external areas/driveways. Thes land uses are classified as having very low and low pollution levels respectively. This table is provided below in Table 4.

1A 2

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) le < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0,6	0.7
Sites with heavy pollution (eg haulage (ards, lorry parks, highly frequented orry approaches to industrial estates, waste sites), sites where chemicals and uels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk made and motorwave!	High	0.8*	0.8°	0.9*

Table 4: Pollution Hazard Indices from 2015 SuDS Manual (C753)

6.1.4 The proposed drainage strategy utilises the following SuDS features:

• Permeable Paving

6.1.5 The indicative SuDS mitigation indices, provided in Table 26.3 of the 2015 SuDS Manual (C753) have been reviewed for the roof and paving. This table is provided below in Table 5.

ABLE	Indicative SuDS mitigation indices for discharges to surface waters					
26.3		Mitigation indices!				
	Type of SuDS component	TSS	Metals	Hydrocarbons		
	Filter strip	0.4	0.4	0.5		
	Filter drain	0.42	0.4	0.4		
	Swale	0.5	0.6	0.6		
	Bioretention system	0.8	0.8	0.8		
	Permeable pavement	0.7	0.6	0.7		
	Detention basin	0.5	0.5	0.6		
	Pond*	0.7 ³	0.7	0.5		
	Wetland	0.8ª	0.8	0.8		
	Proprietary treatment systems ^{8,6}	These must demonstrate that they can address each of the contaminant types to acceptable levels for frequent events up to approximately the 1 in 1 year return period event, for inflow concentrations relevant to the contributing drainage area.				

Table 5: Indicative SuDS Mitigation Indices from 2015 SuDS Manual (C753)

6.1.6 To deliver adequate treatment, the selected SuDS components should have a total pollution mitigation index (for each contaminant type) that equals or exceeds the pollution hazard index (for each contaminant type), as follows:

Total SuDS mitigation index ≥ pollution hazard index

(for each contaminant type) (for each contaminant type)

6.1.7 For each type of land-use, the pollution hazard indices, mitigation indices and concluding hazard have been outlined in Table 6 below.

Re	SuDS Manual Reference							
	TSS	Metals						
Pollution Hazard Index	0.2	0.2	Table 26.2					
Mitigation Index (Permeable Paving)	0.7	0.6	0.7	Table 26.3				
Total Mitigation index	0.7 0.6 0.7 Worst case only							
Result	Total SuDS mitigation index ≥ pollution hazard index and therefore hazard is exceeded							

	-			-			
	SuDS Manual Reference						
	TSS	Metals					
Pollution Hazard Index	0.5	0.4	0.4	Table 26.2			
Mitigation Index (Green Roof)	0.7	0.6	0.7	Table 26.3			
Total Mitigation index	0.7 0.6 0.7 Worst case only						
Result	Total SuDS mitigation index ≥ pollution hazard index and therefore hazard is exceeded						

Table 7: Roof Space Water Quality Mitigation Summary

6.1.8 Therefore, it can be concluded that the provision of the permeable paving exceeds the required pollution mitigation indices and provides sufficient treatment as part of the surface water management train in accordance with the 2015 SuDS Manual (CIRIA C753).

7 DRAINAGE DURING CONSTRUCTION

7.1 Construction Run-off Management

- 7.1.1 Installing the surface water and foul drainage system, whilst managing temporary runoff, are key aspects of the construction works involved in any development. The information provided below is in accordance with the 'C698 Site handbook for the construction of SUDS' (CIRIA, 2007).
- 7.1.2 Please note that the measures recommended below are recommendations only and need to be confirmed at the construction stage by the client and the contractor.

7.2 Management of Construction (Including Drainage)

- 7.2.1 Drainage is typically an early activity in the construction stage of a development, taking form during the earthworks phase. However, final construction i.e. piped drainage system connections to the SuDS devices, should not take place until the end of site development work, unless a robust strategy for silt-removal is implemented prior to occupation of the site.
- 7.2.2 A plan for the management of construction (including phasing of works, details of any offsite works etc.) cannot be provided at this early stage, as construction work plans are not yet known. However, the following key points are general construction issues associated with SuDS which will be addressed when these plans are complete:
 - Silt-laden waters from construction sites represent a common form of waterborne pollution;
 - These silt-laden waters cannot enter SUDS drainage systems unless specifically designed to accept this as it can clog the systems and pollute receiving waters. Therefore, piped drainage systems should not be connected to the attenuation SuDS devices until the late stages of construction.
 - Any gullies and piped systems should be capped off during construction and fully jetted and cleaned prior to connection to the attenuation SuDS devices.

7.3 Temporary Drainage During Construction

- 7.3.1 The three principal aspects of drainage control during construction are trapping sediment, conveying run-off, and controlling run-off.
- 7.3.2 Sediment traps and barriers can include basin traps and sediment fences (with any necessary boundary controls). The principal basins are to be installed after the construction site is accessed. Sediment fences and barriers will then be installed as needed during grading.
- 7.3.3 Conveyance of run-off can be achieved through small ditches/stream, storm drains, channels and sloped drains with sufficient inlet/outlet protection.

- 7.3.4 Slope stability needs to be considered when using any channels to convey run-off across the site into any basins etc.
- 7.3.5 Run-off control measures will need to be implemented in order not overwhelm the temporary system and cause flooding issues. Run-off rates from the site will be managed so they are no greater than pre-development or in keeping with the best practice guidance to minimise risk of blockage. Any additional conveyance measures are to be installed as needed during grading.
- 7.3.6 Run-off control to include provision of perimeter ditches or appropriate levels grading to direct any water from the construction site to remain on site.
- 7.3.7 Any necessary surface stabilisation measures are to be applied immediately on all disturbed areas where construction work is either delayed or incomplete.
- 7.3.8 Maintenance inspections are to be performed weekly, and maintenance repairs to be made immediately after periods of rainfall.

7.4 Protection of Drainage Infrastructure during Construction

NEERING RONMENTAL

7.4.1 All drainage infrastructure should be protected from damage by construction traffic and heavy machinery through the implementation of measures such as protective barriers, and storing construction materials away from the drainage infrastructure.

JUMAS

APPENDIX A: PROPOSED DEVELOPMENT DETAILS

<u>517700m</u> E	163340mN		163360mN		163380mN		163400mN	163420mN	51770 <u>0mE</u>
DRAWING NO L 11723 REF NO L 11723 REF NO L 11723	SURVEYED FOR JDT PROPERTIES LIMITED SURVEYOR L.P 1 BLENHEIM HOUSE DATE JULY/2023 NO DATE REVISION FOR	166–168 LEATHERHEAD ROAD CHESSINGTON KT9 2HU TOPOGRAPHICAL SURVEY		SHEET LAYOUT NOT TO SCALE	 NOTES Drainage pipe sizes (where shown) have been gauged from the surface for safety reasons and should be regarded as approximate only. Tree species (where shown) should be treated with caution and expert identification is advised. Although this is a digital survey the accuracy and amount of detail snown is only commensurate with the graphical scale of mapping as specified. Care should be exercised when working to larger scales. Visible features in the vicinity of the boundaries as shown above, may not represent the extent of legally conveyed ownership. Whist every effort has been made to achieve accuracy on this plan, CRUCIAL clearance dimensions, levels and invert levels should be checked prior to design and construction. Kerb levels have been taken in the bottom of the channel. Arees of dense undergrowth cannot be surveyed in detail, these areas will be shown in outline only and marked as 'dense undergrowth' on the plan. 	 B Floor to Beam Height in cms C Floor to Ceiling Height in cms D Floor to Crown Height in cms FC Floor to False Ceiling Height FF False Floor Level H Floor to Head Height in cms S Floor to Head Height in cms S Floor to Springer Height in cms 	Brick MK Marker BL Bolland MK Marker BL Course Level PK Fost CALD Pit Fore PA Fost and Rail DP Catch Pit Fore PK Fost and Rail DP Catch Pit Fore PK Fost and Rail DP Catch Pit Rode Stand Rail Fost and Rail DP Catch Pit Rode Stand Rail Fost and Rail	DATUM NOTES GRID ORIGIN IS BASED UPON SURVEY STATION POM 6 FIXED TO THE ORDINANCE SURVEY NATIONAL GRID BY LEICA SMARTNET GPS NETWORK, A SCALE FACTOR OF 1 APPLIES TO THIS DRAWING. I.e., MEASURED DISTANCES ON THE GROUND WITHOUT GPS WILL BE THE SAME AS THOSE MEASURED ON THIS DRAWING LEVELS ARE RELATED TO :- ORDINANCE SURVEY GPS ACTIVE NETWORK AND TRANSFORMED USING THE OSCIMITS & OSTIVITS MODEL. SITE BENCH MARK ESTABLISHED IS LOCATED AT :- SURVEY STATION 6 VALUE GIVEN AS: 44.065m SURVEY CONTROL STATIONS SHOWN ABBREVIATIONS (where opplicable)	Support of the Surveys Ltd. All rights reserved.

+ 44.12 + 44.12 00

LEATHERHEAD ROAD

APPENDIX B: DRAINAGE DRAWINGS AND CALCULATIONS

andrew wallace

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Mar 07 2024 12:20

Site Details

Site name:	Leatherhead Rd	Latitude:	51.35702° N
Site location:	Chessington	Longitude:	0.31102° W
This is an estimation criteria in line with	on of the greenfield runoff rates that a Environment Agency guidance "Rainfa	are used to meet normal best practice Reference: Il runoff management for	1256418303

developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory

standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites. Date:

Runoff estimatior	n approach	IH124	
Site characteristi	CS		Notes
Total site area (ha): 0.146	2		(1) Is Q _{BAR} < 2.0 l/s/ha?
Methodology			
Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate from S	SOIL type	
Soil characteristic	CS Default	Edited	(2) Are flow rates < 5.0 l/s?
SOIL type:	4	4	Where flow rates are less than 5.0.1/s consent
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage
SPR/SPRHOST:	0.47	0.47	from vegetation and other materials is possible. Lower consent flow rates may be set where the
Hydrological characteristics	Default	Edited	blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):	639	639	
Hydrological region:	6	6	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 year	0.85	0.85	Where groundwater levels are low enough the
Growth curve factor 30 years:	2.3	2.3	use of soakaways to avoid discharge offsite would normally be preferred for disposal of
Growth curve factor 100 years:	3.19	3.19	surface water runoff.
Growth curve factor 200 years:	3.74	3.74	

Q _{BAR} (I/s):	0.63	0.63
1 in 1 year (l/s):	0.54	0.54
1 in 30 years (l/s):	1.46	1.46
1 in 100 year (l/s):	2.02	2.02
1 in 200 years (l/s):	2.37	2.37

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Job. No. P5581J2966

NOTES

Rev.

- THIS DRAWING IS TO BE READ IN CONJUNCTION WITH ALL RELEVANT SERIES DESIGN DRAWINGS, SPECIFICATIONS AND DOCUMENTATION.
- CONSTRUCTION TO BE IN ACCORDANCE WITH ALL BRITISH AND EUROPEAN STANDARDS AND BUILDING REGULATIONS.
- ANY DISCREPANCIES IN THE DETAILS SHOWN ARE TO BE REPORTED TO THE EMPLOYER'S REPRESENTATIVE/ENGINEER PRIOR TO CONSTRUCTION
- ALL EXISTING SERVICES ARE TO BE LOCATED PRIOR TO THE COMMENCEMENT OF ANY WORKS. THE CONTRACTOR MUST NOTIFY THE ENGINEER IMMEDIATELY OF ANY CONFLICT WITH T PROPOSED WORKS.
- FOR GRAVITY SEWERS, ALL DRAINAGE AND FITTINGS ARE TO I FLEXIBLY JOINTED UPVC TO BS EN 1401–1 OR CLAYWARE TO BS EN295 OR CONCRETE TO BS5911 PART 100
- CHAMBER WALLS 225 THICK TO BE CONSTRUCTED IN CLASS I ENGINEERING BRICKS TO SHW SERIES 2400 IN DESIGNATION MORTAR OR IN-SITU STRENGTH CLASS C16/20 CONCRETE TO CLAUSE 2602
- CHAMBER WALLS AND COVER SLAB TO BE CONSTRUCTED IN PRECAST CONCRETE TO BS EN 1917 AND BS 5911-3.
- CONCRETE MIXES INDICATED ON THIS DRAWING ARE DESIGNATED MIXES IN ACCORDANCE WITH BS8500-1:2006. ALL CONCRETE TO BE SULPHATE RESISTANT
- BACKFILL TO ALL TRENCHES UNDER CARRIAGEWAYS TO BE TY 1 SUB-BASE MATERIAL, ELSEWHERE BACKFILL TO BE IN ACCORDANCE WITH THE SPECIFICATION, FREE DRAINING READIL COMPACTIBLE MATERIAL, FREE FROM RUBBISH AND ORGANIC MATTER, FROZEN SOIL CLAY LUMPS AND LARGE STONES. TO COMPACTED IN LAYERS NOT EXCEEDING 150mm THICK.
- 0. A FLEXIBLE JOINT SHALL BE PROVIDED AS CLOSE AS IS FEASIBLE TO OUTSIDE FACE OF ANY STRUCTURE INTO WHICH PIPE IS BUILT, IN ACCORDANCE WITH THE DETAIL.
- . THE GENERAL SPECIFICATION OF MATERIALS AND WORKMANSHIPS FOR THE CONSTRUCTION OF THE ACCESS ROA FOOTPATHS AND OTHER AREAS OF HARDSTANDING SHALL BE THE MANUAL OF CONTRACT DOCUMENTS FOR HIGHWAY WORKS VOLUME 1. SPECIFICATION OF HIGHWAY WORKS (SHW) PUBLISHED BY THE STATIONARY OFFICE.
- 12. ALL PIPES TO BE LAID SOFFIT TO SOFFIT UNLESS NOTED OTHERWISE.
- 13. MANHOLE COVERS AND FRAMES SHALL COMPLY WITH BS EN12 AND SHALL BE OF A NON-ROCKING DESIGN WHICH DOES NOT RELY ON THE USE OF CUSHION INSERTS. CLASS D COVERS SHALL BE USED IN CARRIAGEWAYS, HARD SHOULDERS AND PARKING AREAS USED BY ALL TYPE OF ROAD VEHICLES. CLASS C SHALL BE USED IN FOOTWAYS, PEDESTRIAN AREAS AND ALL COMPARABLE LOCATIONS.

Notes.

Copyright of this plan is held by Jomas Associates Ltd. No responsibility is taken for amendments by others. Do not scale from copies or PDF's.

Key dimensions to be checked by engineer before major structural works commence on site.

1. This survey has been computed and drawn about O S National Grid.

2. All levels are in metres and relate to O S National Datum by GPS instruments.

3. This survey was measured for a scale of 1:100, any subsequent enlargements should be verified on site.

Job No.

P5581J2966

Grid Contours Level Datum

Ar	nend	men	ts				
Rev	Date					Ву	Chkd
Clier	nt DT Pr	ENC Jor Un Sa Ux	nas As it 24 Sa isbury bridge,	CERIN IMEN sociates L arum Com Road, UB8 2RZ	LS IG ITAL td. plex,		
Proje	ct						
16 C	66 Lea hessir	itherh ngton	nead , KT	l Road 9 2HU	ł, J		
Draw	ing						
ł	Propo	osed	Dra	ainag	je De	etai	ils
Dwg	no	C	hecke	ed	Surve	eyor	
(Dete	202		W	Secle	NA		
Date	05	0.03.24		Scale	A9 94	IUVVľ	N

	Jot	o. No.	P	5581 12966		Rev.
	DRA 1. 1 2. 0 5 3. 4 4. 4 F 5. 4 0 7. 4 8. U	INAGE NOTI INAGE NOTION INAGE NOTION INAG	ES NG IS FOR PL N WITH ALL DNS AND DOO ON TO BE IN STANDARDS / IONS ARE IN AL DATUM. PANCIES IN TO TO THE EMPLI- ONSTRUCTION G SERVICES / ENGINEER IM SED WORKS. AL SPECIFICA IPS FOR THE PATHS AND HE MANUAL DRKS, VOLUMI W) PUBLISHEE ND FO SHOWN AL AND SETT TED OTHERWIS ES UNDER BI ES EXTERNAL WATER PIPE	ANNING ONLY AND IS RELEVANT SERIES DESI CUMENTATION. ACCORDANCE WITH A AND BUILDING REGULAT MILLIMETRES AND LEVI THE DETAILS SHOWN A DYER'S REPRESENTATIV ARE TO BE LOCATED F WORKS. THE CONTRACT MEDIATELY OF ANY CO TON OF MATERIALS AN CONSTRUCTION OF TH- DTHER AREAS OF HAR DF CONTRACT DOCUME E 1. SPECIFICATION OF BY THE STATIONARY I ARE INDICATIVE ONLY NG OUT BY THE ARCH SE, PIPES TO BE: JILDING Ø100@1:40, Ø100@1:80, S Ø150@1:100 ATER CONCE	TO BE F GN DRAV LL BRITIS JONS. ELS IN M RE TO B /E/ENGIN PRIOR TO DONFLICT ' ID IE ACCES DSTANDII NTS FOR HIGHWA OFFICE. (AND SI IITECT.	READ IN MINGS, 3H AND IETRES E IEER THE ST WITH SS NG ?.Y UBJECT
SC SC SC SC SC SC SC SC SC SC SC SC SC S	No Cor No Do Key stru 1. 1 Nat 2. / Dat 3 sub	tes. pyright of the responsibe not scale of dimension of the responsion of the responsion of the response of t	this plan is bility is take from copies ons to be ch rks comme has been co re in metres instruments was measure largements s	held by Jomas Ass n for amendments I s or PDF's. necked by engineer nce on site. mputed and drawn ab and relate to 0 S Na and relate to 0 S Na d for a scale of 1:10 hould be verified on s	ociates by othe before out 0 S tional 0, any ite.	E Ltd. rs. major
	Rev	Date			Ву	Chkd
Conc Conc						
C 43.89 C 43.89 C 43.90 C 44.065 C 44.065	Clie	ent JDT P ect	Jomas Unit 24 Salisbu Uxbridg	MAS IEERING INMENTAL Associates Ltd. Sarum Complex, ry Road, e, UB8 2RZ ies Ltd		
+ + - - - - - - - - - - - - -	(Drav	ving Propc	ington,	Verland F	ow	
	Dwg	no C03	Che AW	cked Sur NA	veyor	
	Date Job	No.	5.03.24 5581 l	Scale 1:100) @ A1	l Rev.
	Grid		tours Le	vel Datum		

CAUSEWAY 🛟	Jomas	File: L Netw Andre 07/03	eatherhead Rd.pfd ork: Storm Network ew Wallace 5/2024	Page 1 Leatherhead Rd Calcs Attenuation Calcs
		Design Setting	<u>s</u>	
Maximum Time of Maxir	Rainfall Methodolog Return Period (year Additional Flow (9 C Time of Entry (min Concentration (min mum Rainfall (mm/h	gy FEH-13 (s) 10 (%) 0 f (CV 0.750 (s) 5.00 (s) 30.00 Enf (r) 50.0	Minimum Velocity (r Connection T Minimum Backdrop Height Preferred Cover Depth Include Intermediate Gro orce best practice design r	m/s) 1.00 Type Level Soffits (m) 0.200 (m) 0.600 und √ ules x
		Adoptable Manhole	<u>e Type</u>	
Max	Width (mm) Dian 374 499	neter (mm) Max 1200 1350	width (mm) Diameter 749 900	(mm) 1500 1800
		>900 Link+900 n	ım	
Ma	x Depth (m) Diam 1.500	neter (mm) Max 1050	2 Depth (m) Diameter (m 99.999 12	n m) 200
		<u>Circular Link Ty</u>	<u>oe</u>	
	Shape C Barrels 1	ircular Auto Inci Fc	rement (mm) 75 Illow Ground x	
		Available Diameters	; (mm)	
		Nodes		
Nam	e Area T of E (ha) (mins)	Cover Diameter Level (mm) (m)	Easting Northing E (m) (m)	Depth (m)
1 2 3	0.050 5.00	44.000120044.00045044.0001200	100.000 100.000 95.000 100.000 90.000 100.000	2.200 2.100 2.000
4 5 6	0.020 5.00 0.020 5.00 0.020 5.00	43.30045043.50045043.300450	70.000 100.000 65.000 110.000 65.000 90.000	1.100 1.200 0.900
		<u>Links</u>		
NameUSDSNodeNod1.003211.002321.00143	Length ks (mr e (m) n 5.000 0. 5.000 0. 20.000 0.	n) / US IL DS (m) (m 600 41.900 41.8 600 42.000 41.9 600 42.200 42.0	IL Fall Slope Dia) (m) (1:X) (mm 00 0.100 50.0 100 00 0.100 50.0 150 00 0.200 100.0 150	T of CRain(mins)(mm/hr)05.6650.005.5950.005.5350.0
1.000 5 4 Name	11.180 0. Vel Cap Flow (m/s) (l/s) (l/s)	600 42.300 42.2 US DS Depth Depth	00 0.100 111.8 150 ΣArea ΣAdd Pro (ha) Inflow Depth	0 5.20 50.0 Pro Velocity
1.003 1.002 1.001 1.000	1.0928.614.91.42625.214.91.00517.88.10.94916.82.7	(m)(m)2.0002.1001.8501.9500.9501.8501.0500.950	(l/s)(mm)0.1100.01000.1100.0830.0600.0710.0200.041	(m/s) 1.122 1.483 0.983 0.699
	Flow+ v10.8 Copyr	ight © 1988-2024 Ca	auseway Technologies Ltd	

CAUS	SEV		Jom	ias			File: Netv Andr 07/0	Leathe vork: St rew Wa)3/2024	rhead R torm Ne Illace	d.pfo etwor	d rk	Page 2 Leather Attenua	head Rd Calo tion Calcs	cs
						<u> </u>	<u>Links</u>							
l	Name	US Nodo N	DS Lo	ength (m)	ks (mm) /	USI	L DS		Fall :	Slope	e Dia	T of C	Rain	
:	2.000	6 4	0de 1	(m) 1.180	n 0.600	(m) 42.40	00 42.1	n) 200 0	(m) 0.200	(1:X) 55.9	(mm 150	0 (mins) = 0 0 0 0 0 0 0 0 0 0) (mm/nr) 1 50.0	
		Name	Vel (m/s)	Cap (I/s)	Flow (I/s) I	US Depth (m)	DS Depth (m)	Σ Area (ha)	a ΣAo Inflo (I/s	dd ow 5)	Pro Depth (mm)	Pro Velocity (m/s)		
		2.000	1.348	23.8	2.7	0.750	0.950	0.020) ().0	34	0.900	I	
						<u>Pipelin</u>	e Sched	<u>ule</u>						
	Link 1.003 1.002 1.001 1.000 2.000	Length (m) 5.000 5.000 20.000 11.180 11.180	Slope (1:X) 50.0 50.0 100.0 111.8 55.9	Dia (mm) 100 150 150 150 150	Link Type Circular Circular Circular Circular Circular	US C (m) 44.00 43.30 43.50 43.30	L US (n 00 41.9 00 42.0 00 42.2 00 42.3 00 42.4	IL U 1) 900 900 200 200 300 400	S Depth (m) 2.000 1.850 0.950 1.050 0.750	n [0 4 0 4 0 4 0 4 0 4 0 4	DS CL (m) 4.000 4.000 4.000 3.300 3.300	DS IL (m) 41.800 41.900 42.000 42.200 42.200	DS Depth (m) 2.100 1.950 1.850 0.950 0.950	
		Link	US Nodo	Dia (mm)	Node	M	H	DS	Dia (mm)	N	ode	MH		
		1.003 1.002 1.001 1.000 2.000	2 3 4 5 6	450 1200 450 450 450	Manhole Manhole Manhole Manhole Manhole	Adop Adop Adop Adop Adop	table table table table table	1 2 3 4 4	1200 450 1200 450 450	Ma Ma Ma Ma	nhole nhole nhole nhole nhole	Adoptabl Adoptabl Adoptabl Adoptabl Adoptabl	e e e e	
						<u>Manho</u>	le Scheo	<u>dule</u>						
	Noc	le Eastir (m)	ng No	rthing (m)	CL (m)	Depth (m)	Dia (mm)	Cor	nectior	ıs	Link	IL (m)	Dia (mm)	
	1	100.0	00 10	0.000	44.000	2.200	1200	1-(-)	1	1.003	41.800	100	
	2	95.0	00 10	00.000	44.000	2.100	450	1-(→o	1	1.002	41.900	150	
	3	90.0	00 10	00.000	44.000	2.000	1200	1-(→₀	0 1	1.003 1.001	41.900 42.000	100 150	
	4	70.0	00 10	00.000	43.300	1.100	450	2		0 1 2	1.002 2.000 1.000	42.000 42.200 42.200	150 150 150	
	5	65.0	00 11	10.000	43.500	1.200	450	1	2	0	1.001	42.200	150	
	6	65.0	00 9	90.000	43.300	0.900	450	(ž	0	1.000	42.300	150	
										0	2.000	42.400	150	

	Jomas		File: Leather	head Rd.pfd	Page 3	
			Network: Sto	orm Network	Leatherhead Rd Calcs	
			Andrew Wall	ace	Attenuation Calcs	
			07/03/2024			
		e	e			
		Simulation	n Settings			
Bainfall N	Aethodology FSB			Analysis Sneed	Normal	
	FSR Region Engl	and and Wales		Skin Steady State	x	
	M5-60 (mm) 20 00		Drain	Down Time (mins)	240	
	Ratio-R 0.400))	Addition	al Storage (m ³ /ha)	5 0	
	Summer CV 0.750	5 1	Check	Discharge Rate(s)	x	
	Winter CV 0.84	5 1	Check	Discharge Volume	x	
			encer	bisenaige volume	~	
		Storm D	urations			
15 60	180 360	600 9	60 2160	4320 7200	0 10080	
30 120	240 480	720 14	140 2880	5760 8640		
	1 1			1 1	1	
R	eturn Period Clima	ate Change	Additional Are	ea Additional Flo	w	
	(years)	(CC %)	(A %)	(Q %)		
	1	0		0	0	
	10	0		0	0	
	30	0		0	0	
	100	0		0	0	
	100	40		0	0	
	<u>N</u>	ode 3 Online	Orifice Contro	<u>) </u>		
	1					
	Flap Valve x	Invert Level	(m) 42.000	Discharge Coel	fficient 0.600	
Replaces Dowr	nstream Link 🗸	Diameter	(m) 0.047			
	<u>Node</u>	<u>3 Depth/Area</u>	a Storage Strue	<u>cture</u>		
	. ((1)					
Base Inf Coefficier	(m/hr) = 0.00000	Safety Fac	ctor 2.0		_evel (m) 42.700	
Side Inf Coefficier	it (m/hr) 0.00000	Poro	sity 0.30	lime to half emp	ty (mins) 58	
Donth	Area Inf Area	Donth Arc	a Inf Araa	Donth Aroa	Inf Area	
Depth		Depth Are	2 ini Area	Depth Area	(m ²)	
(m)	(m ⁻) (m ⁻)	(m) (m)	-) (m-)	(m) (m ⁻)	(m ⁻)	
0.000	100.0 0.0	0.500 100	0.0 0.0	0.501 0.1	0.0	
	Node	4 Denth /Area	Storage Stru	cture		
	Noue		Storage Stru			
Base Inf Coefficier	nt (m/hr) 0.00000	Safety Fa	ctor 2.0	Invert I	_evel (m) 42.700	
Side Inf Coefficier	(m/hr) = 0.00000	Poro	sity 0.30	Time to half emp	ty (mins) 90	
		I	,			
Depth	Area Inf Area	Depth Are	a Inf Area	Depth Area	Inf Area	
(m)	(m²) (m²)	(m) (m	²) (m²)	(m) (m²)	(m²)	
0.000	150.0 0.0	0.500 150	0.0 0.0	0.501 0.1	0.0	
	'			1		
		<u>Other (d</u>	lefaults <u>)</u>			
Entry Loss (manhol	e) 0.250 Entr	y Loss (junctio	n) 0.000	Apply Recommen	ded Losses x	
Exit Loss (manhol	e) 0.250 Exi	t Loss (junctio	n) 0.000	Flo	od Risk (m) 0.300	
		<u>Approval</u>	Settings			
		,	1		,	
	Node Size	e √		Coordinates	√ 	
	Node Losses	5 🗸		Accuracy (m)	1.000	
	Link Size	2 1		Crossings	\checkmark	
Minii	num Diameter (mm) 150		Cover Depth	\checkmark	
	Link Length	n √	Minimum	Cover Depth (m)		
۱	/laximum Length (m) 100.000	Maximum	Cover Depth (m)	3.000	
	Flow+ v10.8 Copyr	ight © 1988-2	024 Causeway	y Technologies Ltd		

CAUSEWAY 🛟	Jomas	File: Leatherhead Rd.pfd Network: Storm Network Andrew Wallace 07/03/2024	Page 4 Leatherhead Rd Calcs Attenuation Calcs
	Appro	val Settings	
Minim	Backdrops √ num Backdrop Height (m)	Surcharged I Return Period ()	Depth √ years)
Maxim	num Backdrop Height (m) 1.5	00 Maximum Surcharged Dept	:h (m) 0.100

- Flooding 🗸
- Return Period (years) 30
 - Time to Half Empty x
 - Discharge Rates √
 - Discharge Volume \checkmark
- 100 year 360 minute (m³)

Backdrops	\checkmark
Minimum Backdrop Height (m)	
Maximum Backdrop Height (m)	1.500
Full Bore Velocity	\checkmark
Minimum Full Bore Velocity (m/s)	
Maximum Full Bore Velocity (m/s)	3.000
Proportional Velocity	\checkmark
Return Period (years)	
Minimum Proportional Velocity (m/s)	0.750

Maximum Proportional Velocity (m/s) 3.000

IntensityIntensity1 year 15 minute summer109.52130.9911 year 15 minute winter76.85730.9911 year 30 minute summer71.43920.2151 year 30 minute summer71.43920.2151 year 30 minute winter50.13320.2151 year 60 minute summer48.43512.8001 year 60 minute winter30.0537.9421 year 120 minute winter19.9667.9421 year 120 minute winter19.9667.9421 year 180 minute summer23.2335.9791 year 240 minute summer18.4754.8821 year 240 minute summer12.2744.8821 year 360 minute winter9.2103.6461 year 360 minute winter9.2103.6461 year 480 minute winter7.4312.9561 year 600 minute summer7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter5.2742.511
(mm/hr)(mm/hr)1 year 15 minute summer109.52130.9911 year 15 minute winter76.85730.9911 year 30 minute summer71.43920.2151 year 30 minute winter50.13320.2151 year 60 minute summer48.43512.8001 year 60 minute winter32.17912.8001 year 120 minute winter30.0537.9421 year 120 minute summer30.0537.9421 year 120 minute winter19.9667.9421 year 180 minute summer23.2335.9791 year 240 minute winter15.1025.9791 year 240 minute winter12.2744.8821 year 360 minute winter14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 600 minute summer9.1822.5111 year 600 minute winter5.2742.511
1 year 15 minute summer109.52130.9911 year 15 minute winter76.85730.9911 year 30 minute summer71.43920.2151 year 30 minute winter50.13320.2151 year 60 minute summer48.43512.8001 year 60 minute winter32.17912.8001 year 120 minute summer30.0537.9421 year 120 minute winter19.9667.9421 year 120 minute winter19.9667.9421 year 120 minute winter15.1025.9791 year 180 minute winter15.1025.9791 year 240 minute winter12.2744.8821 year 360 minute winter14.1693.6461 year 360 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute winter9.1822.5111 year 600 minute winter6.2742.511
1 year 15 minute winter76.85730.9911 year 30 minute summer71.43920.2151 year 30 minute winter50.13320.2151 year 60 minute summer48.43512.8001 year 60 minute winter32.17912.8001 year 120 minute summer30.0537.9421 year 120 minute winter19.9667.9421 year 120 minute winter19.9667.9421 year 180 minute summer23.2335.9791 year 180 minute winter15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 600 minute winter9.1822.5111 year 600 minute summer6.2742.511
1 year 30 minute summer71.43920.2151 year 30 minute winter50.13320.2151 year 60 minute summer48.43512.8001 year 60 minute summer32.17912.8001 year 120 minute summer30.0537.9421 year 120 minute winter19.9667.9421 year 180 minute winter15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 480 minute summer11.1852.9561 year 480 minute summer11.2852.9561 year 600 minute winter9.1822.5111 year 600 minute summer6.2742.511
1 year 30 minute winter50.13320.2151 year 60 minute summer48.43512.8001 year 60 minute winter32.17912.8001 year 120 minute summer30.0537.9421 year 120 minute winter19.9667.9421 year 180 minute summer23.2335.9791 year 180 minute summer15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 600 minute summer9.1822.5111 year 600 minute summer6.2742.511
1 year 60 minute summer48.43512.8001 year 60 minute winter32.17912.8001 year 120 minute summer30.0537.9421 year 120 minute winter19.9667.9421 year 180 minute summer23.2335.9791 year 180 minute winter15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute summer9.1822.5111 year 600 minute summer6.2742.511
1 year 60 minute winter32.17912.8001 year 120 minute summer30.0537.9421 year 120 minute winter19.9667.9421 year 180 minute summer23.2335.9791 year 180 minute winter15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 120 minute summer30.0537.9421 year 120 minute winter19.9667.9421 year 180 minute summer23.2335.9791 year 180 minute winter15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 120 minute winter19.9667.9421 year 180 minute summer23.2335.9791 year 180 minute winter15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 180 minute summer23.2335.9791 year 180 minute winter15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 180 minute winter15.1025.9791 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 240 minute summer18.4754.8821 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 240 minute winter12.2744.8821 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 360 minute summer14.1693.6461 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 360 minute winter9.2103.6461 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 480 minute summer11.1852.9561 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 480 minute winter7.4312.9561 year 600 minute summer9.1822.5111 year 600 minute winter6.2742.511
1 year 600 minute summer 9.182 2.511 1 year 600 minute winter 6.274 2.511
1 year 600 minute winter 6.274 2.511
1 year 720 minute summer 8.203 2.199
1 year 720 minute winter 5.513 2.199
1 year 960 minute summer 6.768 1.782
1 year 960 minute winter 4.483 1.782
1 year 1440 minute summer 4.949 1.326
1 year 1440 minute winter 3.326 1.326
1 year 2160 minute summer 3.574 0.988
1 year 2160 minute winter 2.462 0.988
1 year 2880 minute summer 2.986 0.800
1 year 2880 minute winter 2.007 0.800
1 year 4320 minute summer 2.276 0.595
1 year 4320 minute winter 1.499 0.595
1 year 5760 minute summer 1.885 0.483
1 year 5760 minute winter 1.220 0.483
1 year 7200 minute summer 1.609 0.410
1 year 7200 minute winter 1.038 0.410
1 year 8640 minute summer 1.409 0.359
1 year 8640 minute winter 0.910 0.359
1 year 10080 minute summer 1.260 0.322
1 year 10080 minute winter 0.813 0.322
10 year 15 minute summer 211.819 59.937

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	
10 year 15 minute winter	148 645	59 937	
10 year 30 minute summer	136.831	38.718	
10 year 30 minute winter	96.022	38.718	
10 year 60 minute summer	90.826	24.003	
10 year 60 minute winter	60.342	24.003	
10 year 120 minute summer	54.899	14.508	
10 year 120 minute winter	36.474	14.508	
10 year 180 minute summer	41.666	10.722	
10 year 180 minute winter	27.084	10.722	
10 year 240 minute summer	32.645	8.627	
10 year 240 minute winter	21.689	8.627	
10 year 360 minute summer	24.632	6.339	
10 year 360 minute winter	16.012	6.339	
10 year 480 minute summer	19.260	5.090	
10 year 480 minute winter	12.796	5.090	
10 year 600 minute summer	15.690	4.291	
10 year 600 minute winter	10.720	4.291	
10 year 720 minute summer	13.925	3.732	
10 year 720 minute winter	9.358	3.732	
10 year 960 minute summer	11.365	2.993	
10 year 960 minute winter	7.528	2.993	
10 year 1440 minute summer	8.174	2.191	
10 year 1440 minute winter	5.493	2.191	
10 year 2160 minute summer	5.799	1.603	
10 year 2160 minute winter	3.996	1.603	
, 10 year 2880 minute summer	4.788	1.283	
, 10 year 2880 minute winter	3.218	1.283	
10 year 4320 minute summer	3.587	0.938	
, 10 year 4320 minute winter	2.362	0.938	
, 10 year 5760 minute summer	2.932	0.751	
10 year 5760 minute winter	1.898	0.751	
10 year 7200 minute summer	2.475	0.631	
10 year 7200 minute winter	1.597	0.631	
10 year 8640 minute summer	2.148	0.548	
10 year 8640 minute winter	1.387	0.548	
10 year 10080 minute summer	1.906	0.486	
10 year 10080 minute winter	1.230	0.486	
30 year 15 minute summer	268.706	76.035	
30 year 15 minute winter	188.566	76.035	
30 year 30 minute summer	174.929	49.499	
30 year 30 minute winter	122.757	49.499	
30 year 60 minute summer	116.589	30.811	
30 year 60 minute winter	77.459	30.811	
30 year 120 minute summer	70.438	18.615	
30 year 120 minute winter	46.797	18.615	
30 year 180 minute summer	53.298	13.715	
30 year 180 minute winter	34.645	13.715	
30 year 240 minute summer	41.604	10.995	
30 year 240 minute winter	27.641	10.995	
30 year 360 minute summer	31.221	8.034	
30 year 360 minute winter	20.295	8.034	
30 year 480 minute summer	24.324	6.428	

(mm/hr)(mm/hr)30 year 480 minute winter16.1606.42830 year 600 minute summer19.7565.40430 year 600 minute summer11.7544.68730 year 720 minute summer11.7544.68730 year 960 minute summer14.2153.74330 year 960 minute winter9.4163.74330 year 1440 minute summer10.1612.72330 year 1440 minute winter6.8292.72330 year 2160 minute winter4.9331.97930 year 2160 minute winter4.9331.57730 year 2880 minute summer5.8831.57730 year 4320 minute winter3.8331.57730 year 4320 minute winter2.8801.14330 year 5760 minute summer3.5540.91030 year 5760 minute summer3.5540.91030 year 5760 minute summer2.9870.76230 year 7200 minute winter1.9280.76230 year 10080 minute summer2.5830.65930 year 10080 minute summer2.8861.667100 year 15 minute summer2.8861.677100 year 15 minute summer1.84.73898.681100 year 15 minute summer13.28840.510100 year 120 minute summer13.28840.510100 year 120 minute summer13.28840.510100 year 120 minute summer14.44614.442100 year 180 minute summer4.665514.342100 year 180 minute summer3.28611.996100 year 240 minute summer	Event	Peak Intensity	Average Intensity	
30 year 480 minute winter 16.160 6.428 30 year 600 minute winter 13.498 5.404 30 year 720 minute summer 17.490 4.687 30 year 720 minute summer 11.754 4.687 30 year 960 minute summer 14.215 3.743 30 year 960 minute summer 10.161 2.723 30 year 1440 minute summer 10.161 2.723 30 year 2160 minute winter 4.933 1.979 30 year 2160 minute winter 4.933 1.577 30 year 2880 minute winter 3.953 1.577 30 year 4320 minute winter 3.883 1.577 30 year 5760 minute summer 4.374 1.143 30 year 5760 minute winter 2.801 1.910 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute winter 1.928 0.762 30 year 10080 minute summer 2.84 0.583 30 year 10080 minute summer 2.84 0.583 30 year 10080 minute summer 2.84 0.583 30 year 10080 minute summer 2.866		(mm/hr)	(mm/hr)	
30 year 600 minute summer 19.756 5.404 30 year 720 minute summer 17.490 4.687 30 year 720 minute summer 11.754 4.687 30 year 960 minute summer 14.215 3.743 30 year 960 minute summer 10.161 2.723 30 year 1440 minute summer 10.161 2.723 30 year 2160 minute summer 7.160 1.979 30 year 2260 minute summer 7.83 1.577 30 year 2880 minute summer 3.743 1.979 30 year 2880 minute summer 3.731 1.979 30 year 2880 minute summer 3.743 1.443 30 year 2880 minute summer 3.754 0.910 30 year 5760 minute summer 3.554 0.910 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.880 1.667 30 year 10080 minute summer 2.881 0.059 30 year 10080 minute summer 2.884 0.583 30 year 10080 minute summer 2.84 0.583 30 year 10080 minute summer 1.847.38 98.681 100 year 15 minute summer 1848.738 </td <td>30 year 480 minute winter</td> <td>16.160</td> <td>6.428</td> <td></td>	30 year 480 minute winter	16.160	6.428	
30 year 600 minute winter 13.498 5.404 30 year 720 minute summer 11.754 4.687 30 year 960 minute summer 14.215 3.743 30 year 960 minute summer 10.161 2.723 30 year 1440 minute summer 10.161 2.723 30 year 1440 minute winter 6.829 2.723 30 year 2160 minute winter 4.933 1.979 30 year 2160 minute winter 4.933 1.577 30 year 2880 minute summer 5.883 1.577 30 year 4320 minute winter 2.880 1.443 30 year 5760 minute summer 3.554 0.910 30 year 5760 minute summer 2.880 1.433 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.583 0.659 30 year 10080 minute summer 1.667 0.659 30 year 10080 minute summer 2.884 0.583 100 year 15 minute winter 1.474 0.583 100 year 15 minute winter 1.474 0.583 100 year 30 minute summer 22.865 64.789 100 year 30 minute summer 153.284	30 year 600 minute summer	19.756	5.404	
30 year 720 minute summer 17.490 4.687 30 year 720 minute winter 11.754 4.687 30 year 960 minute summer 14.215 3.743 30 year 960 minute summer 10.161 2.723 30 year 1440 minute summer 10.161 2.723 30 year 2160 minute winter 4.933 1.979 30 year 2160 minute summer 5.883 1.577 30 year 2880 minute winter 3.953 1.577 30 year 4320 minute summer 4.374 1.143 30 year 5760 minute summer 2.880 1.443 30 year 5760 minute summer 2.987 0.910 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.84 0.583 30 year 10080 minute summer 2.84 0.583 30 year 1080 minute summer 2.84 0.583 30 year 10080 minute summer 13.288 0.0510 100 year 30 minute summer 13.288 0.510 100 year 15 minute summer 13.288	30 year 600 minute winter	13.498	5.404	
30 year 720 minute winter 11.754 4.687 30 year 960 minute summer 14.215 3.743 30 year 960 minute summer 10.161 2.723 30 year 1440 minute summer 10.829 2.723 30 year 2160 minute summer 6.829 2.723 30 year 2160 minute summer 4.933 1.979 30 year 2880 minute summer 4.933 1.577 30 year 2880 minute summer 4.374 1.143 30 year 4320 minute summer 4.374 1.143 30 year 5760 minute summer 3.554 0.910 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 10080 minute summer 2.987 0.762 30 year 10080 minute summer 2.884 0.659 30 year 10080 minute summer 2.884 0.653 30 year 10080 minute summer 2.884 0.583 30 year 10080 minute summer 1.474 0.583 30 year 10080 minute summer 12.884 6.510 100 year 30 minute summer 12.896 <td>30 year 720 minute summer</td> <td>17.490</td> <td>4.687</td> <td></td>	30 year 720 minute summer	17.490	4.687	
30 year 960 minute summer 14.215 3.743 30 year 1440 minute winter 9.416 3.743 30 year 1440 minute summer 10.161 2.723 30 year 2160 minute summer 6.829 2.723 30 year 2160 minute summer 4.933 1.979 30 year 2880 minute summer 4.933 1.979 30 year 2880 minute summer 3.554 1.577 30 year 4320 minute winter 2.880 1.143 30 year 5760 minute summer 3.554 0.910 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 640 minute summer 2.883 0.659 30 year 10080 minute summer 2.884 0.583 30 year 10080 minute summer 2.84 0.583 30 year 10080 minute summer 244.728 98.681 100 year 15 minute summer 128.965 64.789 100 year 120 minute summer 153.288 40.510 100 year 120 minute summer 14.461 100 year 120 minute summer 100 year 120 minute summer <td>30 year 720 minute winter</td> <td>11.754</td> <td>4.687</td> <td></td>	30 year 720 minute winter	11.754	4.687	
30 year 960 minute winter 9.416 3.743 30 year 1440 minute summer 10.161 2.723 30 year 2160 minute winter 6.829 2.723 30 year 2160 minute winter 4.933 1.979 30 year 2180 minute summer 7.160 1.979 30 year 2880 minute summer 5.883 1.577 30 year 4320 minute summer 4.374 1.143 30 year 4320 minute winter 2.880 1.143 30 year 5760 minute winter 2.301 0.910 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.983 0.659 30 year 10080 minute summer 2.883 0.659 30 year 10080 minute summer 1.474 0.583 100 year 15 minute winter 1.474 0.583 100 year 30 minute summer 128.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 120 minute summer 153.288 40.510 100 year 120 minute summer 14.461 <td>30 year 960 minute summer</td> <td>14.215</td> <td>3.743</td> <td></td>	30 year 960 minute summer	14.215	3.743	
30 year 1440 minute summer 10.161 2.723 30 year 2160 minute summer 7.160 1.979 30 year 2160 minute winter 4.933 1.979 30 year 2880 minute winter 3.953 1.577 30 year 2880 minute winter 3.953 1.577 30 year 4320 minute summer 4.374 1.143 30 year 5760 minute summer 3.554 0.910 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute winter 1.928 0.762 30 year 7200 minute winter 1.667 0.659 30 year 8640 minute summer 2.883 0.659 30 year 10080 minute summer 2.844 0.583 100 year 15 minute summer 2.843 0.583 100 year 15 minute summer 160.677 64.789 100 year 30 minute summer 153.288 40.510 100 year 120 minute summer 12.846 1.964 100 year 120 minute summer 13.828 40.510 100 year 120 minute winter 10.466 24.461 100 year 120 minute summer 13.826<	30 year 960 minute winter	9.416	3.743	
30 year 1440 minute winter 6.829 2.723 30 year 2160 minute summer 7.160 1.979 30 year 2180 minute summer 4.933 1.979 30 year 2880 minute summer 3.883 1.577 30 year 2880 minute summer 3.953 1.577 30 year 4320 minute summer 4.374 1.143 30 year 5760 minute summer 2.880 1.143 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute winter 1.928 0.762 30 year 8640 minute summer 2.883 0.659 30 year 10080 minute summer 2.84 0.583 30 year 15 minute summer 2.84 0.583 100 year 15 minute summer 248.728 98.681 100 year 30 minute summer 228.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 120 minute summer 153.288 40.510 100 year 180 minute summer 54.669 14.641 100 year 180 minute summer 14.446 <td>30 year 1440 minute summer</td> <td>10.161</td> <td>2.723</td> <td></td>	30 year 1440 minute summer	10.161	2.723	
30 year 2160 minute summer 7.160 1.979 30 year 2880 minute winter 4.933 1.979 30 year 2880 minute summer 5.883 1.577 30 year 2820 minute winter 3.953 1.577 30 year 4320 minute winter 3.953 1.577 30 year 4320 minute winter 2.880 1.143 30 year 5760 minute summer 3.554 0.910 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.880 1.143 30 year 7200 minute summer 2.880 0.659 30 year 10080 minute summer 2.84 0.583 30 year 10080 minute winter 1.667 0.659 30 year 10080 minute winter 14.74 0.583 100 year 30 minute summer 228.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 60 minute summer 153.288 40.510 100 year 120 minute summer 92.562 24.461 100 year 120 minute winter 61.496<	30 year 1440 minute winter	6.829	2.723	
30 year 2160 minute winter 4.933 1.979 30 year 2880 minute summer 5.883 1.577 30 year 4320 minute summer 4.374 1.143 30 year 4320 minute winter 2.880 1.143 30 year 4320 minute winter 2.880 1.143 30 year 5760 minute winter 2.880 1.143 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.883 0.659 30 year 10080 minute summer 2.844 0.583 30 year 10080 minute summer 2.844 0.583 100 year 15 minute summer 244.728 98.681 100 year 30 minute summer 153.288 40.510 100 year 100 minute summer 153.288 40.510 100 year 120 minute summer 92.562 24.461 100 year 180 minute summer 92.562 24.461 100 year 180 minute summer 45.376 17.964 100 year 180 minute summer 46	30 year 2160 minute summer	7.160	1.979	
30 year 2880 minute summer 5.883 1.577 30 year 2880 minute winter 3.953 1.577 30 year 4320 minute summer 4.374 1.143 30 year 4320 minute winter 2.880 1.143 30 year 5760 minute summer 3.554 0.910 30 year 5760 minute winter 2.301 0.910 30 year 5760 minute winter 1.928 0.762 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.983 0.659 30 year 8640 minute summer 1.928 0.762 30 year 10080 minute summer 2.844 0.583 30 year 10080 minute summer 1.474 0.583 100 year 15 minute summer 348.738 98.681 100 year 30 minute summer 160.677 64.789 100 year 30 minute summer 153.288 40.510 100 year 60 minute summer 153.288 40.510 100 year 120 minute summer 69.806 17.964 100 year 120 minute summer 69.806 17.964 100 year 180 minute summer 54.	30 year 2160 minute winter	4.933	1.979	
30 year 2880 minute winter 3.953 1.577 30 year 4320 minute summer 4.374 1.143 30 year 4320 minute winter 2.880 1.143 30 year 5760 minute summer 3.953 0.910 30 year 5760 minute winter 2.301 0.910 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute winter 1.928 0.762 30 year 8640 minute winter 1.667 0.659 30 year 10080 minute winter 1.474 0.583 30 year 15 minute summer 2.84 0.583 100 year 30 minute winter 14.74 0.583 100 year 30 minute summer 28.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 60 minute summer 153.288 40.510 100 year 120 minute summer 153.288 40.510 100 year 120 minute summer 153.288 40.510 100 year 120 minute summer 16.496 24.461 100 year 120 minute summer 41.496<	, 30 vear 2880 minute summer	5.883	1.577	
30 year 4320 minute summer 4.374 1.143 30 year 4320 minute winter 2.880 1.143 30 year 5760 minute summer 3.554 0.910 30 year 5760 minute winter 2.301 0.910 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute winter 1.928 0.762 30 year 8640 minute summer 2.583 0.659 30 year 8640 minute winter 1.667 0.659 30 year 10080 minute summer 2.284 0.583 30 year 15 minute summer 348.738 98.681 100 year 15 minute summer 244.728 98.681 100 year 30 minute summer 128.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 120 minute summer 153.288 40.510 100 year 120 minute summer 98.066 17.964 100 year 120 minute summer 69.806 17.964 100 year 360 minute summer 40.484 10.418 100 year 360 minute summer 36.055 14.342 100 year 360 minute summer 31.414 8.302 100 year 360 minute summer	30 year 2880 minute winter	3,953	1.577	
30 year 4320 minute winter 2.880 1.143 30 year 5760 minute summer 3.554 0.910 30 year 5760 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute winter 1.928 0.762 30 year 7200 minute winter 1.928 0.762 30 year 8640 minute summer 2.583 0.659 30 year 10080 minute summer 2.84 0.583 30 year 15 minute summer 348.738 98.681 100 year 15 minute winter 144.74 0.583 100 year 30 minute summer 228.965 64.789 100 year 30 minute summer 123.288 40.510 100 year 30 minute winter 101.841 40.510 100 year 120 minute summer 92.562 24.461 100 year 120 minute winter 61.496 24.461 100 year 180 minute summer 98.065 17.964 100 year 360 minute winter 40.515 10.418 100 year 360 minute summer 42.69 14.342 100 year 360 minute summer 36.055 14.342 100 year 360 minute summer <t< td=""><td>30 year 4320 minute summer</td><td>4 374</td><td>1 143</td><td></td></t<>	30 year 4320 minute summer	4 374	1 143	
30 year 5760 minute summer 3.554 0.910 30 year 5760 minute summer 2.301 0.910 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 2.583 0.659 30 year 8640 minute summer 2.84 0.583 30 year 10080 minute summer 2.84 0.583 30 year 15 minute summer 348.738 98.681 100 year 15 minute summer 228.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 60 minute summer 153.288 40.510 100 year 120 minute summer 153.288 40.510 100 year 120 minute summer 92.562 24.461 100 year 180 minute summer 69.806 17.964 100 year 180 minute summer 54.269 14.342 100 year 360 minute summer 36.315 10.418 100 year 360 minute summer 31.414 8.302 100 year 480 minute summer 25.431 6.956 100 year 360 minute summer <	30 year 4320 minute winter	2 880	1 143	
30 year 5760 minute summer 2.301 0.910 30 year 7200 minute summer 2.987 0.762 30 year 7200 minute summer 1.928 0.762 30 year 8640 minute summer 2.583 0.659 30 year 8640 minute summer 2.583 0.659 30 year 10080 minute summer 2.284 0.583 30 year 10080 minute summer 2.284 0.583 30 year 15 minute summer 348.738 98.681 100 year 15 minute summer 228.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 30 minute summer 153.288 40.510 100 year 60 minute summer 153.288 40.510 100 year 120 minute summer 161.496 24.461 100 year 180 minute summer 69.806 17.964 100 year 240 minute summer 54.269 14.342 100 year 360 minute summer 36.055 14.342 100 year 360 minute summer 31.414 8.302 100 year 480 minute summer 24.31 6.956 100 year 480 minute summer 24.31 6.956 100 year 480 minute summer	30 year 5760 minute summer	2.550	0 910	
30 year 7200 minute summer 2.987 0.762 30 year 7200 minute winter 1.928 0.762 30 year 8640 minute summer 2.583 0.659 30 year 8640 minute winter 1.667 0.659 30 year 10080 minute summer 2.284 0.583 30 year 1080 minute summer 2.44 0.583 100 year 15 minute summer 348.738 98.681 100 year 15 minute summer 228.965 64.789 100 year 30 minute winter 160.677 64.789 100 year 60 minute summer 153.288 40.510 100 year 60 minute summer 192.562 24.461 100 year 120 minute summer 92.562 24.461 100 year 180 minute summer 69.806 17.964 100 year 180 minute summer 45.376 17.964 100 year 240 minute summer 34.269 14.342 100 year 360 minute summer 34.444 10.418 100 year 360 minute summer 24.451 100 year 360 100 year 480 minute summer 14.14 8.302 100 year 360 minute summer	30 year 5760 minute winter	2 201	0.010	
30 year 7200 minute summer 2.567 0.762 30 year 7200 minute winter 1.928 0.762 30 year 8640 minute summer 2.583 0.659 30 year 10080 minute winter 1.667 0.659 30 year 10080 minute winter 1.474 0.583 30 year 10080 minute winter 1.474 0.583 100 year 15 minute summer 348.738 98.681 100 year 30 minute summer 228.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 30 minute summer 153.288 40.510 100 year 60 minute winter 101.841 40.510 100 year 120 minute summer 92.562 24.461 100 year 120 minute summer 69.806 17.964 100 year 120 minute summer 69.806 17.964 100 year 180 minute summer 54.269 14.342 100 year 360 minute winter 36.055 14.342 100 year 360 minute summer 26.315 10.418 100 year 360 minute summer 26.315 10.418 100 year 480 minute summer	30 year 7200 minute summer	2.301	0.910	
30 year 8640 minute summer 1.928 0.762 30 year 8640 minute summer 2.583 0.659 30 year 10080 minute summer 1.667 0.659 30 year 10080 minute summer 2.284 0.583 30 year 10080 minute winter 1.474 0.583 100 year 15 minute summer 348.738 98.681 100 year 15 minute winter 244.728 98.681 100 year 30 minute summer 228.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 30 minute winter 100.841 40.510 100 year 120 minute summer 92.562 24.461 100 year 120 minute summer 69.806 17.964 100 year 180 minute summer 69.806 17.964 100 year 180 minute summer 54.269 14.342 100 year 360 minute summer 54.269 14.342 100 year 360 minute summer 10.418 100 100 year 360 minute summer 26.315 10.418 100 year 480 minute summer 25.431 6.956 100 year 600 minute summer	20 year 7200 minute winter	2.907	0.702	
30 year 8640 minute summer 2.383 0.639 30 year 10080 minute winter 1.667 0.659 30 year 10080 minute winter 1.474 0.583 100 year 15 minute summer 348.738 98.681 100 year 15 minute winter 244.728 98.681 100 year 30 minute summer 228.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 60 minute summer 153.288 40.510 100 year 60 minute summer 92.562 24.461 100 year 120 minute summer 92.562 24.461 100 year 120 minute winter 61.496 24.461 100 year 120 minute winter 69.806 17.964 100 year 180 minute winter 45.376 17.964 100 year 360 minute winter 36.055 14.342 100 year 360 minute summer 31.414 8.302 100 year 480 minute winter 26.315 10.418 100 year 600 minute summer 25.431 6.956 100 year 600 minute winter 17.376 6.956 100 year 720 minute summer 18.166 4.784 100 year 720 minute summer <td>30 year 7200 minute winter</td> <td>1.920</td> <td>0.762</td> <td></td>	30 year 7200 minute winter	1.920	0.762	
30 year 10080 minute winter 1.667 0.659 30 year 10080 minute winter 1.474 0.583 30 year 10080 minute winter 1.474 0.583 100 year 15 minute summer 348.738 98.681 100 year 30 minute summer 228.965 64.789 100 year 30 minute summer 153.288 40.510 100 year 60 minute summer 153.288 40.510 100 year 60 minute summer 92.562 24.461 100 year 120 minute summer 92.562 24.461 100 year 120 minute winter 61.496 24.461 100 year 180 minute winter 69.806 17.964 100 year 240 minute summer 54.269 14.342 100 year 360 minute winter 36.055 14.342 100 year 360 minute summer 31.414 8.302 100 year 480 minute summer 31.414 8.302 100 year 720 minute summer 25.431 6.956 100 year 720 minute summer 15.089 6.017 100 year 720 minute summer 18.166 4.784 100 year 960 minute summer 18.166 4.784 100 year 1440 minute summer <td>30 year 8640 minute summer</td> <td>2.583</td> <td>0.659</td> <td></td>	30 year 8640 minute summer	2.583	0.659	
30 year 10080 minute summer 2.284 0.583 30 year 10080 minute winter 1.474 0.583 100 year 15 minute summer 348.738 98.681 100 year 15 minute winter 244.728 98.681 100 year 30 minute summer 228.965 64.789 100 year 30 minute winter 160.677 64.789 100 year 60 minute summer 153.288 40.510 100 year 60 minute summer 153.288 40.510 100 year 120 minute summer 92.562 24.461 100 year 120 minute winter 61.496 24.461 100 year 180 minute summer 69.806 17.964 100 year 180 minute winter 45.376 17.964 100 year 240 minute summer 54.269 14.342 100 year 360 minute winter 26.315 10.418 100 year 360 minute summer 31.414 8.302 100 year 480 minute summer 25.431 6.956 100 year 600 minute winter 17.376 6.956 100 year 600 minute summer 12.452 6.017 100 year 720 minute winter 15.089 6.017 100 year 720 minute winter<	30 year 8640 minute winter	1.667	0.659	
30 year 10080 minute winter1.4/40.583100 year 15 minute summer348.73898.681100 year 15 minute winter244.72898.681100 year 30 minute summer228.96564.789100 year 30 minute winter160.67764.789100 year 60 minute summer153.28840.510100 year 60 minute summer101.84140.510100 year 120 minute summer92.56224.461100 year 120 minute summer69.80617.964100 year 180 minute summer69.80617.964100 year 240 minute summer54.26914.342100 year 240 minute summer36.05514.342100 year 360 minute winter26.31510.418100 year 360 minute summer31.4148.302100 year 480 minute summer25.4316.956100 year 600 minute summer25.4316.956100 year 720 minute summer15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute summer12.0334.784100 year 1440 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 2160 minute summer12.	30 year 10080 minute summer	2.284	0.583	
100 year 15 minute summer348.73898.681100 year 15 minute winter244.72898.681100 year 30 minute summer228.96564.789100 year 30 minute winter160.67764.789100 year 60 minute summer153.28840.510100 year 60 minute summer101.84140.510100 year 120 minute summer92.56224.461100 year 120 minute summer69.80617.964100 year 180 minute summer69.80617.964100 year 240 minute summer54.26914.342100 year 240 minute winter36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute summer31.4148.302100 year 600 minute summer25.4316.956100 year 600 minute summer25.4316.956100 year 720 minute summer15.0896.017100 year 960 minute summer15.0896.017100 year 960 minute summer12.4334.784100 year 1440 minute summer12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer12.8963.456100 year 2160 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute summer9.021 </td <td>30 year 10080 minute winter</td> <td>1.474</td> <td>0.583</td> <td></td>	30 year 10080 minute winter	1.474	0.583	
100 year 15 minute winter244.72898.681100 year 30 minute summer228.96564.789100 year 30 minute winter160.67764.789100 year 60 minute summer153.28840.510100 year 60 minute winter101.84140.510100 year 120 minute summer92.56224.461100 year 120 minute winter61.49624.461100 year 180 minute summer69.80617.964100 year 180 minute winter45.37617.964100 year 240 minute summer54.26914.342100 year 240 minute winter36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute summer31.4148.302100 year 480 minute summer21.4316.956100 year 600 minute summer25.4316.956100 year 720 minute winter17.3766.956100 year 720 minute summer18.1664.784100 year 960 minute summer18.1664.784100 year 1440 minute summer12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer12.8963.456100 year 2160 minute summer2.4526.017100 year 2160 minute summer12.8963.456100 year 2160 minute summer12.8963.456100 year 2160 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2880 minute summer7.3711.975	100 year 15 minute summer	348.738	98.681	
100 year 30 minute summer228.96564.789100 year 30 minute winter160.67764.789100 year 60 minute summer153.28840.510100 year 60 minute winter101.84140.510100 year 120 minute summer92.56224.461100 year 120 minute winter61.49624.461100 year 180 minute summer69.80617.964100 year 240 minute summer54.26914.342100 year 240 minute summer54.26914.342100 year 360 minute summer40.48410.418100 year 360 minute winter26.31510.418100 year 480 minute summer31.4148.302100 year 600 minute summer25.4316.956100 year 720 minute winter17.3766.956100 year 720 minute summer15.0896.017100 year 960 minute summer18.1664.784100 year 1440 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2880 minute summer7.3711.975	100 year 15 minute winter	244.728	98.681	
100 year 30 minute winter160.67764.789100 year 60 minute summer153.28840.510100 year 60 minute winter101.84140.510100 year 120 minute summer92.56224.461100 year 120 minute summer61.49624.461100 year 180 minute summer69.80617.964100 year 180 minute summer45.37617.964100 year 240 minute summer54.26914.342100 year 240 minute summer36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute summer31.4148.302100 year 480 minute summer25.4316.956100 year 600 minute summer25.4316.956100 year 720 minute summer15.0896.017100 year 960 minute summer18.1664.784100 year 1440 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2880 minute summer7.3711.975	100 year 30 minute summer	228.965	64.789	
100 year 60 minute summer153.28840.510100 year 60 minute winter101.84140.510100 year 120 minute summer92.56224.461100 year 120 minute winter61.49624.461100 year 180 minute summer69.80617.964100 year 180 minute winter45.37617.964100 year 240 minute summer54.26914.342100 year 240 minute summer54.26914.342100 year 260 minute winter36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute summer31.4148.302100 year 480 minute summer21.4148.302100 year 600 minute summer25.4316.956100 year 720 minute summer22.4526.017100 year 720 minute summer18.1664.784100 year 960 minute summer18.1664.784100 year 1440 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2880 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 30 minute winter	160.677	64.789	
100 year 60 minute winter101.84140.510100 year 120 minute summer92.56224.461100 year 120 minute winter61.49624.461100 year 180 minute summer69.80617.964100 year 180 minute winter45.37617.964100 year 240 minute summer54.26914.342100 year 240 minute winter36.05514.342100 year 360 minute winter26.31510.418100 year 360 minute summer40.48410.418100 year 360 minute winter26.31510.418100 year 360 minute summer31.4148.302100 year 480 minute winter20.8718.302100 year 600 minute summer17.3766.956100 year 720 minute summer22.4526.017100 year 720 minute winter15.0896.017100 year 960 minute summer18.1664.784100 year 1440 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute summer7.3711.975	100 year 60 minute summer	153.288	40.510	
100 year 120 minute summer92.56224.461100 year 120 minute winter61.49624.461100 year 180 minute summer69.80617.964100 year 180 minute winter45.37617.964100 year 240 minute summer54.26914.342100 year 240 minute summer36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute summer26.31510.418100 year 360 minute summer31.4148.302100 year 480 minute summer21.4148.302100 year 600 minute summer25.4316.956100 year 720 minute summer17.3766.956100 year 720 minute summer15.0896.017100 year 960 minute summer18.1664.784100 year 1440 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute summer9.0212.493100 year 2880 minute summer7.3711.975	100 year 60 minute winter	101.841	40.510	
100 year 120 minute winter61.49624.461100 year 180 minute summer69.80617.964100 year 180 minute winter45.37617.964100 year 240 minute summer54.26914.342100 year 240 minute winter36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute summer26.31510.418100 year 360 minute summer31.4148.302100 year 480 minute summer21.4148.302100 year 600 minute winter20.8718.302100 year 600 minute summer25.4316.956100 year 720 minute summer17.3766.956100 year 720 minute summer18.1664.784100 year 960 minute summer12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute summer9.0212.493100 year 2880 minute summer7.3711.975	100 year 120 minute summer	92.562	24.461	
100 year 180 minute summer69.80617.964100 year 180 minute winter45.37617.964100 year 240 minute summer54.26914.342100 year 240 minute winter36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute winter26.31510.418100 year 480 minute summer31.4148.302100 year 480 minute winter20.8718.302100 year 600 minute winter25.4316.956100 year 600 minute summer25.4316.956100 year 720 minute summer15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute summer12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute summer9.0212.493100 year 2880 minute summer7.3711.975	100 year 120 minute winter	61.496	24.461	
100 year 180 minute winter45.37617.964100 year 240 minute summer54.26914.342100 year 240 minute winter36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute summer26.31510.418100 year 360 minute summer31.4148.302100 year 480 minute summer31.4148.302100 year 480 minute summer25.4316.956100 year 600 minute summer25.4316.956100 year 720 minute summer15.0896.017100 year 720 minute summer18.1664.784100 year 960 minute summer12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute summer9.0212.493100 year 2880 minute summer7.3711.975	100 year 180 minute summer	69.806	17.964	
100 year 240 minute summer54.26914.342100 year 240 minute winter36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute winter26.31510.418100 year 480 minute summer31.4148.302100 year 480 minute summer20.8718.302100 year 600 minute winter25.4316.956100 year 600 minute summer22.4526.017100 year 720 minute summer15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute summer12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute summer6.2162.493100 year 2880 minute summer7.3711.975	100 year 180 minute winter	45.376	17.964	
100 year 240 minute winter36.05514.342100 year 360 minute summer40.48410.418100 year 360 minute winter26.31510.418100 year 480 minute summer31.4148.302100 year 480 minute summer20.8718.302100 year 600 minute winter20.8718.302100 year 600 minute summer25.4316.956100 year 600 minute summer22.4526.017100 year 720 minute summer22.4526.017100 year 720 minute winter15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 240 minute summer	54.269	14.342	
100 year 360 minute summer40.48410.418100 year 360 minute winter26.31510.418100 year 360 minute winter26.31510.418100 year 480 minute summer31.4148.302100 year 480 minute winter20.8718.302100 year 600 minute summer25.4316.956100 year 600 minute winter17.3766.956100 year 720 minute summer22.4526.017100 year 720 minute summer15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	, 100 year 240 minute winter	36.055	14.342	
100 year 360 minute vinter26.31510.418100 year 480 minute summer31.4148.302100 year 480 minute winter20.8718.302100 year 600 minute summer25.4316.956100 year 600 minute summer25.4316.956100 year 720 minute summer22.4526.017100 year 720 minute summer15.0896.017100 year 960 minute winter18.1664.784100 year 960 minute summer12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 360 minute summer	40.484	10.418	
100 year 480 minute uniter10.913100 year 480 minute summer31.4148.302100 year 480 minute winter20.871100 year 600 minute summer25.4316.956100 year 600 minute winter17.3766.956100 year 720 minute summer22.4526.017100 year 720 minute winter15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 360 minute winter	26.315	10.418	
100 year 480 minute summer20.8718.302100 year 600 minute summer25.4316.956100 year 600 minute summer25.4316.956100 year 600 minute winter17.3766.956100 year 720 minute summer22.4526.017100 year 720 minute summer15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 480 minute summer	31 414	8 302	
100 year 400 minute winter20.0710.302100 year 600 minute summer25.4316.956100 year 600 minute winter17.3766.956100 year 720 minute summer22.4526.017100 year 720 minute winter15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 960 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 480 minute winter	20 871	8 302	
100 year 600 minute summer23.4310.930100 year 600 minute winter17.3766.956100 year 720 minute summer22.4526.017100 year 720 minute winter15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 960 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 600 minute summer	25.071	6 956	
100 year 720 minute winter17.3760.930100 year 720 minute summer22.4526.017100 year 720 minute winter15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 960 minute summer12.8963.456100 year 1440 minute summer12.8963.456100 year 1440 minute summer9.0212.493100 year 2160 minute summer9.0212.493100 year 2160 minute summer6.2162.493100 year 2880 minute summer7.3711.975	100 year 600 minute winter	17 276	6 956	
100 year 720 minute summer22.4526.017100 year 720 minute winter15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 1440 minute summer12.8963.456100 year 1440 minute winter8.6673.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 720 minute summer	17.370 77 /E7	6 017	
100 year 720 minute winter15.0896.017100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 1440 minute summer12.8963.456100 year 1440 minute winter8.6673.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 720 minute summer	22.43Z	0.017 6 017	
100 year 960 minute summer18.1664.784100 year 960 minute winter12.0334.784100 year 1440 minute summer12.8963.456100 year 1440 minute winter8.6673.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 720 minute winter	10.1009	0.UI/	
100 year 960 minute winter12.0334.784100 year 1440 minute summer12.8963.456100 year 1440 minute winter8.6673.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 960 minute summer	10.100	4.784	
100 year 1440 minute summer12.8963.456100 year 1440 minute winter8.6673.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 960 minute winter	12.033	4.784	
100 year 1440 minute winter8.6673.456100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 1440 minute summer	12.896	3.456	
100 year 2160 minute summer9.0212.493100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 1440 minute winter	8.667	3.456	
100 year 2160 minute winter6.2162.493100 year 2880 minute summer7.3711.975	100 year 2160 minute summer	9.021	2.493	
100 year 2880 minute summer 7.371 1.975	100 year 2160 minute winter	6.216	2.493	
	100 year 2880 minute summer	7.371	1.975	
100 year 2880 minute winter 4.954 1.975	100 year 2880 minute winter	4.954	1.975	
100 year 4320 minute summer 5.435 1.421	100 year 4320 minute summer	5.435	1.421	

File: Leatherhead Rd.pfd Network: Storm Network Andrew Wallace 07/03/2024

Page 7 Leatherhead Rd Calcs Attenuation Calcs

Event	Peak	Average
	Intensity	Intensity
	(mm/hr)	(mm/hr)
100 year 4320 minute winter	3.579	1.421
100 year 5760 minute summer	4.390	1.124
100 year 5760 minute winter	2.841	1.124
100 year 7200 minute summer	3.670	0.936
100 year 7200 minute winter	2.368	0.936
100 year 8640 minute summer	3.160	0.806
100 year 8640 minute winter	2.039	0.806
100 year 10080 minute summer	2.784	0.710
100 year 10080 minute winter	1.797	0.710
100 year +40% CC 15 minute summer	488.233	138.153
100 year +40% CC 15 minute winter	342.620	138.153
100 year +40% CC 30 minute summer	320.551	90.705
100 year +40% CC 30 minute winter	224.948	90.705
100 year +40% CC 60 minute summer	214.603	56.713
100 year +40% CC 60 minute winter	142.577	56.713
100 year +40% CC 120 minute summer	129.587	34.246
100 year +40% CC 120 minute winter	86.094	34.246
100 year +40% CC 180 minute summer	97.729	25.149
100 year +40% CC 180 minute winter	63.526	25.149
100 year +40% CC 240 minute summer	75.977	20.078
100 year +40% CC 240 minute winter	50.477	20.078
100 year +40% CC 360 minute summer	56.677	14.585
100 year +40% CC 360 minute winter	36.841	14.585
100 year +40% CC 480 minute summer	43.979	11.622
100 year +40% CC 480 minute winter	29.219	11.622
100 year +40% CC 600 minute summer	35.604	9.738
100 year +40% CC 600 minute winter	24.327	9.738
100 year +40% CC 720 minute summer	31.433	8.424
100 year +40% CC 720 minute winter	21.125	8.424
100 year +40% CC 960 minute summer	25.432	6.697
100 year +40% CC 960 minute winter	16.847	6.697
100 year +40% CC 1440 minute summer	18.055	4.839
100 year +40% CC 1440 minute winter	12.134	4.839
100 year +40% CC 2160 minute summer	12.630	3.490
100 year +40% CC 2160 minute winter	8.702	3.490
100 year + 40% CC 2880 minute summer	10 319	2 766
100 year + 40% CC 2880 minute winter	6 935	2.766
100 year +40% CC 4320 minute summer	7 609	1 989
100 year + 40% CC + 320 minute summer	5 011	1 989
100 year + 40% CC 5760 minute summer	6 1 4 5	1 573
100 year + 40% CC 5760 minute winter	3 978	1 573
100 year + 40% CC 7200 minute summer	5 1 3 7	1 311
100 year + 40% CC 7200 minute winter	2 216	1 211
100 year + 40% CC 8640 minute summer	4 4 7 4	1 1 2 0
100 year + 40% CC 8640 minute summer	7.724	1 1 2 0
100 year +40% CC 10080 minute summar	2.0JJ 2 207	1.129
$100 \text{ year } \pm 40\% \text{ CC} 10080 \text{ minute summer}$	3.05/ 2 515	0.994
100 year +40% CC 10080 minute winter	2.212	0.994

Page 8 Leatherhead Rd Calcs Attenuation Calcs

Results for 1 year Critical Storm Duration. Lowest mass balance: 98.33%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Stat	tus
30 minute winter	1	25	41.847	0.047	3.9	0.0000	0.0000	OK	
30 minute winter	2	25	41.951	0.051	3.9	0.0081	0.0000	OK	
30 minute winter	3	24	42.723	0.723	6.6	1.5985	0.0000	SURCH	ARGED
30 minute winter	4	25	42.726	0.526	8.2	1.3217	0.0000	SURCH	ARGED
15 minute summer	5	11	42.727	0.427	5.2	0.1033	0.0000	SURCH	ARGED
30 minute winter	6	25	42.726	0.326	2.2	0.0881	0.0000	SURCH	ARGED
Link Event	US	Link	DS	Outflow	Velocity	Flow/Ca	ap Lin	k Dis	scharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³) Vo	ol (m³)
30 minute winter	2	1.003	1	3.9	1.009	0.45	50 0.0	191	9.3
30 minute winter	3	Orifice	2	3.9					
30 minute winter	4	1.001	3	3.8	0.246	0.22	16 0.3	521	
15 minute summer	5	1.000	4	2.6	0.379	0.15	58 0.1	968	
30 minute winter	6	2.000	4	2.7	0.360	0.11	L4 0.1	968	

Results for 10 year Critical Storm Duration. Lowest mass balance: 98.33%

Node Event	US Node	Peak	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m ³)		Status
30 minute winter	1	29	41.849	0.049	4.1	0.0000	0.0000	ОК	
30 minute winter	2	29	41.953	0.053	4.1	0.0084	0.0000	OK	
30 minute winter	3	29	42.814	0.814	11.7	4.4644	0.0000	SUR	CHARGED
30 minute winter	4	29	42.818	0.618	12.1	5.4863	0.0000	SUR	CHARGED
30 minute winter	5	29	42.818	0.518	4.2	0.1254	0.0000	SUR	CHARGED
30 minute winter	6	29	42.818	0.418	4.2	0.1129	0.0000	SUR	CHARGED
Link Event	US	Link	DS	Outflow	Velocity	Flow/C	ap Li	nk	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol	(m³)	Vol (m³)
30 minute winter	2	1.003	1	4.1	1.024	0.4	78 0.0	0200	17.9
30 minute winter	3	Orifice	2	4.1					
30 minute winter	4	1.001	3	3.3	0.255	0.1	87 0.3	3521	
30 minute winter	5	1.000	4	4.0	0.328	0.2	36 0.3	1968	
30 minute winter	6	2.000	4	4.0	0.364	0.1	66 0.3	1968	

Page 10 Leatherhead Rd Calcs Attenuation Calcs

Results for 30 year Critical Storm Duration. Lowest mass balance: 98.33%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)		Status
60 minute winter	1	49	41.850	0.050	4.3	0.0000	0.0000	OK	
60 minute winter	2	49	41.954	0.054	4.3	0.0087	0.0000	OK	
60 minute winter	3	49	42.876	0.876	10.1	6.3846	0.0000	SUR	CHARGED
60 minute winter	4	49	42.880	0.680	10.1	8.2823	0.0000	SUR	CHARGED
60 minute winter	5	49	42.880	0.580	3.5	0.1404	0.0000	SUR	CHARGED
60 minute winter	6	49	42.880	0.480	3.5	0.1296	0.0000	SUF	CHARGED
Link Event	US	Link	DS	Outflow	Velocity	Flow/C	ap L	ink	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vo	l (m³)	Vol (m³)
60 minute winter	2	1.003	1	4.3	1.032	0.4	96 0.	0206	28.5
60 minute winter	3	Orifice	2	4.3					
60 minute winter	4	1.001	3	4.0	0.246	0.2	26 0	3521	
60 minute winter	5	1.000	4	3.3	0.302	0.1	.97 0.	1968	
60 minute winter	6	2.000	4	3.3	0.332	0.1	.39 0.	1968	

Page 11 Leatherhead Rd Calcs Attenuation Calcs

Results for 100 year Critical Storm Duration. Lowest mass balance: 98.33%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)		Status
60 minute winter	1	56	41.851	0.051	4.5	0.0000	0.0000	ОК	
60 minute winter	2	56	41.956	0.056	4.5	0.0090	0.0000	ОК	
60 minute winter	3	56	42.974	0.974	12.6	9.4507	0.0000	SUR	CHARGED
60 minute winter	4	54	42.978	0.778	13.3	12.7378	0.0000	SUR	CHARGED
60 minute winter	5	53	42.979	0.679	4.6	0.1642	0.0000	SUR	CHARGED
60 minute winter	6	53	42.979	0.579	4.6	0.1562	0.0000	SUR	CHARGED
Link Event	US	Link	DS	Outflow	Velocity	Flow/C	ap Li	ink	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol	(m³)	Vol (m³)
60 minute winter	2	1.003	1	4.5	1.045	6 0.5	24 0.	0215	37.5
60 minute winter	3	Orifice	2	4.5					
60 minute winter	4	1.001	3	4.2	0.250	0.2	.38 0.	3521	
60 minute winter	5	1.000	4	4.3	0.325	0.2	.58 0.	1968	
60 minute winter	6	2.000	4	4.3	0.356	5 0.1	.82 0.	1968	

Page 12 Leatherhead Rd Calcs Attenuation Calcs

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 98.33%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Floo (m³	d)	Status
60 minute winter	1	59	41.854	0.054	4.9	0.0000	0.00	00 OK	
60 minute winter	2	59	41.960	0.060	4.9	0.0095	0.00	00 OK	
60 minute winter	3	59	43.146	1.146	16.8	14.8341	0.00	00 <mark>SUF</mark>	RCHARGED
60 minute winter	4	59	43.151	0.951	18.7	20.5611	0.00	00 FLC	OD RISK
60 minute winter	5	59	43.151	0.851	6.5	0.2060	0.00	DO <mark>SU</mark> F	RCHARGED
60 minute winter	6	59	43.151	0.751	6.5	0.2029	0.00	00 FLC	OD RISK
Link Event	US	Link	DS	Outflow	Velocity	Flow/C	Сар	Link	Discharge
(Upstream Depth)	Node		Node	(l/s)	(m/s)		١	/ol (m³)	Vol (m³)
60 minute winter	2	1.003	1	4.9	1.064	0.5	570	0.0230	52.4
60 minute winter	3	Orifice	2	4.9					
60 minute winter	4	1.001	3	4.2	0.240	0.2	35	0.3521	
60 minute winter	5	1.000	4	6.1	0.349	0.3	864	0.1968	
60 minute winter	6	2.000	4	6.1	0.382	0.2	256	0.1968	

APPENDIX C: DRAINAGE MAINTENANCE PLAN

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK

DRAINAGE MAINTENANCE PLAN

166 Leatherhead Road, Chessington, KT9 2HU

JOMAS ASSOCIATES LTD

Unit 24 Sarum Complex, Salisbury Road, Uxbridge, UB8 2RZ www.jomasassociates.com info@jomasassociates.com

166 Leatherhead Road, Chessington, KT9 2HU Drainage Strategy P5581J2966 - March 2024

Prepared by Jomas Associates Ltd On behalf of JDT Properties Ltd

Report Title:	Report Title: Drainage and SUDS Maintenance Plan for 166 Leatherhead Road, Chessington, KT9 2HU						
Report Status:	Final						
Job No:	P5581J2966						
Date:	March 2024						
Control: Previo	us Release						
Version		Date	Issued By				
V1.0		08/03/2024	A Wallace				
Prepared by: JOMAS ASSOCIATES LTD For: JDT Properties Ltd							

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0843 289 2187

info@jomasassociates.com

166 Leatherhead Road, Chessington, KT9 2HU Drainage Strategy P5581J2966 - March 2024

Prepared by Jomas Associates Ltd On behalf of JDT Properties Ltd

1.1 General

- 1.1.1 Sustainable Drainage Systems (SuDS) are an environmentally friendly approach to managing rainfall. SuDS techniques use landscape features to deal with surface water with the aim to:
 - Control the flow, volume and frequency of water leaving a development.
 - Prevent pollution by intercepting silt and cleaning runoff from hard surfaces.
 - Provide attractive surroundings for the community.
- 1.1.2 The surface water drainage strategy for this development utilises permeable paving as the main SUDS feature. The following sections provides a brief description of these features and outlines the maintenance programme that should be adopted.

1.2 Cleaning of the Drainage System

IEERING

- 1.2.1 Drainage systems should be inspected at regular intervals and where necessary, thoroughly cleaned out at the same time. Any defects discovered should be made good.
- 1.2.2 The following operations should be carried out during the periodic cleaning of a drainage system.

Product Type	Period	Responsibility	Maintenance Methods
Silt Trap	As necessary and before wet season	Owner or Maintenance Company for communal areas	 Sediment and debris that accumulated during summer needs to be removed before the wet season. Inspect and clean out routinely prior to inlet pipework to minimise debris reaching the tank. Conduct inspections more frequently during the wet season for the area where sediment or trash accumulates more often. Clean and repair as needed.
Standard Manholes/ Inspection Chambers	As necessary	Owner or Maintenance Company for communal areas	 Remove and clean any soil and vegetation that covers the manhole cover to prevent blockage of the drainage system at the manhole. Renew/replace any damaged/missing bolts and damaged/missing manhole covers.
Drainage Pipes	Six monthly interval	Owner or Maintenance Company for communal areas	• Inspect underground drainage pipes to ensure that the distribution pipework arrangement is operational and free from blockages. If required, take remedial action.

Table 1: Drainage Maintenance

Product Type	Period	Responsibility	Maintenance Methods
Permeable Paving	As required	Owner/ Maintenance Company	 Inspect the roof after any precipitation to ensure no displacement of any debris onto the surface.
	Six monthly (Ideally, this activity to be carried out in spring and autumn seasons)	Owner/ Maintenance Company	• Debris removal from catchment surface (where may cause risks to performance).
	Annually and after large storms	Owner/ Maintenance Company	 Inspection/check of all inlets to ensure that they are in good condition and operating as designed.
	As required	Owner/ Maintenance Company	• Regular maintenance and desilting as required
Flow control	Annually and after large storms	Owner/ Maintenance Company	 Inspection/check of all inlets to ensure that they are in good condition and operating as designed. Renew and replace any damaged/missing items.

1.3 Sketches and Plans

1.3.1 The locations of the above features can be found by examining Drawing P5581J2966-C01

JIMAS ENGINEERING ENVIRONMENTAL LAND REMEDIATION

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK

JOMAS ASSOCIATES LTD

Unit 24 Sarum Complex Salisbury Rd Uxbridge

CONTACT US

Website: www.jomasassociates.com

Tel: 0333 305 9054

Email: info@jomasassociates.com

UB8 2RZ