

Job Title Nile & Villiers **Prepared for** TOWN.

Report Type Flood Risk Assessment & **Drainage Strategy**

Date

9 October 2023

Contents

1.	Introduction
2.	Development Proposal4
3.	Existing Site4
	3.1 Description
	3.2 Topography
	3.3 Waterbodies
	3.4 Existing Drainage
	3.5 Geology
	3.6 Hydrology
4.	Relevant Policy and Guidance
	4.1 National Planning Policy Framework 2021 & Planning Practice Guidance 20227
	Flood Risk Categorisation
	4.2 Flood risk assessments: climate change allowances (EA, 2022)
	4.3 Sunderland City Council Core Strategy and Development Plan 2015 – 2033
	Policy WWE2 – Flood risk and coastal management
	Policy WWE3 – Water Management
	Policy WWE4 – Water Quality
5.	Critical Drainage Areas11
6.	Source Protection Zones (SPZ)11
7.	Hydrological Assessment12
	7.1 Flooding History
	7.2 Fluvial Flood Risk
	7.3 Surface water flood risk
	7.4 Tidal Flood Risk

7.5 Reservoir Flood Risk	13
7.6 Groundwater Flood Risk	13
7.7 Public sewer flooding, highway drainage flooding and infrastructure failure	13
7.8 Summary of Flood Risk	13
8. Proposed Surface Water Drainage Strategy	14
8.1 Point of Discharge	14
Infiltration based systems	14
Surface waterbody	14
Surface water sewer	14
Combined sewer	14
Discharge location summary	14
8.2 Site areas	15
8.3 Existing run-off rates	15
8.4 Surface Water Rates, Attenuation & Sustainable Drainage Systems (SuDS)	15
SuDS and attenuation	15
Water quantity & discharge	16
Water Quality	17
8.5 Sustainable Drainage Systems (SuDS) & water quality	18
9. SuDS management & maintenance	18
9.1 SuDS – Normal function	18
9.2 Operation & maintenance requirements	18
9.3 Construction phase drainage measures & prohibited activities	19
9.4 End of life maintenance	19
10. Proposed Foul Drainage Strategy	19
11. Existing drainage alterations	19
10. Proposed Foul Drainage Strategy	19

12.	Conclusions		19	9
-----	-------------	--	----	---

Appendix A: Northumbrian Water (NWL) Sewer Records
Appendix B: Topographical Survey
Appendix C: BGS historical borehole logs
Appendix D: LLFA Correspondence
Appendix E: Soil Site Report from Cranfield University
Appendix F: Existing Runoff Rate Calculations
Appendix G: Proposed Surface Water Drainage Layout
Appendix H: Greenfield Runoff Rate Calculations
Appendix I: Proposed Drainage Calculations (Causeway Flow+)
Appendix J: SuDS Management & Maintenance Schedule
Appendix K: Landscape Masterplan
Appendix L: SuDS Sketches

Tables:

Table 1: Flood Zones
Table 2: Flood risk vulnerability classification
Table 3: Flood risk vulnerability and flood zone 'incompatibility'
Table 4: Site specific flood risk vulnerability classification9
Table 5: Irwell Management Catchment peak rainfall climate change allowances
Table 6: Summary of flood risk13
Table 7: Summary of Point of Discharge Suitability14
Table 8: Site areas15
Table 9: Existing Runoff Rates
Table 10: Breakdown of attenuation volumes
Table 11: Greenfield runoff rates
Table 12: Runoff betterment achieved for each storm event

Table 13: CIRIA Pollution hazard indices for different land use classifications	17
Table 14: CIRIA indicative SuDS mitigation indices for discharge to surface waters	17
Table 15: SuDS Likely Benefits	18
Table 16 Summary of SuDS Techniques Proposed	18
Figures:	
Figure 1: Site location plan (by Xsite)	4
Figure 2: EA Statutory main river map	5
Figure 3: Existing drainage infrastructure map from Northumbrian Water Records	5
Figure 4: The EA aquifer designation map for superficial drift	6
Figure 5: The EA aquifer designation map for bedrock	6
Figure 6: The EA Flood Map for Planning for the Nile & Villiers site	7
Figure 7: Source Protection Zones	11
Figure 8: The Sunderland City Council critical drainage area map	11
Figure 9: The EA Flood Risk from Rivers or the Sea map	12
Figure 10: The EA flood risk from surface water map	12
Figure 11: The EA flood risk from reservoirs	13
Figure 12: Indicative outfall locations	
Figure 13: SuDS features	16

Flood Risk Assessment & Drainage Strategy

Prepared by	Felix Spiers & Kieran Lyons MEng (H
Reviewed by	Oliver Dodd BEng
Approved by	Rhys Williams CEng MICE MSc
Civic Job No.	2920
Issued	19.09.23
Revised	09.10.23 – Updated SuDS features

This report is the copyright of Civic Engineers and is for the sole use of the person/organisation to whom it is addressed. It may not be used or referred to in whole or in part by anyone else without the express agreement of Civic Engineers. Civic Engineers do not accept liability for any loss or damage arising from any unauthorised use of this report. Civic Engineers is a trading name of Civic Engineers (Leeds) Ltd (registered number 07879122), which is a limited company registered in England, registered address Carver's Warehouse, 77 Dale Street, Manchester M1 2HG

© Civic Engineers 2023

Nile & Villiers Flood Risk Assessment & Drainage Strategy

Hons) GMICE GradCIHT

1. Introduction

This document has been prepared on behalf of TOWN. (the "Applicant") to support a Full Planning Application for the redevelopment of Nile + Villiers (the "Site") and provides a full justification as to why the proposal should be deemed acceptable in relation to Flood Risk and drainage strategy.

This report has been created in support of the planning application for the proposed development and aims to assess it against the risk of flooding and to establish the principles of the drainage scheme in line with the National Planning Policy Framework (NPPF), Planning Practice Guidance (PPG) and the Non-Statutory Technical Standards for Sustainable Drainage Systems, as well as local/regional policy and guidance.

2. Development Proposal

The Nile + Villiers site is an existing brownfield site in East Sunniside, Sunderland. The development proposal is for a mixed-use development of 75 homes and approximately 575 m² of commercial space, private and communal gardens, associated infrastructure and sustainable drainage systems (SuDS).

Civic Engineers (CE) have been appointed as structural engineering, civil engineering, and transport consultants for the development of the site.

The brief for Nile & Villiers includes:

- Providing a mix of residential types, including 2b4p 3b5p houses and 2b3p maisonettes for both rent and sale;
- Re-instating an active frontage onto High Street West by providing a new mixed-use building with commercial and/or community use at the ground floor and residential above;
- Increasing building heights towards the north of the site by continuing the 12m building line of 177 High Street West, and stepping down to two-to-three storey terraces of residential houses to the south (with slightly higher duplexes marking the corners);
- Designing a contemporary scheme that optimises opportunities for off-site manufacture and assembly, whilst being informed by the character of the conservation areas by reinstating the frontage onto High Street West and historic terraced urban grain of the site;
- A multi-user route connecting Norfolk Street to Villiers Street, providing pedestrian and cycle alternatives to High Street West and Coronation Street. Street corners will be articulated by greater height of four storey residential properties, improving wayfinding.

3. Existing Site

3.1 Description

The site is split into two areas. The smaller area is located at 19-21 Nile Street. The larger area is bordered by Villiers Street to the East, Coronation Street to the South, Nile Street to the West and High Street West to the North. It consists of a brownfield site containing; a pathway/road running through the centre of the site from north to south and 2 car parks, one private car park in the south-east corner and the other (a public car park) in the north end of the site. The total site area is approximately 0.81ha and the location is shown below, in Figure 1.

Figure 1: Site location plan (by Xsite)

3.2 Topography

Ground levels on the site are relatively consistent, at around 30 – 31m, with exception to the northeast corner on the intersection between Villiers Street and High Street West where levels dip to 28m.

The through road spanning the length of the site is relatively flat with levels ranging from 31m in the south to 29m in the north side. A topographical survey by Landform Surveys has been included in Appendix B.

3.3 Waterbodies

The River Wear lies just over 300m north from the centre of the site, Mowbray Park Lake is just over 400m south-west from the centre of the site, as shown below in Figure 2.

Figure 2: EA Statutory main river map

3.4 Existing Drainage

Records indicate there are several combined sewers owned by Northumbrian Water (NWL) running underneath the site. A 300mm diameter combined sewer runs from the centre of the site southwards following the path up to an intersecting chamber underneath Coronation Street.

Another 300mm diameter combined sewer runs from a capped end northwards until an intersection with another combined public sewer running from east to west alongside the south side of the carpark.

A 1350mm diameter concrete combined sewer lies beneath the southwest section of the site, running from southeast to northwest.

Figure 3 shows the location of the existing combined sewers around the site, as per the Northumbrian Water records (Available in Appendix A).

Northumbrian Water Records

3.5 Geology

The British Geological Survey (BGS) data available online identifies the following geological strata beneath the site:

Superficial Deposits:

- Glaciofluvial Deposits, Devensian Sand and gravel.
- Till, Devensian Diamicton.

Bedrock Geology: Roker Formation - Dolostone.

The BGS geology viewer map suggests the bedrock geology is consistent across the site, whereas the superficial deposits vary throughout the site with Glaciofluvial Deposits, Devensian - Sand and gravel in south half of the site and Till, Devensian - Diamicton in the northern half of the site.

The BGS GeoIndex Onshore has historical records of several boreholes drilled in the vicinity of the site. The borehole logs generally show made ground underlain by a silty fine sand, stiff clay, and bedrock. The boreholes show no evidence of groundwater being encountered up to a depth of 10.7m. The logs are shown in Appendix C. Site investigation works will be undertaken to gather further understanding of the ground conditions below the site.

3.6 Hydrology

The Environmental Agency (EA) aquifer designations show the bedrock is a principal aquifer and the superficial drift is a secondary A aquifer. The site is an area of medium groundwater vulnerability but also associated with soluble rock risk and identified with 'local information'. The local information, shared by the LLFA (see correspondence in Appendix D) confirms the site lies within Source Protection Zone III (total catchment) and within zones of medium-high groundwater connectivity.

Figure 4: The EA aquifer designation map for superficial drift

4. Relevant Policy and Guidance

4.1 National Planning Policy Framework 2021 & Planning Practice Guidance 2022

Flood Risk Categorisation

The NPPF refers to the Flood Zones shown on the EA Flood Map for Planning (Rivers and Sea), and establishes the range of uses which are appropriate, or compatible, for each Flood Zone. Table 1, extracted from the Flood Risk and Coastal Change PPG (Table 1), summarises the Flood Zones.

Table 1: Flood Zones

Flood Zone	Definition			
Zone 1 Low probability	Land having a less than 1 in 1,000 (0.1%) annual probability of river or sea flooding. (Shown as 'clear' on the Flood Map for Planning – all land outside Zones 2, 3a and 3b)			
Zone 2 Medium probability	Land having between a 1 in 100 and 1 in 1,000 (1% and 0.1%) annual probability of rive flooding; or land having between a 1 in 200 and 1 in 1,000 (0.5% and 0.1%) annual probability of sea flooding. (Land shown in light blue on the Flood Map for Planning)			
Zone 3a High probability	Land having a 1 in 100 (1%) or greater annual probability of river flooding; or Land having a 1 in 200 (0.5%) or greater annual probability of sea flooding. (Land shown in dark blue on the Flood Map for Planning)			
	This zone comprises land where water from rivers or the sea has to flow or be stored in times of flood. The identification of functional floodplain should take account of local circumstances and not be defined solely on rigid probability parameters. Functional floodplain will normally comprise:			
Zone 3b Functional	• land having a 1 in 30 (3.3%) or greater annual probability of flooding, with any existing flood risk management infrastructure operating effectively; or			
floodplain	• land that is designed to flood (such as a flood attenuation scheme), even if it would only flood in more extreme events (such as 0.1% annual probability of flooding).			
	Local planning authorities should identify in their Strategic Flood Risk Assessments areas of functional floodplain and its boundaries accordingly, in agreement with the Environment Agency. (Not separately distinguished from Zone 3a on the Flood Map)			

The EA Flood Map for Planning (Figure 6) indicates the site is in Flood Zone 1.

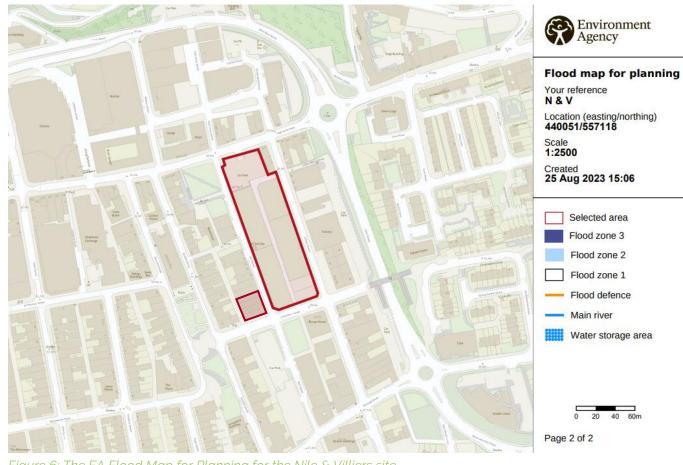


Figure 6: The EA Flood Map for Planning for the Nile & Villiers site

Flood risk vulnerability and Flood Zone compatibility

Annex 3 of the NPPF defines the type and nature of different development classifications in the context of their flood risk vulnerability. The information in Annex 3 was extracted and is presented in Table 2.

Table 2: Flood risk vulnerability classification

Classification	Des	cription
	٠	Essential transport infrastructure (includi cross the area at risk.
Essential infrastructure	٠	Essential utility infrastructure which has operational reasons, including infrastruc generation, storage and distribution syst stations, grid and primary substations sto to remain operational in times of flood.
	•	Wind turbines.
	٠	Solar farms.

Nile & Villiers Flood Risk Assessment & Drainage Strategy

ding mass evacuation routes) which has to

to be located in a flood risk area for cture for electricity supply including stems; including electricity generating power torage; and water treatment works that need

Classification	Description
Highly vulnerable	 Police and ambulance stations; fire stations and command centres; telecommunications installations required to be operational during flooding. Emergency dispersal points. Basement dwellings. Caravans, mobile homes and park homes intended for permanent residential use. Installations requiring hazardous substances consent. (Where there is a demonstrable need to locate such installations for bulk storage of materials with port or other similar facilities, or such installations with energy infrastructure or carbon capture and storage installations, that require coastal or water-side locations, or need to be located in other high flood risk areas, in these instances the facilities should be classified as 'Essential Infrastructure'.)
More vulnerable	 Hospitals Residential institutions such as residential care homes, children's homes, social services homes, prisons, and hostels. Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs, and hotels. Non-residential uses for health services, nurseries, and educational establishments. Landfill* and sites used for waste management facilities for hazardous waste. Sites used for holiday or short-let caravans and camping, subject to a specific warning and evacuation plan.
Less vulnerable	 Police, ambulance, and fire stations which are not required to be operational during flooding. Buildings used for shops; financial, professional, and other services; restaurants, cafes, and hot food takeaways; offices; general industry, storage, and distribution; non-residential institutions not included in the 'more vulnerable' class; and assembly and leisure. Land and buildings used for agriculture and forestry. Waste treatment (except landfill' and hazardous waste facilities). Minerals working and processing (except for sand and gravel working). Water treatment works which do not need to remain operational during times of flood. Sewage treatment works, if adequate measures to control pollution and manage sewage during flooding events are in place. Car parks.

Classification
Water- compatible development

The flood risk vulnerability and flood zone 'incompatibility', extracted from the PPG (flood risk and coastal change, Table 2) is presented below, in Table 3.

Flood Zones	Essential Infrastructure	Highly Vulnerable	More Vulnerable	Less Vulnerable	Water Compatible
Zone 1	1	1	J	1	1
Zone 2	J	Exception Test Required	7	1	7
Zone 3a 	Exception Test Required 	x	Exception Test Required	1	J
Zone 3b (functional floodplain) *	Exception Test Required [*]	x	x	x	√ [*]

"+" In Flood Zone 3a essential infrastructure should be designed and constructed to remain operational and safe in times of flood.

"*" In Flood Zone 3b (functional floodplain) essential infrastructure that has passed the Exception Test, and water-compatible uses, should be designed and constructed to:

- remain operational and safe for users in times of flood;
- result in no net loss of floodplain storage;
- not impede water flows and not increase flood risk elsewhere.

mping stations. oumping stations.

- dockside fish processing and refrigeration erside location.
- ing accommodation).
- and biodiversity, outdoor sports and changing rooms.
- accommodation for staff required by uses in ng and evacuation plan.

The proposals for the development of the site are likely to fall within more than one flood risk vulnerability category, summarised in Table 4 below.

Classification	Description
More vulnerable	Buildings used for dwelling houses, student halls of residence, drinking establishments, nightclubs, and hotels.
Less vulnerable	Buildings used for shops; financial, professional, and other services; restaurants, cafes, and hot food takeaways; offices; general industry, storage, and distribution; non-residential institutions not included in the 'more vulnerable' class; and assembly and leisure.

Table A: Site specific flood risk vulnerability classification

'More vulnerable' and 'less vulnerable' development in Flood Zone 1 does not require an Exception Test.

4.2 Flood risk assessments: climate change allowances (EA, 2022)

The site lies within the Wear Management Catchment, as defined by the Department for Environment Food and Rural Affairs (Defra) Climate Change Allowances Map. Table 5 shows the anticipated increases in rainfall intensity over time, for this catchment, for the 3.3% and 1% annual exceedance rainfall events.

Table 5: Irwell Management Catchment peak rainfall climate change allowances

3.3% annual exceedance rainfall event							
Epoch Central allowance Upper end allowance							
2050s	20%	35%					
2070s	30% 40%						
	1% annual exceedance rainfall event						
2050s	25%	40%					
2070s	30%	45%					

*Use '2050s' for development with a lifetime up 2060 and use the 2070s epoch for development with a lifetime between 2061 and 2125.

**Source: https://environment.data.gov.uk/hydrology/climate-change-allowances/rainfall

The EA guidance provides advice on using the peak rainfall intensity allowances to assess surface water flood risk, as quoted below:

'Use the development lifetime guidance to work out the lifetime of your development. You should consider residential development to have a minimum lifetime of a 100 years.

Development with a lifetime beyond 2100:

This includes development proposed in applications or local plan allocations.

For flood risk assessments and strategic flood risk assessments assess the upper end allowances. You must do this for both the 1% and 3.3% annual exceedance probability events for the 2070s epoch (2061 to 2125).

Design your development so that for the upper end allowance in the 1% annual exceedance probability event:

- there is no increase in flood risk elsewhere.
- your development will be safe from surface water flooding.

The proposed development includes residential and is therefore considered to have a minimum lifetime of 100 years, meaning the 2070s epoch applies. To comply with the previously stated guidance, the surface water drainage system will be designed based on a 45% climate change allowance to the 1% annual exceedance rainfall event and designed to ensure there is no increase in flood risk elsewhere and the development is safe from surface water flooding.

4.3 Sunderland City Council Core Strategy and Development Plan 2015 – 2033

Policy WWE2 – Flood risk and coastal management

- 1) To reduce flood risk and ensure appropriate coastal management, development:
 - i) should follow the sequential approach to determining the suitability of land for development, directing new development to areas at the lowest risk of flooding and where necessary applying the exception test, as outlined in national planning policy;
 - ii) will be required to demonstrate, where necessary, through an appropriate Flood Risk Assessment (FRA) that development will not increase flood risk on site or elsewhere, and if possible, reduce the risk of flooding;
 - iii) will be required to include or contribute to flood mitigation, compensation and/or protection measures, where necessary, to manage flood risk associated with or caused by the development;
 - iv) should comply with the Water Framework Directive by contributing to the Northumbria River Basin Management Plan;
 - v) will maintain linear coastal flood defences north from Hendon Sea Wall to Seaburn, and managed coastal retreat on the Heritage Coast and north of Seaburn;
 - vi) which would adversely affect the quantity of surface or groundwater flow or ability to abstract water must demonstrate that no significant adverse impact would occur, or mitigation can be put in place to minimise this impact; and
 - vii) of additional river flood defences must demonstrate that the proposal represents the most sustainable response to a particular threat

Policy WWE3 – Water Management

Development must consider the effect on flood risk, on-site and off-site, commensurate with the scale and impact. Development must:

1. be accompanied by a Flood Risk Assessment (where appropriate), to demonstrate that the development, including the access, will be safe, without increasing or exacerbating flood risk elsewhere and where possible will reduce flood risk overall;

- 2. demonstrate that they pass the Sequential Test and if necessary the Exceptions Test in Flood Zones 2 and 3;
- 3. discharge at greenfield run-off rates for the 1 in 1 and 1 in 100 flood events plus the relevant climate change allowance for greenfield and brownfield sites in accordance with the latest Local Flood Risk Management Strategy;
- 4. incorporate a Sustainable Drainage System (SuDS) to manage surface water drainage. Where SuDS are provided, arrangements must be put in place for their whole life management and maintenance;
- 5. separate, minimise and control surface water run-off by discharging in the following order:
 - i. to an infiltration or soak away system;
 - ii. to a watercourse (open or closed);
 - iii. to a surface water sewer.

However, if sites are within 250m of a tidal estuary or the sea, surface water can be discharged directly;

- 6. ensure adequate protection where sites may be susceptible to over land flood flows (as shown in the Strategic Flood Risk Assessment) or lie within a Surface Water Risk Area (as shown on the Environment Agency flood maps);
- 7. incorporate allowance for climate change in accordance with the latest Environment Agency Guidance;
- 8. make developer contributions, where needed, to ensure that the drainage infrastructure can cope with the capacity needed to support proposed new development;
- 9. demonstrate control of the quality of surface water run-off during construction and for the lifetime of the development. For all developments the management of water should be an intrinsic part of the overall development; and
- 10. not have a detrimental impact on the city's water resources, including the Magnesian Limestone aquifer and its ground source protection zones. Development along the River Wear and coast should take account of the Northumbria River Basin Management Plan, to deliver continuing improvements in water quality.

Policy WWE4 – Water Quality

The quantity and quality of surface and groundwater bodies and quality of bathing water shall be protected and where possible enhanced in accordance with the Northumbria River Basin Management Plan.

- 1) Water quality assessments will be required for:
 - i) any physical modifications to a watercourse; and
 - ii) any development which could indirectly, adversely affect water bodies.
- 2) Development that discharges water into a watercourse will be required to incorporate appropriate water pollution control measures.
- 3) Development that incorporates infiltration based SuDS will be required to incorporate appropriate water pollution control measures.
- 4) Development adjacent to, over or in, a main river or ordinary watercourse should consider opportunities to improve the river environment and water quality by:
 - i) naturalising watercourse channels;

- ii) improving the biodiversity and ecological connectivity of watercourses;
- iii) safeguarding and enlarging river buffers with appropriate habitat; and
- iv) mitigating diffuse agricultural and urban pollution.

connectivity of watercourses; vith appropriate habitat; and ollution.

5. Critical Drainage Areas

As shown in Figure 8, the Sunderland City Council SFRA identifies the region that the Nile and Villiers site is in as not a critical drainage area.

6. Source Protection Zones (SPZ)

The source protection zone map (Figure 7), shared by the LLFA (see Appendix D) shows the Nile and Villiers site is within Source Protection Zone III (total catchment).

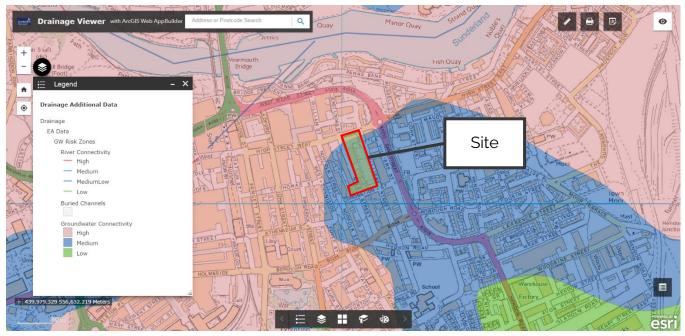


Figure 7: Source Protection Zones

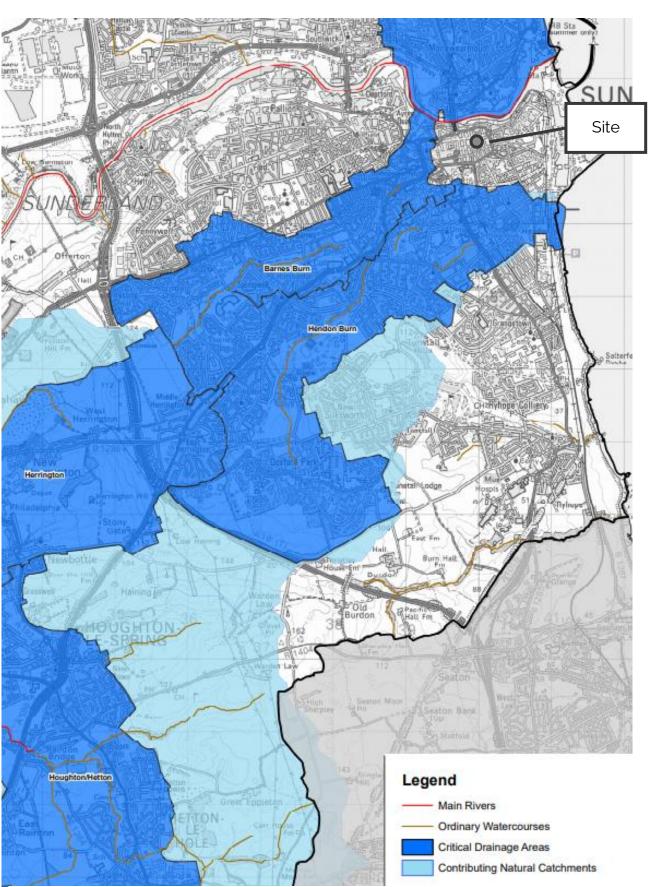
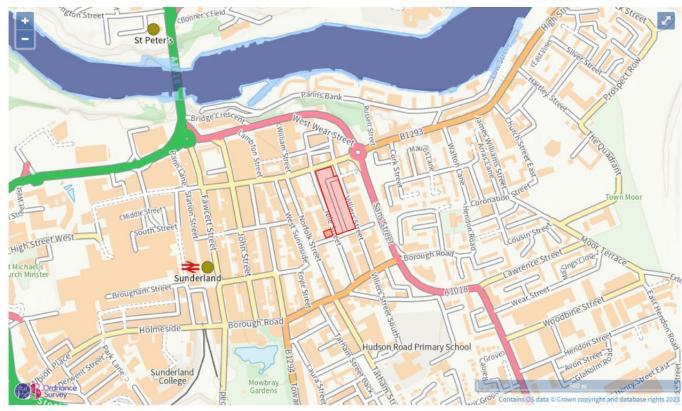


Figure 8: The Sunderland City Council critical drainage area map

7. Hydrological Assessment


7.1 Flooding History

There is no record of flooding within the Historic Flood Map published by the Environment Agency which has recorded major flood data since records began in 1946.

The LLFA has confirmed there have been no flood incidents recorded within the site or within 100m of the site.

7.2 Fluvial Flood Risk

The EA Flood Risk from Rivers or the Sea map (Figure 9) indicates the site is at very low risk from fluvial flooding, meaning there is less than 0.1% chance of flooding from the rivers or sea each year. The site is therefore considered to be at very low risk of fluvial flooding.

Extent of flooding from rivers or the sea

High Medium Low Very Low Cocation you selected

Figure 9: The EA Flood Risk from Rivers or the Sea map

7.3 Surface water flood risk

The EA flood risk from surface water map (Figure 10) shows that the site is at very low risk of flooding from surface water, meaning there is less than 0.1% chance of flooding from surface water each year.

At the northern boundary of the site, on High Street West, there is an area of low risk of surface water flooding., This is assumed to be a result of the converging northern and southern road catchments at High Street West, where the surface levels drop to ~27 -28mAOD.

Temporary ponding of surface runoff in roads is to be expected after heavy rainfall, especially in localised low spots within the wider topography. The flood maps indicate the section of High Street West adjacent to the site as having a low risk of surface flooding below 300mm depth and show the area to be contained within the highway. Ground levels continue to fall steeply to the east along High Street West and as such, any build-up of surface water flows along the road channel without impacting or restricting access to the site.

Overall, the site is considered to be at very low risk of surface water flooding.

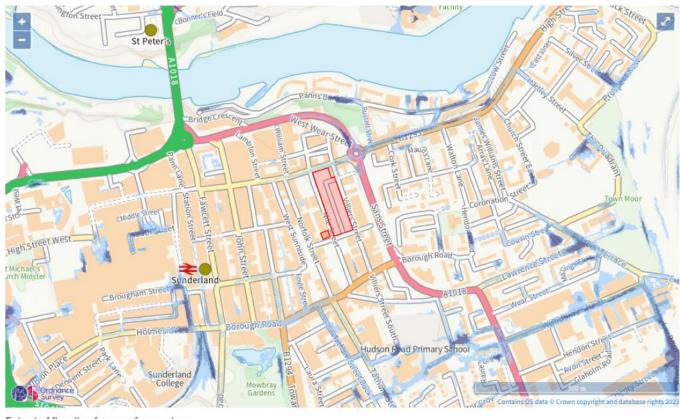



Figure 10: The EA flood risk from surface water map

7.4 Tidal Flood Risk

The site is located approximately 1.3km from the North Sea and sits approximately 30m above sea level. The site is considered to be at very low risk from tidal flooding.

7.5 Reservoir Flood Risk

The EA flood risk from reservoirs map (Figure 11) shows the site lies outside of the predicted maximum extent of flooding from reservoir failure and is therefore considered to be at no significant risk of flooding from reservoirs.

Maximum extent of flooding from reservoirs:

🔵 when river levels are normal 🥢 when there is also flooding from rivers 🕀 Location you selected

Figure 11: The EA flood risk from reservoirs

7.6 Groundwater Flood Risk

The Sunderland City Council (SCC) SFRA (2010) states 'There is not a significant risk of groundwater flooding in Sunderland but it should not be dismissed as a possibility and the FRA should consider the potential mechanisms that could affect the development site, as outlined in Volume II.' The Sunderland City Council SFRA (2017) states '...there are no known groundwater flooding problems [in the River Wear Catchment].'

The SCC SFRA also includes information on the risk of groundwater emergence. Based on the EA's national dataset, Areas Susceptible to Groundwater Flooding (AStGWF), the site has a less than 25% risk of groundwater emergence. The dataset is a low-resolution map based on hydrogeological conditions and does not consider site specific information.

From the BGS GeoIndex Onshore borehole logs, the presence of groundwater is not found in depths up to 10m.

The site is considered to have a very low risk of groundwater flooding.

7.7 Public sewer flooding, highway drainage flooding and infrastructure failure

The Lead Local Flood Authority (LLFA) for the Nile and Villiers site confirmed that there has been no record of flooding within 100m of the site.

Northumbrian Water (NWL), the water and sewerage service provider for Sunderland, have confirmed that there have been no flooding incidents due to hydraulic issues (e.g., capacity) within proximity to the site. Whilst NWL could confirm historic flooding events due to hydraulic issues, they hold no record of flooding due to infrastructure failure or blockages.

Flood maps from the SCC SFRA (2010) indicate two outstanding highway drainage problems nearby the site location. The LLFA have confirmed these dots have been placed in the incorrect location and can be ignored (refer to correspondence in Appendix D).

The site is therefore considered to have a very low risk of flooding from public sewers, highway drainage or infrastructure failure.

7.8 Summary of Flood Risk

A summary of the flood risk to the site is shown in Table 6, based on the evidence collated and assessment provided in section 7. Overall flood risk to the site is very low.

Table 6: Summary of flood risk					
Source of flooding	Risk to the site				
River	Very low				
Surface water	Very low				
Sea	Very low				
Reservoir	Insignificant				
Groundwater	Very low				
Infrastructure	Very low				

8. Proposed Surface Water Drainage Strategy

8.1 Point of Discharge

The NPPF PPG – Flood risk and coastal change, specifies the following hierarchy of drainage options for the discharge of surface water:

- *1. into the ground (infiltration);*
- *2.* to a surface water body;
- 3. to a surface water sewer, highway drain, or another drainage system;
- 4. to a combined sewer."

An appraisal of each option of the discharge hierarchy follows.

Infiltration based systems.

The LLFA has confirmed that due to the site being located within a Source Protection Zone and area of medium-high groundwater connectivity, infiltration will not be permitted, and all proposed SuDS features shall be lined. Refer to the LLFA correspondence in Appendix D.

Surface waterbody

The closest waterbody to the site is the River Wear, which is located approximately 245m north of the site, as shown in section 3.3. As the site is located in a dense urban environment, requisitioning a new sewer system to the river would require crossing of both public land and several privately held third party sites. There is a large level difference of approximately 20m between the site and river so any sewer route would need to travel over 600m to avoid existing retaining walls (along Panns Bank) and would also need to cross the A1018.

As such, connecting to a water body is not feasible.

Surface water sewer

As shown in the Northumbrian Water (NWL) sewer records in Appendix A, there are no surface water sewers located in the vicinity of the site.

Combined sewer

A connection to the public combined sewer is required to dispose of surface water runoff from the site.

New connections will be made via existing manholes and re-using existing outfall pipes to the combined sewer network, where feasible. A total of 4no. drainage outfalls are required, as indicated in Figure 12. A pre-planning enquiry has been submitted to NWL to confirm their sewer network has the capacity to receive flows from the development.

Figure 12: Indicative outfall locations

Discharge location summary

Table 7: Summary of Point of Discharge Suitability

Point of discharge	Suitability
Ground	Х
Waterbody	Х
Surface water sewer	Х
Combined sewer	1
√ suitable × unsuitable	

8.2 Site areas

The overall site area is approximately 0.810ha.

For the existing site, 0.295ha is impermeable (the road, car parks and 19-21 Nile Street) and 0.515ha is laid to lawn.

The proposed site has a positively drained catchment area of approximately 0.70ha, which comprises the new building rooftops, external hardstanding areas and the proposed SuDS features (which are positively drained). The remaining 0.11ha is free-draining soft landscaping/private gardens.

The site areas are summarised in Table 8: Site areas

Table 8: Site areas

Site Areas							
Site	Impermeable	Total					
Existing	0.515ha	0.295ha	0.810ha				
Proposed	0.100ha	0.700ha	0.010114				

8.3 Existing run-off rates

Existing run-off rates for the site have been estimated using Causeway Flow+ software.

The calculations of brownfield run-off, from the existing impermeable areas, are based on the Modified Rational Method (MRM), outlined below:

Q = (2.78 CV Cr | A)

where

Cr is the routing coefficient = 1.3

Cv is the runoff coefficient = 1

I is the average rainfall intensity (mm/hr) for the storm of duration equal to the time of concentration for the network and is generated within the software.

A is impermeable area in ha.

2.78 is a conversion factor.

The existing road and car parks discharge unrestricted and directly to external drains, so a time of concentration (for the network) of 15 minutes was used for the brownfield calculations. For the 15 minute 1 in 1 year storm event, the average rainfall intensity, I = 23.8mm/hr.

The calculations for the existing greenfield run-off are based on the FEH method using the Hydrology of Soil Type (HOST) value for the site, which is 24, as stated within the Soil Site Report from Cranfield University (see Appendix E).

The existing run-off rates are summarised in Table 9. The Causeway Flow+ outputs are available in Appendix F.

Table 9: Existing Runoff Rates

Existing runoff rates							
Area (ha)	Brownfield/greenfield	1 in 1-year event	1 in 30-year event	1 in 100-year event			
0.295	0.295 Brownfield		70.0 l/s	90.3 l/s			
0.515	Greenfield	1.5 l/s	3.3 l/s	4.3 l/s			
0.81	Combined	30.1 l/s	73.3 l/s	94.6 l/s			

8.4 Surface Water Rates, Attenuation & Sustainable Drainage Systems (SuDS) SuDS and attenuation

Externally, the SuDS features proposed include rainwater butts, linear rain gardens to the front and rear of the terraces, permeable paving, two soft landscaped SuDS amenity basins within the communal gardens and one urban SuDS basin within the northern courtyard.

Much of the attenuation for the site is provided within free-from-fines aggregate (with 30%) voids) beneath the permeable paving, rain gardens and SuDS basins, as well as geocellular below ground storage. During heavier rainfall events the network can surcharge, with additional attenuation volumes being provided above, within the SuDS basins.

As the basins are also designed for amenity, side slopes are limited to 1 in 5 and a low flow channel is provided to contain flows from the 1 in 1 year storm event. The SuDS amenity basins are 0.5m deep and the urban SuDS basin is 0.65m deep. All basins are designed with 150mm freeboard and a max water level 300mm below adjacent finished floor levels.

Overflows from the raingardens will be provided in the form of either gullies to the underdrain or surface overflows to the adjacent SuDS basins.

The different SuDS proposed for the site are illustrated in Figure 13 and a breakdown of the attenuation volumes is included in Table 10. Additional detail is provided on the Surface Water Drainage Layout plan in Appendix G and the Landscape Masterplan in Appendix K. Some of the sketches produced during the development process for the SuDS proposals are included within Appendix L.

Figure 13: SuDS features

Table 10: Breakdown of attenuation volumes

	Above ground attenuation		Below ground attenuation			Total		
SuDS feature	Depth excl. freeboard (m)	Area (m²)	Volume excl. freeboard (m³)	Depth (m)	Voids %	Area (m²)	Volume (m³)	attenuation volume (m³)
Rain gardens	0.15-0.2	855	Not designed for surcharge	0.3	30	855	77	77
SuDS Basins (soft)	0.35	274	96	0.3	30	72	6.5	102.5
SuDS Basin (urban)	0.5	98	49	0.3	30	100	9	58
Permeable paving	n/a	n/a	n/a	0.3	30	1144	103	103
Geocellular storage	n/a	n/a	n/a	1.2	95	229	261	261
Total volume						601.5		

Water quantity & discharge

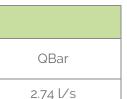
Surface water discharge from the site is restricted targeting the QBar greenfield runoff rate, which is calculated as 2.74 l/s as shown in Appendix H and summarised in Table 11.

Table 11: Greenfield runoff rates

Greenfield runoff rate (l/s)						
1 in 1-year event	1 in 30-year event	1 in 100-year event				
2.35 l/s	4.79 l/s	5.69 l/s				

In line with the NE LLFA Sustainable Drainage Local Standards, flows will be restricted at the 4no. outfall locations utilising a 50mm orifice flow control (refer to correspondence with the LLFA in Appendix D). This means the target peak discharge rate of 2.74 l/s (QBar) is not achievable, however, a significant betterment to existing runoff has been achieved as outlined in Table 12.

Table 12: Runoff betterment achieved for each storm event.


	Surface water discharge rate (L/s)				
	1 in 1-year event	1 in 30-year event	1 in 100-year event +45% CC*		
Existing site	30.1 l/s	73.3 l/s	94.6 l/s		
Proposed site	9.3 l/s	13.7 l/s	21.7 l/s		
Betterment on existing	69%	81%	77%		

*No climate change allowance within the existing runoff.

As shown, the surface water discharge rates from the proposed site represent a 69% betterment in the 1 in 1-year event, 81% for the 1 in 30-year event and 77% betterment for the 1 in 100-year event plus 45% climate change.

A pre-planning enquiry has been submitted to Northumbrian Water relating to the proposed discharge and their response is awaited.

Approximately 600m³ of attenuation is designed to accommodate the 1 in 100-year plus 45% climate change rainfall event. 10% additional allowance has been added to the hydraulic model for urban creep. The hydraulic calculations, developed using Causeway Flow software, can be viewed in Appendix I.

Water Quality

The CIRIA SuDS Manual provides a simple index approach to design drainage systems that offer an appropriate level of pollution risk management. Step 1 is to allocate suitable pollution hazard indices for the proposed land use. The pollution hazard indices applicable to the site are shown in Table 13.

Table 13: CIRIA Pollution hazard indices for different land use classifications

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very Low	0.2	0.2	0.05
Individual property driveways, residential car parks, low traffic roads, car parks with infrequent change	Low	0.5	0.4	0.4

Step 2 is to determine SuDS pollution mitigation indices. It is proposed to have permeable paving on the new access road and car park. Table 14 provides the mitigation indices applicable to the site.

Table 14: CIRIA indicative SuDS mitigation indices for discharge to surface waters

	Mitigation indices				
ype of SuDS component	Total suspended solids (TSS)	Metals	Hydro- carbons		
Permeable Pavement	0.7	0.6	0.7		
Detention Basin	0.5	0.5	0.6		
Bioretention system	0.8	0.8	0.8		

As stated within the SuDS Manual, to provide adequate treatment, the SuDS components should have a total pollution mitigation index (for each contaminant type) that equals or exceeds the pollution hazard index (for each contaminant type).

All sub-catchments within the site will discharge to a SuDS feature. Every SuDS feature proposed will, on its own, fulfil the criteria shown below (see values presented in Table 13 and Table 14) and will be deemed sufficient to manage pollution risk:

Total SuDS mitigation index ≥ Pollution hazard index

It is to be noted that permeable paving provides pollution control and has been shown to reduce concentrations of contaminants such as oil, heavy metals, and sediments. Water quality treatment is provided to the surface water runoff through the following methods as detailed in the CIRIA 753 SuDS manual (CIRIA, 2015):

• Filtration – silt and attached pollutants become trapped within the top 30mm of the jointing material between blocks or porous surfacing i.e., asphalt, resin bound gravel, reinforced grass paving.

- Biodegradation chemical dissolution of organic contaminants such as oil, petrol and diesel by bacteria, fungi or other biological means within the pavement layers.
- Adsorption adhesion of contaminant particles to sand and gravel material surfaces within the pavement build-up. Dependent on factors such as aggregate type, structure, texture and moisture content.
- Settlement retention of solid contaminants.

Furthermore, a geotextile membrane that encourage the growth of a microbic biofilm that degrades hydrocarbons (oil) will be incorporated within the construction build-up.

Bioretention systems provide water quality treatment to the surface water runoff through the following methods:

- Filtration surface vegetation and groundcover trap sediment and associated pollutants. Fine particulates and contaminates removed by infiltration through the underlying filter medium layers.
- Sorption dissolved pollutions removed by sorption of pollutants to the filter medium.

Detention basins reduce the contaminant load via volumetric control by retaining runoff from small events on site. They treat residual runoff through gravitational settling of particulate pollutants.

8.5 Sustainable Drainage Systems (SuDS) & water quality

The SuDS Manual CIRIA report C753 states that 'surface water run-off should be managed for maximum benefit.' The types of benefits that can be achieved by Sustainable Drainage Systems (SuDS) can be put into four categories, the four pillars of SuDS: water quantity, water quality, amenity, and biodiversity. Table 15 presents what benefits are likely to be provided by different SuDS features.

Table 15: SuDS Likely Benefits

	SuDS Feature	Water quantity	Water quality	Amenity	Biodiversity
Most Benefits	Living roofs	\checkmark	\checkmark	\checkmark	\checkmark
1	Infiltrations systems	\checkmark		\checkmark	\checkmark
	Dry planted features – Swales, bio retentions areas, trees, detention basins	\checkmark		\checkmark	\checkmark
	Ponds and wetlands	\checkmark		\checkmark	\checkmark
	Pervious & reservoir pavements	\checkmark	\checkmark		
	Filter strips	\checkmark			
	Filter drains	\checkmark	\checkmark		
¥	Proprietary treatment systems				
Least Benefits	Attenuation storage tanks	\checkmark			

Table 16 shows what SuDS techniques are proposed to manage surface water on-site. These features are being designed in collaboration with the design team to control water quantity, improve water quality, provide amenity, and promote biodiversity.

Table 16 Summary of SuDS Techniques Proposed

SuDS Technique	Proposed?	Comment
Living roofs	N	Not considered suitable for this project.
Infiltration systems	N	The LLFA has advised infiltration is not permitted due to the groundwater connectivity and Source Protection Status of the site.
Dry planted features	Y	SuDS amenity basins and rain gardens.
Open water features	N	There are no suitable external areas for open water features as these spaces are used for the basins with storage beneath and hence need to be free draining.
Pervious & reservoir pavements	Y	Pervious and reservoir pavements are proposed for the external hardstanding areas.
Attenuation storage tanks	Y	Attenuation tank beneath northern SuDS basin.

9. SuDS management & maintenance

9.1 SuDS – Normal function

SuDS generally mimic the natural drainage patterns of the undeveloped site allowing infiltration into the ground/attenuation, improving water quality and controlling outflow rates from the development. This reduces the impact and risk of flooding on downstream developments alongside providing additional benefits such as pollution control, increasing biodiversity and providing water-based amenity.

The sustainable drainage systems proposed for the site are as listed below:

- SuDS amenity basins;
- Urban basin;
- Permeable pavement;
- Rain Gardens:
- Water butts (rainwater harvesting).

In short, these drainage features will provide:

- a platform to capture surface water,
- a medium to attenuate, filter and treat surface water,
- and a means of conveying surface water.

9.2 Operation & maintenance requirements

The maintenance regime of the SuDS on site can be divided into three categories: regular maintenance, occasional tasks and remedial works. The frequency of regular maintenance will usually be monthly, the occasional tasks and remedial works should be conducted as required. Specific maintenance needs of the SuDS should be monitored, and maintenance schedules adjusted to suit requirements.

Appendix J contains a schedule providing guidance on the type of operational and maintenance requirements that may be appropriate, based on the CIRIA C753 SuDS Manual.

The activities listed are generic to the relative SuDS types and represent the minimum maintenance and inspection requirements, however additional tasks or varied maintenance frequency may be instructed by the maintenance company as required

All those responsible for maintenance should follow the relevant Health and Safety legislation for all the activities listed including lone working, if relevant, and risk assessments should always be undertaken.

Inspection checks shall be carried out by a gualified and competent person, at the minimum intervals listed within the schedules and the appropriate work carried out.

Any parties involved with the disposal of any waste materials from the underground drainage system should hold appropriate management licenses to undertake any such activities. Disposal of any site materials is required to be made in accordance with current legislation and guidance.

The maintenance strategy for specific SuDS proposed at the site will be dependent upon the products used within the installation of the systems and is therefore subject to manufacturer's guidance.

9.3 Construction phase drainage measures & prohibited activities

The below measures should be implemented by the principal contractor during the construction phase to ensure the protection of drainage systems and management of runoff and pollutants during the construction phase:

- Installation and protection of the geo-cellular storage tanks in accordance with the manufacturer's specifications.
- The installation of free-draining aggregate subbase for permeable pavements shall be immediately followed by the installation of a geotextile separating membrane and, where feasible, the laying course and finished surfacing.
- The storage of materials directly onto permeable pavements shall be prohibited. Where storage of materials is unavoidable an impermeable separating membrane shall be laid onto the pavement surface first to prevent silting or contamination of the permeable pavement layers.
- Any fuel, substances or generators that pose a risk of pollution shall be properly stored within containment bunds.

Additional measures may be required and shall be agreed with the contractor prior to mobilisation on site.

9.4 End of life maintenance

As part of their normal function, many SuDS features are intended to act as a repository for potential pollutants such as sediment, hydrocarbons and heavy metals, thus improving the water quality of run-off. Certain pollutants, such as hydrocarbons, can be broken down via biodegradation. However, other pollutants, namely the particulate or sediment type, such as heavy metals, remain trapped within elements of the sustainable drainage feature.

Current evidence does not conclude to what extent pollution entrapment within SuDS will occur or the likely status of materials within their construction at the time of their disposal. For these reasons, it is proposed that at end-of-life, all SuDS are disposed of in accordance with the relevant rules, regulations, and available guidance at the time. If required, at redevelopment stage, consultation with the Environment Agency should be sought and testing of materials and ground, for contamination, should be carried out.

Proposed Foul Drainage Strategy 10.

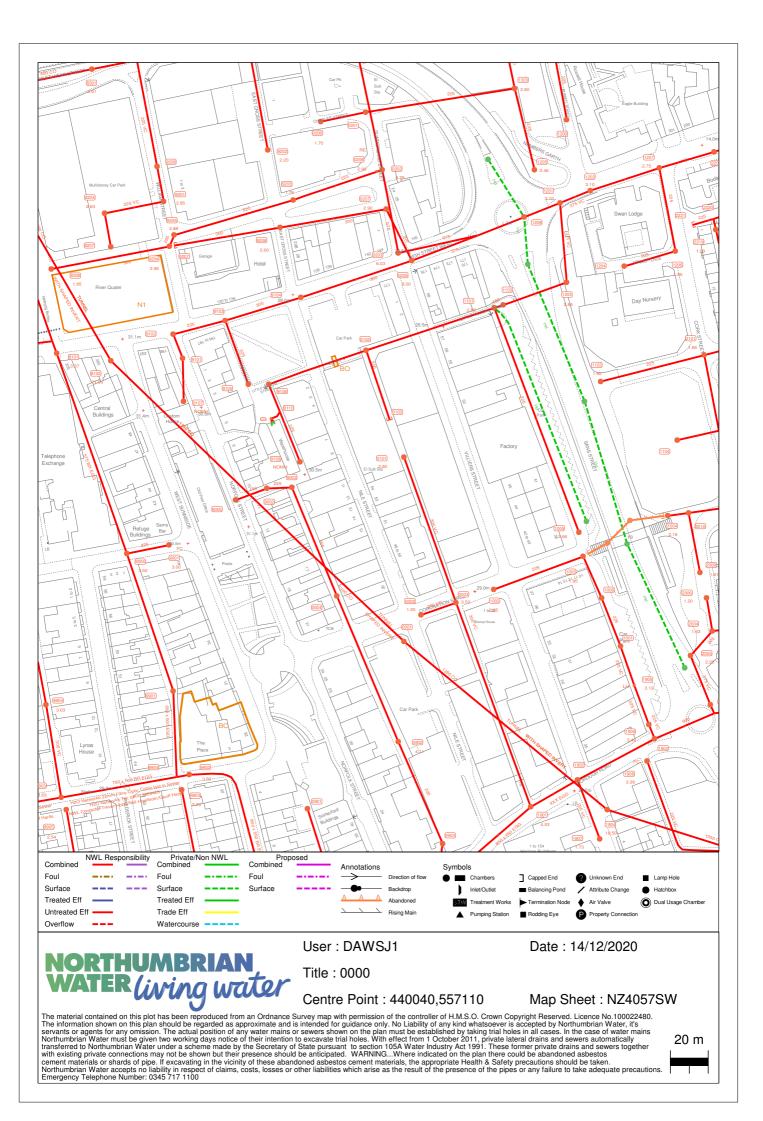
Foul water collected from the development will be discharged to the existing NWL combined sewer network running within and surrounding the site. A pre-planning enquiry has been submitted to NWL to confirm their network has the capacity for the anticipated peak foul water discharges.

11. Existing drainage alterations

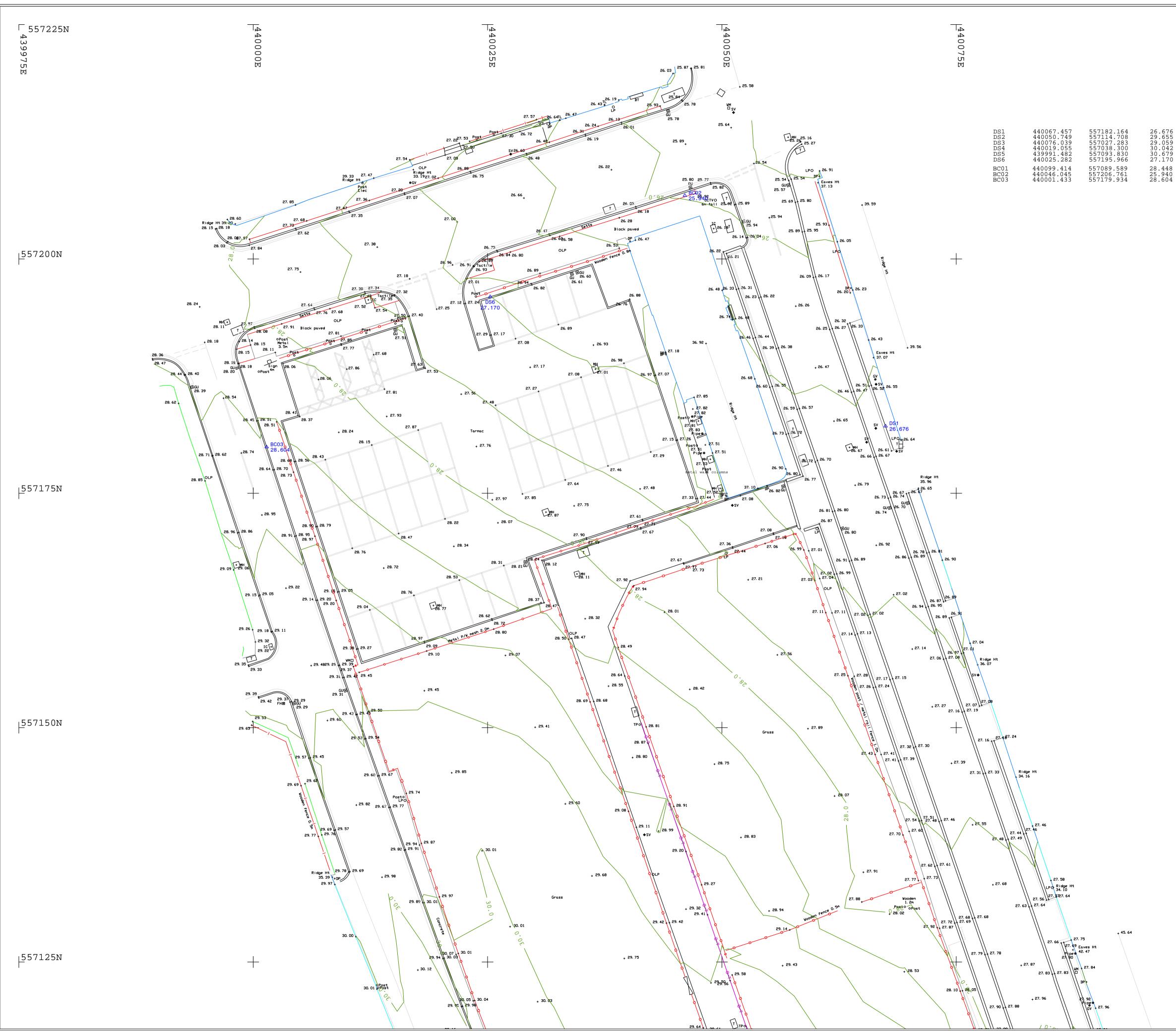
There are several existing combined water sewers running through the site. As part of the proposed development some of these sewers, which are redundant, will be removed. Sewers serving offsite catchments will be retained where feasible or diverted otherwise. An application will be made to NWL at the appropriate time.

The existing sewer records from NWL are shown in Appendix A.

12.Conclusions


The site is located in Flood Zone 1 and the proposed development is appropriate for this flood zone.

The FRA has also demonstrated that the proposed development is at very low or insignificant risk from flooding from all sources. The proposed surface water drainage strategy reduces the flood risk from surface water to the site and downstream areas by significantly reducing runoff from the site and the discharge rate to the public sewer.


In line with national and local guidance/policy, surface water will be managed using a variety of sustainable drainage systems, including rain gardens, water butts, basins and permeable pavements, providing a significant improvement to the quality of runoff from site as well as amenity, biodiversity and other benefits.

The SuDS features are providing a total of 601.5m³ of effective storage and restricting the peak discharge rate to 21.7 L/s for the 1-in-100-year + 45% CC event, yielding a 77% betterment on the existing surface water discharge rates. The required attenuation volume has been calculated using the Causeway Flow software, to ensure there is no flooding to habitable spaces or escape routes for up to the 1 in 100-year storm event +45% allowance.

Appendix A: Northumbrian Water (NWL) Sewer Records

Appendix B: Topographical Survey

<u>|</u>4401 -00E

+

+

+

+

Legend Boundary Type and Description C/B Close Board C/L Chain Link Misc. _____K/R _____ Knee Rail _____O/B Open Board Pal Palisade -/---- Metal Railings M/R Pick Picket P/R Post & Rail _____ P/W Post & Wire W/M Wire Mesh _____ Brick Brick Wall Brick Ret. Brick Retaining Wall Stone Stone Wall Stone Ret. Stone Retaining Wall Block Block Wall Misc Misc. Wall Gate \triangleright Vegetation $\langle - \times - \rangle$ Hedge Edge of Hedge _____ Edge of Canopy (\bullet) Tree and Trunk Stump () ^{Bush} Bush Verge General Utility Linestyles Drainage Combined ____CD___ Drainage Foul —FD——— Drainage Surface Drainage Unidentified O/Head Combined ____O^C____ O/Head Electric -----O ^ E------O/Head Lines ——O ⁄ T—— O/Head Telecom General Survey Abbreviations GVGas ValveHPHand PitIBOIlluminated BollardICInspection CoverILInvert LevelKOKerb OutletLPLampostLTLightMHManholeMkrMarkerPOSTPost (General)PBPost BoxRERodding EyeRSRoad SignStayCable StaySVStop ValveTLTraffic LightTFRTaken From RecordsTPTelecom PoleTVCable TVUTGAUnable to Gain AccessUTLUnable to SurveyUTTUnable to SurveyUTTUnable to SurveyWLWater LevelWSWindow Sample General Survey AbbreviatiAVAir ValveBHBorehole CollarBXBox (General)BX/EBox (Elec)BX/GBox (Gas)BX/TBox (Telecom)BX/WBox (Water)BMBenchmarkBOBollardBSBus StopBinBinBTTelecom CoverCCTVAir ValveCLCover LevelDKDropkerbDPDownpipeDP/GDownpipe/GullyECElectric CoverEOREnd of RecordsEOSEnd of SurveyEOTEnd of TraceEPElectric PoleEREarth RodFHFire HydrantFLFloor Level FL Floor Level FP Flag Pole GP Gate Post G Girder GU Gully WS Window Sample Measured Survey Abbreviations AC Air Conditioning AH Access Hatch AP Access Panel SCH Structural Ceiling Height SKY Sky Light W Window Height BH Beam Height C Cill Height DH Door Height FCH False Ceiling Height FL Floor Level Ht. Height (General) RD Radiator Layout Key (1) (2) CO-ORDINATES AND ELEVATIONS ARE SET BY GNSS AT STATION DS1. CO-ORDINATES ARE TO OS NATIONAL GRID USING OSTN15 TRANSFORMATION LEVELS ARE TO ORDNANCE DATUM USING OSGM15 GEOID MODEL. THE REMAINDER OF THE SURVEY IS TO SCALE FACTOR 1 PLANE GRID. This drawing is the property of Landform Surveys Ltd. Copyright is reserved by them and the drawing is issued on the condition that it is not copied either wholly or in part without the consent of Landform Surveys Ltd. Accuracies are commensurate with the stated scale of the survey RICS
 A
 HM
 11/09/23
 Additional survey detail added

 rev
 by
 date
 notes
 EH check Landform Surveys professional surveying solutions Suite 18, YBN, Delta Bank Road, Gateshead. NE11 9DJ Tel: 0191 2765636 e: office@landform-surveys.co.uk www.landform-surveys.co.uk TOWN. Nile Street, Sunderland, SR1 1EY **Topographic Survey** drawn HM date 25/08/23 drawing no checked MR date 25/08/23 J342-001 1/200@A1

<u>|</u>557025N

<u>ן557050</u>א

<u>|</u>557075N

<u>|</u>557100N

+ 30.47

30. 47 大

30. 43

△ DS5 30.679

. 20 51

+ 30.34

T

30. 30 🛓

30. 26 🛓

30. 23 🛓

30. 19 QDR

30. 38 🛓

+ 30. 29

+ 30. 23

Brick wall 2.5m

MH(+) 30. 20

+ 30.10

T

30. 12

4 30. 19

+ 30. 04

30. 07

30. 1

29. 91

T

29, 99 🚺 29, 99

(€29. 94

• DP **□** WM

29. 99 🕇

+ 29, 93

+ 29. 93

+ 29. 91

29. 89

29. 97 + LPO TP

⊞GU 29.85

Block paved

29. 92

29. 92 29. 94

+ 29. 96 2

+ 29.78 ₩M□

LRO 30. 32

MH + 30. 29

+ 30.16

+ 30. 41

30. 21 🛓

29. 98 oPost

30. 17 🕌 30. 08

30. 14 Ridge Ht 30, 16 30. 06 35. 39 30. 19 t

30, 08 🙀 30, 1 30. 18 \ 30. 09

30, 08 + 30. 24 30. 07 30. 1 30, 20 + + Ridge Ht 30, 21 36, 01 30, 23 +

30, 00 4 30, 06

30, 04 🖳 30, 06

30. 23 🙀 30. 24

IC(+

30. 08 30LPD

+ 30. 22

Tarmac 30, 11 🙀 30, 08

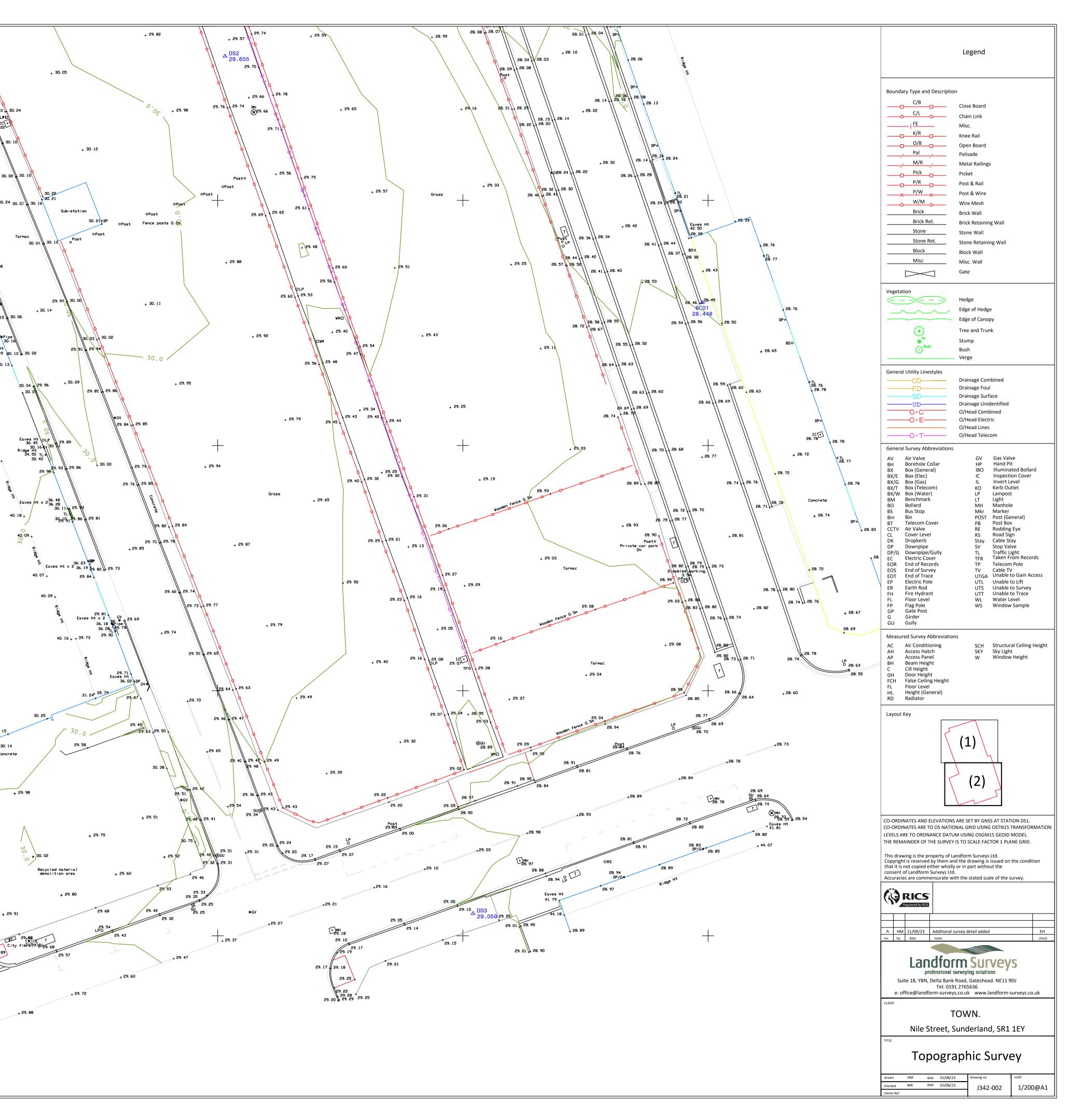
+

40. 15 ₊

40. 18 +

+ 30. 14

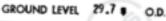
Concrete

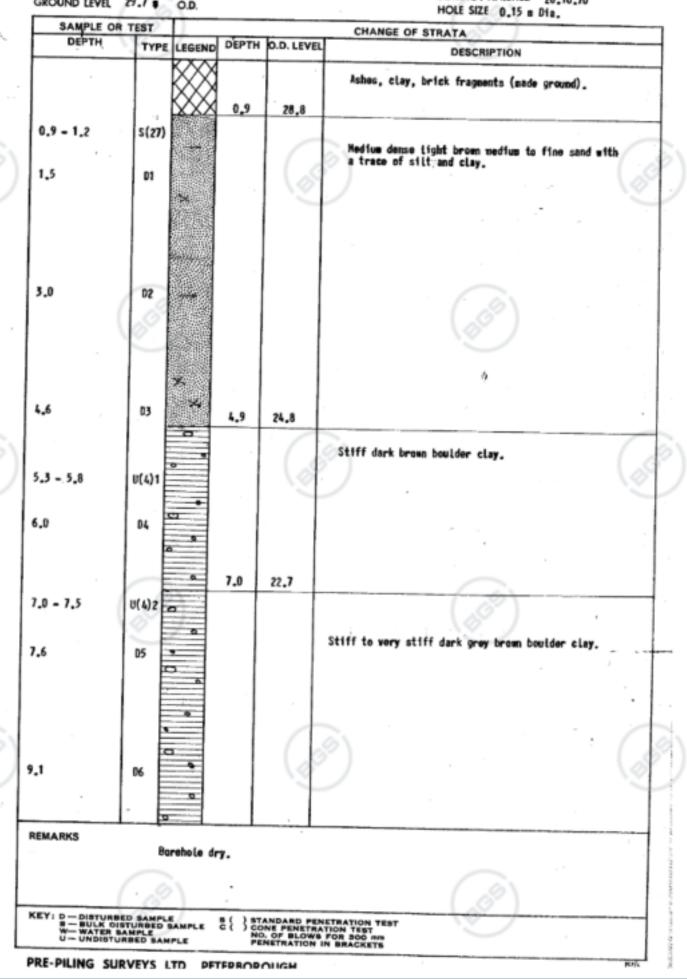

+ 29. 98

30. 04 🙀 3 30. 15 30. 12 30. 06

Ridge Ht + 36.01 @Pipe 30.16

Ridge Ht 34. 49 - 20, 10 - 30, 02

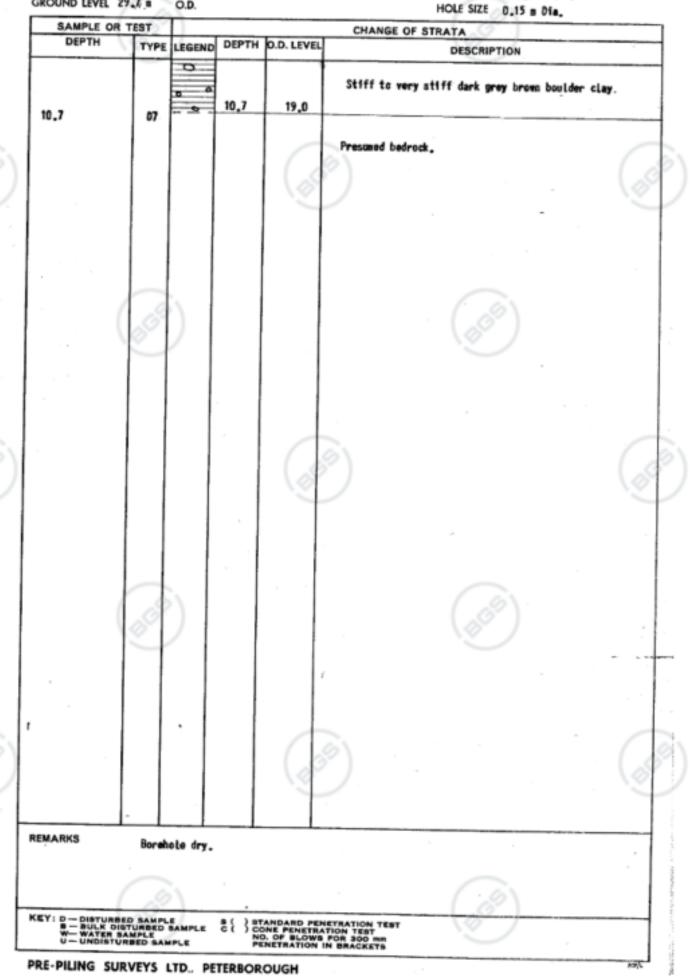

30. 13

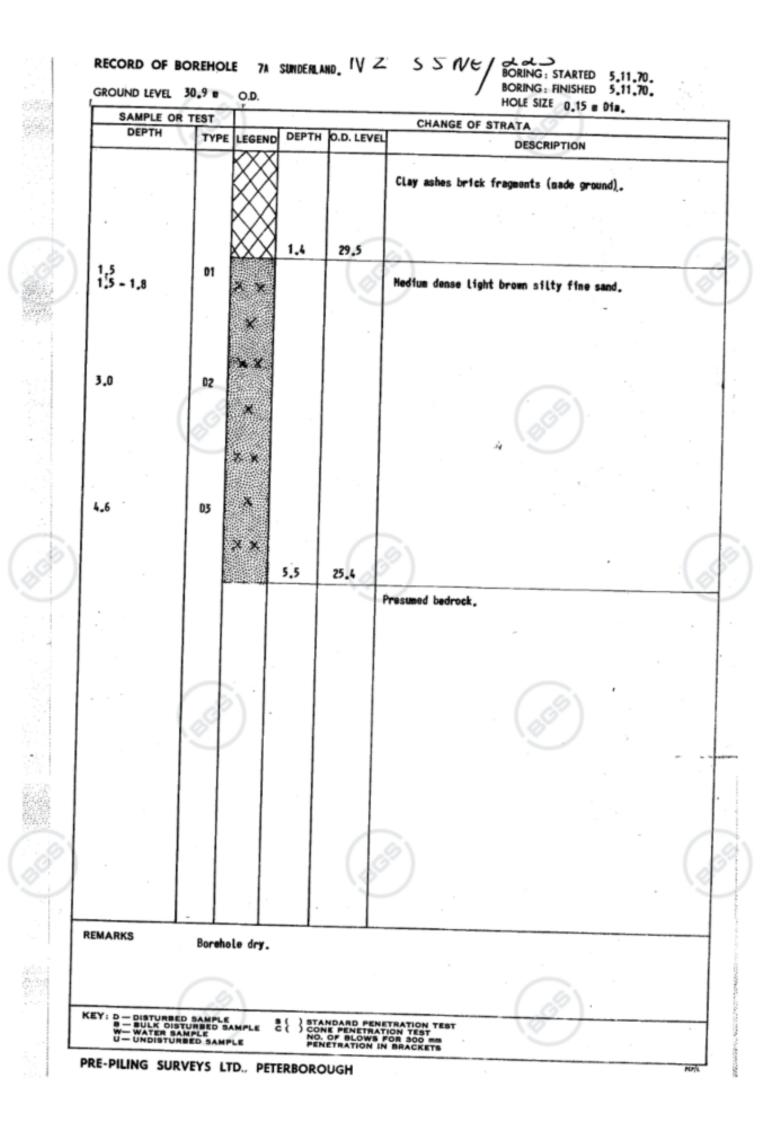

Appendix C: BGS historical borehole logs

1124511116

BORING : STARTED 26.10.70 BORING : FINISHED 26,10,70

RECORD OF BOREHOLE 7 SUNDERLAND




RECORD OF BOREHOLE 7 (cont), SUNDERLAND,

BORING: STARTED 26.10.70 BORING: FINISHED 26,10,70

GROUND LEVEL 29.7 = O.D.

8-8-0

Appendix D: LLFA Correspondence

Oliver Dodd

From:	Juliet Brown <juliet.brown@sunderland.gov.uk></juliet.brown@sunderland.gov.uk>
Sent:	31 August 2023 16:48
То:	Oliver Dodd
Subject:	RE: Planning Reference 23/00314/P1

Filed by Newforma

Hi Oliver,

Categories:

No worries.

Yes, as the site is within an SPZ and has Medium-High GW Connectivity we would not allow any infiltration and the system would need to be wrapped. There are very few areas of Sunderland where we would allow infiltration, given the geology.

Thank you,

Juliet Brown Flood and Coastal Engineer | Flooding & Coastal

Sunderland City Council City Hall Plater Way Sunderland SR1 3AA

Email: Juliet.brown@sunderland.gov.uk

A Please consider the environment before printing this email

From: Oliver Dodd <oliver.dodd@civicengineers.com> Sent: Thursday, August 31, 2023 3:11 PM To: Juliet Brown <Juliet.Brown@sunderland.gov.uk> Subject: RE: Planning Reference 23/00314/P1

Hi Juliet,

Thank you very much for sharing.

We will base our design for planning on no infiltration.

One final (I hope) question: is the medium-high groundwater connectivity a complete blocker for allowing infiltration?

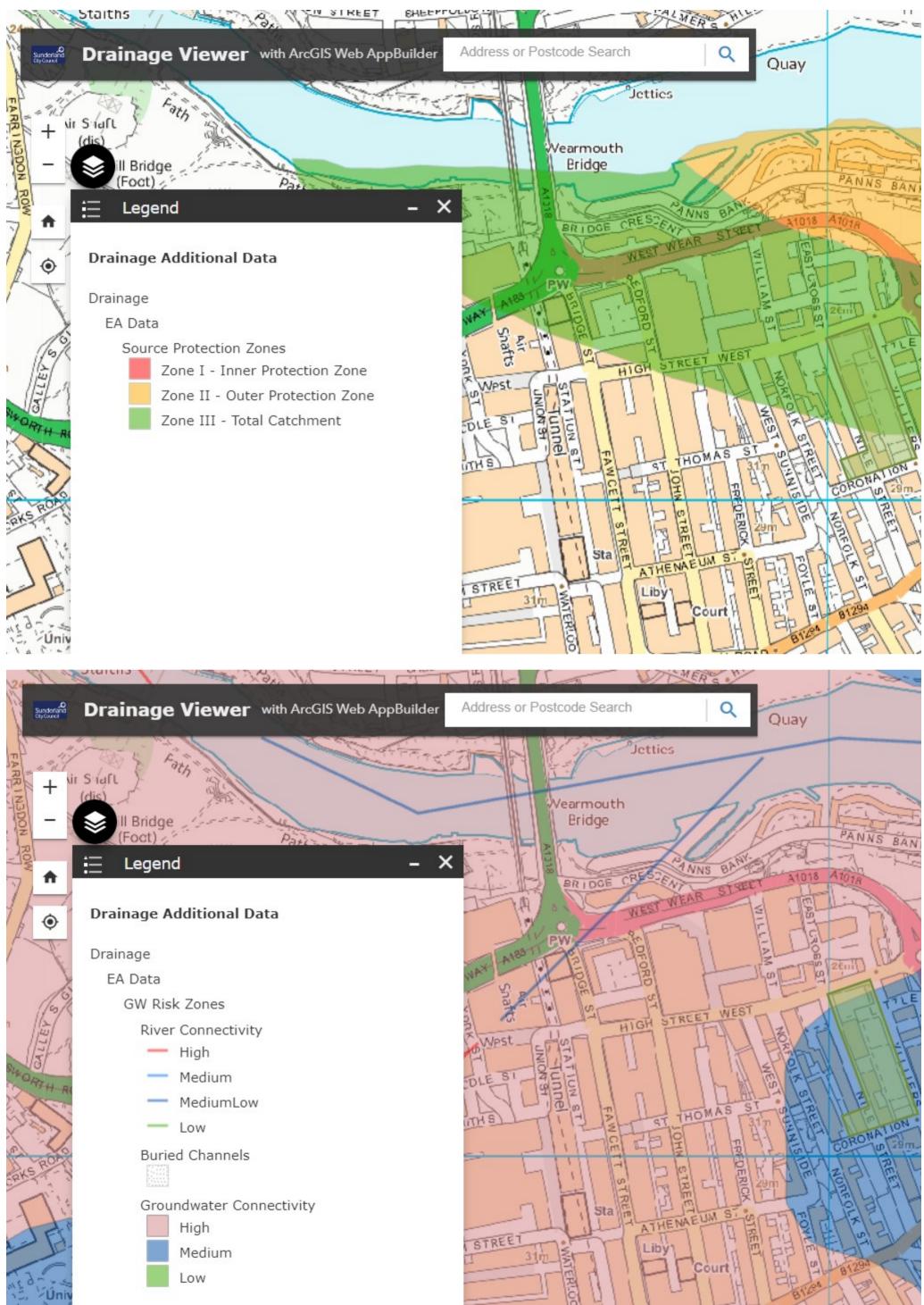
I only ask because we are carrying out site investigations (results not expected until after planning submission) and if the ground conditions are favourable, it would be good to incorporate infiltration or at least remove the requirement for membranes beneath all SuDS features. I don't think being in SPZ3 alone would prevent infiltration, if rates are good and groundwater levels low enough. We could also limit infiltration to the medium groundwater connectivity areas of site.

Kind regards, Oliver

Oliver Dodd (he/him) Principal Engineer

DDI: 020 7253 2977 Mobile: 07401564648

×


Please do not print this email unless it is necessary. Every unprinted email helps the environment.

Civic Engineers is a trading name of Civic Engineers Limited (registered number 06824088) which is a limited company registered in England and Wales. Registered address Carver's Warehouse, 77 Dale Street, Manchester, M1 2HG. For email disclaimer, please click here

From: Juliet Brown <<u>Juliet.Brown@sunderland.gov.uk</u>> Sent: Wednesday, August 30, 2023 10:39 AM To: Oliver Dodd <<u>oliver.dodd@civicengineers.com</u>> Subject: RE: Planning Reference 23/00314/P1

Hi Oliver,

See below screenshots of our information, at present I am unable to share the full dataset with you.

The runoff arrangement sounds good to me, hopefully you'll be able to have just two outfalls and discharge at the QBar rate.

Thank you,

Juliet Brown Flood and Coastal Engineer | Flooding & Coastal

Sunderland City Council City Hall Plater Way Sunderland SR1 3AA

Email: Juliet.brown@sunderland.gov.uk

A Please consider the environment before printing this email

From: Oliver Dodd <<u>oliver.dodd@civicengineers.com</u>>
Sent: Tuesday, August 29, 2023 4:36 PM
To: Juliet Brown <<u>Juliet.Brown@sunderland.gov.uk</u>>; LLFA <<u>LLFA@sunderland.gov.uk</u>>
Cc: Dominique Pitman <<u>dominique@civicengineers.com</u>>
Subject: RE: Planning Reference 23/00314/P1

Hi Juliet,

Thank you very much for the clarification and information provided.

For points 5 and 6 are you able to provide, or lead me to, the information provided by the EA (to which you refer)?

The Defra magic map shows the site in an area of medium Groundwater Vulnerability and not within any Source Protection Zone. The site is also not within a Drinking Water Safeguard Zone (Groundwater).

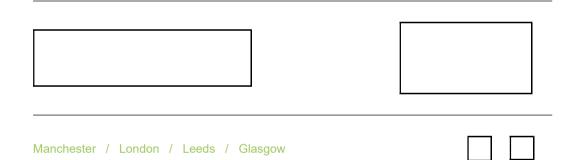
The Groundwater Vulnerability map indicates the site is within an area with 'Local Information' and 'Soluble Rock Risk'. Are these the reason for the higher classification of medium-high risk you stated?

Also, regarding point 7; we have calculated the greenfield runoff rate, which is 3.24 l/s, see attached. Based on the site layout and levels, and assuming infiltration is not possible, we are anticipating three or more (hopefully not) surface water outfalls. I note the requirement for a 50mm minimum orifice size on flow controls places a constraint on the achievable minimum outflow from site. The flow from a 50mm hydrobrake vortex flow control device is approx. 1.5 l/s, meaning with two outfalls we could achieve 3.24 l/s, however, with three or more outfalls we will be exceeding this target. Please can you confirm my understanding is correct and acceptable?

Many thanks for your feedback so far. Happy to have a quick call if that's easier, and you have the time.

See extracts below:

Groundwater vulnerability:


SPZs:

Kind regards, Oliver

Oliver Dodd (he/him) Principal Engineer

DDI: 020 7253 2977 Mobile: 07401564648

Please do not print this email unless it is necessary. Every unprinted email helps the environment.

Civic Engineers is a trading name of Civic Engineers Limited (registered number 06824088) which is a limited company registered in England and Wales. Registered address Carver's Warehouse, 77 Dale Street, Manchester, M1 2HG. For email disclaimer, please click here

From: Juliet Brown <<u>Juliet.Brown@sunderland.gov.uk</u>>

Sent: Tuesday, August 29, 2023 2:17 PM

To: Oliver Dodd <<u>oliver.dodd@civicengineers.com</u>>; LLFA <<u>LLFA@sunderland.gov.uk</u>> Cc: Felix Spiers <<u>felix.spiers@civicengineers.com</u>>; Dominique Pitman <<u>dominique@civicengineers.com</u>>; Subject: RE: Planning Reference 23/00314/P1

Some people who received this message don't often get email from juliet.brown@sunderland.gov.uk. Learn why this is important

Hi Oliver,

Please see my responses in red below and all relevant information attached.

Let me know if you need anything else.

Thank you,

Juliet Brown

Flood and Coastal Engineer | Flooding & Coastal

Sunderland City Council City Hall Plater Way Sunderland SR1 3AA Email: Juliet.brown@sunderland.gov.uk

🛃 Please consider the environment before printing this email

From: Oliver Dodd <<u>oliver.dodd@civicengineers.com</u>> Sent: Monday, August 21, 2023 6:09 PM To: Juliet Brown <Juliet.Brown@sunderland.gov.uk>; LLFA <LLFA@sunderland.gov.uk> Cc: Felix Spiers < felix.spiers@civicengineers.com >; Dominique Pitman < dominique@civicengineers.com >; Subject: FW: Planning Reference 23/00314/P1

This message originates from outside your organisation. Do not provide login or password details. Do not click on links or attachments unless you are sure of their authenticity. If in doubt review the guidance at Report Phishing

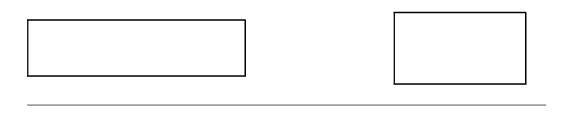
Dear Juliet,

Just to introduce myself, I am working for Civic Engineers (who are appointed to TOWN) looking at the flood risk and drainage design for the Nile and Villiers project.

We have some questions relating to your comments on the pre-app which we are hoping you can help clarify. I have listed these in blue against your comments in the email below.

As agreed with your colleague Phil Smith, we will be using the following design criteria for the surface water drainage design:

- Discharge restricted to QBar.
- Minimum (protected) orifice size of 50mm for flow controls (this may impact the minimum achievable discharge rate).
- 45% allowance for climate change.
- CV values of 0.84 for winter and 0.75 for summer.


I note the requirement for a 10% allowance for urban creep also.

Thanks in advance.

Kind regards, Oliver

Oliver Dodd (he/him) **Principal Engineer**

020 7253 2977 DDI: Mobile: 07401564648

Manchester / London / Leeds / Glasgow

Please do not print this email unless it is necessary. Every unprinted email helps the environment.

Civic Engineers is a trading name of Civic Engineers Limited (registered number 06824088) which is a limited company registered in England and Wales. Registered address Carver's Warehouse, 77 Dale Street, Manchester, M1 2HG. For email disclaimer, please click here

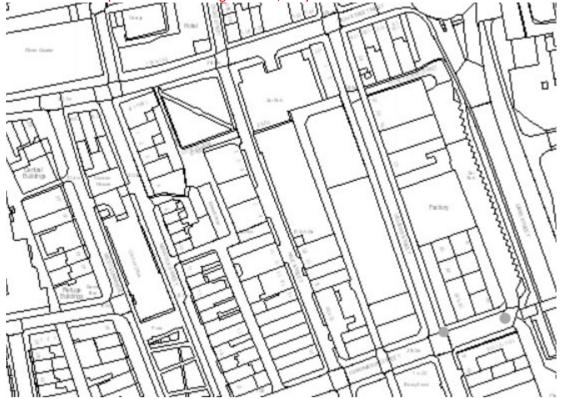
From: Juliet Brown <<u>Juliet.Brown@sunderland.gov.uk</u>> Sent: 23 March 2023 15:52 To: DC < DC@sunderland.gov.uk > Cc: LLFA <LLFA@sunderland.gov.uk>

Subject: Planning Reference 23/00314/P1

Hello,

With regard to Planning Reference 23/00314/P1 and in relation to flood risk and drainage I have the following comments.

In accordance with Sunderland City Council (SCC) validation checklist (see part 15) a Flood Risk Assessment and Drainage Strategy should be submitted with any major application, and minerals and waste applications. The 7 North East Lead Local Flood Authorities (LLFA) have new developer guidance on SuDS and a proforma on Sustainable Drainage (see Local Standards attached). The developer should use this guidance to develop site design and aid submission of appropriate details with the LLFA in line with the approved Local Flood Risk Management Strategy.


- 1. There is no drainage information supplied, so I'm only able to comment broadly.
- 2. The proposed development is located within Flood Zone 1 and the site is not at risk of surface water flooding.
- 3. There is a <25% risk of groundwater flooding.

Please can you share the 2017 version of the SFRA including appendices? I can't find it online (only a draft without the appendices). Based on the topography and nearby borehole records we are not anticipating there to be any significant risk of groundwater flooding. See Attached. This classification comes from information provided by the EA.

4. There are no records of flooding incidents within 100m of the site.

Is this for all types of flooding? We will quote this fact directly unless it is based on information available within the SFRA or LFRMS reports? My colleague emailed last week with a query related to 'outstanding drainage problems' shown on drawing number 2009s0243-SCC-C1 which is an appendix of the 2010 SFRA available on the SCC website. Figure 4-2 of the 2011 Prelim FRA (available on the national archives) shows two SCC highway maintenance flooding incidents within the vicinity of the site, although, the scale of the drawing does not allow for a measurable distance to be obtained. We are assuming both figures refer to the same

problem/incident? Is there any further information available on that? I've just double checked and there have been no flood incidents recorded within the site or within 100m of the site. There are two historical records shown by the grey dots below, which correspond with both Figure 4-2 and 2009s0243-SCC-C1. However, these have been placed in the wrong location, they should be located on Coronation Crescent in Hetton instead. These two points can therefore be ignored.

- The hierarchy of discharge should be followed. Infiltration is not possible due to medium-high groundwater connectivity and therefore discharge to the River Wear is the preferred method, which is located approximately 235m north of the site.
 Please confirm where the medium-high groundwater connectivity classification comes from? This classification comes from information provided by the EA.
 To connect to the river we would need to requisition a sewer hundreds of metres long across public and private third party land, which is not feasible. Discharge to watercourse must be considered if the watercourse is less than 250m from the site. Sufficient reasoning must be given to prove this is not feasible (Policy WWE3).
- 6. The site is partially located within a source protection zone and fully located within the medium and high groundwater connectivity zones, so the drainage system must be wrapped.

The Defra magic maps show that the site is not located within a Source Protection Zone. Please can you confirm where this information is from? This information is provided by the EA and shows the site is partially located within the 'Zone III – Total Catchment' SPZ.

- 7. Greenfield run off rates should be applied, with appropriate storage up to and including the 1 in 100 year + 45% climate change allowance on the 360-minute storm event.
- 8. Green SUDS should be incorporated within the design.
- 9. Source control interception should be applied to the impermeable area, retaining the first 5mm of rainfall on site.

Sunderland City Council require sustainable drainage and source control for all major applications. For full application submissions the applicant should provide details of this sustainable drainage including plans, sections, water quality treatment and hydraulic modelling files (MDX etc.), in line with CIRIA c753 guidance. The drainage response template attached will be used to provide ongoing discussions in regards to documents submitted for approval. Early consideration should be given to the provision of source control-interception to ensure the first 5mm rainfall is retained on site (see Section 24.8 Interception in CIRIA c753). The applicant should also show how the site drainage will manage an extreme storm event. Sustainable drainage source control should include water quality treatment in line with the C753 simple indices method unless another method is more appropriate. The provision of green roofs is a priority on flat roofed buildings to provide interception and treatment and where water re-use through rainwater harvesting is possible it is promoted.

Provision should also be made for creating SUDS to benefit local ecology and amenity, be it linking green spaces, providing ponding water, selecting flowering plants, incorporating paths and seating areas and even in some cases considering places for habitat for some species. It may be possible to use SUDS to contribute to Biodiversity Net Gain using Defra metrics in consultation with the SCC ecology team.

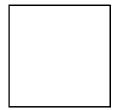
The applicant should review Policies WWE2-WWE4 (Flood risk and coastal management, Water management and water quality) in the Core Strategy Development Plan, the SCC Strategic Flood Risk Assessment (2017) and the Local Flood Risk Management Strategy (2016).

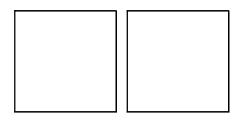
Please let me know if you have any further questions or queries.

Juliet Brown Flood and Coastal Engineer | Flooding & Coastal

Sunderland City Council City Hall Plater Way Sunderland SR1 3AA

🚓 Please consider the environment before printing this email





Confidentiality: this email and its attachments may contain confidential and privileged information. If you are not the intended recipient, please inform the sender by return email and destroy all copies. Unauthorised access, use, disclosure, storage or copying is not permitted.

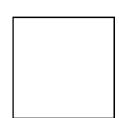
For information about how we collect, use, share and retain your personal data, visit: <u>https://www.sunderland.gov.uk/data-protection</u>. Any email including its content may be monitored and used by the Council for reasons of security and for monitoring internal compliance with policy. Email may also be disclosed in response to a request for information, unless exempt under access to information legislation. Please be aware that you have a responsibility to ensure that email you write or forward is within the bounds of the law.

The Council cannot guarantee that this message or any attachment is virus free or has not been intercepted and amended. You should perform your own virus checks.

Confidentiality: this email and its attachments may contain confidential and privileged information. If you are not the intended recipient, please inform the sender by return email and destroy all copies. Unauthorised access, use, disclosure, storage or copying is not permitted.

For information about how we collect, use, share and retain your personal data, visit: <u>https://www.sunderland.gov.uk/data-protection</u>. Any email including its content may be monitored and used by the Council for reasons of security and for monitoring internal compliance with policy. Email may also be disclosed in response to a request for information, unless exempt under access to information legislation. Please be aware that you have a responsibility to ensure that email you write or forward is within the bounds of the law.

The Council cannot guarantee that this message or any attachment is virus free or has not been intercepted and amended. You should perform your own virus checks.


Confidentiality: this email and its attachments may contain confidential and privileged information. If you are not the intended recipient, please inform the sender by return email and destroy all copies. Unauthorised access, use, disclosure, storage or copying is not permitted.

For information about how we collect, use, share and retain your personal data, visit: <u>https://www.sunderland.gov.uk/data-protection</u>. Any email including its content may be monitored and used by the Council for reasons of security and for monitoring internal compliance with policy. Email may also be disclosed in response to a request for information, unless exempt under access to information legislation. Please be aware that you have a responsibility to ensure that email you Wohnide for and used information. If you are not the

intended recipient, please inform the sender by return email and destroy all copies. Unauthorised access, use, disclosure, Jorageunciopying allography that this message or any attachment is virus free or has not been intercepted and amended. You should perform your own virus checks.

For information about how we collect, use, share and retain your personal data, visit: <u>https://www.sunderland.gov.uk/data-protection</u>. Any email including its content may be monitored and used by the Council for reasons of security and for monitoring internal compliance with policy. Email may also be disclosed in response to a request for information, unless exempt under access to information legislation. Please be aware that you have a responsibility to ensure that email you write or forward is within the bounds of the law.

The Council cannot guarantee that this message or any attachment is virus free or has not been intercepted and amended. You should perform your own virus checks.

7

Appendix E: Soil Site Report from Cranfield University

Nile & Villiers Flood Risk Assessment & Drainage Strategy

Soil Site Report

Extended Soil Report

Nile and Villiers

Easting: 440046 Northing: 557089 Site Area: 1km x 1km

Prepared for: Oliver Dodd, Civic Engineers Date: 23 Aug 2023

Citation

Citations to this report should be made as follows:

Cranfield University (2023) Soil site report, Extended Soil Report for location 440046E, 557089N, 1km x 1km, Cranfield University.

Produced using Soil Site Reporter

Disclaimer

The report, modules and risk maps have been prepared by Cranfield University for you, the client. Whilst every care has been taken by Cranfield University to ensure the accuracy and completeness of the reports, modules and risk maps, the client must recognise that as with any such items errors are possible through no fault of Cranfield University and as such the parties give no express or implied representations or warranty as to:

(i) the quality or fitness for any particular purpose of the report, modules or risk maps contained herein or of any design, workmanship, materials or parts used in connection therewith or correspondence with regard to any description or sample;

or

(ii) the accuracy, sufficiency or completeness of the report modules or risk maps provided herewith. In particular, there are hereby expressly excluded all conditions, warranties and other terms which might otherwise be implied (whether by common law, by statute or otherwise) as to any of the matters set out in paragraphs (i) and (ii) above.

Cranfield University, its employees, servants and agents shall accept no liability for any damage caused directly or indirectly by the use of any information contained herein and without prejudice to the generality of the foregoing, by any inaccuracies, defects or omissions in the report, modules or risk maps provided.

About this report

This Soil Site Report identifies and describes the properties and capacities of the soil at your specified location as recorded in the National Soil Map for England and Wales. It has been produced by Cranfield University's <u>National Soil Resources Institute</u>.

The National Soil Map represents the most accurate and comprehensive source of information about the soil at the national coverage in England and Wales. It maps the distribution of soil mapping units (termed soil associations) which are defined in terms of the main soil types (or soil series) that were recorded for each soil association during field soil survey. Each soil association is named after its principal soil series and these bear the location name from where they were first described (e.g. Windsor). Each of these soil associations have differing environmental characteristics (physical, chemical and biological) and it is by mapping these properties that the range of thematic maps in this report have been produced.

Soil types and properties vary locally, as well as at the landscape scale. It is not possible to identify precisely the soil conditions at a specific location without first making a site visit. We have therefore provided you with information about the range of soil types we have identified at and around your selected location. Schematic diagrams are also provided to aid accurate identification of the soil series at your site.

Whilst an eight-figure national grid reference should be accurate to within 100m, a single rural Postcode can cover a relatively large geographical area. Postcodes can therefore be a less precise basis for specifying a location. The maps indicate the bounded area the reports relate to.

Your Site Soil Report will enable you to:

- identify the soils most likely to be present at and immediately around your specified location;
- understand the patterns of soil variation around your location and how these correlate with changes in landscape;
- identify the nature and properties of each soil type present within the area;
- understand the relevant capacities and limitations of each of the soils and how these might impact on a range of factors such as surface water quality.

Provided that this Site Soil Report is not modified in any way, you may reproduce it for a thirdparty.

Table of Contents

1. Soil Thematic Maps

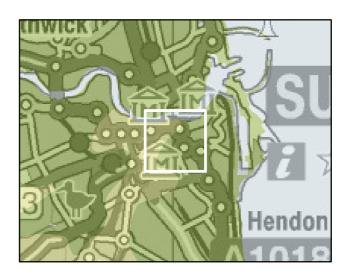
1a Soils - Spatial Distribution	2
1b Hydrology of Soil Type (HOST)	4
1c Ground Movement Potential	6
1d Flood Vulnerability	8
1e Risk of Corrosion to Ferrous Iron	10
1f Pesticide Leaching Risk	12
1g Pesticide Runoff Risk	14
1h Potential for Pesticide Adsorption	16
1i Hydrogeological Rock Type	18
1j Ground Water Protection Policy (GWPP)	20
1k Soil Parent Material	22
1I Expected Crops and Land Use	24
1m Natural Soil Fertility	26
1n Topsoil Texture	28
1o Typical Habitats	30
1p Organic Matter (%) in top 30cm	32
1q Susceptibility to Compaction	34
1r Susceptibility to Topsoil Slaking	36
1s Natural recovery of structure after compaction	38
1t Mechanical rectification of compaction	40
2. Soil Association Descriptions	42
DUNKESWICK (711p)	43
FOGGATHORPE 1 (712h)	45
3. Soil Series Properties	47
SOIL PROPERTY DEFINITIONS	48
7.13 BRICKFIELD (Br) (142)	49
7.11 DUNKESWICK (Dk) (321)	50
7.12 FOGGATHORPE (Fp) (506)	51
7.12 HALLSWORTH (Hk) (702)	52
4. Topsoil Element Background Levels	53
a. Analysis Within a 15km Radius (8 Sample Points)	55
b. Analysis Within a 50km Radius (142 Sample Points)	56
c. National Analysis (5686 Sample Points)	57
SOIL GUIDELINES VALUES (SGV)	58
ANALYSES DEFINITIONS	59
References	62

1. Soil Thematic Maps

This section contains a series of maps of the area surrounding your selected location, presenting a number of themes relating to the characteristics of the soils. These provide an overview of the nature and condition of the local soil conditions. It is these conditions that may be used to infer the response of an area to certain events (with the soil as a receptor), such as pollution contamination from a chemical spill, or an inappropriate pesticide application and the likelihood of these materials passing though the soil to groundwater. Other assessments provide an insight into the way a location may impact, by corrosive attack or ground movement, upon structures or assets within the ground, for example building or engineering foundations or pipes and street furniture.

Soil is a dynamic environment with many intersecting processes, chemical, physical and biological at play. Even soils 'sealed' over by concrete and bitumen are not completely dormant. The way soils respond to events and actions can vary considerably according to the properties of the soil as well as other related factors such as land-use, vegetation, topography and climate. There are many threats facing our national soil resource today and importance should be given to identifying the best measures aimed towards soil protection, ensuring the usage of soils in the most sustainable way. This report is therefore a useful snapshot of the soil properties for your given area, providing a summary of a broad range of ground conditions

Figure 1: Location of study area



440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Soils - Spatial Distribution Key

711p DUNKESWICK

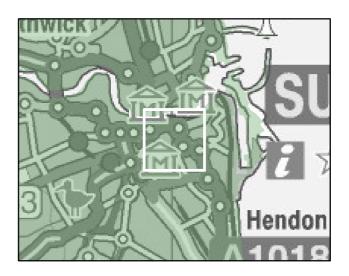
Slowly permeable seasonally waterlogged fine loamy and fine loamy over clayey soils

712h FOGGATHORPE 1

Slowly permeable seasonally waterlogged clayey and fine loamy over clayey soils, often stoneless.

SOIL ASSOCIATION DESCRIPTION

Soil associations represent a group of soil series (soil types) which are typically found occurring together, associated in the landscape (Avery, 1973; 1980; Clayden and Hollis, 1984). Soil associations may occur in many geographical locations around the country where the environmental conditions are comparable. For each of these soil associations, a collection of soil types (or soil series) are recorded together with their approximate proportions within the association. Soil associations have codes as well as textual names, thus code '554a' refers to the 'Frilford' association. Where a code is prefixed with 'U', the area is predominantly urbanised (e.g. 'U571v'). The soil associations for your location, as mapped above, are described in more detail in Section 2: Soil Association Descriptions.


1b Hydrology of Soil Type (HOST)

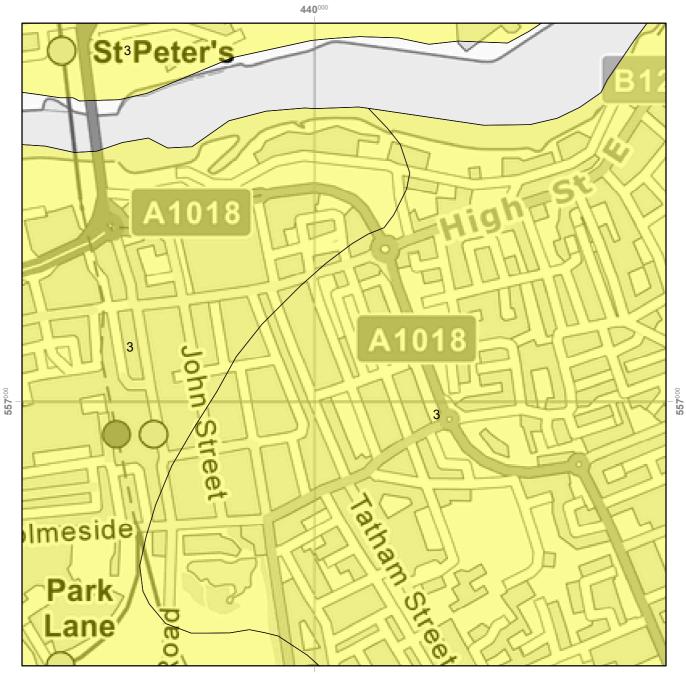
440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data © Crown Copyright and database right 2017

257000

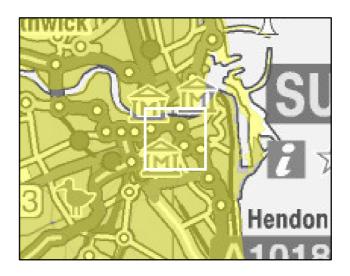
Hydrology of Soil Type (HOST) Key


24 Slowly permeable, seasonally waterlogged soils over slowly permeable substrates with negligible storage capacity

HOST CLASS DESCRIPTION

The Hydrology of Soil Types (HOST) classification describes the dominant pathways of water movement through the soil and, where appropriate, the underlying substrate. Eleven drainage models are defined according to the permeability of the soil and its substrate and the depth to a groundwater table, where one is present (Boorman et al,1995). These are further subdivided into 29 HOST classes to which all soil series have been assigned. These classes identify the way soil water flows are partitioned, with water passing over, laterally through, or vertically down the soil column. Analysis of the river hydrograph and the extent of soil series for several hundred gauged catchments allowed mean values for catchment hydrological variables to be identified for each HOST class, The HOST classification is widely used to predict river flows and the frequency and severity of flood events and also to model the behaviour of diffuse pollutants (Hollis et al, 1995).

1c Ground Movement Potential



440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data $\ensuremath{\mathbb{C}}$ Crown Copyright and database right 2017

Ground Movement Potential Key

3 Moderate

* If a High class is starred, a Very High ground movement potential is likely to be achieved if these soils are drained to an effective depth of at least two metres.

GROUND MOVEMENT POTENTIAL DESCRIPTION

Clay-related ground movement is the most widespread cause of foundation failure in the UK and is linked to seasonal swelling and shrinkage of the clay. The content of clay within the soils of your selected area has therefore a direct bearing upon the likelihood of ground movement.

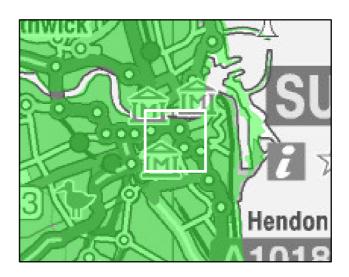
Among the inorganic particles that constitute the solid component of any soil, clay particles are the smallest and defined as being less than 0.002 mm - equivalent spherical diameter (esd) in size. Clay particles occur in most kinds of soil but they only begin to exert a predominant influence on the behaviour of the whole soil where there is more than 35 per cent (by weight) of clay-sized material present.

Because clay particles are very small and commonly platy in shape they have an immense surface area onto which water can be attracted, relative to the total volume of the soil material. In addition to surface attraction or inter-crystalline absorption of water, some clay minerals, those with three layers of atoms (most other kinds of clay have only two layers of atoms) are able to absorb and hold additional water between these layers. It is these types of clay mineral, which are widespread in British soils and commonly known as smectites that have the greatest capacity to shrink and swell.

In a natural undisturbed condition, the moisture content of deep subsoil clay does not change greatly through the year and consequently there are no changes in volume leading to shrinkage and swelling. However, when clays are exposed at or near the ground surface and especially when vegetation is rooting in them seasonal moisture and volume changes can be dramatic. Plants and trees transpire moisture from the soil to support their growth and transfer necessary nutrients into their structures. Surface evaporation also takes place from soil and plant structures, and the combination of evaporation from surfaces and transpiration by plants and trees is termed evapotranspiration. Thus, the layer of soil material down to 2m depth into which plants will root is critical when assessing the vulnerability of land to subsidence.

Whenever soil moisture is continuously being replenished by rainfall, the soil moisture reserves will be unaffected by the removal of moisture by plants as there is no net loss. However, in many parts of Britain, particularly in the south and east, summer rainfall is small and is exceeded by evapotranspiration. Water reserves are then not sufficiently replenished by rainfall and so a soil moisture deficit develops. The water removed from a clayey soil by evapotranspiration leads to a reduction in soil volume and the consequent shrinkage causes stress in the soil materials leading in turn to stress on building foundations that are resting in the soil (Hallett, et al, 1994).

The foundations themselves may then move and thus cause damage to building structures. This problem can be exacerbated by the fact that the soil beneath the structure may not dry out uniformly, so that any lateral pressure exerted on the building foundation is made effectively greater. This assessment identifies the likelihood of soil conditions being prone to ground movement given these other factors.

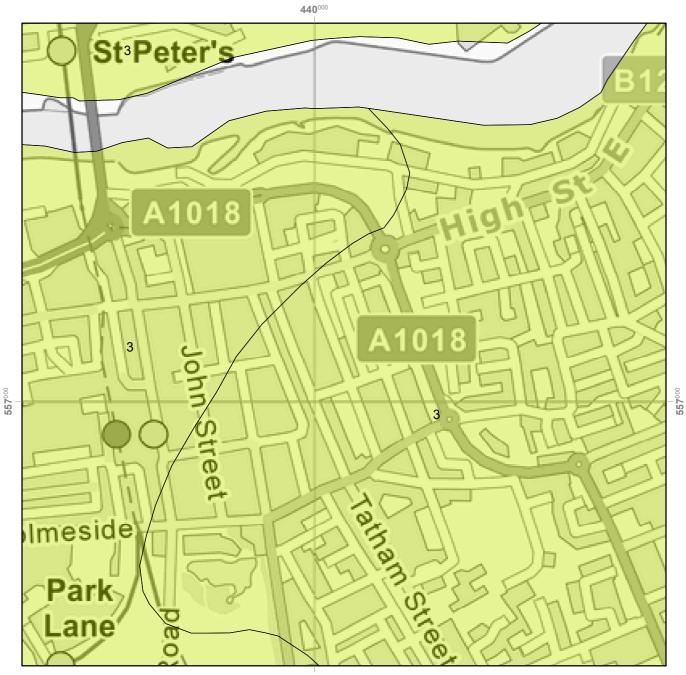

1d Flood Vulnerability

440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

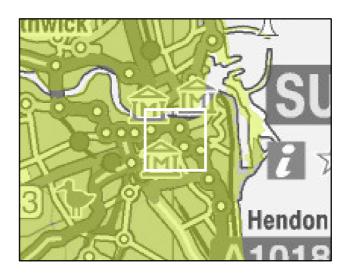
Flood Vulnerability Key

1 Minor risk


FLOOD VULNERABILITY DESCRIPTION

The inundation of properties by flood water can occur in a number of circumstances. Surface run-off can collect on low-lying land from upslope following heavy rainfall. More commonly rivers, lakes and/or the sea extend beyond their normal limits as a result of prolonged or intense rainfall, unusually high tides and/or extreme wind events. Water damage to properties and their contents is compounded by the deposition of sediment suspended in the flood waters. The spatial distribution of such waterborne sediment (or alluvium as defined in soil science) is one basis upon which land that has been subject to historical flooding can be mapped, and this forms a basis for present-day flooding risk assessment.

Both riverine and marine alluvium are identified as distinct soil parent materials within the British soil classifications. Combining soil map units that are dominated by soil series developed in alluvium across Great Britain identifies most of the land that is vulnerable to flooding. This assessment does not account for man-made flood defence measures, showing instead the areas where once water has stood.


1e Risk of Corrosion to Ferrous Iron

440000

Soils Data $\ensuremath{\mathbb{C}}$ Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data $\ensuremath{\mathbb{C}}$ Crown Copyright and database right 2017

Risk of Corrosion to Ferrous Iron Key

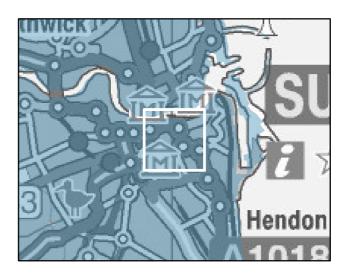
3 Moderately Aggressive

* If a class is starred, it is assumed that there are moderate amounts of sulphate in the soil. If there is abundant sulphate present, the soil may be one class more aggressive. Conversely, if there is very little sulphate, the soil may be one class less aggressive to

buried ferrous iron.

RISK OF CORROSION TO FERROUS IRON DESCRIPTION

Buried iron pipes and other infrastructure corrode at rates that are influenced by soil conditions (Jarvis and Hedges, 1994). Soil acidity, sulphide content, aeration and wetness all influence the corrosivity of the soil. These factors are used to map 5 major classes of relative corrosivity.


1f Pesticide Leaching Risk

440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Pesticide Leaching Risk Key

L q Impermeable soils over soft substrates of low or negligible storage capacity that sometimes conceal groundwater bearing rocks at depth

PESTICIDE LEACHING CLASS DESCRIPTION

The natural permeability and water regime of soils are influential in determining the fate and behaviour of pesticides applied to the crop and soil surface (Hollis et al, 1995). A system of vulnerability assessment was devised as part of the national system for Policy and Practice for the Protection of Groundwater. This divided soils into three primary vulnerability classes.

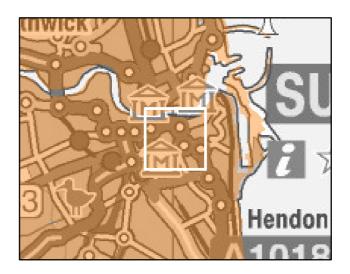
H - Soils of high leaching capacity with little ability to attenuate non-adsorbed pesticide leaching which leave underlying groundwater vulnerable to pesticide contamination.

I - Soils of intermediate leaching capacity with a moderate ability to attenuate pesticide leaching.

L - Soils of low leaching capacity through which pesticides are unlikely to leach.

The primary classes have been further subdivided into nearly forty subclasses. These subclasses, with their descriptions, are mapped above. These classes do not account for differences in land cultivation, which can also have a significant impact on pesticide behaviour.

1g Pesticide Runoff Risk

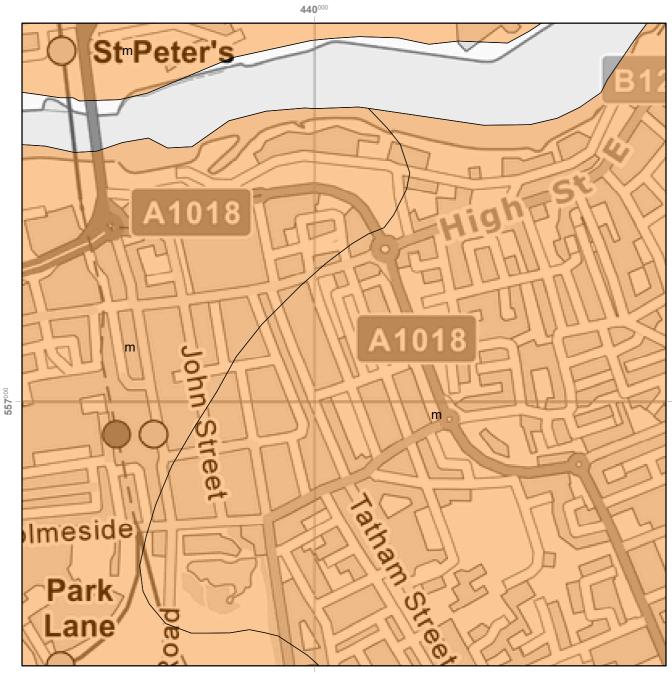

Cranfield University

440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

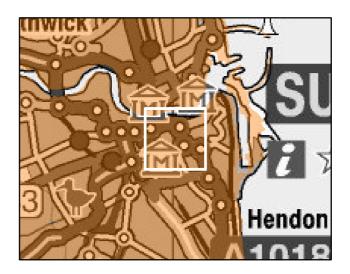
Contains OS data $\ensuremath{\mathbb{C}}$ Crown Copyright and database right 2017

Pesticide Runoff Risk Key


S2 High run-off potential.

PESTICIDE RUNOFF RISK DESCRIPTION

The physical properties and natural water regime of soils influence the speed and extent of lateral water movement over and through the soil at different depths (Hollis et al, 1995). At as result, soils can be classed according to the potential for pesticide run-off. Five runoff potential classes are identified for mineral soils and a further two for peat soils.


1h Potential for Pesticide Adsorption

440000

Soils Data $\ensuremath{\mathbb{C}}$ Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data $\ensuremath{\mathbb{C}}$ Crown Copyright and database right 2017

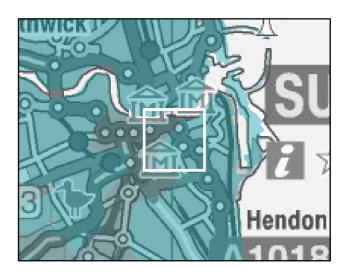
257000

Potential for Pesticide Adsorption Key

m Moderate adsorption potential.

POTENTIAL FOR PESTICIDE ADSORPTION DESCRIPTION

The physical properties and natural water regime of soils influence the speed and extent of lateral water movement over and through the soil at different depths (Hollis et al, 1995). The mineral soil classes are further subdivided according to their potential for pesticide adsorption.


1i Hydrogeological Rock Type

440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Cranfield University

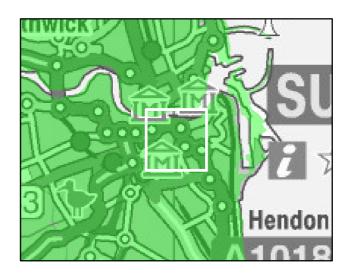
Hydrogeological Rock Type Key

21 glaciolacustrine clays and silts

22 till and compact Head

HYDROGEOLOGICAL ROCK TYPE DESCRIPTION

The hydrogeological classification of the soil parent materials provides a framework for distinguishing between soil substrates according to their general permeability and whether they are likely to overlie an aquifer. Every soil series has been assigned one of the 32 substrate classes and each of these is characterised according to its permeability (being characterised as permeable, slowly permeable or impermeable). For further information, see Boorman et al (1995).

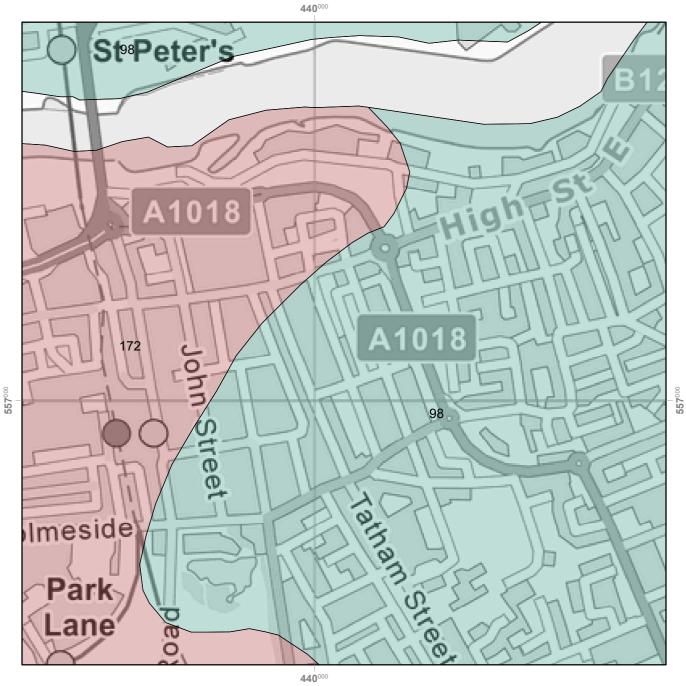


1j Ground Water Protection Policy (GWPP)

440000

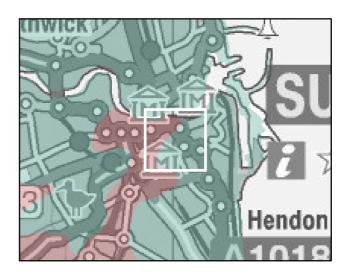
Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Ground Water Protection Policy (GWPP) Key


L Soils in which pollutants are unlikely to penetrate the soil layer either because water movement is largely horizontal or because they have a large ability to attenuate diffuse source pollutants

GWPP LEACHING CLASS DESCRIPTION

The Ground Water Protection Policy classes describe the leaching potential of pollutants through the soil (Hollis, 1991; Palmer et al, 1995). The likelihood of pollutants reaching ground water is described. Different classes of pollutants are described, including liquid discharges adsorbed and non-adsorbed pollutants.



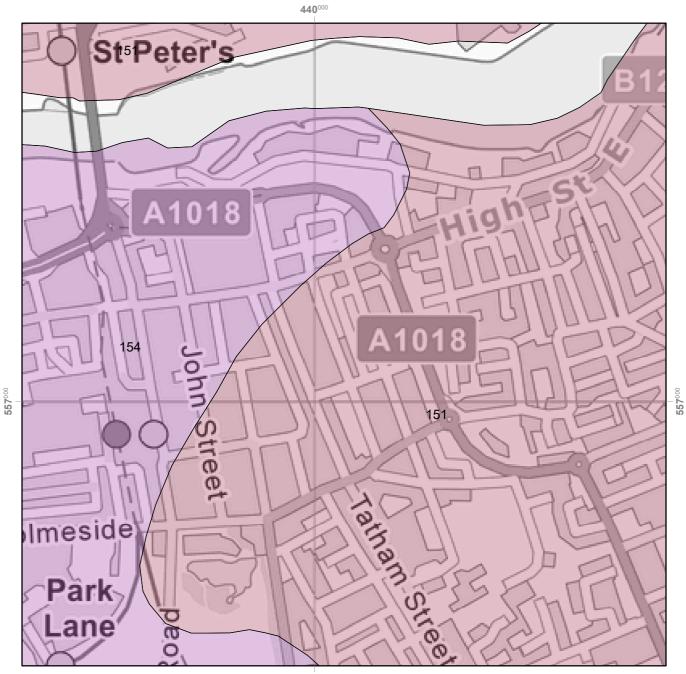
1k Soil Parent Material

440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Soil Parent Material Key

98 Glaciolacustrine drift and till


172 Till from Palaeozoic and Mesozoic sandstone and shale

SOIL PARENT MATERIAL DESCRIPTION

Along with the effects of climate, relief, organisms and time, the underlying geology or 'parent material' has a very strong influence on the development of the soils of England and Wales. Through weathering, rocks contribute inorganic mineral grains to the soils and thus exhibit control on the soil texture. During the course of the creation of the national soil map, soil surveyors noted the parent material underlying each soil in England and Wales. It is these general descriptions of the regional geology which is provided in this map.

1I Expected Crops and Land Use



440000

Soils Data $\ensuremath{\mathbb{C}}$ Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data $\ensuremath{\mathbb{C}}$ Crown Copyright and database right 2017

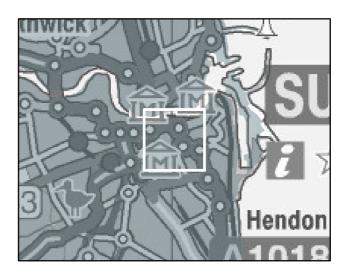
Expected Crops and Land Use Key

151 Grassland and cereals in Northumberland; dairying on permanent grassland in Wales.

154 Grassland in moist lowlands, some arable cropping in drier lowlands.

EXPECTED CROPS AND LAND USE DESCRIPTION

Individual soils are commonly associated with particular forms of land cover and land use. Whilst the soil surveyors were mapping the whole of England and Wales, they took careful note of the range of use to which the land was being put. This map shows the most common forms of land use found on each soil unit.

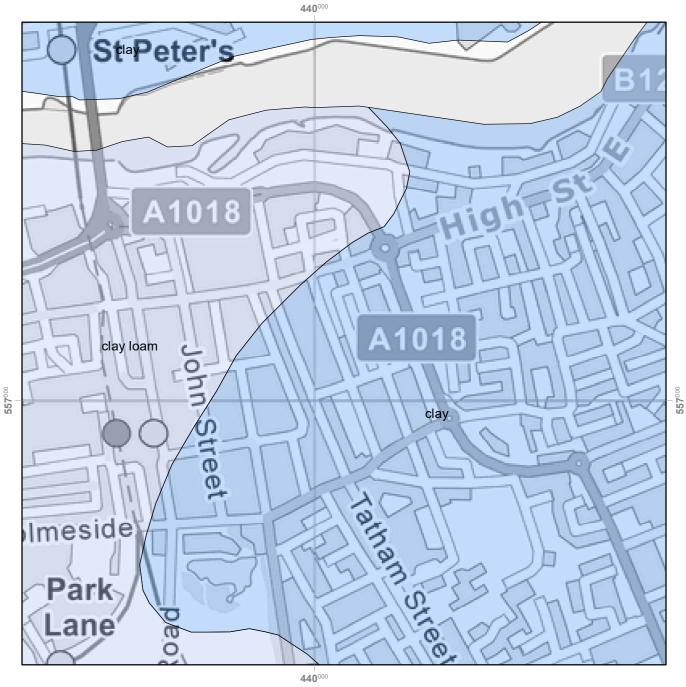

Cranfield Jniversity

1m Natural Soil Fertility

440000

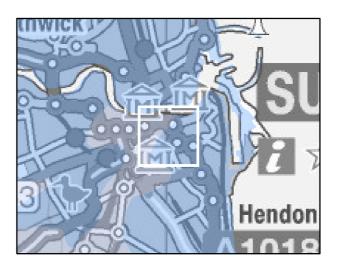
Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Natural Soil Fertility Key

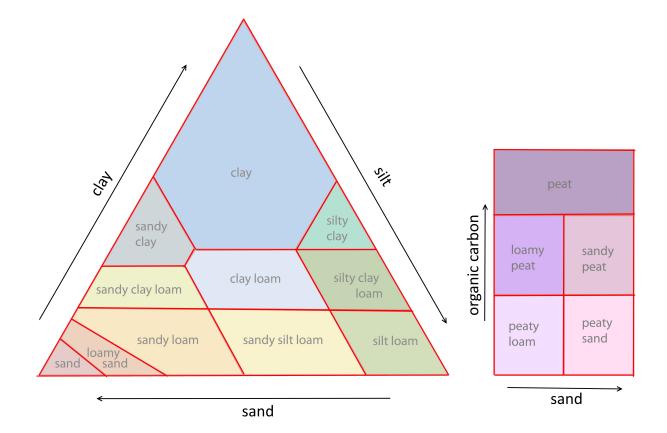

10 Moderate

NATURAL SOIL FERTILITY DESCRIPTION

Soil fertility can be greatly altered by land management especially through the application of manures, lime and mineral fertilisers. What is shown in this map, however, is the likely natural fertility of each soil type. Soils that are very acid have low numbers of soil-living organisms and support heathland and acid woodland habitats. These are shown as of very low natural fertility. Soils identified as of low natural fertility are usually acid in reaction and are associated with a wide range of habitat types. The moderate class contains neutral to slightly acid soils, again with a wide range of potential habitats. Soil of high natural fertility are both naturally productive and able to support the base-rich pastures and woodlands that are now rarely encountered. Lime-rich soils contain chalk and limestone in excess, and are associated with downland, herb-rich pastures and chalk and limestone woodlands.



1n Topsoil Texture

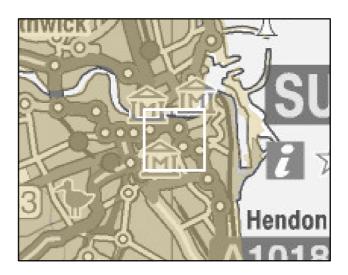

440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Topsoil Texture Key

SOIL TEXTURE

Soil texture is a term used in soil science to describe the physical composition of the soil in terms of the size of mineral particles in the soil. Specifically, we are concerned with the relative proportions of sand, silt and clay. Soil texture can vary between each soil layer or horizon as one moves down the profile. This map indicates the soil texture group of the upper 30 cm of the soil. Loamy soils have a mix of sand, silt and clay-sized particles and are intermediate in character. Soils with a surface layer that is dominantly organic are described as Peaty. A good understanding of soil texture can enable better land management. (Hodgson et al, 2022)



10 Typical Habitats

440000

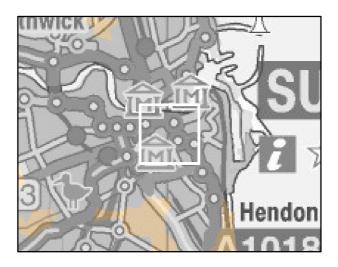
Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Typical Habitats Key

17 Seasonally wet pastures and woodlands

TYPICAL HABITATS DESCRIPTION

There is a close relationship between vegetation and the underlying soil. Information about the types of broad habitat associated with each soil type is provided in this map. Soil fertility, pH, drainage and texture are important factors in determining the types of habitats which can be established. Elevation above sea level and sometimes even the aspect, the orientation of a hillslope, can affect the species present. This map does not take into account the recent land management, but provides the likely natural habitats assuming good management has been carried out.

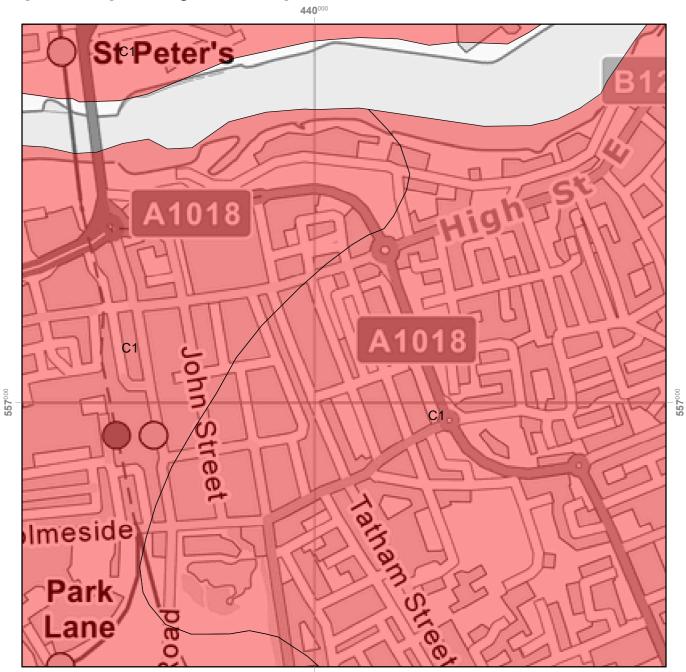

1p Organic Matter (%) in top 30cm

440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data © Crown Copyright and database right 2017

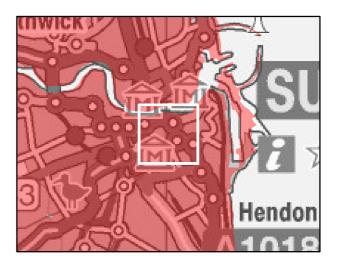
Organic Matter (%) in top 30cm Key



ORGANIC MATTER CONTENT

Average organic matter content in the top 30 cm of the profile. Organic matter averages are based on inherent properties of the soil associations under the main land use types. (Gregory et al. 2014)

1q Susceptibility to Compaction



440000

Soils Data $\ensuremath{\mathbb{C}}$ Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data $\textcircled{\mbox{\sc c}}$ Crown Copyright and database right 2017

Cranfield University

Susceptibility to Compaction Key

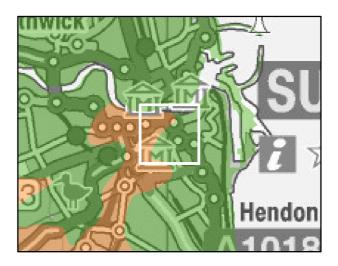
C1 Very Susceptible

SUSCEPTIBILITY TO COMPACTION

The use of heavy machinery such as tractors, trailers, and harvesters can initiate the production of large clods and compaction in topsoils, particularly when field operations are performed when the soil is too wet. Compaction can have many detrimental effects on crop performance and yield as well as environmental sustainability. The effects of compaction include: poor germination and seedling emergence, impeded drainage, waterlogging, and therefore anaerobic conditions all leading to increases in susceptibility of the crop and root to diseases and pests, and soil erosion (with impacts onsite in terms of soil loss as well as offsite sedimentation problems and transport of soil associated pollutants).

Susceptibility to compaction in the topsoil and layers immediately below it is principally determined by clay content and soil wetness, but modified by the presence of calcium carbonate, high organic matter content (organic-mineral or peaty textures) and slowly permeable subsoil layers. Soils most susceptible to compaction are non-calcareous with moderate to high clay contents, a slowly permeable subsoil and wet conditions within 70 cm of the surface for at least 180 days in most years (wetness class III and IV). (Cranfield University, 2001)

1r Susceptibility to Topsoil Slaking



440000

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023

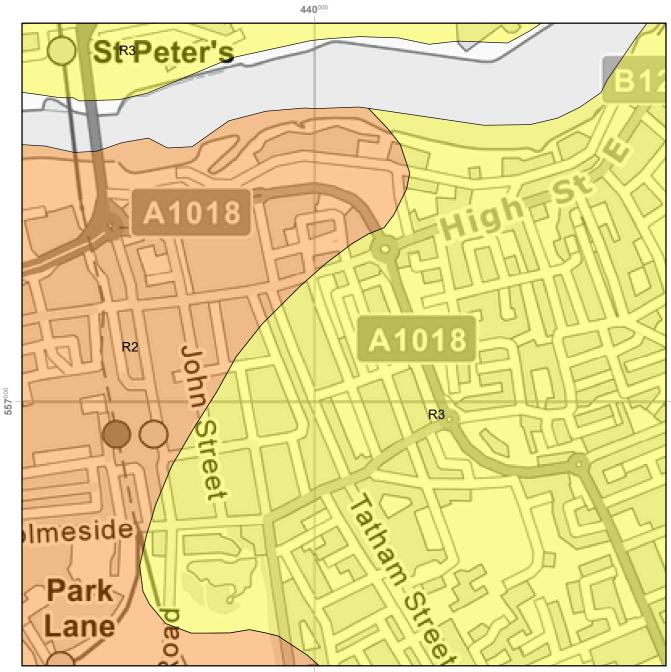
Contains OS data © Crown Copyright and database right 2017

Susceptibility to Topsoil Slaking Key

S2 Unstable

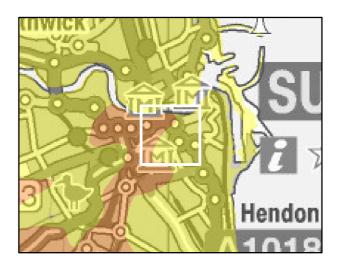
S4 Stable

SUSCEPTIBILITY TO TOPSOIL SLAKING


Rain falling on a fine surface layer of an unstable soil can destroy aggregates leading to a dense cap forming on the soil surface. Surface capping can prevent or reduce seedling emergence, reduce infiltration and increase surface runoff.

Cultivation practices can alter the structure of the soil via a number of mechanisms. First, cultivation practices can physically loosen or consolidate both top and sub soils improving or degrading structure. In soils containing low organic matter, calcium carbonate and clay cultivation can lead to surface capping, slaking and panning under machinery.

Second, cultivation practices can determine the structural stability of the soil by changing the relative levels of the key factors associated with formation and stability of aggregates. For example, the cultivation of crops often reduces the plant residues that are returned to the soil, lowering the organic matter content and therefore aggregate formation and stability. In addition, the physical effects of cultivation in breaking apart aggregates can serve to expose temporary and transient organic matter to microbial attack, reducing aggregate stability and the likelihood of aggregate formation. (Cranfield University, 2001)


1s Natural recovery of structure after compaction

440000

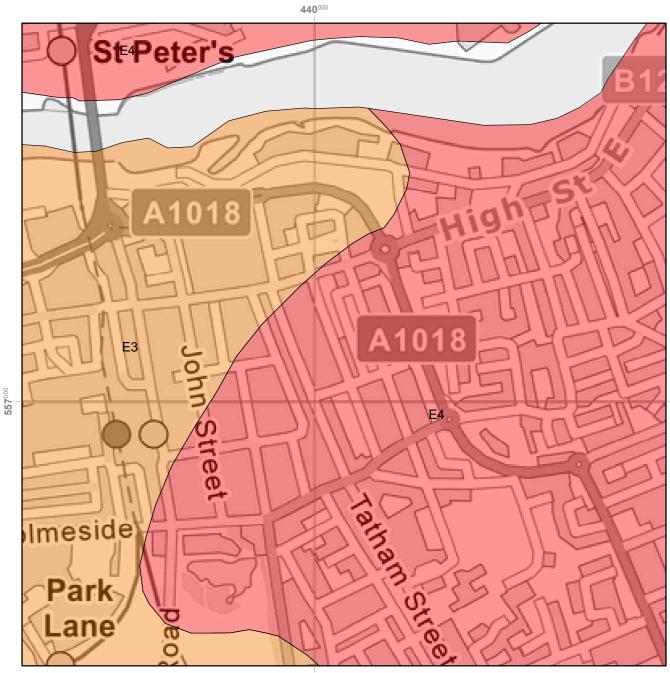
Soils Data $\textcircled{\mbox{\scriptsize O}}$ Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data $\textcircled{\mbox{\scriptsize C}}$ Crown Copyright and database right 2017

257000

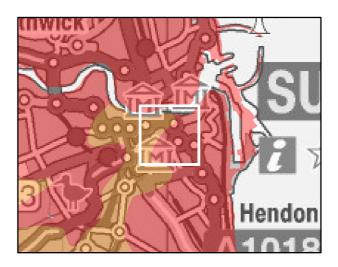
Natural recovery of structure after compaction Key

R2 Slight Potential


R3 Potential

STRUCTURE: POTENTIAL FOR NATURAL RECOVERY FOLLOWING COMPACTION

Soil structure damage can slowly improve through the natural restructuring of soils. This natural recovery and regeneration of soil structure is governed by the same set of factors responsible for formation and stability (that is, organic matter, calcium carbonate, clay content and soil wetness) as well as the processes that drive aggregate formation and structural development (such as freezing and thawing, and biological activities). (Cranfield University, 2001)


1t Mechanical rectification of compaction

440000

Soils Data $\textcircled{\mbox{\scriptsize O}}$ Cranfield University (NSRI) and for the Controller of HMSO 2023

Contains OS data $\textcircled{\mbox{\sc c}}$ Crown Copyright and database right 2017

257000

Mechanical rectification of compaction Key

E3 Moderately Difficult

E4 Difficult

STRUCTURE: SUCCESS OF MECHANICAL RECTIFICATION OF COMPACTION

Soil structure can be improved through timely cultivations that loosen or consolidate the soil, and sort or reduce clods within the topsoil and/or subsoil levels.

Good soil management and best cultivation practices are paramount at preventing or limiting structural degradation and damage. Initially this would include understanding land capability and selecting the appropriate crops for the land and environmental conditions. A second requirement for good soil structure is to maintain adequate drainage, either natural or artificial. Thirdly, reduced and timely cultivations are of great importance in maintaining good soil structure and preventing damage. Where possible, operations should be limited when the soil is too wet and when most damage is likely to be caused. The considered choice of machinery and equipment such as the use of low ground pressure tyres, tracks or controlled traffic farming can also aid in protecting structure. (Cranfield University, 2001)

2. Soil Association Descriptions

The following pages describe the following soil map units, (soil associations), in more detail.

DUNKESWICK 711p Slowly permeable seasonally waterlogged fine loamy and fine loamy over clayey soils

FOGGATHORPE 1 712h

Slowly permeable seasonally waterlogged clayey and fine loamy over clayey soils, often stoneless.

The soil associations are described in terms of their texture and drainage properties and potential risks may be identified. The distribution of the soils across England and Wales are provided. Further to this, properties of each association's component soil series are described in relation to each other. Lastly, schematic diagrams of each component series are provided for greater understanding and in-field verification purposes. Further information on the soil associations and soil series can be found at the LandIS Soils Guide

DUNKESWICK (711p)

Slowly permeable seasonally waterlogged fine loamy and fine loamy over clayey soils

a. General Description

Slowly permeable seasonally waterlogged fine loamy and fine loamy over clayey soilsassociated with similar clayey soils.

The major landuse on this association is defined as Grassland in moist lowlands, some arable cropping in drier lowlands.

b. Distribution (England and Wales)

The DUNKESWICK association covers 3002 km² of England and Wales which accounts for 1.99% of the landmass. The distribution of this association is shown in figure 2. Note that the yellow shading represents a buffer to highlight the location of very small areas of the association.

c. Comprising Soil Series

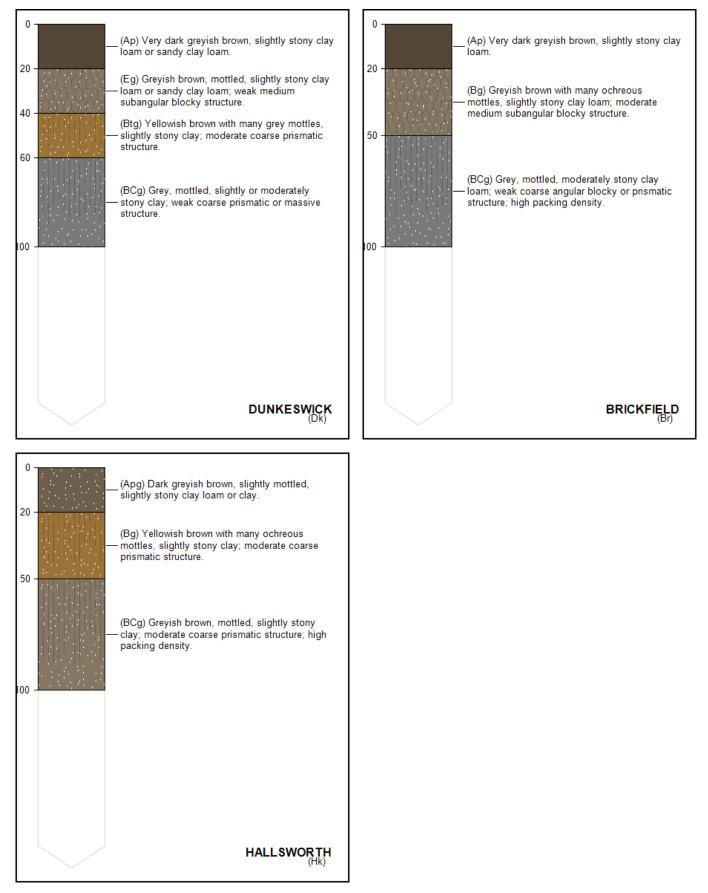
Multiple soil series comprise a soil association. The soil series of the DUNKESWICK association are outlined in Table 1 below. In some cases other minor soil series are present at a particular site, and these have been grouped together under the heading 'OTHER'. We have endeavoured to present the likelihood of a minor, unnamed soil series occuring in your site in Table 1.

Schematic diagrams of the vertical soil profile of the major constituent soil series are provided in Section D to allow easier identification of the particular soil series at your site.

Figure 2: Association Distribution

Table 1: The component soil series of the DUNKESWICK soil association. Because absolute proportions of the
comprising series in this association vary from location to location, the national proportions are provided.

Soil Series	I Series Description	
DUNKESWICK (Dk)	medium loamy over clayey drift with siliceous stones	55%
BRICKFIELD (Br)	medium loamy drift with siliceous stones	25%
HALLSWORTH (Hk)	clayey drift with siliceous stones	10%
OTHER	other minor soils	10%



DUNKESWICK (711p)

Slowly permeable seasonally waterlogged fine loamy and fine loamy over clayey soils

d. DUNKESWICK Component Series Profiles

FOGGATHORPE 1 (712h)

Slowly permeable seasonally waterlogged clayey and fine loamy over clayey soils, often stoneless.

a. General Description

Slowly permeable seasonally waterlogged clayey and fine loamy over clayey soils, often stoneless. The major landuse on this association is defined as Grassland and cereals in Northumberland; dairying on permanent grassland in Wales.

b. Distribution (England and Wales)

The FOGGATHORPE 1 association covers 289 km² of England and Wales which accounts for 0.19% of the landmass. The distribution of this association is shown in figure 3. Note that the yellow shading represents a buffer to highlight the location of very small areas of the association.

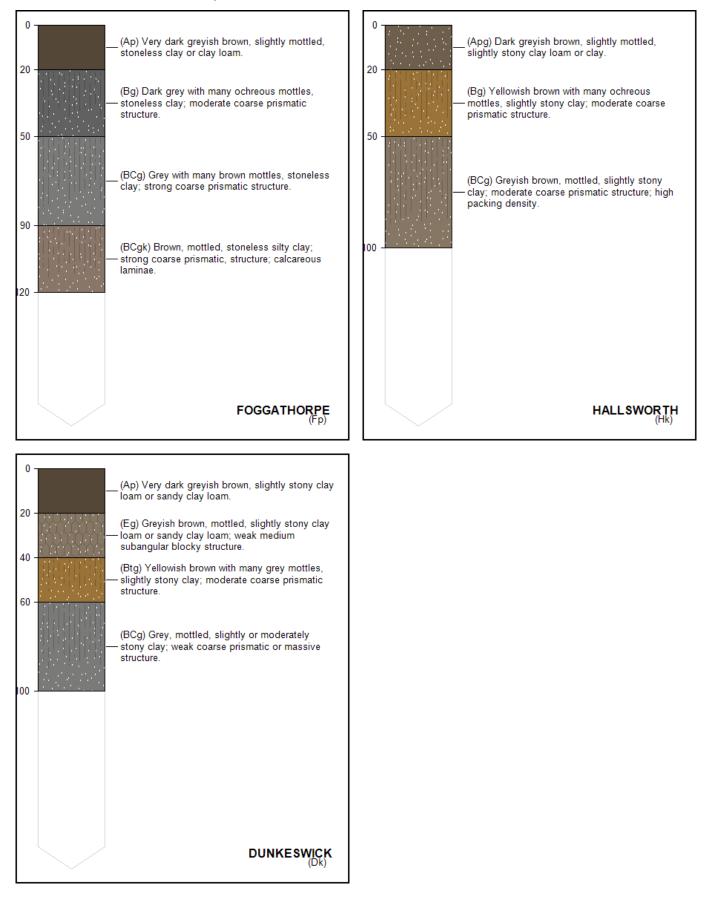
c. Comprising Soil Series

Multiple soil series comprise a soil association. The soil series of the FOGGATHORPE 1 association are outlined in Table 1 below. In some cases other minor soil series are present at a particular site, and these have been grouped together under the heading 'OTHER'. We have endeavoured to present the likelihood of a minor, unnamed soil series occuring in your site in Table 2.

Schematic diagrams of the vertical soil profile of the major constituent soil series are provided in Section D to allow easier identification of the particular soil series at your site.

Figure 3: Association Distribution

Table 2: The component soil series of the FOGGATHORPE 1 soil association. Because absolute proportions of the	
comprising series in this association vary from location to location, the national proportions are provided.	


Soil Series	Description	Area %
FOGGATHORPE (Fp)	clayey stoneless drift	50%
HALLSWORTH (Hk)	clayey drift with siliceous stones	30%
DUNKESWICK (Dk)	medium loamy over clayey drift with siliceous stones	20%

FOGGATHORPE 1 (712h)

Slowly permeable seasonally waterlogged clayey and fine loamy over clayey soils, often stoneless.

d. FOGGATHORPE 1 Component Series Profiles

3. Soil Series Properties

The following pages describe the following soil series in more detail:

BRICKFIELD (Br)	medium loamy drift with siliceous stones		
DUNKESWICK (Dk)	medium loamy over clayey drift with siliceous stones		
FOGGATHORPE (Fp)	clayey stoneless drift		
HALLSWORTH (Hk)	clayey drift with siliceous stones		

SOIL PROPERTY DEFINITIONS

The following terms are used in the report.

DROCK (Depth to rock (cm))

Depth (cm) to rock. 999 implies no rock

DGLEY (Depth to gleying (cm))

Depth to gleyed horizon (cm). 999 implies NO gleyed horizon present.

DIMP_DP (Depth to slowly permeable layer (downward percolation) (cm))

Depth (cm) to slowly permeable layer, i.e. in which effectively there is no downward percolation of water - 999 implies NO slowly permeable layer

DIMP_UD (Depth to slowly permeable layer (upward diffusion) (cm))

Depth (cm) to slowly permeable layer - upward diffusion, i.e. in which effectively there is no upward movement of water - 999 implies NO slowly permeable layer

IAC_DP (Integrated air capacity (IAC) (mm))

Integrated air capacity (downward percolation), a measurement of the volume of air in moist soils (0.05 bar suction) integrated from the surface to either an impermeable horizon, bedrock or 1m whichever is the shallowest, used for estimating the water storage potential of a soil

SPR (Standard percentage runoff (SPR) (%))

Standard Percentage Run-off. Dimensionless variable (range 0 to 100 %) that represents the percentage of rainfall that causes the short-term increase in flow at the catchment outlet seen after the storm event

BFI (Base flow index (BFI) (0 to 1))

Baseflow index. Dimensionless variable (range 0 to 1) that expresses the fraction of the average flow volume (in a river), represented by the contribution from groundwater storage

AWC (Available water (AWC) (mm))

Available water to 1m for a specific soil type, water available between suctions 5 and 1500kPa

AP_GRASS (Available water for grass (mm))

Available water (AP) in the profile for grass (mm); water available between suctions 5 and 1500 kPa

AP_CEREAL (Available water for cereal (mm))

Available water (AP) in the profile for cereals (mm); water available between suctions 5 and 1500 kPa

AP_SB (Available water for sugar (mm))

Available water (AP) in the profile for sugar beet (mm); water available between suctions 5 and 1500 kPa

AP_POT (Available water for potatoes (mm))

Available water (AP) in the profile for potatoes (mm); water available between suctions 5 and 1500 kPa

7.13 BRICKFIELD (Br) (142)

Major soil group:	07 surface-water gley soils	Seasonally waterlogged slowly permeable soils, formed above 3 m 0.D. and prominently mottled above 40 cm depth. They have no relatively permeable material starting within and extending below 1 m of the surface.
Soil group:	1 stagnogley soils	With a distinct topsoil. They are found mainly in lowland Britain.
Soil Subgroup:	3 cambic stagnogley soils	(with no clay-enriched subsoil)
Soil Series:	Brickfield series	medium loamy drift with siliceous stones

Property	Value	0
Depth to rock (cm)	n/a*	(Ap) Very dark greyish brown, slightly stony clay loam.
Depth to gleying (cm)	25	20 - (Bg) Greyish brown with many ochreous
Depth to slowly permeable layer (downward percolation) (cm)	34	- mottles, slightly stony clay loam; moderate medium subangular blocky structure.
Depth to slowly permeable layer (upward diffusion) (cm)	34	
Integrated air capacity (IAC) (mm)	62	(BCg) Grey, mottled, moderately stony clay — loam; weak coarse angular blocky or prismatic structure; high packing density.
Standard percentage runoff (SPR) (%)	40	structure, high packing density.
Base flow index (BFI) (0 to 1)	0.31	100 -
Available water (AWC) (mm)	145	
Available water for grass (mm)	130	
Available water for cereal (mm)	135	
Available water for sugar (mm)	165	
Available water for potatoes (mm)	110	BRICKFIELD (Br)

7.11 DUNKESWICK (Dk) (321)

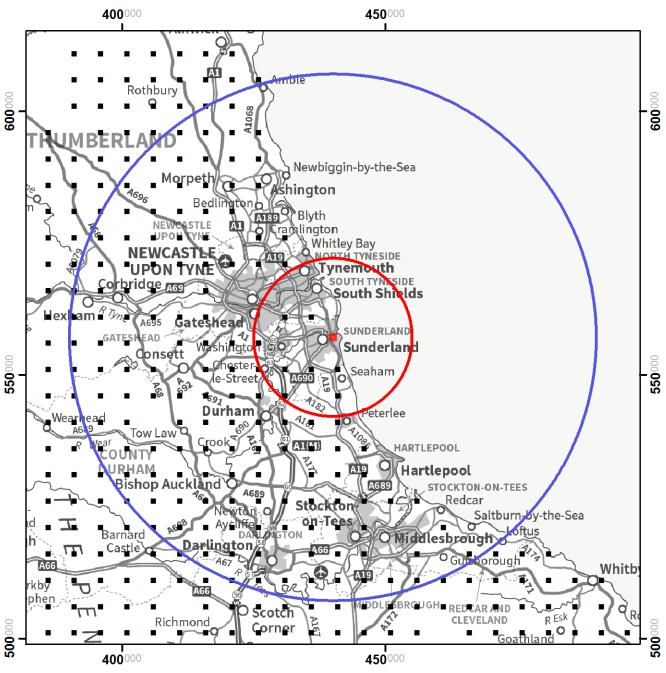
Major soil group:	07 surface-water gley soils	Seasonally waterlogged slowly permeable soils, formed above 3 m 0.D. and prominently mottled above 40 cm depth. They have no relatively permeable material starting within and extending below 1 m of the surface.
Soil group:	1 stagnogley soils	With a distinct topsoil. They are found mainly in lowland Britain.
Soil Subgroup:	1 typical stagnogley soils	(with ordinary clay enriched subsoil)
Soil Series:	Dunkeswick series	medium loamy over clayey drift with siliceous stones

Property	Value	0 -
Depth to rock (cm)	n/a*	(Ap) Very dark greyish brown, slightly stony clay loam or sandy clay loam.
Depth to gleying (cm)	25	20 - (Eg) Greyish brown, mottled, slightly stony clay Ioam or sandy clay Ioam; weak medium
Depth to slowly permeable layer (downward percolation) (cm)	37	40 - subangular blocky structure. (Btg) Yellowish brown with many grey mottles,
Depth to slowly permeable layer (upward diffusion) (cm)	37	60 - signify story clay, noderate coarse prismatic
Integrated air capacity (IAC) (mm)	72	(BCg) Grey, mottled, slightly or moderately — stony clay; weak coarse prismatic or massive
Standard percentage runoff (SPR) (%)	40	structure.
Base flow index (BFI) (0 to 1)	0.31	
Available water (AWC) (mm)	140	
Available water for grass (mm)	125	
Available water for cereal (mm)	130	
Available water for sugar (mm)	155	
Available water for potatoes (mm)	105	DUNKESWICK (Dk)

7.12 FOGGATHORPE (Fp) (506)

Major soil group:	07 surface-water gley soils	Seasonally waterlogged slowly permeable soils, formed above 3 m 0.D. and prominently mottled above 40 cm depth. They have no relatively permeable material starting within and extending below 1 m of the surface.
Soil group:	1 stagnogley soils	With a distinct topsoil. They are found mainly in lowland Britain.
Soil Subgroup:	2 pelo-stagnogley soils	(clayey)
Soil Series:	Foggathorpe series	clayey stoneless drift

Property	Value
Depth to rock (cm)	n/a*
Depth to gleying (cm)	25
Depth to slowly permeable layer (downward percolation) (cm)	34
Depth to slowly permeable layer (upward diffusion) (cm)	34
Integrated air capacity (IAC) (mm)	63
Standard percentage runoff (SPR) (%)	40
Base flow index (BFI) (0 to 1)	0.31
Available water (AWC) (mm)	150
Available water for grass (mm)	135
Available water for cereal (mm)	140
Available water for sugar (mm)	175
Available water for potatoes (mm)	110


7.12 HALLSWORTH (Hk) (702)

Major soil group:	07 surface-water gley soils	Seasonally waterlogged slowly permeable soils, formed above 3 m 0.D. and prominently mottled above 40 cm depth. They have no relatively permeable material starting within and extending below 1 m of the surface.
Soil group:	1 stagnogley soils	With a distinct topsoil. They are found mainly in lowland Britain.
Soil Subgroup:	2 pelo-stagnogley soils	(clayey)
Soil Series:	Hallsworth series	clayey drift with siliceous stones

Property	Value	0	
Depth to rock (cm)	n/a*		(Apg) Dark greyish brown, slightly mottled, slightly stony clay loam or clay.
Depth to gleying (cm)	20	20	(Bg) Yellowish brown with many ochreous
Depth to slowly permeable layer (downward percolation) (cm)	24	50	— mottles, slightly stony clay; moderate coar prismatic structure.
Depth to slowly permeable layer (upward diffusion) (cm)	24	50	
Integrated air capacity (IAC) (mm)	47		(BCg) Greyish brown, mottled, slightly ston — clay; moderate coarse prismatic structure; packing density.
Standard percentage runoff (SPR) (%)	40		
Base flow index (BFI) (0 to 1)	0.31	100	
Available water (AWC) (mm)	155		
Available water for grass (mm)	140		
Available water for cereal (mm)	140		
Available water for sugar (mm)	175		
Available water for potatoes (mm)	115		HALLSWOP

4. Topsoil Element Background Levels

Soils Data © Cranfield University (NSRI) and for the Controller of HMSO 2023 Contains OS data © Crown Copyright and database right 2017

Topsoil Element Background Levels Key

NSI sample points

TOPSOIL ELEMENT BACKGROUND LEVELS DESCRIPTION

The National Soil Inventory (NSI) covers England and Wales on a 5 km grid and provides detailed information for each intersect of the grid. Collectively NSI data are statistically representative of England and Wales soils. The original sampling was undertaken around 1980 and there were partial resamplings in the mid-1990s. The most up-to-date data is presented here.

Analysis of the NSI samples provides detailed measurements of over 20 elements from the soils, in addition to pH. This data is summarised over three areas to provide you with an understanding of how your site, and your data for it, sits within the local, regional and national context.

Where available, the soil element levels are compared with the Soil Guideline Values and where a soil sample we have analysed has been found in excess of the SGV guidelines for "residential with plant uptake" land, this is displayed in red in the tables which follow.

SGV levels are provided for the following elements: lead, selenium, nickel, mercury, chromium, cadmium and arsenic.

In the following pages, a number of analyses of the topsoil are provided. The majority of analyses have been performed on the full compliment of sample points, however, in some areas, for some elements, only a few samples were analysed as part of subsequent programmes. In order to present the full suite of possible datasets, and accurately convey the validity of the data, the number of actual measured samples is stated for each analysis. Care should be taken where the number of samples is disproportionately low.

a. Analysis Within a 15km Radius (8 Sample Points)

ANALYSES	SAMPLES	MEAN	MIN	MAX	ST.DEV
pH (PH)	8	6.8	4.9	7.7	1.0
Carbon (CARBON)	8	6.5	2.2	10.8	2.9
Aluminium (AL_ACID)	8	31426.3	19034.0	38181.0	6717.6
Arsenic (AS_ACID)	8	3.0	2.0	4.0	0.8
Barium (BA_ACID)	8	193.1	125.0	278.0	51.6
Calcium (CA_ACID)	8	7644.9	1159.0	29008.0	9085.0
Cadmium (CD_ACID)	8	0.8	0.3	1.0	0.2
Cadmium (Extractable) (CD_EDTA)	8	0.3	0.2	0.3	0.1
Cobalt (CO_ACID)	8	11.5	9.4	14.6	2.0
Cobalt (Extractable) (CO_EDTA)	8	1.2	0.1	2.1	0.6
Chromium (CR_ACID)	8	43.3	25.3	61.7	11.4
Copper (CU_ACID)	8	34.6	19.3	64.2	16.2
Copper (Extractable) (CU_EDTA)	8	11.1	4.8	24.7	7.2
Fluoride (F_ACID)	8	49.2	25.7	67.3	15.2
Iron (FE_ACID)	8	30978.1	25483.0	34748.0	3479.5
Mercury (HG_ACID)	5	0.2	0.0	0.6	0.3
Potassium (K_ACID)	8	4567.6	2917.0	6149.0	1176.3
Potassium (Extractable) (K_NITRATE)	8	115.4	79.0	178.0	42.9
Magnesium (MG_ACID)	8	3328.8	1531.0	5009.0	1090.8
Magnesium (Extractable) (MG_NITRATE)	8	238.4	71.0	390.0	110.7
Manganese (MN_ACID)	8	649.3	286.0	998.0	217.4
Manganese (Extractable) (MN_EDTA)	8	151.9	27.0	261.0	78.7
Molybdenum (MO_ACID)	8	1.2	0.6	1.6	0.4
Sodium (NA_ACID)	8	270.0	173.0	352.0	64.4
Nickel (NI_ACID)	8	28.2	21.0	35.0	5.0
Nickel (Extractable) (NI_EDTA)	8	1.7	0.6	2.6	0.7
Phosphorus (P_ACID)	8	619.9	431.0	979.0	225.4
Phosphorus (Extractable) (P_OLSEN)	8	12.5	5.0	31.0	9.7
Lead (PB_ACID)	8	73.3	46.0	122.0	25.8
Lead (Extractable) (PB_EDTA)	8	29.3	13.4	54.0	13.9
Selenium (SE_ACID)	8	0.6	0.0	1.2	0.4
Strontium (SR_ACID)	8	29.0	18.0	48.0	11.2
Vanadium (V_ACID)	8	42.7	28.0	64.7	14.4
Zinc (ZN_ACID)	8	122.8	101.0	186.0	29.9
Zinc (Extractable) (ZN_EDTA)	8	10.1	3.8	21.0	5.4

for units, see Analyses Denitions (p59)

b. Analysis Within a 50km Radius (142 Sample Points)

b. Analysis Within a ookin	Itadido				
ANALYSES	SAMPLES	MEAN	MIN	MAX	ST.DEV
pH (PH)	141	5.9	3.5	7.9	1.1
Carbon (CARBON)	142	5.2	0.2	35.8	4.7
Aluminium (AL_ACID)	142	26919.7	1932.0	60850.0	9413.8
Arsenic (AS_ACID)	112	3.1	0.0	18.0	3.1
Barium (BA_ACID)	142	180.7	16.0	618.0	103.1
Calcium (CA_ACID)	142	5648.8	118.0	221865.0	20119.2
Cadmium (CD_ACID)	142	0.6	0.0	5.8	0.6
Cadmium (Extractable) (CD_EDTA)	142	0.3	0.1	3.6	0.3
Cobalt (CO_ACID)	142	9.1	0.6	19.6	4.1
Cobalt (Extractable) (CO_EDTA)	142	1.0	0.1	2.7	0.6
Chromium (CR_ACID)	142	35.1	5.3	208.4	20.8
Copper (CU_ACID)	142	20.9	3.7	107.3	15.5
Copper (Extractable) (CU_EDTA)	142	6.3	1.1	24.7	4.8
Fluoride (F_ACID)	116	157.9	13.4	6307.9	813.7
Iron (FE_ACID)	142	27569.1	3207.0	102674.0	13007.8
Mercury (HG_ACID)	59	0.1	0.0	0.6	0.1
Potassium (K_ACID)	142	3757.0	410.0	8389.0	1704.1
Potassium (Extractable) (K_NITRATE)	140	130.5	15.0	958.0	119.9
Magnesium (MG_ACID)	142	2586.3	216.0	16700.0	1981.3
Magnesium (Extractable) (MG_NITRATE)	140	235.7	21.0	775.0	154.8
Manganese (MN_ACID)	142	642.2	21.0	2146.0	422.0
Manganese (Extractable) (MN_EDTA)	142	159.5	5.0	743.0	120.2
Molybdenum (MO_ACID)	138	0.8	0.0	6.4	0.9
Sodium (NA_ACID)	142	226.7	42.0	1698.0	173.1
Nickel (NI_ACID)	142	23.4	0.0	110.7	14.7
Nickel (Extractable) (NI_EDTA)	142	1.5	0.3	4.9	0.8
Phosphorus (P_ACID)	142	567.7	157.0	1161.0	210.1
Phosphorus (Extractable) (P_OLSEN)	139	17.8	1.0	126.0	17.3
Lead (PB_ACID)	142	118.0	19.0	3697.0	331.3
Lead (Extractable) (PB_EDTA)	142	60.7	3.1	3185.0	270.3
Selenium (SE_ACID)	112	0.6	0.0	5.3	0.6
Strontium (SR_ACID)	142	33.2	0.0	1295.0	107.9
Vanadium (V_ACID)	139	42.5	2.3	111.6	21.1
Zinc (ZN_ACID)	142	101.6	17.0	1525.0	133.8
Zinc (Extractable) (ZN_EDTA)	142	11.8	1.1	400.3	34.2

for units, see Analyses Denitions (p59)

c. National Analysis (5686 Sample Points)

<u>C. National Analysis (5000</u>	oampie	1 01113			
ANALYSES	SAMPLES	MEAN	MIN	MAX	ST.DEV
pH (PH)	5630	6.0	3.1	9.2	1.3
Carbon (CARBON)	5672	6.1	0.1	61.5	8.9
Aluminium (AL_ACID)	5677	26775.3	491.0	79355.0	12772.2
Arsenic (AS_ACID)	2729	4.6	0.0	110.0	5.7
Barium (BA_ACID)	5677	150.0	7.0	3840.0	159.5
Calcium (CA_ACID)	5677	13768.7	0.0	339630.0	37785.0
Cadmium (CD_ACID)	5677	0.7	0.0	40.9	1.0
Cadmium (Extractable) (CD_EDTA)	5655	0.5	0.0	85.0	3.0
Cobalt (CO_ACID)	5677	10.6	0.0	567.0	13.7
Cobalt (Extractable) (CO_EDTA)	5655	1.1	0.0	26.5	1.2
Chromium (CR_ACID)	5677	38.9	0.0	2339.8	43.7
Copper (CU_ACID)	5677	22.6	0.0	1507.7	36.8
Copper (Extractable) (CU_EDTA)	5655	6.4	0.3	431.4	11.1
Fluoride (F_ACID)	3320	58.5	0.0	6307.9	186.2
Iron (FE_ACID)	5677	28147.8	395.0	264405.0	16510.5
Mercury (HG_ACID)	2159	0.1	0.0	2.4	0.2
Potassium (K_ACID)	5677	4727.7	60.0	23905.0	2700.2
Potassium (Extractable) (K_NITRATE)	5609	182.0	6.0	2776.0	151.6
Magnesium (MG_ACID)	5677	3648.1	0.0	62690.0	3284.1
Magnesium (Extractable) (MG_NITRATE)	5609	146.0	1.0	1601.0	147.5
Manganese (MN_ACID)	5677	777.0	3.0	42603.0	1068.8
Manganese (Extractable) (MN_EDTA)	5654	159.4	0.0	3108.0	188.6
Molybdenum (MO_ACID)	4417	0.9	0.0	56.3	2.0
Sodium (NA_ACID)	5677	323.3	17.0	25152.0	572.3
Nickel (NI_ACID)	5677	25.4	0.0	1350.2	29.2
Nickel (Extractable) (NI_EDTA)	5655	1.6	0.1	73.2	2.0
Phosphorus (P_ACID)	5677	792.1	41.0	6273.0	433.9
Phosphorus (Extractable) (P_OLSEN)	5604	27.4	0.0	534.0	25.5
Lead (PB_ACID)	5677	73.3	0.0	17365.0	280.6
Lead (Extractable) (PB_EDTA)	5655	27.8	1.2	6056.5	119.7
Selenium (SE_ACID)	2729	0.6	0.0	22.8	0.8
Strontium (SR_ACID)	5677	42.3	0.0	1445.0	67.8
Vanadium (V_ACID)	4428	41.0	0.0	854.4	33.9
Zinc (ZN_ACID)	5677	90.2	0.0	3648.0	104.4
Zinc (Extractable) (ZN_EDTA)	5655	9.6	0.5	712.0	24.6

for units, see Analyses Denitions (p59)

SOIL GUIDELINE VALUES (SGV)

Defra and the Environment Agency have produced soil guideline values (SGVs) as an aid to preliminary assessment of potential risk to human health from land that may be contaminated. SGVs represent 'intervention values', which, if exceeded, act as indicators of potential unacceptable risk to humans, so that more detailed risk assessment is needed.

The SGVs were derived using the Contaminated Land Exposure Assessment (CLEA) model for four land uses:

- 1. residential (with plant uptake / vegetable growing)
- 2. residential (without vegetable growing)
- 3. allotments
- 4. commercial / industrial

SGVs are only designed to indicate whether further site-specific investigation is needed. Where a soil guideline value is exceeded, it does not mean that there is necessarily a chronic or acute risk to human health.

The values presented in this report represent those from a number of sample points (given in the "Samples" column in each table) providing local, regional and national background levels. Figures which appear in red indicate that a bulked sample from 20m surrounding a sample point, has at a past date, exceeded the SGV for the 'residential with plant uptake' land use.

It is always advisable to perform site specific investigations.

More details on all the SGVs can be found on the Environment Agency Website.

All units are mg/kg which is equivalent to parts per million (ppm)

SUBSTANCE	RESIDENTIAL WITH PLANT UPTAKE	RESIDENTIAL WITHOUT PLANT UPTAKE	ALLOTMENTS	COMMERCIAL /INDUSTRIAL
LEAD	450	450	450	750
SELENIUM	35	260	35	8000
NICKEL	50	75	50	5000
MERCURY	8	15	8	450
CHROMIUM	130	200	130	5000
CADMIUM (pH 6)	1	30	1	1400
CADMIUM (pH 7)	2	30	2	1400
CADMIUM (pH 8)	8	30	8	1400
ARSENIC	20	20	20	500

ANALYSES DEFINITIONS

PH (pH)

pH of soil measure after shaking 10ml of soil for 15 minutes with 25ml of water

CARBON (Carbon)

Organic Carbon (% by wt) measured either by loss-on-ignition for soils estimated to contain more than about 20% organic carbon or by dichromate digestion.

AL_ACID (Aluminium)

Total Aluminium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

AS_ACID (Arsenic)

Total Arsenic concentration (mg/kg) determined by Hydride Atomic Absorption Spectrometry (AAS), extracted into hydrochloric acid after digestion with nitric acid and ashing with magnesium nitrate

BA_ACID (Barium)

Total Barium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

CA_ACID (Calcium)

Total Calcium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

CD_ACID (Cadmium)

Total Cadmium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

CD_EDTA (Cadmium Extractable)

Extractable Cadmium concentration (mg/l) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) after shaking 10ml of soil with 50ml of 0.05M EDTA at pH 7.0 for 1h at 20 deg. C and then filtering

CO_ACID (Cobalt)

Total Cobalt concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

CO_EDTA (Cobalt Extractable)

Extractable Cobalt concentration (mg/l) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) after shaking 10ml of soil with 50ml of 0.05M EDTA at pH 7.0 for 1h at 20 deg. C and then filtering

CR_ACID (Chromium)

Total Chromium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

CU_ACID (Copper)

Total Copper concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

CU_EDTA (Copper Extractable)

Extractable Copper concentration (mg/l) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) after shaking 10ml of soil with 50ml of 0.05M EDTA at pH 7.0 for 1h at 20 deg. C and then filtering

ANALYSES DEFINITIONS continued

F_ACID (Flouride)

Flouride extracted with 1mol / I sulphuric acid and determined by Ion Selective Electrode (ISE)

FE_ACID (Iron)

Total Iron concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

HG_ACID (Mercury)

Total Mercury concentration (mg/kg) determined by Hydride Atomic Absorption Spectrometry (AAS), digested in a nitric/sulphuric acid mixture

K_ACID (Potassium)

Total Potassium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

K_NITRATE (Potassium Extractable)

Extractable Potassium concentration (mg/l) determined by shaking 10ml of air dry soil with 50ml of 1.0M ammonium nitrate for 30mins, filtering and then measuring the concentration by flame photometry

MG_ACID (Magnesium)

Total Magnesium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

MG_NITRATE (Magnesium Extractable)

Extractable Magnesium concentration (mg/l) determined by shaking 10ml of air dry soil with 50ml of 1.0M ammonium nitrate for 30mins, filtering and then measuring the concentration by flame photometry

MN_ACID (Manganese)

Total Manganese concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

MN_EDTA (Manganese Extractable)

Extractable Manganese concentration (mg/l) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) after shaking 10ml of soil with 50ml of 0.05M EDTA at pH 7.0 for 1h at 20 deg. C and then filtering

MO_ACID (Molybdenum)

Total Molybdenum concentration (mg/kg) determined by Atomic Adsorption Spectrometyr (AAS) in an aqua regia digest

MO_EDTA (Molybdenum Extractable)

Extractable Molybdenum concentration (mg/l) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) after shaking 10ml of soil with 50ml of 0.05M EDTA at pH 7.0 for 1h at 20 deg. C and then filtering

NA_ACID (Sodium)

Total Sodium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

NI_ACID (Nickel)

Total Nickel concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

ANALYSES DEFINITIONS continued

NI_EDTA (Nickel Extractable)

Extractable Nickel concentration (mg/l) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) after shaking 10ml of soil with 50ml of 0.05M EDTA at pH 7.0 for 1h at 20 deg. C and then filtering

P_ACID (Phosphorus)

Total Phosphorus concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

P_OLSON (Phosphorous Extractable)

Extractable Phosphorus concentration (mg/l) determined by shaking 5ml of air dry soil with 100ml of 0.5M sodium bicarbonate for 30mins at 20 deg.C, filtering and then measuring the absorbance at 880 nm colorimetrically with acid ammonium molybdate solution

PB_ACID (Lead)

Total Lead concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

PB_EDTA (Lead Extractable)

Extractable Lead concentration (mg/l) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) after shaking 10ml of soil with 50ml of 0.05M EDTA at pH 7.0 for 1h at 20 deg. C and then filtering

SE_ACID (Selenium)

Total Selenium concentration (mg/kg) determined by Hydride Atomic Absorption Spectrometry (AAS), extracted into hydrochloric acid after digestion with nitric acid and ashing with magnesium nitrate

SR_ACID (Strontium)

Total Strontium concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

V_ACID (Vanadium)

Total Vanadium concentration (mg/kg) determined by Atomic Adsorption Spectrometyr (AAS) in an aqua regia digest

ZN_ACID (Zinc)

Total Zinc concentration (mg/kg) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) in an aqua regia digest

ZN_EDTA (Zinc Extractable)

Extractable Zinc concentration (mg/l) determined by Inductively Coupled Plasma Emission Spectrometry (ICP) after shaking 10ml of soil with 50ml of 0.05M EDTA at pH 7.0 for 1h at 20 deg. C and then filtering

REFERENCES

AVERY, B.W. (1973). Soil classification in the Soil Survey of England and Wales. Journal of Soil Science, 24, 324-338.

AVERY, B.W., (1980). Soil classification for England and Wales. Soil Survey Technical Monograph No.14, Harpenden, UK.

BOORMAN, D.B, HOLLIS, J.M. and LILLEY, A. (1995). Hydrology of Soil Types: a hydrologically-based classification of the soils of the UK. Institute of Hydrology Report No.126, Wallingford, UK.

CLAYDEN, B and HOLLIS, J.M. (1984). Critieria for Differentiating Soil Series. Soil Survey Technical Monograph No.17, pp159. Harpenden, UK.

HALLETT, S.H., KEAY, C.A., JARVIS, M.G. and JONES, R.J.A. (1994). INSURE: Subsidence risk assessment from soil and climate data. Proceedings of the Association for Geographic Information (AGI). National Conference Markets for Geographic Information. Birmingham. 16.2.1 - 16.2.7.

HOLLIS, J.M. (1991). Mapping the vulnerability of aquifers and surface waters to pesticide contamination at the national and regional scale. In: Pesticides in Soils and Water, BCPC Monograph No.47, 165-174.

HOLLIS, J.M., KEAY, C.A., HALLETT, S. H., GIBBONS, J.W. and COURT, A.C. (1995). Using CatchIS to assess the risk to water resources from diffusely applied pesticides. In: British Crop Protection Council monograph No. 62: Pesticide movement to water, 345-350

JARVIS, M.G and HEDGES, M.R. (1994). Use of soil maps to predict the incidence of corrosion and the need for iron mains renewal. Journal of the Institution of Water and Environmental Management 8, (1) 68-75.

PALMER, R.C., HOLMAN, I.P., ROBINS, N.S. and LEWIS, M.A. (1995). Guide to groundwater vulnerability mapping in England and Wales. National Rivers Authority R and D Note 578/1/ST.

To view a glossary visit: <u>www.landis.org.uk/sitereporter/glossary.pdf</u> For a list of further reading visit: <u>www.landis.org.uk/sitereporter/FURTHER_READING.pdf</u>

GIS Datasets:

The GIS data used in the creation of this report is available to lease for use in projects. To learn more about, or acquire the GIS datasets used in the creation of this report, please contact the Nationals Soil Resources Institute:

nsridata@cranfield.ac.uk

+44 (0) 1234 75 2992 National Soil resources Institute Cranfield University Bedfordshire MK43 0AL United Kingdom www.landis.org.uk

Soil Site Report (C) Cranfield university, 2023 Appendix F: Existing Runoff Rate Calculations

Nile & Villiers Flood Risk Assessment & Drainage Strategy

Civic Engineers Ltd		ile: Brownfield runoff calc.p etwork: Storm Network	ofd Page 1				
CAUSEWAY 🔂							
	-	5/09/2023					
		0,00,2020					
	Simulation S	ettings					
Rainfall Methodology F	SR	Drain Down Time (n	nins) 240				
FSR Region E	ingland and Wales	Additional Storage (m	³/ha) 20.0				
M5-60 (mm) 1	.7.000	Check Discharge Ra	te(s) √				
Ratio-R C	.300	1 year	(l/s) 28.6				
Summer CV 1	000	30 year	(l/s) 70.0				
Winter CV 1	Winter CV 1.000						
Analysis Speed	Detailed	Check Discharge Vol	ume x				
Skip Steady State							
	Storm Dura	ations					
15 30 60 120 18	30 240 36	0 480 600 72	20 960 1440				
Return Period Climate Change Additional Area Additional Flow							
(years)	(CC %)	(A %) (Q %)					
100	45	0	0				
<u> </u>	Pre-development D	<u> Discharge Rate</u>					
Site Makeup	Brownfield 1	ime of Concentration (min	s) 15.00				
	MRM	Betterment (9	 O 				
Brownfield Method							
Brownfield Method Contributing Area (ha)	0.295	Q 1 year (l/	s) 28.6				
	0.295 100	Q 1 year (l/ Q 30 year (l/					

Civic Engineers Ltd	Netv	Brownfield runoff calc.pfd vork: Storm Network er Dodd 9/2023	Page 1				
<u>S</u>	imulation Sett	ings					
M5-60 (mm) 17.000 Ratio-R 0.300 Summer CV 1.000 Winter CV 1.000 Analysis Speed Detailed Skip Steady State x	Storm Duratio 240 360 hange Addit	Drain Down Time (mins Additional Storage (m³/ha Check Discharge Rate(s 1 year (l/s 30 year (l/s 100 year (l/s Check Discharge Volume 480 600 720 ional Area Additional Flo (A %) (Q %)) 20.0) \checkmark) 1.5) 3.3) 4.3 $\ge x$ 960 1440				
Pre-deve	elopment Disc	<u>harge Rate</u>					
Site Makeup Greenfield Method Positively Drained Area (ha) SAAR (mm) Host BFIHost Region QBar/QMed conversion factor Growth Factor 1 year	Greenfield FEH 0.510 619 24 0.333 1 1.060 0.85	Growth Factor 30 year Growth Factor 100 year Betterment (%) QMed QBar Q 1 year (I/s) Q 30 year (I/s) Q 100 year (I/s)	1.95 2.48 0 1.6 1.7 1.5 3.3 4.3				

Appendix G: Proposed Surface Water Drainage Layout

Nile & Villiers Flood Risk Assessment & Drainage Strategy

Appendix H: Greenfield Runoff Rate Calculations

Nile & Villiers Flood Risk Assessment & Drainage Strategy

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

					www.uksu	las.com Greenneia ru	JUDI		
Calculated by: Ki	ieran Lyo	ns			Site Detail	S			
Site name: N	ile and Vi	lliers			Latitude:	54.90704	' N		
Site location:	Sunderland				Longitude:	1.37681°	W		
criteria in line with Environ SC030219 (2013) , the SuDS (Defra, 2015). This informa	nment Age S Manual C ation on gr	ncy guidanco 753 (Ciria, 20 eenfield runc	e "Rainfall runoff	f mana	neet normal best practice agement for developments", Nory standards for SuDS basis for setting consents for Date:	6876592 Sep 08 2023 11			
the drainage of surface w	vater runot	ff from sites.			Date.				
Runoff estima approach	tion		FEH Statisti	ical					
Site character	ristics				Notes				
Total site area (ha):	0.81				(1) Is Q _{BAR} < 2.0 l/s/ha?				
Methodology									
Q _{MED} estimation method:	C	Calculate fr	om BFI and SA	AAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.				
BFI and SPR method:	·	Calculate fr IOST	om dominant	t					
HOST class:	2	24			(2) Are flow rates < 5.0 l/s	?			
BFI / BFIHOST:	C	0.333			Where flow rates are less than 5	.0 l/s consent			
Q _{MED} (I/s):	2	2.57			for discharge is usually set at 5.0) l/s if blockage			
Q _{BAR} / Q _{MED} factor:	1	.06			from vegetation and other mate Lower consent flow rates may be				
					blockage risk is addressed by us				
Hydrological characteristic	s	Default	Edited	d	drainage elements.				
SAAR (mm):		619	619	u					
Hydrological region:		3	3		(3) Is SPR/SPRHOST ≤ 0.3?				
Growth curve factor	·1 year:	0.86	0.86		Where groundwater levels are lo	w enough the			
Growth curve factor 30 1.75 1.75 years:			use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.						
Growth curve factor 100 2 08 2 08									

Growth curve factor 200 years:

years:

	Default	Edited
	619	619
	3	3
:	0.86	0.86
	1.75	1.75
	2.08	2.08
	2.37	2.37

1		
· · · ·	1 I C C	
1 roontio	ld runoff	rotoc

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	2.74	2.74
1 in 1 year (l/s):	2.35	2.35
1 in 30 years (l/s):	4.79	4.79
1 in 100 year (l/s):	5.69	5.69
1 in 200 years (l/s):	6.48	6.48

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

Appendix I: Proposed Drainage Calculations (Causeway Flow)

Nile & Villiers Flood Risk Assessment & Drainage Strategy

File: Drainage Layout.pfd Network: Storm Network Kieran Lyons 19/09/2023

Page 1

Design Settings

Rainfall Methodology	FSR	Maximum Time of Concentration (mins)	30.00
Return Period (years)	2	Maximum Rainfall (mm/hr)	50.0
Additional Flow (%)	0	Minimum Velocity (m/s)	1.00
FSR Region	England and Wales	Connection Type	Level Soffits
M5-60 (mm)	17.000	Minimum Backdrop Height (m)	0.200
Ratio-R	0.300	Preferred Cover Depth (m)	1.200
CV	0.750	Include Intermediate Ground	\checkmark
Time of Entry (mins)	4.00	Enforce best practice design rules	x

<u>Nodes</u>

	Name	Area (ha)	T of E (mins)	Cover Level (m)	Node Type	Manhole Type	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)	Notes
\checkmark	1	0.009	4.00	29.200	Junction			440059.037	557037.402	0.700	
\checkmark	2	0.001	4.00	29.600	Manhole	Adoptable	300	440054.026	557048.908	1.200	
\checkmark	3	0.051	4.00	30.000	Junction			440028.807	557112.489	2.080	
\checkmark	4	0.035	4.00	29.300	Junction			440011.975	557157.169	1.854	
\checkmark	5	0.034	4.00	28.610	Junction			440027.954	557162.458	1.830	
\checkmark	6	0.009	4.00	28.630	Junction			440098.493	557051.623	0.730	
\checkmark	7	0.006	4.00	28.800	Junction			440094.433	557063.421	1.100	
\checkmark	8	0.060	4.00	28.000	Junction			440072.130	557128.153	1.200	
\checkmark	9	0.031	4.00	28.400	Junction			440057.981	557123.273	1.890	
\checkmark	10	0.008	4.00	28.940	Junction			440073.712	557043.441	0.700	
\checkmark	11	0.005	4.00	29.420	Junction			440069.151	557054.837	1.200	
\checkmark	12	0.016	4.00	29.290	Junction			440060.113	557078.223	2.200	
\checkmark	13	0.016	4.00	28.370	Junction			440082.541	557046.213	0.470	
\checkmark	14	0.003	4.00	29.000	Junction			440078.920	557057.950	1.200	
\checkmark	15	0.022	4.00	28.150	Junction			440070.446	557081.765	1.320	
\checkmark	16	0.045	4.00	27.490	Manhole	Adoptable	1200	440066.106	557080.240	0.750	
\checkmark	17	0.011	4.00	29.590	Junction			440053.835	557094.425	2.700	
\checkmark	18	0.011	4.00	27.840	Junction			440064.697	557097.940	1.230	
\checkmark	19			27.490	Manhole	Adoptable	1200	440060.363	557096.614	0.920	
\checkmark	20	0.008	4.00	28.850	Manhole	Adoptable	1200	440051.746	557121.096	2.450	
\checkmark	21	0.023	4.00	29.480	Junction			440044.417	557118.503	2.680	

Flow+ v10.5.1 Copyright © 1988-2023 Causeway Technologies Ltd

M5-60 (mm) 17.000

Ratio-R 0.300

File: Drainage Layout.pfd Network: Storm Network Kieran Lyons 19/09/2023

<u>Nodes</u>

	Name	Area (ha)	T of E (mins)	Cover Level (m)	Node Type	Manhole Type	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)	Notes
\checkmark	22	0.012	4.00	29.440	Junction			440037.790	557136.225	3.200	
\checkmark	23	0.011	4.00	27.240	Junction			440050.095	557140.265	1.160	
\checkmark	24	0.038	4.00	27.050	Manhole	Adoptable	1200	440045.657	557138.790	2.210	
\checkmark	25	0.009	4.00	28.990	Junction			440032.623	557150.059	2.740	
\checkmark	26	0.010	4.00	26.940	Junction			440045.368	557153.969	0.980	
\checkmark	27			26.790	Junction			440039.692	557152.219	2.050	
\checkmark	28	0.005	4.00	28.150	Manhole	Adoptable	1200	440035.628	557157.269	3.450	
\checkmark	29			28.080	Manhole	Adoptable	1200	440033.286	557164.228	3.430	
\checkmark	30	0.006	4.00	28.080	Manhole	Adoptable	1200	440035.064	557164.818	3.450	Auto-design is off
\checkmark	31	0.024	4.00	29.000	Junction			440017.961	557178.942	2.260	
\checkmark	32	0.032	4.00	27.780	Junction			440025.706	557180.313	1.420	
\checkmark	33	0.029	4.00	27.000	Junction			440035.956	557183.466	0.900	
\checkmark	34	0.027	4.00	27.550	Junction			440039.558	557172.707	1.560	
\checkmark	35			27.900	Junction			440033.429	557170.080	1.970	
\checkmark	30_OUT			28.110	Manhole	Adoptable	1350	440034.534	557166.390	3.500	Auto-design is off
\checkmark	36_OUT			28.110	Manhole	Adoptable	1200	440039.358	557168.014	3.516	
\checkmark	37	0.020	4.00	30.000	Junction			440023.377	557041.956	1.070	
\checkmark	38	0.018	4.00	30.000	Junction			440028.690	557026.512	1.200	
\checkmark	39			30.000	Manhole	Adoptable	1200	440026.209	557025.975	1.300	
\checkmark	39_OUT			29.940	Manhole	Adoptable	1200	440018.639	557034.892	1.320	
\checkmark	40	0.020	4.00	27.500	Junction			440040.766	557167.650	1.700	
\checkmark	41	0.035	4.00	26.750	Junction			440057.450	557170.671	1.130	
\checkmark	42			26.800	Manhole	Adoptable	1200	440056.676	557172.839	1.250	
\checkmark	42_OUT			26.800	Manhole	Adoptable	1200	440056.363	557173.793	1.260	
						<u>Simulat</u>	ion Settings				
	Rain	nfall Met	hodology	FSR		Su	ummer CV	0.750	Drain Down T	ime (mins	5) 1440
		FS	SR Region	Englan	d and Wales	5	Winter CV	0.840	Additional Stora	ge (m³/ha	a) 0.0

Skip Steady State x

Analysis Speed Normal

Check Discharge Rate(s) x

Check Discharge Volume x

CAUSEWAY	N K	ile: Drainage Layout.pfd etwork: Storm Network ieran Lyons 9/09/2023	Page 3							
15 30	Storm Dura6012018024036		960 1440							
(years) (CC %)	(A %) (Q %)	Return Period Climate Change (years) (CC %)	(A %) (Q %)							
1 0 30 0	10 0 10 0	100 0 100 45								
	Node 42 Online O	rifice Control								
Flap Valve √ Downstream Link 13.001	Replaces Downstream Link √ Invert Level (m) 25.550	Design Depth (m) 1.250 Design Flow (l/s) 1.5	Diameter (m) 0.050 Discharge Coefficient 0.600							
	Node 35 Online O	rifice Control								
Flap Valve x Downstream Link 11.004	Replaces Downstream Link √ Invert Level (m) 25.930	Design Depth (m) 1.970 Design Flow (I/s) 1.5	Diameter (m) 0.050 Discharge Coefficient 0.600							
	Node 30 Online O	rifice Control								
Flap Valve x Downstream Link 1.006	Replaces Downstream Link √ Invert Level (m) 24.630	Design Depth (m) 3.450 Design Flow (l/s) 1.5	Diameter (m) 0.050 Discharge Coefficient 0.600							
	Node 22 Online O	rifice Control								
Flap V Downstream	alve x Replaces Downstream Link 7.001 Invert Level		ter (m) 0.050 fficient 0.600							
	Node 23 Online Orifice Control									
Flap V Downstream	alve x Replaces Downstream Link 8.000 Invert Level		ter (m) 0.050 fficient 0.600							
	Node 25 Online O	rifice Control								
Flap V Downstream	alve x Replaces Downstream Link 9.000 Invert Level		ter (m) 0.050 fficient 0.600							
	Flow+ v10.5.1 Copyright © 1988-20	23 Causeway Technologies Ltd								

File: Drainage Layout.pfd

CAUSEWAY 🛟		Kier	vork: Storm I an Lyons 19/2023	Network				
		Node 26 Online Orifi	<u>ce Control</u>					
	ap Valve x am Link 10.000	Replaces Downstream Lin Invert Level (r		Diameter (m) Discharge Coefficient	0.050 0.600			
		Node 19 Online Orifi	<u>ce Control</u>					
	ap Valve x eam Link 3.004	Replaces Downstream Lin Invert Level (m		Diameter (m) Discharge Coefficient	0.150 0.600			
		Node 21 Online Orifi	<u>ce Control</u>					
	ap Valve x eam Link 7.000	Replaces Downstream Lin Invert Level (m		Diameter (m) Discharge Coefficient	0.050 0.600			
Node 2 Online Orifice Control								
	ap Valve x eam Link 1.001	Replaces Downstream Lin Invert Level (m		Diameter (m) Discharge Coefficient	0.050 0.600			
		Node 11 Online Orifi	<u>ce Control</u>					
	ap Valve x eam Link 3.001	Replaces Downstream Lin Invert Level (m		Diameter (m) Discharge Coefficient	0.050 0.600			
		Node 14 Online Orifi	<u>ce Control</u>					
	ap Valve x eam Link 4.001	Replaces Downstream Lin Invert Level (m		Diameter (m) Discharge Coefficient	0.075 0.600			
		Node 7 Online Orific	<u>e Control</u>					
	ap Valve x eam Link 2.001	Replaces Downstream Lin Invert Level (m		Diameter (m) Discharge Coefficient	0.050 0.600			

		Kieran Lyons 19/09/2023			
	Node 8 Online	<u> Drifice Control</u>			
Flap Valve Downstream Link		m Link √ rel (m) 26.800	Diameter (m) Discharge Coefficient		
	Node 17 Online	Orifice Control			
Flap Valve Downstream Link	-	m Link √ vel (m) 26.890	Diameter (m) Discharge Coefficient		
	Node 18 Online	Orifice Control			
Flap Valve Downstream Link	-	m Link √ vel (m) 26.610	Diameter (m) Discharge Coefficient	0.050 0.600	
	Node 12 Online	Orifice Control			
Flap Valve Downstream Link	-	m Link √ rel (m) 27.090	Diameter (m) Discharge Coefficient	0.050 0.600	
	Node 15 Online	Orifice Control			
Flap Valve Downstream Link	-	m Link √ vel (m) 26.830	Diameter (m) Discharge Coefficient		
	Node 39 Online	Orifice Control			
Flap Valve x Repl Downstream Link 12.002	laces Downstream Link √ Invert Level (m) 28.700	Design Dept Design Flov		Diameter (m) 0.050 ge Coefficient 0.600	
	<u>Node 19 Soakaway</u>	Storage Structure			
Base Inf Coefficient (m/hr) 0.0000 Side Inf Coefficient (m/hr) 0.0000 Safety Factor 2.0) 26.570 Pit	t Width (m) 1.817 Length (m) 39.070 Depth (m) 0.300	Inf Depth (m) Number Required 1	

CAUSEWAY 🛟	Civic Engineers Ltd	File: Drainage Network: Sto Kieran Lyons 19/09/2023	rm Network	Page 6				
	Node	27 Soakaway Storage Struc	ture					
Base Inf Coefficien Side Inf Coefficien Safet	(m/hr) 0.00000 Ir	Porosity 0.95 nvert Level (m) 24.740 f empty (mins) 735	Pit Width (m) 8.602 Pit Length (m) 26.603 Depth (m) 1.200	Inf Depth (m) Number Required 1				
	Node	e 1 Soakaway Storage Struct	<u>ure</u>					
Base Inf Coefficier Side Inf Coefficier Safet	t (m/hr) 0.00000 I	Porosity 0.30 Invert Level (m) 28.500 If empty (mins) 9	Pit Width (m) 2.000 Pit Length (m) 9.760 Depth (m) 0.150	Inf Depth (m) Number Required 1				
	Node	10 Soakaway Storage Struc	ture					
Base Inf Coefficier Side Inf Coefficier Safet	t (m/hr) 0.00000 I	Porosity 0.30 Invert Level (m) 28.240 If empty (mins) 23	Pit Width (m) 2.000 Pit Length (m) 7.320 Depth (m) 0.150	Inf Depth (m) Number Required 1				
	Node	13 Soakaway Storage Struc	ture					
Base Inf Coefficier Side Inf Coefficier Safet	t (m/hr) 0.00000 I	Porosity 0.30 Invert Level (m) 27.900 If empty (mins) 10	Pit Width (m) 2.000 Pit Length (m) 7.320 Depth (m) 0.150	Inf Depth (m) Number Required 1				
	Node	e 6 Soakaway Storage Struct	ture					
Base Inf Coefficier Side Inf Coefficier Safet	t (m/hr) 0.00000 I	Porosity 0.30 Invert Level (m) 27.930 If empty (mins) 0	Pit Width (m) 2.000 Pit Length (m) 9.762 Depth (m) 0.150	Inf Depth (m) Number Required 1				
Node 7 Carpark Storage Structure								
Base Inf Coefficie Side Inf Coefficie Safe	nt (m/hr) 0.00000	Porosity 0.30 Invert Level (m) 27.700 alf empty (mins) 11	Width (m)17.348Length (m)3.547Slope (1:X)84.0	Depth (m) 0.300 Inf Depth (m)				

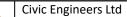
File: Drainage Layout.pfd Network: Storm Network

USEWAY 🛟		Kie	twork: Storr ran Lyons '09/2023	n Network								
Node 14 Carpark Storage Structure												
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	0.30 27.800 8	Width (m) Length (m) Slope (1:X)	10.030 3.489 28.0	Depth (m) Inf Depth (m)	0.300					
	Node 11 Carpark Storage Structure											
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	0.30 28.220 0	Width (m) Length (m) Slope (1:X)	14.600 3.334 88.0	Depth (m) Inf Depth (m)	0.300					
		Node 2 Carpark Stora	ge Structur	2								
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	0.30 28.400 10	Width (m) Length (m) Slope (1:X)	2.009 3.430 100.0	Depth (m) Inf Depth (m)	0.300					
		Node 21 Carpark Stora	age Structur	<u>e</u>								
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	0.30 26.800 24	Width (m) Length (m) Slope (1:X)	14.329 5.975 32.0	Depth (m) Inf Depth (m)	0.300					
		Node 9 Carpark Stora	ge Structur	2								
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	0.30 26.510 0	Width (m) Length (m) Slope (1:X)	14.445 5.855 11.0	Depth (m) Inf Depth (m)	0.300					
		Node 8 Carpark Stora	ge Structur	2								
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	0.30 26.800 48	Width (m) Length (m) Slope (1:X)	15.728 6.073 41.0	Depth (m) Inf Depth (m)	0.300					

CAUSEWAY Control Civic Engineers Li	d File: Drainage Layout.pfd Network: Storm Network Kieran Lyons 19/09/2023	Page 8
	Node 3 Soakaway Storage Structure	
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0	Porosity0.30Pit Width (m)2.000Invert Level (m)27.920Pit Length (m)63.429Time to half empty (mins)9Depth (m)0.300	Inf Depth (m) Number Required 1
	Node 3 Carpark Storage Structure	
Base Inf Coefficient (m/hr) 0.000 Side Inf Coefficient (m/hr) 0.000 Safety Factor 2.0		Depth (m) 0.300 nf Depth (m)
	Node 40 Carpark Storage Structure	
Base Inf Coefficient (m/hr) 0.000 Side Inf Coefficient (m/hr) 0.000 Safety Factor 2.0		Depth (m) 0.300 nf Depth (m)
	Node 5 Soakaway Storage Structure	
Base Inf Coefficient (m/hr) 0.0000 Side Inf Coefficient (m/hr) 0.0000 Safety Factor 2.0	, , , , , , , , , , , , , , , , , , , ,	Inf Depth (m) Number Required 1
	Node 33 Soakaway Storage Structure	
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0	Porosity 0.30 Pit Width (m) 1.250 Invert Level (m) 26.100 Pit Length (m) 28.036 Time to half empty (mins) 236 Depth (m) 0.300	Inf Depth (m) Number Required 1
	Node 34 Soakaway Storage Structure	
Base Inf Coefficient (m/hr) 0.00000 Side Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0		Inf Depth (m) Number Required 1

File: Drainage Layout.pfd Network: Storm Network Kieran Lyons 19/09/2023

			(ieran Lyon .9/09/2023				
		<u>Node 8 Soakaway St</u>	orage Stru	<u>cture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	2.000	Inf Depth (m)	
Side Inf Coefficient (m/hr) Safety Factor	0.00000 2.0	Invert Level (m) Time to half empty (mins)	26.800 59	Pit Length (m) Depth (m)	63.350 0.300	Number Required	1
		<u>Node 22 Soakaway S</u>	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	26.240	Pit Length (m)		Number Required	1
Safety Factor	2.0	Time to half empty (mins)		Depth (m)	0.300		
		Node 25 Soakaway S	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	26.250	Pit Length (m)	14.726	Number Required	1
Safety Factor	2.0	Time to half empty (mins)	240	Depth (m)	0.300		
		<u>Node 23 Soakaway S</u>	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	26.080	Pit Length (m)		Number Required	1
Safety Factor	2.0	Time to half empty (mins)	270	Depth (m)	0.300		
		<u>Node 26 Soakaway S</u>	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	25.960	Pit Length (m)	14.549	Number Required	1
Safety Factor	2.0	Time to half empty (mins)	270	Depth (m)	0.300		
		<u>Node 4 Soakaway St</u>	orage Stru	<u>cture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	2.000	Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	27.446	Pit Length (m)	43.920	Number Required	1
Safety Factor	2.0	Time to half empty (mins)	0	Depth (m)	0.300		



File: Drainage Layout.pfd Network: Storm Network Kieran Lyons 19/09/2023

USEVVAT 😡			eran Lyons 9/09/2023	5			
		Node 5 Carpark Stor	rage Struct	<u>ure</u>			
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000	Porosity Invert Level (m) Time to half empty (mins)	26.780	Length (m)	15.030 5.202 20.0	Depth (m) Inf Depth (m)	0.300
		Node 31 Carpark Sto	rage Struct	<u>ure</u>			
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000	Porosity Invert Level (m) Time to half empty (mins)	26.740	Length (m)	12.276 3.886 100.0	Depth (m) Inf Depth (m)	0.300
		Node 32 Carpark Sto	rage Struct	<u>ure</u>			
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	26.360	Length (m)	27.500 13.480 100.0	Depth (m) Inf Depth (m)	0.300
		Node 35 Carpark Sto	rage Struct	ure			
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	25.930	Length (m)	4.545 34.139 23.0	Depth (m) Inf Depth (m)	0.300
		<u>Node 41 Soakaway St</u>	orage Struc	<u>cture</u>			
Side Inf Coefficient (m/hr)	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	0.30 25.620 112	Pit Width (m) Pit Length (m) Depth (m)	44.194	Inf Depth Number Requ	
		<u>Node 37 Soakaway St</u>	orage Struc	<u>cture</u>			
Side Inf Coefficient (m/hr)	0.00000 0.00000 2.0	Porosity Invert Level (m) Time to half empty (mins)	0.30 28.930 33	Pit Width (m) Pit Length (m) Depth (m)	1.500	Inf Depth Number Requ	

CAUSEWAY	Civic Engineers Ltd	File: Drainage Layout.pfd Network: Storm Network Kieran Lyons 19/09/2023	Page 11
	<u>Node 38 Soakav</u>	vay Storage Structure	
Base Inf Coefficier Side Inf Coefficier Safet			Inf Depth (m) Number Required 1
	Node 27 Depth/	Area Storage Structure	
		Factor2.0Invert Level (m)orosity1.00Time to half empty (mins)	
	(m) (m²) (m²) (m)	Area Inf Area Depth Area Inf Area (m²) (m²) (m) (m²) (m²) .78.4 0.0 0.351 0.0 0.0	
	Node 19 Depth/	Area Storage Structure	
		Factor2.0Invert Level (m)orosity1.00Time to half empty (mins)	
	(m) (m²) (m²) (m) (Area Inf Area Depth Area Inf Area m²) (m²) (m) (m²) (m²) 44.2 0.0 0.350 222.7 0.0	
	Node 40 Soakav	vay Storage Structure	
Base Inf Coefficier Side Inf Coefficier Safet		, , , , , , , , , , , , , , , , , , ,	Inf Depth (m) Number Required 1
	Node 5 Soakaw	vay Storage Structure	
Base Inf Coefficier Side Inf Coefficier			Inf Depth (m) Number Required 1

	igineers Ltd	N K				Page 12	
		<u>Node 21 Soakaway S</u>	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr) Safety Factor	0.00000 2.0	Invert Level (m) Time to half empty (mins)	26.800 37	Pit Length (m) Depth (m)	20.980 0.300	Number Required	1
	2.0	Time to nan empty (mins)	57	Deptil (III)	0.500		
		<u>Node 9 Soakaway St</u>	orage Stru	<u>cture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr)	Invert Level (m)	26.510	Pit Length (m)	21.117	Number Required	1	
Safety Factor	2.0	Time to half empty (mins)	15	Depth (m)	0.300		
		<u>Node 17 Soakaway S</u>	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)		Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	26.890	Pit Length (m)	17.450	Number Required	1
Safety Factor	2.0	Time to half empty (mins)	10	Depth (m)	0.300		
		<u>Node 18 Soakaway S</u>	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	26.610	Pit Length (m)	17.085	Number Required	1
Safety Factor	2.0	Time to half empty (mins)	24	Depth (m)	0.300		
		<u>Node 12 Soakaway S</u>	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	27.090	Pit Length (m)	24.945	Number Required	1
Safety Factor	2.0	Time to half empty (mins)	49	Depth (m)	0.300		
		<u>Node 15 Soakaway S</u>	torage Stru	<u>icture</u>			
Base Inf Coefficient (m/hr)	0.00000	Porosity	0.30	Pit Width (m)	1.500	Inf Depth (m)	
Side Inf Coefficient (m/hr)	0.00000	Invert Level (m)	26.830	Pit Length (m)	24.998	Number Required	1
Safety Factor	2.0	Time to half empty (mins)	26	Depth (m)	0.300		

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
1 year +10% A 15 minute summer	84.280	23.848	30 year +10% A 180 minute summer	49.285	12.683
1 year +10% A 15 minute winter	59.144	23.848	30 year +10% A 180 minute winter	32.037	12.683
1 year +10% A 30 minute summer	57.102	16.158	30 year +10% A 240 minute summer	39.344	10.398
1 year +10% A 30 minute winter	40.072	16.158	30 year +10% A 240 minute winter	26.139	10.398
1 year +10% A 60 minute summer	40.398	10.676	30 year +10% A 360 minute summer	30.343	7.808
1 year +10% A 60 minute winter	26.839	10.676	30 year +10% A 360 minute winter	19.724	7.808
1 year +10% A 120 minute summer	26.432	6.985	30 year +10% A 480 minute summer	24.111	6.372
1 year +10% A 120 minute winter	17.561	6.985	30 year +10% A 480 minute winter	16.019	6.372
1 year +10% A 180 minute summer	21.115	5.434	30 year +10% A 600 minute summer	19.882	5.438
1 year +10% A 180 minute winter	13.725	5.434	30 year +10% A 600 minute winter	13.585	5.438
1 year +10% A 240 minute summer	17.197	4.545	30 year +10% A 720 minute summer	17.819	4.776
1 year +10% A 240 minute winter	11.425	4.545	30 year +10% A 720 minute winter	11.975	4.776
1 year +10% A 360 minute summer	13.694	3.524	30 year +10% A 960 minute summer	14.763	3.887
1 year +10% A 360 minute winter	8.901	3.524	30 year +10% A 960 minute winter	9.779	3.887
1 year +10% A 480 minute summer	11.066	2.925	30 year +10% A 1440 minute summer	10.836	2.904
1 year +10% A 480 minute winter	7.352	2.925	30 year +10% A 1440 minute winter	7.282	2.904
1 year +10% A 600 minute summer	9.254	2.531	100 year +10% A 15 minute summer	263.467	74.552
1 year +10% A 600 minute winter	6.323	2.531	100 year +10% A 15 minute winter	184.889	74.552
1 year +10% A 720 minute summer	8.394	2.250	100 year +10% A 30 minute summer	182.215	51.561
1 year +10% A 720 minute winter	5.641	2.250	100 year +10% A 30 minute winter	127.870	51.561
1 year +10% A 960 minute summer	7.097	1.869	100 year +10% A 60 minute summer	129.253	34.158
1 year +10% A 960 minute winter	4.701	1.869	100 year +10% A 60 minute winter	85.873	34.158
1 year +10% A 1440 minute summer	5.374	1.440	100 year +10% A 120 minute summer	82.920	21.913
1 year +10% A 1440 minute winter	3.611	1.440	100 year +10% A 120 minute winter	55.090	21.913
30 year +10% A 15 minute summer	205.071	58.028	100 year +10% A 180 minute summer	64.733	16.658
30 year +10% A 15 minute winter	143.910	58.028	100 year +10% A 180 minute winter	42.078	16.658
30 year +10% A 30 minute summer	140.191	39.669	100 year +10% A 240 minute summer	51.503	13.611
30 year +10% A 30 minute winter	98.380	39.669	100 year +10% A 240 minute winter	34.217	13.611
30 year +10% A 60 minute summer	98.615	26.061	100 year +10% A 360 minute summer	39.411	10.142
30 year +10% A 60 minute winter	65.517	26.061	100 year +10% A 360 minute winter	25.618	10.142
30 year +10% A 120 minute summer	63.038	16.659	100 year +10% A 480 minute summer	31.156	8.234
30 year +10% A 120 minute winter	41.881	16.659	100 year +10% A 480 minute winter	20.700	8.234

<u>Rainfall</u>

Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)	Event	Peak Intensity (mm/hr)	Average Intensity (mm/hr)
100 year +10% A 600 minute summer	25.583	6.998	100 year +45% CC +10% A 180 minute summer	93.863	24.154
100 year +10% A 600 minute winter	17.480	6.998	100 year +45% CC +10% A 180 minute winter	61.013	24.154
100 year +10% A 720 minute summer	22.845	6.123	100 year +45% CC +10% A 240 minute summer	74.679	19.735
100 year +10% A 720 minute winter	15.353	6.123	100 year +45% CC +10% A 240 minute winter	49.615	19.735
100 year +10% A 960 minute summer	18.812	4.954	100 year +45% CC +10% A 360 minute summer	57.145	14.705
100 year +10% A 960 minute winter	12.461	4.954	100 year +45% CC +10% A 360 minute winter	37.146	14.705
100 year +10% A 1440 minute summer	13.679	3.666	100 year +45% CC +10% A 480 minute summer	45.177	11.939
100 year +10% A 1440 minute winter	9.193	3.666	100 year +45% CC +10% A 480 minute winter	30.014	11.939
100 year +45% CC +10% A 15 minute summer	382.027	108.100	100 year +45% CC +10% A 600 minute summer	37.095	10.146
100 year +45% CC +10% A 15 minute winter	268.089	108.100	100 year +45% CC +10% A 600 minute winter	25.346	10.146
100 year +45% CC +10% A 30 minute summer	264.212	74.763	100 year +45% CC +10% A 720 minute summer	33.125	8.878
100 year +45% CC +10% A 30 minute winter	185.412	74.763	100 year +45% CC +10% A 720 minute winter	22.262	8.878
100 year +45% CC +10% A 60 minute summer	187.417	49.529	100 year +45% CC +10% A 960 minute summer	27.277	7.183
100 year +45% CC +10% A 60 minute winter	124.515	49.529	100 year +45% CC +10% A 960 minute winter	18.069	7.183
100 year +45% CC +10% A 120 minute summer	120.234	31.774	100 year +45% CC +10% A 1440 minute summer	19.835	5.316
100 year +45% CC +10% A 120 minute winter	79.881	31.774	100 year +45% CC +10% A 1440 minute winter	13.330	5.316

15 minute winter

30 minute winter

60 minute winter

15 minute winter

15 minute winter

30 minute winter

10

11

12

13

14

15

3.000

Orifice

4.000

Orifice 16

Orifice 15

Orifice 16

11

12

14

File: Drainage Layout.pfd Network: Storm Network Kieran Lyons 19/09/2023

Results for 1 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event		US Node	Peal (mins		Level (m)	Dept (m)		Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winte)r	1	•	9 1	28.528	0.02		(1/5)	• •	0.0000	ОК
15 minute winte		2		1 3	28.453	0.02					OK
				-			-	1.0		0.0000	-
60 minute winte		3	-	9	27.979	0.05	-	4.1		0.0000	OK
30 minute winte		4	2		27.483	0.03		5.2		0.0000	OK
30 minute sumr	-	5		9	26.822	0.04		7.7		0.0000	OK
15 minute winte		6		0	27.926	0.02	-	1.1		0.0000	ОК
30 minute winte		7		2	27.748	0.04	-	1.5		0.0000	OK
60 minute winte		8		3	26.879	0.07		4.7		0.0000	ОК
15 minute winte	er	9	1	1	26.556	0.04	-	4.9	0.4718	0.0000	ОК
15 minute winte	er	10	1	1	28.279	0.03	39	1.0	0.1717	0.0000	ОК
30 minute winte	er	11	2	4	28.263	0.04	13	1.2	0.3486	0.0000	ОК
60 minute winte	er	12	4	1	27.163	0.07	73	1.6	0.8232	0.0000	ОК
15 minute winte	er	13	1	0	27.940	0.04	10	2.0	0.1765	0.0000	ОК
15 minute winte	er	14	1	2	27.865	0.06	55	2.3	0.1829	0.0000	ОК
30 minute winte	er	15	2	2	26.921	0.09	91	3.6	1.0184	0.0000	ОК
Link Event	US	5 Li	nk	DS	6 Out	flow	Ve	locity	Flow/Cap	Link	Discharge
(Outflow)	Noc	le	1	Noc	le (l,	/s)	(r	n/s)		Vol (m³)	Vol (m³)
15 minute winter	1	1.0	00 2	2		0.9	(0.385	0.175	0.0367	
15 minute winter	2	Ori	fice 3	3		0.9					
60 minute winter	3	1.0	02	4		2.8	(0.500	0.306	0.2679	
30 minute winter	4	1.0	03 !	5		4.8		1.338	0.135	0.0622	
30 minute summer	5	1.0	04	29		7.5		1.902	0.158	0.0220	
15 minute winter	6	2.0	00	7		1.1	(0.583	0.143	0.0289	
30 minute winter	7			3		0.8					
60 minute winter	8	Ori	fice 9	9		2.4					
15 minute winter	9	2.0		20		4.6	(0.878	0.200	0.0356	

0.8

0.7

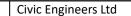
1.1

1.9

1.8

2.7

0.301

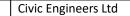

0.502

0.325

0.341

0.0327

0.0501



Results for 1 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Nodo Event	110	Deal	امريما	Donth	Inflow	Nada	Flood	Chatura
Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	16	10	26.816	0.076	8.1	0.0854	0.0000	OK
30 minute winter	17	21	26.936	0.046	1.1	0.3621	0.0000	OK
30 minute winter	18	23	26.673	0.063	1.1	0.4837	0.0000	ОК
30 minute winter	19	23	26.668	0.098	8.5	2.2089	0.0000	ОК
30 minute winter	20	21	26.462	0.062	11.3	0.0701	0.0000	ОК
30 minute winter	21	23	26.865	0.065	2.3	0.9016	0.0000	ОК
240 minute winter	22	148	26.490	0.250	1.0	3.1283	0.0000	ОК
30 minute winter	23	21	26.126	0.046	1.1	0.3642	0.0000	ОК
480 minute winter	24	368	24.970	0.130	6.0	0.1474	0.0000	ОК
30 minute winter	25	21	26.292	0.042	0.9	0.2806	0.0000	ОК
15 minute winter	26	12	26.006	0.046	1.3	0.3000	0.0000	ОК
480 minute winter	27	368	24.970	0.230	6.5	50.0633	0.0000	ОК
480 minute winter	28	360	24.970	0.270	5.1	0.3056	0.0000	ОК
480 minute winter	29	376	24.973	0.323	4.7	0.3656	0.0000	SURCHARGED
480 minute winter	30	360	24.971	0.341	6.9	0.3856	0.0000	SURCHARGED

Link Event (Outflow)	US Node	Link	DS Node	Outflow (l/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	16	3.003	19	8.0	1.160	0.457	0.1522	
30 minute winter	17	Orifice	19	0.7				
60 minute winter	18	Orifice	19	0.5				
30 minute winter	19	Orifice	20	6.8				
30 minute winter	20	2.004	24	11.3	1.302	0.156	0.1619	
30 minute winter	21	Orifice	22	1.0				
240 minute winter	22	Orifice	24	0.8				
30 minute winter	23	Orifice	24	0.7				
30 minute winter	24	2.005	27	14.7	1.678	0.161	0.1951	
30 minute winter	25	Orifice	27	0.6				
15 minute winter	26	Orifice	27	0.7				
30 minute summer	27	2.006	28	-6.9	-0.718	-0.079	0.1536	
30 minute summer	28	2.007	29	-6.2	0.352	-0.067	0.2709	
360 minute winter	29	1.005	30	16.9	0.280	0.147	0.1319	
480 minute winter	30	Orifice	30_OUT	2.9				

15 minute winter

30 minute winter

15 minute winter

30 minute winter

30 minute winter

38

39

40

41

42

12.001 39

14.000 42

13.000

Orifice 39 OUT

Orifice 42_OUT

42

Network: Storm Network Kieran Lyons 19/09/2023

File: Drainage Layout.pfd

Results for 1 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute winter	31	10	26.771	0.031	3.0	0.1789	0.0000	OK
15 minute winter	32	12	26.410	0.050	6.8	1.0343	0.0000	ОК
15 minute winter	33	11	26.168	0.068	7.6	0.7136	0.0000	ОК
60 minute winter	34	47	26.165	0.175	7.6	5.1601	0.0000	SURCHARGED
60 minute winter	35	47	26.163	0.233	6.1	0.1940	0.0000	SURCHARGED
180 minute winter	30_OU	Г 132	24.669	0.059	4.8	0.0845	0.0000	ОК
180 minute winter	36_OU	Г 132	24.646	0.052	4.8	0.0000	0.0000	ОК
15 minute winter	37	11	28.968	0.038	2.5	0.3343	0.0000	ОК
30 minute summe	r 38	22	28.860	0.060	5.7	0.7030	0.0000	ОК
30 minute winter	39	23	28.902	0.202	8.7	0.2282	0.0000	SURCHARGED
15 minute summe	r 39_0U [.]	Г 1	28.620	0.000	2.1	0.0000	0.0000	ОК
15 minute winter	40	11	25.839	0.039	2.5	0.3055	0.0000	ОК
30 minute winter	41	25	25.695	0.075	3.8	2.0014	0.0000	ОК
30 minute winter	42	25	25.695	0.145	2.2	0.1639	0.0000	ОК
15 minute summe	r 42_0U	Г 1	25.540	0.000	1.7	0.0000	0.0000	ОК
Link Event	US	Link	DS	Outflow		•	-	ink Discharge
(Outflow)	Node		Node	(I/s)	(m/s)			(m³) Vol (m³)
15 minute winter	31		32	2.8	-			0230
15 minute winter	32	11.001	33	4.7	1.00	0 0.4	499 0.	0512
15 minute winter	33	11.002	34	7.3	1.10	6 0.4	420 0.	1156
60 minute winter	34	11.003	35	6.1	0.45	1 0.3	360 0.	1174
60 minute winter	35	Orifice	30_OUT	2.4				
180 minute winter	30_OUT	1.007	36_OUT	4.8	0.54	1 0.0	078 0.	0456 86.8
15 minute winter	37	12.000	38	2.2	0.62	6 0.3	142 0.	0722

9.4

2.2

2.1

1.4

1.8

0.677

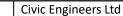
0.615

0.496

0.265

0.324

0.251

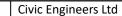

0.0303

0.0771

0.0161

2.9

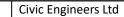
4.1



Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	12	28.550	0.050	2.8	0.2934	0.0000	ОК
15 minute winter	2	12	28.545	0.145	2.8	0.2743	0.0000	SURCHARGED
30 minute winter	3	22	28.034	0.114	13.9	4.6394	0.0000	ОК
30 minute winter	4	20	27.512	0.066	14.7	1.7451	0.0000	ОК
15 minute winter	5	11	26.858	0.078	22.7	0.9860	0.0000	ОК
15 minute winter	6	10	27.941	0.041	2.8	0.0651	0.0000	ОК
30 minute winter	7	24	27.798	0.098	3.6	1.4145	0.0000	ОК
60 minute winter	8	46	26.972	0.172	11.1	9.3283	0.0000	SURCHARGED
15 minute winter	9	11	26.590	0.080	12.3	0.8540	0.0000	ОК
15 minute winter	10	11	28.309	0.069	2.5	0.3026	0.0000	ОК
30 minute winter	11	23	28.305	0.085	2.9	0.9628	0.0000	ОК
60 minute winter	12	44	27.290	0.200	3.7	2.2399	0.0000	SURCHARGED
15 minute winter	13	10	27.971	0.071	4.9	0.3115	0.0000	ОК
15 minute winter	14	13	27.931	0.131	5.6	0.7223	0.0000	SURCHARGED
30 minute winter	15	23	27.069	0.239	8.4	2.6850	0.0000	SURCHARGED
Link Event	US	Link	DS	Outflow	Velocity	Flow/Ca	ap Lin	k Discharge

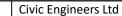
Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	1	1.000	2	2.5	0.449	0.464	0.0737	
15 minute winter	2	Orifice	3	1.8				
30 minute winter	3	1.002	4	8.2	0.665	0.892	0.5834	
30 minute winter	4	1.003	5	14.3	1.762	0.403	0.1378	
15 minute winter	5	1.004	29	22.1	2.502	0.469	0.0497	
15 minute winter	6	2.000	7	2.7	0.673	0.346	0.0594	
30 minute winter	7	Orifice	8	1.4				
60 minute winter	8	Orifice	9	4.3				
15 minute winter	9	2.003	20	11.5	1.081	0.501	0.0722	
15 minute winter	10	3.000	11	2.1	0.419	0.894	0.0702	
30 minute winter	11	Orifice	12	1.3				
60 minute winter	12	Orifice	16	2.2				
15 minute winter	13	4.000	14	4.7	0.642	0.855	0.0845	
15 minute winter	14	Orifice	15	3.6				
30 minute winter	15	Orifice	16	5.3				



Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	16	11	26.905	0.165	18.6	0.1866	0.0000	SURCHARGED
30 minute winter	17	22	27.000	0.110	2.7	0.8652	0.0000	SURCHARGED
30 minute winter	18	24	26.781	0.171	2.7	1.3136	0.0000	SURCHARGED
30 minute winter	19	22	26.753	0.183	18.2	4.1137	0.0000	ОК
30 minute summer	20	19	26.499	0.099	26.4	0.1125	0.0000	ОК
60 minute winter	21	42	26.936	0.136	3.8	2.5527	0.0000	SURCHARGED
120 minute winter	22	72	26.702	0.462	2.8	3.7653	0.0000	SURCHARGED
30 minute winter	23	22	26.190	0.110	2.7	0.8690	0.0000	SURCHARGED
480 minute winter	24	392	25.394	0.554	13.2	0.6266	0.0000	SURCHARGED
15 minute winter	25	13	26.346	0.096	2.8	0.6331	0.0000	ОК
15 minute winter	26	13	26.067	0.107	3.1	0.6991	0.0000	SURCHARGED
480 minute winter	27	392	25.394	0.654	15.8	142.1569	0.0000	SURCHARGED
480 minute winter	28	392	25.394	0.694	10.2	0.7847	0.0000	SURCHARGED
480 minute winter	29	392	25.394	0.744	18.6	0.8411	0.0000	SURCHARGED
480 minute winter	30	392	25.394	0.764	15.3	0.8636	0.0000	SURCHARGED

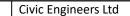
Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	16	3.003	19	17.9	1.259	1.020	0.3053	
30 minute winter	17	Orifice	19	1.5				
60 minute winter	18	Orifice	19	1.1				
30 minute winter	19	Orifice	20	15.5				
30 minute summer	20	2.004	24	26.5	1.628	0.366	0.3043	
60 minute winter	21	Orifice	22	1.7				
120 minute winter	22	Orifice	24	2.5				
30 minute winter	23	Orifice	24	1.5				
15 minute winter	24	2.005	27	37.4	2.256	0.409	0.5968	
15 minute winter	25	Orifice	27	1.4				
15 minute winter	26	Orifice	27	1.5				
15 minute winter	27	2.006	28	-22.3	-1.114	-0.256	0.3886	
15 minute winter	28	2.007	29	-21.2	-0.471	-0.231	0.4963	
120 minute summer	29	1.005	30	-100.4	-1.428	-0.874	0.1319	
480 minute winter	30	Orifice	30_OUT	4.4				



Results for 30 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	31	10	26.791	0.051	7.4	0.4494	0.0000	ОК
120 minute winter	32	90	26.478	0.118	6.6	5.7271	0.0000	SURCHARGED
120 minute winter	33	84	26.471	0.371	8.6	3.1595	0.0000	SURCHARGED
120 minute winter	34	82	26.469	0.479	9.4	8.8813	0.0000	SURCHARGED
120 minute winter	35	82	26.465	0.535	7.0	0.9524	0.0000	SURCHARGED
240 minute winter	30_OUT	188	24.685	0.075	7.7	0.1070	0.0000	ОК
240 minute winter	36_OUT	188	24.660	0.066	7.7	0.0000	0.0000	ОК
30 minute winter	37	24	29.020	0.090	4.8	0.7937	0.0000	ОК
30 minute winter	38	25	29.019	0.219	11.4	2.5800	0.0000	SURCHARGED
30 minute winter	39	25	29.018	0.318	5.1	0.3599	0.0000	SURCHARGED
15 minute summer	39_OUT	1	28.620	0.000	2.6	0.0000	0.0000	ОК
15 minute winter	40	11	25.867	0.067	6.1	0.6333	0.0000	ОК
60 minute winter	41	46	25.862	0.242	6.3	6.4267	0.0000	SURCHARGED
60 minute winter	42	46	25.860	0.310	3.2	0.3502	0.0000	SURCHARGED
15 minute summer	42_OUT	1	25.540	0.000	2.4	0.0000	0.0000	ОК
Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocit		•	Link Discharge

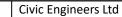
Link Event	US	LINK	DS	Outtiow	velocity	Flow/Cap	LINK	Discharge	
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)	
15 minute winter	31	11.000	32	6.8	1.346	0.510	0.0419		
15 minute winter	32	11.001	33	9.3	1.202	0.985	0.0798		
15 minute summer	33	11.002	34	15.6	1.199	0.894	0.1997		
60 minute winter	34	11.003	35	8.0	0.456	0.477	0.1174		
120 minute winter	35	Orifice	30_OUT	3.7					
240 minute winter	30_OUT	1.007	36_OUT	7.7	0.613	0.124	0.0638	227.9	
15 minute winter	37	12.000	38	5.7	0.712	0.358	0.2140		
120 minute summer	38	12.001	39	9.8	0.678	0.276	0.0447		
30 minute winter	39	Orifice	39_OUT	2.8				7.0	
15 minute winter	40	13.000	42	5.1	0.696	0.771	0.1120		
15 minute summer	41	14.000	42	-2.4	0.502	-0.420	0.0180		
60 minute winter	42	Orifice	42_OUT	2.8				13.2	



Results for 100 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	1	13	28.574	0.074	3.6	0.4362	0.0000	ОК
15 minute winter	2	13	28.566	0.166	3.2	0.3204	0.0000	SURCHARGED
30 minute winter	2	22	28.063	0.100	17.9	5.8227	0.0000	OK
30 minute winter	3				-			
30 minute summer	4	19	27.524	0.078	20.2	2.0577	0.0000	OK
15 minute winter	5	11	26.874	0.094	30.0	1.2581	0.0000	ОК
15 minute winter	6	10	27.947	0.047	3.6	0.1015	0.0000	ОК
30 minute winter	7	24	27.826	0.126	4.6	1.9398	0.0000	SURCHARGED
60 minute winter	8	47	27.021	0.221	14.3	12.5975	0.0000	SURCHARGED
15 minute winter	9	11	26.604	0.094	15.4	1.0191	0.0000	ОК
30 minute winter	10	23	28.329	0.089	2.5	0.3924	0.0000	ОК
30 minute winter	11	24	28.327	0.107	3.7	1.2829	0.0000	SURCHARGED
60 minute winter	12	45	27.363	0.273	4.7	3.0687	0.0000	SURCHARGED
15 minute winter	13	12	28.014	0.114	6.3	0.5017	0.0000	SURCHARGED
15 minute winter	14	14	27.950	0.150	6.4	0.9297	0.0000	SURCHARGED
30 minute winter	15	22	27.410	0.580	10.3	3.3803	0.0000	SURCHARGED

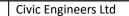
Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
		1 000					. ,	voi (iii)
15 minute summer	1	1.000	2	3.2	0.475	0.588	0.0844	
15 minute winter	2	Orifice	3	2.0				
30 minute winter	3	1.002	4	10.2	0.687	1.118	0.6896	
30 minute summer	4	1.003	5	19.0	1.835	0.535	0.1751	
15 minute winter	5	1.004	29	29.3	2.656	0.621	0.0619	
15 minute winter	6	2.000	7	3.4	0.713	0.446	0.0685	
30 minute winter	7	Orifice	8	1.7				
60 minute winter	8	Orifice	9	5.0				
15 minute winter	9	2.003	20	14.5	1.142	0.630	0.0846	
15 minute winter	10	3.000	11	2.7	0.443	1.112	0.0880	
30 minute winter	11	Orifice	12	1.5				
60 minute winter	12	Orifice	16	2.6				
15 minute winter	13	4.000	14	5.2	0.693	0.961	0.0961	
15 minute winter	14	Orifice	15	3.9				
30 minute winter	15	Orifice	16	7.5				



Results for 100 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	16	21	27.017	0.277	19.2	0.3132	0.0000	SURCHARGED
30 minute winter	17	22	27.039	0.149	3.5	1.1679	0.0000	SURCHARGED
30 minute winter	18	24	26.836	0.226	3.5	1.7371	0.0000	SURCHARGED
30 minute winter	19	23	26.800	0.230	21.2	5.1554	0.0000	SURCHARGED
30 minute summer	20	19	26.512	0.111	31.9	0.1261	0.0000	ОК
60 minute winter	21	44	26.971	0.171	5.0	3.6439	0.0000	SURCHARGED
60 minute winter	22	41	26.853	0.613	4.3	3.7653	0.0000	SURCHARGED
30 minute winter	23	22	26.228	0.148	3.5	1.1723	0.0000	SURCHARGED
600 minute winter	24	480	25.636	0.796	14.4	0.9000	0.0000	SURCHARGED
30 minute winter	25	21	26.377	0.127	2.8	0.8440	0.0000	SURCHARGED
30 minute winter	26	21	26.106	0.146	3.1	0.9577	0.0000	SURCHARGED
600 minute winter	27	480	25.636	0.896	17.2	194.6905	0.0000	SURCHARGED
600 minute winter	28	480	25.635	0.935	6.4	1.0580	0.0000	SURCHARGED
600 minute winter	29	480	25.635	0.985	6.2	1.1144	0.0000	SURCHARGED
600 minute winter	30	480	25.635	1.005	8.3	1.1368	0.0000	SURCHARGED

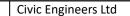
Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
· · ·							• •	vor (m.)
15 minute winter	16	3.003	19	20.6	1.280	1.171	0.3055	
30 minute winter	17	Orifice	19	1.8				
60 minute winter	18	Orifice	19	1.3				
30 minute winter	19	Orifice	20	18.5				
30 minute summer	20	2.004	24	32.0	1.704	0.443	0.3515	
60 minute winter	21	Orifice	22	2.0				
60 minute winter	22	Orifice	24	3.2				
30 minute winter	23	Orifice	24	1.8				
15 minute winter	24	2.005	27	46.4	2.336	0.507	0.8634	
30 minute winter	25	Orifice	27	1.7				
30 minute winter	26	Orifice	27	1.8				
15 minute winter	27	2.006	28	-30.0	-1.225	-0.345	0.4548	
15 minute winter	28	2.007	29	-28.6	-0.557	-0.312	0.5171	
60 minute winter	29	1.005	30	41.7	0.594	0.363	0.1319	
600 minute winter	30	Orifice	30_OUT	5.1				



Results for 100 year +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	31	10	26.799	0.059	9.5	0.5732	0.0000	ОК
120 minute winter	32	92	26.548	0.188	11.0	13.4559	0.0000	SURCHARGED
60 minute winter	33	38	26.559	0.459	13.5	3.1595	0.0000	SURCHARGED
60 minute winter	34	38	26.559	0.569	15.2	8.8813	0.0000	SURCHARGED
60 minute winter	35	38	26.555	0.625	9.7	1.2877	0.0000	SURCHARGED
240 minute winter	30_OUT	216	24.689	0.079	8.6	0.1135	0.0000	ОК
240 minute winter	36_OUT	216	24.664	0.070	8.6	0.0000	0.0000	ОК
60 minute winter	37	44	29.094	0.164	4.3	1.4417	0.0000	SURCHARGED
60 minute winter	38	44	29.093	0.293	7.7	3.4456	0.0000	SURCHARGED
60 minute winter	39	44	29.091	0.391	9.5	0.4427	0.0000	SURCHARGED
15 minute summer	39_OUT	1	28.620	0.000	2.9	0.0000	0.0000	ОК
60 minute winter	40	47	25.942	0.142	4.3	1.9730	0.0000	SURCHARGED
60 minute winter	41	42	25.948	0.328	8.2	7.9681	0.0000	SURCHARGED
60 minute winter	42	45	25.936	0.386	3.8	0.4368	0.0000	SURCHARGED
15 minute summer	42_OUT	1	25.540	0.000	2.7	0.0000	0.0000	ОК

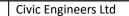
Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	31	11.000	32	8.8	1.465	0.658	0.0489	
15 minute winter	32	11.001	33	9.3	1.192	0.979	0.0839	
15 minute summer	33	11.002	34	17.3	1.226	0.993	0.1997	
30 minute winter	34	11.003	35	10.7	0.607	0.635	0.1174	
60 minute winter	35	Orifice	30_OUT	4.0				
240 minute winter	30_OUT	1.007	36_OUT	8.6	0.635	0.139	0.0693	300.1
15 minute winter	37	12.000	38	7.4	0.695	0.469	0.2717	
30 minute winter	38	12.001	39	10.1	0.699	0.284	0.0447	
60 minute winter	39	Orifice	39_OUT	3.2				12.0
15 minute summer	40	13.000	42	5.6	0.744	0.851	0.1239	
60 minute winter	41	14.000	42	3.7	0.504	0.655	0.0180	
60 minute winter	42	Orifice	42_OUT	3.1				17.4



Results for 100 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	1	22	28.644	0.144	4.1	0.8440	0.0000	SURCHARGED
30 minute winter	2	22	28.626	0.226	2.8	0.4475	0.0000	SURCHARGED
30 minute winter	3	23	28.131	0.211	25.3	8.6287	0.0000	SURCHARGED
15 minute winter	4	11	27.545	0.099	29.8	2.6062	0.0000	ОК
15 minute winter	5	11	26.910	0.130	44.7	1.9409	0.0000	ОК
15 minute winter	6	10	27.959	0.059	5.2	0.1714	0.0000	ОК
60 minute winter	7	43	27.888	0.188	4.7	3.0656	0.0000	SURCHARGED
60 minute winter	8	44	27.480	0.680	20.6	17.9162	0.0000	SURCHARGED
600 minute winter	9	480	26.662	0.152	6.1	1.7628	0.0000	SURCHARGED
60 minute winter	10	42	28.384	0.144	2.5	0.6346	0.0000	SURCHARGED
60 minute winter	11	43	28.379	0.159	3.5	2.0502	0.0000	SURCHARGED
60 minute winter	12	41	28.137	1.047	6.6	3.3731	0.0000	SURCHARGED
15 minute winter	13	11	28.201	0.301	9.2	0.6610	0.0000	FLOOD RISK
30 minute winter	14	23	28.077	0.277	7.7	2.2628	0.0000	SURCHARGED
30 minute winter	15	21	28.018	1.188	13.9	3.3803	0.0000	FLOOD RISK

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	1	1.000	2	3.5	0.489	0.647	0.0982	
30 minute winter	2	Orifice	3	2.3				
30 minute winter	3	1.002	4	12.8	0.767	1.397	0.7348	
15 minute winter	4	1.003	5	27.4	1.903	0.772	0.2401	
15 minute winter	5	1.004	29	42.2	2.792	0.895	0.0847	
15 minute winter	6	2.000	7	5.0	0.778	0.650	0.0786	
60 minute winter	7	Orifice	8	2.1				
60 minute winter	8	Orifice	9	9.4				
15 minute winter	9	2.003	20	20.1	1.265	0.874	0.1056	
15 minute summer	10	3.000	11	3.6	0.490	1.512	0.0960	
60 minute winter	11	Orifice	12	1.9				
60 minute winter	12	Orifice	16	4.9				
15 minute winter	13	4.000	14	7.8	0.993	1.429	0.0961	
30 minute winter	14	Orifice	15	5.5				
15 minute summer	15	Orifice	16	9.9				



Results for 100 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	16	21	27.435	0.695	29.2	0.7866	0.0000	FLOOD RISK
30 minute winter	17	23	27.129	0.239	5.0	1.8779	0.0000	SURCHARGED
30 minute winter	18	23	27.150	0.540	5.0	2.3102	0.0000	SURCHARGED
30 minute winter	19	22	27.008	0.438	31.1	6.8954	0.0000	SURCHARGED
600 minute winter	20	480	26.661	0.261	15.1	0.2949	0.0000	SURCHARGED
60 minute winter	21	46	27.056	0.256	7.3	6.6091	0.0000	SURCHARGED
60 minute winter	22	36	27.000	0.760	5.8	3.7653	0.0000	SURCHARGED
600 minute winter	23	480	26.660	0.580	2.9	2.3806	0.0000	SURCHARGED
600 minute winter	24	480	26.659	1.819	20.5	2.0578	0.0000	SURCHARGED
600 minute winter	25	480	26.660	0.410	1.9	1.9914	0.0000	SURCHARGED
600 minute winter	26	480	26.660	0.700	3.3	1.9674	0.0000	FLOOD RISK
600 minute winter	27	480	26.659	1.919	25.7	284.7318	0.0000	FLOOD RISK
600 minute winter	28	480	26.659	1.959	9.8	2.2155	0.0000	SURCHARGED
600 minute winter	29	480	26.659	2.009	9.2	2.2717	0.0000	SURCHARGED
600 minute winter	30	480	26.658	2.028	8.5	2.2939	0.0000	SURCHARGED

Link Event (Outflow)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	16	3.003	19	29.1	1.652	1.655	0.3055	
30 minute winter	17	Orifice	19	2.3				
60 minute winter	18	Orifice	19	2.2				
30 minute winter	19	Orifice	20	28.3				
30 minute winter	20	2.004	24	46.1	1.846	0.638	0.4675	
60 minute winter	21	Orifice	22	2.4				
60 minute winter	22	Orifice	24	3.8				
30 minute winter	23	Orifice	24	2.4				
15 minute winter	24	2.005	27	62.8	2.452	0.687	1.0347	
30 minute winter	25	Orifice	27	2.2				
30 minute winter	26	Orifice	27	2.4				
15 minute winter	27	2.006	28	-43.9	-1.365	-0.504	0.4565	
15 minute winter	28	2.007	29	-42.1	-0.686	-0.459	0.5171	
30 minute summer	29	1.005	30	-28.9	-0.411	-0.252	0.1319	
720 minute winter	30	Orifice	30_OUT	7.3				

Results for 100 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 99.12%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute winter	31	136	26.868	0.128	3.8	1.5594	0.0000	SURCHARGED
180 minute winter	32	136	26.865	0.505	12.6	25.9187	0.0000	SURCHARGED
180 minute winter	33	132	26.848	0.748	8.2	3.1595	0.0000	FLOOD RISK
180 minute winter	34	132	26.843	0.853	8.9	8.8813	0.0000	SURCHARGED
180 minute winter	35	132	26.837	0.907	6.6	2.6725	0.0000	SURCHARGED
360 minute winter	30_OUT	296	24.701	0.091	11.3	0.1308	0.0000	ОК
360 minute winter	36_OUT	296	24.674	0.080	11.3	0.0000	0.0000	ОК
60 minute winter	37	43	29.703	0.773	9.0	2.6396	0.0000	FLOOD RISK
60 minute winter	38	43	29.699	0.899	10.1	3.5378	0.0000	SURCHARGED
60 minute winter	39	43	29.696	0.996	6.3	1.1265	0.0000	SURCHARGED
15 minute summer	39_OUT	1	28.620	0.000	3.4	0.0000	0.0000	ОК
120 minute winter	40	86	26.296	0.496	7.1	6.9293	0.0000	SURCHARGED
120 minute winter	41	86	26.290	0.670	7.2	7.9681	0.0000	SURCHARGED
120 minute winter	42	86	26.283	0.733	6.8	0.8294	0.0000	SURCHARGED
15 minute summer	42_OUT	1	25.540	0.000	3.0	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Outflow)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute winter	31	11.000	32	12.6	1.663	0.939	0.0563	
15 minute summer	32	11.001	33	9.1	1.168	0.958	0.0839	
15 minute summer	33	11.002	34	18.7	1.221	1.068	0.1997	
30 minute winter	34	11.003	35	18.9	1.075	1.125	0.1174	
180 minute winter	35	Orifice	30_OUT	4.9				
360 minute winter	30_OUT	1.007	36_OUT	11.3	0.681	0.182	0.0845	490.2
15 minute winter	37	12.000	38	9.5	0.734	0.603	0.2875	
30 minute winter	38	12.001	39	10.1	0.688	0.284	0.0447	
60 minute winter	39	Orifice	39_OUT	5.1				17.3
30 minute winter	40	13.000	42	-5.8	-0.736	-0.871	0.1309	
30 minute winter	41	14.000	42	10.7	1.371	1.908	0.0180	
120 minute winter	42	Orifice	42_OUT	4.4				32.2

Appendix J: SuDS Management & Maintenance Schedule

Nile & Villiers Flood Risk Assessment & Drainage Strategy

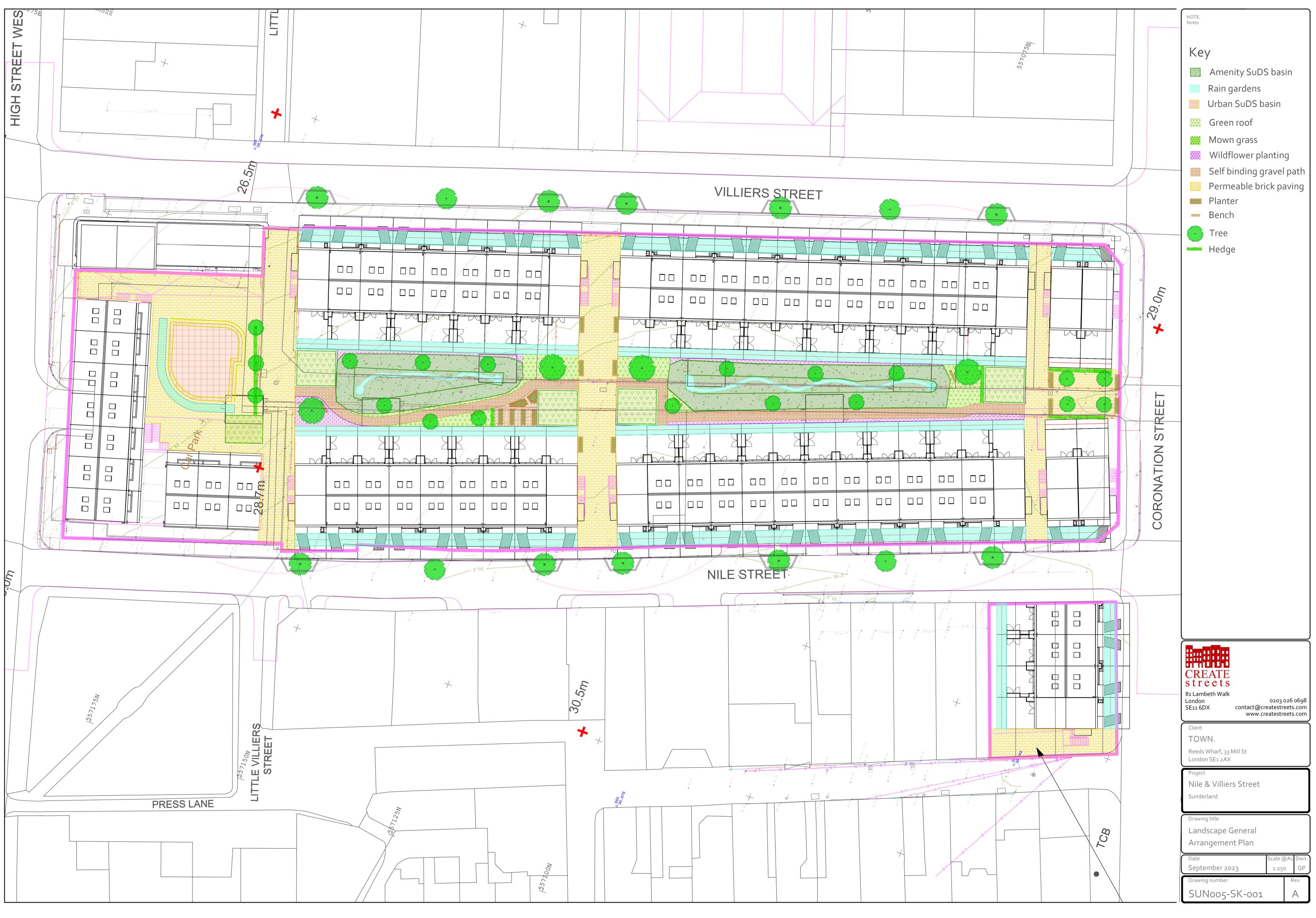
Nile & Villiers - SuDS Maintenance Schedule

Rev 02 - 09/10/2023

For Planning

The below table is extracted from The SuDS Manual 2015 (CIRIA C753)

The below table is extracted from 1	The SUDS Manual 2015 (CIRIA C753)			
Activity / Maintenance Schedule	Required Action	Frequency		
Bioretention Systems		-		
	Inspect infiltration surfaces for silting and ponding, record de-watering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary	Quarterly		
Biorelention Systems Inspect infituation surfaces for silting and ponding, record de watering time of the facility and assess standing water levels in underdrain (if appropriate) to determine if maintenance is necessary Regular inspections Check operation of underdrains by inspection of flows after rain Masses plants for divess and the species at the analysis operations of mass after rain Check operation of underdrains by inspection of flows after rain Regular maintenance Remove litter and surface debris and weeds Remove litter and surface debris and weeds Regular maintenance Regular eary plants to maintain planting demsity Remove litter and surface debris and weeds Regular maintenance Regular eary plants to maintain planting demsity variang away surface mulch, scarifying surface of medium and replacing mulch Remedial actions Remove and replace filter medium, improve resion protection if required Remedial actions Remove and replace filter medium and vegetation above Pervious Pavements Stabilise and mow contributing and adjacent areas Occasional maintenance Brushing and vacuuming (standard cosmetic sweep over whole surface) Remedial actions Remedial and work to any depressions, rutting and surfaced or broken blocks considered detrimental to the structural performance or a hazard to users, and replace lost (onting material) Remedial actions Inspect in for evidence of p		Annually		
	Assess plants for disease infection, poor growth, invasive species etc and replace as necessary	Quarterly		
	Quarterly			
	Remove litter and surface debris and weeds	Quarterly (or more frequentl reasons)		
Regular maintenance	Replace any plants, to maintain planting density	As required		
	Remove sediment, litter, and debris build-up from around inlets or from forebays	Quarterly to biannually		
Openational maintenance	Infill any holes or scour in the filter medium, improve erosion protection if required	As required		
Occasional maintenance	Repair minor accumulations of silt by raking away surface mulch, scarifying surface of medium and replacing mulch	As required		
Remedial actions	Remove and replace filter medium and vegetation above	As required but likely to be >		
Pervious Pavements		•		
Regular maintenance	Brushing and vacuuming (standard cosmetic sweep over whole surface)	Once a year, after autumn lea frequency as required, based observations of clogging or m recommendations – pay part where water runs onto previo impermeable areas as this are the most sediment		
	Stabilise and mow contributing and adjacent areas	As required		
Occasional maintenance	Removal of weeds or management using glyphospate applied directly into the weeds by an applicator rather than spraying	As required – once per year of pavements		
	Remediate any landscaping which, through vegetation maintenance or soil slip, has been raised to within 50 mm of the level of the paving	As required		
Remedial actions		As required		
Remedial actions users, a	Rehabilitation of surface and upper substructure by remedial sweeping	Every 10 to 15 years or as rec performance is reduced due		
	Initial inspection	Monthly for three months aft		
Monitoring	Inspect for evidence of poor operation and/or weed growth – if required, take remedial action	Three-monthly, 48 h after lar months		
	Inspect silt accumulation rates and establish appropriate brushing frequencies	Annually		
	Monitor inspection chambers	Annually		
Detention Basins				
	Remove litter and debris	Monthly		
	Cut grass – for spillways and access routes	Monthly (during growing sea		
	Cut grass – meadow grass in and around basin	Half yearly (spring – before n		
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as req		
	Inspect inlets, outlets, and overflows for blockages, and clear if required	Monthly		
Regular maintenance		Monthly		

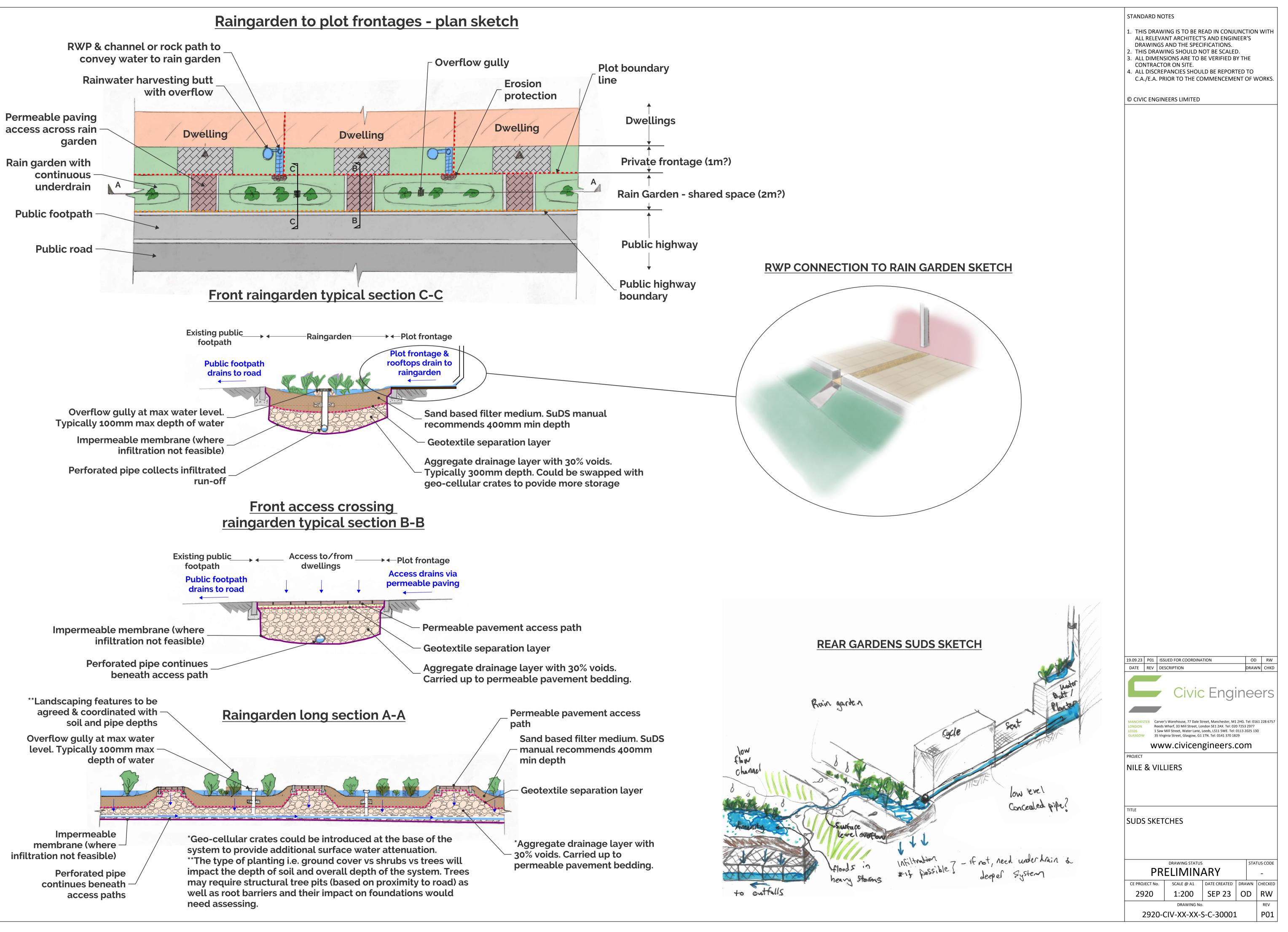

	Maintenance Responsibility
ntly for tidiness or aesthetic	Development management team
leaf fall, or reduced ed on site-specific manufacturer's articular attention to areas vious surface from adjacent area is most likely to collect r on less frequently used required (if infiltration le to significant clogging) after installation arge storms in the first six	Development management team
eason), or as required e nesting season, and autumn) equired) en annually or as required	

Activity / Maintenance Schedule	Required Action	Frequency
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually (or as required)
	Manage wetland plans in outlet pool – where provided	Annually
	Reseed areas of poor vegetation growth	As required
	Prune and trim any trees and remove cuttings	Every 2 years, or as required
Occasional maintenance		Every 5 years, or as required (
	Remove sediments from inlets, outlets, forebay and main basin when required	requirements where effective
		is provided)
	Repair erosion or other damage by reseeding or re-turfing	As required
Domodial actions	Realignment of rip-rap	As required
Remedial actions	Repair/rehabilitation of inlets, outlets, and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required
Attenuation Storage Tank		-
	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then a
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove	Annually
	and replace surface infiltration medium as necessary	Annually
	Remove sediment from pre-treatment structures and/or internal forebays	Annually, or as required
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required
Manitarian	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
Monitoring	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years, or as required
Conventional drainage systems &	flow control devices	
Regular maintenance	Remove litter and debris	Monthly (or as required)
Openational marint	Monitoring	Inspect monthly (and after lar
Occasional maintenance	Sediment management. Removal of accumulated silt from system.	Annually or as required
Remedial actions	Structure rehabilitation/repair	As required

	Maintenance Responsibility
ed) equired equired (likely to be minimal effective upstream source control	Development management team
ed equired	Development management team
ed) after large storms) ed	Development management team

Appendix K: Landscape Masterplan

Nile & Villiers Flood Risk Assessment & Drainage Strategy



Eaves Ht	

Appendix L: SuDS Sketches

Nile & Villiers Flood Risk Assessment & Drainage Strategy

Manchester	London	Leeds	Glasgow
Carver's Warehouse	Reeds Wharf	Unit 02/01 Tower Works	35 Virginia Street
77 Dale Street	33 Mill Street	Globe Road	Glasgow G1 1TN
Manchester M1 2HG	London SE1 2AX	Leeds LS11 5QG	
+44 (0)161 228 6757	+44 (0)20 7253 2977	+44 (0)113 2025 130	+44 (0)141 370 1829

civicengineers.com