

Nile and Villiers, Sunderland

Ground Investigation Interpretive Report

Town Development Limited

Issue V1

October 2023

Nile and Villiers, Sunderland

Ground Investigation Interpretive Report

Project Reference: 3001

Client	Town Development Limited
Our Reference	3001 – Nile and Villiers, Sunderland
Produced by	Теггу Ѕргу
Checked by	Mike Taylor
Submitted	Issue V1 – October 2023

TOWN.

Constructionline

'Shadbolt Group' is a trading name of 'Shadbolt Consulting Ltd' Company Number 8819849 Shadbolt Group, 18 Bewick Road, Gateshead, NE8 4DP T: (0191) 478 3330 W: www.shadboltgroup.net

PS Passionate about innovation Autodesk' Revit Certified Professional

CONTENTS

1.0		
1.1	1 Aims and Objectives	4
1.2	2 Proposed Development	4
1.3	3 Scope of Works	5
1.4	4 Limitations	5
2.0	SITE INFORMATION	6
2.1	1 General	6
2.2	2 Site Description	6
3.0	HISTORICAL LAND USE	
4.0	PREVIOUS INVESTIGATIONS	9
4.1	1 General	9
5.0	SITE INVESTIGATION	
5.1	1 Proposed Development	
5.2	2 Scope of Investigation	
5.3	3 In-Situ Testing	
5.4	4 Geotechnical Laboratory Testing	
5.5	5 Chemical Laboratory Testing	
5.6	6 Groundwater and Gas Monitoring	11
5.7	7 Limitations	
6.0	GROUND CONDITIONS	
6.1	1 Topsoil	
6.2	2 Made Ground	
6.3	3 Superficial Deposits	
6.4	4 Solid Deposits	
6.5	5 Groundwater	
6.6	6 Ground Obstructions	
6.7	7 Observed Contamination	
6.8	8 In-Situ Geotechnical Testing	
7.0	GROUND CONTAMINATION ASSESSMENT	
7.1	1 Legislation	
7.2	2 Assessment Methodology	15
7.3	3 Derivation of Soils SSVs	
7.4	4 Soil Contamination Assessment	16
7.4	4.1 Soils Statistical Assessment	
7.4	4.2 Discussion	
7.5	5 Leachate Contamination Assessment	20
7.6	6 Groundwater Contamination Assessment	20
7.7	7 Waste Acceptance Criteria	20
7.8	8 Gas and Groundwater Monitoring	20

8.0	GAS RISK ASSESSMENT	
8.1	Gas Monitoring	21
8.2	Gas Risk Assessment	21
8.3	Discussion	22
9.0	ENVIRONMENTAL RISK ASSESSMENT	23
9.1	Contamination Sources	23
9.2	Potential Contaminant Pathways	23
9.3	Potential Contamination Receptors	24
9.4	Qualitative Risk Assessment	24
9.4.1	Current and Future Site Users	27
9.4.2	Ground Excavation / Development Workers	28
9.4.3	Controlled Waters	28
9.4.4	Flora	28
10.0	ENGINEERING CONSIDERATIONS	
10.1	Proposed Development	29
10.2	Ground Obstructions	29
10.3	Coal Mining Risk Assessment	
10.4	Foundations and Settlement Issues	
10.5	Earthworks	
10.6	Chemical Attack on Buried Structures	
10.7 I	Infrastructure	
11.0	CONCLUSIONS AND RECOMMENDATIONS	
11.1	Conclusions	
11.2	Recommendations	34
12.0 R	REFERNCES	

2

APPENDICES

Appendix A	Report Conditions
Appendix B	Drawing No. 3001-003 – Exploratory Hole Location Plan Exploratory Hole Logs
Appendix C	Shadbolt Soil Screening Values
Appendix D	Chemical Laboratory Results Statistical Analysis
Appendix E	Geotechnical Laboratory Results
Appendix F	Gas and Groundwater Monitoring Results
Appendix G	Proposed Development Drawing

3

1.0 INTRODUCTION

Shadbolt Environmental (SE) part of the **Shadbolt Group (SG)** were commissioned by **Town Development Limited** to undertake an intrusive ground investigation at Niles Street and Villiers Street within Sunderland City Centre, Tyne and Wear, SR1 1HA. The investigation was carried out under the supervision of **SE.** The site works were undertaken between Monday 11th September 2023 and Wednesday 20th September 2023.

This report provides an assessment of the ground conditions encountered at the site with regards to the proposed mixed Commercial and Residential development. The investigation was limited to investigating the nature of shallow Made Ground and superficial soils and potential obstructions in accordance with the clients brief.

1.1 Aims and Objectives

The purpose of the investigation was to determine the existing geotechnical and geochemical ground conditions relating to natural and artificial ground conditions and past uses of the site which may provide constraints to a potential future development.

1.2 Proposed Development

At this stage it is understood that the final development will comprise residential properties with areas of private gardens and public open spaces and associated infrastructure across much of the site with a large commercial unit on the northern boundary. An indicative Plan of Proposals as supplied by the Client's civil engineer is shown below for information. The plan is orientated with North to the left.

Indicative Development Layout

1.3 Scope of Works

The works undertaken by SE to date comprise:

- 3 No. day's windowless sample drilling.
- 2 No. day's trial pitting.
- In-situ testing.
- 3 No. BRE Soakaway Testing
- Chemical laboratory testing.
- Geotechnical laboratory testing.
- Ground gas and groundwater monitoring.
- Contamination risk assessment.

1.4 Limitations

The information presented in this report comprises data the strata observed in the excavations and the results of the site and laboratory tests as detailed within the report. Shadbolt Group take no responsibility for ground conditions which occur between the exploratory hole positions.

Every effort has been made to interpret the conditions between investigation locations; however, such information is indicative. A detailed review of the extent of limitations of this report is included in the **Report Conditions** included in **Appendix A** and the standard terms and conditions of the agreement.

2.0 SITE INFORMATION

2.1 General

The site is located within a mixed residential and commercial area of Sunderland City Centre, Tyne & Wear, to the south of High Street West. The site comprises a rectangular plot of land. The total size of the site is approximately 180m by 55m and has an area of approximately 3 ha (7.4 acres) and currently comprises open land covered with scrub grass with hardstanding and tarmacadam car parking in the north and south.

The approximate National Grid Reference (NGR) for the centre of the site is 440050m E, 557125m N.

A general site location plan of the site is presented as Figure 1 and an aerial photograph as Figure 2.

Figure 1 – General Site Location Plan

2.2 Site Description

The site is a rectangular plot of open land, previously commercial properties, and derelict land, covered with scrub grass with hardstanding and tarmacadam car parking in the north and south of the site. An electricity substation is located within the site adjacent to the Nile Street site boundary. The site is generally flat with a slight dip to the south adjacent to Villiers Street. The site is bisected by Little Villiers Street, which appears to be a former narrow lane between Nile Street and Villiers Street. The area surrounding the site is predominately commercial properties with some open public land and residential properties to the west of Nile Street beyond which is the bulk of Sunderland City Centre. To the east of Villiers Street is the A1018, beyond which is the area of Sunderland Docks. To the north of the site is High Street West beyond which there are commercial properties with the River Wear approximately 300m to the north. To the south of the site is Coronation Street beyond which are commercial properties.

Figure 2 – Aerial Photograph Showing the Site's Red Line Boundary.

3.0 HISTORICAL LAND USE

SE has had sight of a Phase 1 Environmental Site Assessment, prepared for Homes England by AECOM Ltd dated February 2020 (60586086_ACM_RP_EN_0001_B).

The report indicates that the earliest mapping, circa 1855, shows the site to be occupied terraced buildings with rear courtyards. The site remained relatively unchanged until circa 1950s when the residential properties were replaced with commercial properties, warehousing and the "Bethel Congregational Church". Further developments followed with a steel frame being erected in 2007/08 in the north of the site for a large L shaped commercial / mixed use development in the order of 4 storeys height on the site of the current northern car park, however this was never completed and was removed in later years and the land brought up to current levels.

Between 2008 and 2018 mapping indicated the buildings on-site were demolished with additional site clearance being undertaken at the time of the AECOM report.

Recently 2 No. units were demolished in the south west of the site after a water leak washed out soils beneath footings (anecdotal evidence from neighbouring property) leaving the site in its current configuration.

4.0 PREVIOUS INVESTIGATIONS

4.1 General

With the exception of the AECOM, Phase 1 Environmental Site Assessment, referenced above, **SE** has not had sight of any other previous investigation reports at the site.

AECOM noted the presence of ashy Made Ground and demolition rubble with a potential for asbestos fibres to be present across the site. The potential for shallow obstructions relating to previous developments was also considered to be high.

Historical borehole data for the area site, was obtained from the British Geological Survey, Geoindex Onshore, website. There are 5 No. historic boreholes within 50m of the site boundary. The general strata encountered comprised Made Ground to a maximum depth of 2.32m below ground level (BGL) (NZ45NW20/21). Fine to medium Sand to a maximum depth of 5.5m BGL (NZ35NE225). The Sand was reported in 3 No. boreholes to be underlain by Boulder Clay (NZ45NW116 and NZ45NW20). 2 No. boreholes (NZ45NW20 and NZ45NW21) were recorded as terminating in Dolomitic Limestone.

The available historic exploratory hole logs are presented in Appendix B.

5.0 SITE INVESTIGATION

5.1 Proposed Development

The proposed development at the site is predominantly residential end use with areas of public open spaces and a commercial building in the north of the site.

5.2 Scope of Investigation

The site works comprised the following:

- 9 No. Mechanically Excavated Trial Pits to a maximum depth of 3.00m BGL
- 3 No. Mechanically Excavated Trial Pits for soakaway testing to a maximum depth of 2.00m BGL
- 14 No. Windowless Sample Boreholes drilled to a maximum depth of 5.00m BGL including 4 No. which terminated on shallow obstructions.
- Appropriate sample retrieval.
- Geotechnical and Geo-Environmental laboratory analysis.
- 5 No. gas and groundwater monitoring installations.
- 6 No. gas and groundwater monitoring visits

A total of 22 No. exploratory holes have been undertaken at the site as part of this investigation.

Plans showing the location of the exploratory holes undertaken as part of investigation are presented on **Drawing No. 3001-003 Exploratory Hole Location Plan** in **Appendix B**.

The soils and solid geology encountered during this investigation have been logged in accordance with BS5930:2015 "Code of Practice for Site Investigation". During excavation, representative samples were taken at regular intervals from the exploratory holes to assist in the identification of the soils and solid geology and allow selected geotechnical and geochemical testing to be programmed.

5.3 In-Situ Testing

Standard Penetration Tests (SPT) were undertaken in suitable deposits during the siteworks. Hand Shear Vane (HSV) testing was not undertaken due to the granular nature of the soils encountered in Trial Pits. Results of the in-situ testing are presented on the relevant exploratory hole logs included in **Appendix B**.

5.4 Geotechnical Laboratory Testing

Selected samples (scheduled by **SE**) were submitted to our nominated geotechnical testing laboratory. Laboratory testing included Atterberg Limits, Particle Size Distribution (PSD), Dry Density/Moisture Content and Californian Bearing Ratio (CBRs). Samples scheduled for geotechnical testing were delivered to Exploration and Testing Associates Ltd in Durham (UKAS Accreditation No. 20632) where testing was carried out in accordance with BS 1377:1990 "Methods of Test for Soils for Civil Engineering Purposes" and any relevant updates to parts.

The results of geotechnical testing are presented in Appendix E.

5.5 Chemical Laboratory Testing

A targeted programme of chemical laboratory analysis was scheduled by **SE** to determine the concentrations of potential contaminants which may be present within the soils encountered at the site. The selected samples were submitted to Derwentside Environmental Testing Services Ltd. (UKAC Accreditation No. 2139)

25 No. soil samples were tested for a range of determinants including heavy and phytotoxic metals, metalloids, inorganic and organic contaminants. These samples, along with an additional 1 No. sample, were also screened for the presence of asbestos.

The results of the chemical analysis undertaken have been compared to the Shadbolt Soil Screening Values, based on LQM and CIEH research and published Soil Guideline Values.

The proposed development comprises a predominantly residential development with private and shared outdoor spaces across much of the site and a commercial building in the north. Assessments will initially be made against criteria for a Residential end use with plant uptake as this represents the most sensitive end user group.

Results of chemical analysis are discussed in Section 7.

Shadbolt Soil Screening Values are presented in Appendix C.

5.6 Groundwater and Gas Monitoring

6 No. monitoring wells were installed as part of the recent works. 1 No. gas and ground water visits have been completed in accordance with the client's brief.

The monitoring procedure comprised the following measurements:

- Atmospheric temperature, pressure, and ambient oxygen concentration on site immediately prior to and on completion of monitoring
- Emission (flow) rate
- Methane, oxygen, and carbon dioxide concentrations using a GasData infrared landfill gas analyser.
- Standing water level using a dip meter.

Gas and groundwater monitoring has been undertaken as requested, and an interim assessment is presented in Section 8 based on available data. Results to date are presented in **Appendix F**.

5.7 Limitations

It should be noted that although every effort has been made to ensure the accuracy of the data obtained from the investigation, the possibility exists of variations in ground and groundwater conditions between and around the exploratory hole locations; additionally, groundwater levels and ground gas concentrations will vary seasonally and with changes in weather conditions.

6.0 GROUND CONDITIONS

Reference should be made to the individual exploratory hole logs presented in **Appendix B** for detailed descriptions of strata encountered at each location. The ground conditions encountered at the site are summarised in the following sections.

6.1 Topsoil

With the exception of 5 No. windowless sample boreholes (WS-01B, WS-02, WS-02A and WS-02B which were situated on tarmac and WS-09 which was commenced through concrete), Topsoil was encountered in all exploratory holes between ground level and a minimum of 0.15m BGL (TP-04, TP-04A, TP-06 and TP-07) and a maximum depth of 0.40m BGL (TP-08). The topsoil encountered was generally described as, dark brown to reddish brown or greyish brown slightly silty slightly gravelly fine to medium Sand with high root content. Gravel is angular to sub-round fine to coarse and includes brick, sandstone and coal.

6.2 Made Ground

Made ground was encountered in all exploratory holes between ground level (WS-1A, WS-02 and WS-02A) and 2.00m BGL (TP-03).

Windowless sample boreholes WS-02, WS-02A, WS-02B and WS-01B encountered tarmacadam between ground level and 0.18m BGL. WS-09 encountered concrete at the surface to a depth of 0.20m BGL.

The Made Ground encountered in the remaining exploratory hole generally consisted of Pinky brown to reddish brown and grey Sand and Gravel to very gravelly fine to medium Sand, with high cobble content and low boulder content. Gravel is angular to sub-angular fine to coarse and includes brick, slate, tile and concrete. Cobbles are angular small to large of brick and concrete. Boulders are angular to sub-angular small of brick and concrete. other constituents included iron, plastic and glass content. The Made Ground encountered was typical of building rubble backfill and included an element of slag or ash materials.

6.3 Superficial Deposits

Superficial deposits were recorded in all trial pits and 6 No. window sample boreholes. Windowless sample boreholes WS-01, WS-01A, WS-02 and WS-02A were terminated in Made Ground on obstructions. The depth to superficial deposits varied from 0.70m BGL (TP-04, WS-04 and WS-07) to a maximum depth 5.00m BGL (WS-06, WS-07 WS-08 and WS-09). The superficial Glaciofluvial deposits were generally described as yellowish brown becoming brown slightly slity slightly gravelly fine to medium Sand, becoming moist with depth. Gravel is sub-angular to sub-round fine to medium of sandstone.

6.4 Solid Deposits

Solid deposits were encountered in WS-01B and WS-02B at 2.60m BGL and at 4.30m BGL in WS-03. Solid geology comprised cream coloured limestone with a thin weathering profile. This is the Roker Limestone which is recorded as a Principal Aquifer.

6.5 Groundwater

Significant groundwater was not encountered during the works on site. Strata encountered in WS-04 below 4.70m were noted to be damp.

In post site works monitoring (1 No. visit) all installations were recorded to be dry.

It should be noted that groundwater levels will vary seasonally.

Gas and groundwater monitoring results are presented in Appendix F.

6.6 Ground Obstructions

Ground obstructions were encountered in trial pits TP-04, TP-04A and TP-06 between 0.30m BGL and 0.70m BGL and in windowless sample boreholes WS-01, WS-01A, WS-02 and WS-02A. No other significant ground obstructions were encountered in the remaining exploratory holes other than cobbles and boulders of brick, concrete and sandstone.

6.7 Observed Contamination

No significant visual or olfactory evidence of significant contamination was noted during the site investigation works although the presence of contaminants cannot be ruled out with higher potential noted within the Made Ground based on the prevalence of demolition derived materials and slag/ash content.

6.8 In-Situ Geotechnical Testing

The in-situ and laboratory geotechnical testing has been undertaken for the site are shown in **Table 6.8.1**.

Method	Strata	Parameter	Comments
Atterberg Soil Classification Testing	Natural Cohesive Strata	MC 17% to 20% LL 33% to 35% Modified Plasticity Index 14.5% to 16.5%	Glacial Till is of Low to Intermediate Plasticity with a Low Volume Change Potential
CBR Testing (Laboratory Remoulded)	Made Ground Granular Material	CBR Results (Lab Remoulded) in range of 7.7% to 16.5% (4.5kg Hammer)	A CBR value of at least 7% should be easily achievable utilising site won granular Made Ground.
Particle Size Distribution (PSD)	Made Ground Granular Material	Clay/Silt 18-49% Sand 38-71% Gravel 17-40% Cobbles 0-12%	Made Ground Granular Material Class 1A (SHW600)
Particle Size Distribution (PSD	Natural Granular Material	Clay/Silt 7-17% Sand 68-88% Gravel 4-16% Cobbles 0%	Natural Granular Material generally Class 1B (SHW600)

Compaction (Dry Density- Moisture Content Relationship)	Made Ground Granular Material	Optimum Moisture Content (OMC) 13% to 15%	Made Ground Granular Materials close to or slightly dry of optimum moisture content at time of SI.
Compaction (Dry Density- Moisture Content Relationship)	Natural Granular Material	Optimum Moisture Content (OMC) 10% to 14%	Granular materials are close to or slightly dry of optimum moisture content at time of SI.
Standard Penetration Test	Made Ground Granular Material	SPT 'N-Values' in range N=4 to N=32 (Average N = 12)	SPTs confirm Made Ground cohesive material to be loose to medium dense.
Standard Penetration Test	Natural Granular Material	SPT 'N-Values' in range N=6 to N=24 (Average N = 13)	SPTs confirm Made Ground Granular material to be loose to medium dense.
Standard Penetration Test	Natural Cohesive Material	SPT 'N-Values' in range N=17 to N=20 (Average N = 12)	HSVs indicate natural cohesive soil strength to be generally Firm to Stiff (Medium to High Strength).
Standard Penetration Test	Limestone Bedrock	SPT Refusals of N=50+	SPTs confirm limestone bedrock to be at least Very Weak with minimal penetration achieved and little to no weathering profile.

Table 6.8.1: Summary of In-situ Laboratory Geotechnical Testing Undertaken

7.0 GROUND CONTAMINATION ASSESSMENT

7.1 Legislation

Part IIA of the Environmental Protection Act 1990 provides for the control of specific threats to health or the environment from existing land contamination. In accordance with the Act, the statutory guidance document and The Contaminated Land (England) Regulations 2000, the definition of contaminated land is intended to embody the concept of risk assessment. Therefore, land is only "contaminated land" where it appears to the regulatory authority, by reason of substances within, on, or under the land that:

Significant harm is being caused, or there is significant possibility of such harm being caused; or

Pollution of controlled waters is being, or is likely to be, caused.

The guidance defines "risk" as the combination of:

Probability, or frequency, of occurrence of a defined hazard (for example, exposure of a property to a substance with the potential to cause harm); and

Magnitude (including the seriousness) of the consequences.

For a risk of pollution or environmental harm to occur as a result of ground contamination, all the following elements must be present:

Source, i.e. a substance that is capable of causing pollution or harm.

Receptor (or target), i.e. something which could be adversely affected by the contaminant; and

Pathway, i.e. a route by which the contaminant can reach the receptor.

If one of these elements is missing (source, pathway, or receptor) there can be no significant risk. If all are present then the magnitude of the risk is a function of the magnitude and mobility of the source, the sensitivity of the receptor and the nature of the migration pathway.

7.2 Assessment Methodology

To assess the environmental risk posed by potential contaminants within the underlying soils to human health and controlled waters, Shadbolt Group undertook an initial screen of the laboratory results using in-house Soil Screening Values (SSVs). This initial screening was undertaking using SSVs developed for the most sensitive anticipated end use, **RESIDENTIAL with Home Grown Produce.**

The proposed development is to comprise predominantly residential properties with private gardens and shared open space, along with a commercial property in the north of the site.

Contaminant concentrations below the SSVs are considered not to warrant further risk assessment. Concentrations of potential contaminants above the SSVs require further consideration of the potential pollutant linkages.

It should be noted that exceedance of the SSVs does not necessarily require that the site be remediated.

7.3 Derivation of Soils SSVs

A discussion on the development of **Shadbolt SSVs** is presented, along with the relevant values at the time of writing in **Appendix C.**

7.4 Soil Contamination Assessment

In total 25 No. soil samples from the **SE** ground investigation were submitted for chemical testing of a suite of common contaminants. The laboratory chemical results have reported the majority of contaminants to be present at concentrations within Shadbolt SGVs.

Contaminant (SGV)	Location	Reported Concentration	Exceedance	Material
	TP-01 0.40m	280 mg/kg	1.40x	Demolition MG
	TP-03 1.00m	210 mg/kg	1.05x	Demolition MG
	TP-04 0.50m	270 mg/kg	1.35x	Demolition MG
Lead (200 mg/kg)	TP-05 0.50m	240 mg/kg	1.20x	Demolition MG
	WS-03 0.50m	280 mg/kg	1.40x	Demolition MG
	WS-07 0.50m	390 mg/kg	1.95x	Demolition MG
	WS-09 0.50m	230 mg/kg	1.15x	Demolition MG
Benzo(a)pyrene (2.2 mg/kg)	TP-01 0.40m	2.4 mg/kg	1.09x	Demolition MG
Benzo(a)pyrene	TP-01 0.40m	2.4 mg/kg	2.40x	Demolition MG
Surrogate Marker Approach	WS-01B 0.50m	1.5 mg/kg	1.50x	Demolition MG
(1.0 mg/kg)	WS-06 0.50m	1.6 mg/kg	1.60x	Demolition MG

Reported concentrations exceeding their respective SGV are as follows:

Table 7.4 – Samples with Contaminants exceeding SGVs

Where higher concentrations of Total Petroleum Hydrocarbons were reported further TPH CWG analysis was scheduled in order to assess risks presented by individual aliphatic and aromatic hydrocarbon bands.

On this basis all TPH bands are within their respective assessment criteria.

<u>Asbestos</u>

26 No. samples were scheduled for Asbestos Screening, of these 2 No. samples identified Chrysotile fibres as bundles and in microscopic bitumen fragments in shallow Made Ground in the north of the site (WS-01B and WS-03).

Quantification testing has been undertaken on the samples with Asbestos detections and has reported Asbestos content as follows:

Location	Material	Asbestos Noted
WS-01B East of northern car park	Granular Made Ground	Chrysotile fibre bundles, 0.004% w/w
WS-03 North of eastern grassed area.	Granular Made Ground	Asbestos Containing Material (ACM) Bitumen fragments with 8% Chrysotile Asbestos content of sample 0.559% w/w

Asbestos fibres detected in WS-01B indicate there is potential for fibre release from Made Ground beneath the car park in the north of the site if exposed or disturbed.

ACMs identified in WS-03 were noted to be microscopic bitumen fragments with asbestos content within. This could be fragments of bitumen products such as roofing felt or floor or roofing tile or may be a bitumen adhesive which has been incorporated into demolition materials. Bitumen products generally have a lower potential for fibre release due to the inherent encapsulation.

The asbestos content reported by weight was based on a sub-sample size of 6.47g of which 0.45g was recorded as ACM. Based on a small sample weight even a small fragment of bitumen ACM would skew the reported content when assessed by weight and may not be representative of the material as a whole.

At this stage the reported concentrations should be considered in the context of the site as a whole and 17 No. other similar samples reporting negative asbestos detections. The reported detections currently represent isolated hotspots and should be investigated further by additional confirmatory sampling but also demonstrate the potential for ACMs or fibres to be present sporadically throughout the site.

7.4.1 Soils Statistical Assessment

Soil statistical assessment was carried out on 19 No. samples of Granular Made Ground recovered from the site in respect of concentrations of Lead and Benzo(a)pyrene.

<u>Lead</u>

The statistical analysis of the Lead concentration in the Granular Made Ground indicated a statistical upper confidence limit (U95) of 198.47mg/kg which is below the SGV of 200mg/kg. Therefore, the risk of the reported Lead concentrations posing significant harm to future occupants is considered to be Low on a site wide basis.

Lead, UCL95% 198.47mg/kg

Benzo(a)pyrene

The statistical analysis of the Benzo(a)pyrene (BaP) concentration in the Granular Made Ground indicates a statistical upper confidence limit (U95) of 1.05mg/kg which marginally exceeds the SGV of 1.00mg/kg with statistical outliers noted.

The lower SGV of 1.00mg/kg utilising the surrogate marker approach is considered appropriate based on the PAH profile (LQM Profiling Tool) indicating the potential presence of coal tar or coal tar derivatives such as creosote, however, the profile also fits that of a combustion (soot) source suggesting a coal fire or coal fired boiler is likely and is considered appropriate on review of the site's history.

Benzo(a)pyrene, UCL95% 1.05mg/kg

With the highest statistical outlier (hotspot) removed from the dataset, 2.40mg/kg reported in TP-01 at 0.40m, the upper confidence limit (U95) is 0.75mg/kg which is within the SGV of 1.00mg/kg.

Benzo(a)pyrene, 1st outlier removed, UCL95% 0.75mg/kg

7.4.2 Discussion

With the first outlier removed from the data set the risk to future site users from Benzo(a)pyrene is considered to be low. Due to the nature of materials identified at the site it is likely that imported material will be required in order to provide a suitable growing medium in the proposed private and shared gardens. This will provide further isolation between future site users and potential contaminants present in the underlying Made Ground.

7.5 Leachate Contamination Assessment

No leachate analysis was undertaken at the site due to the predominantly low concentrations of contaminants reported.

7.6 Groundwater Contamination Assessment

Significant groundwater was not encountered during site works or in post site works monitoring.

7.7 Waste Acceptance Criteria

WAC has not been assessed at this time. It is anticipated that the majority of the soils will remain on site as part of the development.

7.8 Gas and Groundwater Monitoring

6 No. monitoring wells were installed by **SE** as part of the commissioned works. Results of the gas and groundwater monitoring undertaken in these installations to date are reported within **Appendix F**.

8.0 GAS RISK ASSESSMENT

8.1 Gas Monitoring

Ground gas and water monitoring wells have been monitored in accordance with the process outlined in CIRIA C665 and BS8576:2013, however, only 1 No. visit has been undertaken to date at the Client's request.

8.2 Gas Risk Assessment

CIRIA have developed a characterisation system for all buildings except for low-rise housing developments with a clear ventilated sub-floor void. Low-rise housing developments are generally covered by the NHBC's "Guidance on Evaluation of Development Proposals on Sites where Methane and Carbon Dioxide are Present".

The CIRIA system as detailed in CIRIA Report C665, is a risk-based system which compares gas emission rates to generic Characteristic Situations (CS) derived and expanded on from CIRIA 149. The NHBC guidance uses a concept of 'Traffic Lights' developed by Boyle and Witherington for the assessment of gas emission rates for a residential development.

Each methodology utilises 'Typical Maximum Concentrations' for initial screening purposes and the development of risk-based Gas Screening Values (GSVs) for consideration when the Typical Maximum Concentrations are exceeded. The GSVs are calculated by multiplying the borehole flow rate by the concentration in the air stream of the particular gas being considered.

The Traffic Light and Characteristic Situation systems have been designed for both methane and carbon dioxide, with the worst-case value adopted for assessment.

Ground Gas Monitoring Data

To date 1 No. monitoring visit has been completed. The gas monitoring results are presented in Appendix F.

The maximum Methane and Carbon Dioxide emissions, which are representative of the Typical Maximum Concentrations, were as follows:

Methane:	0.0% v/v
Carbon Dioxide:	3.2% v/v

The maximum recorded concentration of methane was 0.0% v/v; however, 0.1% v/v will be used for calculations as this is the limit of detection of the instrument.

The maximum recorded concentration of carbon dioxide to date was 3.2% (peak and steady). Carbon dioxide concentrations at this location (WS-08) and the associated reduced oxygen concentrations may be related to microbial aerobic respiration within the borehole following the increase in available oxygen.

The gas steady flow rate during the gas and groundwater monitoring visit was 0.0 l/hr; however, 0.1 l/hr will be used for the calculations as this is the limit of detection of the instrument.

The calculated GSVs using maximum values for Methane and Carbon Dioxide are as follows:

Methane:	(0.1/100) x 0.1 = 0.0001 l/hr
Carbon Dioxide:	(3.2/100) x 0.1 = 0. 0032 l/hr

When monitoring data to date is compared to the values in Table 8.5 in CIRIA Report C665 and the NHBC Guidance Table 14.1 and Table 14.2. The site is classified under the former as: **Characteristic Situation 1 (CS1)** and **Green** under the later.

The Gas monitoring results to date are presented within Appendix F.

8.3 Discussion

Using calculated GSVs for Methane and Carbon Dioxide, the assessment methods classify the site in the lowest risk category, i.e., **CS1** and **Green**.

The site is in an area where 1-3% of properties are above the action level, therefore no Radon Protective Measures are required for new properties or extensions as confirmed in GroundSure Report obtained for the site by AECOM (Dated 29 October 2019).

On this basis it is likely that no specific ground gas protection measures will be required in developments at this site, however this is a preliminary assessment based on the 1 No. monitoring visit completed to date.

For a full assessment to be undertaken guidance recommends a minimum of 6 No. readings over a period of 2-3 months including at times of falling barometric pressure. Further monitoring should be undertaken in order to make a full assessment and allow the development to proceed on a more assured basis.

9.0 ENVIRONMENTAL RISK ASSESSMENT

All available data has been collated and evaluated to establish an initial conceptual model of the site in its current condition and post development identifying sources, pathways and receptors and pollutant linkages. The conceptual site model has been developed in accordance with BS10175: 2011.

The proposed end use has not been confirmed however, it is currently believed to be residential with associated infrastructure and public open spaces. A Tier 1 risk assessment has been undertaken using the appropriate guidelines for a **Residential with Home Grown Produce** end use which is envisaged to be the most sensitive end use in the proposed development.

9.1 Contamination Sources

In total 25 No. soil samples from the **SE** ground investigation were submitted for chemical testing of a suite of common contaminants as discussed in Section 7.4.

The laboratory chemical results have reported the majority of contaminants to be present at concentrations within Shadbolt SGVs.

Isolated instances of elevated Lead were reported in granular Made Ground across the site, but statistical analysis indicates the risk to the end user to be low with respect to Lead.

3 No. elevated concentrations of Benzo(a)pyrene were reported within granular Made Ground; statistical analysis indicates each of the elevated concentrations has the potential to be a statistical outlier (hotspot), but with the largest exceedance excluded (2.4mg/kg in TP-01 at 0.40m) the UCL95% falls within acceptable limits.

Considering the chemical testing undertaken to date and the general prevailing ground conditions it is possible that other significant contamination will be encountered during foreseeable works and post-development occupation including isolated instances of contaminants which may be present on site through leakages, spillages, localised historic importing of contaminants or soils or unrecorded fly-tipping of wastes.

9.2 Potential Contaminant Pathways

The following potential contaminant pathways are possible and should be considered during the construction phase and the post development end use.

- Inhalation / ingestion of dust, gases and vapour.
- Ground gas / vapour migration.
- Dermal contact.
- Ingestion of soils and / or groundwater.
- Leaching of contaminants from made ground soils to groundwater.
- Groundwater flow.
- Soil gas migration through Made Ground, granular soils, fissures and mine entries.
- Migration and leakage through service conduits.

9.3 Potential Contamination Receptors

A number of potential receptors may be affected by contaminants present on the site, based on the current and proposed site usage.

Potential receptors on site and in the surrounding area are considered to be:

Human Health

- Current site users.
- Future site users.
- Site development workers.
- Maintenance workers

Environmental

- Future establishment of flora and fauna.
- Buildings and underground services.
- Controlled waters and aquifers.

9.4 Qualitative Risk Assessment

By considering the sources, pathways and receptors, an assessment of the environmental risks is made with reference to the significance and degree of the risk to the development for current and future site users.

The qualitative risk assessment has been undertaken in accordance with BS10175:2011 and CIRIA Document C552: Contaminated Land Risk assessment, A Guide to Good Practice.

The risk assessment has been carried out by assessing the severity of the potential consequence, taking into account both the potential severity of the hazard and the sensitivity of the target, based on the categories given in Table 9.4.1 below.

Category	Definition
Severe	Acute risks to human health, catastrophic damage to buildings / property, major pollution of controlled waters
Medium	Chronic risk to human health, pollution of sensitive controlled waters, significant effects on sensitive ecosystems or species, significant damage to buildings or structures
Mild	Pollution of non-sensitive waters, minor damage to buildings or structures
Minor	Requirement for protective equipment during site works to mitigate health effects, damage to non-sensitive ecosystems or species

Table 9.4.1 – Definition of Risk Severity

The likelihood of an event (probability) takes into account both the presence of the hazard and target and the integrity of the pathway and has been assessed based on the categories given in Table 9.4.2 below.

Category	Definition
High Likelihood	Pollutant linkage may be present, and risk is almost certain to occur in long term, or there is evidence of harm to the receptor
Likely	Pollutant linkage may be present, and it is probable that the risk will occur over the long term
Low Likelihood	Pollutant linkage may be present, and there is a possibility of the risk occurring, although there is no certainty that it will do so
Unlikely	Pollutant linkage may be present, but the circumstances under which harm would occur are improbable

Table 9.4.2 – Definition	of Risk Probability
--------------------------	---------------------

The potential severity of the risk and the probability of the risk occurring have been combined in accordance with the following matrix, Table 9.4.3 below, in order to give a level of risk for each potential hazard.

		Potential Severity			
		Severe	Medium	Mild	Minor
Probability ol Risk	High Likelihood	Very high	High	Moderate	Low/Moderate
	Likely	High	Moderate	Low/Moderate	Low
	Low likelihood	Moderate	Low/Moderate	Low	Very low
	Unlikely	Low/Moderate	Low	Very low	Very low

Table 9.4.3 – Risk Matrix of Potential Hazard

The contamination risk assessment for the site based on identified sources is presented in Table 9.4.4. Further discussion of the more significant pollutant linkages is provided in a discussion below for each receptor in turn.

Hazard / Pollutant	Source	Pathway	Receptor	Potential severity	Probability of risk	Level of risk
Made Ground / Demolition Fill and site history with substation, garages, workshops, printing, and furniture works. • Polyaromatic Hydrocarbons (PAHs) • Phenols • Total Petroleum Hydrocarbons (both aliphatic and aromatic) • Asbestos, • Heavy metals and metalloids • Pesticides • inorganic compounds (pH, sulphates, sulphur, cyanides) • Coal Tars, Burning Residues.		Inhalation, Dermal contact, and Ingestion	Current and Future site users.	Medium	Unlikely	Low
		Direct Contact	Proposed buildings and structures and services.	Medium	Unlikely	Low
		Inhalation, Dermal contact, and Ingestion	Development workers.	Medium	Low Likelihood	Low/Moderate
		Root Uptake	Plants	Minor	Low likelihood	Very Low
		Contaminated Groundwater Migration	Secondary (A) Aquifer (Glaciofluvial Deposits)	Medium	Unlikely	Low
			Principal Aquifer (Roker Limestone)	Medium	Unlikely	Low
			Culvert / Water Course	Medium	Unlikely	Low
	Potential	Leaching of Soil Contamination	Secondary (A) Aquifer (Glaciofluvial Deposits)	Mild	Low Likelihood	Very Low
	Contaminants Made		Principal Aquifer (Roker Limestone)	Medium	Low Likelihood	Low/Moderate
	Ground, former and		Culvert / Water Course	Medium	Unlikely	Low
	current off- site and on- site sources.	Migration through service conduits, foundations, drainage solutions	Secondary (A) Aquifer (Glaciofluvial Deposits)	Medium	Low Likelihood	Low/Moderate
			Principal Aquifer (Roker Limestone)	Medium	Low Likelihood	Low/Moderate
			Culvert / Water Course	Medium	Unlikely	Low
		Surface Run-off	Secondary (A) Aquifer (Glaciofluvial Deposits)	Minor	Low Likelihood	Very Low
			Principal Aquifer (Roker Limestone)	Medium	Low Likelihood	Low/Moderate
			Culvert / Water Course	Medium	Unlikely	Low
		Volatilisation (vapour phase migration and portioning into sorbed / dissolved phase).	Secondary (A) Aquifer (Glaciofluvial Deposits)	Minor	Low Likelihood	Very Low
			Principal Aquifer (Roker Limestone)	Medium	Low Likelihood	Low/Moderate
			Culvert / Water Course	Medium	Unlikely	Low
Hazardous gas and volatile compounds	Migration from possible Made Ground and buried organic soils		Future site users, Structures	Medium	Low Likelihood	Low
		Inhalation, Explosion	Site development workers	Medium	Unlikely	Low

Table 9.4.4 – Contamination Risk Assessment

9.4.1 Current and Future Site Users

Potential pathways considered significant to current and future site users, including pedestrians, dog walkers, maintenance workers and residents, are dermal contact, ingestion of impacted soils and inhalation of dusts and vapours.

Laboratory chemical analysis has indicated slightly elevated levels of TPH and PAH compounds. Locally elevated reported concentrations of Lead have been shown by statistical analysis to be within acceptable limits on a site wide basis.

2 No. samples of Made Ground of a dataset of 19 No. returned positive tests for Chrysotile Asbestos fibres. While not widespread this indicates the potential for fibres to be present within the granular Made Ground across the site. A suitable cover layer.

Should the site be developed in the future the risk to site users would be **LOW/MODERATE** based on the chemical analysis data to date.

Due to the potential for Asbestos within Made Ground across the site it is considered that at this stage an allowance for a clean cover layer comprising 850mm subsoil and 150mm topsoil within soft landscaping areas (residential gardens and POS). Provision should also be made for a hard dig capillary break layer 150mm thick should be placed at the base of the clean cover with a geo-textile membrane at 1.00m.

The cover layer will also protect future site users from potential contaminants which may be present in areas not investigated to date. With provision of a suitable clean cover system the risk to future site users would be reduced to **VERY LOW to LOW**.

The potential risk to future site users from hazardous gases would be **LOW/MODERATE** based on the current data however, continued gas monitoring is required to confirm the initial findings.

Left undisturbed the Made Ground presents a minimal risk to current site users, however if materials are to be excavated during the construction phase then suitable precautions should be taken to protect the health of construction workers. This should include further sampling and analysis, dust and fibre monitoring and safe systems of work.

In order to further protect construction and maintenance workers services should be laid in clean corridors, backfilled with proven clean soils, extending 0.50m either side of and below the main service corridors or service runs.

Should any materials, including evidence of hydrocarbons or suspected Asbestos Containing Materials, be suspected of being contaminated work should cease and specialist environmental advice sought.

9.4.2 Ground Excavation / Development Workers

Earthworks will likely be undertaken as part of the proposed development. It is considered that the risk to construction workers during redevelopment works is **MODERATE** given the potential for Asbestos fibres within the granular Made Ground.

Safe systems of work should be implemented during any earthworks and clean corridors should be provided for service runs.

The risk to post-development maintenance workers will be **LOW** following the provision of a clean cover layer and clean service corridors. owing to the generally low concentrations of reported contaminants. However, site development workers should remain vigilant for the evidence of contamination.

Should any materials, including evidence of hydrocarbons or suspected Asbestos Containing Materials, be suspected of being contaminated work should cease and specialist environmental advice sought.

9.4.3 Controlled Waters

Low concentrations of potential contaminants have generally been reported in the limited site Investigation undertaken to date. The permeable nature of the granular Made Ground and Superficial deposits offers little in the way of retention or protection with regards potential mobile contaminants.

Therefore it is considered that a LOW to LOW/MODERATE risk is presented to controlled waters within the vicinity of the site and the underlying secondary (Glaciofluvial Deposits) and principal (Roker Limestone) aquifers by identified and potential contaminants on site.

No mobile or free product was noted during the recent SI works.

Further analysis should be carried out ahead of any development works commencing on site in order to investigate areas of the site which have not been addressed at this stage.

Should any material suspected of being contaminated be encountered during the construction phase then works should cease and specialist environmental advice sought.

9.4.4 Flora

Low contaminant concentrations have been reported at shallow depth within topsoil materials across the site and it is therefore considered that there is **LOW** risk to the establishment of flora at the site.

10.0 ENGINEERING CONSIDERATIONS

10.1 Proposed Development

It is understood that the proposed development at the site is predominantly Residential properties with private gardens, shared open space and associated infrastructure across much of the site and a Commercial property in the north of the site. A proposed indicative development layout plan is presented in **Section 1.2**.

10.2 Ground Obstructions

Trial pits were excavated at locations supplied by the Client's Engineer with the aim of determining the presence of anticipated obstructions in the form of relic foundations and buried structures.

The Made Ground was found to include a relatively high proportion of demolition derived cobbles and were mainly brick, concrete or sandstone.

A number of buried walls were encountered within trial pits along with foundations, however, these were easily broken and excavated with the bucket on an 8t excavator.

It is also understood that there is a former chapel located in the east of the site between WS-07 and IT-02 which would be expected to be a more substantial structure, and a former crypt is located beneath the SCS car park in the south east of the site.

These areas are within the proposed development area but were not scheduled by the Client's Engineer to be targeted for investigation at this preliminary stage of intrusive investigations.

The AECOM desk study states the crypt was opened and remains relocated in 2010 and then infilled, but there is no information on the method of infilling or whether the structure was grubbed out.

Location	Depth	Obstruction
WS-01	1.10m	Concrete, possible footing (c. 2008).
WS-01A	0.65m	Concrete, possible footing (c. 2008).
WS-02, WS-02A	0.85m	Concrete footing (c. 2008).
WS-06	0.30 – 1.00m	Concrete slabs and brick
WS-07	0.20 – 1.00m	Wall fragments
TP-01	0.40 – 1.20m	Wall in east of pit
TP-06	0.50m	Wall in south of pit
TP-07	0.50m	Wall in north of pit and historic drains

Notable obstructions identified by SE are listed in Table 10.2 below:

Table 10.2 – Notable Obstructions

10.3 Coal Mining Risk Assessment

The Coal Authority (CA) Online Interactive Mapping indicates that the site is located within a coal mining reporting area.

A CON29M Coal Mining Report was presented in Appendix E of the Desk Study report produced by AECOM (October 2019).

The report confirms the site is located within a coal field area and is in an area that could be affected by past underground mining. This was in 1 seam of coal at 470 to 560m depth and was last worked in 1947. The Coal Authority stated that any movement in the ground due to coal mining activity associated with these workings should have stopped by now.

The site is not in an area that could be affected by present underground mining and is not in an area where the Coal Authority has received an application or granted a license to extract coal in the future. The report adds that the property is not in an area likely to be affected from any planned future underground coal mining, however, reserves of coal exist in the local area which could be worked at some time in the future.

The report adds the following information with respect to potential coal mining legacy:

- No mine entries within the site boundary or within 20m of the site.
- The Coal Authority is not aware of any damage due to geological faults or other lines of weakness that have been affected by mining.
- The site is not in an area of past, current or potential future extraction by opencast mining.
- The Coal Authority has not received a damage notice or claim within 50m of the site and no remedial or preventative works are in place.
- There are no records of a mine gas emission requiring action.

The Groundsure report for the site, presented in Appendix A of the AECOM Desk Study, notes that historic mining features are indicated on historical mapping within 1000m of the site. The closest of these (Records 1 to 24 of 39) are recorded 283m to 327m West of the site and relate to air shafts. The closest colliery indicated on historic plans is recorded 836m North West of the site and likely relates to the Wearmouth Colliery (937m NW).

Given the depth to recorded workings and rock being recorded as shallow as 2.60m BGL in the recent site investigations the risks to developments at the site from historic coal mining is considered to be Very Low and no specific precautions or further works are anticipated in this regard.

10.4 Foundations and Settlement Issues

Only an outline SI has been undertaken at this stage. Findings to date indicated Made Ground at the site varies in thickness from less than 0.50m to in the order of 2.00m and potentially deeper in former church and crypt footprints in the east of the site.

In its current state the Made Ground is not considered a suitable founding stratum and any foundations should be extended through to bear on the underlying natural ground.

Residential Properties

For the majority of the residential properties this would be expected to be standard strip footings in the west of the site and deepened strip or trench footings in the east. The small extended area in the south west, to the west of Nile Street may require deeper foundations subject to the presence of a cellar and potential lasting erosional damage which required the buildings to be demolished.

The west of the site is relatively level between Nile Street and the central access road but falls by 1.2 to 1.8m across the east of the site down to Villiers Street.

Consideration should be given to surrounding levels in order to make the most efficient use of available materials and avoid significant import or export of materials. Partial sub levels with street level access in the east where levels have the greatest crossfalls would allow the use of shallower foundations and avoid the need for engineered retaining solutions.

Based on the limited SI undertaken at this stage strip or deepened trench footings based on an allowable bearing capacity of 75 kPa are likely to be appropriate. If groundwater is expected within 1.00m of the underside of foundations the allowable bearing capacity may be reduced.

Where properties encountered both cohesive and granular soil at founding depth measures such as additional reinforcement may be required in order to safeguard against potential differential settlement.

Commercial Development

Shallow bedrock was identified in the north of the site where the proposed commercial development is to be sited. The limestone bedrock was identified below at a depth of 2.60m in the northern car park but falls away relatively sharply to the south. Made Ground extended to rockhead in the west (WS-02B) while natural clays were encountered between 1.30m and 2.50m BGL in the centre of the site (WS-01B).

To avoid the potential for differential settlement foundations for the commercial development should be extended through any Made Ground and cohesive natural ground to found on the underlying bedrock.

From WS-01B and WS-02B there is expected to be a thin weathering profile at the upper surface, but a conservative allowable bearing capacity of at least 200 kPa is anticipated at this stage.

10.5 Earthworks

A potential site layout has been provided to **SE** as presented in Section 1. Based on current site levels an element of cut and fill earthworks is anticipated. Ideally levels should allow the majority of materials to remain on site although this may not be possible.

An earthworks model should be developed in order to make most efficient use of available materials and minimise off-site disposal.

The overall site layout and individual property designs, such as the provision of a sub-level living area, garage or parking on the lower side to the east, will also affect the overall balance of materials and requirement for engineered solutions

10.6 Chemical Attack on Buried Structures

The water-soluble sulphate test results in the Made Ground generally recorded concentrations between, 43mg/l (TP-03) and 500mg/l (TP-06) with one sample reported with 1500mg/kg (WS-04 at 0.50m BGL). The soil pH was generally between 7.6 (WS-08) and 11.2 (TP-05, WS-01B) indicating neutral to alkaline conditions.

The results have been assessed in accordance with the guidance given in BRE Special Digest 1:2005. The Made Ground at the site is primarily demolition rubble with no significant groundwater detected, the assessment for the chemical environment has accordingly been made assuming a brownfield site with mobile groundwater. The Design Sulphate Class across the site are between DS-1, ACES Class AC-1.

10.7 Infrastructure

The proposed development is not anticipated to feature significant new highway links although occasional service traffic may be expected in the central portion of the development.

Laboratory geotechnical testing reported remoulded CBR values for granular Made Ground materials recovered from site should provide CBR values in the order of 7%, however a default value of 2-3% should be adopted for design purposes. In-situ testing of the subgrade materials prior to construction may allow an increased CBR value to be utilised.

The results of geotechnical laboratory testing are presented in **Appendix E**.

As the site stands at the time of writing CBR values within Made Ground strata would be expected to be highly variable due to the mixed site history across the site. Without ground improvement earthworks a CBR value in the order of 2% should be assumed for pavement design.

With suitable processing and compaction the Made Ground would be expected to offer CBR values for design in the order of 6%.

Soakaway testing has been undertaken in 3 No. locations across the site and has returned infiltration rates of 2.44x10-4 and 2.38x10-5 within the underlying natural sand where tests could be successfully completed. These infiltration rates may be sufficient for soakaway drainage of surface waters subject to anticipated volumes and the required land area being available.

However, anecdotal evidence suggests former properties in the south west of the site have been demolished in recent years following a water leak which undermined foundations, therefore, consideration should be given to likely flow paths and potential for washout. Formal drainage should be adopted if required structural risks cannot be mitigated sufficiently.

11.0 CONCLUSIONS AND RECOMMENDATIONS

11.1 Conclusions

Shadbolt Environmental (SE) were commissioned by **Town Development Limited** to undertake a preliminary intrusive geo-environmental site investigation at the proposed residential and commercial development site on land at Nile and Villers Street in Sunderland, Tyne and Wear.

The site comprises a rectangular plot of land with an area of approximately 3 Ha. The site features 2 areas of grassed land with a central concrete access road and 2 No. car parks, one in the north and one in the south east. A recently cleared plot is present in the south west of the site.

Made Ground was encountered in all locations and generally comprised demolition fill with an element of ash/slag. With the exception of WS-02B, superficial deposits comprising predominantly granular glaciofluvial deposits were encountered across the site extending to depth in excess of 4m.

Superficial deposits were found to thin in the north of the site and were noted to be more cohesive in nature. Roker Limestone bedrock was encountered in WS-01B, WS-02B and WS-03 in the north of the site as shallow as 2.60m BGL in WS-01B and WS-02B.

Significant groundwater was not encountered during the works.

26 No. samples were submitted for analysis for a range of common contaminants. Including metals, metalloids, hydrocarbons and asbestos. Elevated concentrations of Lead and Benzo(a)pyrene were identified along with 2 No. samples returning positive identifications of Asbestos fibres.

Statistical analysis showed that Lead concentrations were within acceptable limits when considered on a site wide basis. Benzo(a)pyrene was assessed utilising the surrogate marker approach and the PAH profiling tool which suggested a history of burning on site which is considered likely arising from historic open fires and boilers on site. Statistical analysis identified 1 No. hotspot to be removed from site or isolated from future site users.

On the basis of chemical testing undertaken to date and the general prevailing ground conditions, it is unlikely that significant contamination will be encountered during potential development works: however, it does indicate the potential for contaminants to be present and it is possible that isolated instances of contaminants may be present on site through leakages, spillages, localised historic importing of contaminants or soils or unrecorded fly-tipping of wastes.

Based on the limited SI undertaken at this stage appropriate foundations for Residential developments are likely to be strip or deepened trench footings based on an allowable bearing capacity of 75 kPa. If groundwater is expected within 1.00m of the underside of foundations the allowable bearing capacity may be reduced.

The Commercial development in the north of the site should be founded on the underlying limestone bedrock with foundations extended through any Made Ground. An allowable bearing capacity of at least 200 kPa should be readily achieved.

Consideration should be given to the design of proposed structures and ground levels to make best use of the available materials on site and allow street level access from Nile Street and Villiers Street.

At the request of the Clients Engineer gas monitoring has been carried out on 1 No. occasion to date. The results of gas monitoring to date indicate that protective measures are not likely to be required with respect to Carbon Dioxide and Methane and the site is not in an area where gas protection measures with respect to Radon are required. However, this is based on just 1 No. monitoring visit and an assessment should not be based on this reading alone.

11.2 Recommendations

Groundworkers should remain vigilant for the presence of potential contaminants and should seek specialist advice if suspected contaminants are identified.

Excavations should be inspected and assessed for potential softer strata prior to construction of foundations. If soft materials are identified the trench should be deepened and the soft spot removed and replaced with well compacted, clean, quarried stone or concrete.

The elevated levels of Benzo(a)pyrene reported by laboratory analysis within the Made Ground underlying the site will require the removal of 1 No. hotspot and the placement of a clean cover layer comprising 450mm of Subsoil and 150mm of Topsoil over Made Ground within private gardens and public open space.

Details of hotspot removal works and any profiling works should be set out in a remediation and earthworks strategy once development proposals are known. Following completion of the groundworks a validation report will be required to document the works undertaken.

Additional investigations will be required to confirm the nature of obstructions in areas of the site not targeted to date and to provide confirmation of foundation requirements in areas of deeper Made Gound.

A further 5-8 No. gas and groundwater monitoring visits should be completed to better understand the ground gas and groundwater regime underlying the site. Following the completion of the monitoring visits a full gas risk assessment may be carried out.

The Shadbolt Group

12.0 REFERNCES

- Site walkover survey.
- Historical and Recent Ordnance Survey maps and plans.
- Geological Survey Sheets.
- The Environment Agency.
- Groundsure Report.
- British Geological Survey.
- Coal Authority Mining Report.
- BRE Report BR211; Radon: Protective measures for new buildings.
- NRPB-W26 'Radon Atlas of England and Wales,' NRPB, 2002.
- CIRIA 132 'A guide for safe working on contaminated sites,' CIRIA, 1996.
- CIRIA C552 'Contaminated Land Risk assessment. A guide to good practice,' CIRIA, 2001.
- BS10175 'Investigation of potentially contaminated sites code of practice,' BS, 2011.
- LCRM 'How to assess and manage the risks from land contamination' October 2020, Environment Agency
- Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance April 2012.
- Ciria C733 Asbestos in soil and made ground: a guide to understanding and managing risks, March 2014.
- BRE Special Digest 1, 2005 (Third Edition). Concrete in aggressive ground. Construction Research Communications Ltd, Watford.
- BS 5930: 1999. Code of practice for site investigations. BSI, UK.
- BS 10175: 2011. Investigation of potentially contaminated sites Code of Practice. BSI, UK.
- CIRIA C665: 2006. Assessing risks posed by hazardous ground gases to buildings. London UK.
- DD ENV, 1997. Eurocode 7: Geotechnical Design. Parts 1 to 3. BSI, UK.
- Environment Agency, 2008 onwards, Science Reports SC050021 (SGVs)
- TOMLINSON, M.J., 2001 Foundation design and construction. Prentice Hall, London.
- The LQM/CIEH S4ULs for Human Health Risk Assessment (S4UL3251), November 2014
- The Water Environment (Water Framework Directive) (England and Wales) (Amendment) Regulations, September 2015.
- Keynetix Holebase SI (including connected data sources)
- RocScience Slide and Settle 3D Software.
- Introduction to Light Weight Deflectometer. International Journal of Engineering Research & Technology (IJERT) IJERTIJERT ISSN: 2278-0181.Vol 3 Issue 4, April 2014
- CIRIA C574: 2002. Engineering in Chalk. London UK.

APPENDIX A

REPORT CONDITIONS

REPORT CONDITIONS

GEO-ENVIRONMENTAL GROUND INVESTIGATION

This report is produced for the benefit of **Town Development Limited** in accordance with the terms of the appointment.

This report has been prepared in accordance with the terms and conditions of the appointment and relates to the condition of the site at the time of ground investigations. No warranty is provided as to the possibility of future changes in the condition of the site.

Shadbolt Environmental takes no responsibility for conditions which occur between the individual exploratory holes.

This report is prepared and written for the purposed uses stated in the report and should not be used in a different context without reference to Shadbolt Environmental. In time, improved practices or amended legislation may necessitate a re-assessment.

The report is limited to the geotechnical and environmental aspects detailed within the report and is necessarily restricted.

APPENDIX B

3001/003 - EXPLORATORY HOLE LOCATION PLAN

EXPLORATORY HOLE LOGS

	SH GR DESIGN		BOLT			•	TrialPit No Trial Pit Log Sheet 1 of 1	1
Projec	t Nile and V	/Illers		Proj	ect No.	1	Co-ords: 440054.28 - 557166.44 Date	
Locat	on: Sunderlan	nd			300	1	Dimensions 2.40 Scale	
Client							(m): 20 Depth 30 Logged	
5 e	Samp	les & In Sit	u Testing	Danth	11		3.00 TJS	
Wate Strik	Depth	Туре	Results	Depth (m)	(m)	Legend	Stratum Description	
	0.10 - 0.20 0.30 - 0.50 0.40 - 0.50	ES B ES		0.30	26.83		Scrub grass over TOPSOIL: Dark brown slightly clayey slightly silty slightly gravelly fine to medium SAND with high root content and low timber and plastic content. Gravel is angular to sub-angular fine to coarse and includes brick, coal and sandstone. TOPSOIL MADE GROUND: Pinky brown SAND and GRAVEL with high cobble content and low boulder content, low iron and glass content. Gravel is angular to sub-angular fine to coarse and includes brick, slate and concrete. Cobbles are angular small to large of brick and concrete. Boulders are angular to sub-angular small of brick and concrete. MADE GROUND	_
	1.40 - 1.50 1.80 - 1.90 2.00 - 2.20	ES		1.80	25.33		Yellowish brown silty fine to medium SAND.	-
				3.00	24.13		End of Pit at 3.00m	-
Rema	rks: Groundw ity: Stable	ater not e	encountered. Tri	ial pit term	inated ir	natural	ground.	- - - - - - -

	SH GR DESIGN	AD OUI	BOLT D			Log	TrialPit No TP-02 Sheet 1 of 1		
Proje	ct Nile and V	'Illers		Pro	ject No.	4	Co-ords:	440060.13 - 557156.49	Date
	,				300	1	Level: Dimensions	27.39	12/09/2023 Scale
Locat	ion: Sunderlan	a					(m):	8.	1:20
Client	t: TOWN			1	1		2.30	0	TJS
/ater trike	Samp	les & In S	Situ Testing	Depth	Level	Legend		Stratum Description	
s o	Depth	Туре	Results				Scrub grass	over TOPSOIL: Dark brown slightly	clavev
	0.10 - 0.20 0.30 - 0.40 0.30 - 0.50	ES B		0.25	27.14		slightly silty s high root cor Gravel is and includes bric TOPSOIL MADE GRO high cobble o glass conten coarse and ii	slightly gravelly fine to medium SAN ttent and low timber and plastic con yular to sub-angular fine to coarse a k, coal and sandstone. UND: Pinky brown SAND and GRA content and low boulder content, lov t. Gravel is angular to sub-angular to spludes brick. slate and concrete C	D with tent
	1.00 - 1.10	ES					are angular s are angular s MADE GRO	small to large of brick and concrete. o sub-angular small of brick and co UND	Boulders ncrete.
	2.00 - 2.20	В		1.60	25.79		Yellowish bro medium SAN medium of si Very silty wit appear as sr	own slightly silty slightly gravelly fine ID. Gravel is sub-angular to sub-rou andstone. In thin to thick laminations below 1.80m bgl. Silt mall to large sub-round nodules.	e to and fine to can 2 - -
				2.30	25.09			End of Pit at 2.30m	3
Rema Stabil Plant:	arks: Groundw ity: Stable : 9 Ton trad	ater not	encountered. Tria	al pit term	inated ir	natural	ground.		4

	SH GR		BOLT			•	TrialPit No Trial Pit Log Theat 4 of 4
Projo	DESIGN	I I MANAGE	I CONSTRUCT	Proi	ect No.		Co-ords: 440047.01 - 557156.25 Date
Name	Nile and V	/Illers		,	300	1	Level: 28.25 12/09/2023
Locat	ion: Sunderlar	hd					Dimensions 2.60 Scale
Locat							_(m):
Client	: TOWN			-	1	-1	2.50 Logged
Water Strike	Samp Depth	oles & In Site	u Testing Results	Depth (m)	Level (m)	Legend	Stratum Description
	0.10 - 0.20	ES		0.30	27.95		Scrub grass over TOPSOIL: Dark brown slightly clayey slightly slity slightly gravelly fine to medium SAND with high root content and low plastic content. Gravel is angular to sub-angular fine to coarse and includes brick, coal and sandstone.
	0.40 - 0.50	ES					TOPSOIL MADE GROUND: Pinky brown SAND and GRAVEL with high cobble content and low boulder, wire and porcelain
	0.60 - 0.80	В					content, low iron and glass content. Gravel is angular to sub-angular fine to coarse and includes brick, slate and concrete. Cobbles are angular small to large of brick and concrete. Boulders are angular to sub-angular small of brick and concrete. MADE GROUND
	1.00 - 1.20	ES					1
				2.00	26.25		Yellowish brown slightly slity slightly gravelly fine to medium SAND. Gravel is sub-angular to sub-round fine to medium of sandstone.
				2.50	25.75	×. ×. ,	End of Pit at 2.50m
							3
Rema	irks: Groundw	ater not e	encountered. Tri	al pit term	inated ir	natural	ground.
Stabil Plant:	ity: Stable 9 Ton tra	cked 360					AGS

			BOLT			•	Trial Pit	Log	TrialPit No TP-04 Sheet 1 of 1	
Projec	ot Nile and V	/Illers		Pro	ject No.		Co-ords:	440033.51 - 557149.59	Date	
Name	:				300	1	Level:	29.17	13/06/2023	
Locati	ion: Sunderlar	nd					(m):		1:20	
Client	: TOWN						Depth	0.7	Logged	
ke r	Samp	oles & In Sit	tu Testing	Depth	Level		2.10			
Wa Stri	Depth	Туре	Results	(m)	(m)	Legend		Stratum Description		
	0.10 - 0.15	ES		0.15	29.02		Grass over T slightly grave Gravel is fine brick and cor TOPSOIL MADE GROU	OPSOIL. Soft to firm brown slightly illy clay TOPSOIL with low root con to medium sub-angular to sub-rou acrete. JND. Grey slightly cobbley gravelly	sandy tent	
	0.40 - 0.50	В					Gravel is fine concrete, coa	to coarse angular to sub-rounded al, slag and sandstone. Cobbles are	of brick, e angular	
	0.50 - 0.60	ES					to sub-angula MADE GROU	ar of brick and concrete. JND	-	
							Sections of b Sections of c	rick, possibly footings. oncrete slabs, possibly flooring slabs.	-	
	1.00 - 1.10	ES		0.70	28.47		Yellowish bro fine to coarse Frequent bric collapsing str	wn SAND with occasional gravel. (e sub-angular to sub-rounded of sai k and concrete cobbles in recovery rata above.	Gravel is	
	1.50 - 1.60	D								
	2.00 - 2.10	В		2.10	27.07			End of Pit at 2.10m	2 -	
2.00 - 2.10 B 2.10 27.07 End of Pit at 2.10m										
Stabili Plant [.]	ity: Stable or Hyundai	n East, W 9 Tonne ⁻	/est and South s	ides. Son	ne collap	se of nor	thern side.		AGS	
	•									

	SH GR DESIGN	AD OUF	BOLT				TrialPit TP-04	No A of 1				
Proje	ct Nile and V	Illere		Pro	ject No.		Co-ords:	440032.67	′ - 557153.45	Date	<u> </u>	
Name	e: Nile and v	lliers			300	1	Level:	2	8.95	13/09/20)23	
Locat	ion: Sunderlan	d					Dimensions (m) [.]		3.00	Scale	;	
Client							Depth	2.00		Logge	d	
Chern	Samp	loc & In Si	itu Tosting				1.50	L		HD		
Water Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratum	Description			
				0.15	28.80		Grass over T slightly grave angular to su TOPSOIL MADE GRO are angular t is fine to coa brick, slag, c MADE GRO Layer of bric Concrete sla	TOPSOIL. Soft elly TOPSOIL. ub-rounded of UND. Grey gra to sub-angular trse angular to to al and sands UND trse ab. v pipe.	to firm brown slightly Gravel is fine to medii brick and concrete. avelly cobbley SAND. of concrete and brick. sub-rounded of concr tone.	sandy um sub- Cobbles . Gravel ete,		
				0.80	28.15		Yellowish bro Frequent bri strata above	own SAND. ck and concret	e cobbles from collap	sing	1 — 	
					1.50 27.45 End of Pit at 1.50m						2	
Rema	arks: Re-dig of groundwa	TP-04 a ater enco	adjacent to the ori ountered. Termina	ginal pit t ated at 1.	o attemp 50m as ι	ot to chas unable to	e a possible w identify chase	vall identifie the possible	d in TP-04. No le identified wall.		9	
Stabil	ity: Stable or	i East, V	Vest and South si	des. Part or	ial collap	ose on no	orth side.			AU	D	
Plant	Hyundai	e ionne	Indai 9 Tonne Tracked Excavator.									

	DESIGN					•	Trial Pit	Log	TP-05 Sheet 1 of 1
Proje	ct Number	(11)		Pro	ject No.		Co-ords:	440012.00 - 557154.00	Date
Name	e: Nile and V	lliers			300	1	Level:	29.52	13/09/2023
Locat	tion: Sunderlan	d					Dimensions	2.90	Scale
Clien	t: TOWN						Depth	0.70	Logged
50	Samp	les & In Situ	u Testing	D			2.15		HD
Wate Strik	Depth	Туре	Results	_ Depth (m)	(m)	Legend		Stratum Description	
	0.10 - 0.20 0.50 - 0.60 0.60 - 0.70	ES ES B		0.20	29.32		Grass over T brown slightl to medium si brick. TOPSOIL MADE GROI Gravel is fine concrete, bri angular to su MADE GROI	OPSOIL with low root content. Soft y sandy slightly gravelly CLAY. Grav ub-angular to sub-rounded of concr UND. Grey slightly cobbley gravelly a to coarse angular to sub-rounded ck, coal, slag and sandstone. Cobb ub-angular of brick and concrete. UND	to firm vel is fine ete and SAND. of les are
				0.90	28.62		Yellowish bro	own SAND with occasional gravel. (Gravel is
	1.00 - 1.10	ES					fine to coars	e sub-angular to subrounded of san	dstone. 1 -
	1.90 - 2.00	D		2.15	27.37			End of Pit at 2.15m	2 -
Rema	arks: No groun	dwater er	ncountered. Terr	minated a	pproxima	ately 1.00	0m into natura	strata.	3 -
Stabi	lity: Stable	9 Tonne 1	Fracked Excave	tor		,			AGS

	SH GR DESIGN	ADI OUP				•	Trial Pi	t Log	TrialPit No TP-06 Sheet 1 of 1
Projec	ct Nile and V	/Illers		Proj	ject No.		Co-ords:	440088.92 - 557076.17	Date
Iname					300	1	Level:	28.93	12/09/2023 Scale
Locat	ion: Sunderlan	ld					(m):	80	1:20
Client	: TOWN						Depth 2.20	o'	Logged TJS
ater ike	Samp	les & In Si	tu Testing	Depth	Level	Legend		Stratum Description	
Str	Depth	Туре	Results	(m)	(m)				
	0.05 - 0.15 0.30 - 0.40 0.40 - 0.60	ES B		0.15	28.78		Scrub grass slightly silty high root cc content. Gra and include TOPSOIL MADE GRC very gravell content and angular to s slate and cc	s over TOPSOIL: Dark brown slightly slightly gravelly fine to medium SAN intent and low timber, glass and plas avel is angular to sub-angular fine to s brick, coal and sandstone. DUND: Greyish brown mottled reddii y fine to coarse SAND with high cob I low boulder, iron and glass content. sub-angular fine to coarse and includ poncrete. Cobbles are angular small to	clayey ID with tic coarse sh brown ble . Gravel is es brick, o large of
	1.00 - 1.10	ES		0.90	28.03		brick and cc small of bric MADE GRC Yellowish bi medium SA medium of s	oncrete. Boulders are angular to sub ck and concrete. DUND rown slightly silty slightly gravelly find ND. Gravel is sub-angular to sub-roo sandstone.	-angular ∋ to und fine to 1 −
	1.40 - 1.00			2.20	26.73				2 -
Rema	irks: Groundw	ater not	encountered Tri	al pit term	inated in	natural	ground. A bric	End of Pit at 2.20m	
Stabil	ity: Stable	end of th	ne trench at 0.30)m bgl.					AGS
Plant:	9 Ton tra	cked 360).						

						•	Trial Pit Log	TrialPit No TP-07 Sheet 1 of 1
Projec	ot Nilo and V	/Illore		Proj	ject No.		Co-ords: 440070.47 - 557072.06	Date
Name		lileis			300	1	Level: 29.44	12/09/2023
Locati	ion: Sunderlar	nd					Dimensions 2.30 (m):	Scale 1:20
Client	: TOWN						Depth o	Logged
ike r	Sam	oles & In S	Situ Testing	Depth	Level	Logond	Stratum Description	100
Wa Stri	Depth	Туре	Results	(m)	(m)	Legend	Stratum Description	
	0.05 - 0.15 0.20 - 0.30	ES		0.15	29.29		Scrub grass over TOPSOIL: Dark brown slightly s SAND and GRAVEL with high root content and lo timber, glass, tile and plastic content. Sand is fine coarse. Gravel is angular to sub-angular fine to c and includes brick, coal and sandstone.	silty w e to oarse
	0.40 - 0.60	в		0.30	29.14		TOPSOIL MADE GROUND: Brownish yellow dolomite angu to coarse GRAVEL. MADE GROUND MADE GROUND: Reddish brown slightly silty of	Ilar fine
	0.70 - 0.80	ES					fine to coarse SAND with high cobble content an boulder, iron and glass content. Gravel is angular angular fine to coarse and includes brick, dolomit sandstone and concrete. Cobbles are angular sm large of brick and concrete. Boulders are angular angular small of brick and concrete. MADE GROUND	d low to sub- e, nall to to sub-
	1 50 - 1 70	в		1.20	28.24		Reddish brown slightly gravelly fine to medium S Gravel is sub-angular to sub-round fine to mediu sandstone. <u>Yellowish brown below 1.40m bgl</u>	AND. n of
	1.00 - 1.70			2.00	27.44			
				2.00	27.44		End of Pit at 2.00m	
Rema	rks: Groundw a trench.	ater not	encountered. Tri	al pit term	inated ir	n natural	ground. Remnants of a brick wall in the wes	
Plant:	9 Ton tra	cked 36	0.					

	SH GR DESIGN					•	Trial Pit Log			No B
Proied	t			Pro	ject No.		Co-ords:	440059.45 - 557057.65	Date	
Name	Nile and V	/Illers			300	1	Level:	29.58	12/09/202	23
Locati	on: Sunderlar	nd					Dimensions	2.70	Scale	
Client	· TOWN						Depth	0.80	Logged	ł
	Samo	les & In S	itu Testina				2.10		TJS	
Wate Strike	Depth	Туре	Results	Depth (m)	Level (m)	Legend		Stratum Description		
	0.10 - 0.20	ES					Scrub gras slightly sar content Gr and includ TOPSOIL	is over TOPSOIL: Stiff reddish brown idy slightly gravelly CLAY with high ro avel is angular to sub-angular fine to as brick, chert, coal and sandstone.	slightly ot coarse	
	0.40 - 0.50 0.50 - 0.70	B		0.40	29.18		MADE GR to coarse s iron, wire, sub-angula concrete. MADE GR <i>Clay appe</i>	OUND: Dark brown slightly clayey gra SAND with high cobble content and lo plastic and glass content. Gravel is ar ar fine to coarse and includes brick, sl Cobbles are angular small to large of t OUND Pars as thin (0.05 to 0.10m) bands	avelly fine w low gular to ate and orick and	1 -
	1.20 - 1.40	ES		1.20	28.38		Yellowish I medium S medium of	prown slightly silty slightly gravelly fine AND. Gravel is sub-angular to sub-rou sandstone.	to und fine to	2
				2.10	27.48			End of Pit at 2.10m		
										3 -
Rema Stabili Plant:	rks: Groundw into the n ity: Stable 9 Ton tra	ater not orth enc cked 36	encountered. Trial d of the trench at 0. 0.	pit term 70m bg	ninated ir I.	natural	ground. Con	crete obstruction intruding 0.7	om AG	I S

						•	Trial Pi	t Log	TrialPit TP-0 Sheet 1	No 9 of 1
Projec	t Nile and \	/Illers		Proj	ject No.		Co-ords:	440051.55 - 557059.69	Date	
Name	:				300	1	Level:	29.83	12/09/20	023
Locati	on: Sunderlar	nd					Dimensions (m):	0	1:20	9
Client	: TOWN						Depth	0.8	Logge	d
20	Samp	oles & In Si	tu Testing	Dauth	Laural		2.30		112	
Wate Strik	Depth	Туре	Results	(m)	(m)	Legend	•	Stratum Description		1
	0.10 - 0.20 0.30 - 0.40 0.40 - 0.50 0.60 - 0.70	ES B ES		0.30 0.50	29.53 29.33 28.33		Scrub grass slightly sar content Gr. and include TOPSOIL MADE GR SAND with round fine concrete. MADE GR MADE GR Medium S/ coarse anc concrete. MADE GR MADE GR Concrete.	s over TOPSOIL: Stiff reddish brown idy slightly gravelly CLAY with high ro avel is angular to sub-angular fine to as brick, chert, coal and sandstone. DUND: Grey very gravelly fine to me low iron content. Gravel is sub-angu to coarse and includes chert, brick a DUND brane at base of Topsoil. DUND: Brown slightly clayey gravelly AND. Gravel is angular to sub-round includes brick, slate, chert, sandstor DUND boulder (former foundation) at 0.50m bgl. prown slightly silty slightly gravelly fin AND. Gravel is sub-angular to sub-ro sandstone.	slightly coarse dium lar to sub- nd 'fine to fine to he and e to und fine to	1 -
				2.30	27.53			End of Pit at 2.30m		3 -
Rema	rks: Groundw	ater not	encountered. Tri	al pit term	inated ir	natural	ground.			4 -
Stabil Plant:	ty: Stable 9 Ton tra	cked 360).			. Hataral	<u>g. sana.</u>		AG	u iS

	\$	SHAD GROU	BC P	ISTRUCT	۱	Ninc	vob	vless	Sample Log	3	Borehole N WS-01	lo. 1
Projec	t Name:	Nile and	Viller	3	Project No). 3001		Co-ords:	440038E - 557	197N	Hole Type WS	9
Locati	on:	Sunderl	and					Level:	26.88		Scale 1 [.] 25	
Client:		TOWN						Dates:	11/09/2023	3	Logged B	у
Well	Water Strikes	Sample	and I	n Situ Testing	Dep	th Le	evel m)	Legend	Stratum [Description		
	Strikes	Depth (m)	SPT	Results	(m) 0.20) (() 20) 25	5.78		Grasses over MADE GRO sandy gravelly TOPSOIL. angular to subrounded and and concrete. MADE GROUND MADE GROUND: Brown a low cobble content and occ fine to coarse angular to su concrete, sandstone and b concrete and brick. MADE GROUND Clayey below 0.80m End of Bore	JND: Dark g Gravel is fine includes sar asional reba ibrounded ar rick. Cobbles	grey brown to coarse ndstone brick dy gravely with r. Gravel is id includes s include	
Remar Comr	ks nenced	with Hand Du	ıg Pit.	Terminated on	foundatior	ı or slab	e at 1.4	10m bgl.			AGS	S

		SHAD	BO	IT				Borehole N	0.	
		GROU	P		Wi	indov	wless	Sample Log	WS-01	Α
	÷	DESIGN I MANA	GE I CON	ISTRUCT					Sheet 1 of	1
Projec	t Name:	Nile and	l VIIIers	5	Project No. 300 ²	1	Co-ords:	440039E - 557196N	Hole Type WS	9
Locatio	on:	Sunderl	and				Level:	26.93	Scale	
Client [.]		TOWN					Dates:	11/09/2023	Logged By	у
		Commit		n City Taating					IM	
Well	Water Strikes	Depth (m)	Tvpe	Results	(m)	Level (m)	Legend	Stratum Description		
Well	Strikes	Depth (m) 0.10 0.40 0.70	Type D D	Results	0.65 0.75	26.28 26.18	Legend	Stratum Description MADE GROUND: Brown and grey sar low cobble content and occasional rebu- fine to coarse angular to subrounded a concrete, sandstone and brick. Cobble concrete and brick. MADE GROUND: Concrete foundation MADE GROUND: Concrete foundation MADE GROUND End of Borehole at 0.75m	hdy gravely with ar. Gravel is nd includes as include	
Remar Comn	ks nenced	with Hand Du	ug Pit.	Terminated on ²	foundation or	slab enc	ountered	at 0.65m bgl.		5 -
Commenced with Hand Dug Pit. Terminated on foundation or slab encountered at 0.65m bgl.										

		CHAD	RO	нт					Borehole No.
	\mathbf{S}	GROU	P		W	indo	wless	Sample Log	WS-01B
		DESIGN I MANA	GE I COM	NSTRUCT					Sheet 1 of 1
Projec	t Name:	Nile and	d VIllers	6	Project No. 300 ⁻	1	Co-ords:	440037E - 557179N	Hole Type WS
Locati	on:	Sunder	land				Level:	28.37	Scale
Client:		TOWN					Dates:	20/09/2023	Logged By
		Samul		n Situ Tooting		T			HD
Well	vvater Strikes	Depth (m)		Results	(m)	(m)	Legend	Stratum Description	1
		0.10 - 0.20	D					MADE GROUND: Bitmac surfacing.	
		0.50 - 0.60	ES		0.20	28.17		MADE GROUND. Greyish brown grave occasional concrete cobbles. Gravel is angular to sub-rounded of concrete, br MADE GROUND	elly SAND with fine to coarse rick and dolerite.
		1.00 - 1.10 1.00	D SPT	N=6 (2,2/2,1,2,1)	0.95	27.42		MADE GROUND. Yellow slightly grave Gravel is fine to coarse angular to sub- concrete, brick and sandstone. MADE GROUND	elly SAND. 1 - -rounded of
		1.50 - 1.60	ES		1.30	27.07		Firm to stiff reddish brown slightly silty CLAY. Gravel is is fine to medium, sub rounded of coal and sandstone.	slightly gravelly -angular to sub-
		2.00	SPT	N=17 (1,2/2,3,5,7)					2 -
Remarks		2.50 - 2.60 2.50	DSPT	50 (25 for 80mm/50 62mm)	2.50 for 2.63	25.87 25.74		Weathered Limestone bedrock recove silty sandy GRAVEL. Gravel is fine to angular to sub-rounded of limestone. End of Borehole at 2.63m	red as cream medium sub- 3 - 4 - 5 -
Hand	-dug pit	to 1.00m. No	o grour	ndwater encounte	red. Termina	ated at 2.	63m due to	b bedrock obstruction.	AGS

		SHVD	RA	Τ						Borehole No	D.
		GROU	P			Wi	ndov	wless	Sample Log	WS-02	
	*	DESIGN I MANAG	GE I CON	ISTRUCT	_					Sheet 1 of	1
Projec	t Name:	Nile and	I VIllers	3	Pro	oject No. 3001		Co-ords:	440009E - 557175N	Hole Type WS	
Locatio	on:	Sunderl	and					Level:	28.57	Scale 1:25	
Client:		TOWN						Dates:	11/09/2023	Logged By IM	/
Well	Water	Sample	and I	n Situ Testing		Depth	Level	Legend	Stratum Description		
	Surkes	Depth (m)	Туре	Results		(11)	(11)		MADE GROUND: Bitmac surfacing.		
		0.30 0.60	D			0.18 0.50	28.39 28.07		MADE GROUND MADE GROUND: Dark grey sandy GF is fine to coarse angular to subrounded ash/slag and sandstone. MADE GROUND MADE GROUND: Brown sandy GRAV cobble content. Gravel is fine to coars subrounded and includes brick, concre sandstone. Cobbles include brick and	RAVEL. Gravel d and include /EL with low e angular to te and concrete	
Remark	ks	0.85	SPT	50 (25 for 75mm/50 22mm)) for	0.85	27.72		subrounded and includes brick, concre sandstone. Cobbles include brick and MADE GROUND End of Borehole at 0.85m	te and concrete.	2
Comn	nenced	with Hand Du	ug Pit.	Terminated on f	four	ndation or s	slab at 0.	.85m bgl.		AGS	

		SHAD	BO	Т						Borehole N	0.
		GROU	P			Wi	ndov	vless	Sample Log	WS-02A	
		DESIGN I MANAG	GE I COM	ISTRUCT						Sheet 1 of	1
Projec	t Name:	Nile and	l VIIIers	3	Pro	ject No. 3001		Co-ords:	440009E - 557174N	Hole Type WS	;
Locatio	on:	Sunderl	and					Level:	28.61	Scale 1:25	
Client:		TOWN						Dates:	11/09/2023	Logged By	y
Wall	Water	Sample	e and I	n Situ Testing		Depth	Level	Logond	Stratum Description		
vven	Strikes	Depth (m)	Туре	Results		(m)	(m)		MADE GROUND: Bitmac surfacing		
						0.18	28.43		MADE GROUND		
									is fine to coarse angular to subrounded ash/slag and sandstone.	and includes	-
						0.50	28.11		MADE GROUND MADE GROUND: Brown sandy GRAV	/EL with low	-
									cobble content. Gravel is fine to coars subrounded and includes brick, concre	e angular to te and	
		0.85	SPT	50 (25 for 51mm/50	for	0.85	27.76		sandstone. Cobbles include brick, con sandstone.	crete and	
				43mm)					End of Borehole at 0.85m	/	1 -
											-
											-
											2 -
											-
											3 -
											-
											-
											-
											4 -
Der											5 —
Comn	nenced	with Hand Du	ug Pit.	Terminated on f	foun	dation or s	slab at 0	.85m bgl.		AGS	5

			BC	IТ					Borehole No	0.
	\mathbf{S}	GROU	P		W	<mark>indo</mark> v	wless	Sample Log	WS-02	В
		DESIGN I MANA	GE I COM	NSTRUCT			T		Sheet 1 of	1
Projec	t Name:	Nile and	d VIller	6	Project No. 300)1	Co-ords:	440008E - 557181N	Hole Type WS	
Locati	on:	Sunder	and	I			Level:	27.41	Scale	
Client:							Dates:	20/00/2023	Logged By	/
		TOWIN					Dales.	20/09/2023	HD	
Well	Water Strikes	Sample	e and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
		0.10 - 0.20	D					MADE GROUND: Bitmac surfacing. MADE GROUND		-
		0.50 - 0.60	ES		0.20	27.21		MADE GROUND. Greyish brown grave Gravel is fine to coarse angular to sub- brick, concrete and dolerite. MADE GROUND MADE GROUND. Greyish brown slight	elly SAND. -rounded of tly gravelly	
		1.00 - 1.10 1.00	ES SPT	N=18 (8,7/4,4,5,5)				sub-rounded of brick, concrete and dol are angular to sub-angular of concrete MADE GROUND	erite. Cobbles	1 -
		1.50 - 1.60	D							
		2.00	SPT	N=14 (3,3/3,3,4,4)						2
		2.50 - 2.60 2.60	ES SPT	12 (25 for 55mm/12 for 0mm)	2.50 for 2.60	24.91 24.81		MADE GROUND. Soft to firm dark gre slightly sandy silty CLAY with occasion fragments. End of Borehole at 2.60m	y and brown al coal	3 -
Remark										4
Remai Hand	⁺ks -dug pit	to 1.00m. No	grour	ndwater encounte	red. Termin	ated at 2.	60m due t	o sampler refusal. SPT taken at		
2.60n	n to con	firm and refu	sed. C	Cream coloured su	uspected Li	mestone a	at end of S	SPT.	AGS	3

		SHAD	BO	LT				0	Borehole No.	
	>	GROU	Ρ		VV I	naov	wiess	Sample Log	WS-03	
		DESIGN I MANA	GE I CON	STRUCT	Proiect No.				Sheet 1 of 1 Hole Type	
Projec	t Name:	Nile and	d VIllers		300	1	Co-ords:	440054E - 557145N	WS	
Locati	on:	Sunder	and				Level:	28.36	Scale 1.25	
Client:		TOWN					Dates:	21/09/2023	Logged By HD	
Well	Water	Sample	e and lı	n Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)	3	Grass over TOPSOIL with low root cor	ntent Dark	
		0.10 - 0.15	ES		0.20	28.16		brown slightly silty slightly gravelly clay to medium sub-angular to sub-rounded concrete and dolerite. TOPSOIL MADE GROUND. Slightly gravelly cob	d of brick, bley SAND.	
		0.50 - 0.60	ES					Gravel is tine to coarse angular to sub brick, concrete and dolerite. Cobbles a to sub-rounded of concrete and brick. MADE GROUND	-rounded of are sub-angular	-
		1.00 - 1.10 1.00	D SPT	N=9 (2,3/3,2,2,2))					1 -
		1.50 - 1.60	D							-
		2.00	SPT	N=5 (1,0/0,4,0,1)	2.30	26.06		Brown SAND.		2 -
		2.50 - 2.60	D							-
		3.00	SPT	N=10 (0,2/2,2,3,3	3) 2.95	25.41		Orangish yellow SAND.		3 -
					3.05	25.31		Yellowish brown SAND.		
		3.50 - 3.60	D					gravelly CLAY. Gravel is fine to mediur sub-rounded of sandstone and coal.	n sub-angular to	-
		3.70 - 3.80	D		3.70 3.80	24.66 24.56		Yellowish brown slightly gravelly SANI to medium angular to sub-angular of c Firm to stiff reddish brown slightly sand	D. Gravel is fine oal. dy slightly	
		4.00	SPT	N=50 (2,3/50 for 285mm)				gravelly CLAY. Gravel is fine to mediur sub-rounded of coal and sandstone	n sub-angular to	4 -
					4.30 4.35	24.06 24.01	<u>× × × ×</u> ×	Weathered limestone bedrock recover slightly silty GRAVEL. Gravel is fine to angular to sub-rounded of limestone. End of Borehole at 4.35m	ed as cream medium sub-	-
Remar Hand	rks -dug pit	to 1.10m. No	groun	dwater encounte	ered. Termina	ited at 4.5	30m due t	o SPT refusal.	AGS	5 -

	Borehole No.
	WS-04
	Sheet 1 of 1
Project	Hole Type WS
Locatio	Scale
Localic	1:25
Client:	Logged By IM
Well	
	own grey
	OPSOIL. ounded and sandstone. / SAND with to coarse ih/slag, brick, obbles include ne.
	ghtty silty 1
	2
	3
	4
· · · · · · · · · · · · · · · · · · ·	olerite and
Remark	th incre suba olerite

Hand-dug pit to 1.20m. Strata wet below 4.50m. Sampler refused at 4.80m.

		SHAD GROU	BO P	LT	Wi	indo	wless	Sample Log	Borehole No.
	-	DESIGN I MANA	GE I CON	NSTRUCT	Proiect No.				Sheet 1 of 1 Hole Type
Projec	t Name:	Nile and	d VIllers	5	, 300	1	Co-ords:	440067E - 557122N	ws
Locati	on:	Sunder	land				Level:	28.84	1:25
Client:		TOWN					Dates:	21/09/2023	Logged By HD
Well	Water Strikes	Sampl	e and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1
		0.10 - 0.15	D	Kesuits	0.20	28.64		Grass over TOPSOIL with low root cor brown slightly silty slightly gravelly clay to medium sub-angular to sub-rounded brick and dolerite. TOPSOIL MADE GROUND. Greyish brown sligh	ntent. Firm /. Gravel is fine d of concrete, tly gravelly
		0.50 - 0.60 1.00 - 1.10 1.00	ES D SPT	N=32 (5,20/7,13,7,5	5)			slightly cobbley SAND. Gravel is fine to angular to sub-rounded of brick, concr Cobbles are sub-angular to sub-round MADE GROUND	o coarse ete and dolerite. ed of brick. 1 -
					1.40	27.44		Brick in SPT sample recovered.	
		2.00 - 2.10 2.00	D SPT	N=7 (2,4/3,2,1,1)	2.00	26.84		MADE GROUND. Greyish brown sligh slightly cobbley SAND. Gravel is fine to angular to sub-rounded of brick, concr Cobbles are sub-angular to sub-round MADE GROUND	tly gravelly o coarse ete and dolerite. ed of brick.
		2.60 - 2.70	ES		2.60	26.24		Yellowish brown SAND.	
		3.00 - 3.10 3.00	D SPT	N=7 (1,1/1,2,2,2)					3 -
		3.70 - 3.80	D		4.00	24.84		End of Borehole at 4.00m	4 -
Remai Hand boreh	rks -dug pit	to 1.00m. No	o grour	ndwater encounte	red. Termina	ated at 4.	00m due t	o made ground collapsing into th	e RR

		SHAD	RO	Т					Borehole N	0.
		GROU	P		Wi	indo	wless	s Sample Log	WS-06	5
	·	DESIGN I MANA	GE I CON	ISTRUCT	Droiget No.				Sheet 1 of	1
Projec	t Name:	Nile and	d VIllers	3	300 ⁻	1	Co-ords:	440045E - 557118N	WS	;
Locati	on:	Sunder	land				Level:	29.79	Scale	
									1:25	
Client:		TOWN					Dates:	12/09/2023	HD	y
Well	Water Strikes	Sample	e and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	ı	
		0.10 - 0.15 0.50 - 0.60 1.00 - 1.10 1.00	ES ES D SPT	N=12 (3 for	0.20	29.59		Grass over TOPSOIL. Soft to firm dark silty slightly gravelly clay TOPSOIL. Go coarse sub-angular to sub-rounded of and sandstone. TOPSOIL Yellow sandy band. MADE GROUND. Grey sandy GRAVE cobbles. Gravel is fine to coarse angu angular of brick, concrete, sandstone, Cobbles are angular to sub-angular of brick. MADE GROUND Concrete slab in pit corner.	k brown slightly ravel is fine to brick, concrete	
		1.50 - 1.60 2.00	ES	300mm/2,3,3,4) N=7 (1,2/2,1,2,2)	1.50	28.29		Brown and dark grey slightly gravelly s fine to coarse sub-angular to sub-roun sandstone and occasional coal.	SAND. Gravel is ded of	2 -
		2.50 - 2.60	D		2.20	27.59		Yellowish brown SAND with occasiona laminations.	al brown	
		3.00	SPT	N=11 (2,1/2,2,3,4)					3 -
		3.50 - 3.60	D							
		4.00 4.50 - 4.60	D SPT	N=21 (5,6/5,5,5,6)					4
			1							
¥///>¥//					5.00	24.79		End of Borehole at 5.00m		5 -
Remar	ks									_

Hand-dug pit to 1.05m. No groundwater encountered. Terminated at scheduled depth. Comm. cable warning tape encountered at original location. Moved 1.5m North.

AGS

		СПУР		IT					Borehole No.	
		GROU	P		W	indov	wless	Sample Log	WS-07	
		DESIGN I MANA	ge i con	ISTRUCT					Sheet 1 of 1	
Projec	t Name:	Nile and	d VIIIers	;	Project No. 300	1	Co-ords:	440078E - 557091N	Hole Type WS	
Locati	on:	Sunder	land				Level:	29.45	Scale 1:25	
Client:		TOWN					Dates:	12/09/2023	Logged By HD	
Well	Water Strikes	Sample	e and l	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	I	
			Туре	Results				Grass over TOPSOIL with low root cor	itent. Soft to firm	
		0.10 - 0.15	ES		0.20	29.25		dark brown slightly sandy slightly grave TOPSOIL. Gravel is fine to coarse sub rounded of concrete, sandstone and b TOPSOIL MADE CROUND, Creve gravely SANE	elly clay -angular to rick.	
		0.50 - 0.60	ES		0.70	28 75		Gravel is fine to coarse angular to sub concrete, brick and sandstone. Cobble sub-angular of concrete. MADE GROUND	-angular of s are angular to	-
		1 00 - 1 10	FS					Brown slightly gravelly SAND. Gravel i medium sub-angular to sub-rounded o	s fine to to f sandstone.	- - - 1 —
		1.00	SPT	N=7 (1,1/2,2,1,2)) 1.20	28.25		Yellowish brown fine to medium SAND		
		1.50 - 1.60	D							-
		2.00	SPT	N=17 (2,3/3,4,5,5	5)				2	2 -
		2.50 - 2.60	D							-
		3.00	SPT	N=25 (3,5/5,5,7,8	3)				3	3 -
		3.50 - 3.60	D							-
		4.00	SPT	N=16 (2,3/3,3,4,6	3)				4	1 -
		4.50 - 4.60	D							- - - - - - - - - - - - - - - - - - -
Remai Hand	rks -dug pit	to 1.00m. No	grour	dwater encounte	5.00 ered. Termina	24.45	heduled d	End of Borehole at 5.00m	AGS	; —

		SHAD	BO	LT	۱۸/	indo		Sample Log	Borehole No.	
		GROU	Ρ		VV	muov	wiess	s Sample Log	VV3-00	
		DESIGN I MANA	GEICON	ISTRUCT	Project No.				Hole Type	
Projec	t Name:	Nile and	d Villers	3	300	1	Co-ords:	440050E - 557071N	WS	
Locatio	on:	Sunder	and				Level:	29.90	Scale 1:25	
Client:		TOWN					Dates:	12/09/2023	Logged By HD	
Well	Water Strikes	Sample Depth (m)	e and I Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Descriptior	ı	
		0.10 - 0.15	ES		0.00	20.70		Grass over TOPSOIL with low root con brown slightly sandy slightly gravelly C fine to coarse sub-angular to sub-roun	ntent. Soft to firm CLAY. Gravel is ided of concrete	
		0.30 - 0.40	ES		0.20	29.10		and brick. TOPSOIL MADE GROUND. Dark grey gravelly S	SAND. Gravel is	
					0.45	29.45		fine to coarse angular to sub-angular of concrete, ash, sandstone, coal and sla	of brick, ag.	-
		0.60 - 0.70	ES					MADE GROUND Woven separator membrane.		
					0.75	29.15	00000000000	Gravel is fine to medium of slag and c	gravelly SAND. oal.	
		1.00	SPT	N=9 (1.1/2.2.2.3)	,			Reddish brown SAND with occasional	coal fragments.	1 —
								angular.		· .
		1.20 - 1.30	D		1.30	28.60				
								reliowish brown SAND.		
								* * *		-
								- - -		
		2.00	SPT	N=8 (1,1/2,1,2,3)	,				2	2 -
		2 50 - 2 60						- - -		
		2.00 2.00								
								- - -		
		3.00	SPT	N=7 (1,2/1,2,2,2))			Brown moist SAND.	3	3 -
		3.20 - 3.30	D							
										-
								- - - -		
		4.00	ODT		、					
		4.00	SPI	N=22 (3,3/4,5,6,7)				4	+
										•
		4.50 - 4.60	D							-
					5.00	24.90			F	5 —
Remar	ks.							End of Borehole at 5.00m	Ĭ ~	
Hand	-dug pit	to 1.00m. No	grour	ndwater encounte	ered. Termina	ited at so	heduled d	lepth.	AGS	

		SHAD GROU	ВО Р	LT	W	s Sample Log	Borehole No WS-09	0.)		
Projec	t Name:	Nile and	d VIllers	STRUCT	Project No.	1	Co-ords:	440086E - 557053N	Hole Type WS	
Locatio	on:	Sunderl	and		500	1	Level:	29.12	Scale 1:25	
Client:		TOWN					Dates:	20/09/2023	Logged By HD	У
Well	Water Strikes	Sample	e and li	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Descriptior	1	
		0.10 - 0.20	D D	Results				CONCRETE. MADE GROUND		
					0.20	28.92		Grey gravelly SAND. Gravel is fine to angular to sub-rounded of concrete, b MADE GROUND	coarse sub- rick and dolerite.	
		0.50 - 0.60	ES							-
• • • — • •		1.00 - 1.10	ES	N=4 /4 0/4 0 4 2)	0.70	28.42		MADE GROUND. Reddish brown slig SAND. Gravel is fine to medium sub-a rounded of sandstone with occasional MADE GROUND	ntly gravelly ngular to sub- brick and coal.	1 -
		1.00	501	N=4 (1,0/1,0,1,2)						
					1.30	27.82		Yellowish brown SAND.		
		1.50 - 1.60	D							
		2.00	SPT	N=6 (1,0/1,1,2,2)						2 -
		2.50 - 2.60	D							
		3.00	SPT	N=13 (1,2/3,3,3,4)			Material from made ground strata 0 fallen into borehole and evidenced	.20 - 0.70m in sample.	3 -
		3.50 - 3.60	D							
		4.00	SPT	N=10 (1,1/1,2,3,4)					4 -
		4.50 - 4.60	D					Sand is moist.		
					5.00	24.12		End of Borehole at 5.00m		- 5 -
mar	ks -dug pit	2.50 - 2.60 3.00 3.50 - 3.60 4.00 4.50 - 4.60 to 1.20m. No	D SPT D SPT D	N=13 (1,2/3,3,3,4 N=10 (1,1/1,2,3,4) 5.00 ered. Termina	24.12 ated at sc	heduled c	Material from made ground strata 0 fallen into borehole and evidenced	.20 - 0.70m in sample.	3

		SHAD GROU	BO P	LT	Wi	indov	wless	Sample Log	Borehole No. WS-10	
Projec	t Name:	Nile and	d VIllers	STRUCT	Project No.		Co-ords:	440065E - 557044N	Hole Type	
Locati	on:	Sunderl	and		300	1	Level:	29.37	Scale	
Client:		TOWN					Dates:	12/09/2023	Logged By	
Well	Water	Sample	e and Ir	n Situ Testing	Depth (m)	Level	Legend	Stratum Descriptior	n	
	Suikes	Depth (m) 0.10 - 0.15	Type D	Results				Grass over TOPSOIL with low root co brown slightly sandy slightly gravelly c Gravel is fine to coarse sub-angular to concrete, sandstone and brick.	ntent. Dark lay TOPSOIL. sub-rounded of	
		0.50 - 0.60	ES		0.30	29.07		TOPSOIL MADE GROUND. Grey slightly gravell is fine to coarse angular to sub-rounde concrete and slag. MADE GROUND	y SAND. Gravel ed of brick,	
					0.70	28.67		MADE GROUND. Brown slightly grave Gravel is fine to medium sub-angular to of sandstone and slag. MADE GROUND	elly SAND. o sub-rounded	
		1.00 - 1.10 1.00	ES SPT	N=14 (1,2/3,3,3,5) 1.20	28.17		Yellowish brown SAND.		1 -
		1.50 - 1.60	ES							-
		2.00	SPT	N=10 (1,2/2,2,3,3)			Brown moist SAND.		2 -
		2.40 - 2.50	D							
		3.00	SPT	N=14 (1,2/2,3,4,5)					3 -
		3.50 - 3.60	D							
		4.00	SPT	N=24 (3,4/5,5,6,8)			Brown moist SAND.		4 -
		4.50 - 4.60	D							
¥//>>¥//	1				5.00	24.37		End of Borehole at 5.00m		5 -

	SH GR	AD OUF	BOLT			•	Trial Pit	Log		Trial Pit No IT-01
Projec	ot	I MANAGE	E CONSTRUCT	Pro	iect No.		Co-ords:	440036.5	0 - 557139.30	Date
Name	Nile and \	/Illers			300	1	Level:	2	29.46	13/09/2023
Locat	ion: Sunderlar	nd					Dimensions		1.90	Scale
Client							 Depth	1.00		Logged
Client							1.80			TJS
Water Strike	Depth	Type	Results	Depth (m)	Level (m)	Legend		Stratur	n Description	
	0.10 - 0.20 0.30 - 0.40	ES		0.30	29.16		Scrub grass slightly silty high root cor angular to si coal and sar TOPSOIL MADE GRO high cobble content. Gra	over TOPSO slightly gravel ntent and low ub-angular fin- ndstone. UND: Pinky b content and lo vel is angular	L: Dark brown slightly ly fine to medium SANI timber and plastic. Gra e to coarse and include rown SAND and GRAV w boulder wire, iron ar to sub-angular fine to o	Clayey D with vel is is brick, EL with d glass coarse
	0.40 - 0.50	В					and includes concrete. Co concrete. Bo brick and co MADE GRO	s brick, slate, s obbles are ang oulders are an ncrete. UND	sandstone, porcelain ar gular small to large of b gular to sub-angular sn	nd rick and nall of -
				0.80	28.66		Yellowish br	own silty fine t	o medium SAND.	
Rema	arks: Groundw Spalling t	ater not	encountered. Trial Om bgl during soak	1.80 pit term away te	inated in	natural	ground. Trial p	End o	f Pit at 1.80m soakaway testing.	2 -
Stabil Plant:	ity: Spalling 9 Ton tra	from 0.8 cked 360	0m bgl	,	-					AGS

	SH GR	ADI OUP	BOLT			•	Trial Pit	Log	Trial Pit No IT-02			
	DESIGN	I I MANAGE	CONSTRUCT	Duci	4 NI-		Sheet 1					
Projec	ct Nile and ∖	/Illers		Proj	ect NO. 300	1	Co-ords:	29.66	Date 13/09/2023			
Land					000	<u> </u>	Dimensions	1.70	Scale			
Locat	ion: Sunderiar	10					(m):	00	1:10			
Client	: TOWN					-	2.00	~	TJS			
Water Strike	Samp Depth	oles & In Si Type	tu Testing Results	Depth (m)	Level (m)	Legend		Stratum Description				
	0.10 - 0.20	ES		0.20	29.46		Scrub grass o slightly silty sl high root cont Gravel is angu includes brick TOPSOIL MADE GROU high cobble co glass content. coarse and im angular small	ver TOPSOIL: Dark brown slightly ightly gravelly fine to medium SAN ent and low timber and plastic cor alar to sub-angular fine to coarse , coal, tile and sandstone. ND: Pinky brown SAND and GRA ontent and low boulder content, lo Gravel is angular to sub-angular cludes brick, tile and concrete. Co to large of brick and concrete. Bo	v clayey ND with ttent. and WEL with w iron and fine to bbles are ulders are			
	0.40 - 0.50	ES					angular to sub MADE GROU	p-angular small of brick and concre ND	ete.			
	0.80 - 1.00	В							1 -			
				1.10	28.56		Yellowish brov	wn silty fine to medium SAND.				
				2.00	27.66	×		End of Pit at 2.00m	2 -			
Rema Stabil Plant:	irks: Groundw Spalling t ity: Spalling 9 Ton tra	rater not from 1.10 from 1.00 cked 360	encountered. Tri)m bgl during so)m bgl).	ial pit term akaway te	inated ir sting.	n natural	ground. Trial pit	t used for soakaway testing	AGS			

	SH GR	ADE OUP	BOLT			•	Trial Pit	Log	Trial Pit No IT-03
	DESIGN	I MANAGE	CONSTRUCT		4 NI -			440050 40 557070 40	Sheet 1 of 1
Projec Name	t ∶ Nile and \	/Illers		Proj	JECT NO. 300	1	Co-oras:	440059.10 - 557073.40 29.72	Date 13/09/2023
Last					000	<u> </u>	Dimensions	1.70	Scale
Locati	on: Sunderlar	Id					(m):	8	1:10
Client	TOWN						Depth 2.00	~	Logged TJS
Water Strike	Samp Depth	les & In Situ Type	ı Testing Results	Depth (m)	Level (m)	Legend		Stratum Description	
	0.10 - 0.20 0.50 - 0.60 0.60 - 0.70	ES B		0.40	29.32		Scrub grass sandy slight low plastic c to coarse an TOPSOIL MADE GRO SAND and C boulder cont angular to si slate and co brick and co small of bric <u>Geo-membr</u>	over TOPSOIL: Stiff reddish brown s ly gravelly CLAY with high root conte ontent. Gravel is angular to sub-ang id includes brick, coal, chert and san UND: Pinky brown mottled reddish b SRAVELL with high cobble content a tent, low iron and glass content. Grav ub-angular fine to coarse and include ncrete. Boulders are angular small to ncrete. Boulders are angular to sub- k and concrete. UND ane at base of Topsol.	slightly nt and ular fine dstone.
				1.00	28.72		Yellowish br	own silty fine to medium SAND.	
Barra	rko: Crossed	otor n=1 -	populatored To	2.00	27.72		around Trial	End of Pit at 2.00m	2 -
Rema Stabili Plant:	rks: Groundw Soakawa ty: Stable 9 Ton tra	ater not e y test terr cked 360.	ncountered. Tri ninated after 6	al pit term minutes d	unated ir ue to tria	n natural al pit insta	ground. Trial p ability.	nt used for soakaway testing.	AGS

		unito	Eill 4						
	Donth (final reading)	units		FIII 2	FIII 3				
	Deptil (Intal Teading)	m	1.95	1.13		Rec	ommended soil infiltra	tion r	ate
	Dit length	m		1.00					
	Pit usidth			1.90					
	Pit width Death to first reading	(1) m	0.90	0.79			2 205 05		mla
	Depth to first reading	m	0.00	0.76			2.30E-03		11/5
IVIa		m	1.13	0.35					
	Depth at 75% full	m	1.08	0.87			NOTE:		
	Depth at 25% full	m	1.64	1.04					
		mins	21.32	18.83		Water level d	id not fall to below the 25% ful	level w	vithin 24 hrs
N/ 75 05 / 1 /0		mins	159.89	52.33		for fills 2 and	3 - Soil infiltration rate based o	n effect	tive drainage
Vp75 - 25 (volume outflo	wing between 75% and 25% effective depth)	m3	0.950	0.328			only		Ŭ
Mean surface a	rea for outflow (50% effective depth)	m2	4.80	4.85			,		
	Time for outflow	mins	138.58	33.50					
S	Soil infiltration rate, f =		0.0000238034	0.0000336006					
	or		2.38E-05	3.36E-05					
		T ime (min							
2		Time (mini	ites)			100	LOG		BACKFILL
0						180	DEPT	H (m)	DEPTH (m)
				-Infil 1	🗕 • Infi	2	Scrubb Grass over TOPSOIL	0.0 Arisir	ngs 0.0
				⇔••Infil 3		6 Effective Depth			
							MADE GROUND (Granular	0.3	
				— 25% Effective D	epth				
0.5									
								0.7	
k · _ · _							Natural SANL		
	• •								
	· •								
.5									
								1.8	18
-									
2									
.5									
3 -									
PI	ROJECT NAME						DATE		PROJECT NUMBE
	Niles and Villiers			SU12				20_22	2004.00
SHADBOLT				50F		I NEOULIO		-h-70	
ENVIRONMENTAL							SOAF		FILL NUMBER
	Town Development		In a	accordance with BRE	Digest 365 (1991 v	ith amendments in 200	3 and 2007)	T01	1-2

		units	Fill 1	Fill 2	Fill 3						
	Depth (final reading)	m	1.52	1 11 2	1 11 9						
	Pit depth	m		2.00	2.00 Recommended soil infiltration						
	Pit length	m		1.70							
	Pit width	m		1.00							
	Depth to first reading	m	1.29				1 90F-05	m	ls		
	Maximum effective depth	m	0.23				11002 00				
	Depth at 75% full	m	1.35								
	Depth at 25% full	m	1.47				<u>NOTE:</u>				
	Time at 75% full	mins	3.79								
	Time at 25% full	mins	51.38			Water level di	d not fall to below the 25% full I	evel within	24 hrs		
Vp75 - 25 (volume ou	Itflowing between 75% and 25% effective dept	th) m3	0.196			for fills 1, 2	and 3 - Soil infiltration rate bas	ed on effec	tive		
Mean surface	e area for outflow (50% effective depth)	/ m2	3.61				drainage only				
	Time for outflow	mins	47.58								
	Soil infiltration rate f =		0.0000189885								
	or		1.90E-05								
_		Time (minu	ites)				LOG	BACK	(FILL		
0	25	50		75		100	DEPTH (DN rate m/ vel within 2 d on effect BACKI	DEPTH (m)		
				Infil 1	🗕 • Infil 2		Scrubb Grass over TOPSOIL	0.0 Arisings	0.0		
								Itration rate m, 6 full level within te based on effect BACK DEPTH (m) PSOLL 0.0 Anular) 0.2 SAND 1.1 SAND 1.1 2.0 2.0			
				⇔•Infil 3	——75% E	ffective Depth	MADE GROUND (Granular)				
					oth						
							Natural SAND	1.1			
`											
\sim								2.0	2.0		
\sim \sim											
								Iltration rate m % full level within te based on effect BACH DEPTH (m) PPSOIL 0.0 Arisings anular) 0.2 SAND 1.1 SAND 1.1			
						-					
								Ation rate m/s I level within 2 assed on effect BACKF H (m) C 0.0 Arisings 0.02 Arisings 0.02 Arisings 2.0 PROJEC ep-23 3(CAWAY NUN FILL NU FILL NU			
	PROJECT NAME						DATE	ation rate m/ I level within a sed on effect BACK (m) 0.0 Arisings) 0.2) 0.2 2.0	ECT NUMBE		
	Niles and Villiers			SUDA		RESULTS	Ser	-23	2004 04		
SHADBOLT				JUAN							
ENVIRONMENTAL							SOAKA				
F	I own Development		In a	accordance with BRE D	ugest 365 (1991 with	s and 2007)	02	1			

Image: First reading F										
Object (fue reading) in 1.46 Program in 120 Object in first reading in 120 Dopped a 25% full in 130 Measure endforwing between 75% and 25% effective depth in 0.154 Measure endforwing between 75% and 25% effective depth in 0.154 Measure endforwing between 75% and 25% effective depth in 0.054 Measure endforwing between 75% and 25% effective depth in 0.054 Measure endforwing between 75% and 25% effective depth in 0.052627131 or Time (minutes) in -1611 -1611 or Time (minutes) in -25% effective bepth in or Time (minutes) in -25% effective bepth in or Time (minutes) -25% effective bepth in or Time (minutes) -25% effective bepth in or Time (minutes) -25% effective bep			units	Fill 1	Fill 2	Fill 3		Infiltration rate m/s 25% full level within 2 rate based on effection y BACKF DEPTH (m) D TOPSOIL 0.0 Arisings 0.4 (Granular) 0.4 2.0 2.0 ter 6 minutes DIapsed DATE PROJEC SOAKAWAY NUN FILL NUI 900		
Pit depth In 2.00 Depth 100 1		Depth (final reading)	m	1.46			Recommended soil infiltration rate			
H angen Im 1.70 Depth State In 1.20 Measure endlowing between 70% and product depth In 1.20 Depth 375% full In 1.20 Time of 25% full In 1.20 W175 - 25 colume endlowing between 70% and 20% effective depth In 2.44E-04 m/s V175 - 25 colume endlowing between 70% and 20% effective depth In 2.0000 Interface 20% effective depth Interface 20% effect		Pit depth	m		2.00	[
Let with many file m 100 Meeting with at 25% full m 132 m m 132 m		Pit length	m		1.70			1		
Loop to this feeding In 0.28 Desch at 25% full In 1.41 In		Pit width	m	1.00	1.00					
Image: Note of the second o	A	Depth to first reading	m	1.28			2.44E-04		n/s	
Openant of 20% bit Im 1.24 Immediate NOTE Time of 22% bit mins 4.10 mins 4.10 mins 1.24 Market and the set of t	Ν		m	0.18						
Under table at 1255 null Image 1.23 Vip6 - 26 (volume outfiouring between 75% in all 26% efficience depth) mos 0.154 Mean sufficience arras for culliform mos 2.68 Image 1.26 image Soli Infiltration rate based on effective depth) mos 2.68 Image 1.000002037131 image image Image 1.000002037131 image image Image 1.000002037131 image image Image Image 1.000002037131 image Image Image Image Image Image Image		Depth at 75% full	m	1.32	╂────┤──		NOTE:			
Impact 100% root Impact 125% root Impac 125% root Impac 125% root <td></td> <td>Time at 75% full</td> <td>mine</td> <td>1.41</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>		Time at 75% full	mine	1.41	<u> </u>					
Vp75 - 25 (volume outloanse blockene (25%) effective dept) Imm 0.105 Imm 0.105 Nems outloanse plotterene (25%) effective dept) in or 0.105 in or		Time at 25% full	mina	1.20			level did not fall to below the	25% full level with	in 24 hrs	
The set outflow control of the control of the set outflow	Vp75 25 (volume outfl	Time at 25% full flowing botwoon 75% and 25% officiative depth)	m2	4.10		for f	ills 1, 2 and 3 - Soil infiltratior	n rate based on eff	ective	
Intellingtion Intellingtion Intellingtion Intellingtion 0 3 10 10 10 10 0 3 10	Mean surface	area for outflow (50% effective depth)	m2	3.66			drainage or	ily		
Soli infitration rate, f = Image: f = <	Wear Surace	Time for outflow	mine	2.88						
Original Product Distriction Distriction <thdistriction< <="" td=""><td></td><td>Soil infiltration rate f =</td><td>111113</td><td>0.0002437131</td><td></td><td></td><td></td><td></td><td></td></thdistriction<>		Soil infiltration rate f =	111113	0.0002437131						
Image: State of the state		or		2 44F-04						
0 3 13 LOG BACKFLL 0		01		2						
0 3 30 1			Time (minu	utes)			LOG	BA	CKFILL	
	0	5			10		15	infiltration rate m/s 25% full level within 2 25% full level within 2 n rate based on effection BACKF DEPTH (m) C BACKF DEPTH (m) C er TOPSOIL 0.0 Arisings D (Granular) 0.4 atural SAND 1.0 2.0 fter 6 minutes collapsed DATE PROJEC Sep-23 3(SOAKAWAY NUN FILL NUN ITO2	DEPTH (m)	
Image: Source nume Image: So					-Infil 1	– • Infil 2	Scrubb Grass over		0.0	
Contrains Contreading Contrains Contrains Contrains Contrains Contrains Contrains					Infil 2	75% Effective Depth				
					38°IIIII 3					
MADE GROUND (granular) M										
Image: StabBODIT Newsition Source with BRE Ditest 365 (1991 with amendments in 2003 and 2007) Image: StabBODIT Image: StabBODIT Town Development Image: StabBODIT Source with BRE Ditest 365 (1991 with amendments in 2003 and 2007) Image: StabBODIT							MADE GROUNE) (Granular)		
Image: Shade of the second and with BRE Diaest 386 (1991) with anendments in 2003 and 2007) DATE State of the second and the							—			
Image: Shadbolt Image: Shadbolt <td< td=""><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	5									
Image: Shadbolt Environmental										
Image: Shadbolt Environmental Environment										
Image: Shadbolt Note: Stadb Shad Image: Shadbolt Stadb Shadbolt Image: Shadbolt								tural SAND 1.0		
Image: StabBolt Environmental							Na			
PROJECT NAME SOAKAWAY TEST RESULTS PROJECT NAME Image: Niles and Villiers SOAKAWAY TEST RESULTS PROJECT NAME Image: Niles and Villiers Image: Niles and Villiers SOAKAWAY TEST RESULTS PROJECT NAME Image: Niles and Villiers Image: Niles										
Image: StabBolt Town Development Image: Stab Solution of the stable										
PROJECT NAME SOAKAWAY TEST RESULTS DATE PROJECT NAMEE SHADBOLT Town Development In accordance with BRE Diagest 365 (1991 with amendments in 2003 and 2007) DATE PROJECT NAMEE										
PROJECT NAME 20 20 Image: Stable of the stable	1									
PROJECT NAME SOAKAWAY TEST RESULTS Date Soakaway NUMBER Imaccordance with BRE Digest 365 (1991 with amendments in 2003 and 2007) Trown Development 1										
PROJECT NAME CLENT SOAKAWAY TEST RESULTS DATE SOAKAWAY TEST RESULTS NOTE SOAKAWAY TEST RESULTS SOAKAWAY TEST RESULTS SOAKAWAY NUMERIAL SOAKAWAY NUMERIAL										
PROJECT NAME Niles and Villiers										
SHADBOLT Niles and Villiers SOAKAWAY TEST RESULTS Date Soakaway num Fill Number Image: Shadbolt Town Development In accordance with BRE Digest 365 (1991 with amendments in 2003 and 2007) Image: Date Town Interview of the state								filtration rate m/ i% full level within : ate based on effec: BACK DEPTH (m) OPSOIL 0.0 Arisings GEPTH (m) OPSOIL 0.0 Arisings 3ranular) 0.4 ate based on effec: 2.0 ate based on effec: 3.1 ate based on effec: 2.0 ate based on effec: 3.1 ate based on effec: 3.		
PROJECT NAME NOTE SHABBOLT Niles and Villiers CLIENT Town Development Town Development In accordance with BRE Digest 365 (1991 with amendments in 2003 and 2007)								2.0	2.0	
Note Test terminated after 6 minutes following trial pit collapsed following trial pit collapsed SHADBOLT Niles and Villiers CLENT SOAKAWAY TEST RESULTS In accordance with BRE Diagest 365 (1991 with amendments in 2003 and 2007) ITO2 ITO2 1							NOTE			
SHADBOLT PROJECT NAME ENVIRONMENTAL Niles and Villiers CLIENT In accordance with BRE Digest 365 (1991 with amendments in 2003 and 2007)	5						Tost termineted of	filtration rate m/s i% full level within 2 iate based on effection BACKF DEPTH (m) D FOPSOIL 0.0 Arisings Granular) 0.4 ral SAND 1.0 2.0 2.0 er 6 minutes Ilapsed DATE PROJEC SOAKAWAY NUN FILL NU ITO2		
SHADBOLT Image: Client Single state in the second and							rest terminated a			
SHADBOLT PROJECT NAME CLIENT Town Development In accordance with BRE Diagest 365 (1991 with amendments in 2003 and 2007) ITO2							following trial pit c	ollapsed		
SHADBOLT PROJECT NAME Date PROJECT NUMBER SHADBOLT Niles and Villiers SOAKAWAY TEST RESULTS Soakaway NUN FILL NUMBER In accordance with BRE Digest 365 (1991 with amendments in 2003 and 2007) ITO2 1										
SHADBOLT PROJECT NAME Date PROJECT NUMBER SHADBOLT Niles and Villiers SOAKAWAY TEST RESULTS Date Soakaway NUM Fill NUMBER CLIENT Town Development In accordance with BRE Diagest 365 (1991 with amendments in 2003 and 2007) ITO2 1										
SHADBOLT PROJECT NAME Date PROJECT NUMBER SHADBOLT Niles and Villiers SOAKAWAY TEST RESULTS Soakaway NUM Fill NUMBER CLIENT Town Development In accordance with BRE Diagest 365 (1991 with amendments in 2003 and 2007) ITO2 1										
SHADBOLT PROJECT NAME Date PROJECT NUMBER SHADBOLT Niles and Villiers SOAKAWAY TEST RESULTS Soakaway NUM Fill NUMBER CLIENT Town Development In accordance with BRE Diagest 365 (1991 with amendments in 2003 and 2007) ITO2 1										
SHADBOLT PROJECT NAME Date PROJECT NUMBER SHADBOLT Niles and Villiers SOAKAWAY TEST RESULTS Soakaway NUM Fill NUMBER CLIENT Town Development In accordance with BRE Diaest 365 (1991 with amendments in 2003 and 2007) ITO2 1										
SHADBOLT ENVIRONMENTAL PROJECT NAME Niles and Villiers SOAKAWAY TEST RESULTS CLIENT SOAKAWAY NUN FILL NUMBER Town Development In accordance with BRE Digest 365 (1991 with amendments in 2003 and 2007)	2									
SHADBOLT ENVIRONMENTAL PROJECT NAME Niles and Villiers SOAKAWAY TEST RESULTS CLIENT Soakaway NUN Fill NUMBER Town Development In accordance with BRE Diagest 365 (1991 with amendments in 2003 and 2007)										
SHADBOLT Niles and Villiers SOAKAWAY TEST RESULTS Sep-23 3001.00 SOAKAWAY NUN FILL NUMBER Town Development In accordance with BRE Diagest 365 (1991 with amendments in 2003 and 2007) ITO2 1		PROJECT NAME						DATE PR	OJECT NUMBE	
STADDULI CLIENT ENVIRONMENTAL CLIENT Town Development In accordance with BRE Digest 365 (1991 with amendments in 2003 and 2007)		Niles and Villiers			SOAKA	WAY TEST RESULTS	6	Sep-23	3001.00	
Town Development In accordance with BRE Digest 365 (1991 with amendments in 2003 and 2007) IT02 1		CLIENT		1				SOAKAWAY NUN FIL	L NUMBER	
		Town Development		In	accordance with BRE Diae	est 365 (1991 with amendments	s in 2003 and 2007)	IT02	1	

APPENDIX C SHADBOLT SOIL SCREENING VALUES SHADBOLT WATER SCREENING VALUES
Derivation of Screening Values

In assessing risks to human health arising from materials present on site, environmental testing results are compared to Shadbolt Soil Screening Values (SSVs).

These screening values are drawn from a range of sources including government guidance, research bodies, industry publications and modelling software.

On-going research by the Environment Agency (EA) is being undertaken to produce toxicology reports (TOX series) for each of the contaminants identified within the LCRM framework and then to produce published Soil Guideline Values (SGVs) using the Contaminated Land Exposure Assessment (CLEA) Model. Parallel to the work being undertaken by the EA is research being undertaken by Land Quality Management Limited and the Chartered Institute of Environmental Health (CIEH) to produce similar General Assessment Criteria (GAC) using the CLEA Model. To date, SGVs and GACs have been published for over 80 No. contaminants with SGVs / GACs derived for each contaminant for three different land use scenarios namely:

- Residential
- Allotment
- Commercial

In addition, Shadbolt Group have derived screening values for **Commercial**, **Parks, Playing Fields** and **Open Spaces** based on current guidance.

Shadbolt SSVs are based on the SGVs and GACs which are scientifically based generic assessment criteria that can be used to simplify the assessment of human health risks arising from long-term and on-site exposure to chemical contamination in soil.

SGVs and GACs are a screening tool for the generic quantitative risk assessment of land contamination (Defra and Environment Agency, 2004). They are not (unless clearly stated otherwise) relevant for assessing risks to human health from short-term exposure to chemicals in soil including injury arising from direct bodily contact and do not take account of other types of risks to humans such as explosion or suffocation risks (associated with the build-up of gases such as methane and carbon dioxide) or aesthetic issues such as odour or colour. SGVs and GACs do not take account of other non-soil-based sources of contamination such as contamination in groundwater, surface waters or drinking waters. They cannot be used to evaluate risks to non-human receptors such as controlled waters, ecosystems, buildings and services, domestic pets or garden plants. Where, for example, phytotoxic effects are an important consideration in the current or future intended land use further investigation should be undertaken.

SGVs are guidelines on the level of long-term human exposure to individual chemicals in soil that, unless stated otherwise, are tolerable or pose a minimal risk to human health. They represent "trigger values" – indicators to a risk assessor that soil concentrations above this level **may** pose a possibility of *significant harm* to human health (Defra, 2008b).

Significance is linked to:

- Margin of exceedance;
- Duration and frequency of exposure;
- Other site-specific factors that the enforcing authority may wish to consider.

SGVs do not of themselves represent the threshold at which there is a *significant possibility of significant harm* (SPOSH). Nor do they automatically represent an unacceptable intake in the context of Part 2A of the Environmental Protection Act 1990. However, they can be a useful starting point for such an assessment.

In order to assess the soil analyses results with regard to potential human health risks, Shadbolt Environmental TSVs have been derived in accordance with the UK framework set out in the most recent LCRM documents (EA 2020) and LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment 2nd Edition 2015 and are "in line" with industry standards.

Assessment Framework

The CLEA model states that, 'the contamination is assumed to be at or within 1m of the surface'. It is considered that at depths greater than 1.00m, the probability of human exposure via the direct contact pathways are significantly reduced, leaving inhalation of volatile compounds as the dominant pathway regarding human health risks. Typically, volatile compounds only significantly affect the indoor inhalation pathway.

Statistical Analysis

The CLEA guidelines also state that for each contaminant, the upper 95th percentile of the mean measured concentration (95%UCL) should be calculated and this value should be compared to the TSV.

The objective of maximum value tests is to decide whether the maximum concentration observed should be treated as an outlier or whether it can reasonably be considered to come from the same underlying population as the other samples.

It is known that contaminant concentrations often demonstrate lognormal or other distribution forms. Therefore, to calculate what are considered to be more representative 95%UCL values, the contaminant concentrations have first been assessed to determine if each contaminant distribution is closer to a normal or lognormal distribution.

If a dataset was found to be log normally distributed, the geometric mean was used to calculate the 95%UCL, for those that were found to be normally distributed; the arithmetic mean was used to calculate the 95%UCL. Constituent non-detects were assigned a value equal to the reported analytical laboratory limit of detection, considered reasonably conservative. Any identified outliers are excluded from the datasets used in calculation of the 95%UCL value.

Shadbolt Soil Screening Values used in the production of this report are presented below.

			S	SOIL - THE S	SHADBOLT	GROUP SL	<u>JITABLE F</u> O	R USE LEV	<u>ELS - HUM</u>	<u>AN HEAL</u> TH	1	
Status		lssue No. Version 8		Date 21/09/2023	-				SHA	DBOL1 ONMENTA	- L	
Determinand	Units	Residential with Home Grown Produce (1% SOM)	Residential with Home Grown Produce (6% SOM)	Residential without Home Grown Produce (1% SOM)	Residential without Home Grown Produce (6% SOM)	Allotments (6% SOM)	Commercial (1% SOM)	Commercial (6% SOM)	Public Open Space (resi) (1% SOM)	Public Open Space (resi) (6% SOM)	Public Open Space (park) (1% SOM)	Public Ope
pH Ashestos	%	<5,>9	<5, >9	<5, >9	<5, >9	<5,>9	<5, >9	<5, >9	<5, >9	<5, >9	<5,>9	
10001005			-0.00170	-0.00170	-0.00170	-0.00170	-0.00170		-0.00110	-0.00110	-0.00170	
HEAVY METALS/METALLOIDS Arsenic (C4SL)	ma/ka	37	37	39.9	39.9	49	635	635	79.1	79.1	168	<u> </u>
Beryllium	mg/kg	1.7	1.7	1.72	1.72	17.8	14	14	2.19	2.19	61	
Boron	mg/kg	290	290	11000	11000	45	240000	240000	21000	21000	46000	
Chromium (III)	mg/kg	14300	14300	16700	16700	12600	208000	208000	30600	30600	83500	-
Chromium (VI) (C4SL)	mg/kg	20.5	20.5	20.5	20.5	171	49.1	49.1	26.1	26.1	251	
Chromium (VI) (MRL) Conner	mg/kg	3.62	3.63	3.62	3.62	73.9	19.7	19.7	4.62	4.62	132	
Lead	mg/kg	200	200	313	313	79.1	2310	2310	625	625	1340	
Mercury (Elemental)	mg/kg	1.2	1.2	1.2	1.2	21	58 ^{vap} (25.8)	58 ^{vap} (25.8)	16	16	30 ^{vap} (25.8)	3
Mercury (Inorganic)	mg/kg	40	40	56	56	19	1100	1100	120	120	240	
Nickel	mg/kg	136	136	188	188	67.3	1770	1770	347	347	804	-
Selenium	mg/kg	375	375	595	595	143	13000	13000	1370	1370	2550	
Vanadium Zinc	mg/kg mg/kg	136 20000	136 20000	357 47000	357 47000	33.2 5230	7490 1100000	7490 1100000	818 93700	818 93700	1550 201000	+
GENERAL INORGANICS												
Cyanide (Free)	mg/kg	34	34	34	34	34	373	373	34	34	34	
US EPA PRIORITY PAHs												-
Acenaphthene	mg/kg	210	1100	3000 (57)	6000 (336)	200	84000 (57)	100000	15000	15000	29000	
Acenaphthylene Anthracene	mg/kg ma/ka	170	920	2900 (86.1) 31000 (1.17)	6000 (506) 37000	160	83000 (86.1) 52000	100000	15000 74000	15000	29000	
Benzo(a)Anthracene	mg/kg	7.2	13	11	15	13	170	180	29	29	49	
Benzo(a)pyrene (C4SL)	mg/kg	2.2	3.00	3.2	3.2	3.5	35	36	5.7	5.7	11	_
Benzo(a)pyrene (MRL) Benzo(b)fluoranthene	mg/kg	2.6	3.7	3.9	4	3.9	44	45	7.1	7.2	13	
Benzo(k)fluoranthene	mg/kg	320	350	360	360	640	3900	4000	640	640	1400	
Benzo(g,h,i)perylene	mg/kg	77	100	110	110	130	1200	1200	190	190	370	
Di-benzo(a,h)anthracene	mg/kg	0.24	0.3	0.31	0.32	0.43	3.5	3.6	0.57	0.58	1.1	-
Indeno(1,2,3-cd)pyrene	mg/kg	27	41	45	46	39	500	510	82	82	150	
Fluoranthene	mg/kg ma/ka	280	890	2800 (30.9)	4500 (183)	290	63000 (30.9)	23000	3100	3100	20000	-
Naphthalene	mg/kg	2.3	13	2.3	13	24	190 (76.4)	1100 (432)	4900	4900	1200 (76.4)	
Phenanthrene	mg/kg	95	440	1300 (36)	1500	90	22000	23000	3100	3100	6200	_
Coal Tar (Bap as surrogate marker)	mg/kg	0.79	0.98	1.2	1.2	1.2	15	15	2.2	2.2	4.4	
Chlorinated Solvents												
1,2 Dichloroethane (DCA)	mg/kg	0.0071	0.019	0.0092	0.023	0.016	0.67	1.7	29	29	21	-
1,1,1,2 Tetrachloroethane	mg/kg	1.2	6.4	1.5	8.2	4.4	110	560	1400	1400	1500	
PCF (Tetrachloroethene)	mg/kg ma/ka	1.3	7.5	3.9	17	2	270	95	1400	1400	1800 810 (424) sol	
1,1,1 Trichloroethane (111 TCA)	mg/kg	8.8	39	9	40	240	660	3000	140000	140000	57000 (1425) vap	1000
Chloroethene (Vinyl Chloride VC)	mg/kg	0.00064	0.0014	0.00077	0.0015	0.0018	0.059	0.12	3.5	3.5	4.8	
Trichloroethene (TCE)	mg/kg	0.91	3.4	1.2	4.2	1.7	99	350	2500	2500	2600	-
Trichloromethane (Chloroform)	mg/kg	0.026	0.13	0.026	0.13	2.4	2.9	14	890	950	190	
Phenolics												
Phenol	mg/kg	280	1100	750	2300	280	760dir (31000)	3200dir (37000)	760dir (11000)	3200dir (11000)	760dir (8600)	320
TPH (Environment Agency 16 Fract	tions)	42	160	42	160	3900	3200 (304) sol	12000 (1150) sol	570000 (304) sol	600000	95000 (304) sol	1800
TPH Aliphatic >C6-8	mg/kg	100	530	100	530	13000	7800 (144) sol	40000 (736) sol	600000	620000	150000 (144) sol	320
TPH Aliphatic >C8-10	mg/kg	27	150	27	150	1700	2000 (78) sol	11000 (451) vap	13000	13000	14000 (78) sol	210
TPH Aliphatic >C10-12 TPH Aliphatic >C12-16	mg/kg	130 (48) Vap 1100 (24) sol	4300 (142) sol	1100 (24) sol	4400 (142) sol	13000	59000 (24) sol	90000 (142) sol	13000	13000	21000 (48) Sol 25000 (24) sol	240
TPH Aliphatic >C16-35	mg/kg	65000 (8.48) f, sol	110000 F	65000 (8.48) f, sol	110000 F	270000 f	1600000 F	1800000 F	250000 F	250000 F	450000 f	
TPH Aliphatic > C35-44 TPH Aromatic >EC5-7 (Benzene)	mg/kg	65000 (8.48) F, sol 70	110000 F 300	6000 (8.48) F, sol 370	110000 F 1400	270000 F	1600000 F 26000 (1220) sol	1800000 F 86000 (4710) sol	250000 F 56000	250000 F 56000	450000 F 76000 (1220) sol	920
TPH Aromatic >EC7-8 (Toluene)	mg/kg	130	660	860	3900	120	56000 (869) vap	180000 (4360) vap	56000	56000	87000 (869) vap	1000
TPH Aromatic >EC8-10	mg/kg	34	190	47	270	51	3500 (613) vap	17000 (3580) vap	5000	5000	7200 (613) vap	930
TPH Aromatic >EC10-12 TPH Aromatic >EC12-16	mg/kg ma/ka	140	380	250	2500	130	36000 (364) sol	34000 (2150) sol 38000	5000	5000	9200 (364) sol 10000	+
TPH Aromatic >EC16-21	mg/kg	260 F	930 F	1900 F	1900 F	260 F	28000 F	28000 F	3800 F	3800 F	7600 f	
TPH Aromatic >EC21-35	mg/kg	1100 F	1700 F	1900 F	1900 F	1600 F	28000 F	28000 F	3800 f	3800 F	7800 F	+
Alphatic - Aromatic EC44-70	mg/kg	1600 F	1700 F	1900 F	1900 F	3000 F	28000 F	28000 F	3800 F	3800 F	7800 F	
Total TPH	mg/kg	100.0	100.0	100.0	100.0	100	1000	1000	1000	1000	1000	<u> </u>
BTEX												
Benzene	mg/kg	0.087	0.37	0.38	1.4	0.075	27	90	72	73	90	
Ethylbenzene	mg/kg mg/ko	47	260	83	3900	91	55000 (869) vap 5700 (518) van	27000 (2840) vap	24000	25000	87000 (869) vap 17000 (518) van	2700
Xylenes (ortho)	mg/kg	60	330	88	480	160	6600 (478) sol	33000 (2620) sol	41000	43000	17000 (478) sol	330
Xylenes (meta) Xylenes (para)	mg/kg	59	320	82	450	160	6200 (625) vap	31000 (3460) vap 30000 (3170) sol	41000	43000	17000 (625) vap	3200
Ayiches (para)	шу/кğ	00	510	19	450	170	300 (57 (5) SOL	30000 (3170) SOL	41000	45000	1000 (010) 501	310

NOTES

Screen individual constituent values initially and if exceedences are noted consider further in relation to averaging areas and statistical analysis
 These values are for initial screening for potential **risk to human health only**. They are **not remediation thresholds Screening for other receptors to be done** separately as appropriate for the site, e.g. for water, ecology, building materials.
 TSVs have been derived for common constituents only to date, pending future issues of this sheet. Research has bene undertaken for numerous other constituents already.
 Please note that the TSVs derived for certain compounds may be low in relation to standard laboratory detection limits.

For certain compounds not identified as a significant risk to human health (eg heavy end hydrocarbon fractions), aesthetic and other considerations may drive requirement for remediation.

ic Open Space (park) (6% SOM)	Derivation Tool
<5, >9	Neutral Conditions
<0.001%	Lab Screening Level
168	CLEA MODE LQM/CIEH 2015
61	CLEA MODE LQM/CIEH 2015
882	CLEA MODE LQM/CIEH 2015
83500	CLEA MODE LQM/CIEH 2015
132	CLEA MODE LQM/CIEH 2015
45200	CLEA MODE LQM/CIEH 2015
1340	pC4SL
30"" (25.8)	CLEA MODE LQM/CIEH 2015
68	CLEA MODE LQM/CIEH 2015
804	CLEA MODE LQM/CIEH 2015
2550	CLEA MODE LQM/CIEH 2015
201000	CLEA MODE LOM/CIEH 2015
	* TO (1) 10 * TO (0) (
34	
30000	CLEA MODEL LQM/CIEH 2015
30000	CLEA MODEL LQM/CIEH 2015
62	CLEA MODEL LQM/CIEH 2015
13	CLEA MODEL LQM/CIEH 2015
16	CLEA MODEL LOM/CIEH 2015
1600	CLEA MODEL LQM/CIEH 2015
440	CLEA MODEL LQM/CIEH 2015
120	CLEA MODEL LQM/CIEH 2015
180	CLEA MODEL LQM/CIEH 2015
6400	CLEA MODEL LQM/CIEH 2015
20000	CLEA MODEL LQM/CIEH 2015
6300	CLEA MODEL LQM/CIEH 2015
15000	CLEA MODEL LQM/CIEH 2015
4.8	CLEA MODEL LQM/CIEH 2015
28	CLEA MODEL LQM/CIEH 2015
2300	CLEA MODEL LQM/CIEH 2015
1500	CLEA MODEL LQM/CIEH 2015
100000 (6392) vap	CLEA MODEL LQM/CIEH 2015
120	CLEA MODEL LQM/CIEH 2015
3100	CLEA MODEL LQM/CIEH 2015
400	CLEA MODEL LQM/CIEH 2015
3200dir (11000)	CLEA MODEL LQM/CIEH 2015
180000 (1150) sol	CLEA MODEL LQM/CIEH 2015
320000 (736) sol	CLEA MODEL LQM/CIEH 2015
21000 (451) vap 24000 (283) vap	CLEA MODEL LQM/CIEH 2015 CLEA MODEL LOM/CIEH 2015
26000 (142) sol	CLEA MODEL LQM/CIEH 2015
490000 F	CLEA MODEL LQM/CIEH 2015
92000 (4710) sol	CLEA MODEL LQM/CIEH 2015 CLEA MODEL LOM/CIEH 2015
100000 (4360) vap	CLEA MODEL LQM/CIEH 2015
9300 (3580) vap	CLEA MODEL LQM/CIEH 2015
10000	CLEA MODEL LQM/CIEH 2015 CLEA MODEL LOM/CIEH 2015
7800 F	CLEA MODEL LQM/CIEH 2015
7900 F	CLEA MODEL LQM/CIEH 2015
7900 F 7800 F	CLEA MODEL LQM/CIEH 2015 CLEA MODEL LQM/CIEH 2015
1000	NOT a S4U If exceeded speciation required
110	CLEA MODEL LOM/CIEH 2015
100000 (4360) vap	CLEA MODEL LQM/CIEH 2015
27000 (2840) vap	CLEA MODEL LQM/CIEH 2015
32000 (2620) SOL 32000 (3460) Vap	CLEA MODEL LQM/CIEH 2015 CLEA MODEL LQM/CIEH 2015
31000 (3170) sol	CLEA MODEL LQM/CIEH 2015

APPENDIX D CHEMICAL LABORATORY RESULTS STATISTICAL ANALYSIS RESULTS

Issued:

06-Oct-23

Certificate Number 23-23140

Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- Our Reference 23-23140
- Client Reference 3001
 - Order No (not supplied)
 - Contract Title NILE AND VILLIERS
 - Description 26 Soil samples.
 - Date Received 28-Sep-23
 - Date Started 28-Sep-23
- Date Completed 06-Oct-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

logwood

Kirk Bridgewood General Manager

			Lab No	2240343	2240344	2240345	2240346	2240347	2240348
		.Sa	ample ID	TP-01	TP-02	TP-03	TP-03	TP-04	TP-05
			Depth	0.40-0.50	1.00-1.10	0.10-0.20	1.00-1.20	0.50-0.60	0.50-0.60
			Other ID						
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	n/s	12/09/2023	12/09/2023	12/09/2023	12/09/2023	12/09/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Preparation									
Stones >20mm	DETSC 1003*	1	% m/m	7.0	3.0	4.0	10	13	15
Moisture Content	DETSC 1004	0.1	%	17	13	18	14	12	11
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	10	7.2	15	7.7	8.4	7.2
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	1.0	0.7	0.6	0.9	1.6	0.7
Cadmium	DETSC 2301#	0.1	mg/kg	0.3	0.2	0.5	0.3	0.2	0.2
Chromium	DETSC 2301#	0.15	mg/kg	15	9.2	18	11	12	13
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	31	19	45	33	28	23
Lead	DETSC 2301#	0.3	mg/kg	280	180	100	210	270	240
Mercury	DETSC 2325#	0.05	mg/kg	0.67	0.23	0.17	0.26	1.7	0.63
Nickel	DETSC 2301#	1	mg/kg	13	11	20	11	11	13
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	100	83	140	280	96	86
Inorganics									
рН	DETSC 2008#		рН	9.0	8.5	7.9	8.7	10.1	11.2
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.4	0.3	0.6	0.8	0.3	0.2
Organic matter	DETSC 2002#	0.1	%	2.7	1.3	5.3	1.8	1.9	2.0
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	160	81	43	470	120	83
Petroleum Hydrocarbons									
EPH (C10-C40)	DETSC 3311#	10	mg/kg	750	19	17	32	140	140
PAHs									
Naphthalene	DETSC 3303#	0.03	mg/kg	0.15	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	0.36	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	0.31	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	2.7	0.08	0.16	0.25	0.16	0.32
Anthracene	DETSC 3303	0.03	mg/kg	0.54	< 0.03	< 0.03	0.07	0.04	0.07
Fluoranthene	DETSC 3303#	0.03	mg/kg	7.3	0.43	0.38	0.71	0.43	0.58
Pyrene	DETSC 3303#	0.03	mg/kg	6.5	0.41	0.31	0.58	0.40	0.49
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	3.5	0.23	0.14	0.26	0.29	0.30
Chrysene	DETSC 3303	0.03	mg/kg	3.3	0.25	0.19	0.24	0.29	0.28
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	3.4	0.28	0.17	0.21	0.37	0.36
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	1.3	0.11	0.07	0.10	0.16	0.15
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	2.4	0.20	0.09	0.14	0.31	0.28
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	0.81	0.10	0.06	0.09	0.14	0.14
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	0.25	< 0.03	< 0.03	< 0.03	0.03	0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.99	0.12	0.06	0.11	0.16	0.16
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	34	2.2	1.6	2.8	2.8	3.1

			Lab No	2240349	2240350	2240351	2240352	2240353	2240354
		.Sa	ample ID	TP-06	TP-07	TP-08	TP-09	WS-01B	WS-01B
			Depth	0.30-0.40	0.70-0.80	0.40-0.50	0.60-0.70	0.50-0.60	1.50-1.60
			Other ID						
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	12/09/2023	12/09/2023	12/09/2023	12/09/2023	20/09/2023	20/09/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Preparation	1	1							
Stones >20mm	DETSC 1003*	1	% m/m	7.0	< 1.0	16	5.0	8.0	< 1.0
Moisture Content	DETSC 1004	0.1	%	12	8.9	12	12	8.8	16
Metals	1	1							
Arsenic	DETSC 2301#	0.2	mg/kg	6.1	7.1	5.9	8.0	6.2	6.2
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	1.0	0.8	0.6	0.8	1.1	0.9
Cadmium	DETSC 2301#	0.1	mg/kg	0.4	0.2	0.2	0.1	0.2	0.2
Chromium	DETSC 2301#	0.15	mg/kg	11	10	11	7.8	14	29
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	37	27	18	19	27	24
Lead	DETSC 2301#	0.3	mg/kg	86	100	62	190	50	23
Mercury	DETSC 2325#	0.05	mg/kg	0.18	0.27	0.12	0.41	0.11	< 0.05
Nickel	DETSC 2301#	1	mg/kg	9.3	10	11	8.8	15	49
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	190	90	57	59	160	61
Inorganics	1								
рН	DETSC 2008#		рН	8.9	9.1	10.3	8.5	11.2	7.8
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.2	0.1	0.2	< 0.1	< 0.1	< 0.1
Organic matter	DETSC 2002#	0.1	%	1.6	1.8	2.1	2.7	2.9	0.8
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	500	62	110	160	200	110
Petroleum Hydrocarbons									
ЕРН (С10-С40)	DETSC 3311#	10	mg/kg	170	< 10	< 10	< 10	1600	< 10
PAHs									
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	0.06	< 0.03	0.17	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.05	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.84	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.89	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.05	0.08	0.09	0.03	4.6	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	1.3	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.09	0.10	0.12	0.03	6.3	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.07	0.08	0.10	< 0.03	4.9	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.05	0.05	0.06	< 0.03	2.2	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.05	0.05	0.07	< 0.03	2.0	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.06	0.05	0.07	< 0.03	2.0	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.81	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	0.03	0.04	< 0.03	1.5	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.58	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.19	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	0.03	< 0.03	0.69	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.37	0.45	0.61	< 0.10	29	< 0.10

			Lab No	2240355	2240356	2240357	2240358	2240359	2240360
		.Sa	ample ID	WS 02B	WS-03	WS-03	WS-04	WS-06	WS-06
			Depth	1.00-1.10	0.10-0.15	0.50-0.60	0.50-0.60	0.50-0.60	1.50-1.60
			Other ID						
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	20/09/2023	12/09/2023	12/09/2023	12/09/2023	12/09/2023	12/09/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Preparation				1					
Stones >20mm	DETSC 1003*	1	% m/m	5.0	2.0	9.0	4.0	5.0	< 1.0
Moisture Content	DETSC 1004	0.1	%	12	16	14	13	14	16
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg	2.7	13	8.5	7.4	19	9.9
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	0.5	0.5	1.0	0.8	0.9	0.9
Cadmium	DETSC 2301#	0.1	mg/kg	1.1	0.4	0.4	0.4	0.2	0.2
Chromium	DETSC 2301#	0.15	mg/kg	5.4	18	11	11	30	10
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	8.6	43	39	28	42	26
Lead	DETSC 2301#	0.3	mg/kg	50	80	280	140	80	100
Mercury	DETSC 2325#	0.05	mg/kg	0.14	0.12	0.46	0.20	0.20	2.8
Nickel	DETSC 2301#	1	mg/kg	4.9	20	11	12	33	13
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	64	110	250	200	91	77
Inorganics		· · · · · · · · · · · · · · · · · · ·		1					
рН	DETSC 2008#		pH	11.1	7.9	9.3	9.6	8.1	8.5
Cyanide, Total	DETSC 2130#	0.1	mg/kg	0.2	0.7	0.2	0.2	0.2	0.2
Organic matter	DETSC 2002#	0.1	%	0.7	5.3	1.8	1.3	4.3	2.5
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	180	31	310	1500	240	86
Petroleum Hydrocarbons		1							
EPH (C10-C40)	DETSC 3311#	10	mg/kg	12	79	110	140	140	< 10
PAHs									
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.04	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.37	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.38	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.04	0.28	0.09	0.06	3.9	0.04
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	0.05	< 0.03	< 0.03	1.3	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.06	0.58	0.16	0.10	7.4	0.05
Pyrene	DETSC 3303#	0.03	mg/kg	0.06	0.46	0.14	0.09	6.0	0.05
Christian	DETSC 3303#	0.03	mg/kg	0.03	0.21	0.08	0.05	2.5	0.03
Chrysene Denne (h) fluerenthere	DETSC 3303	0.03	mg/kg	< 0.03	0.21	0.09	0.07	2.2	< 0.03
Benzo(b)huoranthene	DETSC 3303#	0.03	mg/kg	0.04	0.22	0.11	0.07	2.1	< 0.03
	DETSC 3303#	0.03	mg/Kg	< 0.03	0.07	0.03	< 0.03	0.78	< 0.03
Indono(1,2,2,c,d)pyrono	DETSC 3303#	0.03	mg/Kg	< 0.03	0.13	0.06	0.04	1.6	< 0.03
Dibonzo(2, b) 2nthrosono	DETSC 3303#	0.03	mg/Kg	< 0.03	0.05	0.05	< 0.03	0.49	< 0.03
	DETSC 3303#	0.03	mg/Kg	< 0.03	< 0.03	< 0.03	< 0.03	0.12	< 0.03
	DETSC 3303#	0.03	rng/Kg	< 0.03	0.06	0.12	0.04	0.54	< 0.03
PAR - USEPA 10, 10tal	DETSC 3303	0.1	mg/kg	0.19	2.3	0.88	0.53	30	0.14

			Lab No	2240361	2240362	2240363	2240364	2240366	2240367
		.Sa	ample ID	WS-07	WS-07	WS-08	WS-08	WS-09	WS-09
			Depth	0.50-0.60	1.00-1.10	0.10-0.15	0.60-0.70	0.50-0.60	1.00-1.10
			Other ID						
		Sam	ple Type	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Sampl	ing Date	12/09/2023	12/09/2023	12/09/2023	12/09/2023	20/09/2023	20/09/2023
		Sampl	ing Time	n/s	n/s	n/s	n/s	n/s	n/s
Test	Method	LOD	Units						
Preparation	1	1							
Stones >20mm	DETSC 1003*	1	% m/m	3.0	< 1.0	< 1.0	1.0	8.0	2.0
Moisture Content	DETSC 1004	0.1	%	11	10	15	13	13	8.1
Metals	1	1		· · · · · · · · · · · · · · · · · · ·					
Arsenic	DETSC 2301#	0.2	mg/kg	6.6	5.1	8.1	6.8	7.3	3.6
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	0.5	1.1	0.6	1.2	0.9	0.9
Cadmium	DETSC 2301#	0.1	mg/kg	0.3	< 0.1	0.2	0.1	0.2	< 0.1
Chromium	DETSC 2301#	0.15	mg/kg	14	8.1	28	9.0	8.8	7.6
Chromium, Hexavalent	DETSC 2204*	1	mg/kg	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Copper	DETSC 2301#	0.2	mg/kg	40	15	26	22	43	12
Lead	DETSC 2301#	0.3	mg/kg	390	55	44	60	230	28
Mercury	DETSC 2325#	0.05	mg/kg	0.88	0.31	0.07	0.22	0.57	0.05
Nickel	DETSC 2301#	1	mg/kg	12	8.3	25	10	11	8.3
Selenium	DETSC 2301#	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Zinc	DETSC 2301#	1	mg/kg	170	49	67	54	71	43
Inorganics									
рН	DETSC 2008#		рН	10.6	8.0	8.0	7.6	10.2	8.2
Cyanide, Total	DETSC 2130#	0.1	mg/kg	< 0.1	0.2	0.1	0.3	0.1	0.1
Organic matter	DETSC 2002#	0.1	%	1.8	1.6	0.4	2.7	2.8	1.5
Sulphate Aqueous Extract as SO4 (2:1)	DETSC 2076#	10	mg/l	390	100	72	120	150	52
Petroleum Hydrocarbons									
EPH (C10-C40)	DETSC 3311#	10	mg/kg	< 10	< 10	64	< 10	< 10	< 10
PAHs									
Naphthalene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.10	< 0.03
Acenaphthylene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.06	< 0.03
Fluorene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.04	< 0.03
Phenanthrene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	< 0.03	< 0.03	0.40	< 0.03
Anthracene	DETSC 3303	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	0.07	< 0.03
Fluoranthene	DETSC 3303#	0.03	mg/kg	0.11	< 0.03	< 0.03	< 0.03	0.45	< 0.03
Pyrene	DETSC 3303#	0.03	mg/kg	0.09	< 0.03	< 0.03	< 0.03	0.39	< 0.03
Benzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.06	< 0.03	< 0.03	< 0.03	0.18	< 0.03
Chrysene	DETSC 3303	0.03	mg/kg	0.07	< 0.03	< 0.03	< 0.03	0.22	< 0.03
Benzo(b)fluoranthene	DETSC 3303#	0.03	mg/kg	0.09	< 0.03	< 0.03	< 0.03	0.19	< 0.03
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03	0.08	< 0.03
Benzo(a)pyrene	DETSC 3303#	0.03	mg/kg	0.05	< 0.03	< 0.03	< 0.03	0.14	< 0.03
Indeno(1,2,3-c,d)pyrene	DETSC 3303#	0.03	mg/kg	0.03	< 0.03	< 0.03	< 0.03	0.09	< 0.03
Dibenzo(a,h)anthracene	DETSC 3303#	0.03	mg/kg	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo(g,h,i)perylene	DETSC 3303#	0.03	mg/kg	0.04	< 0.03	< 0.03	< 0.03	0.09	< 0.03
PAH - USEPA 16, Total	DETSC 3303	0.1	mg/kg	0.60	< 0.10	< 0.10	< 0.10	2.5	< 0.10

			Lab No	2240368
		.Sa	ample ID	WS-10
			Depth	1.00-1.10
			Other ID	
		Sam	ple Type	SOIL
		Sampl	ing Date	20/09/2023
		Sampl	ing Time	n/s
Test	Method	LOD	Units	
Preparation				
Stones >20mm	DETSC 1003*	1	% m/m	< 1.0
Moisture Content	DETSC 1004	0.1	. %	7.7
Metals				
Arsenic	DETSC 2301#	0.2	mg/kg	4.3
Boron, Water Soluble (2.5:1)	DETSC 2311#	0.2	mg/kg	0.7
Cadmium	DETSC 2301#	0.1	mg/kg	0.1
Chromium	DETSC 2301#	0.15	mg/kg	8.2
Chromium Hexavalent	DFTSC 2201#	1	mg/kg	< 1 0
Conner	DETSC 2204	0.2	mg/kg	17
Lead	DETSC 2301#	0.2	mg/kg	54
Mercury	DETSC 2325#	0.5	mg/kg	0 15
Nickel	DETSC 2323#	0.05	mg/kg	9.15
Selenium	DETSC 2301#	05	mg/kg	< 0.5
Zinc	DETSC 2201#	0.5	mg/kg	< 0.5 51
Inorganics	DL13C 2301#	T	iiig/ kg	51
nH			nН	8.2
Cvanide Total	DETSC 2008#	0.1	ma/ka	0.2
Organic matter	DETSC 2130#	0.1	111g/ Kg %	1.1
Sulphate Aqueous Extract as $SOA(2:1)$	DETSC 2002#	10	/0 mg/l	58
Petroleum Hydrocarbons	DL13C 2070#	10	iiig/i	50
	DETCC 2211#	10	ma/ka	< 10
	DE13C 3511#	10	iiig/ kg	< 10
Nanhthalene		0.02	ma/ka	0.05
Acenanhthylene	DETSC 3303#	0.03	mg/kg	< 0.03
Aconantthono	DETSC 3303#	0.03	mg/kg	< 0.03
Eluoropo	DETSC 3303#	0.05	mg/kg	< 0.03
Phononthrono	DETSC 3303	0.05	mg/kg	0.05
Anthracono	DETSC 3303#	0.03	mg/kg	0.13
Eluoranthono	DE13C 3303	0.03	mg/kg	0.03
Dyropo	DETSC 3303#	0.03	mg/kg	0.14
Renzo(a)anthracene	DETSC 3303#	0.03	mg/kg	0.12
Chrysono	DETSC 3303#	0.03	mg/kg	0.00
Ronzo(h)fluoranthono	DETSC 3303	0.03	mg/kg	0.07
Benzo(k)fluoranthene	DETSC 3303#	0.03	mg/Kg	0.06
Ponzo(a)nyrono	DETSC 3303#	0.03	mg/kg	0.03
Indono(1,2,2,c,d)pyrono	DETSC 3303#	0.03	mg/Kg	0.05
	DETSC 3303#	0.03	mg/Kg	0.04
Popzo(g h i)popylopo	DETSC 3303#	0.03	mg/Kg	< 0.03
	DETSC 3303#	0.03	mg/Kg	0.03
FAR - USEPA 10, TOLAI	DE13C 3303	0.1	тпg/кg	0.75

Summary of Asbestos Analysis Soil Samples

Our Ref 23-23140 Client Ref 3001 Contract Title NILE AND VILLIERS

Lab No	Sample ID	Material Type	Result	Comment*	Analyst
2240343	TP-01 0.40-0.50	SOIL	NAD	none	Ben Rose
2240344	TP-02 1.00-1.10	SOIL	NAD	none	Ben Rose
2240345	TP-03 0.10-0.20	SOIL	NAD	none	Ben Rose
2240346	TP-03 1.00-1.20	SOIL	NAD	none	Ben Rose
2240347	TP-04 0.50-0.60	SOIL	NAD	none	Ben Rose
2240348	TP-05 0.50-0.60	SOIL	NAD	none	Ben Rose
2240349	TP-06 0.30-0.40	SOIL	NAD	none	Ben Rose
2240350	TP-07 0.70-0.80	SOIL	NAD	none	Ben Rose
2240351	TP-08 0.40-0.50	SOIL	NAD	none	Ben Rose
2240352	TP-09 0.60-0.70	SOIL	NAD	none	Ben Rose
2240353	WS-01B 0.50-0.60	SOIL	Chrysotile	Chrysotile present as fibre bundles	Ben Rose
2240354	WS-01B 1.50-1.60	SOIL	NAD	none	Ben Rose
2240355	WS 02B 1.00-1.10	SOIL	NAD	none	Ben Rose
2240356	WS-03 0.10-0.15	SOIL	Chrysotile	Chrysotile present in microscopic	Ben Rose
				bitumen	
2240357	WS-03 0.50-0.60	SOIL	NAD	none	Ben Rose
2240358	WS-04 0.50-0.60	SOIL	NAD	none	Ben Rose
2240359	WS-06 0.50-0.60	SOIL	NAD	none	Ben Rose
2240360	WS-06 1.50-1.60	SOIL	NAD	none	Ben Rose
2240361	WS-07 0.50-0.60	SOIL	NAD	none	Ben Rose
2240362	WS-07 1.00-1.10	SOIL	NAD	none	Ben Rose
2240363	WS-08 0.10-0.15	SOIL	NAD	none	Ben Rose
2240364	WS-08 0.60-0.70	SOIL	NAD	none	Ben Rose
2240365	WS-09 0.10-0.20	SOIL	NAD	none	Ben Rose
2240366	WS-09 0.50-0.60	SOIL	NAD	none	Ben Rose
2240367	WS-09 1.00-1.10	SOIL	NAD	none	Ben Rose
2240368	WS-10 1.00-1.10	SOIL	NAD	none	Ben Rose

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETSC 1101 using polarised light microscopy in accordance with HSG248 and documented in-house methods. NAD = No Asbestos Detected. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'. Key: * -not included in laboratory scope of accreditation.

Information in Support of the Analytical Results

Our Ref 23-23140 *Client Ref* 3001 *Contract* NILE AND VILLIERS

Containers Received & Deviating Samples

		Date		
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests
2240343	TP-01 0.40-0.50 SOIL		GJ 250ml	
2240344	TP-02 1.00-1.10 SOIL	12/09/23	GJ 250ml	
2240345	TP-03 0.10-0.20 SOIL	12/09/23	GJ 250ml	
2240346	TP-03 1.00-1.20 SOIL	12/09/23	GJ 250ml	
2240347	TP-04 0.50-0.60 SOIL	12/09/23	GJ 250ml	
2240348	TP-05 0.50-0.60 SOIL	12/09/23	GJ 250ml	
2240349	TP-06 0.30-0.40 SOIL	12/09/23	GJ 250ml	
2240350	TP-07 0.70-0.80 SOIL	12/09/23	GJ 250ml	
2240351	TP-08 0.40-0.50 SOIL	12/09/23	GJ 250ml	
2240352	TP-09 0.60-0.70 SOIL	12/09/23	GJ 250ml	
2240353	WS-01B 0.50-0.60 SOIL	20/09/23	GJ 250ml	
2240354	WS-01B 1.50-1.60 SOIL	20/09/23	GJ 250ml	
2240355	WS 02B 1.00-1.10 SOIL	20/09/23	GJ 250ml	
2240356	WS-03 0.10-0.15 SOIL	12/09/23	GJ 250ml	
2240357	WS-03 0.50-0.60 SOIL	12/09/23	GJ 250ml	
2240358	WS-04 0.50-0.60 SOIL	12/09/23	GJ 250ml	

Information in Support of the Analytical Results

Our Ref 23-23140 *Client Ref* 3001 *Contract* NILE AND VILLIERS

Date

Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests
2240359	WS-06 0.50-0.60 SOIL	12/09/23	GJ 250ml	
2240360	WS-06 1.50-1.60 SOIL	12/09/23	GJ 250ml	
2240361	WS-07 0.50-0.60 SOIL	12/09/23	GJ 250ml	
2240362	WS-07 1.00-1.10 SOIL	12/09/23	GJ 250ml	
2240363	WS-08 0.10-0.15 SOIL	12/09/23	GJ 250ml	
2240364	WS-08 0.60-0.70 SOIL	12/09/23	GJ 250ml	
2240365	WS-09 0.10-0.20 SOIL	20/09/23	PT 1L	
2240366	WS-09 0.50-0.60 SOIL	20/09/23	GJ 250ml	
2240367	WS-09 1.00-1.10 SOIL	20/09/23	GJ 250ml	
2240368	WS-10 1.00-1.10 SOIL	20/09/23	GJ 250ml	

Key: G-Glass J-Jar P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance sam deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guida Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate cor deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample due to sample date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and ti prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

Inappropriate container for

tests	

Inappropriate container for tests

10010	

ples received may be ince on Deviating itainers etc are eviations. If no ime for waters) this will

Issued:

17-Oct-23

Certificate Number 23-23811

Client Shadbolt Group 18 Bewick Road Gateshead NE8 4DP

- Our Reference 23-23811
- Client Reference 3001
 - Order No (not supplied)
 - Contract Title NILE AND VILLIERS
 - Description 3 Soil samples.
 - Date Received 28-Sep-23
 - Date Started 06-Oct-23
- Date Completed 17-Oct-23

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

lemood

Kirk Bridgewood General Manager

	Lab No					
		.Sa	TP-01	WS-01B	WS-03	
			Depth	0.40-0.50	0.50-0.60	0.10-0.15
			Other ID			
		Sam	ple Type	SOIL	SOIL	SOIL
		Sampl	ing Date	n/s	20/09/2023	12/09/2023
		Sampl	ing Time	n/s	n/s	n/s
Test	Method	LOD	Units			
Asbestos Quantification	DETSC 1102	0.001	%		0.004	0.56
Petroleum Hydrocarbons						
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5	2.8	
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2	9.0	
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5	24	
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4	220	
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10	250	
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01	< 0.01	
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9	0.9	
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	1.6	8.3	
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	40	49	
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	89	440	
Aromatic C5-C35	DETSC 3072*	10	mg/kg	130	500	
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	130	750	

Summary of Asbestos Analysis

Samples

Lab No	Sample ID	Sample Location	Material Type	Result	Comment*	Analyst
Crocidolite = E	Blue Asbestos, Amosite = B	rown Asbestos, Chrysotile = White A	sbestos. Anthophyllite,	Actinolite and Trer	nolite are other forms	of Asbestos. Samples
are analysed b	by DETSC 1101 using polar	ised light microscopy in accordance v	with HSG248 and docum	ented in-house me	ethods. NAD = No Asbe	estos Detected.
Where a samp	ole is NAD, the result is bas	ed on analysis of at least 2 sub-samp	oles and should be taken	to mean 'no asbe	stos detected in sample	e'. Key: * -not
included in lab	oratory scope of accredita	ation.				

Summary of Asbestos Quantification Analysis Soil Samples

Our Ref 23-23811 *Client Ref* 3001 *Contract Title* NILE AND VILLIERS

		Lab No	2244377	2244378
		Sample ID	WS-01B	WS-03
		Depth	0.50-0.60	0.10-0.15
		Other ID		
	Sar	nple Type		
	Samj	oling Date	20/09/2023	12/09/2023
	Samp	oling Time		
Test	Method	Units		
Total Mass% Asbestos (a+b+c)	DETSC 1102	Mass %	0.004	0.559
Gravimetric Quantification (a)	DETSC 1102	Mass %	na	0.559
Detailed Gravimetric Quantification (b)	DETSC 1102	Mass %	0.004	na
Quantification by PCOM (c)	DETSC 1102	Mass %	na	na
Potentially Respirable Fibres (d)	DETSC 1102	Fibres/g	na	na
Breakdown of Gravimetric Analysis (a)				
Mass of Sample		g	11.78	6.47
ACMs present*		type		Bitumen
Mass of ACM in sample		g		0.45
% ACM by mass		%		6.99
% asbestos in ACM		%		8
% asbestos in sample		%		0.559
Breakdown of Detailed Gravimetric Analysis (b)				
% Amphibole bundles in sample		Mass %	na	na
% Chrysotile bundles in sample		Mass %	0.004	na
Breakdown of PCOM Analysis (c)				
% Amphibole fibres in sample		Mass %	na	na
% Chrysotile fibres in sample		Mass %	na	na
Breakdown of Potentially Respirable Fibre Analysis (d)				
Amphibole fibres		Fibres/g	na	na
Chrysotile fibres		Fibres/g	na	na
			1	

* Denotes test or material description outside of UKAS accreditation. % asbestos in Asbestos Containing Materials (ACMs) is determined by by reference to HSG 264. Recommended sample size for quantification is approximately 1kg

denotes deviating sample

Information in Support of the Analytical Results

Our Ref 23-23811 *Client Ref* 3001 *Contract* NILE AND VILLIERS

Containers Received & Deviating Samples

		Date		Holding time exceeded for	Inappropriate container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
2244376	TP-01 0.40-0.50 SOIL		GJ 250ml	Sample date not supplied,	BTEX / C5-C10
				Aliphatics/Aromatics (14 days),	
				BTEX / C5-C10 (14 days)	
2244377	WS-01B 0.50-0.60 SOIL	20/09/23	GJ 250ml		BTEX / C5-C10
2244378	WS-03 0.10-0.15 SOIL	12/09/23	GJ 250ml		
2211070		12/03/23	0.0 200111		

Key: G-Glass J-Jar

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

End of Report

APPENDIX E

GEOTECHNICAL LABORATORY RESULTS

Unit 8B Bowburn South Industrial Estate Durham, DH6 5AD T: 0191 389 6543

Laboratory Test Report

Client	Shadbolt Environmental
	18 Bewick Road
	Gateshead
Address	NE8 4DP
F.A.O	lain McLean
Project [.]	
T TOJEOL	Nile & Villiers
Project Number	D11093
	511000
Report Number	
Report Number.	L23-1134
Date Received:	02/10/2023

Testing Required:	Moisture Content - BS:1377-2:1990 Plastic Limit - BS:1377-2:1990 Particle Size Distribution - BS:1377-2:1990 Determination of Maximum Dry Density / Optimum Moisture Content by 2.5kg Rammer - BS:1377-4:1990 Determination of Maximum Dry Density / Optimum Moisture Content by 4.5kg Rammer - BS:1377-4:1990 California Bearing Ratio - BS:1377-4:1990*
Date Started:	02/10/2023
Date Finished:	13/10/2023

Report Issue Date:	13/10/2023
Reviewed By:	
	J.Curry - Contracts Manager
Authorised By:	the
	N.O'Brien - Quality and Technical Manager
Remarks:	(*) denotes testing is outside of UKAS Scope of Accreditation. (+) denotes subcontracted testing.

Samples will be stored for one month after the report has been issue before being disposed of.

The published results appertain only to the specimens tested.

Exploration and Testing Associates Limited, registered in England and Wales #11803869 at 8B, Bowburn South Industrial Estate, Bowburn, Durham, DH6 5AD

C EXPLORATION D				Det	ermination of Moistu	ire Conten Pl	t, Liqui asticity	d Limit, I Index	Plastic L	imit and	Derivation of
Project No.			Project Name								
	D11093					300	01 Nile an	d Villiers			
Hole No.	Туре	Sa Ref	mple De	>pth	Soil Description	Moisture Content %	Passing 425µm %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Remarks
WS-01B	в	19	2.	.50	Brown Slightly Sandy Clay	20	97	35	18	17	Sample tested in natural state - material passing 425um estimated by hand picking
WS-03	в	20	3.	.50	Brown Sandy Clay	17	97	33	18	15	Sample tested in natural state - material passing 425um estimated by hand picking
				_							
Moisture Content carried out in accordance with BS 1377: Part 2:			n BS 1377: Part 2: 1990: Cla	ause 3.2	D	ate	Appro N O'	ved By Brien	UKAS Accredited		
Liquid Limit, Plastic Limit & Plasticity Index all performed in accordance with BS 1377: Part 2 1990 - Cone Penetrometer method - Cone 80g/30°				1377: Part 2:	13/10/2	023 07:35	1a		20632		

APPENDIX F

GAS AND GROUNDWATER MONITORING RESULTS

GROUNDWATER / GAS MONITORING RECORD SHEET

18 Bewick Road, Gateshead, Tyne & Wear, NE8 4DP Tel: 0191 478 3330 Email: admin@shadboltgroup.net

The Shadbolt Group

Site:	Nile and Villiers														
											Job No:		3011		
Client:	Sunderland Council									Date:		28/09/2023			
											Weather:		Cloudy		
Monitored	M										Instruments Used:		GFM 436 + Dipmeter		
by:	Pressure Trend: Rising													Rising	
Borehole	Borehole surface level	CH4		CO2		02		CO	H2S	Flow Rate	Atmospheric	Water	Water	Base	
		Peak	Steady	Peak	Steady	Peak	Steady	Steady	Steady	Peak (Steady)	Pressure	Depth	Depth	Depth	Remarks
	(as surveyed)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	(% vol)	PPM	PPM	(l/hr)	(mbar)	(m bgl)	(m aOD)	(m bgl)	
Ambient		0.0	0.0	0.0	0.0	20.3	20.3	0.0	0.0	-	1004	-		-	
WS01b		0.0	0.0	2.4	2.4	11.4	11.4	0.0	0.0	0.2(0)	1004	Dry		2.35	
WS02b		0.0	0.0	0.0	0.0	9.3	9.3	0.0	0.0	0.0	1005	Dry		2.47	
WS04		0.0	0.0	2.3	2.3	17.6	17.6	0.0	0.0	0.0	1004	Dry		4.09	
WS05		0.0	0.0	2.4	2.4	17.6	17.6	0.0	0.0	0.0	1004	Dry		2.14	
WS08		0.0	0.0	3.2	3.2	16.0	16.0	0.0	0.0	0.0	1005	Dry		4.08	
WS09		0.0	0.0	1.5	1.5	18.0	18.0	0.0	0.0	0.0	1004	Dry		4.44	Sediment at base
Notes:															
1 The peak r	reading is the n	naximum	recorded	level duri	ng a mon	itoring ev	ent.								

2 The steady reading is the level which remained constant after approximately 1 minute.

