THERMAL PERFORMANCE CALCULATION

Analysis undertaken and report prepared on behalf of Conservatory Insulations Ltd for....

GARDEN ROOM WALL

DOCUMENT REF :- CIL/TP/24081 Rev 01 Document title :- U value and condensation risk analysis of typical Garden Room wall. Date of original issue :- 21 February 2024 Revised issue date :-

> Document prepared by Calvin Norton calvin@feaservices.co.uk

Façade Engineering and Analysis Services Limited. Suite 8, Tradmark House, Hyssop Close, Cannock, Staffordshire, WS11 7FA. Tel. 01543 898150 : email. <u>enquiries@feaservices.co.uk</u> : web. <u>www.feaservices.co.uk</u>

Revisions

Rev 01 Initial issue of document

t

21 February 2024

This report is a confidential document

It has been produced by Façade Engineering and Analysis Services Limited, specifically for the Client referenced on the title page of this document.

The contents must not be disclosed to any other party without the permission, obtained in writing, of Façade Engineering and Analysis Services Limited.

If such permission is sought and agreed then the report must be copied in its entirety. Façade Engineering and Analysis Services Limited shall not, under any circumstances, be liable for any reliance by any party, other than the Client, on the information contained within this Report.

This report is provided strictly subject to Façade Engineering and Analysis Services Limited standard terms and conditions and does not form a guarantee or warranty of performance. Nothing in this report confers or purports to confer on any third party any benefit or the acceptance of any third-party liability by the Contracts (Rights of Third Parties) Act 1999.

This document provides an assessment of the thermal performance only and does not indicate or contain assessments of the façade suitability regarding any other aspects, including but not limited to, structural and fire resistance. These must be assessed by the client and their specialist engineers.

Summary

This document contains thermal analysis of the typical Garden Room through wall construction to assess the U value and condensation risk analysis in accordance with BS EN ISO 13788.

The calculation has been undertaken on behalf of Conservatory Insulations Ltd T/A Elite Garden Studios and has been undertaken using the BuildDesk U software 3.4.6.

The wall construction is a ventilated outer cladding supported by a backing wall.

By convention, from BR443, the external cladding element is ignored in U value calculations but an amendment to the external surface resistance of the insulating material is made to allow for the sheltering effect of the cladding and penetrating brackets through the insulation must be allowed for. See analysis notes for further details.

The examined construction consists of a SIP constructed from 11mm OSB inner and outer skins sandwiching a 100mm EPS insulation (λ =0.031 W/mK).*

A 25mm cavity with timber battens is to the inside of the SIP with a Conservaheat Multifoil insulation ** applied to that.

A further 25mm cavity with timber battens supports a 9.5mm plasterboard internal finish.

Analysis of the examined area shows that the construction achieves a U value of $0.16 \text{ W/m}^2\text{K}$.

A condensation risk analysis in accordance with BS EN ISO 13788:2002 shows that no condensation will occur in the construction assessed.

(*) value taken from previous calculations supplied by CIL

(**) The λ value of the that element is calculated from an advised thermal resistance of 2.35 taken to be applicable to the foil fitted at a 6mm thickness. The vapour resistance of the material is assumed to be as the foil elements within it.

Wall construction

Documentation of the component Thermal transmittance (U-value) according to BS EN ISO 6946 Source: own catalogue - External walls Component: Con Insul gardem room wall

OUTSIDE

INSIDE

This illustration of inhomogeneous layers is provided only to assist in visualising the arrangement.

On the basis of the given information about the inhomogeneous layers, it is not possible to estimate how and where bearing elements intersect each other. It was assumed that the layers intersect crosswise. The size of the areas was calculated corresponding to their percentage of the whole area.

21. February 2024

Assignment: External wall

		Manufacturer	Name	Thickness [m], number	Lambda [W/(mK)]	Q	R [m²K/W]
-		Rse				_	0.1300
	1	Own catalogue	Cladding	0.0030	0.940		0.0032
	2	BS EN ISO 6946	Well ventilated air laver	0.0250	0.000	D	-
5	3	BS EN 12524	Breather membrane	0.0001	0.170	D	0.0006
7	4	BS EN 12524	Oriented strand board (OSB)	0.0110	0.130	D	0.0846
7	5	Own catalogue	EPS insulation 0.031	0.1000	0.031	E.	3.2258
	-	Air gaps	Level 1: $dU'' = 0.01 W/(m^2K)$				
P	6	BS EN 12524	Oriented strand board (OSB)	0.0110	0,130	D	0.0846
マ	7	Inhomogeneous material	consisting of:	0.0250	ø 0.138		0.1808
	79	layer BS EN ISO 6946	Unventilated air laver: 25 mm horiz heat flow	91 67 %	0 139	D	
	76	BS EN 12524	Softwood Timber [500 kg/m ³]	08 33 %	0 130	D	-
P	8	FEASI	Conservaheat	0.0060	0.003		2.3529
7	9	Inhomogeneous material	consisting of:	0.0250	ø 0.138		0.1808
	9a	BS EN ISO 6946	Unventilated air laver: 25 mm, horiz, heat flow	91.67 %	0.139	D	-
	9b	BS EN 12524	Softwood Timber [500 kg/m³]	08.33 %	0.130	Ð	-
V	10	Knauf Drywall	Knauf Wallboard	0.0095	0.160	D	0.0594
		Rsi					0.1300
				0.2156			

was not taken into consideration in the calculation

21. February 2024

Documentation of the component Thermal transmittance (U-value) according to BS EN ISO 6946 own catalogue - External walls Source: Component: Con Insul gardem room wall

$R_T = (R_T' + R_T'')/2 = 6.43 \text{ m}^2\text{K/W}$

Correction to U-value for	according to	deita U [W/(m²K)]
Air gaps	BS EN ISO 6946 Annex F	° 0.0025
Air gaps and fixings corrections n	eed not be applied, as their total effect is less than 3% (Annex	D BS 6946:1996).
		0.0000

$U = 1/R_T + \Sigma \Delta U = 0.16 W/(m^2K)$

C

D

- The physical values of the building materials has been graded by their level of quality. These 5 levels are the following **
 - A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party. **
 - B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party C: Data is entered and validated by the manufacturer or supplier. ..
 - ..
 - D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others.
- .. E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.

21. February 2024

Documentation of the component Thermal transmittance (U-value) according to BS EN ISO 6946 Source: own catalogue - External walls Component: Con Insul gardem room wall

The inhomogeneous layer consists of two zones (A, B). The portion is given in %.

A 22.92 + 45.84 + 22.92 consisting of material layers: 3, 4, 5, 6, 7a, 8, 9a, 10	= 91.67%
B 4.17 + 4.17 consisting of material layers: 3, 4, 5, 6, 7b, 8, 9b, 10	= 8.33%

Upper limit of the thermal transfer resistance R

U _A [W/(m ² K)] =	$\frac{1}{(\Sigma R_{i,A}) + R_{si} + R_{so}} =$	<u>1</u> 6.17 + 0.13 + 0.13	= 0.16
U _B [W/(m ² K)] =	$\frac{1}{(\Sigma R_{i,B}) + R_{si} + R_{so}} =$	<u>1</u> 6.19 + 0.13 + 0.13	= 0.15

$$R_{T}' = \frac{1}{A^* U_A + B^* U_B} = 6.43 \text{ m}^2 \text{K/W}$$

Lower limit of the thermal transfer resistance R

R _{se} [m ² K/W]		= 0.13
$R_3 = [m^2 K/W] = d_3 / \lambda_3 =$	0.0001 / 0.170	= 0.00
$R_4 " [m^2 K/W] = d_4 / \lambda_4 =$	0.0110 / 0.130	= 0.08
$R_5'' [m^2 K/W] = d_{5}/\lambda_5 =$	0.1000 / 0.031	= 3.23
$R_6 " [m^2 K/W] = d_6 / \lambda_6 =$	0.0110 / 0.130	= 0.08
$R_7 = [m^2 K/W] = d_7/(\lambda_{7a} * A + \lambda_{7b} * B) =$	0.0250 /(0.139 * 91.67% + 0.130 * 8.33%)	= 0.18
R_{s} [m ² K/W] = d s/ λ_{s} =	0.0060 / 0.003	= 2.35
R9" $[m^2K/W] = d_{9}/(\lambda_{R0} * A + \lambda_{9b} * B) =$	0.0250 /(0.139 * 91.67% + 0.130 * 8.33%)	= 0.18
R_{10} [m ² K/W] = d 10^{λ} 10=	0.0095 / 0.160	= 0.06
Rei (m ² K/W)		= 0.13

 R_{T} " = ΣR_{i} " + R_{si} + R_{se} = 6.43 m²K/W

21. February 2024

Documentation of the component Calculation according BS EN ISO 13788 own catalogue - External walls Source: Component: Con Insul gardem room wall

OUTSIDE

D

INSIDE

The list of material layers shown below may differ from those in the U-value calculation printout. Only material layers which are used in the Condensation Risk Analysis are listed.

This calculation of the Condensation risk analysis according to BS EN ISO 13788 has been performed on a construction containing inhomogeneous layers. This calculation is only valid through the selected section. It is advisable that you should also select the alternative position and recalculate the Condensation Risk Analysis for a more complete assessment of the construction. For further information the user is advised to follow the guidance in BS 5250:2021 Management of moisture in buildings

Assignment: External wall

Name	Thickn. [m]	lambda [W/(mK)]	Q	µ [-]	Q	sd [m]	R [m²K/W]
Breather membrane	0.0001	0.170	D	2000.00	D	0.20	0.0006
Oriented strand board (OSB)	0.0110	0.130	D	30.00	D	0.33	0.0846
EPS insulation 0.031	0.1000	0.031		150.00	15	15.00	3.2258
Oriented strand board (OSB)	0.0110	0.130	D	30.00	D	0.33	0.0846
Unventilated air laver: 25 mm, horiz, heat flow	0.0250	0.139	D	1.00	D	0.03	0.1799
Conservaheat	0.0060	0.003		9999999.0		5999.99	2.3529
				0			
Unventilated air laver: 25 mm, horiz, heat flow	0.0250	0.139	D	1.00		0.03	0.1799
Knauf Wallboard	0.0095	0.160	D	4.00	D	0.04	0.0594

The physical values of the building materials has been graded by their level of quality. These 5 levels are the following C

A: Data is entered and validated by the manufacturer or supplier. Data is continuously tested by 3rd party. ..

B: Data is entered and validated by the manufacturer or supplier. Data is certified by 3rd party ..

C: Data is entered and validated by the manufacturer or supplier. ...

D: Information is entered by BuildDesk without special agreement with the manufacturer, supplier or others.

E: Information is entered by the user of the BuildDesk software without special agreement with the manufacturer, supplier or others.

Documentation of the component Calculation according BS EN ISO 13788 Source: own catalogue - External walls Component: Con Insul gardem room wall

Condensation risk analysis - summary of main results Calculation according BS EN ISO 13788

Surface temperature to avoid critical surface moisture: No danger of mould growth is expected.

Interstitial condensation: No condensation is predicted at any interface in any month.

Condensation Risk Analysis calculations according to BS EN ISO 13788 are used as a guide in predicting interstitial condensation. This methodology uses some simplifications of the dynamic processes involved and subsequently does have some limitations. For further information the user is advised to follow the prescriptive guidance in BS 5250:2021 Management of moisture in buildings – Code of practice & BRE Information Paper:IP2/O5 (Feb. 2005) 'Modelling and controlling interstitial condensation

21. February 2024

Documentation of the component Calculation according BS EN ISO 13788 Source: own catalogue - External walls Component: Con Insul gardem room wall

Surface temperature to avoid critical surface humidity Calculation according BS EN ISO 13788

Location: London (Heathrow); Humidity class according BS EN ISO 13788 annex A: legacy; Dwellings with low occupancy; Return period according BS 5250:2021 Once in 10 years (-1°C Ext Temp, +4% Ext RH)

		1	2	3	4	5	6	7	8	9	10	11	12
	Month	Те	phi e	TI	phi i	pe	delta p	pi	ps(Tsi)	Tsi,min	fRsi	Tsi	Tse
		[°C]	-	[°C]		[Pa]	[Pa]	[Pa]	[Pa]	[°C]		[°C]	[°C]
٠	January	3.9	0.880	20.0	0.611	710	717	1428	1784	15.7	0.734	19.4	4.0
	February	3.7	0.860	20.0	0.604	684	726	1411	1763	15.5	0.726	19.4	3.8
	March	5.9	0.810	20.0	0.591	752	628	1380	1725	15.2	0.659	19.5	6.0
	April	7.8	0.750	20.0	0.572	793	544	1337	1671	14.7	0.565	19.5	7.9
	May	11.6	0.730	20.0	0.587	997	374	1371	1714	15.1	0.415	19.7	11.7
	June	14.7	0.730	20.0	0.623	1220	236	1457	1821	16.0	0.251	19.8	14.7
	July	16.9	0.720	20.0	0.652	1386	138	1524	1905	16.7	0.000	19.9	16.9
	August	16.6	0.740	20.0	0.663	1397	151	1549	1936	17.0	0.116	19.9	16.6
	September	13.9	0.790	20.0	0.653	1254	272	1526	1907	16.8	0.469	19.8	13.9
	October	10.2	0.850	20.0	0.639	1057	437	1494	1867	16.4	0.635	19.6	10.3
	November	6.6	0.880	20.0	0.622	857	597	1454	1818	16.0	0.702	19.5	6.7
	December	4.9	0.900	20.0	0.621	779	673	1452	1815	16.0	0.734	19.4	5.0

• The critical month is January with $f_{\text{Rel.max}} = 0.734$ $f_{\text{Rel}} = 0.961$

$f_{Ral} > f_{Ral,max}$, the component complies.

Nr Explanation

- 1 External temperature
- 2 External rel. humidity
- 3 Internal temperature
- 4 Internal relative humidity
- 5 External partial pressure p. = . * pat(T.); pat(T.) according formula E.7 and E.8 of BS EN ISO 13788
- 6 Partial pressure difference. The security factor of 1.10 according to BS EN ISO 13788, ch.4.2.4 is already included.
- 7 Internal partial pressure p_i = + * p_{eet}(T_i); p_{eat}(T_i) according formula E.7 and E.8 of BS EN ISO 13788
- 8 Minimum saturation pressure on the surface obtained by pat(Tei) = p1/ dei,
- where $\phi_{al} = 0.8$ (critical surface humidity)
- 9 Minimum surface temperature as function of part(Tal), formula E.9 and E.10 of BS EN ISO 13788
- 10 Design temperature factor according 3.1.2 of BS EN ISO 13788
- 11 Internal surface temperature, obtained from Tal = TI Ral * U * (Ti Te)
- 12 External surface temperature, obtained from Tse = Te + Ree * U * (Ti Te)

21. February 2024

Documentation of the component Calculation according BS EN ISO 13788 Source: own catalogue - External walls Component: Con Insul gardem room wall

Interstitial condensation - main results Calculation according BS EN ISO 13788

No condensation is predicted at any interface in any month.

Climatic conditions

Location: London (Heathrow); Humidity class according BS EN ISO 13788 annex A: legacy; Dwellings with low occupancy; Return period according BS 5250:2021 Once in 10 years (-1°C Ext Temp, +4% Ext RH)

	-	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Internal temperature [°C]	Ti	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Internal rel. humidity [%]	phi_i	61.1	60.4	59.1	57.2	58.7	62.3	65.2	66.3	65.3	63.9	62.2	62.1
External temperature [°C]	Te	3.9	3.7	5.9	7.8	11.6	14.7	16.9	16.6	13.9	10.2	6.6	4.9
External rel. humidity [%]	phi_e	88.0	86.0	81.0	75.0	73.0	73.0	72.0	74.0	79.0	85.0	88.0	90.0

21. February 2024