

Experience and expertise working together

Document Control Sheet

Client: David Hanson Meadow Cottage The Street Preston

CT3 1EB

Report Issue No.	Date	Author	Authorised
MT/6051/FRA.1 28 th March 2024		MT	MT

COPYRIGHT© Bellamy Roberts.

The material presented in this report is confidential. This report has been prepared for the exclusive use of David Hanson within the terms of the contract and shall not be distributed or made available to any other company or person without the knowledge and written consent of Bellamy Roberts.

Any such party relies on the report at their own risk.

CONTENTS

SECTIONS

1	INTRODUCTION	1
2	SOURCES OF FLOODING	5
3	DEVELOPMENT PROPOSAL	8
4	SUMMARY & CONCLUSIONS	13

APPENDICES

Appendix 1	Site Location Plan (6051/301)
Appendix 2	Southern Water Asset Plan
Appendix 3	BGS Borehole Log (TR26SE16)
Appendix 4	Greenfield Runoff Rates
Appendix 5	EA Flood Map for Planning
Appendix 6	Proposed Drainage Strategy – Infiltration (6051/003 Rev. A)
Appendix 7	Microdrainage Analysis – Infiltration
Appendix 8	Proposed Drainage Strategy – Attenuation (6051/004 Rev. A)
Appendix 9	Microdrainage Analysis – Attenuation

1 INTRODUCTION

- 1.1 Bellamy Roberts has been instructed by Clague on behalf of David Hanson to prepare a Flood Risk Assessment (FRA) to support a planning application for 16 residential units on land at Meadow Cottage, Preston.
- 1.2 The existing site comprises of a cottage to the south and stables in the centre of the site. Access is currently achieved from Meadow Cottage which connects to the western side of The Street.
- 1.3 An earlier scheme for 5 units and an access was previously approved by Dover District Council (LPA ref. 20/00544).
- 1.4 It is recognised that developments that are designed without regard to flood risk may endanger lives, damage property, cause disruption to the wider community, damage the environment, be difficult to insure and require additional expense on remedial works. Current guidance on development and flood risk identifies several key aims for a development to ensure that it is sustainable in flood risk terms. These aims are as follows:
 - the development should not be exposed to flood risk such that the health, safety, and welfare of the users of the development, or the population elsewhere, are threatened;
 - the development should not be at a significant risk of flooding and should not be susceptible to damage due to flooding;
 - safe access to and from the development should be possible during flood events;
 - the development should not increase flood risk elsewhere;
 - the development should not prevent safe maintenance of watercourses or maintenance and operation of flood defences;
 - the development should not be associated with an onerous or difficult operation and maintenance regime to manage flood risk. The responsibility for any operation and maintenance required should be clearly defined;
 - future users of the development should be made aware of any flood risk issues relating to the development;

- the development design should be such that future users will not have difficulty obtaining insurance or mortgage finance, or in selling all or part of the development, because of flood risk issues;
- the development should not lead to degradation of the environment, and
- the development should meet all the above criteria for its entire lifetime, including consideration of the potential effects of climate change.
- 1.5 This assessment has been prepared with due consideration of these sustainability aims.
- 1.6 In accordance with paragraph 173 of the NPPF (December 2023), it will be ensured that:
 - the most vulnerable development is located in areas of lowest flood risk.
 - the development is appropriately flood resistant and resilient.
 - it incorporates sustainable drainage systems.
 - safe access and escape routes are included.

Site Location

1.7 Meadow Cottage is a residential dwelling located west of The Street and is located in the centre of the village Preston. Preston is located approximately 10km east of Canterbury. The site area is approximately 1.8ha. For clarity, an extract of the site location plan is provided at Figure 1 and the full plan is available at Appendix 1.

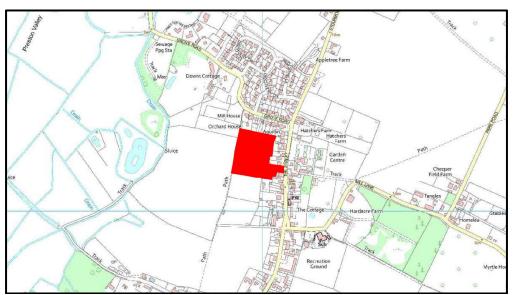


Figure 1: Site Location Plan

Existing Watercourse

1.8 There are no watercourses within the boundary of the site.

Historic Flooding

1.9 There have been no recorded instances of historic flooding at the site.

Existing Surface & Foul Water Sewers

1.10 Mapping obtained from Southern Water and presented at Appendix 2, shows a foul sewer within The Street. A highway surface water drain is also present within The Street.

Ground Conditions

- 1.11 British Geological Survey (BGS) mapping reveals the underlying geology at the site comprises the London Clay Formation. This is confirmed by a nearby borehole log (BGS ref. TR26SE16), drilled to a depth of approximately 6m.
- 1.12 The borehole log shows 'stiff brown silty sandy clay' at a depth of 5.6m below ground level. Above this, the geology comprises brown fine sand, sandy clayey silt and brown clayey sand and gravel. No groundwater strike was recorded. The borehole log is presented at Appendix 3.
- 1.13 Given the expected geology on site, traditional soakaways (2-3m deep) may be viable given the presence of clay at this depth. Shallower infiltration features, such as permeable paving may also feasible but both would be dependent on further site specific testing. Such testing will be undertaken should planning consent be granted.

Greenfield Run-off Rates

1.14 The greenfield run-off rates for site are provided in Table 1. The figures have been obtained from HR Wallingford and the full results are at Appendix 4.

Table 1: Greenfield Runoff Rates

Rainfall Event	Greenfield Runoff Rate
Qbar	4.42 l/s
1 in 1 year	3.76 l/s
1 in 30 years	10.16 l/s
1 in 100 years	16.53 l/s

2 SOURCES OF FLOODING

River/Sea Flooding

2.1 Environment Agency mapping reveals that the site is located wholly within flood zone 1. The Environment Agency's flood map for planning is presented at Appendix 5 and an extract of this is provided at Figure 2 for reference.

Figure 2: Flood Zone Map (Source: EA)

Surface Water Flooding

- In addition to fluvial flooding, surface water flooding must also be considered. This often occurs when intense, often short duration rainfall is unable to soak into the ground or enter the local drainage system. It is made worse when soils are saturated so that they cannot accept any more water. This type of flooding is usually short lived, localised and associated with heavy downpours of rain, and often has very little warning before it occurs. The amount of runoff is also a function of geology, slope, climate, rainfall, saturation, soil type, urbanisation and vegetation.
- 2.3 Environment Agency Mapping reveals the application site has a very low risk of surface water flooding. An extract from the gov.uk surface water flood risk map is provided at Figure 3.

Figure 3: Surface Water Flood Risk Map (Source: EA)

Reservoir Flooding

2.4 Information from the gov.uk website advises that flooding from reservoirs is unlikely in this area.

Groundwater Flooding

- 2.5 Information from the gov.uk website advises that flooding is possible when groundwater levels are high. To mitigate against any potential risk, no accommodation will be provided at basement level.
- 2.6 The nearby borehole log referenced earlier in this report, was undertaken in September to a depth of approximately 6m below ground level. No groundwater was recorded and it is therefore considered that the risk of groundwater flooding is very low.
- 2.7 Nevertheless, winter groundwater monitoring will be undertaken to determine the peak groundwater levels. This can be secured via a suitably worded planning condition.

Summary of Flood Risk

2.8 A summary of the site's flood risk is provided in Table 2.

Table 2: Summary of Flood Risk

Source of Flooding	Risk
Rivers & The Sea (Present Day)	Flood zone 1
Surface Water	Very low
Reservoirs	Unlikely
Groundwater	Very low

- 2.9 With reference to Tables 2 and 3 of the NPPF Technical Guidance the proposal is classified as 'more vulnerable' and such a use is appropriate in flood zone 1.
- 2.10 The proposal should therefore be considered acceptable in flood risk terms for residential development and the application of the sequential test is not required in this instance.

3 SURFACE AND FOUL WATER DRAINAGE STRATEGY

Surface Water

- 3.1 In order to properly mitigate flood risk post-development, it is important that adequate measures are considered to ensure surface water run-off is dealt with, ensuring flood risk is not increased either on or off-site.
- 3.2 Surface water drainage at the site will be based on SuDS principles and in accordance with the Government's Planning Practice Guidance, the aim will be to discharge the surface water run-off as high up the following hierarchy of drainage options as possible:
 - Infiltration into the ground.
 - To a surface water body, such as a river, ditch, pond or stream.
 - To a surface water sewer or highway drain.
 - To a combined sewer.
- In order to properly mitigate flood risk post-development, it is important that adequate measures are considered to ensure surface water run-off is dealt with, ensuring flood risk is not increased either on or off-site.
- 3.4 The underlying geology does not immediately preclude the use of infiltration features to dispose of surface water. Discussions have been held with the Sustainable Drainage Team at Kent County Council who confirmed that assumed infiltration rates would be accepted, provided an alternative strategy is also submitted.
- In this regard, two options for the disposal of surface water have been suggested.

 Option A assumes infiltration is viable and Option B assumes no infiltration, and proposes that surface water be attenuated with a restricted discharge to the highway drain, as per the PPG. Both options are considered in further detail in the following paragraphs.

Option A - Infiltration

The KCC Sustainable Drainage team advised that assumed infiltration rates should be based on the guidance contained in Table 25.1 of the CIRIA SuDS Manual.

- This strategy incorporates shallow infiltration (permeable paving/asphalt) and traditional soakaways in the rear gardens of the proposed units.
- 3.8 The base of the permeable paving/asphalt will be in the region of 500-600mm below ground level. At this depth, the underlying geology comprises clayey sand and gravel. There is no directly comparable soil type within Table 25.1, therefore an indicative infiltration rate of 1 x 10⁻⁶ m/s has been assumed.
- 3.9 The traditional soakaways are proposed at a depth of 3m and at this depth, the underlying geology comprises sand and an indicative infiltration rate of 1 x 10⁻⁵ m/s has been assumed, which accords with Table 25.1 of the CIRIA SuDS Manual.
- 3.10 The proposed surface water drainage strategy, assuming infiltration is viable, is presented at Appendix 6.
- 3.11 All carriageway and parking areas will be permeable surfaces and surface water will therefore drain to the subbase. All roof water runoff will to traditional soakaways. The proposed soakaways have been sized using the Microdrainage software for the following storm events:
 - 1 in 1-year.
 - 1 in 30-year + 35% climate change.
 - 1 in 100-year + 45% climate change.
- The Microdrainage analysis reveals no risk of flooding during the 1 in 1-year and 1 in 30-year plus 35% rainfall events and no flooding during the 1 in 100-year + 45% rainfall events. The half-drain times are well below the required 24 hour time period. The Microdrainage analysis is presented at Appendix 7.

Option B - Attenuation

3.13 If the results of site-specific testing demonstrates infiltration to not be viable, all surface water runoff will be attenuated within the subbase of the carriageway, and discharged at a restricted rate of 2l/s into the existing highway drain in The Street. The proposed surface water drainage strategy, assuming infiltration is not viable, is presented at Appendix 8.

- 3.14 The Sustainable Drainage Team at KCC has advised that in order to connect to the highway drain, the internal drainage network should be adopted by a water and sewerage company. This could be a New Appointments and Variations (NAVs) company who may be more receptive to the adoption of the SuDS network. Discussions in this regard are ongoing.
- The Sustainable Drainage Team at KCC has also stated that the developer must demonstrate that the highway drainage system discharges via a positive outfall (i.e., into a watercourse or public sewer) and that the proposed flows do not result in an increased flood risk to the public highway or elsewhere.
- 3.16 Investigations regarding the outfall of the highway drainage system are ongoing.
- 3.17 The proposed discharge rate will be restricted to 2.0l/s during all storm events, which is significantly below the greenfield runoff rates. The proposed flows will therefore not result in an increased flood risk to the public highway or elsewhere.
- 3.18 The accompanying Microdrainage analysis is presented at Appendix 9.

Maintenance and Management

3.19 Maintenance of the proposed drainage system will be undertaken in accordance with the guidance set out in Tables 17.1 (soakaways) and Table 21.3 (attenuation storage tanks) which have been provided at Figures 4 and 5 respectively.

Operation and maintenance requirements for soakaways							
Maintenance schedule	Required action	Typical frequency					
	Inspect for sediment and debris in pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	Annually					
Regular maintenance	Cleaning of gutters and any filters on downpipes	Annually (or as required based on inspections)					
	Trimming any roots that may be causing blockages	Annually (or as required					
Occasional maintenance	Remove sediment and debris from pre-treatment components and floor of inspection tube or chamber and inside of concrete manhole rings	As required, based on inspections					
Dama dial askiana	Reconstruct soakaway and/or replace or clean void fill, if performance deteriorates or failure occurs	As required					
Remedial actions	Replacement of clogged geotextile (will require reconstruction of soakaway)	As required					
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year and then annually					
	Check soakaway to ensure emptying is occurring	Annually					

Figure 4: Soakaway Maintenance Regime (Source: Table 13.1 CIRIA SuDS Manual)

TABLE	Operation and maintenance requirements for attenuation storage tanks						
21.3	Maintenance schedule	Required action	Typical frequency				
		Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually				
		Remove debris from the catchment surface (where it may cause risks to performance)	Monthly				
Regular maintenance	Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually				
		Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required				
	Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required				
Monitoring	Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually				
		Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required				

Figure 5: Attenuation Tank Maintenance Regime (Source: Table 21.3 CIRIA SuDS Manual)

Water Quality Measures

3.20 Water quality management of surface water should be carried out in accordance with the CIRIA SuDS Manual specifically Part E of Chapter 26. Table 26.2 of the SuDS Manual provides the pollution hazard indices for different land use classifications.

3.21 Based on the guidance in Table 26.2, the land use classification for the surface water drainage for the scheme will be *residential roofs* and *low traffic roads*. The pollution hazard indices for these land uses are as summarised in Table 3.

Table 3: Pollution Hazard Indices

Land Use	Pollution Hazard Level	Total Suspended Solids	Metals	Hydrocarbons
Residential Roofs	Very Low	0.2	0.2	0.05
Low Traffic Roads	Low	0.5	0.4	0.4

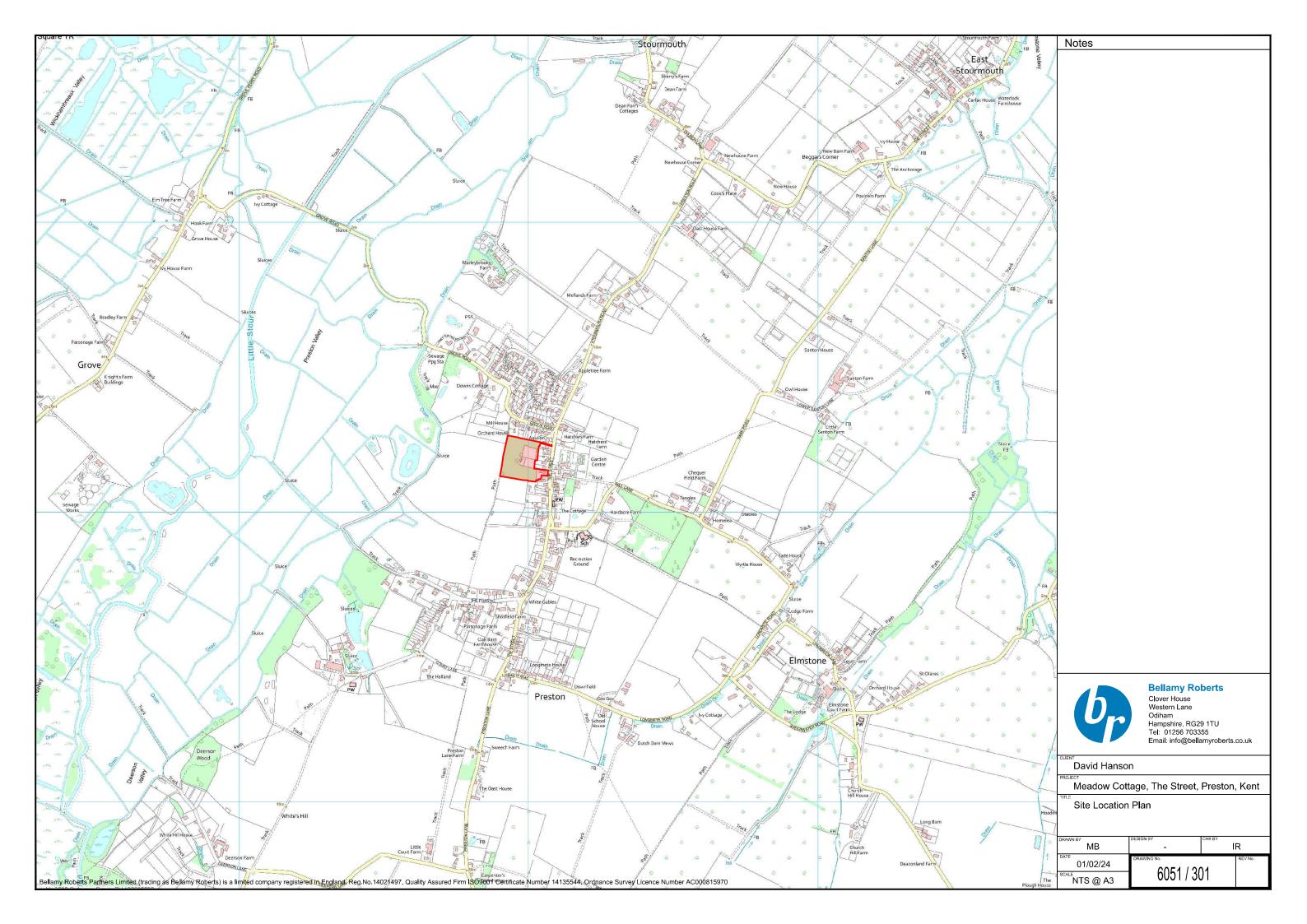
3.22 The scheme will incorporate filter strips to convey roof water runoff to either the proposed soakaways or permeable paving which will provide sufficient treatment for the roof water runoff. Runoff from the proposed carriageway and parking areas will filter through the permeable paving which will provide sufficient treatment.

Foul Water

3.23 Foul water from the proposed development will discharge to the existing foul water sewer located in The Street.

4 SUMMARY AND CONCLUSIONS

Summary


- 4.1 Bellamy Roberts has been instructed by Clague on behalf of David Hanson to prepare a Flood Risk Assessment (FRA) to support a planning application for 16 residential units on land at Meadow Cottage, Preston.
- 4.2 A comprehensive assessment of the application site's risk of flooding has been undertaken which reveals that the site is in flood zone 1 and not at risk from any other source of flooding.
- 4.3 Two suggested alternative surface water drainage strategies have been proposed, which are dependent on whether adequate infiltration can be achieved at the site. In the event that infiltration is not viable, surface water will be attenuated on-site and discharged at a restricted rate into an existing highway drain, in accordance with the PPG.

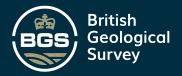
Conclusions

- The proposed development accords with the guidance set out at paragraph 167 of the NPPF, in that:
 - the most vulnerable development is located in areas of lowest flood risk;
 - the development is appropriately flood resistant and resilient;
 - it incorporates sustainable drainage systems; and
 - safe access and escape routes are included.
- The proposed development accords with the guidance set out at paragraph 169 of the NPPF, in that the scheme incorporates sustainable drainage systems, has maintenance arrangements in place to ensure an acceptable standard of operation for the lifetime of the development and the scheme provides multifunctional benefits.
- 4.6 The scheme therefore accords with all relevant policies within the NPPF and is acceptable in flooding and drainage terms.

APPENDICES

Site Location Plan

Southern Water Asset Plan



WARNING: Unknown (UNK) materials may include Bonded Asbestos Cement.

Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert
0001	F	16.04	12.74	
0101	F	15.11	13.52	
0102	F	15.41	13.11	
0201	F	13.97	12.56	
0202	F	14.27	12.15	
0903	F	15.51	12.15	
0908	F	0.00	0.00	
0909	F	0.00	0.00	
0910	F	0.00	0.00	
0911	F	0.00	0.00	
2001	F	15.61	14.16	
2002	F	16.06	13.58	
9201	F	13.13	10.79	
9202	F	0.00	0.00	
9203	F	0.00	0.00	
9204	F	0.00	0.00	
9301	F	12.78	10.78	

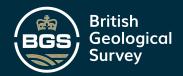
Manhole Reference	Liquid Type	Cover Level	Invert Level	Depth to Invert

BGS Borehole Log

RECORD OF BOREHOLE No: 2

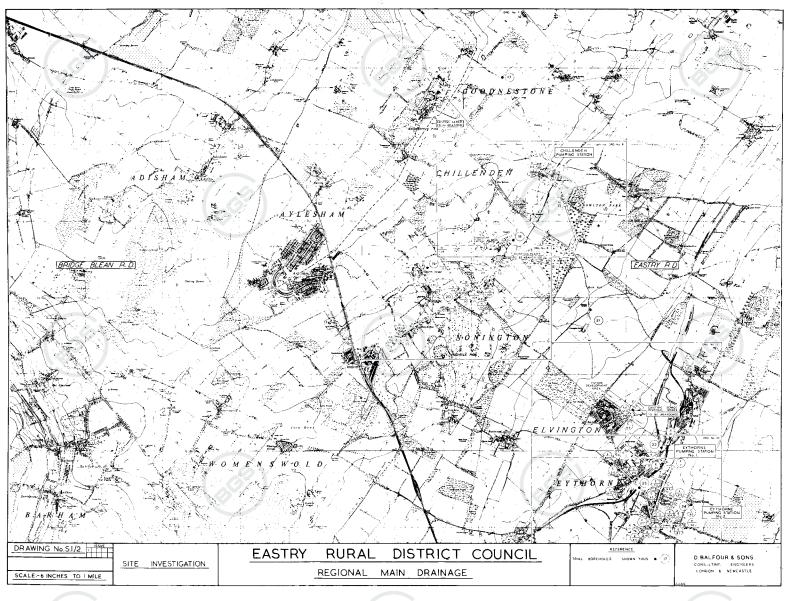
Location EASTRY MAIN DRAINAGE Borehole Dia : 8 ins.

Casing Contract No.

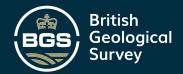

Type of Boring : Shell and Auger Ground Level : 46.3ft. 0.D.

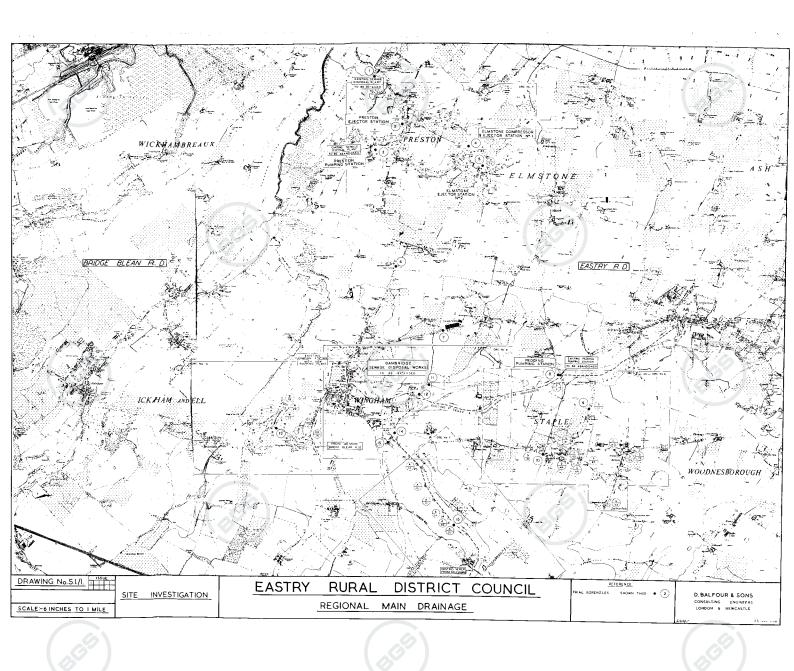
Date (started) : 19th September, 1968.

	Depth of Casing	Water	SAMI				STRATA		DESCRIPTION OF STRATA
	Casing	Level	Depth	Туре	No.	Legend	Depth	Thickness	
ŀ			,				01-0"	0'-9"	TOPSOIL.
			-			000	~ /		×
-			2'-6"	D C	1	25		4'-3"	Brown clayey SAND and GRAVEL.
-						200			
						70	****		
			5'-0"	D	2	<u>*</u> Y.	5'-0"		
						, ×		4*-0*	Sandy clayey SILT.
			7'-6"	ם	- 3	- *-			
- 1			? <u> </u>			X X	91_0"	-	
			10"-0"	D.	4		,	1 1	
				-					
			12'-6"	מ	5			9'-6"	Brown fide SAND
- }				_					
			15'-0"	D	6				
			17'-6"	D	7			,	and the second
						4	18'-6"		
			19'-0" - 20'-3"	σ	8			1'-9"	Stiff brown silty sandy CLAY.
							20'-3"		
		-				End	of Boreh	ole.	
			٠						
			61						
						ŀ			
		100				.			
						<u> </u>			
			·			<u> </u> -			
								, ,	
			•	- Inches		<u> </u>			
1									
								1	
					10			-	
			·	-					
									un ru n Taran
į.						1		1 ' 1	


No water encountered during boring, Water level 18'-6" on 21.9.68. J.C.B. excavated pit to 6ft.
Piezometer installed at 20ft. Borehole dry.

Foundation Engineering Ltd.





Greenfield Runoff Rates

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Matt Twinberrow
Site name:	Meadow Cottage
Site location:	Preston

Site Details

51.30534° N Latitude: 1.22613° E Longitude:

This is an estimation of the greenfield runoff rates that are used to meet normal best practice Reference: criteria in line with Environment Agency guidance "Rainfall runoff management for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

2067932874

Mar 28 2024 11:00

Runoff estimation approach

Site characteristics

Total site area (ha):

Methodology

QBAR estimation method:

SPR estimation method:

Calculate from SPR and SAAR

Calculate from SOIL type

Notes

(1) Is $Q_{BAR} < 2.0 \text{ I/s/ha}$?

Date:

When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.

Soil characteristics

Default

0.37

SPR/SPRHOST:

HOST class:

SOIL type:

Hydrological characteristics

SAAR (mm):

Hydrological region:

Growth curve factor 1 year.

Growth curve factor 30 years:

Growth curve factor 100 vears:

Growth curve factor 200 years:

Edited

N/A N/A

0.37

Default Edited 612 612

7

0.85 0.85

2.3 2.3

3.19 3.19

3.74 3.74 (2) Are flow rates < 5.0 l/s?

Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate drainage elements.

(3) Is $SPR/SPRHOST \le 0.3$?

Where groundwater levels are low enough the use of soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.

Q _{BAR} (I/s):	4.42	4.42
1 in 1 year (l/s):	3.76	3.76
1 in 30 years (l/s):	10.16	10.16
1 in 100 year (l/s):	14.1	14.1
1 in 200 years (l/s):	16.53	16.53

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

EA Flood Map for Planning

Flood map for planning

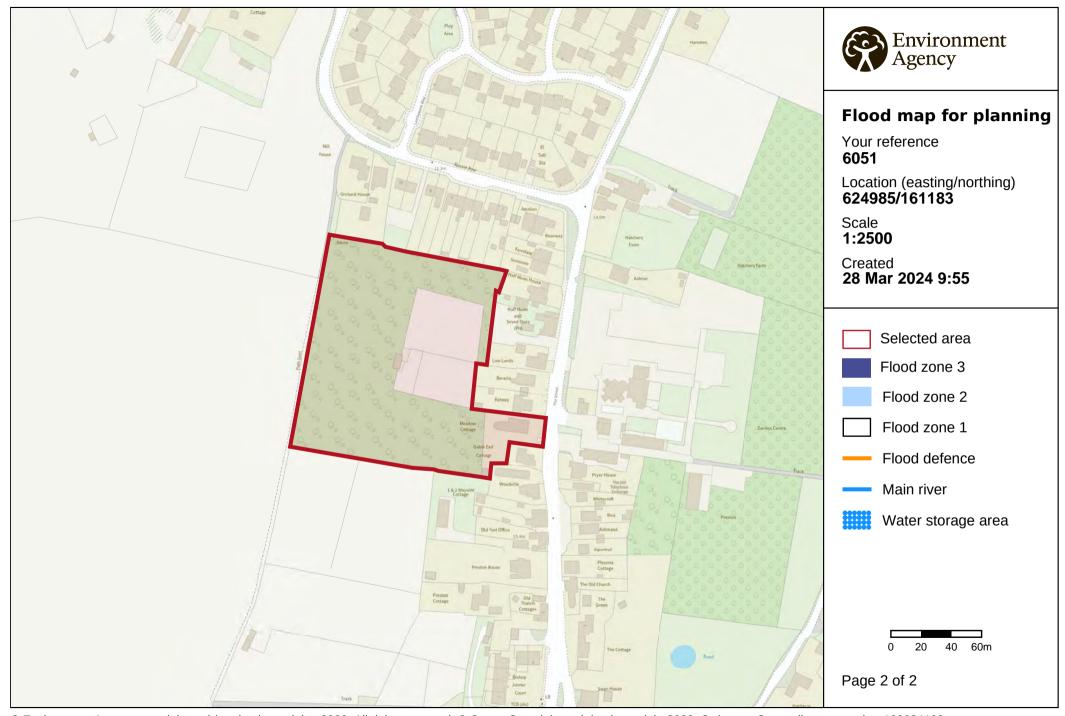
Your reference Location (easting/northing) Created

6051 624985/161183 28 Mar 2024 9:55

Your selected location is in flood zone 1, an area with a low probability of flooding.

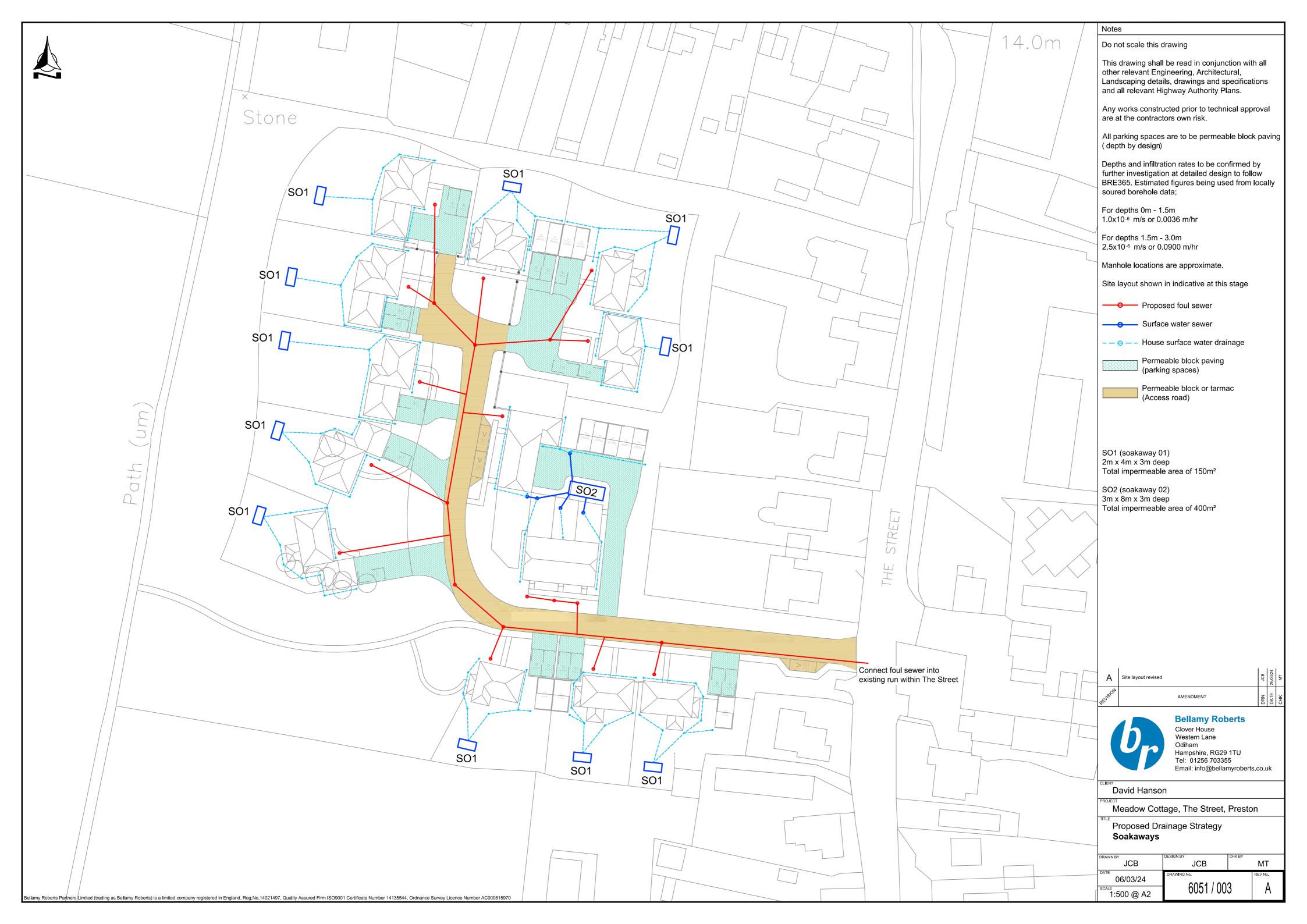
You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its
 development would increase the vulnerability of its use (such as constructing an
 office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.


Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Proposed Drainage Strategy - Infiltration

Microdrainage Analysis - Infiltration

Bellamy Roberts		Page 1
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	Carlo and
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:51	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	Dialilade
Innovyze	Source Control 2020.1.3	

Summary of Results for 1 year Return Period

Half Drain Time : 69 minutes.

Storm Event		Max	Max	Max	Max	Status	
		Level	Depth	Infiltration	Volume		
			(m)	(m)	(1/s)	(m³)	
			12.325			0.8	
30	min	Summer	12.395	0.395	0.2	0.9	O K
60	min	Summer	12.436	0.436	0.2	1.0	O K
120	min	Summer	12.448	0.448	0.2	1.1	O K
180	min	Summer	12.438	0.438	0.2	1.1	O K
240	min	Summer	12.424	0.424	0.2	1.0	O K
360	min	Summer	12.385	0.385	0.2	0.9	O K
480	min	Summer	12.348	0.348	0.2	0.8	O K
600	min	Summer	12.312	0.312	0.1	0.7	O K
720	min	Summer	12.280	0.280	0.1	0.7	O K
960	min	Summer	12.224	0.224	0.1	0.5	O K
1440	min	Summer	12.142	0.142	0.1	0.3	O K
2160	min	Summer	12.069	0.069	0.1	0.2	O K
2880	min	Summer	12.047	0.047	0.1	0.1	O K
4320	min	Summer	12.035	0.035	0.1	0.1	O K
5760	min	Summer	12.028	0.028	0.1	0.1	O K
7200	min	Summer	12.024	0.024	0.1	0.1	O K
8640	min	Summer	12.021	0.021	0.0	0.1	O K
10080	min	Summer	12.019	0.019	0.0	0.0	O K
15	min	Winter	12.368	0.368	0.2	0.9	ОК

Storm		Rain	Flooded	Time-Peak	
Event		(mm/hr)	Volume	(mins)	
			(m³)		
15	min	Summer	31.584	0.0	17
30	min	Summer	20.643	0.0	31
60	min	Summer	13.089	0.0	54
120	min	Summer	8.133	0.0	86
180	min	Summer	6.128	0.0	122
240	min	Summer	5.007	0.0	156
360	min	Summer	3.735	0.0	224
480	min	Summer	3.030	0.0	290
600	min	Summer	2.575	0.0	356
720	min	Summer	2.255	0.0	418
960	min	Summer	1.829	0.0	540
1440	min	Summer	1.363	0.0	780
2160	min	Summer	1.015	0.0	1124
2880	min	Summer	0.823	0.0	1468
4320	min	Summer	0.612	0.0	2200
5760	min	Summer	0.497	0.0	2936
7200	min	Summer	0.423	0.0	3656
8640	min	Summer	0.371	0.0	4352
10080	min	Summer	0.331	0.0	5104
15	min	Winter	31.584	0.0	17

©1982-2020 Innovyze

Bellamy Roberts		Page 2
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:51	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	Diali laye
Innovyze	Source Control 2020.1.3	1

Summary of Results for 1 year Return Period

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	12.450	0.450	0.2	1.1	ОК
60	min	Winter	12.502	0.502	0.2	1.2	O K
120	min	Winter	12.512	0.512	0.2	1.2	O K
180	min	Winter	12.494	0.494	0.2	1.2	O K
240	min	Winter	12.468	0.468	0.2	1.1	O K
360	min	Winter	12.407	0.407	0.2	1.0	O K
480	min	Winter	12.349	0.349	0.2	0.8	O K
600	min	Winter	12.297	0.297	0.1	0.7	O K
720	min	Winter	12.251	0.251	0.1	0.6	O K
960	min	Winter	12.175	0.175	0.1	0.4	O K
1440	min	Winter	12.073	0.073	0.1	0.2	O K
2160	min	Winter	12.042	0.042	0.1	0.1	O K
2880	min	Winter	12.034	0.034	0.1	0.1	O K
4320	min	Winter	12.025	0.025	0.1	0.1	O K
5760	min	Winter	12.021	0.021	0.0	0.0	O K
7200	min	Winter	12.018	0.018	0.0	0.0	O K
8640	min	Winter	12.015	0.015	0.0	0.0	O K
10080	min	Winter	12.014	0.014	0.0	0.0	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	20.643	0.0	31
60	min	Winter	13.089	0.0	58
120	min	Winter	8.133	0.0	92
180	min	Winter	6.128	0.0	130
240	min	Winter	5.007	0.0	168
360	min	Winter	3.735	0.0	240
480	min	Winter	3.030	0.0	310
600	min	Winter	2.575	0.0	376
720	min	Winter	2.255	0.0	440
960	min	Winter	1.829	0.0	566
1440	min	Winter	1.363	0.0	782
2160	min	Winter	1.015	0.0	1100
2880	min	Winter	0.823	0.0	1468
4320	min	Winter	0.612	0.0	2168
5760	min	Winter	0.497	0.0	2864
7200	min	Winter	0.423	0.0	3592
8640	min	Winter	0.371	0.0	4400
10080	min	Winter	0.331	0.0	4984

Bellamy Roberts		Page 3
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:51	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	Dialilade
Innovyze	Source Control 2020.1.3	1

 Return
 Rejion (years)
 1
 Cv (Summer)
 0.750

 Region (years)
 20.400
 Shortest Storm (mins)
 15

 Region England and Wales (years)
 20.400
 Shortest Storm (mins)
 15

 Ratio R (years)
 0.398
 Longest Storm (mins)
 10080

 Summer Storms
 Yes (Climate Change %)
 +0

Time Area Diagram

Total Area (ha) 0.015

Time (mins) Area From: To: (ha) 0.015

Bellamy Roberts		Page 4
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:51	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	nialilade
Innovyze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 15.000

Trench Soakaway Structure

2.0	Width (m)	Trench	9000) 0	(m/hr)	Base	Coefficient	Infiltration
4.0	Length (m)	Trench I	9000) 0	(m/hr)	Side	Coefficient	Infiltration
0.0	Slope (1:X)	SI	2.0	r	Factor	afety	S	
0.000	Depth (m)	Cap Volume	0.30	У	orosity	Po		
0.000	Depth (m)	Cap Infiltration	.000)	zel (m)	rt Le	Inve	

Bellamy Roberts		Page 1
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:50	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	Dialilads
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+35%)

Half Drain Time : 129 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
1 =		C	13.147	1 1 1 7	0.3	2.8	ОК
					0.3	3.4	O K
			13.433				
			13.645		0.3	3.9	O K
120	min	Summer	13.725	1.725	0.4	4.1	O K
180	min	Summer	13.723	1.723	0.4	4.1	O K
240	min	Summer	13.693	1.693	0.4	4.1	O K
360	min	Summer	13.609	1.609	0.3	3.9	O K
480	min	Summer	13.519	1.519	0.3	3.6	O K
600	min	Summer	13.434	1.434	0.3	3.4	O K
720	min	Summer	13.358	1.358	0.3	3.3	O K
960	min	Summer	13.223	1.223	0.3	2.9	O K
1440	min	Summer	13.006	1.006	0.3	2.4	O K
2160	min	Summer	12.768	0.768	0.2	1.8	O K
2880	min	Summer	12.597	0.597	0.2	1.4	O K
4320	min	Summer	12.366	0.366	0.2	0.9	O K
5760	min	Summer	12.218	0.218	0.1	0.5	O K
7200	min	Summer	12.119	0.119	0.1	0.3	O K
8640	min	Summer	12.061	0.061	0.1	0.1	O K
10080	min	Summer	12.046	0.046	0.1	0.1	O K
15	min	Winter	13.290	1.290	0.3	3.1	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	104.644	0.0	18
30	min	Summer	68.161	0.0	32
60	min	Summer	42.440	0.0	60
120	min	Summer	25.637	0.0	98
180	min	Summer	18.882	0.0	130
240	min	Summer	15.130	0.0	166
360	min	Summer	11.067	0.0	234
480	min	Summer	8.857	0.0	304
600	min	Summer	7.446	0.0	372
720	min	Summer	6.460	0.0	438
960	min	Summer	5.160	0.0	570
1440	min	Summer	3.755	0.0	824
2160	min	Summer	2.729	0.0	1192
2880	min	Summer	2.175	0.0	1560
4320	min	Summer	1.578	0.0	2292
5760	min	Summer	1.256	0.0	3000
7200	min	Summer	1.051	0.0	3680
8640	min	Summer	0.909	0.0	4408
10080	min	Summer	0.804	0.0	5136
15	min	Winter	104.644	0.0	18

Bellamy Roberts		Page 2
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	Contraction of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:50	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	Drainage
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+35%)

	Stor	m	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
			13.619				
60	min	Winter	13.870	1.870	0.4	4.5	O K
120	min	Winter	13.963	1.963	0.4	4.7	O K
180	min	Winter	13.956	1.956	0.4	4.7	O K
240	min	Winter	13.910	1.910	0.4	4.6	O K
360	min	Winter	13.788	1.788	0.4	4.3	O K
480	min	Winter	13.657	1.657	0.3	4.0	O K
600	min	Winter	13.532	1.532	0.3	3.7	O K
720	min	Winter	13.421	1.421	0.3	3.4	O K
960	min	Winter	13.233	1.233	0.3	3.0	O K
1440	min	Winter	12.945	0.945	0.2	2.3	O K
2160	min	Winter	12.649	0.649	0.2	1.6	O K
2880	min	Winter	12.450	0.450	0.2	1.1	O K
4320	min	Winter	12.201	0.201	0.1	0.5	O K
5760	min	Winter	12.061	0.061	0.1	0.1	O K
7200	min	Winter	12.043	0.043	0.1	0.1	O K
8640	min	Winter	12.038	0.038	0.1	0.1	ОК
10080	min	Winter	12.033	0.033	0.1	0.1	ОК

Storm			Rain	Flooded	Time-Peak
Event			(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	68.161	0.0	32
60	min	Winter	42.440	0.0	60
120	min	Winter	25.637	0.0	110
180	min	Winter	18.882	0.0	138
240	min	Winter	15.130	0.0	178
360	min	Winter	11.067	0.0	252
480	min	Winter	8.857	0.0	326
600	min	Winter	7.446	0.0	398
720	min	Winter	6.460	0.0	468
960	min	Winter	5.160	0.0	604
1440	min	Winter	3.755	0.0	866
2160	min	Winter	2.729	0.0	1252
2880	min	Winter	2.175	0.0	1616
4320	min	Winter	1.578	0.0	2336
5760	min	Winter	1.256	0.0	2992
7200	min	Winter	1.051	0.0	3672
8640	min	Winter	0.909	0.0	4400
10080	min	Winter	0.804	0.0	4984

Bellamy Roberts		Page 3
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:50	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	Diali lade
Innovvze	Source Control 2020.1.3	

 Return
 Refine Return
 Region Region Region
 England and Wales Region Region

Time Area Diagram

Total Area (ha) 0.015

Time (mins) Area From: To: (ha) 0.015

Bellamy Roberts		Page 4			
Clover House	Meadow Cottage				
Western Lane	The Street, Preston	The same of			
Odiham RG29 1TU	Job ref. 6051	Mirro			
Date 06/03/2024 10:50	Designed by JCB	Drainage			
File SO1.SRCX	Checked by MT	pramage			
Innovyze	Source Control 2020.1.3	•			

Storage is Online Cover Level (m) 15.000

Trench Soakaway Structure

2.0	Vidth (m)	Trench	000	0.	(m/hr)	Base	Coefficient	Infiltration
4.0	ength (m)	Trench I	000	0.	(m/hr)	Side	Coefficient	Infiltration
0.0	ope (1:X)	SI	2.0		Factor	afety	Sa	
0.000	Depth (m)	Cap Volume	.30	7	orosity	Po		
0.000	Depth (m)	Cap Infiltration	000	1	zel (m)	rt Le	Inve	

Bellamy Roberts		Page 1			
Clover House	Meadow Cottage				
Western Lane	The Street, Preston	The same			
Odiham RG29 1TU	Job ref. 6051	Mirro			
Date 06/03/2024 10:38	Designed by JCB	Drainage			
File SO1.SRCX	Checked by MT	Dialilade			
Innovyze	Source Control 2020.1.3				

Summary of Results for 100 year Return Period (+45%)

Half Drain Time : 142 minutes.

	Stor	m	Max	Max	Max	Max	Status	
	Even	t	Level	Depth	${\tt Infiltration}$	Volume		
			(m)	(m)	(1/s)	(m³)		
1 -		Q	10 614	1 (14	0.2	2 0	0.14	
			13.614		0.3	3.9	O K	
			14.043		0.4	4.9	O K	
60	min	Summer	14.374	2.374	0.5	5.7	O K	
120	min	Summer	14.512	2.512	0.5	6.0	O K	
180	min	Summer	14.519	2.519	0.5	6.0	O K	
240	min	Summer	14.481	2.481	0.5	6.0	O K	
360	min	Summer	14.378	2.378	0.5	5.7	O K	
480	min	Summer	14.260	2.260	0.4	5.4	O K	
600	min	Summer	14.142	2.142	0.4	5.1	O K	
720	min	Summer	14.032	2.032	0.4	4.9	O K	
960	min	Summer	13.840	1.840	0.4	4.4	O K	
1440	min	Summer	13.541	1.541	0.3	3.7	O K	
2160	min	Summer	13.219	1.219	0.3	2.9	O K	
2880	min	Summer	12.986	0.986	0.2	2.4	O K	
4320	min	Summer	12.671	0.671	0.2	1.6	O K	
5760	min	Summer	12.463	0.463	0.2	1.1	O K	
7200	min	Summer	12.320	0.320	0.1	0.8	O K	
8640	min	Summer	12.213	0.213	0.1	0.5	O K	
10080	min	Summer	12.134	0.134	0.1	0.3	O K	
15	min	Winter	13.814	1.814	0.4	4.4	O K	

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	145.969	0.0	18
30	min	Summer	95.877	0.0	32
60	min	Summer	59.944	0.0	62
120	min	Summer	36.168	0.0	102
180	min	Summer	26.535	0.0	132
240	min	Summer	21.165	0.0	168
360	min	Summer	15.395	0.0	236
480	min	Summer	12.269	0.0	306
600	min	Summer	10.281	0.0	374
720	min	Summer	8.895	0.0	440
960	min	Summer	7.071	0.0	572
1440	min	Summer	5.110	0.0	834
2160	min	Summer	3.686	0.0	1208
2880	min	Summer	2.921	0.0	1584
4320	min	Summer	2.101	0.0	2296
5760	min	Summer	1.662	0.0	3048
7200	min	Summer	1.384	0.0	3752
8640	min	Summer	1.192	0.0	4488
10080	min	Summer	1.050	0.0	5152
15	min	Winter	145.969	0.0	18

Bellamy Roberts		Page 2
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	Contraction of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:38	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	Drainage
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+45%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	14.303	2.303	0.4	5.5	O K
60	min	Winter	14.691	2.691	0.5	6.5	O K
120	min	Winter	14.855	2.855	0.5	6.9	Flood Risk
180	min	Winter	14.849	2.849	0.5	6.8	Flood Risk
240	min	Winter	14.791	2.791	0.5	6.7	Flood Risk
360	min	Winter	14.635	2.635	0.5	6.3	O K
480	min	Winter	14.464	2.464	0.5	5.9	O K
600	min	Winter	14.298	2.298	0.4	5.5	O K
720	min	Winter	14.145	2.145	0.4	5.1	O K
960	min	Winter	13.879	1.879	0.4	4.5	O K
1440	min	Winter	13.484	1.484	0.3	3.6	O K
2160	min	Winter	13.083	1.083	0.3	2.6	O K
2880	min	Winter	12.811	0.811	0.2	1.9	O K
4320	min	Winter	12.468	0.468	0.2	1.1	O K
5760	min	Winter	12.261	0.261	0.1	0.6	O K
7200	min	Winter	12.123	0.123	0.1	0.3	O K
8640	min	Winter	12.049	0.049	0.1	0.1	O K
10080	min	Winter	12.043	0.043	0.1	0.1	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	95.877	0.0	32
60	min	Winter	59.944	0.0	60
120	min	Winter	36.168	0.0	112
180	min	Winter	26.535	0.0	140
240	min	Winter	21.165	0.0	178
360	min	Winter	15.395	0.0	254
480	min	Winter	12.269	0.0	328
600	min	Winter	10.281	0.0	398
720	min	Winter	8.895	0.0	470
960	min	Winter	7.071	0.0	606
1440	min	Winter	5.110	0.0	868
2160	min	Winter	3.686	0.0	1252
2880	min	Winter	2.921	0.0	1616
4320	min	Winter	2.101	0.0	2376
5760	min	Winter	1.662	0.0	3064
7200	min	Winter	1.384	0.0	3816
8640	min	Winter	1.192	0.0	4312
10080	min	Winter	1.050	0.0	5048

Bellamy Roberts		Page 3			
Clover House	Meadow Cottage				
Western Lane	The Street, Preston	The same of			
Odiham RG29 1TU	Job ref. 6051	Mirro			
Date 06/03/2024 10:38	Designed by JCB	Drainage			
File SO1.SRCX	Checked by MT	niamade			
Innovvze	Source Control 2020.1.3				

 Return
 Rejion Region Region Region Return
 England and Wales Return
 Cv (Summer) 0.750 Cv (Winter) 0.840 Cv (Winter) 0

Time Area Diagram

Total Area (ha) 0.015

Time (mins) Area From: To: (ha) 0.015

Bellamy Roberts		Page 4
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	Carrier and
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:38	Designed by JCB	Drainage
File SO1.SRCX	Checked by MT	Dialilade
Innovyze	Source Control 2020.1.3	,

Storage is Online Cover Level (m) 15.000

Trench Soakaway Structure

2.0	Width (m)	Trench	9000) 0	(m/hr)	Base	Coefficient	Infiltration
4.0	Length (m)	Trench I	9000) 0	(m/hr)	Side	Coefficient	Infiltration
0.0	Slope (1:X)	SI	2.0	r	Factor	afety	S	
0.000	Depth (m)	Cap Volume	0.30	У	orosity	Po		
0.000	Depth (m)	Cap Infiltration	.000)	zel (m)	rt Le	Inve	

Bellamy Roberts		Page 1
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:58	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Diamage
Innovyze	Source Control 2020.1.3	

Summary of Results for 1 year Return Period

Half Drain Time : 76 minutes.

	Stor	m	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Summer	12.289	0.289	0.4	2.1	O K
30	min	Summer	12.353	0.353	0.4	2.5	O K
60	min	Summer	12.391	0.391	0.4	2.8	O K
120	min	Summer	12.402	0.402	0.4	2.9	O K
180	min	Summer	12.394	0.394	0.4	2.8	O K
240	min	Summer	12.381	0.381	0.4	2.7	O K
360	min	Summer	12.346	0.346	0.4	2.5	O K
480	min	Summer	12.310	0.310	0.4	2.2	O K
600	min	Summer	12.277	0.277	0.4	2.0	O K
720	min	Summer	12.246	0.246	0.4	1.8	O K
960	min	Summer	12.192	0.192	0.4	1.4	O K
1440	min	Summer	12.113	0.113	0.3	0.8	O K
2160	min	Summer	12.054	0.054	0.3	0.4	O K
2880	min	Summer	12.043	0.043	0.3	0.3	O K
4320	min	Summer	12.032	0.032	0.2	0.2	O K
5760	min	Summer	12.026	0.026	0.2	0.2	O K
7200	min	Summer	12.022	0.022	0.1	0.2	ОК
8640	min	Summer	12.019	0.019	0.1	0.1	O K
10080	min	Summer	12.017	0.017	0.1	0.1	ОК
15	min	Winter	12.328	0.328	0.4	2.4	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	31.584	0.0	17
30	min	Summer	20.643	0.0	31
60	min	Summer	13.089	0.0	56
120	min	Summer	8.133	0.0	88
180	min	Summer	6.128	0.0	122
240	min	Summer	5.007	0.0	158
360	min	Summer	3.735	0.0	226
480	min	Summer	3.030	0.0	292
600	min	Summer	2.575	0.0	356
720	min	Summer	2.255	0.0	420
960	min	Summer	1.829	0.0	542
1440	min	Summer	1.363	0.0	778
2160	min	Summer	1.015	0.0	1104
2880	min	Summer	0.823	0.0	1468
4320	min	Summer	0.612	0.0	2200
5760	min	Summer	0.497	0.0	2936
7200	min	Summer	0.423	0.0	3608
8640	min	Summer	0.371	0.0	4400
10080	min	Summer	0.331	0.0	5136
15	min	Winter	31.584	0.0	17

Bellamy Roberts		Page 2
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:58	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Diali laye
Innovyze	Source Control 2020.1.3	1

Summary of Results for 1 year Return Period

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
30	min	Winter	12.403	0.403	0.4	2.9	ОК
60	min	Winter	12.453	0.453	0.4	3.3	O K
120	min	Winter	12.463	0.463	0.4	3.3	ОК
180	min	Winter	12.448	0.448	0.4	3.2	O K
240	min	Winter	12.425	0.425	0.4	3.1	O K
360	min	Winter	12.368	0.368	0.4	2.6	O K
480	min	Winter	12.312	0.312	0.4	2.2	O K
600	min	Winter	12.262	0.262	0.4	1.9	O K
720	min	Winter	12.216	0.216	0.4	1.6	O K
960	min	Winter	12.140	0.140	0.3	1.0	O K
1440	min	Winter	12.052	0.052	0.3	0.4	O K
2160	min	Winter	12.038	0.038	0.2	0.3	O K
2880	min	Winter	12.031	0.031	0.2	0.2	O K
4320	min	Winter	12.023	0.023	0.1	0.2	O K
5760	min	Winter	12.019	0.019	0.1	0.1	O K
7200	min	Winter	12.016	0.016	0.1	0.1	O K
8640	min	Winter	12.014	0.014	0.1	0.1	O K
10080	min	Winter	12.013	0.013	0.1	0.1	O K

	Stor	m	Rain	Flooded	Time-Peak
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
30	min	Winter	20.643	0.0	31
60	min	Winter	13.089	0.0	58
120	min	Winter	8.133	0.0	94
180	min	Winter	6.128	0.0	132
240	min	Winter	5.007	0.0	170
360	min	Winter	3.735	0.0	244
480	min	Winter	3.030	0.0	312
600	min	Winter	2.575	0.0	380
720	min	Winter	2.255	0.0	442
960	min	Winter	1.829	0.0	562
1440	min	Winter	1.363	0.0	750
2160	min	Winter	1.015	0.0	1096
2880	min	Winter	0.823	0.0	1472
4320	min	Winter	0.612	0.0	2168
5760	min	Winter	0.497	0.0	2880
7200	min	Winter	0.423	0.0	3656
8640	min	Winter	0.371	0.0	4368
10080	min	Winter	0.331	0.0	5040

Bellamy Roberts		Page 3
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:58	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Dialilade
Innovyze	Source Control 2020.1.3	'

 Return
 Rejion (years)
 1
 Cv (Summer)
 0.750

 Region (years)
 20.400
 Shortest Storm (mins)
 15

 Region England and Wales (years)
 20.400
 Shortest Storm (mins)
 15

 Ratio R (years)
 0.398
 Longest Storm (mins)
 10080

 Summer Storms
 Yes (Climate Change %)
 +0

Time Area Diagram

Total Area (ha) 0.040

Time (mins) Area From: To: (ha)

Bellamy Roberts		Page 4
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:58	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Drainage
Innovyze	Source Control 2020.1.3	-

Storage is Online Cover Level (m) 15.000

Trench Soakaway Structure

3.0	n Width (m)	Trench	9000	r) ((m/h	Base	Coefficient	Infiltration
8.0	Length (m)	Trench I	9000	r) ((m/h	Side	Coefficient	Infiltration
0.0	Slope (1:X)	SI	2.0	or	Fact	afety	Sa	
0.000	e Depth (m)	Cap Volume	0.30	ΞУ	orosi	Po		
0.000	n Depth (m)	Cap Infiltration	.000	n)	vel (rt Le	Inve	

Bellamy Roberts		Page 1
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:57	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Dialilads
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+35%)

Half Drain Time : 181 minutes.

	Storm		Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Volume	
			(m)	(m)	(1/s)	(m³)	
1 5		C	13.028	1 000	0.6	7.4	ОК
			13.296	1.296	0.7	9.3	0 K
			13.512		0.7	10.9	O K
120	min	Summer	13.613	1.613	0.7	11.6	O K
180	min	Summer	13.614	1.614	0.7	11.6	O K
240	min	Summer	13.591	1.591	0.7	11.5	O K
360	min	Summer	13.526	1.526	0.7	11.0	O K
480	min	Summer	13.453	1.453	0.7	10.5	ОК
600	min	Summer	13.384	1.384	0.7	10.0	ОК
720	min	Summer	13.320	1.320	0.7	9.5	ОК
960	min	Summer	13.202	1.202	0.6	8.7	O K
1440	min	Summer	13.001	1.001	0.6	7.2	O K
2160	min	Summer	12.764	0.764	0.5	5.5	O K
2880	min	Summer	12.585	0.585	0.5	4.2	O K
4320	min	Summer	12.334	0.334	0.4	2.4	O K
5760	min	Summer	12.174	0.174	0.3	1.3	O K
7200	min	Summer	12.080	0.080	0.3	0.6	O K
8640	min	Summer	12.048	0.048	0.3	0.3	O K
10080	min	Summer	12.042	0.042	0.3	0.3	O K
15	min	Winter	13.157	1.157	0.6	8.3	O K

Storm		Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)
				(m³)	
15	min	Summer	104.644	0.0	18
30	min	Summer	68.161	0.0	33
60	min	Summer	42.440	0.0	62
120	min	Summer	25.637	0.0	116
180	min	Summer	18.882	0.0	144
240	min	Summer	15.130	0.0	176
360	min	Summer	11.067	0.0	244
480	min	Summer	8.857	0.0	314
600	min	Summer	7.446	0.0	384
720	min	Summer	6.460	0.0	452
960	min	Summer	5.160	0.0	586
1440	min	Summer	3.755	0.0	850
2160	min	Summer	2.729	0.0	1232
2880	min	Summer	2.175	0.0	1588
4320	min	Summer	1.578	0.0	2332
5760	min	Summer	1.256	0.0	3008
7200	min	Summer	1.051	0.0	3680
8640	min	Summer	0.909	0.0	4384
10080	min	Summer	0.804	0.0	5104
15	min	Winter	104.644	0.0	18

Bellamy Roberts		Page 2
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	Contraction of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:57	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	namaye
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+35%)

	Storm	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Volume	
		(m)	(m)	(1/s)	(m³)	
2.0		10 460	1 460	0.5	10 5	
	min Winter			0.7		
60	min Winter	13.717	1.717	0.8	12.4	O K
120	min Winter	13.855	1.855	0.8	13.4	O K
180	min Winter	13.849	1.849	0.8	13.3	O K
240	min Winter	13.823	1.823	0.8	13.1	O K
360	min Winter	13.737	1.737	0.8	12.5	O K
480	min Winter	13.632	1.632	0.7	11.8	O K
600	min Winter	13.527	1.527	0.7	11.0	O K
720	min Winter	13.432	1.432	0.7	10.3	O K
960	min Winter	13.261	1.261	0.6	9.1	O K
1440	min Winter	12.979	0.979	0.6	7.0	O K
2160	min Winter	12.666	0.666	0.5	4.8	O K
2880	min Winter	12.443	0.443	0.4	3.2	O K
4320	min Winter	12.154	0.154	0.3	1.1	O K
5760	min Winter	12.047	0.047	0.3	0.3	O K
7200	min Winter	12.040	0.040	0.2	0.3	O K
8640	min Winter	12.034	0.034	0.2	0.2	O K
10080	min Winter	12.030	0.030	0.2	0.2	O K

	Stor	m	Rain	Flooded	Time-Peak	
	Even	t	(mm/hr)	Volume	(mins)	
				(m³)		
30	min	Winter	68.161	0.0	32	
60	min	Winter	42.440	0.0	60	
120	min	Winter	25.637	0.0	116	
180	min	Winter	18.882	0.0	150	
240	min	Winter	15.130	0.0	186	
360	min	Winter	11.067	0.0	264	
480	min	Winter	8.857	0.0	338	
600	min	Winter	7.446	0.0	412	
720	min	Winter	6.460	0.0	484	
960	min	Winter	5.160	0.0	626	
1440	min	Winter	3.755	0.0	896	
2160	min	Winter	2.729	0.0	1280	
2880	min	Winter	2.175	0.0	1648	
4320	min	Winter	1.578	0.0	2340	
5760	min	Winter	1.256	0.0	2848	
7200	min	Winter	1.051	0.0	3664	
8640	min	Winter	0.909	0.0	4304	
10080	min	Winter	0.804	0.0	4952	

Bellamy Roberts		Page 3
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:57	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Dialilade
Innovvze	Source Control 2020.1.3	1

 Return
 Refine Return
 Region Region Region
 England and Wales Region Region

Time Area Diagram

Total Area (ha) 0.040

Time (mins) Area From: To: (ha)

Bellamy Roberts		Page 4
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:57	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	niairiads
Innovyze	Source Control 2020.1.3	

Storage is Online Cover Level (m) 15.000

Trench Soakaway Structure

3.0	Width (m)	Trench)	0.09000	(m/hr)	Base	Coefficient	Infiltration
8.0	Length (m)	Trench I)	0.09000	(m/hr)	Side	Coefficient	Infiltration
0.0	lope (1:X)	SI)	2.0	Factor	afety	Sa	
0.000	Depth (m)	Cap Volume)	0.30	rosity	Po		
0.000	Depth (m)	Cap Infiltration) C	12.000	rel (m)	rt Lev	Inve:	

Bellamy Roberts		Page 1
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:56	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Drainage
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+45%)

Half Drain Time : 202 minutes.

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
15	min	Summer	13.448	1.448	0.7	10.4	O K
30	min	Summer	13.850	1.850	0.8	13.3	O K
60	min	Summer	14.189	2.189	0.9	15.8	O K
120	min	Summer	14.374	2.374	1.0	17.1	O K
180	min	Summer	14.383	2.383	1.0	17.2	O K
240	min	Summer	14.358	2.358	0.9	17.0	O K
360	min	Summer	14.285	2.285	0.9	16.5	O K
480	min	Summer	14.193	2.193	0.9	15.8	O K
600	min	Summer	14.097	2.097	0.9	15.1	O K
720	min	Summer	14.007	2.007	0.9	14.4	O K
960	min	Summer	13.845	1.845	0.8	13.3	O K
1440	min	Summer	13.577	1.577	0.7	11.4	O K
2160	min	Summer	13.265	1.265	0.6	9.1	O K
2880	min	Summer	13.027	1.027	0.6	7.4	O K
4320	min	Summer	12.684	0.684	0.5	4.9	O K
5760	min	Summer	12.451	0.451	0.4	3.2	O K
7200	min	Summer	12.285	0.285	0.4	2.1	O K
8640	min	Summer	12.169	0.169	0.3	1.2	O K
10080	min	Summer	12.089	0.089	0.3	0.6	O K
15	min	Winter	13.628	1.628	0.7	11.7	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)	
15 30		Summer Summer	145.969 95.877	0.0	18 33
60		Summer	59.944	0.0	62 62
120	min		36.168	0.0	120
180	min		26.535	0.0	150
240			21.165	0.0	182
360	min	Summer	15.395	0.0	248
480	min	Summer	12.269	0.0	318
600	min	Summer	10.281	0.0	386
720	min	Summer	8.895	0.0	456
960	min	Summer	7.071	0.0	590
1440	min	Summer	5.110	0.0	854
2160	min	Summer	3.686	0.0	1236
2880	min	Summer	2.921	0.0	1616
4320	min	Summer	2.101	0.0	2336
5760	min	Summer	1.662	0.0	3064
7200	min	Summer	1.384	0.0	3816
8640	min	Summer	1.192	0.0	4496
10080	min	Summer	1.050	0.0	5144
15	min	Winter	145.969	0.0	18

Bellamy Roberts		Page 2
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 10:56	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Dialilads
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+45%)

	Stor Even		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Volume (m³)	Status
3.0	min	Wintor	14.085	2 095	0.9	15.0	ОК
			14.477		1.0		O K
			14.712				Flood Risk
180	min	Winter	14.722	2.722	1.0	19.6	Flood Risk
240	min	Winter	14.688	2.688	1.0	19.4	O K
360	min	Winter	14.592	2.592	1.0	18.7	O K
480	min	Winter	14.466	2.466	1.0	17.8	O K
600	min	Winter	14.333	2.333	0.9	16.8	O K
720	min	Winter	14.203	2.203	0.9	15.9	O K
960	min	Winter	13.967	1.967	0.8	14.2	O K
1440	min	Winter	13.595	1.595	0.7	11.5	O K
2160	min	Winter	13.182	1.182	0.6	8.5	O K
2880	min	Winter	12.882	0.882	0.5	6.3	O K
4320	min	Winter	12.480	0.480	0.4	3.5	O K
5760	min	Winter	12.226	0.226	0.4	1.6	O K
7200	min	Winter	12.069	0.069	0.3	0.5	O K
8640	min	Winter	12.045	0.045	0.3	0.3	O K
10080	min	Winter	12.040	0.040	0.2	0.3	O K

Storm		Rain	${\tt Flooded}$	Time-Peak	
Event		(mm/hr)	Volume	(mins)	
				(m³)	
30	min	Winter	95.877	0.0	32
60	min	Winter	59.944	0.0	60
120	min	Winter	36.168	0.0	116
180	min	Winter	26.535	0.0	168
240	min	Winter	21.165	0.0	188
360	min	Winter	15.395	0.0	266
480	min	Winter	12.269	0.0	342
600	min	Winter	10.281	0.0	416
720	min	Winter	8.895	0.0	490
960	min	Winter	7.071	0.0	634
1440	min	Winter	5.110	0.0	908
2160	min	Winter	3.686	0.0	1300
2880	min	Winter	2.921	0.0	1676
4320	min	Winter	2.101	0.0	2420
5760	min	Winter	1.662	0.0	3120
7200	min	Winter	1.384	0.0	3752
8640	min	Winter	1.192	0.0	4392
10080	min	Winter	1.050	0.0	4984

Bellamy Roberts	Page 3	
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:56	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	Diamage
Innovvze	Source Control 2020.1.3	<u>'</u>

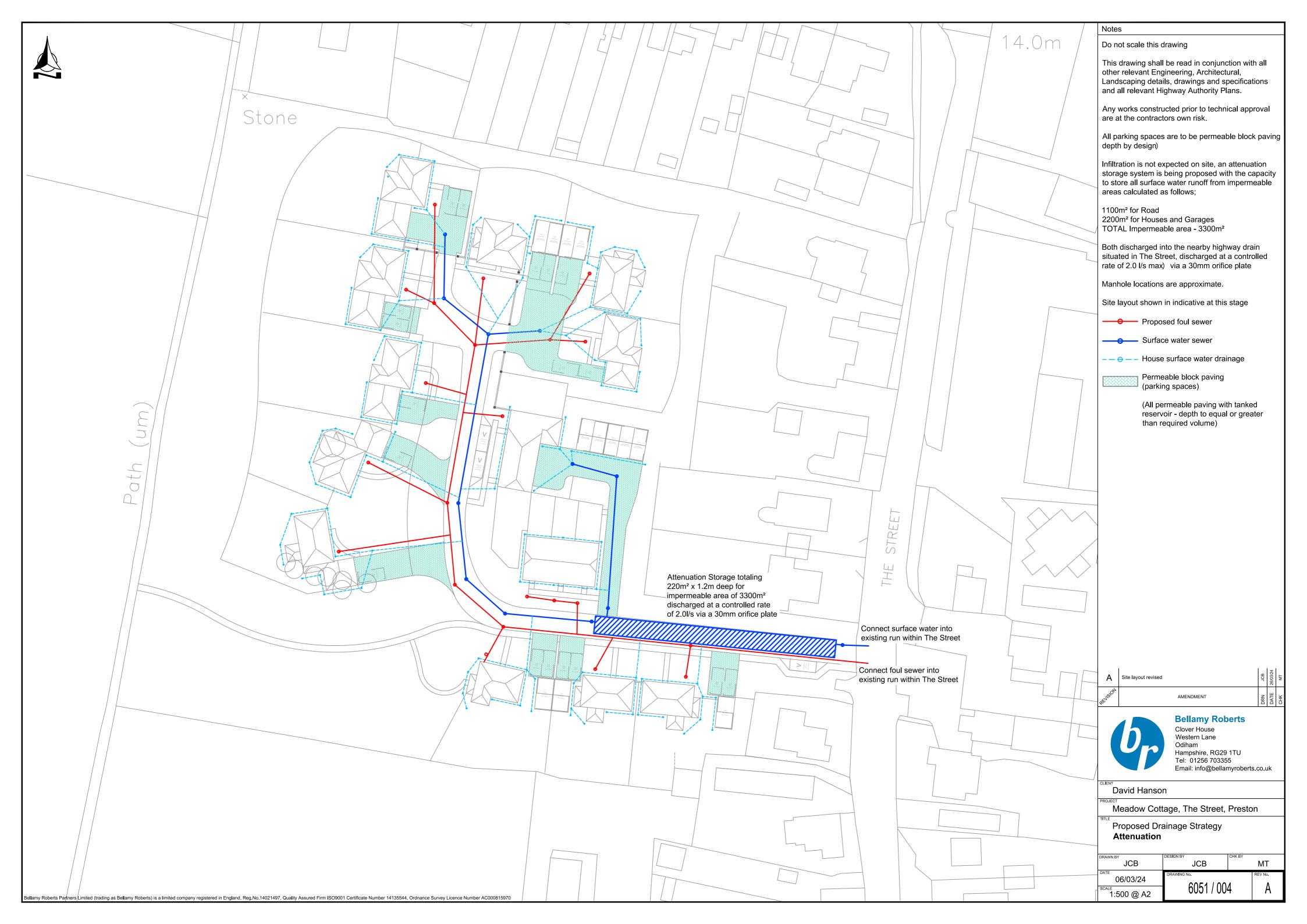
 Return
 Rejion Region Region Region Return
 England and Wales Return
 Cv (Summer) 0.750 Cv (Winter) 0.840 Cv (Winter) 0

Time Area Diagram

Total Area (ha) 0.040

Time (mins) Area From: To: (ha) 0.040

Bellamy Roberts	Page 4	
Clover House	Meadow Cottage	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 10:56	Designed by JCB	Drainage
File SO2.SRCX	Checked by MT	pramage
Innovyze	Source Control 2020.1.3	


Storage is Online Cover Level (m) 15.000

Trench Soakaway Structure

3.0	n Width (m)	Trench	9000	r) ((m/h	Base	Coefficient	Infiltration
8.0	Length (m)	Trench I	9000	r) ((m/h	Side	Coefficient	Infiltration
0.0	Slope (1:X)	SI	2.0	or	Safety Factor			
0.000	e Depth (m)	Cap Volume	0.30	ΞУ	Porosity			
0.000	n Depth (m)	Cap Infiltration	.000	n)	vel (rt Le	Inve	

APPENDIX 8

Proposed Drainage Strategy - Attenuation

APPENDIX 9

Microdrainage Analysis

Bellamy Roberts		Page 1
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 11:51	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	pramage
Innovyze	Source Control 2020.1.3	•

Summary of Results for 1 year Return Period

Half Drain Time : 578 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	5	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
			13.092		0.0	0.5	0.5		O K
30	min	Summer	13.119	0.119	0.0	0.6	0.6	24.9	O K
60	min	Summer	13.148	0.148	0.0	0.7	0.7	31.0	O K
120	min	Summer	13.178	0.178	0.0	0.8	0.8	37.1	O K
180	min	Summer	13.194	0.194	0.0	0.8	0.8	40.5	O K
240	min	Summer	13.204	0.204	0.0	0.8	0.8	42.7	O K
360	min	Summer	13.214	0.214	0.0	0.8	0.8	44.7	O K
480	min	Summer	13.218	0.218	0.0	0.8	0.8	45.6	ОК
600	min	Summer	13.222	0.222	0.0	0.9	0.9	46.3	O K
720	min	Summer	13.224	0.224	0.0	0.9	0.9	46.7	ОК
960	min	Summer	13.226	0.226	0.0	0.9	0.9	47.1	ОК
1440	min	Summer	13.224	0.224	0.0	0.9	0.9	46.8	ОК
2160	min	Summer	13.215	0.215	0.0	0.8	0.8	44.9	ОК
2880	min	Summer	13.204	0.204	0.0	0.8	0.8	42.6	ОК
4320	min	Summer	13.182	0.182	0.0	0.8	0.8	38.0	ОК
5760	min	Summer	13.163	0.163	0.0	0.7	0.7	34.1	ОК
7200	min	Summer	13.147	0.147	0.0	0.7	0.7	30.8	ОК
8640	min	Summer	13.134	0.134	0.0	0.6	0.6	28.0	ОК
			13.123		0.0	0.6	0.6	25.6	0 K
			13.103		0.0	0.6	0.6	21.6	O K
			,		0.0	0.0	0.0	0	0 10

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	31.584	0.0	17.3	19
30	min	Summer	20.643	0.0	22.9	33
60	min	Summer	13.089	0.0	31.2	64
120	min	Summer	8.133	0.0	38.9	122
180	min	Summer	6.128	0.0	44.1	182
240	min	Summer	5.007	0.0	48.1	242
360	min	Summer	3.735	0.0	53.8	358
480	min	Summer	3.030	0.0	58.2	410
600	min	Summer	2.575	0.0	61.8	472
720	min	Summer	2.255	0.0	64.9	534
960	min	Summer	1.829	0.0	70.0	666
1440	min	Summer	1.363	0.0	77.5	940
2160	min	Summer	1.015	0.0	89.6	1360
2880	min	Summer	0.823	0.0	96.7	1760
4320	min	Summer	0.612	0.0	107.5	2548
5760	min	Summer	0.497	0.0	117.7	3296
7200	min	Summer	0.423	0.0	125.0	4040
8640	min	Summer	0.371	0.0	131.3	4760
10080	min	Summer	0.331	0.0	136.6	5544
15	min	Winter	31.584	0.0	19.5	19

Bellamy Roberts		Page 2
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 11:51	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	Diamage
Innovyze	Source Control 2020.1.3	·

Summary of Results for 1 year Return Period

	Storm Event		Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
30	min 1	Winter	13.134	0.134	0.0	0.6	0.6	27.9	ОК
60	min 1	Winter	13.166	0.166	0.0	0.7	0.7	34.8	O K
120	min 1	Winter	13.200	0.200	0.0	0.8	0.8	41.8	O K
180	min 1	Winter	13.219	0.219	0.0	0.8	0.8	45.7	O K
240	min 1	Winter	13.231	0.231	0.0	0.9	0.9	48.2	O K
360	min 1	Winter	13.243	0.243	0.0	0.9	0.9	50.8	O K
480	min 1	Winter	13.248	0.248	0.0	0.9	0.9	51.9	O K
600	min 1	Winter	13.250	0.250	0.0	0.9	0.9	52.3	O K
720	min 1	Winter	13.252	0.252	0.0	0.9	0.9	52.7	O K
960	min 1	Winter	13.253	0.253	0.0	0.9	0.9	52.8	O K
1440	min 1	Winter	13.246	0.246	0.0	0.9	0.9	51.5	O K
2160	min 1	Winter	13.230	0.230	0.0	0.9	0.9	48.1	O K
2880	min 1	Winter	13.212	0.212	0.0	0.8	0.8	44.4	O K
4320	min 1	Winter	13.180	0.180	0.0	0.8	0.8	37.6	O K
5760	min 1	Winter	13.153	0.153	0.0	0.7	0.7	32.1	O K
7200	min '	Winter	13.133	0.133	0.0	0.6	0.6	27.7	O K
8640	min 1	Winter	13.116	0.116	0.0	0.6	0.6	24.3	O K
10080	min 1	Winter	13.103	0.103	0.0	0.6	0.6	21.5	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	20.643	0.0	25.7	33
60	min	Winter	13.089	0.0	35.0	62
120	min	Winter	8.133	0.0	43.7	120
180	min	Winter	6.128	0.0	49.5	178
240	min	Winter	5.007	0.0	53.9	236
360	min	Winter	3.735	0.0	60.4	346
480	min	Winter	3.030	0.0	65.3	452
600	min	Winter	2.575	0.0	69.3	492
720	min	Winter	2.255	0.0	72.7	562
960	min	Winter	1.829	0.0	78.4	716
1440	min	Winter	1.363	0.0	86.6	1024
2160	min	Winter	1.015	0.0	100.4	1452
2880	min	Winter	0.823	0.0	108.4	1876
4320	min	Winter	0.612	0.0	120.5	2680
5760	min	Winter	0.497	0.0	131.8	3464
7200	min	Winter	0.423	0.0	140.1	4184
8640	min	Winter	0.371	0.0	147.1	4936
10080	min	Winter	0.331	0.0	153.1	5656

Bellamy Roberts		Page 3
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 11:51	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	Drail laye
Innovyze	Source Control 2020.1.3	•

 Return
 Rejion (years)
 1
 Cv (Summer)
 0.750

 Region (years)
 20.400
 Shortest Storm (mins)
 15

 Region England and Wales (years)
 20.400
 Shortest Storm (mins)
 15

 Ratio R (years)
 0.398
 Longest Storm (mins)
 10080

 Summer Storms
 Yes (Climate Change %)
 +0

Time Area Diagram

Total Area (ha) 0.330

Time (mins) Area From: To: (ha) 0.330

Bellamy Roberts	Page 4	
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 11:51	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	namaye
Innovyze	Source Control 2020.1.3	•

Storage is Online Cover Level (m) 15.000

Cellular Storage Structure

Invert Level (m) 13.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	220.0		0.0	1.	210		0.0			0.0
1.200	220.0		0.0							

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 13.000

Bellamy Roberts		Page 1
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 11:51	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	Dialilade
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+35%)

Half Drain Time : 997 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	13.307	0.307	0.0	1.0	1.0	64.1	O K
30	min S	Summer	13.397	0.397	0.0	1.2	1.2	83.0	O K
60	min S	Summer	13.488	0.488	0.0	1.3	1.3	102.1	O K
120	min S	Summer	13.577	0.577	0.0	1.4	1.4	120.6	O K
180	min S	Summer	13.624	0.624	0.0	1.5	1.5	130.4	O K
240	min S	Summer	13.652	0.652	0.0	1.5	1.5	136.4	O K
360	min S	Summer	13.687	0.687	0.0	1.5	1.5	143.6	O K
480	min S	Summer	13.704	0.704	0.0	1.6	1.6	147.1	O K
600	min S	Summer	13.711	0.711	0.0	1.6	1.6	148.5	O K
720	min S	Summer	13.712	0.712	0.0	1.6	1.6	148.8	O K
960	min S	Summer	13.712	0.712	0.0	1.6	1.6	148.8	O K
1440	min S	Summer	13.705	0.705	0.0	1.6	1.6	147.3	O K
2160	min S	Summer	13.682	0.682	0.0	1.5	1.5	142.5	O K
2880	min S	Summer	13.653	0.653	0.0	1.5	1.5	136.6	O K
4320	min S	Summer	13.595	0.595	0.0	1.4	1.4	124.3	O K
5760	min S	Summer	13.541	0.541	0.0	1.4	1.4	113.0	O K
7200	min S	Summer	13.494	0.494	0.0	1.3	1.3	103.2	O K
8640	min S	Summer	13.453	0.453	0.0	1.2	1.2	94.6	O K
10080	min S	Summer	13.417	0.417	0.0	1.2	1.2	87.1	ОК
15	min W	Vinter	13.344	0.344	0.0	1.1	1.1	71.8	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	104.644	0.0	56.5	19
30	min	Summer	68.161	0.0	69.3	34
60	min	Summer	42.440	0.0	102.5	64
120	min	Summer	25.637	0.0	123.5	124
180	min	Summer	18.882	0.0	135.9	182
240	min	Summer	15.130	0.0	144.6	242
360	min	Summer	11.067	0.0	157.0	362
480	min	Summer	8.857	0.0	165.2	480
600	min	Summer	7.446	0.0	171.1	600
720	min	Summer	6.460	0.0	175.5	672
960	min	Summer	5.160	0.0	181.1	780
1440	min	Summer	3.755	0.0	184.8	1038
2160	min	Summer	2.729	0.0	241.5	1448
2880	min	Summer	2.175	0.0	256.1	1848
4320	min	Summer	1.578	0.0	274.2	2680
5760	min	Summer	1.256	0.0	297.8	3464
7200	min	Summer	1.051	0.0	311.6	4248
8640	min	Summer	0.909	0.0	323.2	5016
10080	min	Summer	0.804	0.0	332.8	5752
15	min	Winter	104.644	0.0	61.8	19

Bellamy Roberts		Page 2
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 11:51	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	Diali lade
Innovyze	Source Control 2020.1.3	

Summary of Results for 30 year Return Period (+35%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
30	min Wi	inter	13.445	0.445	0.0	1.2		1.2	93.0	O K
60	min Wi	inter	13.548	0.548	0.0	1.4		1.4	114.5	O K
120	min Wi	inter	13.648	0.648	0.0	1.5		1.5	135.5	O K
180	min Wi	inter	13.702	0.702	0.0	1.6		1.6	146.7	O K
240	min Wi	inter	13.735	0.735	0.0	1.6		1.6	153.7	O K
360	min Wi	inter	13.777	0.777	0.0	1.6		1.6	162.3	O K
480	min Wi	inter	13.799	0.799	0.0	1.7		1.7	166.9	O K
600	min Wi	inter	13.810	0.810	0.0	1.7		1.7	169.3	O K
720	min Wi	inter	13.814	0.814	0.0	1.7		1.7	170.2	O K
960	min Wi	inter	13.810	0.810	0.0	1.7		1.7	169.4	O K
1440	min Wi	inter	13.797	0.797	0.0	1.7		1.7	166.6	O K
2160	min Wi	inter	13.762	0.762	0.0	1.6		1.6	159.2	O K
2880	min Wi	inter	13.719	0.719	0.0	1.6		1.6	150.2	O K
4320	min Wi	inter	13.632	0.632	0.0	1.5		1.5	132.1	O K
5760	min Wi	inter	13.556	0.556	0.0	1.4		1.4	116.1	O K
7200	min Wi	inter	13.490	0.490	0.0	1.3		1.3	102.5	O K
8640	min Wi	inter	13.435	0.435	0.0	1.2		1.2	90.9	ОК
10080	min Wi	inter	13.388	0.388	0.0	1.1		1.1	81.2	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
2.0				0.0	55.4	2.2
		Winter		0.0	75.4	33
60	min	Winter	42.440	0.0	114.7	62
120	min	Winter	25.637	0.0	137.8	122
180	min	Winter	18.882	0.0	151.4	180
240	min	Winter	15.130	0.0	160.6	238
360	min	Winter	11.067	0.0	173.2	354
480	min	Winter	8.857	0.0	181.6	468
600	min	Winter	7.446	0.0	187.6	578
720	min	Winter	6.460	0.0	192.0	686
960	min	Winter	5.160	0.0	197.6	886
1440	min	Winter	3.755	0.0	200.8	1098
2160	min	Winter	2.729	0.0	270.5	1560
2880	min	Winter	2.175	0.0	286.6	2016
4320	min	Winter	1.578	0.0	304.1	2856
5760	min	Winter	1.256	0.0	333.6	3688
7200	min	Winter	1.051	0.0	349.1	4472
8640	min	Winter	0.909	0.0	362.0	5272
10080	min	Winter	0.804	0.0	373.0	6048

Bellamy Roberts		Page 3
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	100 mg
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 11:51	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	niamaye
Innovyze	Source Control 2020.1.3	

 Return
 Rejion (years)
 Region (years

Time Area Diagram

Total Area (ha) 0.330

Time (mins) Area From: To: (ha) 0.330

Bellamy Roberts		Page 4
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 11:51	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	namaye
Innovyze	Source Control 2020.1.3	•

Storage is Online Cover Level (m) 15.000

Cellular Storage Structure

Invert Level (m) 13.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	220.0		0.0	1.	210		0.0			0.0
1.200	220.0		0.0							

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 13.000

Bellamy Roberts		Page 1
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 11:50	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	Dialilade
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+45%)

Half Drain Time : 1188 minutes.

	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1.5	min Summer	13 // 28	0 428	0.0	1.2	1 2	89.5	ОК
	min Summer				1.4	1.4		O K
	min Summer				1.5	1.5		O K
	min Summer				1.7	1.7		
180	min Summer	13.886	0.886	0.0	1.8	1.8	185.1	O K
240	min Summer	13.925	0.925	0.0	1.8	1.8	193.4	O K
360	min Summer	13.974	0.974	0.0	1.8	1.8	203.6	O K
480	min Summer	14.000	1.000	0.0	1.9	1.9	209.0	O K
600	min Summer	14.012	1.012	0.0	1.9	1.9	211.5	O K
720	min Summer	14.016	1.016	0.0	1.9	1.9	212.3	O K
960	min Summer	14.012	1.012	0.0	1.9	1.9	211.4	O K
1440	min Summer	13.998	0.998	0.0	1.9	1.9	208.6	O K
2160	min Summer	13.966	0.966	0.0	1.8	1.8	202.0	O K
2880	min Summer	13.928	0.928	0.0	1.8	1.8	193.9	O K
4320	min Summer	13.849	0.849	0.0	1.7	1.7	177.3	O K
5760	min Summer	13.775	0.775	0.0	1.6	1.6	161.9	O K
7200	min Summer	13.710	0.710	0.0	1.6	1.6	148.3	O K
8640	min Summer	13.652	0.652	0.0	1.5	1.5	136.3	O K
10080	min Summer	13.602	0.602	0.0	1.4	1.4	125.9	O K
15	min Winter	13.480	0.480	0.0	1.3	1.3	100.3	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	145.969	0.0	73.1	19
30	min	Summer	95.877	0.0	88.6	34
60	min	Summer	59.944	0.0	143.8	64
120	min	Summer	36.168	0.0	170.9	124
180	min	Summer	26.535	0.0	185.0	182
240	min	Summer	21.165	0.0	194.1	242
360	min	Summer	15.395	0.0	206.6	362
480	min	Summer	12.269	0.0	214.8	482
600	min	Summer	10.281	0.0	220.5	600
720	min	Summer	8.895	0.0	224.5	720
960	min	Summer	7.071	0.0	229.1	836
1440	min	Summer	5.110	0.0	230.1	1082
2160	min	Summer	3.686	0.0	325.8	1476
2880	min	Summer	2.921	0.0	342.5	1900
4320	min	Summer	2.101	0.0	352.8	2724
5760	min	Summer	1.662	0.0	394.2	3520
7200	min	Summer	1.384	0.0	410.4	4320
8640	min	Summer	1.192	0.0	423.7	5096
10080	min	Summer	1.050	0.0	434.8	5848
15	min	Winter	145.969	0.0	79.4	19

Bellamy Roberts		Page 2
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Mirro
Date 06/03/2024 11:50	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	Dialilads
Innovyze	Source Control 2020.1.3	

Summary of Results for 100 year Return Period (+45%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min '	Winter	13.627	0.627	0.0	1.5	1.5	131.1	O K
60	min 1	Winter	13.777	0.777	0.0	1.6	1.6	162.4	O K
120	min 1	Winter	13.921	0.921	0.0	1.8	1.8	192.5	O K
180	min 1	Winter	13.996	0.996	0.0	1.9	1.9	208.3	O K
240	min 1	Winter	14.042	1.042	0.0	1.9	1.9	217.7	O K
360	min 1	Winter	14.100	1.100	0.0	2.0	2.0	229.9	O K
480	min 1	Winter	14.132	1.132	0.0	2.0	2.0	236.7	O K
600	min 1	Winter	14.150	1.150	0.0	2.0	2.0	240.3	O K
720	min 1	Winter	14.158	1.158	0.0	2.0	2.0	242.0	O K
960	min 1	Winter	14.157	1.157	0.0	2.0	2.0	241.8	O K
1440	min 1	Winter	14.132	1.132	0.0	2.0	2.0	236.7	O K
2160	min 1	Winter	14.087	1.087	0.0	1.9	1.9	227.3	O K
2880	min 1	Winter	14.031	1.031	0.0	1.9	1.9	215.6	O K
4320	min 1	Winter	13.917	0.917	0.0	1.8	1.8	191.6	O K
5760	min 1	Winter	13.812	0.812	0.0	1.7	1.7	169.8	O K
7200	min 1	Winter	13.722	0.722	0.0	1.6	1.6	150.8	ОК
8640	min '	Winter	13.644	0.644	0.0	1.5	1.5	134.7	ОК
.0080	min	Winter	13.578	0.578	0.0	1.4	1.4	120.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
		Winter	95.877	0.0	95.8	33
60	min	Winter	59.944	0.0	160.1	62
120	min	Winter	36.168	0.0	188.3	122
180	min	Winter	26.535	0.0	203.1	180
240	min	Winter	21.165	0.0	212.6	238
360	min	Winter	15.395	0.0	225.6	354
480	min	Winter	12.269	0.0	234.1	470
600	min	Winter	10.281	0.0	239.9	584
720	min	Winter	8.895	0.0	243.9	694
960	min	Winter	7.071	0.0	248.4	906
1440	min	Winter	5.110	0.0	248.7	1138
2160	min	Winter	3.686	0.0	364.4	1600
2880	min	Winter	2.921	0.0	381.8	2048
4320	min	Winter	2.101	0.0	387.8	2936
5760	min	Winter	1.662	0.0	441.5	3752
7200	min	Winter	1.384	0.0	459.6	4608
8640	min	Winter	1.192	0.0	474.6	5360
10080	min	Winter	1.050	0.0	487.1	6152

Bellamy Roberts		Page 3
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 11:50	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	Drainage
Innovyze	Source Control 2020.1.3	

 Return
 Rejion Region Region Region Return
 England and Wales Return
 Cv (Summer) 0.750 Cv (Winter) 0.840 Cv (Winter) 0

Time Area Diagram

Total Area (ha) 0.330

Time (mins) Area From: To: (ha)

Bellamy Roberts		Page 4
Clover House	Meadow Cottage - Attenuation	
Western Lane	The Street, Preston	The same of
Odiham RG29 1TU	Job ref. 6051	Micro
Date 06/03/2024 11:50	Designed by JCB	Drainage
File ATTENUATION.SRCX	Checked by MT	Dialilade
Innovyze	Source Control 2020.1.3	<u> </u>

Storage is Online Cover Level (m) 15.000

Cellular Storage Structure

Invert Level (m) 13.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m)	Area (m²) Ini	. Area (m²)	Depth (m)	Area (m²)	Inf. Area (m²)
0.000	220.0	0.0	1.210	0.0	0.0
1.200	220.0	0.0			

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 13.000

