

Sustainable Drainage Strategy

10a & 10b Burwell Road, Stevenage

Application No: 22/00437/FPM - Conditions 12 & 13

April 2024

Prepared for

S J M and Co Ltd

Project Number: 21210 Doc Number: 21210-FCE-XX-XX-RP-D-0003

Rev	Issue Purpose	Author Checked		Approved	Date		
P01	Issued for information	DR	CR	DR	30.04.24		

This report has been prepared for the exclusive use of S J M and Co Ltd. It should not be reproduced in whole or in part, or relied upon by third parties, without the express written authority of Fernbrook Consulting Engineers (FCE).

Prepared by:

Fernbrook Consulting Engineers 40 Bowling Green Lane London EC1R ONE

info@fernbrook.co fernbrook.co

Contents

1.	INTRODUCTION
2.	SURFACE WATER MANAGEMENT
3.	PROTECTION OF SURFACE WATER ENVIRONMENT I
4.	CONCLUSION

Tables

Table 1-1	Site Details
Table 2-1	Climate change allowances
Table 2-2	Comparison of runoff rates
Table 2-3	Soakaway Volumes and Half-drain times
Table 2-4	Catchment Areas
Table 2-5	Simple Index Method
Table 2-6	SuDS Management Plan

Figures

Site Location Plan
Proposed Development Plan
Indicative Roof Catchment Plan
EA Flood risk from surface water
Burwell Road

Appendices

Appendix A – Proposed Development Plan Appendix B – Topographical Survey Appendix C – Soakaway Test Results Appendix D – Thames Water Correspondence Appendix E - Drainage Strategy Calculations & Drawings Appendix F – Temporary & Interim Drainage during Construction

2
3
7
8

 	 •••	•	 •••	 •••	•	•••	•	 •	•••	 •	•••	•	•	 •	•••	•	•		•••	•	•••	 	•	 2	2
 	 •••		 •••	 			•	 •	•••	 •	•••	•	•	 •	•••	•	•	•••	•••	•	•••	 	•	 3	3
 	 		 •••	 			•	 •	•••				•			•	•			•	•••	 		 Z	1
 	 		 	 																		 		 Z	1

Introduction 1.

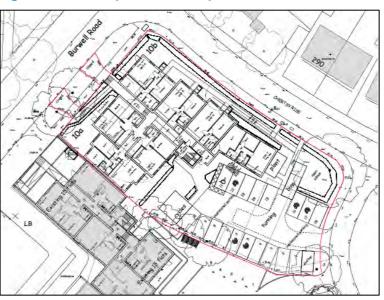
- Fernbrook Consulting Engineers has been appointed by S J M and Co to provide a Sustainable 1.1 Drainage Strategy for the proposed residential development at 10a and 10b Burwell Road, Stevenage.
- The aim of this report is to discharge conditions 12 and 13 of Stevenage Borough Council 1.2 application reference 22/00437/FPM.

Site Characteristics

Refer to **Table 1-1** below for the site details and the site location plan shown in **Figure 1-1** below. 1.3

Site Address	10a & 10b Burwell Road, Stevenage, SG2 9RF						
Grid reference	526005mE, 223680mN (TL 26005 23680)						
Site Area	0.153 ha						
Existing Use	Residential						
Boundaries	North – Burwell Road						
	East – Chertsey Rise						
	South – Residential / Access road						
	West – Burwell Court (Residential)						
Access	Chertsey Rise						

Table 1-1 Site Details


Figure 1-1 Site Location Plan

Development Proposals

1.4 The development proposals are comprised of the demolition of existing 2no. semi-detached houses and erection of 20 no. flats comprising 12 no. 1 bed and 8 no. 2 bed, associated parking and ancillary works. An excerpt of the proposed development plan is included in Figure 1-2 below, and the full plan is included in **Appendix A**.

Figure 1-2 Proposed Development Plan

Surface Water Management 2.

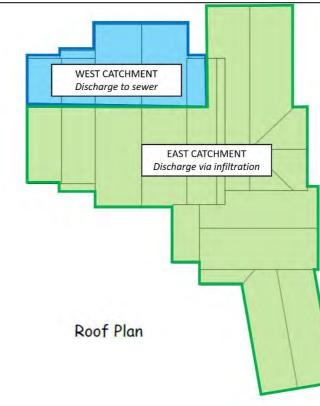
- 2.1 This section of the report seeks to provide greater detail on the drainage proposals to demonstrate that surface water can be management without increasing flood risk on site or elsewhere.
- In accordance with the NPPF, the proposed residential development will allow for an increase 2.2 to rainfall intensity to allow for predicted impacts of climate change on surface water runoff. Refer to Table 2-1 below for climate change allowances used.

	-
Return period	Climate change allowance
30 year	35%
100 year	40%

Climate change allowances Table 2-1

Pre-development surface water run-off conditions

2.3 The existing site is comprised of 2no. residential dwellings. The total site area is 0.153 ha and is comprised of approximately 0.073 ha impermeable area. Based on the proximity of the existing Thames Water surface water sewers it is assumed that runoff is conveyed to the existing surface water sewer at an unrestricted rate.


Sustainable Drainage Systems

- The proposed strategy will seek to maximise the use of Sustainable Drainage Systems (SuDS) to 2.4 increase the biodiversity, provide amenity, control discharge volumes, and manage water quality.
- 2.5 Based on the SuDS Hierarchy, the most appropriate SuDS for this development are rainwater re-use, sedum/green roofs, raingardens, permeable paving and tanked systems for the removal of gross solids and sediments from the roof drainage catchment.

Peak Flow Control

- The proposed drainage will be designed to ensure that flooding does not occur on any part of 2.6 the site for the 1 in 30 year rainfall event, and any flooding up to the 1 in 100 year plus 40% for climate change will be contained on site within the parking area.
- 2.7 Due to the varying levels across the site and proximity of the public sewer, the western roof areas (166m²) will be drained to the existing surface water sewer in Burwell Road. Refer to Figure 2-1 below for an indicative roof catchment plan.

- 2.8 Runoff from impermeable areas in the east catchment will be conveyed towards a geo-cellular soakaway tank below the permeable paving in the parking area.
- 2.9 Therefore, the proposed drainage strategy will seek to restrict the total surface water runoff from the site to a maximum of 2.0 l/s using a flow control device for all events up to the 1 in 100 year plus 40% climate change rainfall event.
- The risk of blockage will be managed through appropriate mitigation methods, including the 2.10 filtration of solids via the raingardens and a flow control chamber with a protected orifice plate and removable filter for simple maintenance.
- The peak surface water run-off generated from the Site for the 1 year, 30 year and 100 year 2.11 rainfall events, for the pre and post-development scenarios, is detailed in **Table 2-2** below.

Table 2-2 **Comparison of runoff rates**

Return Period	Existing Brownfield Rate (I/s)	Max Rate (I/s)	Reduction
1 in 1 year	10.3	2.0	-81%
1 in 30 year	22.9	2.0	-91%
1 in 100 year	29.2	2.0	-93%
1 in 100 year + 40% CC	-	2.0	-

Thames Water has been consulted on the proposals under Pre-planning enquiry ref. DS6091986 2.12 and confirmed sewer capacity to accept flows from the proposed development. Refer to Appendix C for Thames Water correspondence.

Storage Requirements

- 2.13 Runoff from the west catchment will be conveyed to the existing surface water sewer in Burwell. To restrict runoff to 2 l/s, 4.9m³ geo-cellular storage will be provided within the rain-garden.
- Runoff from the east catchment will be conveyed to permeable paving and a soakaway tank in 2.14 the parking area. The soakaway has been sized following in-situ soakaway testing, which confirmed the site is underlain by Chalk geology 1.3-1.4m below ground level. Soakaway testing confirmed an infiltration rate 5.4 x10⁻⁵ m/s. Refer to **Appendix D** for the site investigation report.
- The soakaway will be 900mm deep over 113m² in the car parking, providing a total volume of 2.15 96.6m³ (95% void ratio). The base of the soakaway will be a minimum of 1m above existing groundwater levels.
- 2.16 The proposed soakaway will include a filter trench to provide maintenance access via a perforated pipe and a stage of water treatment prior to discharging to ground.
- Refer to Table 2-3 for the soakaway volumes and Appendix E for drawing 21210-MA-XX-XX-DR-2.17 **C-0500** illustrating how the Site could be drained, accompanied by MicroDrainage calculations.
- The calculations have conservatively not allowed for the 30m³ storage volume available within 2.18 the permeable paving sub-base (30% void ratio) to allow for exceedance events.

Return period Volume (m³) Half-drai (min 2 year 26.7 154 223 41.1 10 year 30 year + 35% 72.8 361 СС

95.5

Table 2-3

100 year + 40%

CC

Urbanisation & Long Term Storage

2.19 The calculations have allowed for 10% uplift impermeable area for urban creep. The site area is 0.153 ha and post-development impermeable areas on site will be 0.111 ha. An additional 0.011 ha has been included in the calculations to allow for urban creep. Refer to Table 2-4 below for catchment areas.

Table 2-4 **Catchment Areas**

Catchment	Impermeable Area (ha)	Urban creep (ha)	Sub-total (ha)				
West	0.0155	0.0015	0.017				
East	0.0952	0.0095	0.105				
		Total (ha)	0.122				

2.20 provide long term storage.

Overland Flow Routes

- 2.21 The proposed surface water drainage network within the Site will be designed to accommodate rainfall events up to the 1 in 100 year plus climate change scenario.
- 2.22 During exceedance events overland flows from the site will be conveyed away from the building towards the public highway and parking area.
- 2.23 Existing levels along Burwell Road are relatively steep and it is not expected that the proposed development will increase flood risk on or off site or exacerbate flood risk locally. Based on the Environment Agency's flood risk data, the site is at very low risk of surface water flooding. Refer to Figure 2-2 below.

Soakaway Volumes and Half-drain times

-drain time (mins)	Water Depth (mm)	Capacity (m ³)
1549	237	72.5
2238	363	58.1
3618	648	26.4
4346	852	3.7

The proposed strategy will infiltrate surface water runoff, therefore there is no requirement to

Figure 2-2 EA Flood risk from surface water

2.24 The surface water flow paths present along Burwell Road start upstream of the site and continue towards Shephall Way beyond the site. Based on the EA data, it is likely that surface water runoff remains within the highway based on the standard 125mm kerbs along Burwell Road. Refer to Figure 2-3 below for the streetview image of Burwell Road along the site's front elevation.

Figure 2-3 Burwell Road The Site Kerbs Kerbs

2.25 Refer to drawing 21210-MA-XX-XX-DR-D-0515 for the Indicative Overland Flow Routes in Appendix E.

Water Quality Management

- 2.26 SuDS will be provided to form a management train in line with the best practice. Source control techniques including sedum roofs, rain gardens and permeable paving will be provided within the catchments to manage runoff and reduce the time of concentration within the pipe network, reducing the risk of sewer surcharge and flash flooding, and provide water quality benefits.
- 2.27 In line with CIRIA C753 The SuDS Manual, Tables 26.2 and 26.3, the pollution hazards indices associated with a residential development are mitigated by the proposed SuDS. The recommended stages of treatment in terms of water quality would be provided through the raingardens, sedum roof, permeable paving and filter trench between the soakaway tank. Refer to Table 2-5 below for the Simple Index Method assessment.

Table 2-5 Simple Index Method

Pollution Hazard Indices									
Pollution hazard TSS Metals Hydrocarb									
Low – Residential	0.50	0.40	0.40						
Polluti	on Mitigation Indic	es provided							
SuDS component	TSS	Metals	Hydrocarbons						
Permeable Paving	0.70	0.60	0.70						
Check	+0.20	+0.20	+0.30						

Maintenance

- 2.28 The maintenance of all SuDS components will be in accord with the best practices and the CIRIA C753 The SuDS Manual.
- 2.29 The drainage will likely be maintained privately by a management company. A management company would likely be financed by a yearly maintenance fee chargeable to residents.
- 2.30 The recommended Operation and Maintenance requirements for the proposed SuDS are outlined in **Table 2-6**.

Table 2-6SuDS Management Plan

Maintenance Task	Description	Frequency					
	Regular Maintenance	• •					
		1					
Litter management	ter managementPick up all litter in SuDS and landscape areas and remove from site						
Tree / Grass maintenance							
Inlets and outlets	nlets and outlets Inspect monthly, remove silt from slab aprons and debris. Strim 1m round for access						
Hard surfaces	Annually						
	Occasional tasks						
Inspection and control chambers							
Silt management	Inspect catchpits for silt accumulation	Annually					
	Excavate silt, stack and dry within 10m of the SuDS feature, but outside the design profile where water flows, spread, rake and overseed.	As required					
	Remedial work						
Repairs	Inspect SuDS system regularly to check for damage or failure.	As required					
	Undertake remedial work as required.						

Protection of surface water environment during construction 3.

- 3.1 Prior to construction, the Contractor will ensure that consultation with the local sewerage undertakers and the relevant environmental agencies has been undertaken to ensure that all necessary permissions / discharge consents are obtained prior to works commencing.
- The protection of the surface water environment will be achieved by adopting the following 3.2 measures to minimising and controlling contaminated run-off:
 - Divert clean surface water away from exposed soils and working areas by constructing diversion drains, as appropriate lined with a non-erodible material.
 - Site drainage must be controlled during construction so that it does not enter the public drains without appropriate prior treatment.
 - Site management should also consider that heavy rain can give rise to unforeseen contaminated site run-off, both within and outside normal working hours.
 - Suitable layout of the construction site and application of suitable management techniques to prevent runoff from stockpiles directly into watercourses/groundwater.
 - All fuel bowsers will be bunded to 110% of their capacity; all re-fuelling will be undertaken at a designated location on site and services of mobile plant will only be permitted on site in exceptional circumstances.

Pollution mitigation during construction phase

- A filter trench will be provided along to the site's southern perimeter to collect and mange 3.3 surface water runoff from the site during construction.
- 3.4 Refer to drawing 21020-FCE-XX-XX-DR-D-0501 in Appendix E for an indicative surface water management strategy during construction.
- 3.5 All temporary drainage features including ditches and filter drains will be lined with an impermeable membrane to prevent groundwater pollution.
- 3.6 The new sewer connection from the site to the existing sewer would be constructed prior to the contributing impermeable areas (i.e. buildings and roads) discharging into the sewer. This is to prevent surface water runoff increasing during construction.
- 3.7 The proposed flow control chamber includes a 350mm sump below the incoming inlet. This will facilitate the deposition of silt and debris and prevent them from entering the sewer network.

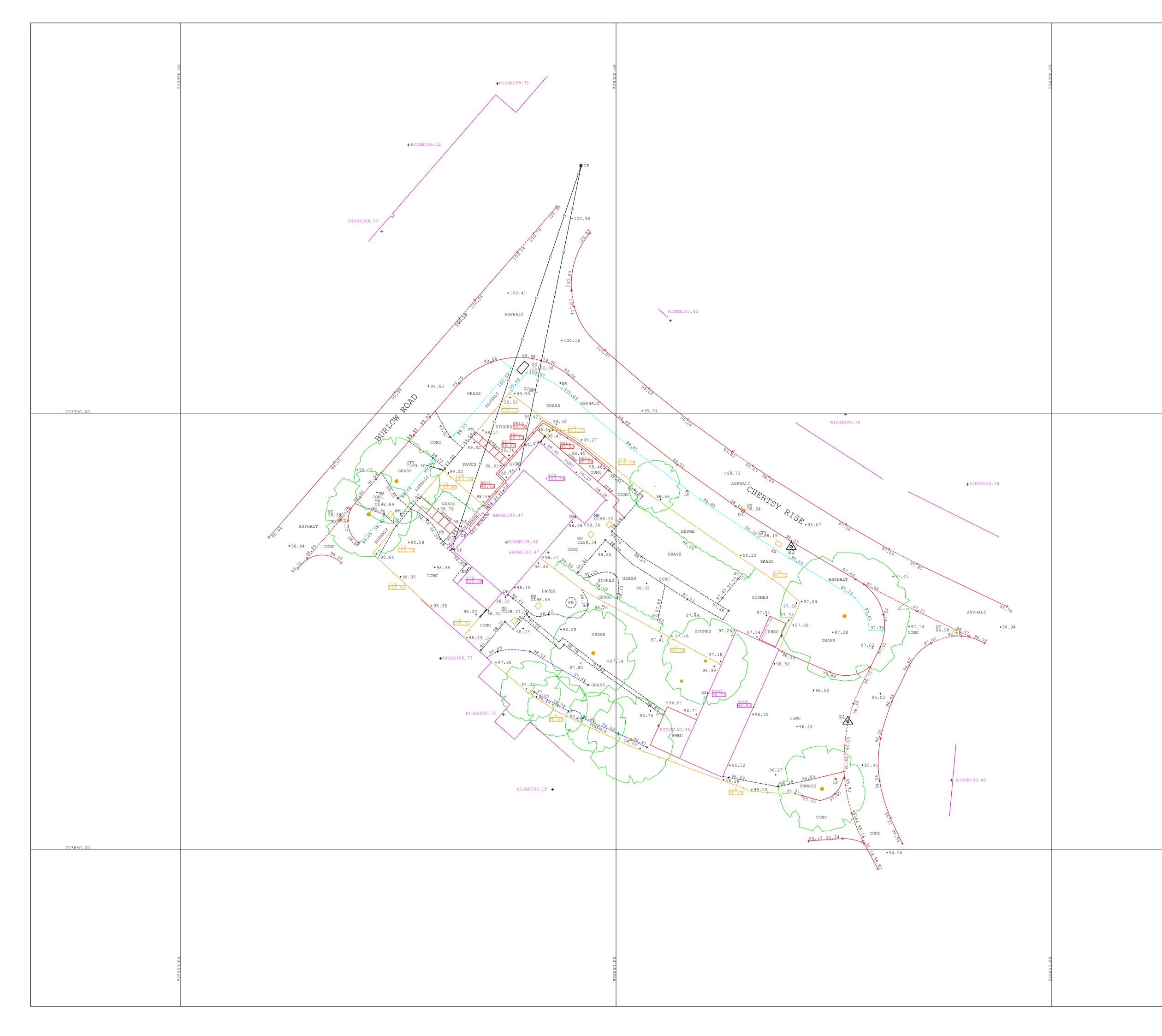
It will be the responsibility of the Site Manager to carry out periodic removal of silt accumulations from the drainage system.

- 3.8 The Site Manager will regularly inspect the construction phase surface water management methods to monitor performance both from a quantity and quality perspective. This inspection will take place weekly and after any heavy rainfall events.
- 3.9 Work will be undertaken in accordance with best practice and the following documents:
 - The Water Environment (England and Wales) regulation 2009
 - Land Drainage Act 1991
 - SEPA Engineering in the Water Environment Good Practice Guide Temporary Construction Methods
 - Control of Water Pollution from Construction Sites Guide to Good Practice (SP156)
 - Control of Water Pollution from Construction Sites Guidance for Consultants and Contractors (C532)
 - Environmental Good Practice Site Guide (C650)
 - BS 8582:2013 Code of practice for surface water management for development sites

4. Conclusion

- 4.1 Fernbrook Consulting Engineers has been appointed by S J M and Co to provide a Sustainable Drainage Strategy for the proposed residential development at Land to the rear of 10a and 10b Burwell Road, Stevenage, SG2 9RF.
- 4.2 The development proposals are comprised of the provision of up to 20no. residential dwellings with access from Chertsey Rise.
- 4.3 The proposed drainage strategy will seek to dispose of surface water runoff from the east catchment via infiltration to the underlying chalk geology. Runoff form the site's west catchment would be conveyed to the Thames Water sewer in Burwell at a maximum runoff rate of 2.0 l/s for all rainfall events up to the 1 in 100 year rainfall event plus 40% climate change allowance scenario.
- 4.4 The drainage strategy will provide 99.2m³ attenuation storage within geo-cellular soakaway tank in the parking area
- 4.5 In conclusion, this report demonstrates that the proposals are consistent with the aims of the NPPF and its Planning Practice Guidance, along with the aims of the Local Flood Risk Management Strategy. Surface water runoff can be adequately managed without increasing the risk of flooding on site or elsewhere.

APPENDIX A – PROPOSED DEVELOPMENT PLAN



- · · · · · · · · · · · · · · · · · · ·	notes:
9. shrub planting individual plant sizes and centres must be clearly stated on planting plan. for general guidance, shrub planting shall be to the following densities: large shrubs: 2 or 3 per m ² smaller shrubs 3 or 4 per m ²	any discrepancies should be reported immediately
ground could be a solution of 2 per m ² hedgerow planting spaced at 400mm centres climbers: min of 2 per climber area	all dimensions should be checked on site prior to commencement of work
to improve soil texture in shrub beds, treat with compost (see 9 above) applying 80 litre bag at over 5-6m² or 5cm layer spreading evenly and incorporating into the top 200-300mms.	site/survey based on ordnance survey information provided by prodat systems plc, (www.promap.co.uk) prodat does not guarantee
11.water granules shrub beds may also receive broadleaf p4 water storing granules applied to soil at 50 gms per m² and cultivated into the top 20cms of $\frac{5}{6}$, $\frac{6}{6}$, \frac	that all past or current uses or features will be identified in the product the product does not give details about the actual
12.hedgerow planting hedgerow planting should be protected by 60cm rabbit-guards, supported by a bamboo cane. weed prevention is most effective with a mulch roll, e.g. acom planting products or somerford, alternatively careful and regular behcidics spraying during the following 3	and product and the site nor should it be used or taken to indicate or exclude actual suitability or unsuitability of the site for any particular purpose, or relied upon for determining salability or value,
summers.	or used as a substitute for any physical investigation or inspection.
shrub beads can be laid with a 7.5cm layer of bark mulch, to prevents \underline{v}_{1} a weed problem and provide an antractive finite, \underline{o}_{1} cambark 100 \underline{S}_{2} \underline{S}_{2} \underline{F}_{2} \underline{F}_{1} from camiand products liti - liei: newmarket (01638) 221100, woodgrow horticulture pic - tei: derby (01332) 516392, woodgland bark - tei: caision (01472) 59457, woodgrow horticulture - tei: derby	drawings to be read in accordance with the dwelling emission rate (der/ter) calculation. the building must be built 'as designed' meeting the criteria set for air permeability.
(01332) 516392. 14. existing trees, hedges & planting	© HERTFORD PLANNING SERVICE
Where trees are to be retained the root plates, trunks and canopies should be adequately protocted from damage before any works start on site. This can be achieved by erecting robust fercing to the outermost spread of the canopy, ea.1.2m high chestrut plating attached to post and rail fencing retained for the duration of the works. Within the fenced area no works should take place, no materials stored, mixed or disposed of, no machinery or site-hults located, no ground level changes or service tronches durg. Reference should be made to the NHEC Practice Note 3	note when printing off pdf's. it is the responsibility of the user to verify that the resulting prints are to scale on the appropriate sized sheet. also that the scale bars on the plan measure
(1985) Building Near Trees and BS 5837 : 2012, Trees in Relation to Construction. waste standards	correctly.
flat developments	
200 litres allowance per unit for refuse 55 litres allowance for recycling 1100 litre bis supplied for refuse 240 litre blue bins for recycling of glass, cans and plastic/can	
12 flats x 200 litres = 2400 litres = 3 x 1100 litre bins 12 flats x 55 litres = 660 litres divided by 240 litres = 2.75 (1 page 1 place and 1 for plastic(cop)	
(1 paper, 1 glass and 1 for plastic/cans) – bin store should be enclosed on all sides with roof to minimise noise pollution and odour pollution. doors provided as access. –	
pollution and odour pollution. doors provided as access. road surface should be tarmac or concrete. gravel roads cannot be serviced.	
distance from bin store to the freighter should be no more than 25 metres.	
dropped kerb to be provided near to bin store.	
1100 litre bins are: 2500mm high with lid open 1490mm vide 1100mm deep	
240 litre binsere: 1200mm high with lid open 700mm wide	
it's required that where a development consists of individual properties, albeit that they have open plan gardens, that they are served with their	
own individual containers, rather than communal bins in a bin store, this will enable them to be served under the arc system with waste collections one week and recycling and composting (garden, food and	
cardboard) the next. this is broven to reduce the amount of waste generated and increase recycling/composting.	
because we currently do not provide compositing flacilities to communal properties, although we with look at the feasibility of this, they have to be served weekly as we are not removing their food waste separately.	
62	
97.30 GY 96.98-	
-	
-	
<u></u>	
-	Date Description Rev
	Hertford Planning Service
of granite - ets	Westgate House, 37–41 Castle Street,
	Hertford, Herts SG14 1HH Tel: 01992 552173 Email: contact@hertfordplanning.co.uk
	www.hertfordplanning.co.uk
-	
	S:\Templates\ciat.jpg
\sum	Description
$\langle \rangle$	Project Burwell 10 & 10a Stevenage
	SG2 9RF
	Drawing
\ 	Date 12/10/2022
<u> </u>	Scale Sheet size A1
	Drawn
	13761-13761-Master-WD-1st

APPENDIX B – TOPOGRAPHICAL SURVEY

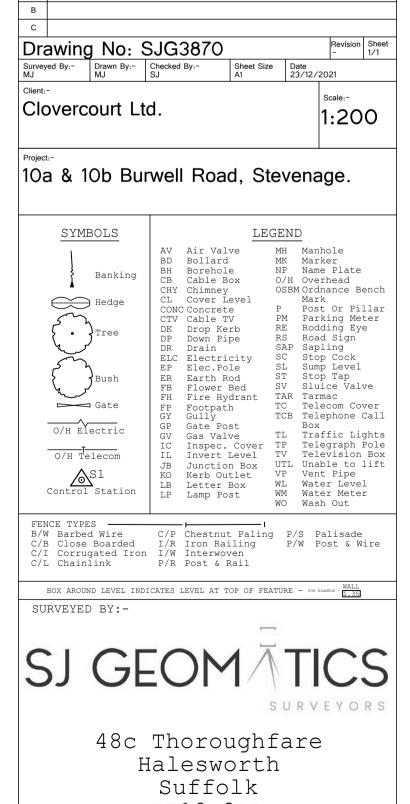
Co-ordinate Table									
Station	Туре	Easting (mE)	Northing (mN)	Level (mZ)					
S1	PK Nail	526026.596	223664.658	96.240					
S2	PK Nail	526020.099	223684.684	98.105					

SURVEY RELATED TO OSGB36(15) ORDNANCE SURVEY GRID CO-ORDINATES TRANSFORMED FROM ETRS89 (WGS84) USING GEIOD MODELS OSGM15/OSTN15

NOTES

1. GRID AND LEVELS RELATED TO ORDNANCE SURVEY GPS NETWORK

 ALL LEVELS ON KERB LINES ARE CHANNEL LEVELS UNLESS NOTED OTHERWISE.


 SERVICE ROUTES HAVE BEEN IDENTIFIED BY LIFTING OF INSPECTION COVERS & VISUAL INSPECTION FROM THE SURFACES.

 FOR SAFETY REASONS, DRAINAGE PIPE SIZES HAVE BEEN DETERMINED FROM THE SURFACE AND SHOULD BE TREATED AS APPROXIMATE ONLY.

5. DRAINAGE PIPE SIZES ARE DIAMETERS AND ARE SHOWN IN MILLIMETERS.

6. TREE SPECIES SHOULD BE CHECKED BY AN ARBORIST IF CRITICAL.

Revisions

IP19 8AR Tel. 01986 872716 email. mail@sjgeomatics.co.uk web. www.sjgeomatics.co.uk

Company Registration Number 8081329

APPENDIX C – SOAKAWAY TEST RESULTS

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

GEOTECHNICAL REPORT

Site Address:	10 Burwell Road, Stevenage, Herts, SG2 9RF					
Report Date:	26 th March 2024					
Project No.:	18824					
Prepared for:	SJM & Co Ltd					
	Brandon House, First Floor, 90 The Broadway, Chesham, Bucks					
	HP5 1EG					

Contents

REPORT

SUMMARY	3
1. Introduction	5
2. Description of Site	5
3. Fieldwork	5
4. Laboratory Testing	6
5. Fieldwork Results	6
5.1 Hand Augured Boreholes	6
5.2 Mechanically Excavated Trial Pits	6
5.3 BRE 365 Results	7
6. Other Observations from Site Works	7
7. Laboratory Testing Results	7
8. Conclusions	8

APPENDICES

- Appendix 1 Site Plan
- Appendix 2 Borehole / Trial pit Logs
- Appendix 3 Laboratory Testing
- Appendix 4 BRE 365 Test Logs
- Appendix 5 Chemical Analysis Results

SUMMARY

ADDRESS: 10 Burwell Road, Stevenage, Herts, SG2 9RF

SOIL OVERVIEW:

BH1	GL – 0.25m bgl	MADE GROUND (Topsoil)
	0.25m bgl – 0.90m bgl	Stiff slightly silty CLAY with some fine chalk & gravel fragments
	0.90m bgl – 1.60m bgl	Weak CHALK
	0.30m bgl – 2.00m bgl	Weak white CHALK
BH2	GL – 0.20m bgl	MADE GROUND (Topsoil)
	0.20m bgl – 1.40m bgl	Stiff slightly silty CLAY with some fine chalk & gravel fragments
	1.40m bgl – 2.00m bgl	Weak CHALK
SA1	GL – 0.30m bgl	MADE GROUND (Topsoil)
	0.30m bgl – 1.40m bgl	Stiff slightly silty CLAY with some fine chalk & gravel fragments
	1.40m bgl – 2.00m bgl	Weak CHALK
SA2	GL – 0.60m bgl	MADE GROUND (Topsoil)
	0.60m bgl – 1.30m bgl	Stiff slightly silty CLAY with some fine chalk & gravel fragments
	1.30m bgl – 1.60m bgl	Weak white CHALK

ROOT DEPTH OVERVIEW:

BH1	Roots present to 1.00m bgl
BH2	Roots present to 1.10m bgl
SA1	Roots present to 1.60m bgl
SA2	Roots present to 0.90m bgl

GROUNDWATER OVERVIEW:

BH1	DRY
BH2	DRY
SA1	DRY
SA2	DRY

SOIL ANALYSIS:

Fine Soils

Plasticity:	intermediate – High					
Plasticity Index:	26 - 33%					
NHBC Classification:	Moderate					
Significant Desiccation:	None Present					
Sulphate Content:	DS-1/AC-1s					

Granular Soils

No granular soils were encountered upon the site.

1. <u>Introduction</u>

- 1.1 In accordance with your instructions, we visited the above site on the 7th & 14th of March 2024.
- 1.2 The purpose of our visit was to undertake two hand augured borehole & two mechanically excavated trial pits (including BRE 365 Soakage Tests), across the above site, in order to identify the underlying subsoil conditions.
- 1.3 The comments and opinions expressed are based purely on the conditions encountered and the subsequent laboratory.
- 1.4 Therefore, it is possible that some special conditions prevailing on site have not been encountered or considered.
- 1.5 Unless otherwise stated, all groundwater recordings relate to short term observations and do not consider fluctuations in elevation due to seasonal, tidal, or other effects. It is possible that fluctuations in the groundwater elevation may have an impact on the proposed design and as such, it is recommended that long term monitoring is undertaken to obtain accurate information relevant to the proposed design in terms of the ground water level.

2. <u>Description of Site</u>

- 2.1 At the time of our visit the site consisted of a recently demolished structure with various single storey structures across the site. The site was surrounded residential housing.
- 2.2 The site is shown within the British Geological Survey Online Geology Viewer (Scale 1:50 000, Solid & Drift), which shows that the site is situated within an area of Lowestoft Formation – Diamicton over Lewes Nodular Chalk Formation and Seaford Chalk Formation - Chalk.

3. <u>Fieldwork</u>

- 3.1 The hand augured boreholes and mechanically excavated trial pits were undertaken in order to detail the underlying geology at depth, while the BRE 365 soakage tests were undertaken in order to calculation the percolation value for the in-situ geology. The location of these excavations is shown on the site plan forming Appendix 1.
- 3.2 The various strata encountered were noted and are recorded within the borehole / trial pit logs forming Appendix 2.

3.3 Disturbed samples were recovered from the hand augured boreholes, as noted within the associated log for laboratory testing.

4. Laboratory Testing

- 4.1 All samples were tested in accordance with BS: 1377-2:2022 Methods of Test for Soils for Civil Engineering purposes.
- 4.2 Selected samples were tested to determine their, Moisture Content, Atterberg Limits, Soluble sulphate content and pH value.
- 4.3 The results of all laboratory testing are summarised in Appendix 3.

5. Fieldwork Results

5.1 Hand Augured Boreholes

- a) Borehole one, recovered MADE GROUND to a depth of 0.25m bgl, over a stiff dark brown slightly silty CLAY with some fine chalk fragments & occasional medium rounded gravel. Between 0.60m bgl and 0.90m bgl a stiff light orange slightly silty CLAY with much medium CHALK fragments & occasional medium gravel was seen. Beyond this a weak white / cream CHALK was then found to the close of the borehole at 1.60m bgl.
- b) Borehole two, recorded MADE GROUND to a depth of 0.20m bgl, overlying a stiff dark brown slightly silty CLAY with some fine chalk fragments & occasional medium rounded gravel. Between 1.10m bgl & 1.40m bgl a stiff light orange slightly silty CLAY with much medium CHALK fragments & occasional medium gravel was found. Beyond this a weak white / cream CHALK was then seen to the close of the borehole at 2.00m bgl.

5.2 <u>Mechanically Excavated Trial Pits</u>

- a) Trial pit one, found MADE GROUND (Topsoil) to a depth of 0.30m bgl, over a stiff dark brown slightly silty CLAY with some fine chalk fragments & occasional medium rounded gravel. From 1.40m bgl a weak white / cream CHALK was seen. The trial pit was then closed at 2.00m bgl.
- b) Trial pit two, recorded MADE GROUND (Topsoil) to a depth of 0.60m bgl, over a stiff dark brown slightly silty CLAY with some fine chalk fragments & occasional medium rounded gravel to a depth of 1.30m bgl. Beyond this and found to the close of the trial pits at 1.60m bgl a weak white / cream CHALK was present.

5.3 BRE 365 Results

- a) The BRE 365 soakage tests were undertaken within mechanically excavated trial pits.
- b) The results of this testing can be found within the attached appendices and show that the underlying geology to have soil infiltration rates between 5.4 x 10 $^{-6}$ m/s and 7.7 x 10 $^{-6}$ m/s.
- 5.4 All trial pits were excavated until no further penetration of the geology could be undertaken or their required depth reached. As detailed within the associated logs forming Appendix 2.
- 5.5 The borehole / trial pit logs can be found forming Appendix 2.

6. Other Observations from Site Works

- 6.1 No groundwater was encountered within the excavations undertaken across the site as shown within the attached trial pit logs.
- 6.2 Within the underlying CHALK geology, SPT 'N' values of 28 30+ were achieved. Therefore, the minimum safe bearing capacity of 150 kN/m² can be used within any design calculations.
- 6.3 Roots were encountered across the site within the excavations as shown below and within the attached trial pit and borehole logs.

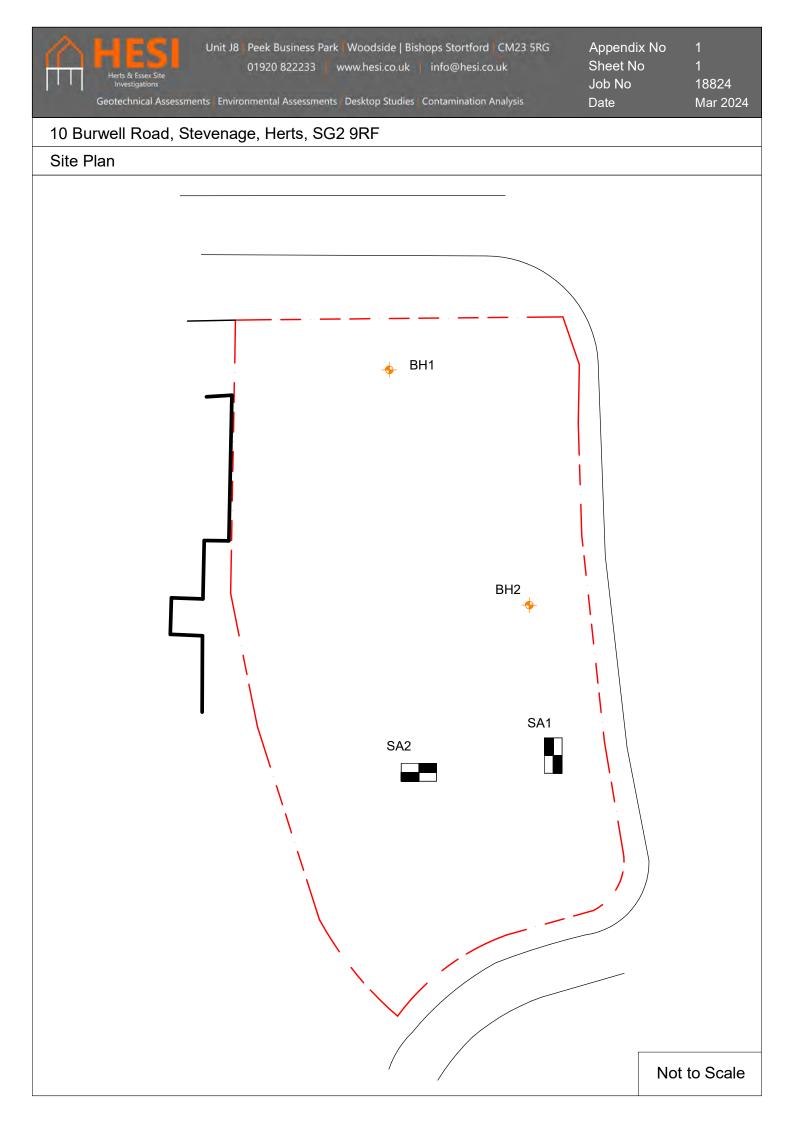
BH1	Roots present to 1.00m bgl
BH2	Roots present to 1.10m bgl
SA1	Roots present to 1.60m bgl
SA2	Roots present to 0.90m bgl

7. <u>Laboratory Testing Results</u>

- 7.1 The laboratory testing confirmed the CLAY to be of Intermediate High plasticity (PI = 26 33%) which indicates a Moderate susceptibility of movement associated with moisture content change.
- 7.2 As the site contains less than 0.50g/l of soluble sulphate it can be categorised as a class 1 site, in accordance with ACEC, and as such any concrete in contact with the subsoil needs no special precautions (DS-1 / AC-1s).

- 7.3 In addition to the above geotechnical testing, we were asked to recover two samples for 'muck away' chemical testing. These were sent to an independent analytical chemist.
- 7.4 The results of this testing can be found within the attached appendices and should be passed over to the intended recipient of the material so they can make their own assessment of the material.

8. <u>Conclusions</u>


- 8.1 In conclusion we would suggest that the proposed footing be seated a minimum of 300mm within the underlying CHALK geology.
- 8.2 Any new foundations will need to be deeper than softened zones or old foundations. This requirement may make the footing deep depending on the proposed layout of the scheme, engineer design or NHBC requirements.
- 8.3 If the proposed footing exceeds 1.50m, then a suspended ground floor should be included within the design, incorporating the minimum void dimension of 150mm.
- 8.4 The site is ultimately underlain by CHALK and as such the possibility of solution features must not be overlooked, we recommend a solution feature report by Stantec be undertaken.
- 8.5 All foundations should be designed by a suitably qualified structural engineer in terms of the proposed project and all aspects of the ground, groundwater, loadings of the proposed structure etc. Should any elements of this report be unclear, consultation with ourselves should be sought to clarify any elements prior to a final design being made.

We hope that this is of satisfactory, however if you should require any further information, please do not hesitate to contact us.

Yours faithfully

-D A Hudd Senior Contract Engineer

C S Gray MSc Principal Engineer

(100mm diameter)

- Water Struck

- Water Standing

- Vane Test, (kN.m²)

18824

Mar 2024

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

amination Analysis

10 Burwell Road, Stevenage, Herts, SG2 9RF

Borehole One

D	orehole One			S							S	
	Description of Stratum	Legend	Depth	Thickness (m)	Water Level	No	Sam	ples Depth (m)	S.P.T N-Value or Vane Strength	VOC's (ppm)	Installations	Casing Depth. (m)
-	Loose dark brown topsoil with some - much angular / sub-angular gravel - MADE GROUND		0.25	0.25								
-	Stiff dark brown slightly silty CLAY with some fine chalk fragments & occasional medium rounded gravel		0.23	0.35	-							
-			0.60									
-	Stiff light orange slightly silty CLAY with much medium CHALK fragments & occasional medium gravel			0.30	DRY							
-	Weak white / cream CHALK	-	0.90		-							
- <u>1.0</u> - - -						1	D N	1.00	28			
-	Developed at 1.60m bal		1.60		-	2 2	D N	1.50 1.50	28			
-	Borehole Closed at 1.60m bgl No Further Progress											
<u>2.0</u> - - - -												
3. <u>0</u>	Remarks - Roots present to 1.00m bgl											
	Key : U - Undisturbed Sample B - Bulk Sample D - Distur	bed Sa	ample	W	- Water	Sampl	е	N	- SPT	N-Value		

(100mm diameter)

- Water Struck

── - Water Standing

- Chemical Tub

- Vane Test, (kN.m²)

2

18824

Mar 2024

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

Sheet No Job No Date

10 Burwell Road, Stevenage, Herts, SG2 9RF

Borehole Two

Description of Stratum	Legend	Depth	Thickness (m)	Water Level			ples	S.P.T N-Value or Vane	VOC's (ppm)	Installations	Casing Denth (m)
	Lec	De	Thic (r	2ª	No	Type	Depth (m)	Strength	D Id)	Instal	Casi
Loose dark brown topsoil with some - much angular / sub-angular gravel - MADE GROUND		0.20	0.20								
Stiff dark brown slightly silty CLAY with some fine chalk fragments & occasional medium rounded gravel											
- - - -			0.90								
		1.10		DRY	1	D V	1.00 1.00	150+			
Stiff light orange slightly silty CLAY with much medium CHALK fragments & occasional medium gravel		1.40	0.30								
Weak white / cream CHALK		1.40			2 1	D N	1.50 1.50	30+			
		2.00			3	DN	2.00	30+			
Borehole Closed at 2.00m bgl No Further Progress					2		2.00	30+			
Remarks - Roots present to 1.10m bgl											

3 18824 Mar 2024

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

10 Burwell Road, Stevenage, Herts, SG2 9RF

Soakaway Trial Pit One

	oakaway Trial Pit One		I						1	,		1
	Description of Stratum	Legend	Depth	Thickness (m)	Water Level	5		ples	S.P.T N-Value or Vane	VOC's (ppm)	Installations	Casing Depth, (m)
		Le.	Ğ	Thic (r	Š,	No	Type	Depth (m)	Strength	D (d	Instal	Casi Dept
	Loose dark brown topsoil with some - much angular / sub-angular gravel - MADE GROUND			0.30			-					
			0.30									
-	Stiff dark brown slightly silty CLAY with some fine chalk fragments & occasional medium rounded gravel											
				1.10								
<u>1.0</u>					DRY							
	Weak white / cream CHALK		1.40									
-			2.00									
2.0	Borehole Complete at 2.00m bgl		2.00									
-												
3.0	Remarks - Roots present to 1.60m bgl											
	Key : U - Undisturbed Sample B - Bulk Sample D - Disturb (100mm diameter) 🔽 - Water Struck 📿 - Water			W T	- Water - Chemi			N V		N-Value Test, (kl	N.m²)	

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

18824 Mar 2024

10 Burwell Road, Stevenage, Herts, SG2 9RF

Soakaway Trial Pit Two

5	oakaway Trial Pit Two											
	Description of Stratum	Legend	Depth	Thickness (m)	Water Level			ples	S.P.T N-Value or Vane	VOC's (ppm)	Installations	Casing Depth, (m)
		L	ď	Thic (r	≥"	No	Type	Depth (m)	Strength	N ₫	Instal	Casi Dept
-	Loose dark brown topsoil with some - much angular / sub-angular gravel - MADE GROUND			0.60			-					
- -			0.60									
-	Stiff dark brown slightly silty CLAY with some fine chalk fragments & occasional medium rounded gravel		0.00									
- - - -				0.70	DRY							
-	Weak white / cream CHALK		1.30									
-			1.60		-							
-	Borehole Complete at 1.60m bgl											
2.0												
-												
-												
3.0	Remarks - Roots present to 0.90m bgl											
	Key : U - Undisturbed Sample B - Bulk Sample D - Disturb (100mm diameter) - Vater Struck Water			W T	- Water - Chemi			N V		N-Value Test, (kl	N.m²)	

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5RG

01920 822233 www.hesi.co.uk info@hesi.co.uk

APPENDIX SHEET JOB NUMBER DATE

18824 Mar-24

3

nnical Assessments | Environmental Assessments | Desktop Studies | Contamination Analysis

LOCATION 10A and 10B Burwell Road, Stevenage, Herts, SG2 9RF

ATTERBERG LIMITS TEST DATA										
Excavation Location Number	Depth	Sample	Natural Moisture Content	Liquid Limit	Plastic Limit	Plasticity Index	Group Symbol	Ammended Plasticity Index	Desiccation Profile	Percentage Retained on 425 Micron Sieve
	(m)		(%)	(%)	(%)	(%)		(%)		(%)
BH1	1.00	D1	26	49	19	30	СІ	26	No	12
BH2	1.00	D1	24	57	22	35	СН	33	Slight	5

ATTERBERG LIMITS TEST DATA

APPENDIX SHEET JOB NUMBER DATE

2

18824

Mar-24

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

LOCATION	10A and 10B Burwell Road, Stevenage, Herts, SG2 9RF	
	SULPHATE ANALYSIS	

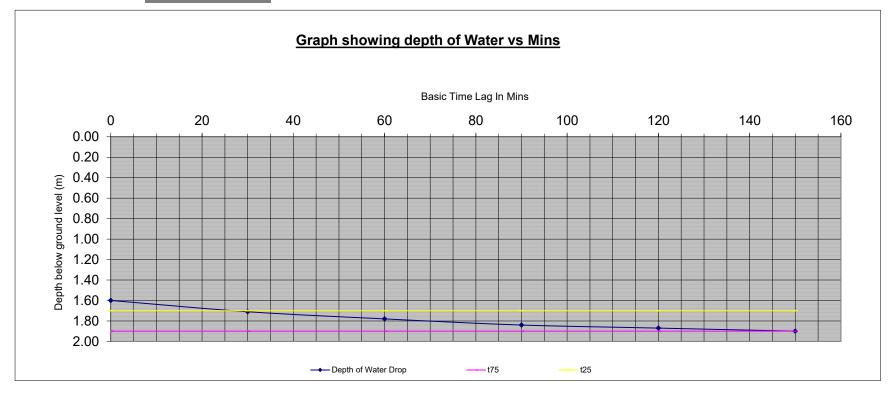
	SULPHATE ANALTSIS										
Excavation				ntrations of Soluble	e Sulphate						
Location	Depth	Sample		Soil	Groundwater	Classification	pН				
Number			Total SO4	SO4 in 2:1							
	(m)		(%)	Water:soil (g/l)							
BH1	1.00	D1		0.23		DS-1 / AC-1s	7.68				
BH2	1.00	D1		0.30		DS-1 / AC-1s	7.74				

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5RG

01920 822233 www.hesi.co.uk info@hesi.co.uk

Appendix No.: 2 Sheet No. : Job No. : 18349

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis


Date :

Mar-24

Soakaway No.: SA1	Soakaway No.: SA1 Site Address: 10 Bu				Fill No.: One			
B.R.E 365 - Soil Infiltration Rate		Start Time (Mins)	Depth of Water Drop (m)	Depth of Water (m)	Value to Note time at (m)		e Equals Mins)	
Depth of Test Hole	2.00 m	0	0.000	0.400	1.90	150	=	t75
Dimensions of Test Hole Width	0.50 m	30	0.110	0.290	1.70	26	=	t25
Length	2.00 m	60	0.180	0.220				
0		90	0.240	0.160				
Depth to Top of Water at Start of Test	1.60 m	120	0.270	0.130				
Depth to discharge Drain	1.00 m	150	0.300	0.100				
75% 0.10								
25% 0.30								
V75%-25% 0.20								
ap50 3.5								
tp75-25 124					•			

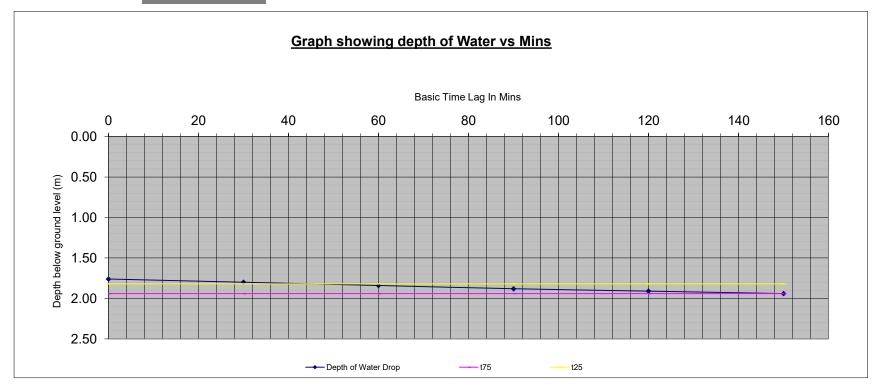
Soil Infiltration Rate is

7.7E-06 m/s

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

 Appendix No. :
 2

 Sheet No. :
 4


 Job No. :
 18349

 Date :
 Mar-24

Soakaway No.:	SA1	Site Address:	10 Burwell Road, Stevena	ige, Herts, SG2 9RF	Fill No.: Two				
B.R.E 365 - So	oil Infiltration Rate		Start Time (Mins)	Depth of Water Drop (m)	Depth of Water (m)	Value to Note time at (m)		e Equals Mins)	;
Depth of Test Hol	e	2.00 m	0	0.000	0.240	1.94	150	=	t75
Dimensions of Te	st Hole Width	0.50 m	30	0.040	0.200	1.82	46	=	t25
	Length	2.00 m	60	0.080	0.160				
	-		90	0.120	0.120				
Depth to Top of V	Vater at Start of Test	1.76 m	120	0.150	0.090				
Depth to discharg	le Drain	1.00 m	150	0.180	0.060				
75%	0.06								
25%	0.18								
V75%-25%	0.12								
ap50	3.5								
tp75-25	104					-			

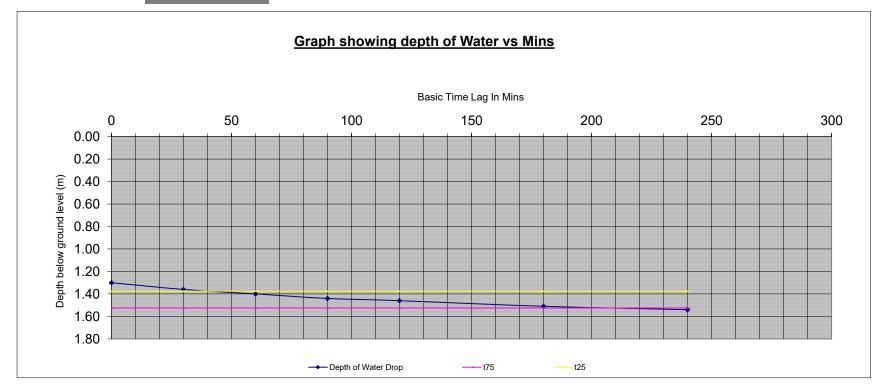
Soil Infiltration Rate is

5.5E-06 m/s

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

 Appendix No. :
 2

 Sheet No. :
 5


 Job No. :
 18349

 Date :
 Mar-24

Soakaway No.:	SA2	Site Address:	10 Burwell Road, Stevena	age, Herts, SG2 9RF	Fill No.: One				
B.R.E 365 - Soi	I Infiltration Rate		Start Time (Mins)	Depth of Water Drop (m)	Depth of Water (m)	Value to Note time at (m)		e Equals Mins)	i
Depth of Test Hole		1.60 m	0	0.000	0.300	1.53	207	=	t75
Dimensions of Test	t Hole Width	0.50 m	30	0.060	0.240	1.38	40	=	t25
	Length	1.50 m	60	0.100	0.200				
			90	0.140	0.160				
Depth to Top of Wa	ater at Start of Test	1.30 m	120	0.160	0.140				
Depth to discharge	Drain	1.00 m	180	0.210	0.090				
			240	0.240	0.060				
75%	0.08								
25%	0.23								
V75%-25% ap50	0.11 1.95								
tp75-25					-				

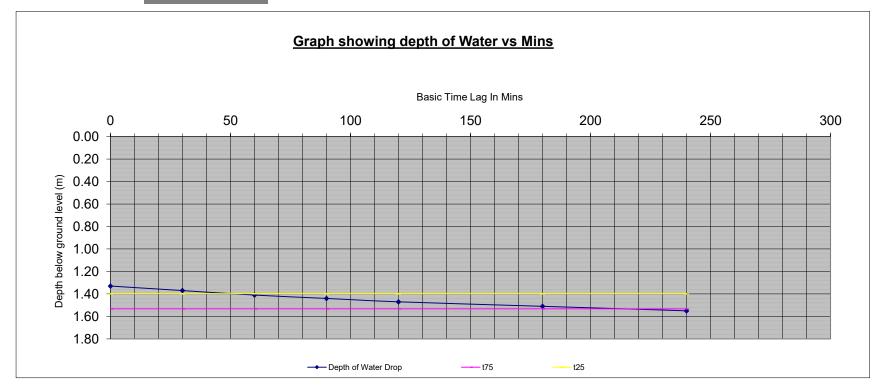
Soil Infiltration Rate is

5.8E-06 m/s

Geotechnical Assessments Environmental Assessments Desktop Studies Contamination Analysis

 Appendix No. :
 2

 Sheet No. :
 6


 Job No. :
 18349

 Date :
 Mar-24

Soakaway No.:	SA2	Site Address:	10 Burwell Road, Steven	age, Herts, SG2 9RF		Fill No.: Two				
B.R.E 365 - Sc	oil Infiltration Rate		Start Time (Mins)	Depth of Water Drop (m)	Depth of Water (m)	Value to Note time at (m)		e Equals Mins)		
Depth of Test Hol	e	1.60 m	0	0.000	0.270	1.53	210	=	t75	
Dimensions of Te	st Hole Width	0.50 m	30	0.040	0.230	1.40	50	=	t25	
	Length	1.50 m	60	0.080	0.190					
			90	0.110	0.160					
Depth to Top of W	ater at Start of Test	1.33 m	120	0.140	0.130					
Depth to discharg	e Drain	1.00 m	180	0.180	0.090					
			240	0.220	0.050					
75%	0.07									
25%	0.20									
V75%-25% ap50	0.10 1.95									
tp75-25	160			1	8	1				

Soil Infiltration Rate is

5.4E-06 m/s

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	24-07294-1		
Initial Date of Issue:	18-Mar-2024		
Re-Issue Details:			
Client	Herts & Essex Site Investigations		
Client Address:	Unit J8 Peek Business Park Woodside Bishops Stortford Hertfordshire CM23 5RG		
Contact(s):	Ben McCullock Chris Gray Dafydd Hudd Rebecca Chamberlain		
Project	18824 10A and 10B Burwell Road, Stevenage, Herts		
Quotation No.:		Date Received:	08-Mar-2024
Order No.:	18824	Date Instructed:	08-Mar-2024
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	14-Mar-2024
Date Approved:	18-Mar-2024		
Approved By:			

Details:

2183

Final Report

Stuart Henderson, Technical Manager

For details about application of accreditation to specific matrix types, please refer to the Table at the back of this report

<u>Results - Soil</u>

Project: 18824 10A and 10B Burwell Road, Stevenage, Herts

Client: Herts & Essex Site			Che	mtest Jo	oh No ·	24-07294	24-07294
Investigations							
Quotation No.:		(est Sam		1777760	1777761
Order No.: 18824				nt Samp		CHEM1	CHEM2
			S	ample Lo		BH1	BH2
					e Type:	SOIL	SOIL
				Top Dep	()	0.20	0.20
				Date Sa		07-Mar-2024	07-Mar-2024
				Asbest		DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
АСМ Туре		U	2192		N/A	-	-
Asbestos Identification		U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture		N	2030	%	0.020	20	15
Stones and Removed Materials		N	2030	%	0.020	< 0.020	< 0.020
pH at 20C		U	2010		4.0	8.2	8.3
Electrical Conductivity (2:1)		N	2020	µS/cm	1.0	220	190
Boron (Hot Water Soluble)		U	2120	mg/kg	0.40	0.55	0.59
Sulphate (2:1 Water Soluble) as SO4		U	2120	g/l	0.010	< 0.010	< 0.010
Cyanide (Free)		U	2300	mg/kg	0.50	< 0.50	< 0.50
Cyanide (Total)		U	2300	mg/kg	0.50	0.50	< 0.50
Sulphate (Total)		U	2430	%	0.010	0.090	0.22
Arsenic		U	2455	mg/kg	0.5	25	21
Cadmium		U	2455	mg/kg	0.10	0.29	1.2
Copper		U	2455	mg/kg	0.50	31	110
Mercury		U	2455	mg/kg	0.05	0.20	0.22
Nickel		U	2455	mg/kg	0.50	33	34
Lead		U	2455	mg/kg	0.50	66	95
Selenium		U	2455	mg/kg	0.25	1.3	1.3
Zinc		U	2455	mg/kg	0.50	100	370
Chromium (Trivalent)		N	2490	mg/kg	1.0	31	28
Chromium (Hexavalent)		N	2490	mg/kg	0.50	< 0.50	< 0.50
Aliphatic VPH >C5-C6	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C7	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH >C7-C8	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aliphatic VPH >C6-C8 (Sum)	HS_2D_AL	N	2780	mg/kg	0.10	< 0.10	< 0.10
Aliphatic VPH >C8-C10	HS_2D_AL	U	2780	mg/kg	0.05	< 0.05	< 0.05
Total Aliphatic VPH >C5-C10	HS_2D_AL	U	2780	mg/kg	0.25	< 0.25	< 0.25
Aliphatic EPH >C10-C12 MC	EH_2D_AL_#1	U	2690	mg/kg	2.00	4.0	4.2
Aliphatic EPH >C12-C16 MC	EH_2D_AL_#1	U	2690	mg/kg	1.00	2.6	2.8
Aliphatic EPH >C16-C21 MC	EH_2D_AL_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0
Aliphatic EPH >C21-C35 MC	EH_2D_AL_#1	U	2690	mg/kg	3.00	5.8	4.3
Aliphatic EPH >C35-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	< 10	< 10
Total Aliphatic EPH >C10-C35 MC	EH_2D_AL_#1	U	2690	mg/kg	5.00	13	13
Total Aliphatic EPH >C10-C40 MC	EH_2D_AL_#1	N	2690	mg/kg	10.00	13	13
Aromatic VPH >C5-C7	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05
Aromatic VPH >C7-C8	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05

<u>Results - Soil</u>

Project: 18824 10A and 10B Burwell Road, Stevenage, Herts

Client: Herts & Essex Site Investigations			Che	mtest Jo	ob No.:	24-07294	24-07294
Quotation No.:			Chemte	est Sam	ple ID.:	1777760	1777761
Order No.: 18824			Clie	nt Samp	le Ref.:	CHEM1	CHEM2
			S	ample Lo	ocation:	BH1	BH2
				Sample	e Type:	SOIL	SOIL
				Top Dep	oth (m):	0.20	0.20
				Date Sa		07-Mar-2024	07-Mar-2024
			-	Asbest		DURHAM	DURHAM
Determinand	HWOL Code	Accred.	SOP	Units	LOD		
Aromatic VPH >C8-C10	HS_2D_AR	U	2780	mg/kg	0.05	< 0.05	< 0.05
Total Aromatic VPH >C5-C10	HS_2D_AR	U	2780	mg/kg	0.25	< 0.25	< 0.25
Aromatic EPH >C10-C12 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0
Aromatic EPH >C12-C16 MC	EH_2D_AR_#1	U	2690	mg/kg	1.00	< 1.0	< 1.0
Aromatic EPH >C16-C21 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0
Aromatic EPH >C21-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	2.00	< 2.0	< 2.0
Aromatic EPH >C35-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	1.00	3.1	2.2
Total Aromatic EPH >C10-C35 MC	EH_2D_AR_#1	U	2690	mg/kg	5.00	< 5.0	< 5.0
Total Aromatic EPH >C10-C40 MC	EH_2D_AR_#1	N	2690	mg/kg	10.00	< 10	< 10
Total VPH >C5-C10	HS_2D_Total	U	2780	mg/kg	0.50	< 0.50	< 0.50
Total EPH >C10-C35 MC	EH_2D_Total_#1	U	2690	mg/kg	10.00	15	14
Total EPH >C10-C40 MC	EH_2D_Total_#1	N	2690	mg/kg	10.00	19	17
Organic Matter		U	2625	%	0.40	2.6	2.1
Naphthalene		U	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene		U	2700	mg/kg	0.10	< 0.10	< 0.10
Acenaphthene		U	2700	mg/kg	0.10	< 0.10	< 0.10
Fluorene		U	2700	mg/kg	0.10	< 0.10	< 0.10
Phenanthrene		U	2700	mg/kg	0.10	0.14	0.31
Anthracene		U	2700	mg/kg	0.10	< 0.10	0.11
Fluoranthene		U	2700	mg/kg	0.10	0.39	1.5
Pyrene		U	2700	mg/kg	0.10	0.44	1.7
Benzo[a]anthracene		U	2700	mg/kg	0.10	0.35	1.0
Chrysene		U	2700	mg/kg	0.10	0.45	1.8
Benzo[b]fluoranthene		U	2700	mg/kg	0.10	0.75	1.3
Benzo[k]fluoranthene		U	2700	mg/kg	0.10	0.44	0.65
Benzo[a]pyrene		U	2700	mg/kg	0.10	0.24	1.1
Indeno(1,2,3-c,d)Pyrene		U	2700	mg/kg	0.10	< 0.10	0.78
Dibenz(a,h)Anthracene		U	2700	mg/kg	0.10	< 0.10	0.28
Benzo[g,h,i]perylene		U	2700	mg/kg	0.10	< 0.10	2.5
Total Of 16 PAH's		U	2700	mg/kg	2.0	3.2	13
Benzene		U	2760	µg/kg	1.0	< 1.0	< 1.0
Toluene		U	2760	µg/kg	1.0	< 1.0	< 1.0
Ethylbenzene		U	2760	µg/kg	1.0	< 1.0	< 1.0
m & p-Xylene		U	2760	µg/kg	1.0	< 1.0	< 1.0
o-Xylene		U	2760	µg/kg	1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether		U	2760	µg/kg	1.0	< 1.0	< 1.0
Total Phenols		U	2920	mg/kg	0.10	< 0.10	< 0.10

Test Methods

SOP	Title	Parameters included	Method summary	Water Accred.
2010	pH Value of Soils	pH at 20°C	pH Meter	
2020	Electrical Conductivity	Electrical conductivity (EC) of aqueous extract or calcium sulphate solution for topsoil	Measurement of the electrical resistance of a 2:1 water/soil extract.	
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.	
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930	
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES	
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry	
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.	
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.	
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.	
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5- diphenylcarbazide.	
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.	
2690	EPH A/A Split	Aliphatics: >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C40 Aromatics: >C10–C12, >C12–C16, >C16– C21, >C21–C35, >C35– C40	Acetone/Heptane extraction / GCxGC FID detection	
2700	Speciated Polynuclear	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC- FID detection is non-selective and can be subject to interference from co-eluting compounds)	
2760		Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.	
2780	VPH A/A Split	Aliphatics: >C5–C6, >C6–C7,>C7–C8,>C8- C10 Aromatics: >C5–C7,>C7-C8,>C8–C10		
2920		Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1-Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.	

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"
- SOP Standard operating procedure
- LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

Water Sample Category Key for Accreditation

DW - Drinking Water GW - Ground Water LE - Land Leachate NA - Not Applicable PL - Prepared Leachate PW - Processed Water

Report Information

- RE Recreational Water
- SA Saline Water SW - Surface Water
- TE Treated Effluent
- TS Treated Sewage
- UL Unspecified Liquid

Clean Up Codes

NC - No Clean Up MC - Mathematical Clean Up FC - Florisil Clean Up

HWOL Acronym System

HS - Headspace analysis EH - Extractable hydrocarbons – i.e. everything extracted by the solvent CU - Clean-up – e.g. by Florisil, silica gel 1D - GC – Single coil gas chromatography Total - Aliphatics & Aromatics AL - Aliphatics only AR - Aromatic only 2D - GC-GC – Double coil gas chromatography #1 - EH_2D_Total but with humics mathematically subtracted #2 - EH_2D_Total but with fatty acids mathematically subtracted + - Operator to indicate cumulative e.g. EH+EH_Total or EH_CU+HS_Total

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u> **APPENDIX D – THAMES WATER CORRESPONDENCE**

Dominic Ramdeen

Fernbrook Consulting Engineers Forma Suite 40 Bowling Green Lane London EC1R 0NE Wastewater pre-planning Our ref DS6091986

03 March 2022

Pre-planning enquiry: Confirmation of sufficient capacity

Site: 10a & 10b Burwell Road, Stevenage, SG2 9RF

Dear Dominic,

Thank you for providing information on your development.

Existing site: general housing (2 units) Proposed site: flats (20 units) Proposed foul water discharge by gravity to TWMH 961A Proposed surface water: 8.5l/s discharged to TWMH 9653 & 1.6l/s to TWMH 0650.

We have completed the assessment of the foul water flows and surface water run-off based on the information submitted in your application with the purpose of assessing sewerage capacity within the existing Thames Water sewer network.

Foul Water

If your proposals progress in line with the details you've provided, we're pleased to confirm that there will be sufficient sewerage capacity in the adjacent foul water sewer network to serve your development.

This confirmation is valid for 12 months or for the life of any planning approval that this information is used to support, to a maximum of three years.

You'll need to keep us informed of any changes to your design – for example, an increase in the number or density of homes. Such changes could mean there is no longer sufficient capacity.

Surface Water

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

The disposal hierarchy being:

- 1. rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2. rainwater infiltration to ground at or close to source
- 3. rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4. rainwater discharge direct to a watercourse (unless not appropriate)
- 5. controlled rainwater discharge to a surface water sewer or drain
- 6. controlled rainwater discharge to a combined sewer

Where connection to the public sewerage network is still required to manage surface water flows, we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If the above surface water hierarchy has been followed and if the flows are restricted to a total of 10.1 l/s then Thames Water would not have any objections to the proposal.

Please see the attached 'Planning your wastewater' leaflet for additional information.

Diversion

There are existing public sewers crossing the site. New buildings will need to be kept between 3 and 6.5m away from existing sewer depending on the size and depth of the sewer. Alternatively, it may be possible for sewers to be diverted around the new development. If you wish us to review a diversion proposal, please submit this via a Section 185 Diversion application. On some occasions it may be possible to abandon existing public sewers. Please contact us for further information on this process.

What happens next?

Please make sure you submit your connection application, giving us at least 21 days' notice of the date you wish to make your new connection/s.

If you have any further questions, please contact me on 0800 009 3921.

Kind Regards,

Leigh Khan Developer Services – Adoptions Engineer Tel: 0800 009 3921 <u>developer.services@thameswater.co.uk</u> **Get advice on making your sewer connection correctly at <u>connectright.org.uk</u> Clearwater Court, Vastern Road, Reading, RG1 8DB Find us online at <u>developers.thameswater.co.uk</u>** **APPENDIX E - DRAINAGE STRATEGY CALCULATIONS & DRAWINGS**

VERSION Parameters	"FEH Web Sen Ve	rsion 1.	0.0 e	xported at	24-Apr-24												
Parameters Rainfall model= Calculation type= Calculation mode	Design rainfall																
Calculation locati Fixed duration= Annual maximum	i Point GE no	3	526004	223679	TL 26004 23679												
0.25	Duration days 2 y 0.010416667 0.020833333	/ear rainfall (r 10 7.48 9.53) year rainfall 3 15.16 19.44	0 year rainfall 19.81 25.6	100 year rainfall (mm) 24.92 32.53	32	rs Duration days 2 5 1.354166667 5 1.364583333	year rainfall († 10 35.43 35.49	54.33 54.4) year rainfall 10 65.72 65.79	10 year rainfall (mm) 80.08 80.16	64.75	Duration days 2 2.697916667 2.708333333	42.28 42.33	year rainfall 30 62.45 62.51) year rainfall 100 74.37 74.43	0 year rainfal 88.85 88.91
0.75 1 1.25	0.041666667	10.76 11.71 13.04	22.04 23.94 25.96	29.1 31.71 34.13	37.23 40.53 43.36	3 33.2 33.	5 1.385416667	35.55 35.61 35.67	54.47 54.54 54.61	65.87 65.94 66.02	80.24 80.32 80.4		2.71875 2.729166667 2.739583333	42.38 42.43 42.48	62.57 62.63 62.69	74.49 74.55 74.61	88.98 89.04 89.1
1.5 1.75 2	0.072916667	14.42 15.76 17	27.82 29.49 30.99	36.24 38.08 39.69	45.75 47.8 49.59	33.7 3 34.2	4 1.416666667 5 1.427083333	35.72 35.78 35.84	54.68 54.75 54.82	66.1 66.17 66.25	80.48 80.56 80.64		2.75 2.760416667 2.770833333	42.53 42.58 42.63	62.75 62.81 62.86	74.68 74.74 74.8	89.16 89.22 89.28
	0.09375 0.104166667 0.114583333	17.92 18.74 19.48	32.19 33.27 34.22	41.04 42.23 43.3	51.12 52.49 53.72		5 1.4375 5 1.447916667 5 1.458333333	35.9 35.96 36.02	54.89 54.96 55.03	66.32 66.39 66.47	80.71 80.79 80.87		2.78125 2.791666667 2.802083333	42.68 42.73 42.78	62.92 62.98 63.04	74.86 74.92 74.98	89.34 89.4 89.46
3 3.25		20.14 20.74 21.3	35.09 35.88 36.59	44.26 45.14 45.94	54.84 55.86 56.8	35.2 35. 35.7	5 1.479166667	36.07 36.13 36.19	55.1 55.17 55.23	66.54 66.62 66.69	80.95 81.02 81.1	67.5 67.75	2.8125 2.822916667 2.833333333	42.83 42.88 42.93	63.1 63.15 63.21	75.04 75.1 75.16	89.52 89.58 89.64
3.75 4		21.81 22.28 22.7	37.25 37.86 38.42	46.68 47.36 47.99	57.67 58.48 59.23	3 36.2		36.24 36.3 36.36	55.3 55.37 55.44	66.76 66.84 66.91	81.18 81.25 81.33	68.25 68.5	2.84375 2.854166667 2.864583333	42.98 43.03 43.07	63.27 63.33 63.39	75.23 75.29 75.35	89.7 89.76 89.82
4.5 4.75	0.1875 0.197916667	23.09 23.46	38.93 39.41	48.58 49.12	59.94 60.6	36.7 3	5 1.53125 7 1.541666667	36.42 36.47	55.5 55.57	66.98 67.05	81.41 81.48	69 69.25	2.875 2.885416667	43.12 43.17	63.44 63.5	75.41 75.47	89.88 89.94
5 5.25 5.5	0.21875 0.229166667	23.8 24.13 24.43	39.85 40.28 40.67	49.63 50.11 50.57	61.22 61.81 62.36	37. 37.7	5 1.572916667	36.53 36.58 36.64	55.64 55.71 55.77	67.13 67.2 67.27	81.56 81.63 81.7	69.75 70	2.895833333 2.90625 2.9166666667	43.22 43.27 43.32	63.56 63.62 63.68	75.53 75.59 75.65	90 90.06 90.12
6	0.239583333 0.25 0.260416667	24.72 25 25.26	41.05 41.4 41.73	50.99 51.4 51.77	62.88 63.38 63.84		5 1.59375 5 1.604166667	36.7 36.75 36.81	55.84 55.91 55.97	67.34 67.41 67.49	81.78 81.85 81.93	70.5 70.75	2.927083333 2.9375 2.947916667	43.37 43.42 43.47	63.73 63.79 63.85	75.71 75.77 75.83	90.18 90.24 90.3
6.5 6.75 7	0.28125	25.51 25.75 25.97	42.04 42.34 42.62	52.13 52.46 52.79	64.28 64.7 65.1	38.7 3 39.2		36.86 36.92 36.98	56.04 56.1 56.17	67.56 67.63 67.7	82 82.07 82.15	71.25	2.958333333 2.96875 2.979166667	43.51 43.56 43.61	63.91 63.96 64.02	75.89 75.95 76.01	90.36 90.42 90.48
7.25 7.5 7.75		26.19 26.4 26.6	42.89 43.15 43.4	53.09 53.39 53.67	65.48 65.85 66.2	39. 39.7 4		37.03 37.09 37.14	56.23 56.3 56.37	67.77 67.84 67.91	82.22 82.29 82.36	72	2.989583333 3 3.010416667	43.66 43.71 43.76	64.08 64.14 64.19	76.07 76.13 76.19	90.54 90.59 90.65
8 8.25	0.333333333	26.8 26.99 27.17	43.64 43.88 44.1	53.95 54.21 54.46	66.54 66.86 67.17	40.2 40.	5 1.677083333	37.2 37.25 37.31	56.43 56.5 56.56	67.98 68.05 68.12	82.44 82.51 82.58	72.5 72.75	3.020833333 3.03125 3.041666667	43.81 43.86 43.9	64.25 64.31 64.37	76.25 76.31 76.37	90.71 90.77 90.83
8.75 9	0.364583333 0.375	27.34 27.51	44.32 44.53	54.71 54.94	67.47 67.76	4 41.2	1 1.708333333 5 1.71875	37.36 37.41	56.62 56.69	68.19 68.26	82.65 82.72	73.25 73.5	3.052083333 3.0625	43.95 44	64.42 64.48	76.43 76.49	90.89 90.95
9.5 9.75	0.40625	27.67 27.83 27.99	44.73 44.93 45.12	55.17 55.39 55.61	68.05 68.32 68.58	41.7 4	2 1.75	37.47 37.52 37.58	56.75 56.82 56.88	68.33 68.4 68.46	82.79 82.86 82.93	74 74.25	3.072916667 3.083333333 3.09375	44.05 44.1 44.15	64.54 64.59 64.65	76.55 76.61 76.67	91.01 91.07 91.12
10 10.25 10.5	0.427083333	28.14 28.28 28.42	45.3 45.49 45.66	55.82 56.02 56.22	68.83 69.08 69.32	42.2 42. 42.7		37.63 37.69 37.74	56.95 57.01 57.07	68.53 68.6 68.67	83 83.07 83.14		3.104166667 3.114583333 3.125	44.19 44.24 44.29	64.71 64.77 64.82	76.73 76.79 76.85	91.18 91.24 91.3
10.75 11 11.25	0.458333333	28.56 28.7 28.83	45.83 46 46.16	56.41 56.6 56.78	69.55 69.77 69.99	4 43.2 43.		37.79 37.85 37.9	57.14 57.2 57.26	68.74 68.81 68.87	83.21 83.28 83.35		3.135416667 3.145833333 3.15625	44.34 44.39 44.44	64.88 64.94 64.99	76.91 76.97 77.03	91.36 91.42 91.48
	0.479166667 0.489583333	28.95 29.08 29.2	46.32 46.48 46.63	56.96 57.13 57.3	70.21 70.41 70.61	43.7	5 1.822916667 4 1.833333333	37.95 38.01 38.06	57.33 57.39 57.45	68.94 69.01 69.08	83.42 83.49 83.56	76	3.1666666667 3.177083333 3.1875	44.48 44.53 44.58	65.05 65.11 65.16	77.09 77.15 77.21	91.53 91.59 91.65
12.25	0.510416667 0.520833333	29.32 29.43 29.54	46.78 46.92 47.07	57.47 57.63 57.79	70.81 70.99 71.18	44.	5 1.854166667 5 1.864583333	38.11 38.17 38.22	57.52 57.58 57.64	69.14 69.21 69.28	83.63 83.7 83.76	76.75	3.197916667 3.208333333 3.21875	44.63 44.68 44.72	65.22 65.28 65.33	77.27 77.33 77.39	91.71 91.77 91.83
13 13.25	0.541666667	29.65 29.76	47.21 47.35	57.95 58.1	71.36 71.53	45.2 45.	5 1.885416667 5 1.895833333	38.27 38.33	57.7 57.77	69.35 69.41	83.83 83.9	77.5 77.75	3.229166667 3.239583333	44.77 44.82	65.39 65.45	77.45 77.5	91.88 91.94
	0.572916667	29.86 29.97 30.07	47.48 47.62 47.75	58.25 58.4 58.55	71.7 71.87 72.03	45.7 4 46.2	6 1.916666667 5 1.927083333	38.38 38.43 38.48	57.83 57.89 57.95	69.48 69.55 69.61	83.97 84.04 84.1	78.5	3.25 3.260416667 3.270833333	44.87 44.92 44.96	65.5 65.56 65.62	77.56 77.62 77.68	92 92.06 92.11
	0.59375 0.604166667 0.614583333	30.17 30.27 30.36	47.88 48 48.13	58.69 58.83 58.96	72.2 72.35 72.51	46. 46.7 4	5 1.947916667	38.54 38.59 38.64	58.01 58.08 58.14	69.68 69.75 69.81	84.17 84.24 84.3		3.28125 3.291666667 3.302083333	45.01 45.06 45.11	65.67 65.73 65.79	77.74 77.8 77.86	92.17 92.23 92.29
	0.625 0.635416667 0.645833333	30.46 30.55 30.64	48.25 48.37 48.49	59.1 59.23 59.36	72.66 72.81 72.96		5 1.96875 5 1.979166667 5 1.989583333	38.69 38.74 38.8	58.2 58.26 58.32	69.88 69.94 70.01	84.37 84.44 84.5		3.3125 3.322916667 3.333333333	45.16 45.2 45.25	65.84 65.9 65.95	77.92 77.98 78.04	92.35 92.4 92.46
15.75 16 16.25	0.666666667	30.74 30.82 30.91	48.6 48.72 48.83	59.49 59.62 59.74	73.1 73.25 73.39		8 2 5 2.010416667 5 2.020833333	38.85 38.9 38.96	58.38 58.45 58.51	70.07 70.14 70.21	84.57 84.64 84.7		3.34375 3.354166667 3.364583333	45.3 45.35 45.39	66.01 66.07 66.12	78.09 78.15 78.21	92.52 92.58 92.63
16.5 16.75 17	0.697916667	31 31.09 31.17	48.94 49.05 49.16	59.86 59.98 60.1	73.53 73.66 73.8	48.7 4 49.2	9 2.041666667	39.01 39.06 39.11	58.57 58.64 58.7	70.28 70.34 70.41	84.77 84.84 84.91	81 81.25 81.5	3.375 3.385416667 3.395833333	45.44 45.49 45.54	66.18 66.24 66.29	78.27 78.33 78.39	92.69 92.75 92.81
17.25	0.71875 0.729166667	31.25 31.34 31.42	49.27 49.37 49.47	60.22 60.34 60.45	73.93 74.06 74.19	49. 49.7		39.17 39.22 39.27	58.76 58.83 58.89	70.47 70.54 70.61	84.97 85.04 85.11	81.75 82	3.40625 3.416666667 3.427083333	45.59 45.63 45.68	66.35 66.4 66.46	78.45 78.51 78.56	92.86 92.92 92.98
18 18.25	0.75 0.760416667	31.5 31.58	49.58 49.68	60.56 60.67	74.31 74.44	50.2 50	5 2.09375 5 2.104166667	39.33 39.38	58.95 59.01	70.67 70.74	85.17 85.24	82.5 82.75	3.4375 3.447916667	45.73 45.78	66.52 66.57	78.62 78.68	93.04 93.09
	0.78125 0.791666667	31.66 31.74 31.82	49.78 49.88 49.97	60.78 60.89 60.99	74.57 74.69 74.82	51.2	1 2.125 5 2.135416667	39.43 39.48 39.54	59.08 59.14 59.2	70.81 70.87 70.94	85.31 85.37 85.44	83.25 83.5	3.458333333 3.46875 3.479166667	45.82 45.87 45.92	66.63 66.68 66.74	78.74 78.8 78.86	93.15 93.21 93.26
19.5 19.75	0.822916667	31.9 31.98 32.05	50.07 50.16 50.26	61.1 61.2 61.3	74.94 75.06 75.18	51.7 5	2 2.1666666667	39.59 39.64 39.69	59.26 59.32 59.39	71 71.07 71.13	85.5 85.57 85.64	84 84.25	3.489583333 3.5 3.510416667	45.97 46.01 46.06	66.8 66.85 66.91	78.91 78.97 79.03	93.32 93.38 93.44
20.25	0.833333333 0.84375 0.854166667	32.13 32.2 32.28	50.35 50.45 50.54	61.41 61.51 61.61	75.3 75.42 75.53	52.	5 2.177083333 5 2.1875 5 2.197916667	39.74 39.8 39.85	59.45 59.51 59.57	71.2 71.26 71.33	85.7 85.77 85.83	84.75	3.520833333 3.53125 3.541666667	46.11 46.16 46.2	66.96 67.02 67.07	79.09 79.15 79.21	93.49 93.55 93.61
21	0.864583333 0.875 0.885416667	32.35 32.43 32.5	50.63 50.72 50.81	61.71 61.8 61.9	75.65 75.76 75.87	53.2	3 2.208333333 5 2.21875 5 2.229166667	39.9 39.95 40	59.63 59.69 59.76	71.4 71.46 71.53	85.9 85.96 86.03	85.5	3.552083333 3.5625 3.572916667	46.25 46.3 46.34	67.13 67.19 67.24	79.26 79.32 79.38	93.66 93.72 93.78
21.75	0.895833333 0.90625 0.916666667	32.57 32.65 32.72	50.9 50.99 51.07	62 62.09 62.19	75.99 76.1 76.21	5	5 2.239583333 4 2.25 5 2.260416667	40.06 40.11 40.16	59.82 59.88 59.94	71.59 71.65 71.72	86.09 86.16 86.22	86.25	3.583333333 3.59375 3.604166667	46.39 46.44 46.49	67.3 67.35 67.41	79.44 79.5 79.55	93.83 93.89 93.95
22.5	0.927083333 0.9375 0.947916667	32.79 32.86 32.93	51.16 51.25 51.33	62.28 62.37 62.47	76.31 76.42 76.53	54.7	5 2.270833333 5 2.28125 5 2.291666667	40.21 40.26 40.31	60 60.06 60.12	71.78 71.85 71.91	86.29 86.35 86.41	87	3.614583333 3.625 3.635416667	46.53 46.58 46.63	67.46 67.52 67.58	79.61 79.67 79.73	94 94.06 94.12
23 23.25	0.958333333	33 33.07 33.14	51.42 51.5 51.58	62.56 62.65 62.74	76.63 76.74 76.84	55.2 55.	5 2.302083333	40.37 40.42 40.47	60.18 60.24 60.31	71.98 72.04 72.11	86.48 86.54 86.61	87.5 87.75	3.645833333 3.65625 3.666666667	46.68 46.72 46.77	67.63 67.69 67.74	79.79 79.84 79.9	94.17 94.23 94.29
23.75 24	0.989583333	33.21 33.28	51.67 51.75	62.83 62.92	76.95 77.05	5 56.2	6 2.333333333 5 2.34375	40.52 40.57	60.37 60.43	72.17 72.23	86.67 86.74	88.25 88.5	3.677083333 3.6875	46.82 46.86	67.8 67.85	79.96 80.02	94.34 94.4
24.5 24.75		33.34 33.41 33.48	51.83 51.91 51.99	63.01 63.1 63.18	77.15 77.25 77.34	56.7 5		40.62 40.67 40.73	60.49 60.55 60.61	72.3 72.36 72.43	86.8 86.86 86.93	89 89.25	3.697916667 3.708333333 3.71875	46.91 46.96 47	67.91 67.96 68.02	80.08 80.13 80.19	94.45 94.51 94.57
25.25	1.041666667 1.052083333 1.0625	33.55 33.61 33.68	52.07 52.15 52.23	63.27 63.36 63.45	77.44 77.54 77.63	57.	5 2.385416667 5 2.395833333 5 2.40625	40.78 40.83 40.88	60.67 60.73 60.79	72.49 72.55 72.62	86.99 87.05 87.12		3.729166667 3.739583333 3.75	47.05 47.1 47.15	68.07 68.13 68.18	80.25 80.31 80.36	94.62 94.68 94.74
	1.072916667 1.083333333 1.09375	33.75 33.81 33.88	52.31 52.39 52.47	63.53 63.62 63.7	77.73 77.82 77.91		8 2.416666667 5 2.427083333 5 2.4375	40.93 40.98 41.03	60.85 60.91 60.97	72.68 72.74 72.81	87.18 87.24 87.31		3.760416667 3.770833333 3.78125	47.19 47.24 47.29	68.24 68.3 68.35	80.42 80.48 80.54	94.79 94.85 94.9
	1.104166667 1.114583333	33.94 34.01 34.07	52.55 52.63 52.71	63.79 63.87 63.96	78.01 78.1 78.19		5 2.447916667 9 2.458333333 5 2.46875	41.08 41.13 41.18	61.03 61.09 61.15	72.87 72.93 73	87.37 87.43 87.49	91	3.791666667 3.802083333 3.8125	47.33 47.38 47.43	68.41 68.46 68.52	80.59 80.65 80.71	94.96 95.02 95.07
	1.135416667 1.145833333	34.14 34.2 34.26	52.78 52.86 52.94	64.04 64.12 64.21	78.28 78.37 78.46		5 2.479166667 5 2.489583333	41.23 41.28 41.33	61.21 61.27 61.33	73.06 73.12 73.19	87.56 87.62 87.68		3.822916667 3.833333333 3.84375	47.47 47.52 47.57	68.57 68.63 68.68	80.77 80.82 80.88	95.13 95.18 95.24
28 28.25	1.166666667 1.177083333	34.33 34.39	53.01 53.09	64.29 64.37	78.55 78.64	60.2 60	5 2.510416667 5 2.520833333	41.38 41.43	61.39 61.45	73.25 73.31	87.74 87.81	92.5 92.75	3.854166667 3.864583333	47.62 47.66	68.74 68.79	80.94 81	95.3 95.35
29	1.197916667 1.208333333	34.45 34.52 34.58	53.16 53.24 53.31	64.45 64.53 64.62	78.73 78.82 78.9	61.2	1 2.541666667 5 2.552083333	41.49 41.54 41.59	61.51 61.57 61.63	73.37 73.44 73.5	87.87 87.93 87.99	93.5	3.875 3.885416667 3.895833333	47.71 47.76 47.8	68.85 68.9 68.96	81.05 81.11 81.17	95.41 95.46 95.52
29.75	1.229166667 1.239583333	34.64 34.7 34.76	53.39 53.46 53.54	64.7 64.78 64.86	78.99 79.08 79.16	e	5 2.572916667 2 2.583333333	41.64 41.69 41.74	61.69 61.75 61.81	73.56 73.62 73.69	88.06 88.12 88.18	94.25	3.90625 3.9166666667 3.927083333	47.85 47.9 47.94	69.01 69.07 69.12	81.23 81.28 81.34	95.58 95.63 95.69
	1.25 1.260416667 1.270833333	34.83 34.89 34.95	53.61 53.68 53.76	64.94 65.02 65.09	79.25 79.33 79.42		5 2.59375 5 2.604166667 5 2.614583333	41.79 41.84 41.89	61.86 61.92 61.98	73.75 73.81 73.87	88.24 88.3 88.36		3.9375 3.947916667 3.958333333	47.99 48.04 48.08	69.18 69.23 69.29	81.4 81.46 81.51	95.74 95.8 95.86
30.75 31		35.01 35.07 35.13	53.83 53.9 53.97	65.17 65.25 65.33	79.5 79.58 79.67	63.2		41.94 41.99 42.04	62.04 62.1 62.16	73.93 74 74.06	88.43 88.49 88.55	95.25 95.5	3.96875 3.979166667 3.989583333	48.13 48.18 48.22	69.34 69.4 69.45	81.57 81.63 81.68	95.91 95.97 96.02
31.5 31.75		35.13 35.19 35.25 35.31	54.05 54.12 54.19	65.41 65.49 65.56	79.75 79.83 79.91	63.7 6		42.04 42.09 42.14 42.19	62.22 62.28 62.34	74.00 74.12 74.18 74.24	88.61 88.67 88.73	96	4	48.27	69.51	81.74	96.08
32 32.25		35.31	54.19 54.26	65.64	80	64.2		42.19	62.34	74.24	88.73 88.79						

Fernbrook Consulting Engineers			Page 1
		0. 21210	
London	10A B	urwell Road, Stevenage	
BR1 4DQ	Surfa	ce Water Drainage Calcs	Micro
Date 30/04/2024 17:36	Desig	ned by DR	Drainago
File 240430.MDX	Check	ed by CR	Diamada
Innovyze	Netwo	rk 2020.1.3	
STORM SEWER DESIG	SN by the	Modified Rational Method	
Desid	<u>gn Crite</u>	<u>ria for Storm</u>	
Pipe Sizes :	STANDARD N	Manhole Sizes STANDARD	
FSR Rainf	all Model	- England and Wales	
Return Period (year			PIMP (%) 100
M5-60 (m Patia	m) 20.000 R 0.407	Add Flow / Climate Cha Minimum Backdrop Hei	-
Maximum Rainfall (mm/h	r) 50		
Maximum Time of Concentration (min	is) 30	Min Design Depth for Optimisat	ion (m) 1.200
Foul Sewage (1/s/h			
Volumetric Runoff Coef	i. 0.750	Min Slope for Optimisatio	on (1:X) 500
Desi	Igned with	Level Soffits	
<u>Time Area Diagram for </u>	<u>Storm at</u>	outfall TWMH 9653 (pipe 1	.001)
	me Area ns) (ha)	Time Area (mins) (ha)	
	0-4 0.017		
		puting (ha) = 0.017	
		$ime (m^3) = 0.223$	
<u>Time Area Dia</u>	igram at	outfall (pipe 2.005)	
Ti	me Area	Time Area	
(mi	ns) (ha)	(mins) (ha)	
	0-4 0.099	4-8 0.006	
) Duting (ha) = 0.105	
Total	Pipe Volu	$(m^3) = 2.151$	
Network	. Design	Table for Storm	
H. Tudiostos ni	ne length	daag not motob socializates	
# - indicates pi	Pe rendru	does not match coordinates	
PN Length Fall Slope I.Area T (m) (m) (1:X) (ha) (m		ase k HYD DIA Section I (l/s) (mm) SECT (mm)	Cype Auto Design
Ne	twork Re	sults Table	
0	1982-202	0 Innovyze	

Fernbrook Consulting Engineers		Page 2
•	Job No. 21210	
London	10A Burwell Road, Stevenage	The second
BR1 4DQ	Surface Water Drainage Calcs	Micro
Date 30/04/2024 17:36	Designed by DR	Drainage
File 240430.MDX	Checked by CR	Diamage
Innovyze	Network 2020.1.3	

Network Design Table for Storm

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)

Fernbrook Consulting Engineers		Page 3
•	Job No. 21210	
London	10A Burwell Road, Stevenage	The second
BR1 4DQ	Surface Water Drainage Calcs	Micro
Date 30/04/2024 17:36	Designed by DR	Drainage
File 240430.MDX	Checked by CR	Diamaye
Innovyze	Network 2020.1.3	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	11.225	1.250	9.0	0.017	4.00	0.0	0.600	0	150	Pipe/Conduit	0
1.001	1.382	0.140	9.9	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	٨
2.000	5.000	0.250	20.0	0.000	4.00	0.0	0.600	0	150	Pipe/Conduit	0
2.001	28.577	0.650	44.0	0.005	0.00	0.0	0.600	0	150	Pipe/Conduit	
2.002	4.728#	1.000	4.7	0.015	0.00	0.0	0.600	0	150	Pipe/Conduit	ě
3.000	17.000#	0.800	21.3	0.020	4.00	0.0	0.600	0	150	Pipe/Conduit	۵
2.003	10.000#	1.250	8.0	0.015	0.00	0.0	0.600	0	150	Pipe/Conduit	0
2.004	10.601	0.100	106.0	0.050	0.00	0.0	0.600	0	300	Pipe/Conduit	- ĕ
2.005	3.510	0.050	70.2	0.000	0.00	0.0	0.600	0	300	Pipe/Conduit	ě

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.000 1.001	50.00 50.00		98.200 96.950	0.017 0.017	0.0	0.0	0.0	3.38 3.23	59.8 57.0	2.3 2.3
2.000 2.001 2.002	50.00 50.00 50.00	4.35	98.350 98.100 97.450	0.000 0.005 0.020	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	2.26 1.52 4.67	40.0 26.9 82.5	0.0 0.7 2.7
3.000	50.00	4.13	97.250	0.020	0.0	0.0	0.0	2.19	38.8	2.7
2.003 2.004 2.005	50.00 50.00 50.00	4.53	96.450 95.200 95.100	0.055 0.105 0.105	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0		63.3 107.9 132.8	7.4 14.2 14.2

Free Flowing Outfall Details for Storm

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)		•	W (mm)
1.001	тพмн 9653	98.890	96.810	96.810	1200	0
Free	Flowing	Outfall	Detail	<u>s for St</u>	orm	
Outfall Pipe Number	Outfall Name		I. Level (m)		D,L (mm)	W (mm)

©1982-2020 Innovyze

Fernbrook Consulting Engineers		Page 4
•	Job No. 21210	
London	10A Burwell Road, Stevenage	The second
BR1 4DQ	Surface Water Drainage Calcs	Micro
Date 30/04/2024 17:36	Designed by DR	Drainage
File 240430.MDX	Checked by CR	Diamage
Innovyze	Network 2020.1.3	L

Online Controls for Storm

Orifice Manhole: 2, DS/PN: 1.001, Volume (m³): 2.3

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 96.950

Depth/Flow Relationship Manhole: 11, DS/PN: 2.005, Volume (m³): 2.2

Invert Level (m) 95.100

Depth (m)	Flow (l/s)						
0.200	0.0000	1.800	0.0000	3.400	0.0000	5.000	0.0000
0.400	0.0000	2.000	0.0000	3.600	0.0000	5.200	0.0000
0.600	0.0000	2.200	0.0000	3.800	0.0000	5.400	0.0000
0.800	0.0000	2.400	0.0000	4.000	0.0000	5.600	0.0000
1.000	0.0000	2.600	0.0000	4.200	0.0000	5.800	0.0000
1.200	0.0000	2.800	0.0000	4.400	0.0000	6.000	0.0000
1.400	0.0000	3.000	0.0000	4.600	0.0000		
1.600	0.0000	3.200	0.0000	4.800	0.0000		

Fernbrook Consulting Engineers		Page 5
	Job No. 21210	
London	10A Burwell Road, Stevena	ae
BR1 4DQ	Surface Water Drainage Ca	
Date 30/04/2024 17:36	Designed by DR	Drainage
File 240430.MDX	Checked by CR	Dianiage
Innovyze	Network 2020.1.3	
Storage	Structures for Storm	
<u>Cellular Stora</u>	age Manhole: 2, DS/PN: 1.003	<u>1</u>
	ert Level (m) 97.850 Safety Fac Base (m/hr) 0.00000 Poros Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Ar	rea (m²) Depth (m) Area (m²) Inf	. Area (m²)
0.000 9.0 0.400 9.0	0.0 0.0	0.0
<u>Cellular Stora</u>	ge Manhole: 11, DS/PN: 2.00	5
Inve Infiltration Coefficient Infiltration Coefficient		
Depth (m) Area (m²) Inf. Ar	rea (m²) Depth (m) Area (m²) Inf	. Area (m²)
0.000 116.0 0.900 116.0	116.0 0.901 0.0 116.0	116.0
0.900 110.0	110.0	
	982-2020 Innovyze	

ernbı	rook C	Consulting	Engin						Page	e 6
					Job No.					
ondor	n				10A Bur	well Road	l, St	evenage	1	4
R1 41	Q				Surface	Water Dr	aina	ge Calcs	Mir	cro
ate 3	30/04/	2024 17:3	6		Designe	d by DR				
ile 2	240430	.MDX			Checked	by CR			LIC	binag
nnovy	vze				Network	2020.1.3				
	-									
2 <u>ye</u> a	ar Ret	<u>urn Perio</u>	d Summ	ary of	<u>Critica</u>	l Results	s by	Maximum 1	Level (F	ank 1
					for Sto	orm				
					ulation C		-			
					.000 Ad 0	lditional F		% of Tota 10m³/ha S		
				(mrns) _ (mm)		MADD Fac		let Coeffi	-	
М	anhole	Headloss C				per Perso				
	Foul :	Sewage per	hectare	(1/s) 0	.000	-	-		1 ·	
			-		-	mber of Sto	-			
						mber of Tir mber of Rea				
		Number C	JI UIIII	ne conci	015 0 1101	liber of rea		e concrore	5 0	
				Synthet	ic Rainfa	all Details	3			
			Rainfa	ll Model				FEH		
		FEH H		Version				2013		
						04 223679 1	FL 260			
				ata Type (Summer)				Point 1.000		
				(Winter)				1.000		
				,						
	Ρ	Margin for H			-				300.0	
			An	-	-	2.5 Second	Incre	ment (Exte		
					Status Status				ON OFF	
					Status				OFF	
				11101010					011	
				<i>,</i> ,				~		
		Duratio	Profile n(s) (mi		15 30 6	60, 120, 18		Summer and		
		Duració	(I(S) (III	.115)		960, 120, 10 960, 1440,				
	Ret	urn Period	(s) (yea	rs)					30, 100	
		Climate	Change	(응)				0, 0,	35, 40	
1	WARNING	G: Half Dra:	in Time	has not	been cald	culated as	the s	tructure i	s too ful	1.
	US/MH		Return	Climate	First	(X) Fire	+ (Y)	First (Z)	Overflow	Wateı / Leve
PN	Name	Storm		Change			.ood	Overflow		(m)
				-		2				
1.000	1	15 Summer	2		100/30 S					98.22
1.001	2	30 Summer 15 Summer	2	+0% +0%	2/15 S	ummer				97.69 98.35
2.000		15 Summer 15 Summer		+0% +0%						98.35
2.001		15 Summer		+0%						97.47
		15 Summer		+0%						97.28
3.000		15 Summer		+0%						96.49
2.003	9	720 Winter			30/120 S					95.33
2.003 2.004		720 Winter	2	+0%	10/180 S	ummer				95.33
2.003	11									
2.003 2.004	11									
2.003 2.004	11									
2.003 2.004	11			@100	2 2020 -	Innovyze				

Fernbrook Consulting Engineers		Page 7
•	Job No. 21210	
London	10A Burwell Road, Stevenage	The second
BR1 4DQ	Surface Water Drainage Calcs	Micro
Date 30/04/2024 17:36	Designed by DR	Drainage
File 240430.MDX	Checked by CR	Diamage
Innovyze	Network 2020.1.3	L

2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	-0.124	0.000	0.07			3.8	OK	
1.001	2	0.597	0.000	0.05		15	1.1	SURCHARGED	
2.000	3	-0.150	0.000	0.00			0.0	OK	
2.001	4	-0.132	0.000	0.03			0.8	OK	
2.002	5	-0.128	0.000	0.05			3.4	OK	
3.000	7	-0.115	0.000	0.12			4.5	OK	
2.003	6	-0.106	0.000	0.18			10.4	OK	
2.004	9	-0.163	0.000	0.02			2.0	OK	
2.005	11	-0.063	0.000	0.00			0.0	OK	

	cook (Consulting	Engin	eers					Pag	ge 8
					Job No	. 2121	0			
ondor	ı				10A Bu	rwell	Road, St	evenage	1	-
R1 4I	QC				Surfac	e Wate	r Draina	ge Calcs	M	irco
ate 3	30/04/	/2024 17:3	6		Design	ed by	DR			ICLO
	240430				Checke	-			Uſ	ainag
nnovy					Networ					
						. 2020	• • • • •			
<u>.0 ye</u>	<u>ar Re</u> i	turn Peric	od Summ	<u>ary of</u>	Critic for St		<u>sults by</u>	<u>Maximum</u>	Level	(Rank 1
		Areal Red	uction F		ulation			% of Tota	I Flow O	.000
								10m³/ha St		
				(mm)				let Coeffie		
М		Headloss C Sewage per 1				ow per H	Person per	Day (l/pe:	c/day) 0	.000
		Number	of Onli	ne Contr	ols 2 N	umber o	f Time/Are	Structures a Diagrams e Controls	0	
				Synthet	ic Rain	fall De	tails			
				ll Model				FEH		
		FEH F		Version		004 000	(70 mt 000	2013		
				Location ata Type		004 223	679 TL 260	04 23679 Point		
				(Summer)				1.000		
				(Winter)				1.000		
	Ν	Margin for H		alysis T	imestep		cond Incre	ment (Exte		
					Status Status				ON OFF	
					Status Status				OFF	
				11101 010					011	
		Duration	Profile n(s) (mi				0, 180, 24	Summer and 0, 360, 48	0, 600,	
					720,	960, 1	440, 2160,	2880, 432		
	Ret	turn Period Climate						2, 10,	30, 100 35, 40	
		CIIMALE	change	(-0)				0, 0,	55, 40	
T	WARNIN(G: Half Drai	in Time	has not	been ca	lculate	d as the s	tructure i	s too fu	11.
PN	US/MH Name	Storm		Climate Change		t (X)	First (Y) Flood	First (Z) Overflow	Overflo Act.	Wate: w Leve (m)
				-		arge	11000	OVELLIOW	AUL.	
1.000	1 2	15 Summer 30 Summer	10 10	+0% +0%	2/15	Summer Summer				98.23 97.92
2.000		15 Summer	10	+0% +0%	2/13	Summer				97.92
2.000		15 Summer	10	+0%						98.12
		15 Summer	10	+0%						97.48
2.002	7		10	+0%						97.29
	6	15 Summer	10	+0%						96.51
3.000	0	720 Winter	10		30/120					95.46
3.000 2.003 2.004			10	+0%	10/180	Summer				95.46
2.002 3.000 2.003 2.004 2.005		720 Winter								
3.000 2.003 2.004		720 Winter								

Fernbrook Consulting Engineers		Page 9
•	Job No. 21210	
London	10A Burwell Road, Stevenage	Sec. 1
BR1 4DQ	Surface Water Drainage Calcs	Micro
Date 30/04/2024 17:36	Designed by DR	Drainage
File 240430.MDX	Checked by CR	Diamage
Innovyze	Network 2020.1.3	1

<u>10 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>

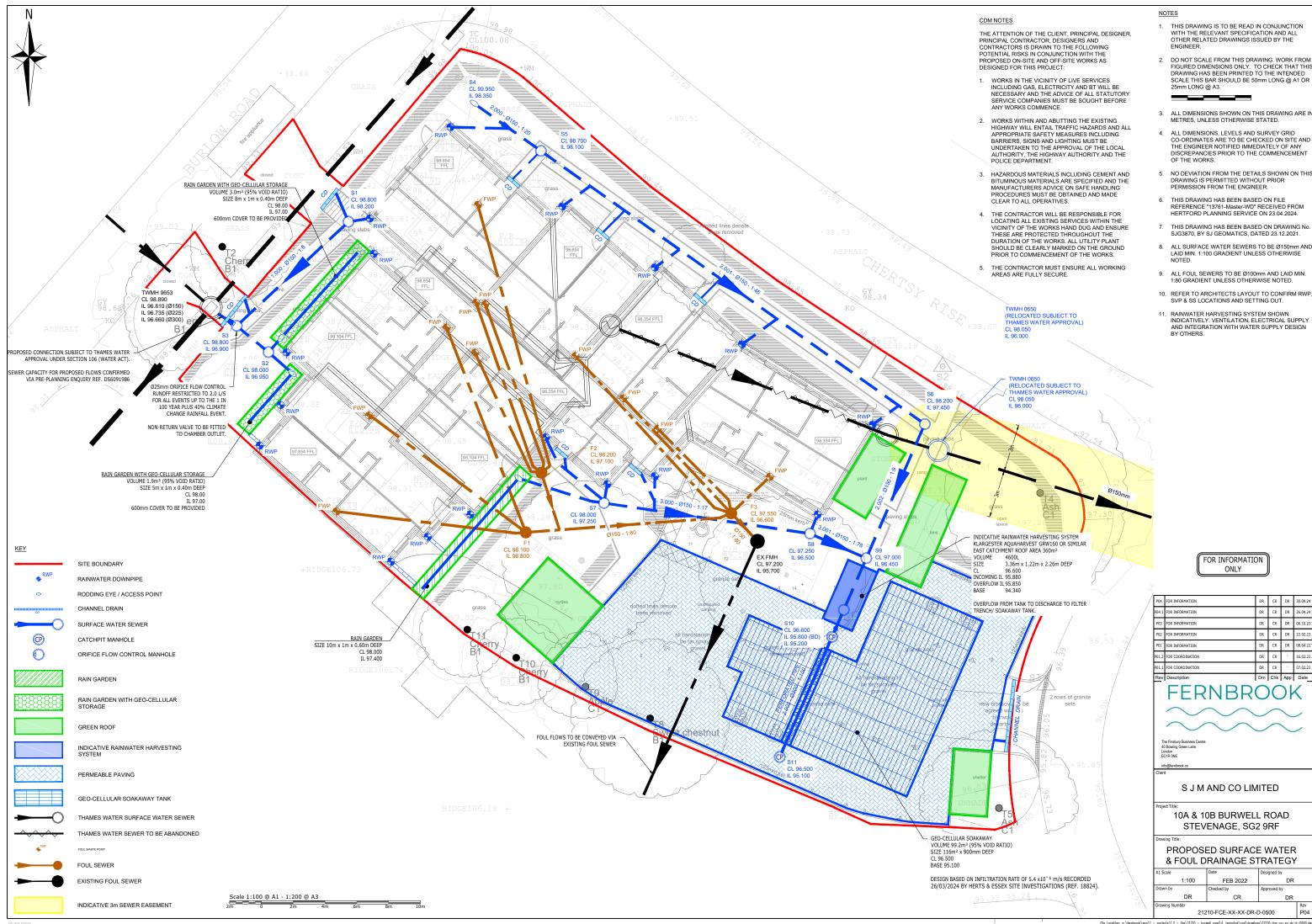
PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	-0.115	0.000	0.12			6.6	OK	
1.001	2	0.829	0.000	0.05		20	1.3	SURCHARGED	
2.000	3	-0.150	0.000	0.00			0.0	OK	
2.001	4	-0.123	0.000	0.08			1.9	OK	
2.002	5	-0.115	0.000	0.12			7.8	OK	
3.000	7	-0.103	0.000	0.22			7.8	OK	
2.003	6	-0.086	0.000	0.38			21.4	OK	
2.004	9	-0.037	0.000	0.04			2.8	OK	
2.005	11	0.063	0.000	0.00			0.0	SURCHARGED	

©1982-2020 Innovyze

	LOOK	Consulting	Engin		Tob M	0101	0		Page	ΤU
					Job No				6	
ondor							Road, St	2		4.7
R1 41	~						er Draina	ge Calcs	Mic	m
ate 3	30/04/	2024 17:3	6		Designe	ed by	DR			inaq
ile 2	240430	.MDX			Checked	d by C	R		DIG	ii iay
nnovy	yze				Networl	k 2020	.1.3			
-	anhole	Hot Hot Sta Headloss C Sewage per Number of Number	uction H Start o rt Level oeff (GJ hectare f Input of Onli	<u>Sim</u> Factor 1 (mins) - (mm) .obal) 0 (1/s) 0 Hydrogra ne Contr	for St ulation .000 A 0 .500 Flc .000 phs 0 N ols 2 N	<u>Criter</u> Additio MAD ow per umber c	<u>ia</u> nal Flow - D Factor * In Person per of Storage of Time/Are	% of Tota 10m³/ha St let Coeffic	l Flow 0.0 torage 2.0 ecient 0.8 r/day) 0.0 2 0	0000000
				Synthet	ic Rain:	fall De	tails			
			Rainfa	11 Model				FEH		
		FEH H		Version				2013		
						004 223	8679 TL 260			
				ata Type (Summer)				Point 1.000		
				(Winter)				1.000		
	1	Margin for H		alysis T	-	2.5 Se	econd Incre	ement (Exte	300.0 nded) ON	
) Status				OFF	
				Inertia	Status				OFF	
	Re	turn Period	Profile n(s) (mi (s) (yea Change	ns) rs)				Summer and 40, 360, 48 2880, 432 2, 10,	0, 600, 0, 5760	
Ţ		G: Half Dra:								Wate
PN	US/MH Name	Storm		Climate Change	First Surch		First (Y) Flood	First (Z) Overflow	Overflow Act.	Leve (m)
.000	1	15 Summer	30	+35%	100/30	Summer				98.24
.000	1	60 Summer	30	+35%		Summer				98.14
.000		15 Summer	30	+35%						98.35
.001		15 Summer	30	+35%						98.13
.002		15 Summer	30	+35%						97.49
3.000	7		30	+35%						97.31
2.003	6	15 Summer	30	+35%	20/100	0				96.54
2.004		960 Winter 960 Winter	30 30		30/120 10/180					95.74 95.74
2,005	± ±	200 MINCEL	50	100%	T0/T00					
2.005										

Fernbrook Consulting Engineers		Page 11
•	Job No. 21210	
London	10A Burwell Road, Stevenage	Carlos and
BR1 4DQ	Surface Water Drainage Calcs	Mirro
Date 30/04/2024 17:36	Designed by DR	Drainage
File 240430.MDX	Checked by CR	Diamage
Innovyze	Network 2020.1.3	1

<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Storm</u>


PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	-0.103	0.000	0.22			11.7	OK	
1.001	2	1.046	0.000	0.06		38	1.4	SURCHARGED	
2.000	3	-0.150	0.000	0.00			0.0	OK	
2.001	4	-0.114	0.000	0.13			3.4	OK	
2.002	5	-0.103	0.000	0.22			13.7	OK	
3.000	7	-0.086	0.000	0.38			13.7	OK	
2.003	6	-0.060	0.000	0.67			37.7	OK	
2.004	9	0.248	0.000	0.05			3.6	SURCHARGED	
2.005	11	0.348	0.000	0.00			0.0	SURCHARGED	

	rook	consu	uting	Engine		- 1				Page	12
						Job No					
ondo	n				-	10A Bu:	rwell i	Road, St	evenage		-
R1 4	DQ				5	Surface	e Wate	r Draina	ige Calcs	Mic	rn l
ate	30/04	/2024	17:30	6	I	Designe	ed by	DR			
'ile	24043	0.MDX	ζ		(Checked	d by C	R		DIC	inag
nnov	vze				1	Networl	k 2020	.1.3			
	-										
100	year	Retu	rn Per	iod Su	<u>mmary c</u>	of Crit	ical H	Results	by Maximu	m Level	(Rank
					<u>1</u>) for	<u>Storm</u>				
		Aro	al Redu	uction F		lation			- % of Total	Flow 0 0	0.0
		ALC			mins)				10m³/ha St		
		Н		t Level		0			let Coeffie	2	
1	Manhole	e Head	loss Co	eff (Gl	obal) 0.	500 Flc	w per B	erson pei	Day (l/per	/day) 0.0	00
	Foul	Sewag	e per h	lectare	(l/s) 0.	000					
		Mum	bor of	Tabut L	ludrogram	obe () N	umbor o	F Storado	Structures	2	
									ea Diagrams		
									me Controls		
					Synthet		fall De	<u>tails</u>			
			FFU D		ll Model Version				FEH 2013		
			FER R				004 223	679 TL 26	004 23679		
					ata Type				Point		
				Cv	(Summer)				1.000		
				Cv	(Winter)				1.000		
		Marai	o for F	lood Pie	sk Warni	ng (mm)				300.0	
		Margi	I LOL F			-	2.5 Se	cond Incr	ement (Exte		
					-	Status				ON	
						Status				OFF	
					Inertia	Status				OFF	
				Profile	(s)				Summer and	Winter	
		D	uration	(s) (min	ns)				40, 360, 48		
	De		Developed (-) (720,	960, 14	440, 2160	, 2880, 432		
	Re			s) (yea: Change					2, 10, 1	30, 100 35, 40	
		0.	TTINGCC	change	(0)				0, 0,	55, 10	
	NADATA	C . 11-	16 Durd				1 1				
	WARNIN	G: Hd.	II Drai	n rime i	las not .	been ca.	ICUIALE	i as the	structure i	s coo fuif	•
	US/MH			Return	Climate	Firs	+ (X)	First (V) First (Z)	Overflow	Wate Leve
PN	Name	St	corm		Change		harge	Flood	Overflow	Act.	(m)
000	-	~~~	0	100		100/00	0				0.0 1
.000	1		Summer Summer	100 100	+40% +40%	2/15	Summer Summer				98.48 98.4
.000	2		Summer	100	+40%		Summer				98.35
.001			Summer	100	+40%						98.14
.002	5		Summer	100	+40%						97.50
.000	7	15	Summer	100	+40%						97.32
2.003			Summer	100	+40%						96.55
2.004			Winter			30/120					95.95
2.005	11	1440	Winter	100	+40%	10/180	Summer				95.95
					©1982	2-2020	Innovy	ze			

Fernbrook Consulting Engineers		Page 13
•	Job No. 21210	
London	10A Burwell Road, Stevenage	Carlos and
BR1 4DQ	Surface Water Drainage Calcs	Mirro
Date 30/04/2024 17:36	Designed by DR	Drainage
File 240430.MDX	Checked by CR	Diamaye
Innovyze	Network 2020.1.3	L

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Storm</u>

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	0.135	0.000	0.17			9.4	SURCHARGED	
1.001	2	1.379	0.000	0.07		50	1.6	SURCHARGED	
2.000	3	-0.150	0.000	0.00			0.0	OK	
2.001	4	-0.108	0.000	0.17			4.5	OK	
2.002	5	-0.096	0.000	0.29			17.9	OK	
3.000	7	-0.075	0.000	0.50			17.9	OK	
2.003	6	-0.041	0.000	0.87			49.2	OK	
2.004	9	0.452	0.000	0.04			3.3	SURCHARGED	
2.005	11	0.552	0.000	0.00			0.0	SURCHARGED	

Type Rodding Eye		Depth to	Internal sizes		Cover sizes	
		invert from cover level (m)	Rectangular length and width	Circular diameter	Rectangular length and width	Circular diameter
			As drain but min 100			Same size as pipework (1)
Access Fittings		0.6 or less,				
small	150 dia 150x100	except where situated in a	150x100	150	150x100 (1)	Same size
large	225x100	chamber	225x100	225	225x100 (1)	fitting
Inspection	n Chamber					
Shallow		0.6 or less	225x100	190 (2)	-	190 (1)
		1.2 or less	450x450	450	Min 430x430	430
Deep		>1.2 but <3.0	450x450	450	max 300x300 (3)	Access restricted to max 350 (3)

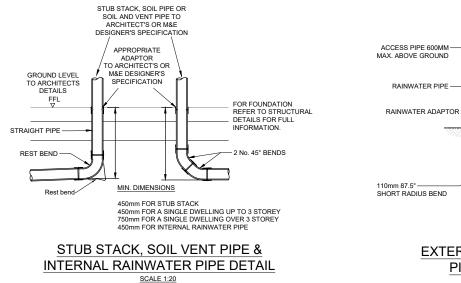
NOTES

(1) THE CLEAR OPENING MAY BE REDUCED BY 20MM IN ORDER TO PROVIDE PROPER SUPPORT FOR THE COVER AND FRAME. (2) DRAINS UPTO 150mm.

(3) A LARGER CLEAR OPENING MAY BE USED IN CONJUNCTION WITH A RESTRICTED ACCESS. THE SIZE IS RESTRICTED FOR HEALTH AND SAFETY REASONS TO DETER ENTRY

TABLE 12 MINIMUM E	DIMENSIONS F	OR MANHOLES			
Туре	Size of largest pipe (DN)	Min. internal dimensions (1) Rectangular length and width	Circular diameter	Min. clear opening size (1) Rectangular length and width	Circular diameter
Manhole					
<1.5m deep to soffit	<= 150 225 300 >300	750 x 675 (7) 1200 x 675 1200 x 750 1800 x (DN+450)	1000 (7) 1200 1200 The larger of 1800	750 x 675 (2) 1200 x 675 (2)	na (3)
			or (DN+450)		
>1.5m deep to soffit	<= 225 300 375-450 >450	1200 x 1000 1200 x 1075 1350 x 1225 1800 x (DN+775)	1200 1200 1200 The larger of 1800 or (DN+775)	600 x 600	600
Manhole shaft (4)	Steps (5)	1050 x 800	1050	600 x 600	600
>3.0m deep to soffit of pipe	Ladder (5)	1200 x 800	1200		
	Winch (6)	900 x 800	900	600 x 600	600
NOTES	1	1			

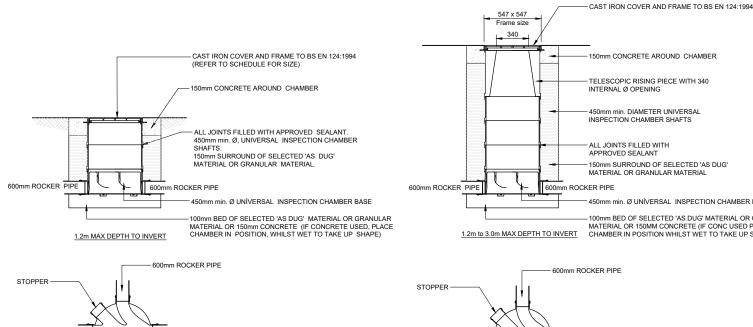
NOTES (1) LARGER SIZES MAY BE REQUIRED FOR MANHOLES ON BENDS OR WHERE THERE ARE

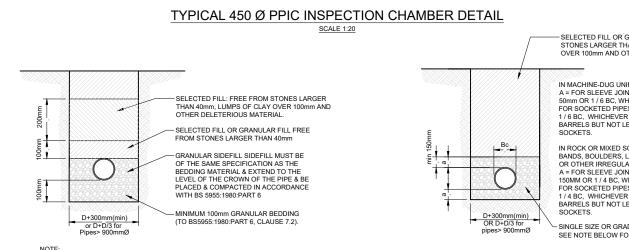

JUNCTIONS (2) MAY BE REDUCED TO 600 BY 600 WHERE REQUIRED BY HIGHWAY LOADING CONSIDERATIONS, SUBJECT TO A SAFE SYSTEM OF WORK BEING SPECIFIED. (3) NOT APPLICABLE DUE TO WORKING SPACE NEEDED.

(4) MINIMUM HEIGHT OF CHAMBER IN SHAFTED MANHOLE 2m FROM BENCHING TO UNDERSIDE OF REDUCING SLAB.

(5) MIN CLEAR SPACE BETWEEN LADDER OR STEPS AND THE OPPOSITE FACE OF THE SHAFT SHOULD BE APPROXIMATELY 900mm.

(6) WINCH ONLY - NO STEPS OF LADDERS, PERMANENT OR REMOVABLE


(7) THE MINIMUM SIZE OF ANY MANHOLE SERVING A SEWER (I.E. ANY DRAIN SERVING MORE THAN ONE PROPERTY) SHOULD BE 1200x675mm RECTANGULAR OR 1200mm Ø.

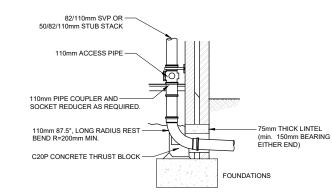


NOMINAL SIZE 110mm min. 110mm 87.5° SHORT RADIUS BEND EXTERNAL RAINWATER PIPE TO DRAIN

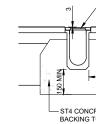
RAINWATER PIPE

SCALE 1:20

NOTE: GRANULAR MATERIAL - GRANULAR MATERIAL SHOULD CONFORM TO BS EN 1610 ANNEX B TABLE B.15 AND SHOULD BE SINGLE SIZE MATERIAL OR GRADED MATERIAL FROM 5MM UF 10mm FOR 100mm PIPES, 14mm FOR 150mm PIPES, 20mm FOR PIPES FROM 150mm UP TO 600mm DIAMETER. COMPACTION FRACTION MAXIMUM 0.3 FOR CLASS N OR B AND 0.15 FOR 1


BEDDING DETAIL FOR FLEXIBLE PIPES SCALE 1:20

STOPPERS TO BLANK OFF


INLETS NOT REQUIRED

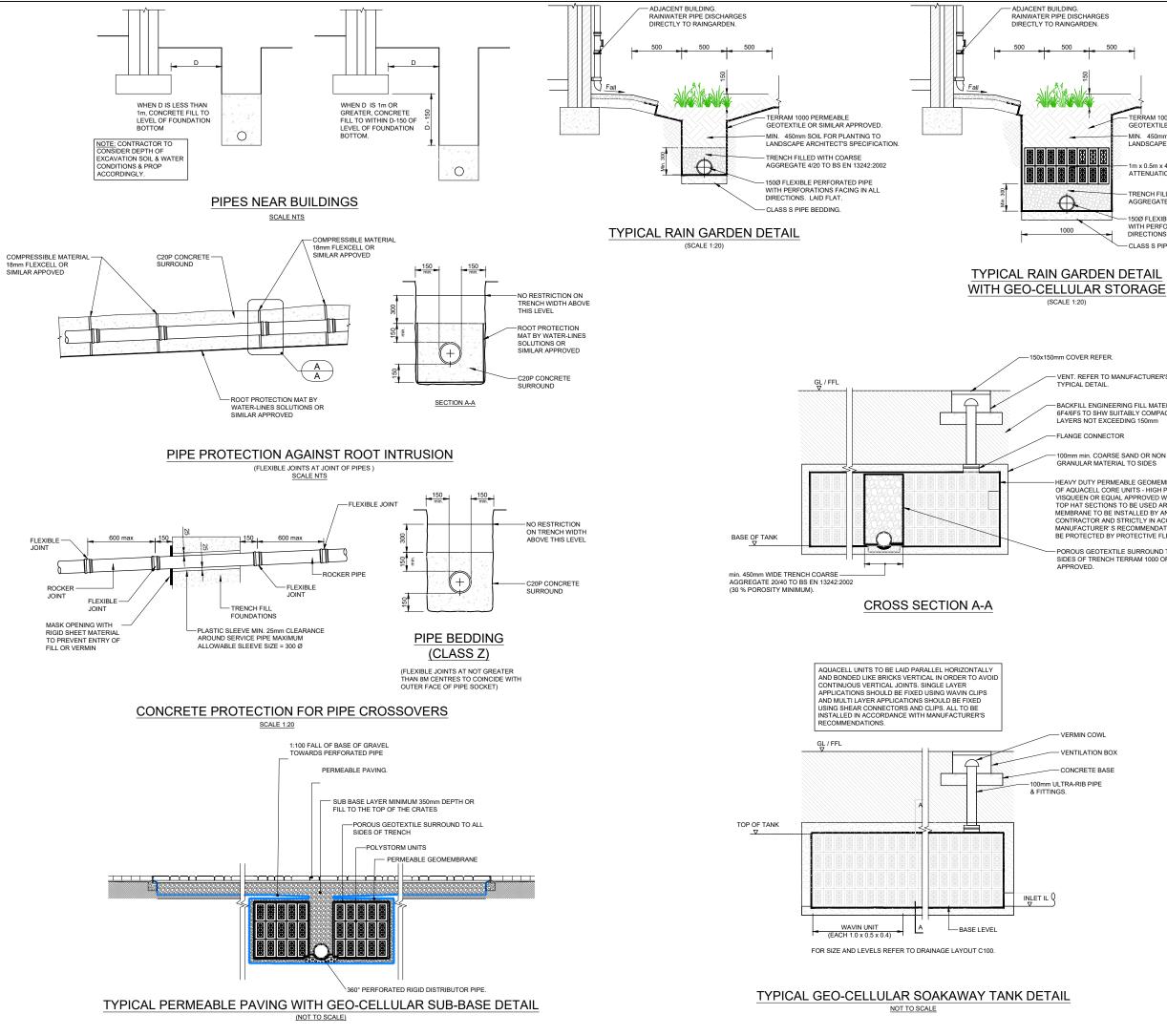
600mm ROCKER PIPE

BEDDING TYPES DETAILS FOR RIGID SCALE 1:20

SOIL & VENT PIPE CONNECTION & STUB STACK CONNECTION SCALE 1:20

STOPPERS TO BLANK OFF INLETS NOT REQUIRED

00mm ROCKER PIPE


LINEAR DRAINAG SCALE 1:20

ROUND CHAMBER	2.	FIGURED DIM DRAWING HA SCALE THIS E 25mm LONG (-	O CHECK THAT	T THIS DED
PIECE WITH 340 G	3.	ALL DIMENSI	ONS SHOWN ON TH		ARE IN
ER UNIVERSAL ER SHAFTS	4.	ALL DIMENSI CO-ORDINAT THE ENGINE	ONS, LEVELS AND ES ARE TO BE CHE ER NOTIFIED IMME IES PRIOR TO THE	SURVEY GRID CKED ON SITE DIATELY OF AN	١Y
VITH F	5	OF THE WOR	KS.		
OF SELECTED 'AS DUG' JLAR MATERIAL	5.	DRAWING IS	N FROM THE DETA PERMITTED WITHO FROM THE ENGINE	UT PRIOR	N THIS
RSAL INSPECTION CHAMBER BASE					
CTED 'AS DUG' MATERIAL OR GRANULAR I CONCRETE (IF CONC USED PLACE DN WHILST WET TO TAKE UP SHAPE)					
SRANULAR FILL: FREE FROM IAN 40mm, LUMPS OF CLAY THER DELETERIOUS MATERIAL.					
FORM SOILS: ITED PIPES, A MINIMUM OF IICHEVER IS GREATER, IS A MINIMUM OF 100mm OR IS GREATER UNDER ESS THAN 50mm UNDER					
OILS CONTAINING ROCK .ARGE FLINTS OR STONES AR HARD SPOTS: TED PIPES, A MINIMUM OF (HICHEVER IS GREATER, S A MINIMUM OF 200mm OR LIS GREATER UNDER ESS THAN 150mm UNDER					
DED GRANULAR MATERIAL. DR DETAILS.		F	OR INFORMATIC	N	
P TO A MAXIMUM SIZE CLASS F.		Ĺ	ONLY		
PIPES					
		OR INFORMATION			30.04.24
	Rev	Description			Date
		FEI	RNBRC	OK	
DRAINAGE CHANNEL - 'ACO' M100D WITH IN-BUILT FALLS AND SUMPS, OR EQUAL. GRATINGS TO LOAD CLASS		\sim	\sim	\sim	
C250 BY ACO OR EQUAL	40 E Lon	Finsbury Business Centre Bowling Green Lane don			
	info	IR ONE @fembrook.co			
150 MIN	Client		AND CO LIN	IITED	
RETE BASE AND TO BS 5238.	Project Title: 10A & 10B BURWELL ROAD, STEVENAGE, SG1 9RF				
	Drawir	ng Title: TYPICAL	DRAINAGE SHEET 1	DETAILS	
E CHANNEL	A1 Sca		Date	Designed by	
	Drawn	- 7	APR 24 Checked by	Approved by	
	Drawin	DR 1g Number 212	CR 10-FCE-XX-XX-DR-	D-0550	Rev P01
File Location: c:\fembrook\eng\1	- project				

NOTES

ENGINEER

1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH THE RELEVANT SPECIFICATION AND ALL OTHER RELATED DRAWINGS ISSUED BY THE

NOTES

- 1. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH THE RELEVANT SPECIFICATION AND ALL OTHER RELATED DRAWINGS ISSUED BY THE ENGINEER
- 2. DO NOT SCALE FROM THIS DRAWING. WORK FROM FIGURED DIMENSIONS ONLY. TO CHECK THAT THI DRAWING HAS BEEN PRINTED TO THE INTENDED SCALE THIS BAR SHOULD BE 50mm LONG @ A1 OR 25mm LONG @ A3.
- ALL DIMENSIONS SHOWN ON THIS DRAWING ARE I METRES, UNLESS OTHERWISE STATED.
- ALL DIMENSIONS, LEVELS AND SURVEY GRID CO-ORDINATES ARE TO BE CHECKED ON SITE AND THE ENGINEER NOTIFIED IMMEDIATELY OF ANY DISCREPANCIES PRIOR TO THE COMMENCEMENT OF THE WORKS.
- 5. NO DEVIATION FROM THE DETAILS SHOWN ON THI DRAWING IS PERMITTED WITHOUT PRIOR PERMISSION FROM THE ENGINEER.

TERRAM 1000 PERMEABLE

ATTENUATION CRATE

- CLASS S PIPE BEDDING.

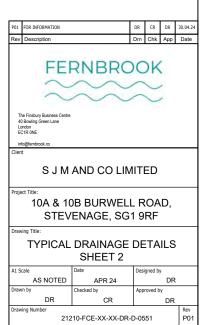
GEOTEXTILE OR SIMILAR APPROVED.

m x 0.5m x 400mm DEEP AQUACELL

- TRENCH FILLED WITH COARSE AGGREGATE 4/20 TO BS EN 13242:2002

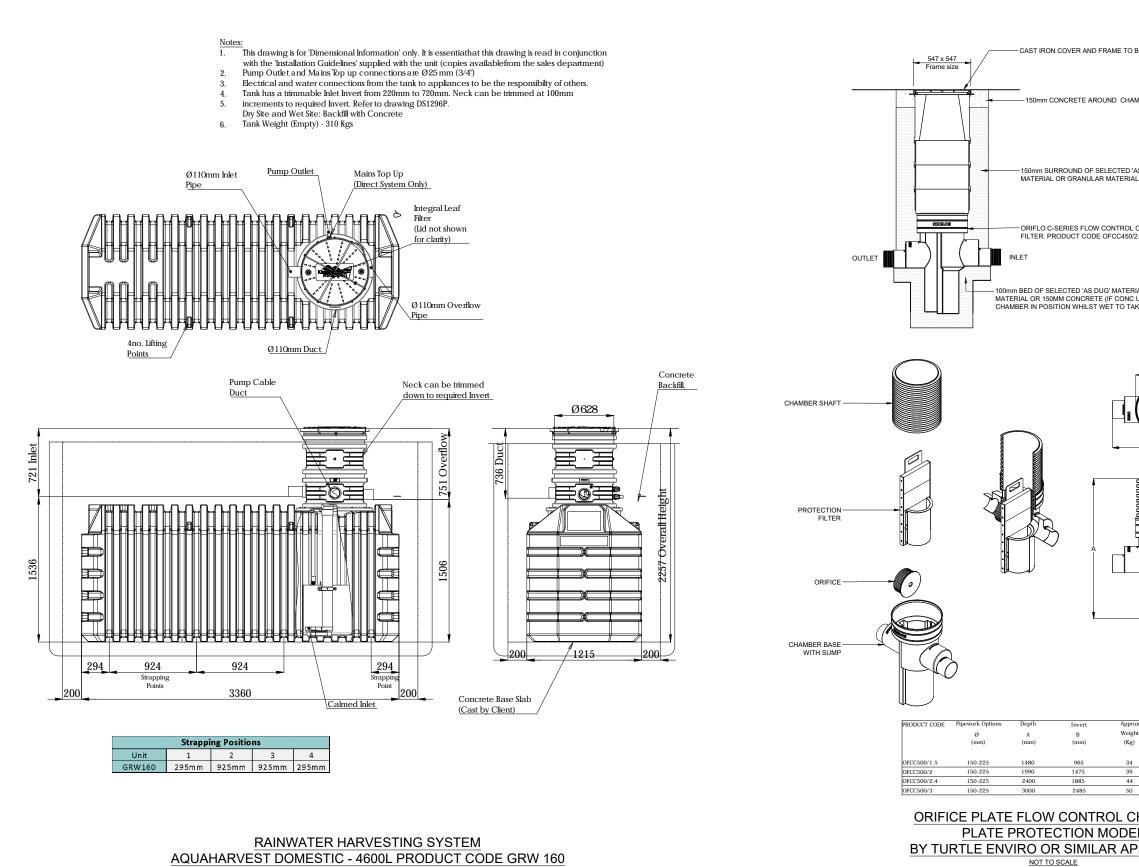
- 150Ø FLEXIBLE PERFORATED PIPE WITH PERFORATIONS FACING IN ALL DIRECTIONS. LAID FLAT.

-MIN. 450mm SOIL FOR PLANTING TO LANDSCAPE ARCHITECT'S SPECIFICATION


VENT. REFER TO MANUFACTURER'S

- BACKFILL ENGINEERING FILL MATERIAL TYPE 6F4/6F5 TO SHW SUITABLY COMPACTED IN

- 100mm min. COARSE SAND OR NON ANGULAR GRANULAR MATERIAL TO SIDES


-HEAVY DUTY PERMEABLE GEOMEMBRANE TO ALL SIDES OF AQUACELL CORE UNITS - HIGH PERFORMANCE UDG BY VISQUEEN OR EQUAL APPROVED WITH WELDED JOINTS. TOP HAT SECTIONS TO BE USED AROUND PIPEWORK. MEMBRANE TO BE INSTALLED BY AN APPROVED CONTRACTOR AND STRICTLY IN ACCORDANCE WITH THE MANUFACTURER' S RECOMMENDATIONS. MEMBRANE TO BE PROTECTED BY PROTECTIVE FLEECE.

- POROUS GEOTEXTILE SURROUND TO ALL SIDES OF TRENCH TERRAM 1000 OR EQUAL

FOR INFORMATION

ONLY

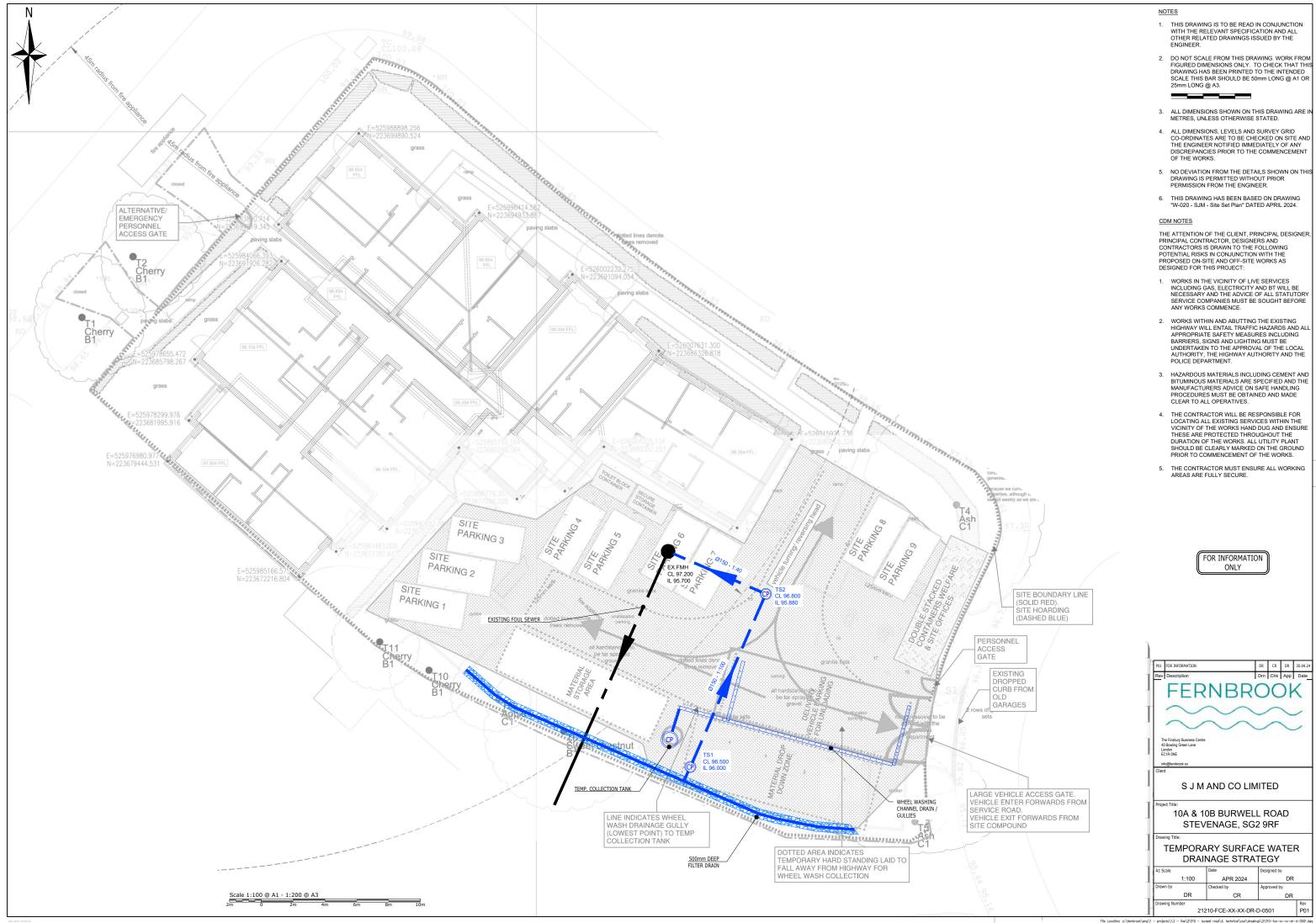
BY KINGSPAN OR SIMILAR APPROVED.

NOT TO SCALE

	NO	TES			_	
	1.	WITH THE REL	G IS TO BE READ IN EVANT SPECIFICAT ED DRAWINGS ISSI	FION AND /	ALL	
	2.	DO NOT SCALI FIGURED DIME DRAWING HAS	E FROM THIS DRAW ENSIONS ONLY. TO BEEN PRINTED TO AR SHOULD BE 50m 2 A3.	CHECK TH THE INTE	HAT THIS	
TO BS EN 124:1994	3.				G ARE IN	
	Д		ESS OTHERWISE ST		חו	
CHAMBER		CO-ORDINATE	S ARE TO BE CHEC R NOTIFIED IMMEDI ES PRIOR TO THE C	KED ON S	ITE AND ANY	
	5.	DRAWING IS P	I FROM THE DETAIL ERMITTED WITHOU ROM THE ENGINEE	IT PRIOR	ON THIS	
ED 'AS DUG' FRIAL						
ROL CHAMBER WITH SUMP AND 450/2.4 OR SIMILAR APPROVED						
TERIAL OR GRANULAR NC USED PLACE						
) TAKE UP SHAPE)						
Ø534						
1025						
		Ē		<u>_</u>		
		FC	OR INFORMATION ONLY	Ĵ		
Approx Pallet Qty Weight		FOR INFORMATION Description			08. 09.02.24 opp Date	
(Kg)		FE		OK		
34 2 39 2 44 N/A						
50 N/A	The Finsbury Business Centre					
<u>CHAMBER</u> DEL	40 Lor EC	Bowling Green Lane ndon :1R ONE				
APPROVED.	Client S J M AND CO LIMITED					
	Project Title: 10A & 10B BURWELL ROAD, STEVENAGE, SG1 9RF Drawing Title: TYPICAL DRAINAGE DETAILS					
	A1 Sc	ale	SHEET 3	Designed by		
	Draw	AS NOTED	APR 24 Checked by		DR	
	Drawi	DR ing Number	CR		DR Rev	

21210-FCE-XX-XX-DR-D-0552

Rev P01



1:1	00	FEB 2022	DR		
Drawn by		Checked by	Approved by		
DI	۲	CR	DR		
Drawing Number				Rev	
21210-FCE-XX-XX-DR-D-0515					

File Location: c:\fembrook\eng\1 - projects\1.2 - live\21210 - bunkell road\4, technical\cad\drawings\21210-fce-xx-xx-dr-

APPENDIX F – TEMPORARY & INTERIM DRAINAGE DURING CONSTRUCTION

