Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

NOTES

The structural drawing and calculations will need to be approved by a suitable checking Authority such as Building Control. This approval must be sought by the Client/Contractor prior to any works taking place or any materials being ordered.

DESIGN INFORMATION / PHILOSOPHY

It is proposed to construct a new dwelling at a site off Apethorn Lane, Gerrards Hollow, Gee-Cross, Hyde.

The proposed development will comprise of a 3 storey dwelling. The lower ground floor will include an area for parking which is independent to the new dwelling.

The lower ground floor itself will include a double garage, W.C , Utility, store and a staircase to access the upper storey.

The ground floor consists of a living room, dining/kitchen and a hall which has the staircases which facilitate the $1^{\text {st }}$ floor and the lower ground floor. The ground floor has a terrace which is directly above the parking area.

The first floor includes 3 bedrooms, 1 with en-suite, a bathroom and storage area.

The dwelling will be built into a steep embankment and therefore will require an appropriate retaining structure in order for the dwelling to be constructed in a safe manner. This retaining structure will be installed independantly from the new dwelling.

We are not responsible for the quality of workmanship. This exercise is to justify the retaining structure only.

A slope stability assessment has been carried out by Ashton Bennett Consultancy (Engineering Geologists \& Environmental Scientists). The report was conducted to clarify the ground stability for the proposed development.

These calculations cover a design check of the permanent contiguous bored piled retaining wall structure together with the capacity calculations for the support piles.

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.2	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Contigous Bored Piled Retaining wall check (Wall A)

Details of the proposed retaining structure have been taken from the drawings supplied by Northern Design, project reference no. 2221, drawing no. 07.

One section of wall has been identified for this analysis, labelled Section A-A on C23.07.32 Sketch01

The section has been chosen to represent the general soil and structural criteria which is applicable to the requirements of the retaining wall.

SECTION A-A :

The retaining structure consists of a line of 450 mm diameter reinforced concrete auger piles, 7.5 m deep socketed into bedrock. These are installed in close proximity to the existing retaining wall to the footpath of Apethorn Lane. The piles are reinforced with T16 bars and connected into a continuous ring beam (capping beam) which is reinforced with T16 bars also. This section of wall has been installed at this level to provide enhanced retaining measures to the existing retaining wall to the footpath.

There has been a line of 600 mm diameter reinforced concrete auger piles installed lower down the slope, these are also 7.5 m deep and are socketed (1.5 m approx.) into bedrock which return the lower section of ground.

A 500mm thick R.C slab has been installed which acts as a capping beam to the lower line of CFA piles and spans across to the higher line of CFA piles. The slab is reinforced with 2 layers of A393 mesh top and bottom. The slab provides support for a line of Stone faced lego blocks. The lego blocks have been connected back into the piles via rebar hoops.

The stone faced lego blocks are installed in an interconnected sequence and are (6 rows high) which is 3.6 m retained height.

A $10 \mathrm{kN} / \mathrm{m}^{2}$ surcharge will be considered due to vehicular traffic (Apethorn Lane)

Ground conditions:
The borehole sample test results show that the clay is on medium to high strength from $1.0 \mathrm{~m}-5.0 \mathrm{~m}$ depth and very high strength at 6.0 m . (Details can be found on page 8 (Table 2 of the Slope Stability Assessment).

Groundwater was not encountered during the drilling of the borehole except as small seepages.

The wall will have a proprietary drain installed at the back of the wall to relieve any hydrostatic pressure.

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.$\mathrm{C} 23.07 .32$	
	Structural Calculations				3	3
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Design of capping beam on 450 dia. CFA pile

RC BEAM ANALYSIS \& DESIGN BS8110

Load Envelope - Combination 1

Support conditions

Support A

Support B

Support C

Support D

Applied loading

SWT of capping beam Dead self weight of beam $\times 1$
Load combinations
Load combination 1

Vertically restrained
Rotationally free
Vertically restrained
Rotationally free
Vertically restrained
Rotationally free
Vertically restrained
Rotationally free

Support A
Dead $\times 1.40$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Structural Calculations				4	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Imposed $\times 1.60$

Span 1

Support B

Span 2

Support C

Span 3

Support D
MA_{A} max $=0 \mathrm{kNm}$;
Ms_{1} _max $=\mathbf{0} \mathrm{kNm}$;
$M_{B_{-} \max }=-0 \mathrm{kNm}$;
$\mathrm{Ms}_{\mathrm{s} _ \text {_max }}=\mathbf{0} \mathrm{kNm}$;
$M_{C_{_} \text {max }}=-0 \mathrm{kNm}$;
$\mathrm{Ms}_{\mathrm{s}]_{-} \max }=\mathbf{0} \mathrm{kNm}$;
$M_{D_{\text {_max }}}=\mathbf{0 k N m}$;
$V_{A_{_} \text {max }}=1 \mathrm{kN}$;
$V_{\text {A_s1_max }}=-2 \mathrm{kN}$;
$V_{\text {B_max }}=-2 \mathrm{kN}$;
$V_{B_{-}} 1$ _max $=1 \mathrm{kN}$;
$V_{\text {B_s2_max }}=-1 \mathrm{kN}$;
$V_{C_{-} \max }=2 \mathrm{kN}$;
Vc_s2_max $=1 \mathrm{kN}$;
$V_{C-s 3}$ max $=-1 \mathrm{kN}$;
$V_{D _m a x}=-1 \mathrm{kN}$;
$V_{D_{-} s 3}$ max $=2 \mathrm{kN}$;
$\mathrm{R}_{\mathrm{A}}=1 \mathrm{kN}$
$\mathrm{R}_{\mathrm{B}}=4 \mathrm{kN}$
$\mathrm{R}_{\mathrm{c}}=4 \mathrm{kN}$
$R_{D}=1 \mathrm{kN}$

Dead $\times 1.40$
Imposed $\times 1.60$
MA_{A} red $=\mathbf{0} \mathrm{kNm}$;
$\mathrm{Ms}_{\mathrm{s} 1}$ red $=0 \mathrm{kNm}$;
$\mathrm{M}_{\mathrm{B}_{-} \text {red }}=\mathbf{- 0} \mathrm{kNm}$;
$\mathrm{M}_{\mathrm{s} 2 _ \text {red }}=\mathbf{0} \mathrm{kNm}$;
$\mathrm{M}_{\mathrm{C}_{-} \text {red }}=\mathbf{- 0} \mathrm{kNm}$;
$\mathrm{M}_{\mathrm{s} 3_{-} \text {red }}=\mathbf{0} \mathrm{kNm}$;
$M_{D_{-} \text {red }}=0 \mathrm{kNm}$;
$V_{A_{-} \text {red }}=1 \mathrm{kN}$
$V_{A_{-} 11 \text { red }}=-2 \mathrm{kN}$
$V_{B_{-} \text {red }}=-2 \mathrm{kN}$
$V_{B_{-} 1 \text { _red }}=1 \mathrm{kN}$
$V_{\text {B_s2_red }}=-1 \mathrm{kN}$
$V_{C_{\text {_red }}}=2 \mathrm{kN}$
$V_{C_{-}}$s2_red $^{2}=1 \mathrm{kN}$
$V_{C_{_} \text {s3_red }}=-1 \mathrm{kN}$
$V_{D_{\text {_red }}}=-1 \mathrm{kN}$
$V_{D_{-} \text {_s_red }}=2 \mathrm{kN}$

Maximum reaction at support A;
Maximum reaction at support B;
Maximum reaction at support C;
Maximum reaction at support D;

Rectangular section details

Section width; $\quad b=\mathbf{5 0 0} \mathbf{~ m m}$;

Section depth;

$$
\mathrm{h}=450 \mathrm{~mm}
$$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.5	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Material details

Support A

Rectangular section in shear

Shear - span 1 at 384 mm ;
$\mathrm{V}=\mathbf{2 k N}$;
Allowable design shear stress; $V_{\text {max }}=4.866 \mathrm{~N} / \mathrm{mm}^{2}$
Value of v from Table 3.7; $\quad v<0.5 v_{c}$
Design shear resistance req'd; $\mathrm{v}_{\mathrm{s}}=\mathbf{0 . 4 0 0} \mathrm{N} / \mathrm{mm}^{2}$;
Shear reinforcement provided; $2 \times 8 \phi$ legs at $200 \mathrm{c} / \mathrm{c}$;

PASS - Area of shear reinforcement provided exceeds minimum required
Max longitudinal spacing; $\quad S_{v 1, \text { max }}=\mathbf{2 8 8} \mathrm{mm}$
PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				6	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Mid span 1

Design moment resistance of rectangular section (cl. 3.4.4)

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Spacing of reinforcement (cl 3.12.11)

Actual dist between bars;	$\mathrm{s}=\mathbf{1 6 8} \mathrm{mm} ;$
Design service stress;	$\mathrm{f}_{\mathrm{s}}=\mathbf{0 . 4} \mathrm{N} / \mathrm{mm}^{2} ;$

Min dist between bars; $\quad S_{\text {min }}=\mathbf{2 5 m m}$
PASS - Satisfies the minimum spacing criteria
Max distance between bars; $\quad S_{\max }=\mathbf{3 0 0} \mathrm{mm}$
PASS - Satisfies the maximum spacing criteria
Span to depth ratio (cl. 3.4.6)
Span to depth ratio (T.3.9); span_to_depth basic $=\mathbf{2 6 . 0}$;
Service stress in tension rein; $f_{s}=0.4 \mathrm{~N} / \mathrm{mm}^{2}$
Modification for tension reinf;
$f_{\text {fens }}=2.000$
Modification for span > 10m;
$\mathrm{flong}=1.000$;
Modification for comp reinf; $\quad f_{c o m p}=1.095$
Allowable span to depth ratio; span_to_depthallow $=\mathbf{5 6 . 9}$
Actual span to depth ratio; \quad span_to_depth ${ }_{\text {actual }}=1.2$
PASS - Actual span to depth ratio is within the allowable limit

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.7	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Support B

Design moment resistance of rectangular section (cl. 3.4.4)

Design bending moment;	$\mathrm{M}=\mathbf{0} \mathrm{kNm} ;$	Depth to tension reinf;	$\mathrm{d}=\mathbf{3 8 4} \mathrm{mm}$
	$\mathrm{K}=\mathbf{0 . 0 0 0 ;}$		$\mathrm{K}^{\prime}=\mathbf{0 . 1 5 6}$

Allowable design shear stress; $\mathrm{V}_{\text {max }}=4.866 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum allowable
Value of v from Table 3.7; $v<0.5 v_{c}$
Design shear resistance req'd; $\mathrm{v}_{\mathrm{s}}=\mathbf{0 . 4 0 0} \mathrm{N} / \mathrm{mm}^{2} ; \quad$ Area of shear reinf req'd; \quad Asv,req $=\mathbf{4 6 0} \mathrm{mm}^{2} / \mathrm{m}$
Shear reinforcement provided; $2 \times 8 \phi$ legs at $200 \mathrm{c} / \mathrm{c} ; \quad$ Area of shear reinf. prov; $\quad A_{\text {sv,prov }}=503 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of shear reinforcement provided exceeds minimum required
Max longitudinal spacing; $\quad S_{v 1}, \max =\mathbf{2 8 8} \mathrm{mm}$
PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Shear - span 2 at $384 \mathrm{~mm} ; \quad \mathrm{V}=1 \mathrm{kN}$; \quad Shear stress; $\quad \mathrm{V}=\mathbf{0 . 0 0 7 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
Allowable design shear stress; $\mathrm{V}_{\text {max }}=4.866 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum allowable
Value of v from Table 3.7; $\quad \mathrm{v}<0.5 \mathrm{v}_{\mathrm{c}}$
Design shear resistance req'd; $\mathrm{v}_{\mathrm{s}}=\mathbf{0 . 4 0 0} \mathrm{N} / \mathrm{mm}^{2} ; \quad$ Area of shear reinf req'd; $\quad A_{\text {sv, req }}=\mathbf{4 6 0} \mathrm{mm}^{2} / \mathrm{m}$
Shear reinforcement provided; $2 \times 8 \phi$ legs at $200 \mathrm{c} / \mathrm{c} ; \quad$ Area of shear reinf. prov; $\quad A_{\text {sv, prov }}=503 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of shear reinforcement provided exceeds minimum required
Max longitudinal spacing; $\quad \mathrm{Sv}_{\mathrm{v}, \max }=\mathbf{2 8 8} \mathrm{mm}$
PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Spacing of reinforcement (cl 3.12.11)
Actual dist between bars; $\quad \mathrm{s}=\mathbf{1 6 8} \mathrm{mm}$;

Design service stress; $\quad f_{s}=0.5 \mathrm{~N} / \mathrm{mm}^{2}$;

Min dist between bars; $\quad S_{\text {min }}=\mathbf{2 5 m m}$
PASS - Satisfies the minimum spacing criteria
Max distance between bars; $\quad \mathrm{S}_{\text {max }}=\mathbf{3 0 0} \mathrm{mm}$
PASS - Satisfies the maximum spacing criteria

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				8	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Mid span 2

Design moment resistance of rectangular section (cl. 3.4.4)

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Spacing of reinforcement (cl 3.12.11)

Actual dist between bars;	$\mathrm{s}=\mathbf{1 6 8} \mathrm{mm} ;$
Design service stress;	$\mathrm{f}_{\mathrm{s}}=\mathbf{0 . 1} \mathrm{N} / \mathrm{mm}^{2} ;$

Min dist between bars; $\quad S_{\text {min }}=\mathbf{2 5 m m}$
PASS - Satisfies the minimum spacing criteria
Max distance between bars; $\quad S_{\max }=\mathbf{3 0 0} \mathrm{mm}$
PASS - Satisfies the maximum spacing criteria
Span to depth ratio (cl. 3.4.6)
Span to depth ratio (T.3.9); span_to_depth basic $=\mathbf{2 6 . 0}$;
Service stress in tension rein; $f_{s}=0.1 \mathrm{~N} / \mathrm{mm}^{2}$
Modification for tension reinf;
$\mathrm{f}_{\text {tens }}=2.000$
Modification for span > 10m;
$\mathrm{flong}=1.000$;
Modification for comp reinf; $\quad f_{c o m p}=1.095$
Allowable span to depth ratio; span_to_depthallow $=\mathbf{5 6 . 9}$
Actual span to depth ratio; \quad span_to_depth ${ }_{\text {actual }}=1.2$
PASS - Actual span to depth ratio is within the allowable limit

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.9	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Support C

Design moment resistance of rectangular section (cl. 3.4.4)

Design bending moment;	$\mathrm{M}=\mathbf{0} \mathrm{kNm} ;$	Depth to tension reinf;	$\mathrm{d}=\mathbf{3 8 4} \mathrm{mm}$
	$\mathrm{K}=\mathbf{0 . 0 0 0 ;}$		$\mathrm{K}^{\prime}=\mathbf{0 . 1 5 6}$

Allowable design shear stress; $\mathrm{V}_{\text {max }}=4.866 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum allowable
Value of v from Table 3.7; $v<0.5 v_{c}$
Design shear resistance req'd; $\mathrm{v}_{\mathrm{s}}=\mathbf{0 . 4 0 0} \mathrm{N} / \mathrm{mm}^{2} ; \quad$ Area of shear reinf req'd; \quad Asv,req $=\mathbf{4 6 0} \mathrm{mm}^{2} / \mathrm{m}$
Shear reinforcement provided; $2 \times 8 \phi$ legs at $200 \mathrm{c} / \mathrm{c} ; \quad$ Area of shear reinf. prov; $\quad A_{\text {sv,prov }}=503 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of shear reinforcement provided exceeds minimum required
Max longitudinal spacing; $\quad S_{v 1}, \max =\mathbf{2 8 8} \mathrm{mm}$
PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Allowable design shear stress; $\mathrm{V}_{\text {max }}=4.866 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum allowable
Value of v from Table 3.7; $\quad \mathrm{v}<0.5 \mathrm{v}_{\mathrm{c}}$
Design shear resistance req'd; $\mathrm{v}_{\mathrm{s}}=\mathbf{0 . 4 0 0 \mathrm { N } / \mathrm { mm } ^ { 2 } ; \quad \text { Area of shear reinf req'd; } \quad A _ { s v , r e q } = \mathbf { 4 6 0 } \mathrm { mm } ^ { 2 } / \mathrm { m } , ~}$
Shear reinforcement provided; $2 \times 8 \phi$ legs at $200 \mathrm{c} / \mathrm{c} ; \quad$ Area of shear reinf. prov; $\quad A_{\text {sv, prov }}=503 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of shear reinforcement provided exceeds minimum required
Max longitudinal spacing; $\quad S_{\mathrm{vv}, \max }=\mathbf{2 8 8} \mathrm{mm}$
PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Spacing of reinforcement (cl 3.12.11)
Actual dist between bars; $\quad \mathrm{s}=\mathbf{1 6 8} \mathrm{mm}$;

Design service stress; $\quad f_{s}=0.5 \mathrm{~N} / \mathrm{mm}^{2}$;

Min dist between bars; $\quad S_{\text {min }}=\mathbf{2 5 m m}$
PASS - Satisfies the minimum spacing criteria
Max distance between bars; $\quad \mathrm{S}_{\text {max }}=\mathbf{3 0 0} \mathrm{mm}$
PASS - Satisfies the maximum spacing criteria

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				10	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Mid span 3

Design moment resistance of rectangular section (cl. 3.4.4)

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
Spacing of reinforcement (cl 3.12.11)

Actual dist between bars;	$\mathrm{s}=\mathbf{1 6 8} \mathrm{mm} ;$
Design service stress;	$\mathrm{f}_{\mathrm{s}}=\mathbf{0 . 4} \mathrm{N} / \mathrm{mm}^{2} ;$

Min dist between bars; $\quad S_{\text {min }}=\mathbf{2 5 m m}$
PASS - Satisfies the minimum spacing criteria
Max distance between bars; $\quad S_{\max }=\mathbf{3 0 0} \mathrm{mm}$
PASS - Satisfies the maximum spacing criteria
Span to depth ratio (cl. 3.4.6)
Span to depth ratio (T.3.9); span_to_depth basic $=\mathbf{2 6 . 0}$;
Service stress in tension rein; $f_{s}=0.4 \mathrm{~N} / \mathrm{mm}^{2}$
Modification for tension reinf;
$\mathrm{f}_{\text {tens }}=2.000$
$\mathrm{flong}=1.000$;
Modification for comp reinf; $\quad f_{\text {comp }}=1.095$
Allowable span to depth ratio; span_to_depthallow $=\mathbf{5 6 . 9}$
Actual span to depth ratio; \quad span_to_depth ${ }_{\text {actual }}=1.2$
PASS - Actual span to depth ratio is within the allowable limit

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Support D

Rectangular section in shear

Allowable design shear stress; $\mathrm{V}_{\text {max }}=4.866 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum allowable
Value of v from Table 3.7; $\mathrm{v}<0.5 \mathrm{v}_{\mathrm{c}}$
Design shear resistance req'd; $\mathrm{v}_{\mathrm{s}}=\mathbf{0 . 4 0 0} \mathrm{N} / \mathrm{mm}^{2} ; \quad$ Area of shear reinf req'd; $\quad A_{\text {sv,req }}=\mathbf{4 6 0} \mathrm{mm}^{2} / \mathrm{m}$
Shear reinforcement provided; $2 \times 8 \phi$ legs at $200 \mathrm{c} / \mathrm{c} ; \quad$ Area of shear reinf. prov; \quad Asv,prov $=503 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Area of shear reinforcement provided exceeds minimum required
Max longitudinal spacing; $\quad \mathrm{Svl}_{\mathrm{l}, \text { max }}=\mathbf{2 8 8} \mathrm{mm}$
PASS - Longitudinal spacing of shear reinforcement provided is less than maximum
;

500 mm wide $\times 450 \mathrm{~mm}$ deep R.C with Min. 3No.T16 bars top and bottom capping beam is adequate

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.12	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Check 450 mm dia. CHS unreinforced from lateral loads

CHS section to be checked without reinforcement and concrete worst case.

Pile will be checked as simply supported due to restraint at bottom via pile base being socketed into bedrock and continuous R.C capping beam installed at head of pile.

STEEL BEAM ANALYSIS \& DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

Support conditions

Support A Vertically restrained
Rotationally free

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section	Structural Calculations			13	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output
Support B
Applied loading
Beam loads

Load combinations

Load combination 1

Support A

Support B
$M_{\text {max }}=484.9 \mathrm{kNm}$;
$V_{\text {max }}=195.8 \mathrm{kN}$;
$\delta_{\text {max }}=19.9 \mathrm{~mm}$;
$R_{A_{\text {_max }}}=195.8 \mathrm{kN}$;
$R_{A_{\text {_Dead }}}=4.1 \mathrm{kN}$
RA_Imposed $=118.9 \mathrm{kN}$
$R_{B _ \text {max }}=105.7 \mathrm{kN}$;
$R_{B_{_} \text {Dead }}=4.1 \mathrm{kN}$
$R_{\mathrm{R}_{_} \text {Imposed }}=\mathbf{6 2 . 5} \mathrm{kN}$

Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$

Analysis results

Maximum moment;
Maximum shear;
Deflection;
Maximum reaction at support A;
Unfactored dead load reaction at support A;
Unfactored imposed load reaction at support A;
Maximum reaction at support B;
Unfactored dead load reaction at support B;
Unfactored imposed load reaction at support B;
Section details
Section type;
CHS 457.0x10.0 (Tata Steel Celsius (Gr355 Gr420 Gr460))
Steel grade;
S275
From table 9: Design strength p_{y}
Thickness of element;
Design strength;
$\mathrm{t}=10.0 \mathrm{~mm}$
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=205000 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{M}_{\text {min }}=\mathbf{0} \mathrm{kNm}$
$V_{\text {min }}=-105.7 \mathrm{kN}$
$\delta_{\text {min }}=0 \mathrm{~mm}$
$\mathrm{R}_{\mathrm{A} _ \text {min }}=195.8 \mathrm{kN}$

Modulus of elasticity;
$t=10.0 \mathrm{~mm}$
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=205000 \mathrm{~N} / \mathrm{mm}^{2}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations
Output
Lateral restraint
Span 1 has lateral restraint at supports only
Effective length factors
Effective length factor in major axis;
$K_{x}=1.00$
Effective length factor in minor axis;
$K_{y}=1.00$
Effective length factor for lateral-torsional buckling;
$K_{\text {LT. } . ~}=1.00$;
$K_{\text {Lt } . B}=1.00$;
Classification of cross sections - Section 3.5

$$
\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{py}\right]=1.00
$$

Tubular sections - Table 12

$$
\mathrm{D} / \mathrm{t}=45.7 \times \varepsilon<=50 \times \varepsilon^{2} ;
$$

Class 2 compact

Section is class 2 compact
Shear capacity - Section 4.2.3
Design shear force;
Shear area;
$F_{v}=\max \left(a b s\left(V_{\max }\right), a b s\left(V_{\text {min }}\right)\right)=195.8 \mathrm{kN}$

Design shear resistance;
$A_{v}=0.6 \times \mathrm{A}=\mathbf{8 4 2 6} \mathrm{mm}^{2}$
$P_{v}=0.6 \times p_{y} \times A_{v}=1390.2 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment;
Moment capacity low shear - cl.4.2.5.2;
$\mathrm{M}=\max \left(\operatorname{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\max }\right), \operatorname{abs}\left(\mathrm{M}_{\mathrm{s} 1 _\min }\right)\right)=484.9 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{c}}=\min \left(\mathrm{p}_{\mathrm{y}} \times \mathrm{S}, 1.2 \times \mathrm{p}_{\mathrm{y}} \times \mathrm{Z}\right)=506.8 \mathrm{kNm}$
PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection;
Maximum deflection span 1;
$\delta_{\text {lim }}=L_{s 1} / 360=20.833 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\max }\right), \operatorname{abs}\left(\delta_{\min }\right)\right)=19.877 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

450 mm diameter steel pile is suitable for lateral loads worst case.

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref. C23.07.32	
	Structural Calculations				Sheet no./rev.15	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Check 450mm dia. Pile for compressive and tensile resistance.

PILE ANALYSIS

In accordance with EN 1997-1:2004 incorporating Corrigendum dated February 2009 and the UK national annex
Tedds calculation version 1.0 .08
Design summary

| Description | Unit | Actual | Allowable | Utilisation | Result |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Axial, compression | kN | 4 | 479 | 0.008 | PASS |
| Axial, tension | kN | 185.1 | 378.7 | 0.489 | PASS |

$\stackrel{4}{\longrightarrow}$

Pile details

Installation method;
Length;
Drilled;
Shape;
450 mm diameter

Material details

Material:
Concrete;
Partial safety factor, concrete; $\gamma \mathrm{C}=\mathbf{1 . 5 0}$;
Characteristic compression cylinder strength;
$\mathrm{f}_{\mathrm{ck}}=\mathbf{3 0} \mathrm{N} / \mathrm{mm}^{2 ;}$
Mean value, cylinder strength;
Modulus of elasticity;
$\mathrm{f}_{\mathrm{cm}}=38.0 \mathrm{~N} / \mathrm{mm}^{2}$;
$\mathrm{E}=\mathrm{E}_{\mathrm{cm}}=32.8 \mathrm{kN} / \mathrm{mm}^{2}$

Geometric properties

Bearing area;
Moment of inertia;
$A_{\text {bearing }}=0.159 \mathrm{~m}^{2}$;
I = $201289 \mathrm{~cm}^{4}$

Concrete strength class;
C30/37
Coefficient $\alpha_{c c}$;
$\alpha_{c c}=0.85$

Design compressive strength
$\mathrm{f}_{\mathrm{cd}}=17.0 \mathrm{~N} / \mathrm{mm}^{2}$
Secant modulus of elasticity;
$\mathrm{E}_{\mathrm{cm}}=32.8 \mathrm{kN} / \mathrm{mm}^{2}$

Pile perimeter;
Perim $_{\text {pile }}=1.414 \mathrm{~m}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				16	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Action details

Compression:
Char. perm. unfav. action;
$\mathrm{G}_{\mathrm{c}, \mathrm{k}, \text { unfav }}=\mathbf{4 \mathrm { kN } \text { ; }}$
Char. perm. fav. action;
$\mathrm{G}_{\mathrm{c}, \mathrm{k}, \mathrm{fav}}=\mathbf{0} \mathrm{kN}$;
Char. variable unfav action;
$Q_{\mathrm{c}, \mathrm{k}}=\mathbf{0} \mathrm{kN}$
Tension:
Char. perm. unfav. action; $\quad \mathrm{G}_{\mathrm{t}, \mathrm{k}, \mathrm{unfav}}=169 \mathrm{kN}$;
Char. perm. fav. action;
$\mathrm{G}_{\mathrm{t}, \mathrm{k}, \mathrm{fav}}=\mathbf{0} \mathrm{kN}$
Char. variable unfav action;
$Q_{\mathrm{t}, \mathrm{k}}=12.4 \mathrm{kN}$
Geotechnical partial and model factors:
Design approach 1;
Model factor on comp. resist.; $\quad \gamma_{\text {model }}=\mathbf{1 . 4 0}$;
Model factor on tens. resist.; $\quad \gamma_{\text {model, }, \mathrm{t}}=1.40$
Permanent unfavourable, A1; $\quad \gamma$ G,unfav, A1 $=1.35$;
Permanent favourable, A1; $\quad \gamma$ G,fav,A1 $=\mathbf{1 . 0 0}$
Variable unfavourable, A1; $\quad \gamma \mathrm{Q}, \mathrm{A} 1=1.50$
Permanent unfavourable, A2; $\quad \gamma_{G, u n f a v, A 2}=1.00$;
Permanent favourable, A2; $\quad \gamma, \mathrm{fa}, \mathrm{A} 2=1.00$
Variable unfavourable, A2; $\quad \gamma \mathrm{Q}, \mathrm{A} 2=1.30$
Characteristic axial resistance
Charact. axial base resistance; $\mathrm{R}_{\mathrm{bk}}=15.9 \mathrm{kN}$;
Charact. axial shaft resistance; $\mathrm{R}_{\mathrm{sk}}=\mathbf{1 0 6 0 . 3} \mathrm{kN}$
Axial compressive resistance
Load combination 1: A1 + M1 + R1
Design compression action; $\quad \mathrm{F}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 1}=5.4 \mathrm{kN}$
Partial resist. factor, bearing; $\quad \gamma_{b, R 1}=\mathbf{1 . 0 0}$;
Design compr. resistance; $\quad \mathrm{R}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 1}=768.7 \mathrm{kN}$;
Partial resist. factor, shaft; $\quad \gamma_{\mathrm{s}, \mathrm{R} 1}=\mathbf{1 . 0 0}$
$\mathrm{F}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 1} / \mathrm{R}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 1}=\mathbf{0 . 0 0 7}$
PASS - Design compressive resistance exceeds design load
Load combination 2: A2 + M1 + R4
Design compression action; $\quad \mathrm{F}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 2}=4 \mathrm{kN}$
Partial resist. factor, bearing; $\quad \gamma \mathrm{b}, \mathrm{R4}=\mathbf{2 . 0 0 ;}$
Partial resist. factor, shaft;
$\gamma_{\mathrm{s}, \mathrm{R} 4}=1.60$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.17	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Design compr. resistance; $\quad R_{\mathrm{c}, \mathrm{d}, \mathrm{C} 2}=479 \mathrm{kN}$;
$\mathrm{F}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 2} / \mathrm{R}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 2}=0.008$
PASS - Design compressive resistance exceeds design load
Axial tensile resistance
Load combination 1: A1 + M1 + R1

Design tension load;	$\mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1}=\mathbf{2 4 6 . 8} \mathrm{kN} ;$	Part. resist. factor, shaft tens.; $\gamma_{\mathrm{s}, \mathrm{t}, \mathrm{R} 1}=\mathbf{1}$
Design tensile resistance;	$\mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1}=\mathbf{7 5 7 . 3} \mathrm{kN} ;$	$\mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1} / \mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1}=\mathbf{0 . 3 2 6}$

$\mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1} / \mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1}=0.326$
PASS - Design tensile resistance exceeds design load
Load combination 2: A2 + M1 + R4
Design tension load; $\quad \mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 2}=\mathbf{1 8 5 . 1} \mathrm{kN} ; \quad$ Part. resist. factor, shaft tens.; $\gamma_{\mathrm{s}, \mathrm{t}, \mathrm{R} 4}=\mathbf{2}$
Design tensile resistance; $\quad \mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 2}=\mathbf{3 7 8 . 7} \mathrm{kN}$;
$\mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 2} / \mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 2}=\mathbf{0 . 4 8 9}$
PASS - Design tensile resistance exceeds design load

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.18	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Check 3.6m High Lego Block Retaining Wall

Lego block dimensions $=1500 \mathrm{~mm}$ long $\times 600 \mathrm{~mm}$ wide $\times 600 \mathrm{~mm}$ deep

Lego blocks have been installed onto a 500 mm R.C concrete slab.

The lego blocks are not required to provide any retaining resistance due to the fact the CFA system has been installed directly behind. This has then been filled with no fines concrete with A393 fabric mesh. The lego block is acting as a shutter and has been installed upto a height of 3600 mm . (6 rows of 600 mm blocks) the sequence of installation should be verifyed by the Contractor who has installed them. By inspection the lego blocks are suitable for purpose. The 500 mm thick slab will be checked for suitablity to support the self weight of the lego blocks.

Check 500mm R.C slab - A393 mesh top and bottom

RC BEAM ANALYSIS \& DESIGN BS8110

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				19	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Support conditions

Support A	Vertically restrained
Rotationally free	
Support B	Vertically restrained
	Rotationally free

Applied loading

PL from Lego Block
Dead self weight of beam $\times 1$
Imposed point load 52 kN at 2000 mm

Load combinations

Load combination 1

Support A

Span 1

Support B
$\mathrm{M}_{\mathrm{A} _ \text {max }}=\mathbf{0} \mathrm{kNm}$;
$M_{s 1 _m a x}=57 \mathrm{kNm}$;
$\mathrm{MB}_{\text {_max }}=\mathbf{0} \mathrm{kNm}$;
$V_{A_{\text {_max }}}=69 \mathrm{kN}$;
$V_{\text {A_s1_max }}=\mathbf{5 0} \mathrm{kN}$;
$V_{\text {B_max }}=-119 \mathrm{kN}$;
$V_{\text {B_s1_max }}=\mathbf{- 1 0 0} \mathrm{kN}$;
$\mathrm{R}_{\mathrm{A}}=69 \mathrm{kN}$
$R_{A_{-} \text {Dead }}=38 \mathrm{kN}$
RA_Imposed $=10 \mathrm{kN}$
$\mathrm{R}_{\mathrm{B}}=119 \mathrm{kN}$
$R_{B_{-} \text {Dead }}=38 \mathrm{kN}$
$R_{\text {B_Imposed }}=42 \mathrm{kN}$

Rectangular section details

Section width; $\quad b=\mathbf{2 5 0 0} \mathrm{mm}$
Section depth;
$\mathrm{h}=500 \mathrm{~mm}$
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$

Analysis results

Maximum moment support A;
Maximum moment span 1 at 1646 mm ;
Maximum moment support B;
Maximum shear support A;
Maximum shear support A span 1 at 440 mm ;
Maximum shear support B;
Maximum shear support B span 1 at 2050 mm;
Maximum reaction at support A;
Unfactored dead load reaction at support A;
Unfactored imposed load reaction at support A;
Maximum reaction at support B;
Unfactored dead load reaction at support B;
Unfactored imposed load reaction at support B;
$\mathrm{M}_{\mathrm{A}_{-} \text {red }}=\mathbf{0} \mathrm{kNm}$;
$\mathrm{Ms}_{\mathrm{s} 1 \text { _red }}=\mathbf{5 7} \mathrm{kNm}$;
$\mathrm{MB}_{\text {_red }}=\mathbf{0} \mathrm{kNm}$;
$V_{A_{-} \text {red }}=69 \mathrm{kN}$
$V_{A_{-} \text {s1_red }}=50 \mathrm{kN}$
$V_{B_{_} \text {red }}=-119 \mathrm{kN}$
$V_{\text {B_s1_red }}=\mathbf{- 1 0 0} \mathrm{kN}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.20	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Check as simply supported slab

RC SLAB DESIGN (BS8110:PART1:1997)

CONCRETE SLAB DESIGN (CL 3.5.3 \& 4)

SIMPLE ONE WAY SPANNING SLAB DEFINITION

; Overall depth of slab; $\mathrm{h}=\mathbf{5 0 0} \mathrm{mm}$
; Cover to tension reinforcement resisting sagging; $\mathrm{C}_{b}=\mathbf{4 0} \mathrm{mm}$
; Trial bar diameter; $D_{\text {tryx }}=10 \mathrm{~mm}$
Depth to tension steel (resisting sagging)

$$
\mathrm{d}_{\mathrm{x}}=\mathrm{h}-\mathrm{c}_{\mathrm{b}}-\mathrm{D}_{\mathrm{try}} / 2=455 \mathrm{~mm}
$$

; Characteristic strength of reinforcement; $f_{y}=\mathbf{5 0 0} \mathrm{N} / \mathrm{mm}^{2}$
; Characteristic strength of concrete; $\mathrm{f}_{\mathrm{cu}}=35 \mathrm{~N} / \mathrm{mm}^{2}$

ONE WAY SPANNING SLAB (CL 3.5.4)

MAXIMUM DESIGN MOMENTS IN SPAN

; Design sagging moment (per m width of slab); $\mathrm{m}_{\mathrm{sx}}=57.0 \mathrm{kNm} / \mathrm{m}$

CONCRETE SLAB DESIGN - SAGGING - OUTER LAYER OF STEEL (CL 3.5.4)

; Design sagging moment (per m width of slab); $\mathrm{m}_{\mathrm{sx}}=57.0 \mathrm{kNm} / \mathrm{m}$
; Moment Redistribution Factor; $\beta b x=1.0$

Area of reinforcement required

;; $\quad K_{x}=a b s\left(m_{s x}\right) /\left(d_{x}^{2} \times f_{c u}\right)=0.008$
$K_{x}^{\prime}=\min \left(0.156,\left(0.402 \times\left(\beta_{b x}-0.4\right)\right)-\left(0.18 \times\left(\beta_{b x}-0.4\right)^{2}\right)\right)=\mathbf{0 . 1 5 6}$
Outer compression steel not required to resist sagging

One-way Spanning Slab requiring tension steel only (sagging) - mesh

$; ; \quad z_{x}=\min \left(\left(0.95 \times d_{x}\right),\left(d_{x} \times\left(0.5+\sqrt{ }\left(0.25-K_{x} / 0.9\right)\right)\right)\right)=432 \mathrm{~mm}$
Neutral axis depth; $\mathrm{x}_{\mathrm{x}}=\left(\mathrm{d}_{\mathrm{x}}-\mathrm{z}_{\mathrm{x}}\right) / 0.45=51 \mathrm{~mm}$
Area of tension steel required
;;; $\quad A_{s x _ \text {req }}=a b s\left(m_{s x}\right) /\left(1 / \gamma_{\mathrm{ms}} \times \mathrm{ffy}_{\mathrm{y}} \times \mathrm{Zx}_{\mathrm{x}}\right)=\mathbf{3 0 3} \mathrm{mm}^{2} / \mathrm{m}$

Tension steel

i;Use A393 Mesh;

$A_{\text {sx_prov }}=A_{\text {sl }}=393 \mathrm{~mm}^{2} / \mathrm{m} ; A_{\text {sy_prov }}=A_{\text {st }}=393 \mathrm{~mm}^{2} / \mathrm{m}$
$D_{x}=d_{s l}=10 \mathrm{~mm} ; D_{y}=d_{s t}=10 \mathrm{~mm}$
Area of tension steel provided sufficient to resist sagging

Check min and max areas of steel resisting sagging

;Total area of concrete; $\mathrm{A}_{\mathrm{c}}=\mathrm{h}=500000 \mathrm{~mm}^{2} / \mathrm{m}$
; Minimum \% reinforcement; $\mathrm{k}=\mathbf{0 . 1 3 \%}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.21	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output
$A_{\text {st_min }}=\mathrm{k} \times \mathrm{A}_{\mathrm{c}}=\mathbf{6 5 0} \mathrm{mm}^{2} / \mathrm{m}$
$A_{\text {st_max }}=4 \% \times \mathrm{A}_{\mathrm{c}}=\mathbf{2 0 0 0 0} \mathrm{mm}^{2} / \mathrm{m}$

Steel defined:
; \quad Outer steel resisting sagging; $A_{\text {sx_prov }}=786 \mathrm{~mm}^{2} / \mathrm{m}$
Less than min area of outer steel (sagging) OKL
; Inner steel resisting sagging; $A_{\text {sy_prov }}=786 \mathrm{~mm}^{2} / \mathrm{m}$
Less than min area of inner steel (sagging) OKL Slab mesh has been nested top and bottom therefore ok.

SHEAR RESISTANCE OF CONCRETE SLABS (CL 3.5.5)

Outer tension steel resisting sagging moments
; Depth to tension steel from compression face; $\mathrm{d}_{\mathrm{x}}=\mathbf{4 5 5} \mathrm{mm}$
; Area of tension reinforcement provided (per m width of slab); $A_{\text {sx_prov }}=393 \mathrm{~mm}^{2} / \mathrm{m}$
; Design ultimate shear force (per m width of slab); $\mathrm{V}_{\mathrm{x}}=119 \mathrm{kN} / \mathrm{m}$
; Characteristic strength of concrete; $\mathrm{f}_{\mathrm{cu}}=35 \mathrm{~N} / \mathrm{mm}^{2}$

Applied shear stress

$\mathrm{v}_{\mathrm{x}}=\mathrm{V}_{\mathrm{x}} / \mathrm{d}_{\mathrm{x}}=0.26 \mathrm{~N} / \mathrm{mm}^{2}$
Check shear stress to clause 3.5.5.2
$V_{\text {allowable }}=\min \left(\left(0.8 \mathrm{~N}^{1 / 2} / \mathrm{mm}\right) \times \sqrt{ }\left(\mathrm{f}_{\mathrm{cu}}\right), 5 \mathrm{~N} / \mathrm{mm}^{2}\right)=4.73 \mathrm{~N} / \mathrm{mm}^{2}$

Shear stresses to clause 3.5.5.3

Design shear stress

$\mathrm{f}_{\text {cu_ratio }}=$ if $\left(\mathrm{f}_{\mathrm{cu}}>40 \mathrm{~N} / \mathrm{mm}^{2}, 40 / 25, \mathrm{f}_{\mathrm{cu}} /\left(25 \mathrm{~N} / \mathrm{mm}^{2}\right)\right)=\mathbf{1 . 4 0 0}$
$v_{c x}=0.79 \mathrm{~N} / \mathrm{mm}^{2} \times \min \left(3,100 \times A_{\text {sx_prov }} / d_{x}\right)^{1 / 3} \times \max \left(0.67,\left(400 \mathrm{~mm} / \mathrm{d}_{\mathrm{x}}\right)^{1 / 4}\right) / 1.25 \times \mathrm{f}_{\text {cu_ratio }}{ }^{1 / 3}$
$\mathrm{v}_{\mathrm{cx}}=0.30 \mathrm{~N} / \mathrm{mm}^{2}$
Applied shear stress
$\mathrm{v}_{\mathrm{x}}=0.26 \mathrm{~N} / \mathrm{mm}^{2}$

SHEAR PERIMETERS FOR A RECTANGULAR CONCENTRATED LOAD (CL 3.7.7)

; Length of loaded rectangle; $\mathrm{I}=\mathbf{6 0 0} \mathrm{mm}$
; Width of loaded rectangle; w = $\mathbf{1 0 0 0} \mathbf{~ m m}$
; Depth to tension steel; $d_{x}=\mathbf{4 5 5} \mathrm{mm}$
; Dimension from edge of load to shear perimeter; $l_{p}=k_{p} \times d_{x}=\mathbf{6 8 3} \mathrm{mm}$; where; $k_{p}=1.50$
For punching shear cases not affected by free edges or holes:
Total length of inner perimeter at edge of loaded area; uo_gen $=2 \times(\mathrm{l}+\mathrm{w})=\mathbf{3 2 0 0} \mathrm{mm}$
Total length of outer perimeter at I_{p} from loaded area; $\mathrm{ugen}=2 \times(\mathrm{I}+\mathrm{w})+8 \times \mathrm{I}_{\mathrm{p}}=\mathbf{8 6 6 0} \mathbf{~ m m}$

PUNCHING SHEAR AT CONCENTRATED LOADS (CL 3.7.7)

Tension steel resisting sagging

; Total length of inner perimeter at edge of loaded area; $u_{0}=\mathbf{3 2 0 0} \mathrm{mm}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job RefC23.07.32	
	Structural Calculations				Sheet no./rev.22	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

> | $;$ | Total length of outer perimeter at dimension I_{p} from loaded area; $\mathrm{u}=\mathbf{8 6 6 0} \mathrm{mm}$ |
| :--- | :--- |
| $;$ | Depth to outer steel; $\mathrm{d}_{\mathrm{x}}=\mathbf{4 5 5} \mathrm{mm}$ |
| $;$ | Depth to inner steel; $\mathrm{d}_{\mathrm{y}}=\mathbf{4 5 ~ \mathrm { mm }}$ |
| $;$ | Average depth to "tension" steel; $\mathrm{d}_{\mathrm{av}}=\left(\mathrm{d}_{\mathrm{x}}+\mathrm{d}_{\mathrm{y}}\right) / 2=\mathbf{2 5 0 . 0} \mathrm{mm}$ |
| $;$ | Area of outer steel per m effective through the perimeter; $\mathrm{A}_{\mathrm{sx} _ \text {_prov }}=393 \mathrm{~mm}^{2} / \mathrm{m}$ |
| $;$ | Area of inner steel per m effective through the perimeter; Asy_prov $=393 \mathrm{~mm}^{2} / \mathrm{m}$ |
| $;$ | Max shear effective across either perimeter under consideration; $\mathrm{V}_{\mathrm{p}}=119 \mathrm{kN}$ |
| $;$ | Characteristic strength of concrete; $\mathrm{f}_{\mathrm{cu}}=\mathbf{3 5 N} / \mathrm{mm}^{2}$ |

Applied shear stress

Stress around loaded area; $\mathrm{v}_{\max }=\mathrm{V}_{\mathrm{p}} /\left(\mathrm{u}_{0} \times \mathrm{dav}\right)=0.149 \mathrm{~N} / \mathrm{mm}^{2}$
Stress around perimeter; $\mathrm{v}=\mathrm{V}_{\mathrm{p}} /\left(\mathrm{u} \times \mathrm{d}_{\mathrm{av}}\right)=0.055 \mathrm{~N} / \mathrm{mm}^{2}$

Check shear stress to clause 3.7.7.2

$$
V_{\text {allowable }}=\min \left(\left(0.8 \mathrm{~N}^{1 / 2} / \mathrm{mm}\right) \times \sqrt{ }\left(\mathrm{f}_{\mathrm{cu}}\right), 5 \mathrm{~N} / \mathrm{mm}^{2}\right)=4.733 \mathrm{~N} / \mathrm{mm}^{2}
$$

Shear stress - OK

Shear stresses to clause 3.7.7.4

Design shear stress

$$
\mathrm{f}_{\text {cu_ratio }}=\text { if }\left(\mathrm{f}_{\mathrm{cu}}>40 \mathrm{~N} / \mathrm{mm}^{2}, 40 / 25, \mathrm{f}_{\mathrm{ccu}}\left(\left(25 \mathrm{~N} / \mathrm{mm}^{2}\right)\right)=1.400\right.
$$

Effective steel area for shear strength determination:; $\quad A_{s_{-} \text {eff }}=393 \mathrm{~mm}^{2} / \mathrm{m}$;

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{c}}=0.79 \mathrm{~N} / \mathrm{mm}^{2} \times \min \left(3,100 \times\left(\mathrm{A}_{\mathrm{s}_{-} \text {eff }} / \mathrm{d}_{\mathrm{av}}\right)\right)^{1 / 3} \times \max \left(0.67,\left(400 \mathrm{~mm} / \mathrm{dav}_{\mathrm{av}}\right)^{1 / 4}\right) / 1.25 \times \mathrm{f}_{\text {cu_ratio }}{ }^{1 / 3} \\
& \mathrm{v}_{\mathrm{c}}=0.429 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

CONCRETE SLAB DEFLECTION CHECK (CL 3.5.7)

; \quad Slab span length; $\mathrm{l}_{\mathrm{x}}=\mathbf{2} .500 \mathrm{~m}$
; Design ultimate moment in shorter span per m width; $\mathrm{m}_{\mathrm{sx}}=57 \mathrm{kNm} / \mathrm{m}$
; Depth to outer tension steel; $\mathrm{d}_{\mathrm{x}}=\mathbf{4 5 5} \mathrm{mm}$
Tension steel
; Area of outer tension reinforcement provided; $A_{\text {sx_prov }}=393 \mathrm{~mm}^{2} / \mathrm{m}$
; \quad Area of tension reinforcement required; $A_{\text {sx_req }}=\mathbf{3 0 3} \mathrm{mm}^{2} / \mathrm{m}$
; Moment Redistribution Factor; $\beta_{b x}=1.00$

Modification Factors

;Basic span / effective depth ratio (Table 3.9); ratio span_depth $=\mathbf{2 0}$
The modification factor for spans in excess of 10 m (ref. cl 3.4.6.4) has not been included.
; $\mathrm{f}_{\mathrm{s}}=2 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{A}_{\mathrm{sx} \text { _req }} /\left(3 \times \mathrm{A}_{\mathrm{sx} _ \text {_prov }} \times \beta_{\mathrm{bx}}\right)=\mathbf{2 5 7 . 2} \mathrm{N} / \mathrm{mm}^{2}$
factortens $=\min \left(2,0.55+\left(477 \mathrm{~N} / \mathrm{mm}^{2}-\mathrm{f}_{\mathrm{s}}\right) /\left(120 \times\left(0.9 \mathrm{~N} / \mathrm{mm}^{2}+\mathrm{m}_{\mathrm{sx}} / \mathrm{d}_{\mathrm{x}}{ }^{2}\right)\right)\right)=\mathbf{2 . 0 0 0}$

Calculate Maximum Span

This is a simplified approach and further attention should be given where special circumstances exist. Refer to clauses 3.4.6.4 and 3.4.6.7.

Maximum span; $I_{\text {max }}=$ ratio $_{\text {span_depth }} \times$ factortens $\times \mathrm{d}_{\mathrm{x}}=\mathbf{1 8 . 2 0} \mathbf{m}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.23	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations
Output
Check the actual beam span
Actual span/depth ratio; $\mathrm{I}_{\mathrm{x}} / \mathrm{d}_{\mathrm{x}}=5.49$
Span depth limit; ratio span_depth $^{\times}$factor $_{\text {tens }}=\mathbf{4 0 . 0 0}$
Span/Depth ratio check satisfied

CHECK OF NOMINAL COVER (SAGGING) - (BS8110:PT 1, TABLE 3.4)

; Slab thickness; h = $\mathbf{5 0 0} \mathbf{~ m m}$
; Effective depth to bottom outer tension reinforcement; $d_{x}=\mathbf{4 5 5 . 0} \mathrm{mm}$
; Diameter of tension reinforcement; $\mathrm{D}_{\mathrm{x}}=\mathbf{1 0} \mathrm{mm}$
; Diameter of links; $L_{\text {diax }}=\mathbf{0} \mathbf{m m}$
Cover to outer tension reinforcement
$C_{\text {ten }}=\mathrm{h}-\mathrm{d}_{\mathrm{x}}-\mathrm{D}_{\mathrm{x}} / 2=\mathbf{4 0 . 0} \mathrm{mm}$
Nominal cover to links steel
$C_{\text {nomx }}=C_{\text {tenx }}-L_{\text {diax }}=\mathbf{4 0 . 0}$ mm
Permissable minimum nominal cover to all reinforcement (Table 3.4)
; $\quad C_{\text {min }}=40 \mathrm{~mm}$
Cover over steel resisting sagging OK

500mm Thick R.C slab with $2 \times A 393$ mesh top and bottom (40 mm cover) is adequate to support stone faced lego blocks ($\mathbf{3 . 6 m}$ high)

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.24	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Check 600 mm dia. CHS unreinforced from lateral loads

CHS section to be checked without reinforcement and concrete worst case. (508 x 10 CHS checked based on closest wall thickness)

Pile will be checked as simply supported due to restraint at bottom via pile base being socketed into bedrock and continuous R.C capping beam installed at head of pile.

STEEL BEAM ANALYSIS \& DESIGN (BS5950)

In accordance with BS5950-1:2000 incorporating Corrigendum No. 1

Support conditions

Support A Vertically restrained
Rotationally free

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job RefC23.07.32	
	Section				Sheet no./rev25	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output
Support B
Applied loading
Beam loads

Load combinations

Load combination 1

Support A

Support B
$M_{\text {max }}=486 \mathrm{kNm}$;
$V_{\text {max }}=196.5 \mathrm{kN}$;
$\delta_{\text {max }}=14.4 \mathrm{~mm}$;
$R_{A_{\text {_max }}}=196.5 \mathrm{kN}$;
$\mathrm{R}_{\mathrm{A}_{\text {_Dead }}}=4.5 \mathrm{kN}$
RA_Imposed $=118.9 \mathrm{kN}$
$R_{B_{-} \max }=106.4 \mathrm{kN}$;
$R_{B _ \text {min }}=106.4 \mathrm{kN}$
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$
Dead $\times 1.40$
Imposed $\times 1.60$

Maximum reaction at support B;
Unfactored dead load reaction at support B;
Unfactored imposed load reaction at support B;
$R_{B_{\text {_Dead }}}=4.5 \mathrm{kN}$
RB_{Z} Imposed $=\mathbf{6 2 . 5} \mathrm{kN}$
Analysis results
Maximum moment;
Maximum shear;
Deflection;
Maximum reaction at support A;
Unfactored dead load reaction at support A;
Unfactored imposed load reaction at support A;

Section details
Section type;
CHS 508.0x10.0 (Tata Steel Celsius (Gr355 Gr420 Gr460))
Steel grade;
S275
From table 9: Design strength p_{y}
Thickness of element;
Design strength;
$\mathrm{t}=10.0 \mathrm{~mm}$
$p_{y}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=205000 \mathrm{~N} / \mathrm{mm}^{2}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev26	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations
Output
Lateral restraint
Span 1 has lateral restraint at supports only
Effective length factors
Effective length factor in major axis; $\quad K_{x}=1.00$
Effective length factor in minor axis;
$K_{y}=1.00$
Effective length factor for lateral-torsional buckling;
$K_{\text {Lt. }}=1.00$;
$K_{\text {Lt } . B}=1.00$;
Classification of cross sections - Section 3.5

$$
\varepsilon=\sqrt{ }\left[275 \mathrm{~N} / \mathrm{mm}^{2} / \mathrm{py}\right]=1.00
$$

Tubular sections - Table 12
$\mathrm{D} / \mathrm{t}=50.8 \times \varepsilon<=140 \times \varepsilon^{2} ; \quad$ Class 3 semi-compact
Section is class 3 semi-compact

Shear capacity - Section 4.2.3

Design shear force;
Shear area;
$\mathrm{F}_{\mathrm{v}}=\max \left(\operatorname{abs}\left(\mathrm{V}_{\text {max }}\right), \operatorname{abs}\left(\mathrm{V}_{\text {min }}\right)\right)=196.5 \mathrm{kN}$

Design shear resistance;
$A_{v}=0.6 \times \mathrm{A}=9387 \mathrm{~mm}^{2}$
$P_{v}=0.6 \times p_{y} \times A_{v}=1548.9 \mathrm{kN}$
PASS - Design shear resistance exceeds design shear force

Moment capacity - Section 4.2.5

Design bending moment;
$M=\max \left(a b s\left(M_{s 1 _\max }\right), a b s\left(M_{s 1 _m i n}\right)\right)=486 \mathrm{kNm}$
Effective plastic modulus - Section 3.5.6
Limiting value for class 2 compact flange;
$\beta_{2 f}=10 \times \varepsilon=10$
Limiting value for class 3 semi-compact flange;
$\beta_{3 f}=15 \times \varepsilon=15$
Limiting value for class 2 compact web;
$\beta_{2 w}=100 \times \varepsilon=100$
Limiting value for class 3 semi-compact web;
$\beta_{3 w}=120 \times \varepsilon=120$
Effective plastic modulus - cl.3.5.6.4

$$
S_{\text {eff }}=\min \left(Z+1.485 \times(S-Z) \times\left[\sqrt{ }\left[(140 /(D / t)) \times\left(275 \mathrm{~N} / \mathrm{mm}^{2} / p_{y}\right)\right]-1\right], S\right)=\mathbf{2 4 6 9 1 0 6} \mathrm{mm}^{3}
$$

Moment capacity low shear - cl.4.2.5.2; $\quad M_{c}=\min \left(p_{y} \times S_{\text {eff }}, 1.2 \times p_{y} \times Z\right)=\mathbf{6 3 0 . 4} \mathrm{kNm}$
PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to dead and imposed loads

Limiting deflection;
Maximum deflection span 1;
$\delta_{\text {lim }}=L_{\text {s } 1} / 360=20.833 \mathrm{~mm}$
$\delta=\max \left(\operatorname{abs}\left(\delta_{\text {max }}\right), \operatorname{abs}\left(\delta_{\text {min }}\right)\right)=14.427 \mathrm{~mm}$
PASS - Maximum deflection does not exceed deflection limit

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				Sheet no./rev. 27	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Check 600 mm dia. Pile for compressive and tensile resistance.

PILE ANALYSIS

In accordance with EN 1997-1:2004 incorporating Corrigendum dated February 2009 and the UK national annex

Design summary

| Description | Unit | Actual | Allowable | Utilisation | Result |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Axial, compression | kN | 119 | 641.2 | 0.186 | PASS |
| Axial, tension | kN | 185.1 | 504.9 | 0.367 | PASS |

Pile details

Installation method;
Length;

Material details

Material:
Partial safety factor, concrete; $\gamma \mathrm{C}=\mathbf{1 . 5 0}$;
Characteristic compression cylinder strength;
$\mathrm{f}_{\mathrm{ck}}=\mathbf{3 0} \mathrm{N} / \mathrm{mm}^{2 ;}$
Mean value, cylinder strength; $f_{c m}=38.0 \mathrm{~N} / \mathrm{mm}^{2}$;
Modulus of elasticity;
$\mathrm{E}=\mathrm{E}_{\mathrm{cm}}=32.8 \mathrm{kN} / \mathrm{mm}^{2}$

Geometric properties

Bearing area;
Moment of inertia;
Abearing $=0.283 \mathrm{~m}^{2}$;
$\mathrm{I}=\mathbf{6 3 6 1 7 3} \mathrm{cm}^{4}$
$\mathrm{L}=7500 \mathrm{~mm}$

Concrete;

Shape;
600 mm diameter

Concrete strength class;
C30/37
Coefficient $\alpha_{c c}$;
$\alpha_{c c}=0.85$

Design compressive strength; $f_{c d}=17.0 \mathrm{~N} / \mathrm{mm}^{2}$
Secant modulus of elasticity; $\quad \mathrm{E}_{\mathrm{cm}}=32.8 \mathrm{kN} / \mathrm{mm}^{2}$

Pile perimeter;
Perim $_{\text {pile }}=1.885 \mathrm{~m}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.28	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations

Output

Action details

Compression:
Char. perm. unfav. action;
$\mathrm{G}_{\mathrm{c}, \mathrm{k}, \text { unfav }}=119 \mathrm{kN}$;
Char. perm. fav. action;
$\mathrm{G}_{\mathrm{c}, \mathrm{k}, \mathrm{fav}}=\mathbf{0} \mathrm{kN}$;
Char. variable unfav action;
$Q_{\mathrm{c}, \mathrm{k}}=\mathbf{0} \mathrm{kN}$
Tension:
Char. perm. unfav. action; $\quad \mathrm{G}_{\mathrm{t}, \mathrm{k}, \text { unfav }}=169 \mathrm{kN}$;
Char. variable unfav action; $\quad Q_{t, k}=12.4 \mathrm{kN}$
Char. perm. fav. action; $\quad \mathrm{G}_{\mathrm{t}, \mathrm{k}, \text { fav }}=\mathbf{0} \mathrm{kN}$

Geotechnical partial and model factors:
Design approach 1;
Model factor on comp. resist.; $\quad \gamma_{\text {model }}=\mathbf{1 . 4 0}$;
Permanent unfavourable, A1; γ G,unfav, A1 $=1.35$;
Variable unfavourable, A1; $\quad \gamma \mathrm{Q}, \mathrm{A} 1=1.50$
Permanent unfavourable, A2; $\quad \gamma \mathrm{G}, \mathrm{unfav}, \mathrm{A} 2=1.00$
Variable unfavourable, A2; $\quad \gamma_{\mathrm{Q}, \mathrm{A} 2}=1.30$

Characteristic axial resistance

Charact. axial base resistance; $\mathrm{R}_{\mathrm{bk}}=\mathbf{2 8 . 3} \mathrm{kN}$;

Axial compressive resistance

Load combination 1: A1 + M1 + R1
Design compression action; $\quad \mathrm{F}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 1}=\mathbf{1 6 0 . 7} \mathrm{kN}$
Partial resist. factor, bearing; $\quad \gamma_{\mathrm{b}, \mathrm{R} 1}=\mathbf{1 . 0 0}$;
Design compr. resistance; $\quad R_{\mathrm{c}, \mathrm{d}, \mathrm{C} 1}=\mathbf{1 0 3 0} \mathrm{kN}$;

Load combination 2: A2 + M1 + R4
Design compression action; $\quad \mathrm{F}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 2}=119 \mathrm{kN}$
Partial resist. factor, bearing; $\quad \gamma_{\mathrm{b}, \mathrm{R} 4}=\mathbf{2 . 0 0}$;

Partial resist. factor, shaft; $\gamma_{\mathrm{s}, \mathrm{R} 1}=1.00$
$\mathrm{F}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 1} / \mathrm{R}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 1}=\mathbf{0 . 1 5 6}$
PASS - Design compressive resistance exceeds design load
Model factor on tens. resist.;
$\gamma_{\text {model, }, ~}=1.40$
Permanent favourable, A1; $\quad \gamma$ G,fav,A1 $=1.00$

Permanent favourable, A2;
$\gamma_{\mathrm{G}, \mathrm{fav}, \mathrm{A} 2}=1.00$

Charact. axial shaft resistance; $R_{\text {sk }}=1413.7 \mathrm{kN}$

PASS - Design compressive resistance exceeds design load

Partial resist. factor, shaft; $\quad \gamma_{\mathrm{s}, \mathrm{R4}}=\mathbf{1 . 6 0}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.29	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Design compr. resistance;

$$
\mathrm{R}_{\mathrm{c}, \mathrm{~d}, \mathrm{C} 2}=\mathbf{6 4 1 . 2} \mathrm{kN} ;
$$

$\mathrm{F}_{\mathrm{c}, \mathrm{d}, \mathrm{c} 2} / \mathrm{R}_{\mathrm{c}, \mathrm{d}, \mathrm{C} 2}=\mathbf{0 . 1 8 6}$
PASS - Design compressive resistance exceeds design load
Axial tensile resistance
Load combination 1: A1 + M1 + R1

Design tension load;	$\mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1}=\mathbf{2 4 6 . 8} \mathrm{kN} ;$	Part. resist. factor, shaft tens.; $\gamma_{\mathrm{s}, \mathrm{t}, \mathrm{R} 1}=\mathbf{1}$
Design tensile resistance;	$\mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1}=\mathbf{1 0 0 9 . 8} \mathbf{~ k N ;}$	$\mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1} / \mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1}=\mathbf{0 . 2 4 4}$

$\mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1} / \mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 1}=\mathbf{0 . 2 4 4}$
PASS - Design tensile resistance exceeds design load
Load combination 2: A2 + M1 + R4
$\begin{array}{lll}\text { Design tension load; } & \mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 2}=\mathbf{1 8 5 . 1} \mathrm{kN} ; & \text { Part. resist. factor, shaft tens.; } \gamma_{\mathrm{s}, \mathrm{t}, \mathrm{R} 4}=\mathbf{2}\end{array}$
Design tensile resistance; $\quad R_{\mathrm{t}, \mathrm{d}, \mathrm{C} 2}=\mathbf{5 0 4 . 9} \mathrm{kN}$;
$\mathrm{F}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 2} / \mathrm{R}_{\mathrm{t}, \mathrm{d}, \mathrm{C} 2}=\mathbf{0 . 3 6 7}$
PASS - Design tensile resistance exceeds design load

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.30	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Design of new reinforced concrete retaining wall (WALL A) (No vertical load scenario)

Max. height of retaining wall $=3.5 \mathrm{~m}$ Max. retained height.
$2.5 \mathrm{kN} / \mathrm{m}^{2}$ Surcharge (Garden) worst case

The wall will have a proprietary drain installed at the back of the wall to relieve any hydrostatic pressure.

The base has been designed as propped at the bottom due to the construction a new concrete floor slab.

RETAINING WALL ANALYSIS (BS 8002:1994)

Wall details

Retaining wall type;
Height of retaining wall stem;
Thickness of wall stem;
Length of toe;
Length of heel;
Overall length of base;
Thickness of base;
Depth of downstand;
Position of downstand;

Cantilever propped at base

$\mathrm{h}_{\text {stem }}=\mathbf{3 5 0 0} \mathrm{mm}$
$\mathrm{t}_{\text {wall }}=350 \mathrm{~mm}$
$I_{\text {toe }}=\mathbf{1 7 0 0 ~ m m}$
Ineel $=300 \mathrm{~mm}$
$I_{\text {base }}=I_{\text {toe }}+I_{\text {heel }}+t_{\text {wall }}=\mathbf{2 3 5 0} \mathbf{~ m m}$
$\mathrm{t}_{\text {base }}=\mathbf{3 5 0} \mathrm{mm}$
$d_{d s}=0 \mathrm{~mm}$
$l_{\mathrm{ds}}=1600 \mathrm{~mm}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.31	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations
Output

Thickness of downstand;
Height of retaining wall;
Depth of cover in front of wall;
Depth of unplanned excavation;
Height of ground water behind wall;
Height of saturated fill above base;
Density of wall construction;
Density of base construction;
Angle of rear face of wall;
Angle of soil surface behind wall;
Effective height at virtual back of wall;

Retained material details

Mobilisation factor;
Moist density of retained material;
Saturated density of retained material;
Design shear strength;
Angle of wall friction;

Base material details

Firm clay
Moist density;
Design shear strength;
Design base friction;
Allowable bearing pressure;

$$
M=1.5
$$

$$
\gamma_{\mathrm{m}}=18.0 \mathrm{kN} / \mathrm{m}^{3}
$$

$$
\gamma_{\mathrm{s}}=21.0 \mathrm{kN} / \mathrm{m}^{3}
$$

$$
\phi^{\prime}=25.0 \mathrm{deg}
$$

$$
\delta=19.3 \mathrm{deg}
$$

$$
\begin{aligned}
& \gamma_{\mathrm{mb}}=\mathbf{1 8 . 0} \mathrm{kN} / \mathrm{m}^{3} \\
& \phi_{\mathrm{b}}^{\prime}=\mathbf{2 4 . 2} \mathrm{deg} \\
& \delta_{\mathrm{b}}=\mathbf{1 8 . 6} \mathrm{deg} \\
& P_{\text {bearing }}=100 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{ds}}=350 \mathrm{~mm} \\
& \mathrm{~h}_{\text {wall }}=\mathrm{h}_{\text {stem }}+\mathrm{t}_{\text {base }}+\mathrm{d}_{\text {ds }}=\mathbf{3 8 5 0} \mathbf{~ m m} \\
& d_{\text {cover }}=\mathbf{1 0 0} \mathrm{mm} \\
& \mathrm{~d}_{\mathrm{exc}}=\mathbf{1 0 0} \mathrm{mm} \\
& h_{\text {water }}=\mathbf{0 m m} \\
& h_{\text {sat }}=\max \left(h_{\text {water }}-\text { tbase }-\mathrm{dds}_{\mathrm{ds}}, 0 \mathrm{~mm}\right)=0 \mathrm{~mm} \\
& \gamma_{\text {wall }}=23.6 \mathrm{kN} / \mathrm{m}^{3} \\
& \gamma_{\text {base }}=23.6 \mathrm{kN} / \mathrm{m}^{3} \\
& \alpha=90.0 \mathrm{deg} \\
& \beta=\mathbf{0 . 0 ~ d e g} \\
& h_{\text {eff }}=h_{\text {wall }}+I_{\text {heel }} \times \tan (\beta)=\mathbf{3 8 5 0} \mathbf{~ m m}
\end{aligned}
$$

Using Coulomb theory

Active pressure coefficient for retained material

$$
K_{a}=\sin \left(\alpha+\phi^{\prime}\right)^{2} /\left(\sin (\alpha)^{2} \times \sin (\alpha-\delta) \times\left[1+\sqrt{ }\left(\sin \left(\phi^{\prime}+\delta\right) \times \sin \left(\phi^{\prime}-\beta\right) /(\sin (\alpha-\delta) \times \sin (\alpha+\beta))\right)\right]^{2}\right)=0.358
$$

Passive pressure coefficient for base material

$$
\mathrm{K}_{\mathrm{p}}=\sin \left(90-\phi_{\mathrm{b}}\right)^{2} /\left(\sin \left(90-\delta_{\mathrm{b}}\right) \times\left[1-\sqrt{ }\left(\sin \left(\phi_{\mathrm{b}}^{\prime}+\delta_{\mathrm{b}}\right) \times \sin \left(\phi_{\mathrm{b}}^{\prime}\right) /\left(\sin \left(90+\delta_{\mathrm{b}}\right)\right)\right)\right]^{2}\right)=4.187
$$

At-rest pressure

At-rest pressure for retained material;
$\mathrm{K}_{0}=1-\sin \left(\phi^{\prime}\right)=0.577$

Loading details

Surcharge load on plan;
Applied vertical dead load on wall;
Applied vertical live load on wall;
Position of applied vertical load on wall;
Applied horizontal dead load on wall;
Applied horizontal live load on wall;
Height of applied horizontal load on wall;
Surcharge $=2.5 \mathrm{kN} / \mathrm{m}^{2}$
$W_{\text {dead }}=0.0 \mathrm{kN} / \mathrm{m}$
$W_{\text {live }}=0.0 \mathrm{kN} / \mathrm{m}$
$l_{\text {load }}=\mathbf{0 m m}$
$F_{\text {dead }}=0.0 \mathrm{kN} / \mathrm{m}$
$F_{\text {live }}=0.0 \mathrm{kN} / \mathrm{m}$
$h_{\text {load }}=0 \mathrm{~mm}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				32	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Loads shown in kN / m, pressures shown in $\mathrm{kN} / \mathrm{m}^{2}$

Vertical forces on wall

Wall stem;
Wall base;
Surcharge;
Moist backfill to top of wall;
Soil in front of wall;
Total vertical load;
Horizontal forces on wall
Surcharge;
Moist backfill above water table;
Total horizontal load;

Calculate propping force

Passive resistance of soil in front of wall;
Propping force;

Overturning moments

Surcharge;
Moist backfill above water table;
Total overturning moment;

Restoring moments

Wall stem;
Wall base;
Moist backfill;
$w_{\text {wall }}=h_{\text {stem }} \times t_{\text {wall }} \times \gamma_{\text {wall }}=28.9 \mathrm{kN} / \mathrm{m}$
$W_{\text {base }}=I_{\text {base }} \times t_{\text {base }} \times \gamma_{\text {base }}=19.4 \mathrm{kN} / \mathrm{m}$
$w_{\text {sur }}=$ Surcharge $\times I_{\text {heel }}=0.8 \mathrm{kN} / \mathrm{m}$
$\mathrm{w}_{\mathrm{m} _\mathrm{w}}=I_{\text {heel }} \times\left(\mathrm{h}_{\text {stem }}-\mathrm{h}_{\text {sat }}\right) \times \gamma_{\mathrm{m}}=18.9 \mathrm{kN} / \mathrm{m}$
$W_{p}=I_{\text {toe }} \times d_{\text {cover }} \times \gamma_{\mathrm{mb}}=3.1 \mathrm{kN} / \mathrm{m}$
$W_{\text {total }}=W_{\text {wall }}+W_{\text {base }}+W_{\text {sur }}+W_{\text {m_w }}+W_{p}=71 \mathrm{kN} / \mathrm{m}$
$F_{\text {sur }}=K_{a} \times \cos (90-\alpha+\delta) \times$ Surcharge $\times h_{\text {eff }}=3.3 \mathrm{kN} / \mathrm{m}$
$F_{m_{-} a}=0.5 \times \mathrm{K}_{\mathrm{a}} \times \cos (90-\alpha+\delta) \times \gamma_{\mathrm{m}} \times\left(\mathrm{h}_{\text {eff }}-\mathrm{h}_{\text {water }}\right)^{2}=45.1 \mathrm{kN} / \mathrm{m}$
$F_{\text {total }}=F_{\text {sur }}+F_{\mathrm{m}_{-} \mathrm{a}}=48.3 \mathrm{kN} / \mathrm{m}$
$F_{p}=0.5 \times K_{p} \times \cos \left(\delta_{b}\right) \times\left(d_{\text {cover }}+t_{\text {base }}+d_{d s}-d_{\text {exc }}\right)^{2} \times \gamma_{m b}=4.4 \mathrm{kN} / \mathrm{m}$
$F_{\text {prop }}=\max \left(F_{\text {total }}-F_{p}-\left(W_{\text {total }}-W_{\text {sur }}-W_{p}\right) \times \tan \left(\delta_{b}\right), 0 \mathrm{kN} / \mathrm{m}\right)$
$F_{\text {prop }}=21.3 \mathrm{kN} / \mathrm{m}$
$M_{\text {sur }}=F_{\text {sur }} \times\left(h_{\text {eff }}-2 \times d_{\text {ds }}\right) / 2=6.3 \mathrm{kNm} / \mathrm{m}$
$M_{m_{-}}=F_{\mathrm{m}_{-} \mathrm{a}} \times\left(\mathrm{h}_{\text {eff }}+2 \times \mathrm{h}_{\text {water }}-3 \times \mathrm{d}_{\text {ds }}\right) / 3=\mathbf{5 7 . 8} \mathrm{kNm} / \mathrm{m}$
$M_{\text {ot }}=M_{\text {sur }}+M_{m_{-a}}=64.1 \mathrm{kNm} / \mathrm{m}$
$M_{\text {wall }}=W_{\text {wall }} \times\left(I_{\text {toe }}+\mathrm{t}_{\text {wall }} / 2\right)=54.2 \mathrm{kNm} / \mathrm{m}$
$M_{\text {base }}=w_{\text {base }} \times I_{\text {base }} / 2=\mathbf{2 2 . 8} \mathrm{kNm} / \mathrm{m}$
$M_{m_{_} r}=\left(w_{\mathrm{m}_{_}} \mathrm{w} \times\left(I_{\text {base }}-I_{\text {heel }} / 2\right)+w_{\mathrm{m}_{_} \mathrm{s}} \times\left(\mathrm{l}_{\text {base }}-I_{\text {heel }} / 3\right)\right)=\mathbf{4 1 . 6} \mathrm{kNm} / \mathrm{m}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{rr}\text { Job Ref. } \\ & \\ & \text { C23.07.32 }\end{array}$	
	Section				Sheet no./rev.	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Total restoring moment;
Check bearing pressure
Surcharge;
Soil in front of wall;
Total moment for bearing;
Total vertical reaction;
Distance to reaction;
Eccentricity of reaction;

Bearing pressure at toe;
Bearing pressure at heel;

Calculations
Output
$M_{\text {rest }}=M_{\text {wall }}+M_{\text {base }}+M_{\text {m_r }}=118.6 \mathrm{kNm} / \mathrm{m}$
$\mathrm{M}_{\text {sur_r }}=\mathrm{W}_{\text {sur }} \times\left(\right.$ l $\left._{\text {base }}-I_{\text {heel }} / 2\right)=1.7 \mathrm{kNm} / \mathrm{m}$
$\mathrm{M}_{\mathrm{p}_{-} \mathrm{r}}=\mathrm{w}_{\mathrm{p}} \times \mathrm{I}_{\text {toe }} / 2=2.6 \mathrm{kNm} / \mathrm{m}$
$M_{\text {total }}=M_{\text {rest }}-M_{\text {ot }}+M_{\text {sur_r }}+M_{p_{_} r}=58.7 \mathrm{kNm} / \mathrm{m}$
$\mathrm{R}=\mathrm{W}_{\text {total }}=71.0 \mathrm{kN} / \mathrm{m}$
$X_{\text {bar }}=M_{\text {total }} / R=827 \mathrm{~mm}$
$\mathrm{e}=\mathrm{abs}\left(\left(\right.\right.$ l $\left.\left._{\text {base }} / 2\right)-\mathrm{X}_{\text {bar }}\right)=\mathbf{3 4 8} \mathrm{mm}$
Reaction acts within middle third of base
$p_{\text {toe }}=\left(R / l_{\text {base }}\right)+\left(6 \times R \times e /\right.$ lbase $\left.^{2}\right)=57.1 \mathrm{kN} / \mathrm{m}^{2}$
pheel $=(R /$ lbase $)-\left(6 \times R \times e /\right.$ base $\left.^{2}\right)=3.4 \mathrm{kN} / \mathrm{m}^{2}$
PASS - Maximum bearing pressure is less than allowable bearing pressure

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.34	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations
Output

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.08

Ultimate limit state load factors

Dead load factor;
Live load factor
Earth and water pressure factor;
$\gamma_{f-d}=1.4$
$\gamma_{\mathrm{f}_{-}}=1.6$
$\gamma_{\mathrm{f}_{-}}=1.4$
Factored vertical forces on wall
Wall stem;
Wall base;
Surcharge;
Moist backfill to top of wall;
Soil in front of wall;
Total vertical load;
Factored horizontal at-rest forces on wall Surcharge;
Moist backfill above water table;
Total horizontal load;

Calculate propping force

Passive resistance of soil in front of wall;
kN/m
Propping force;

Factored overturning moments

Surcharge;
Moist backfill above water table;
Total overturning moment;

Restoring moments

Wall stem;
Wall base;
Surcharge;
Moist backfill;
kNm/m
Soil in front of wall;
Total restoring moment;

Factored bearing pressure

Total moment for bearing;
Total vertical reaction;
Distance to reaction;
Eccentricity of reaction;

Bearing pressure at toe;
Bearing pressure at heel;
Rate of change of base reaction;
Bearing pressure at stem / toe;
$w_{\text {wall_f }}=\gamma_{\mathrm{f}} \mathrm{d} \times \mathrm{h}_{\text {stem }} \times \mathrm{t}_{\text {wall }} \times \gamma_{\text {wall }}=40.5 \mathrm{kN} / \mathrm{m}$
Wbase_f $=\gamma_{\mathrm{f}} \mathrm{d} \times \mathrm{I}_{\text {base }} \times \mathrm{t}_{\text {base }} \times \gamma_{\text {base }}=27.2 \mathrm{kN} / \mathrm{m}$
$W_{\text {sur_f }=}=\gamma_{\mathrm{f}} \mathrm{I} \times$ Surcharge $\times I_{\text {heel }}=1.2 \mathrm{kN} / \mathrm{m}$
$W_{m _} w_{-} f=\gamma \gamma_{-} \mathrm{d} \times I_{\text {heel }} \times\left(h_{\text {stem }}-h_{\text {sat }}\right) \times \gamma_{\mathrm{m}}=26.5 \mathrm{kN} / \mathrm{m}$
$w_{p_{-} f}=\gamma_{f _} \times I_{\text {toe }} \times d_{\text {cover }} \times \gamma_{\mathrm{mb}}=4.3 \mathrm{kN} / \mathrm{m}$
$W_{\text {total_f }}=W_{\text {wall_f } f}+W_{\text {base_f } f}+W_{\text {sur_f } f}+W_{m_{-} w_{-} f}+W_{p_{-} f}=99.6 \mathrm{kN} / \mathrm{m}$
$F_{\text {sur_ } f}=\gamma_{__{-}} \times \mathrm{K}_{0} \times$ Surcharge \times heff $=8.9 \mathrm{kN} / \mathrm{m}$
$F_{\text {m_a }_{-}}=\gamma_{f-} \mathrm{e} \times 0.5 \times \mathrm{K}_{0} \times \gamma_{\mathrm{m}} \times\left(\mathrm{h}_{\text {eff }}-\mathrm{h}_{\text {water }}\right)^{2}=107.8 \mathrm{kN} / \mathrm{m}$
$F_{\text {tota_ } _f}=F_{\text {sur_f }}+F_{m_{-} a_{-} f}=116.7 \mathrm{kN} / \mathrm{m}$
$F_{p_{-} f}=\gamma_{f_{-}} \times 0.5 \times K_{p} \times \cos \left(\delta_{b}\right) \times\left(d_{\text {cover }}+t_{\text {base }}+d_{d s}-d_{\text {exc }}\right)^{2} \times \gamma_{m b}=6.1$
$F_{\text {prop } _f}=\max \left(F_{\text {total_f }}-F_{p_{_} f}-\left(W_{\text {total_ }} f-W_{\text {sur }_{-} f}-W_{p_{_} f}\right) \times \tan \left(\delta_{b}\right), 0 \mathrm{kN} / \mathrm{m}\right)$
$F_{\text {prop_f }}=78.9 \mathrm{kN} / \mathrm{m}$
$M_{\text {sur_f }_{f}}=F_{\text {sur_ } f} \times\left(\right.$ heff $\left.-2 \times d_{d s}\right) / 2=17.1 \mathrm{kNm} / \mathrm{m}$
$M_{m_{-}}{ }_{-} f=F_{m_{-}{ }_{-} f} \times\left(h_{\text {eff }}+2 \times h_{\text {water }}-3 \times \mathrm{dds}\right) / 3=138.4 \mathrm{kNm} / \mathrm{m}$
$M_{\text {ot_ } f}=M_{\text {sur }_{-} f}+M_{m_{-} a_{-} f}=155.5 \mathrm{kNm} / \mathrm{m}$
$M_{\text {wall_f }}=W_{\text {wall_f }} \times\left(l_{\text {toe }}+t_{\text {wall }} / 2\right)=75.9 \mathrm{kNm} / \mathrm{m}$
$M_{\text {base_f }}=$ wbase_f $\times \mathrm{I}_{\text {base }} / 2=31.9 \mathrm{kNm} / \mathrm{m}$
$M_{\text {sur_r_ }_{-} f}=W_{\text {sur_ }_{-} f} \times\left(\right.$ lbase $\left.I_{\text {heel }} / 2\right)=2.6 \mathrm{kNm} / \mathrm{m}$
$M_{m_{-} r_{-} f}=\left(w_{m_{-}} w_{-} f \times\left(\right.\right.$ lbase $\left.-I_{\text {heel }} / 2\right)+w_{m_{-}} s_{f} \times\left(\right.$ base $\left.\left.-I_{\text {heel }} / 3\right)\right)=58.2$
$\mathrm{M}_{\mathrm{p}_{-} \mathrm{r}_{-}}=\mathrm{w}_{\mathrm{p}_{-} \mathrm{f}} \times \mathrm{I}_{\text {toe }} / 2=3.6 \mathrm{kNm} / \mathrm{m}$

$M_{\text {total_f }}=$ Mrest_f - Mot_f $=\mathbf{1 6 . 8} \mathbf{~ k N m} / \mathrm{m}$
$R_{f}=W_{\text {total_f }}=99.6 \mathrm{kN} / \mathrm{m}$
$X_{\text {bar_f }}=M_{\text {total_f }} / R_{f}=169 \mathrm{~mm}$
$\mathrm{e}_{\mathrm{f}}=\operatorname{abs}\left((\right.$ lbase $\left./ 2)-\mathrm{X}_{\text {bar_f }}\right)=\mathbf{1 0 0 6} \mathrm{mm}$
Reaction acts outside middle third of base
$p_{\text {toe }} f=R_{f} /\left(1.5 \times x_{\text {bar_f }_{-}}\right)=393.4 \mathrm{kN} / \mathrm{m}^{2}$
pheel_f $=0 \mathrm{kN} / \mathrm{m}^{2}=0 \mathrm{kN} / \mathrm{m}^{2}$
rate $=p_{\text {toe_f }} /(3 \times$ xbar_f $)=776.86 \mathrm{kN} / \mathrm{m}^{2} / \mathrm{m}$
$p_{\text {stem_toe_f }}=\max \left(\right.$ ptoe_f $-\left(\right.$ rate $\left.\left.\times l_{\text {toe }}\right), 0 \mathrm{kN} / \mathrm{m}^{2}\right)=0 \mathrm{kN} / \mathrm{m}^{2}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job RefC23.07.32	
	Structural Calculations				Sheet no./rev.	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations
Output

Bearing pressure at mid stem;
Bearing pressure at stem / heel;
$p_{\text {stem_mid_f }}=\max \left(\right.$ ptoe_f $-\left(\right.$ rate $\left.\left.\times\left(I_{\text {toe }}+t_{\text {wall }} / 2\right)\right), 0 \mathrm{kN} / \mathrm{m}^{2}\right)=0 \mathrm{kN} / \mathrm{m}^{2}$
$p_{\text {stem_heel_f }}=\max \left(\right.$ ptoe_f $-\left(\right.$ rate $\times\left(\right.$ ltoe $\left.\left.\left.+\mathrm{t}_{\text {wall }}\right)\right), 0 \mathrm{kN} / \mathrm{m}^{2}\right)=0 \mathrm{kN} / \mathrm{m}^{2}$

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Characteristic strength of concrete;
Characteristic strength of reinforcement;
$\mathrm{f}_{\mathrm{cu}}=30 \mathrm{~N} / \mathrm{mm}^{2}$

Base details

Minimum area of reinforcement;
Cover to reinforcement in toe;
$\mathrm{k}=0.13$ \%
$\mathrm{Ctoe}=\mathbf{3 0} \mathrm{mm}$

Calculate shear for toe design

Shear from bearing pressure;
Shear from weight of base;
Total shear for toe design;
Calculate moment for toe design
Moment from bearing pressure;
Moment from weight of base;
Total moment for toe design;
$V_{\text {toe_bear }}=3 \times$ ptoe_f \times Xbar_f $/ 2=99.6 \mathrm{kN} / \mathrm{m}$
$V_{\text {toe_wt_base }}=\gamma_{f} \mathrm{~d} \times \gamma_{\text {base }} \times I_{\text {toe }} \times \mathrm{t}_{\text {base }}=19.7 \mathrm{kN} / \mathrm{m}$
$V_{\text {toe }}=V_{\text {toe_bear }}-V_{\text {toe_wt_base }}=79.9 \mathrm{kN} / \mathrm{m}$
$M_{\text {toe_bear }}=3 \times \mathrm{p}_{\text {toe_f }} \times \mathrm{X}_{\text {bar_ }} \mathrm{f} \times\left(\mathrm{I}_{\text {toe }}-\mathrm{X}_{\text {bar_f }}+\mathrm{t}_{\text {wall }} / 2\right) / 2=169.9 \mathrm{kNm} / \mathrm{m}$
$M_{\text {toe__wt_base }}=\left(\gamma_{f} \mathrm{~d} \times \gamma_{\text {base }} \times\right.$ tbase $\left.\times\left(I_{\text {toe }}+t_{\text {wall }} / 2\right)^{2} / 2\right)=20.3 \mathrm{kNm} / \mathrm{m}$
$M_{\text {toe }}=M_{\text {toe_bear }}-M_{\text {toe_wt_base }}=149.6 \mathrm{kNm} / \mathrm{m}$

$|\longleftarrow 150 \longrightarrow|$

Check toe in bending

Width of toe;
Depth of reinforcement;
Constant;

Lever arm;

Area of tension reinforcement required;
Minimum area of tension reinforcement;
Area of tension reinforcement required;
Reinforcement provided;
Area of reinforcement provided;
$\mathrm{b}=1000 \mathrm{~mm} / \mathrm{m}$
$d_{\text {toe }}=$ tbase $-\mathrm{C}_{\text {toe }}-($ (toe $/ 2)=\mathbf{3 1 2 . 0} \mathrm{mm}$
$K_{\text {toe }}=M_{\text {toe }} /\left(b \times d_{\text {toe }}{ }^{2} \times f_{\text {cuu }}\right)=0.051$

Compression reinforcement is not required

$Z_{\text {toe }}=\min \left(0.5+\sqrt{ }\left(0.25-\left(\min \left(K_{\text {toe }}, 0.225\right) / 0.9\right)\right), 0.95\right) \times d_{\text {toe }}$
$\mathrm{Z}_{\text {toe }}=\mathbf{2 9 3} \mathrm{mm}$
$A_{s_{-} \text {toe_des }}=M_{\text {toe }} /\left(0.87 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Z}_{\text {toe }}\right)=\mathbf{1 1 7 3} \mathrm{mm}^{2} / \mathrm{m}$
$A_{s_{-} \text {toe_min }}=\mathrm{k} \times \mathrm{b} \times$ tbase $=455 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{s_{-} \text {toe_req }}=\operatorname{Max}\left(A_{s_{-}}\right.$toe_des, $A_{s_{-}}$toe_min $)=1173 \mathrm{~mm}^{2} / \mathrm{m}$
16 mm dia.bars @ 150 mm centres
$A_{\text {s_toe_prov }}=1340 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress;

$$
\mathrm{V}_{\text {toe }}=\mathrm{V}_{\text {toe }} /\left(\mathrm{b} \times \mathrm{d}_{\text {toe }}\right)=0.256 \mathrm{~N} / \mathrm{mm}^{2}
$$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job RefC23.07.32	
	Structural Calculations				Sheet no./rev.36	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations

Output

Allowable shear stress;

From BS8110:Part 1:1997 - Table 3.8
Design concrete shear stress;
$V_{\text {adm }}=\min \left(0.8 \times \sqrt{ }\left(f_{c u} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5\right) \times 1 \mathrm{~N} / \mathrm{mm}^{2}=4.382 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum shear stress
$\mathrm{V}_{\mathrm{c} _ \text {toe }}=0.539 \mathrm{~N} / \mathrm{mm}^{2}$
$V_{\text {toe }}<V_{c_{-} \text {toe }}-$ No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Characteristic strength of concrete;
$\mathrm{f}_{\mathrm{cu}}=\mathbf{3 0 \mathrm { N } / \mathrm { mm } ^ { 2 }}$
Characteristic strength of reinforcement;
$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$

Base details

Minimum area of reinforcement;
Cover to reinforcement in heel;
$\mathrm{k}=0.13$ \%

Calculate shear for heel design
Shear from weight of base;
Shear from weight of moist backfill;
Shear from surcharge;
Total shear for heel design;
$C_{\text {heel }}=30 \mathrm{~mm}$

Calculate moment for heel design

Moment from weight of base;
Moment from weight of moist backfill;
Moment from surcharge;
$V_{\text {heel_wt_base }}=\gamma_{\mathrm{f}} \mathrm{d} \times \gamma_{\text {base }} \times I_{\text {heel }} \times \mathrm{t}_{\text {base }}=3.5 \mathrm{kN} / \mathrm{m}$
$V_{\text {heel__wt_m }}=W_{m_{\text {_ }}}{ }^{f}=26.5 \mathrm{kN} / \mathrm{m}$
$V_{\text {heel_sur }}=W_{\text {sur_f }}=1.2 \mathrm{kN} / \mathrm{m}$
$V_{\text {heel }}=V_{\text {heel_wt_base }}+V_{\text {heel_wt_m }}+V_{\text {heel_sur }}=31.1 \mathrm{kN} / \mathrm{m}$

Total moment for heel design;
$M_{\text {heel_wt_base }}=\left(\gamma_{f} \mathrm{~d} \times \gamma_{\text {base }} \times \mathrm{t}_{\text {base }} \times\left(\mathrm{l}_{\text {heel }}+\mathrm{t}_{\text {wall }} / 2\right)^{2} / 2\right)=1.3 \mathrm{kNm} / \mathrm{m}$
$M_{\text {neel_wt_m }}=\mathrm{wm}_{\mathrm{m}} \mathrm{w} \mathrm{f} \times\left(\mathrm{l}_{\text {heel }}+\mathrm{t}_{\text {wall }}\right) / 2=8.6 \mathrm{kNm} / \mathrm{m}$
$M_{\text {heel_sur }}=W_{\text {sur_ }} \mathrm{f} \times\left(\right.$ lheel $\left.+\mathrm{t}_{\text {wall }}\right) / 2=0.4 \mathrm{kNm} / \mathrm{m}$
$M_{\text {heel }}=M_{\text {heel_wt_base }}+M_{\text {heel_wt_m }}+M_{\text {heel_sur }}=\mathbf{1 0 . 3} \mathbf{k N m} / \mathrm{m}$

Check heel in bending

Width of heel;
Depth of reinforcement;
Constant;

Lever arm;

Area of tension reinforcement required;
Minimum area of tension reinforcement;
Area of tension reinforcement required;
Reinforcement provided;
$\mathrm{b}=1000 \mathrm{~mm} / \mathrm{m}$
$\mathrm{d}_{\text {heel }}=\mathrm{t}_{\text {base }}-$ Cheel $-($ 中heel $/ 2)=\mathbf{3 1 2 . 0} \mathrm{mm}$
$K_{\text {heel }}=M_{\text {heel }} /\left(b \times\right.$ dheel $\left.^{2} \times f_{c u}\right)=0.004$

Compression reinforcement is not required

$Z_{\text {heel }}=\min \left(0.5+\sqrt{ }\left(0.25-\left(\min \left(K_{\text {neel }}, 0.225\right) / 0.9\right)\right), 0.95\right) \times d_{\text {heel }}$
$Z_{\text {heel }}=\mathbf{2 9 6} \mathbf{~ m m}$
$A_{s_{_} \text {heel_des }}=M_{\text {heel }} /\left(0.87 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Z}_{\text {heel }}\right)=\mathbf{8 0} \mathrm{mm}^{2} / \mathrm{m}$
$\mathrm{A}_{\text {s_heel_min }}=\mathrm{k} \times \mathrm{b} \times$ tbase $=455 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{s_{-} \text {heel_req }}=\operatorname{Max}\left(A_{s_{_} \text {heel_des, }}, A_{s_{_} \text {heel_min }}\right)=455 \mathrm{~mm}^{2} / \mathrm{m}$
16 mm dia.bars @ 150 mm centres

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.$\mathrm{C} 23.07 .32$	
	Section	Structur	Calcula		Sheet no.	37
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Area of reinforcement provided;
$A_{\text {s_heel_prov }}=1340 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Reinforcement provided at the retaining wall heel is adequate
Check shear resistance at heel
Design shear stress;

$$
\begin{aligned}
& V_{\text {heel }}=V_{\text {heel }} /\left(\mathrm{b} \times \mathrm{d}_{\text {heel }}\right)=0.100 \mathrm{~N} / \mathrm{mm}^{2} \\
& V_{\text {adm }}=\min \left(0.8 \times V\left(\mathrm{f}_{\mathrm{cu}} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5\right) \times 1 \mathrm{~N} / \mathrm{mm}^{2}=4.382 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Allowable shear stress;
PASS - Design shear stress is less than maximum shear stress

From BS8110:Part 1:1997 - Table 3.8

Design concrete shear stress;

$$
\mathrm{v}_{\mathrm{c} \text { _heel }}=0.539 \mathrm{~N} / \mathrm{mm}^{2}
$$

$V_{h e e l}<v_{c _h e e l}-$ No shear reinforcement required
Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Characteristic strength of concrete;
Characteristic strength of reinforcement;

Wall details

Minimum area of reinforcement;
Cover to reinforcement in stem;
Cover to reinforcement in wall;

Factored horizontal at-rest forces on stem

Surcharge; $\quad F_{s_{-} \text {sur_f }}=\gamma_{£_{-}} \times \mathrm{K}_{0} \times$ Surcharge $\times\left(\right.$ heff - tbase $\left.-d_{d s}\right)=8.1 \mathrm{kN} / \mathrm{m}$
Moist backfill above water table;
Calculate shear for stem design
Shear at base of stem;
Calculate moment for stem design
Surcharge;
Moist backfill above water table;
Total moment for stem design;
$F_{s_{-}{ }^{2} _ \text {a } f}=0.5 \times \gamma_{f} \mathrm{e} \times \mathrm{K}_{0} \times \gamma_{\mathrm{m}} \times\left(\mathrm{h}_{\text {eff }}-\mathrm{t}_{\text {base }}-\mathrm{d}_{\mathrm{ds}}-\mathrm{h}_{\text {sat }}\right)^{2}=89.1 \mathrm{kN} / \mathrm{m}$
$V_{\text {stem }}=F_{\text {s_sur_ }_{-} f}+F_{\text {s_m_a }_{-} f}-F_{\text {prop } _f}=18.3 \mathrm{kN} / \mathrm{m}$
$\mathrm{f}_{\mathrm{cu}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{k}=0.13$ \%
$C_{\text {stem }}=30 \mathrm{~mm}$
$\mathrm{C}_{\text {wall }}=\mathbf{3 0} \mathrm{mm}$

$M_{s_{-} m-a}=F_{s_{-} m_{-} \text {a } f} \times\left(2 \times h_{\text {sat }}+h_{\text {eff }}-d_{d s}+t_{\text {base }} / 2\right) / 3=119.6 \mathrm{kNm} / \mathrm{m}$
$M_{\text {stem }}=M_{s_{_} \text {sur }}+M_{s_{-} __a}=135.1 \mathrm{kNm} / \mathrm{m}$

$\mid \longleftarrow 150 \longrightarrow$

Check wall stem in bending

Width of wall stem;
Depth of reinforcement;
Constant;
$\mathrm{b}=1000 \mathrm{~mm} / \mathrm{m}$
$d_{\text {stem }}=t_{\text {wall }}-c_{\text {stem }}-\left(\phi_{\text {stem }} / 2\right)=\mathbf{3 1 0 . 0} \mathbf{m m}$
$\mathrm{K}_{\text {stem }}=\mathrm{M}_{\text {stem }} /\left(\mathrm{b} \times \mathrm{d}_{\text {stem }}{ }^{2} \times \mathrm{f}_{\mathrm{cu}}\right)=0.047$
Compression reinforcement is not required
Lever arm;
$Z_{\text {stem }}=\min \left(0.5+\sqrt{ }\left(0.25-\left(\min \left(K_{\text {stem }}, 0.225\right) / 0.9\right)\right), 0.95\right) \times d_{\text {stem }}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output
$Z_{\text {stem }}=293 \mathrm{~mm}$
Area of tension reinforcement required;
Minimum area of tension reinforcement;
Area of tension reinforcement required;
Reinforcement provided;
Area of reinforcement provided;
$A_{\text {s_stem_des }=} M_{\text {stem }} /\left(0.87 \times f_{y} \times Z_{\text {stem }}\right)=1061 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{s_{s} \text { stem_min }}=\mathrm{k} \times \mathrm{b} \times \mathrm{t}_{\text {wall }}=455 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{s_{-} \text {stem_req }}=\operatorname{Max}\left(A_{s_{-} \text {stem_des }}, A_{s_{-} \text {stem_min }}\right)=1061 \mathrm{~mm}^{2} / \mathrm{m}$
20 mm dia.bars @ 150 mm centres
As_stem_prov $=2094 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress;
Allowable shear stress;
$\mathrm{V}_{\text {stem }}=\mathrm{V}_{\text {stem }} /\left(\mathrm{b} \times \mathrm{d}_{\text {stem }}\right)=0.059 \mathrm{~N} / \mathrm{mm}^{2}$
$V_{\text {adm }}=\min \left(0.8 \times \sqrt{ }\left(f_{\text {cu }} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5\right) \times 1 \mathrm{~N} / \mathrm{mm}^{2}=4.382 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum shear stress
From BS8110:Part 1:1997 - Table 3.8
Design concrete shear stress;
$\mathrm{v}_{\text {C_stem }}=0.628 \mathrm{~N} / \mathrm{mm}^{2}$
$v_{\text {stem }}<v_{c_{\text {_stem }}}$ - No shear reinforcement required

Check retaining wall deflection

Basic span/effective depth ratio;
ratiobas $=7$
Design service stress;
$\mathrm{f}_{\mathrm{s}}=2 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{A}_{\mathrm{s} \text { _stem_req }} /\left(3 \times A_{\left.\mathrm{s}_{\text {_stem_prov }}\right)}\right)=\mathbf{1 6 8 . 8} \mathrm{N} / \mathrm{mm}^{2}$
Modification factor;
factortens $=\min \left(0.55+\left(477 \mathrm{~N} / \mathrm{mm}^{2}-\mathrm{f}_{\mathrm{s}}\right) /\left(120 \times\left(0.9 \mathrm{~N} / \mathrm{mm}^{2}+\left(\mathrm{M}_{\text {stem }} /\left(\mathrm{b} \times \mathrm{d}_{\text {stem }}{ }^{2}\right)\right)\right)\right), 2\right)=1.66$
Maximum span/effective depth ratio;
Actual span/effective depth ratio;
ratio $_{\text {max }}=$ ratiobas \times factortens $=11.65$
ratio $_{\text {act }}=h_{\text {stem }} / d_{\text {stem }}=11.29$
PASS - Span to depth ratio is acceptable

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				Sheet no./rev.39	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output
Indicative retaining wall reinforcement diagram

Toe bars - 16 mm dia.@ 150 mm centres - ($1340 \mathrm{~mm}^{2} / \mathrm{m}$)
Heel bars - 16 mm dia.@ 150 mm centres - $\left(1340 \mathrm{~mm}^{2} / \mathrm{m}\right)$
Stem bars - 20 mm dia.@ 150 mm centres - (2094 $\mathrm{mm}^{2} / \mathrm{m}$)

RETAINING WALL CONSTRUCTION (WALL A) :

350mm Thick R.C Wall

Wall to be reinforced with T20 Bars to inner face @ 150mm c/c,
T16 Bars to outer face @ 150mm c/c
(Distribution steel to be T12 bars at 150 mm c/c)
Starter bars as per wall reinforcement.

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.40	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Design of new reinforced concrete retaining wall (WALL B) (vertical load scenario)

Max. height of retaining wall $=3.5 \mathrm{~m}$ Max. retained height.

No surcharge but will have vertical load from the proposed dwelling.

Dead load
Main roof $=9.0 \mathrm{~m} / 2 \times 1.00 \mathrm{kN} / \mathrm{m}^{2} \quad=4.50 \mathrm{kN} / \mathrm{m}$
$1^{\text {st }}$ floor $=5.5 \mathrm{~m} / 2 \times 0.55 \mathrm{kN} / \mathrm{m}^{2} \quad=1.51 \mathrm{kN} / \mathrm{m}$
Ground floor $=5.5 \mathrm{~m} / 2 \times 0.55 \mathrm{kN} / \mathrm{m}^{2}=1.51 \mathrm{kN} / \mathrm{m}$
Ext. Rear Wall $=4.0 \mathrm{~m}$ high $\times 4.0 \mathrm{kN} / \mathrm{m}^{2}=16.0 \mathrm{kN} / \mathrm{m}$
Total dead load $=\mathbf{2 3 . 5 2 k N} / \mathbf{m}$

Super load
Main roof $=9.0 \mathrm{~m} / 2 \times 1.00 \mathrm{kN} / \mathrm{m}^{2} \quad=4.50 \mathrm{kN} / \mathrm{m}$
$1^{\text {st }}$ floor $=5.5 \mathrm{~m} / 2 \times 1.50 \mathrm{kN} / \mathrm{m}^{2} \quad=4.13 \mathrm{kN} / \mathrm{m}$
Ground floor $=5.5 \mathrm{~m} / 2 \times 1.50 \mathrm{kN} / \mathrm{m}^{2} \quad=4.13 \mathrm{kN} / \mathrm{m}$
Total dead load $=12.8 \mathrm{kN} / \mathrm{m}$

The wall will have a proprietary drain installed at the back of the wall to relieve any hydrostatic pressure.

The base has been designed as propped at the bottom due to the construction a new concrete floor slab.

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				41	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output

Wall details

Retaining wall type;
Height of retaining wall stem;
Thickness of wall stem;
Length of toe;
Length of heel;
Overall length of base;
Thickness of base;
Depth of downstand;
Position of downstand;
Thickness of downstand;
Height of retaining wall;
Depth of cover in front of wall;
Depth of unplanned excavation;
Height of ground water behind wall;
Height of saturated fill above base;
Density of wall construction;
Density of base construction;
Angle of rear face of wall;
Angle of soil surface behind wall;
Effective height at virtual back of wall;

Retained material details

Mobilisation factor;
Moist density of retained material;
Saturated density of retained material;

Cantilever propped at base

$\mathrm{h}_{\text {stem }}=3500 \mathrm{~mm}$
$\mathrm{t}_{\text {wall }}=350 \mathrm{~mm}$
Itoe $=\mathbf{1 7 0 0} \mathrm{mm}$
$I_{\text {heel }}=200 \mathrm{~mm}$
$l_{\text {base }}=I_{\text {toe }}+I_{\text {heel }}+t_{\text {wall }}=\mathbf{2 2 5 0} \mathbf{~ m m}$
$t_{\text {base }}=350 \mathrm{~mm}$
$d_{d s}=0 \mathrm{~mm}$
$l_{\mathrm{ds}}=1600 \mathrm{~mm}$
$\mathrm{t}_{\mathrm{ds}}=350 \mathrm{~mm}$
$\mathrm{h}_{\text {wall }}=\mathrm{h}_{\text {stem }}+\mathrm{t}_{\text {base }}+\mathrm{d}_{\mathrm{ds}}=\mathbf{3 8 5 0} \mathrm{mm}$
$d_{\text {cover }}=100 \mathrm{~mm}$
$\mathrm{d}_{\mathrm{exc}}=\mathbf{1 0 0} \mathrm{mm}$
$h_{\text {water }}=\mathbf{0 m m}$
$\mathrm{h}_{\text {sat }}=\max \left(\mathrm{h}_{\text {water }}-\mathrm{t}_{\text {base }}-\mathrm{d}_{\mathrm{ds}}, 0 \mathrm{~mm}\right)=0 \mathrm{~mm}$
$\gamma_{\text {wall }}=23.6 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{\text {base }}=23.6 \mathrm{kN} / \mathrm{m}^{3}$
$\alpha=90.0 \mathrm{deg}$
$\beta=\mathbf{0 . 0}$ deg
$h_{\text {eff }}=h_{\text {wall }}+I_{\text {heel }} \times \tan (\beta)=3850 \mathrm{~mm}$
$M=1.5$
$\gamma_{\mathrm{m}}=18.0 \mathrm{kN} / \mathrm{m}^{3}$
$\gamma_{\mathrm{s}}=21.0 \mathrm{kN} / \mathrm{m}^{3}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				42	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations
Output
Design shear strength;

$$
\phi^{\prime}=25.0 \mathrm{deg}
$$

Angle of wall friction;

Base material details

Firm clay
Moist density;
$\gamma_{\mathrm{mb}}=18.0 \mathrm{kN} / \mathrm{m}^{3}$
Design shear strength;
$\phi^{\prime} b=24.2 \mathrm{deg}$
Design base friction;
Allowable bearing pressure;
$\delta_{b}=18.6 \mathrm{deg}$
$P_{\text {bearing }}=100 \mathrm{kN} / \mathrm{m}^{2}$

Using Coulomb theory

Active pressure coefficient for retained material

$$
K_{a}=\sin \left(\alpha+\phi^{\prime}\right)^{2} /\left(\sin (\alpha)^{2} \times \sin (\alpha-\delta) \times\left[1+\sqrt{ }\left(\sin \left(\phi^{\prime}+\delta\right) \times \sin \left(\phi^{\prime}-\beta\right) /(\sin (\alpha-\delta) \times \sin (\alpha+\beta))\right)\right]^{2}\right)=0.358
$$

Passive pressure coefficient for base material

$$
\mathrm{K}_{\mathrm{p}}=\sin \left(90-\phi_{\mathrm{b}}^{\prime}\right)^{2} /\left(\sin \left(90-\delta_{\mathrm{b}}\right) \times\left[1-\sqrt{ }\left(\sin \left(\phi_{\mathrm{b}}^{\prime}+\delta_{\mathrm{b}}\right) \times \sin \left(\phi_{\mathrm{b}}^{\prime}\right) /\left(\sin \left(90+\delta_{\mathrm{b}}\right)\right)\right)\right]^{2}\right)=4.187
$$

At-rest pressure

At-rest pressure for retained material;
$\mathrm{K}_{0}=1-\sin \left(\phi^{\prime}\right)=0.577$

Loading details

Surcharge load on plan;
Applied vertical dead load on wall;
Applied vertical live load on wall;
Position of applied vertical load on wall;
Applied horizontal dead load on wall;
Applied horizontal live load on wall;
Height of applied horizontal load on wall;
Surcharge $=0.0 \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{W}_{\text {dead }}=23.5 \mathrm{kN} / \mathrm{m}$
$W_{\text {live }}=12.8 \mathrm{kN} / \mathrm{m}$
$l_{\text {load }}=1875 \mathrm{~mm}$
$F_{\text {dead }}=0.0 \mathrm{kN} / \mathrm{m}$
$F_{\text {live }}=0.0 \mathrm{kN} / \mathrm{m}$
$\mathrm{h}_{\text {load }}=\mathbf{0} \mathrm{mm}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.43	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations
Output
Vertical forces on wall

Wall stem;
Wall base;
Moist backfill to top of wall;
Soil in front of wall;
Applied vertical load;
Total vertical load;
Horizontal forces on wall
Moist backfill above water table;
Total horizontal load;
Calculate propping force
Passive resistance of soil in front of wall;
Propping force;

Overturning moments

Moist backfill above water table;
Total overturning moment;

Restoring moments

Wall stem;
Wall base;
Moist backfill;
Design vertical dead load;
Total restoring moment;
Check bearing pressure
Soil in front of wall;
Design vertical live load;
Total moment for bearing;
Total vertical reaction;
Distance to reaction;
Eccentricity of reaction;

Bearing pressure at toe;
Bearing pressure at heel;

$$
\mathrm{F}_{\mathrm{p}}=0.5 \times \mathrm{K}_{\mathrm{p}} \times \cos \left(\delta_{\mathrm{b}}\right) \times\left(\mathrm{d}_{\text {cover }}+\mathrm{t}_{\text {base }}+\mathrm{d}_{\mathrm{ds}}-\mathrm{d}_{\mathrm{exc}}\right)^{2} \times \gamma_{\mathrm{mb}}=4.4 \mathrm{kN} / \mathrm{m}
$$

$$
F_{\text {prop }}=\max \left(F_{\text {total }}-F_{p}-\left(W_{\text {total }}-W_{p}-W_{\text {live }}\right) \times \tan \left(\delta_{b}\right), 0 \mathrm{kN} / \mathrm{m}\right)
$$

$$
F_{\text {prop }}=12.6 \mathrm{kN} / \mathrm{m}
$$

$M_{m_{-}}=F_{\mathrm{m}_{-} \mathrm{a}} \times\left(\mathrm{h}_{\text {eff }}+2 \times \mathrm{h}_{\text {water }}-3 \times \mathrm{d}_{\text {ds }}\right) / 3=\mathbf{5 7 . 8} \mathrm{kNm} / \mathrm{m}$ $M_{o t}=M_{m _a}=57.8 \mathrm{kNm} / \mathrm{m}$

```
\(M_{\text {wall }}=W_{\text {wall }} \times\left(I_{\text {toe }}+t_{\text {wall }} / 2\right)=54.2 \mathrm{kNm} / \mathrm{m}\)
\(M_{\text {base }}=w_{\text {base }} \times\) lbase \(/ 2=20.9 \mathrm{kNm} / \mathrm{m}\)
\(M_{m \_r}=\left(W_{m} \_\mathbf{w} \times\left(\right.\right.\) loase \(\left.-I_{\text {heel }} / 2\right)+\mathrm{w}_{\mathrm{m} \_\mathrm{s}} \times(\) lbase - Iheel \(\left./ 3)\right)=27.1 \mathrm{kNm} / \mathrm{m}\)
\(M_{\text {dead }}=W_{\text {dead }} \times l_{\text {load }}=44.1 \mathrm{kNm} / \mathrm{m}\)
\(M_{\text {rest }}=M_{\text {wall }}+M_{\text {base }}+M_{m_{\_} r}+M_{\text {dead }}=146.3 \mathrm{kNm} / \mathrm{m}\)
```

$\mathrm{M}_{\mathrm{p} _} \mathrm{r}=\mathrm{w}_{\mathrm{p}} \times \mathrm{I}_{\text {toe }} / 2=2.6 \mathrm{kNm} / \mathrm{m}$
$M_{\text {live }}=W_{\text {live }} \times$ lioad $=\mathbf{2 4} \mathrm{kNm} / \mathrm{m}$
$M_{\text {total }}=M_{\text {rest }}-M_{\text {ot }}+M_{p _r}+M_{\text {live }}=115.1 \mathrm{kNm} / \mathrm{m}$
$\mathrm{R}=\mathrm{W}_{\text {total }}=99.5 \mathrm{kN} / \mathrm{m}$
$x_{\text {bar }}=M_{\text {total }} / R=1157 \mathrm{~mm}$
$\mathrm{e}=\mathrm{abs}\left((\right.$ lbase $\left./ 2)-\mathrm{X}_{\text {bar }}\right)=32 \mathrm{~mm}$
Reaction acts within middle third of base
$p_{\text {toe }}=\left(R / l_{\text {base }}\right)-\left(6 \times R \times e /\right.$ lbase $\left.^{2}\right)=40.5 \mathrm{kN} / \mathrm{m}^{2}$
pheel $=(R /$ lbase $)+\left(6 \times R \times e /\right.$ lbase $\left.^{2}\right)=48 \mathrm{kN} / \mathrm{m}^{2}$

$$
\begin{aligned}
& W_{\text {wall }}=h_{\text {stem }} \times \mathrm{t}_{\text {wall }} \times \gamma_{\text {wall }}=28.9 \mathrm{kN} / \mathrm{m} \\
& \omega_{\text {base }}=I_{\text {base }} \times t_{\text {base }} \times \gamma_{\text {base }}=18.6 \mathrm{kN} / \mathrm{m} \\
& \mathrm{w}_{\mathrm{m} _} \mathrm{w}=l_{\text {heel }} \times\left(\mathrm{h}_{\text {stem }}-\mathrm{h}_{\text {sat }}\right) \times \gamma_{\mathrm{m}}=12.6 \mathrm{kN} / \mathrm{m} \\
& \mathrm{w}_{\mathrm{p}}=\mathrm{I}_{\text {toe }} \times \mathrm{d}_{\text {cover }} \times \gamma_{\mathrm{mb}}=3.1 \mathrm{kN} / \mathrm{m} \\
& W_{v}=W_{\text {dead }}+W_{\text {live }}=36.3 \mathrm{kN} / \mathrm{m} \\
& W_{\text {total }}=W_{\text {wall }}+W_{\text {base }}+W_{\text {m_w }}+W_{p}+W_{v}=99.5 \mathrm{kN} / \mathrm{m} \\
& F_{m_{-} a}=0.5 \times \mathrm{Ka}_{\mathrm{a}} \times \cos (90-\alpha+\delta) \times \gamma_{\mathrm{m}} \times\left(\mathrm{h}_{\text {eff }}-\mathrm{h}_{\text {water }}\right)^{2}=45.1 \mathrm{kN} / \mathrm{m} \\
& F_{\text {total }}=F_{\text {m_a }}=45.1 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

PASS - Maximum bearing pressure is less than allowable bearing pressure

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job RefC23.07.32	
	Structural Calculations				Sheet no./rev.44	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.08

Ultimate limit state load factors

Dead load factor;
Live load factor
Earth and water pressure factor;
$\gamma_{f-d}=1.4$
$\gamma_{\mathrm{f}_{-}}=1.6$
$\gamma_{\mathrm{f}_{-}}=1.4$
Factored vertical forces on wall
Wall stem;
Wall base;
Moist backfill to top of wall;
Soil in front of wall;
Applied vertical load;
Total vertical load;
Factored horizontal at-rest forces on wall
Moist backfill above water table;
Total horizontal load;
Calculate propping force
Passive resistance of soil in front of wall;
kN/m
Propping force;

Factored overturning moments

Moist backfill above water table;
Total overturning moment;

Restoring moments

Wall stem;
Wall base;
Moist backfill;
kNm/m
Soil in front of wall;
Design vertical load;
Total restoring moment;

Factored bearing pressure

Total moment for bearing;
Total vertical reaction;
Distance to reaction
Eccentricity of reaction;

Bearing pressure at toe;
Bearing pressure at heel;
Rate of change of base reaction;
Bearing pressure at stem / toe;
Bearing pressure at mid stem;
Bearing pressure at stem / heel;
$W_{\text {wall_f }}=\gamma_{f_{_} d} \times h_{\text {stem }} \times t_{\text {wall }} \times \gamma_{\text {wall }}=40.5 \mathrm{kN} / \mathrm{m}$
Wbase_f $=\gamma_{f} \mathrm{~d} \times \mathrm{l}_{\text {base }} \times \mathrm{t}_{\text {base }} \times \gamma_{\text {base }}=\mathbf{2 6} \mathrm{kN} / \mathrm{m}$
$W_{m _w} \mathrm{f}=\gamma_{\mathrm{f}} \mathrm{d} \times \mathrm{l}_{\text {heel }} \times\left(\mathrm{h}_{\text {stem }}-\mathrm{h}_{\text {sat }}\right) \times \gamma_{\mathrm{m}}=17.6 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\mathrm{p}_{\mathrm{f}} \mathrm{f}}=\gamma_{\mathrm{f} _\mathrm{d}} \times \mathrm{I}_{\text {toe }} \times \mathrm{d}_{\text {cover }} \times \gamma_{\mathrm{mb}}=4.3 \mathrm{kN} / \mathrm{m}$
$\mathrm{W}_{\mathrm{v}_{-} \mathrm{f}}=\gamma_{\mathrm{f} _} \mathrm{d} \times \mathrm{W}_{\text {dead }}+\gamma_{\mathrm{f} _} \mathrm{I} \times \mathrm{W}_{\text {live }}=53.4 \mathrm{kN} / \mathrm{m}$
$W_{\text {total_f }}=W_{\text {wall_ } f}+W_{\text {base_f } f}+W_{m_{-} w_{-} f}+W_{p_{-} f}+W_{v_{-} f}=141.8 \mathrm{kN} / \mathrm{m}$
$F_{\mathrm{m}_{-} \mathrm{a}_{-} \mathrm{f}}=\gamma_{\mathrm{f} _\mathrm{e}} \times 0.5 \times \mathrm{K}_{0} \times \gamma_{\mathrm{m}} \times\left(\mathrm{heff}-\mathrm{h}_{\text {water }}\right)^{2}=107.8 \mathrm{kN} / \mathrm{m}$
$F_{\text {total_f }}=F_{\mathrm{m}_{-} \mathrm{a}_{-} \mathrm{f}}=107.8 \mathrm{kN} / \mathrm{m}$
$F_{p_{-} f}=\gamma_{f} \mathrm{e} \times 0.5 \times K_{p} \times \cos \left(\delta_{b}\right) \times\left(d_{\text {cover }}+t_{\text {base }}+d_{d s}-d_{e x c}\right)^{2} \times \gamma_{\mathrm{mb}}=6.1$
$F_{\text {prop_f }}=\max \left(F_{\text {total_f }}-F_{p_{-} f}-\left(W_{\text {total_f }}-W_{p_{-} f}-\gamma_{f _I} \times W_{\text {live }}\right) \times \tan \left(\delta_{b}\right), 0 \mathrm{kN} / \mathrm{m}\right)$
$F_{\text {prop_f }}=\mathbf{6 2 . 3} \mathbf{~ k N / m}$
$M_{m _a _f}=F_{m_{_} a_{-} f} \times\left(h_{\text {eff }}+2 \times h_{\text {water }}-3 \times d_{d s}\right) / 3=138.4 \mathrm{kNm} / \mathrm{m}$
$M_{o t _} f=M_{m_{-} a_{_} f}=\mathbf{1 3 8 . 4} \mathbf{~ k N m} / \mathrm{m}$
$M_{\text {wall_f }}=W_{\text {wall_f }} \times\left(l_{\text {toe }}+t_{\text {wall }} / 2\right)=75.9 \mathrm{kNm} / \mathrm{m}$
$M_{\text {base_f }}=W_{\text {base_ }} \times \mathrm{I}_{\text {base }} / 2=\mathbf{2 9 . 3} \mathrm{kNm} / \mathrm{m}$
$M_{m_{-} r_{-}}=\left(w_{m_{-}} w_{-} \times\left(l_{\text {base }}-I_{\text {heel }} / 2\right)+w_{m_{-} s_{f} f} \times\left(l_{\text {base }}-I_{\text {heel }} / 3\right)\right)=37.9$
$M_{\text {p_r_f }}=W_{\text {p_f }} \times$ Itoe $/ 2=3.6 \mathrm{kNm} / \mathrm{m}$
$M_{v_{-} f}=W_{v_{-} f} \times$ load $=\mathbf{1 0 0 . 1} \mathbf{~ k N m} / \mathrm{m}$
$M_{\text {rest_f }}=M_{\text {wall_f }}+M_{\text {base_f }}+M_{m_{-} r_{-} f}+M_{\text {P__ }^{\prime} f}+M_{v_{-} f}=\mathbf{2 4 6 . 9} \mathrm{kNm} / \mathrm{m}$
$M_{\text {total_f }}=M_{\text {rest_f }} f-M_{o t _f}=\mathbf{1 0 8 . 5} \mathbf{k N m} / \mathrm{m}$
$R_{f}=W_{\text {total_ } f}=141.8 \mathrm{kN} / \mathrm{m}$
$X_{\text {bar_f }}=M_{\text {total_f }} / R_{f}=765 \mathrm{~mm}$
$\mathrm{e}_{\mathrm{f}}=\operatorname{abs}\left((\right.$ lbase $\left./ 2)-\mathrm{x}_{\text {bar_f }} \mathrm{f}\right)=\mathbf{3 6 0} \mathrm{mm}$
Reaction acts within middle third of base
$p_{\text {toe_f }}=\left(R_{f} / l_{\text {base }}\right)+\left(6 \times R_{f} \times e_{f} /\right.$ base $\left.^{2}\right)=123.6 \mathrm{kN} / \mathrm{m}^{2}$
pheel_f $=\left(R_{f} / l_{\text {base }}\right)-\left(6 \times R_{f} \times e_{f} /\right.$ lbase $\left.^{2}\right)=2.5 \mathrm{kN} / \mathrm{m}^{2}$
rate $=\left(\right.$ ptoe_f - pheel_f $\left.^{f}\right) / l_{\text {base }}=53.80 \mathrm{kN} / \mathrm{m}^{2} / \mathrm{m}$
$p_{\text {stem_toe_f }}=\max \left(\right.$ ptoe_f $-\left(\right.$ rate $\left.\left.\times I_{\text {toe }}\right), 0 \mathrm{kN} / \mathrm{m}^{2}\right)=32.1 \mathrm{kN} / \mathrm{m}^{2}$
$p_{\text {stem_mid_f }}=\max \left(\right.$ ptoe_f $-\left(\right.$ rate $\times\left(\right.$ ltoe $\left.\left.\left.+\mathrm{t}_{\text {wall }} / 2\right)\right), 0 \mathrm{kN} / \mathrm{m}^{2}\right)=22.7 \mathrm{kN} / \mathrm{m}^{2}$
$p_{\text {stem_heel_f }}=\max \left(\right.$ ptoe_f $-\left(\right.$ rate $\left.\left.\times\left(I_{\text {toe }}+t_{\text {wall }}\right)\right), 0 \mathrm{kN} / \mathrm{m}^{2}\right)=13.3 \mathrm{kN} / \mathrm{m}^{2}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{\|ll\|} \hline \text { Job Ref. } & \\ & \text { C23.07.32 } \end{array}$	
	Section				Sheet no./rev.45	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties

Characteristic strength of concrete;
Characteristic strength of reinforcement;

Base details

Minimum area of reinforcement;
Cover to reinforcement in toe;

Calculate shear for toe design

Shear from bearing pressure;
Shear from weight of base;
Total shear for toe design;
$\mathrm{f}_{\mathrm{cu}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{k}=0.13$ \%
$\mathrm{C}_{\text {toe }}=\mathbf{4 0} \mathrm{mm}$
$V_{\text {toe_bear }}=\left(p_{\text {toe_f }}+p_{\text {stem_toe_f }}\right) \times I_{\text {toe }} / 2=132.3 \mathrm{kN} / \mathrm{m}$
$V_{\text {toe_wt_base }}=\gamma_{f^{\prime} d} \times \gamma_{\text {base }} \times I_{\text {toe }} \times$ tbase $=19.7 \mathrm{kN} / \mathrm{m}$
$V_{\text {toe }}=V_{\text {toe_bear }}-V_{\text {toe_wt_base }}=112.7 \mathrm{kN} / \mathrm{m}$
Calculate moment for toe design
Moment from bearing pressure;
Moment from weight of base;
Total moment for toe design;
$M_{\text {toe_bear }}=\left(2 \times p_{\text {toe_f }}+p_{\text {stem_mid_f }}\right) \times\left(I_{\text {toe }}+t_{\text {wall }} / 2\right)^{2} / 6=158.1 \mathrm{kNm} / \mathrm{m}$
$M_{\text {toe_ }}$ wt_base $=\left(\gamma_{f} d \times \gamma_{\text {base }} \times t_{\text {base }} \times\left(I_{\text {toe }}+\mathrm{t}_{\text {wall }} / 2\right)^{2} / 2\right)=20.3 \mathrm{kNm} / \mathrm{m}$
$M_{\text {toe }}=M_{\text {toe_bear }}-M_{\text {toe_wt_base }}=137.8 \mathrm{kNm} / \mathrm{m}$

$$
|\longleftarrow 150 \longrightarrow|
$$

Check toe in bending

Width of toe;
Depth of reinforcement;
Constant;

Lever arm;

Area of tension reinforcement required;
Minimum area of tension reinforcement;
Area of tension reinforcement required;
Reinforcement provided;
Area of reinforcement provided;

$$
\begin{aligned}
& \mathrm{b}=1000 \mathrm{~mm} / \mathrm{m} \\
& \mathrm{~d}_{\text {toe }}=\mathrm{t}_{\text {base }}-\mathrm{C}_{\text {toe }}-\left(\phi_{\text {toe }} / 2\right)=\mathbf{3 0 2 . 0} \mathrm{mm} \\
& K_{\text {toe }}=M_{\text {toe }} /\left(b \times d_{\text {toe }}{ }^{2} \times f_{\text {cu }}\right)=\mathbf{0 . 0 5 0} \\
& \text { Compression reinforcement is not required } \\
& Z_{\text {toe }}=\min \left(0.5+\sqrt{ }\left(0.25-\left(\min \left(K_{\text {toe }}, 0.225\right) / 0.9\right)\right), 0.95\right) \times d_{\text {toe }} \\
& Z_{\text {toe }}=\mathbf{2 8 4} \mathbf{~ m m} \\
& A_{s_{-} \text {toe_des }}=M_{\text {toe }} /\left(0.87 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{Z}_{\text {toe }}\right)=\mathbf{1 1 1 5} \mathrm{mm}^{2} / \mathrm{m} \\
& A_{s_{-} \text {toe_min }}=\mathrm{k} \times \mathrm{b} \times \mathrm{t}_{\text {base }}=\mathbf{4 5 5} \mathrm{mm}^{2} / \mathrm{m} \\
& A_{s_{-} \text {toe_req }}=\operatorname{Max}\left(A_{s_{_} \text {toe_des, }}, A_{s_{-} \text {toe_min }}\right)=1115 \mathrm{~mm}^{2} / \mathrm{m} \\
& 16 \mathrm{~mm} \text { dia.bars @ } 150 \mathrm{~mm} \text { centres } \\
& A_{\text {s_toe_prov }}=1340 \mathrm{~mm}^{2} / \mathrm{m}
\end{aligned}
$$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress;
Allowable shear stress;

$$
\begin{aligned}
& \mathrm{V}_{\text {toe }}=\mathrm{V}_{\text {toe }} /\left(\mathrm{b} \times \mathrm{d}_{\text {toe }}\right)=0.373 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~V}_{\mathrm{adm}}=\min \left(0.8 \times V\left(\mathrm{f}_{\mathrm{cu}} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5\right) \times 1 \mathrm{~N} / \mathrm{mm}^{2}=4.382 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

PASS - Design shear stress is less than maximum shear stress

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.46	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output
Design concrete shear stress;
$\mathrm{v}_{\mathrm{c}_{-} \text {toe }}=0.550 \mathrm{~N} / \mathrm{mm}^{2}$
$v_{\text {toe }}<v_{c_{-} \text {toe }}-$ No shear reinforcement required

Design of reinforced concrete retaining wall heel (BS 8002:1994)

Material properties

Characteristic strength of concrete;
Characteristic strength of reinforcement;

Base details

Minimum area of reinforcement;
Cover to reinforcement in heel;

Calculate shear for heel design

Shear from bearing pressure;
Shear from weight of base;
Shear from weight of moist backfill;
Total shear for heel design;
Calculate moment for heel design
Moment from bearing pressure;
Moment from weight of base;
Moment from weight of moist backfill;
Total moment for heel design;
$\mathrm{f}_{\mathrm{cu}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{k}=0.13 \%$
$\mathrm{Cheel}=\mathbf{4 0 ~ m m}$
$V_{\text {heel_bear }}=($ pheel_f + pstem_heel_f $) \times I_{\text {heel }} / 2=1.6 \mathrm{kN} / \mathrm{m}$
$V_{\text {heel_wt_base }}=\gamma \mathrm{f}_{\mathrm{d}} \mathrm{d} \times \gamma_{\text {base }} \times$ Ineel $\times \mathrm{t}_{\text {base }}=2.3 \mathrm{kN} / \mathrm{m}$
$V_{\text {heel_wt_m }}=w_{\text {m_w_f }}=17.6 \mathrm{kN} / \mathrm{m}$
$V_{\text {heel }}=-V_{\text {heel_bear }}+V_{\text {heel_wt_base }}+V_{\text {heel_wt_m }}=18.4 \mathrm{kN} / \mathrm{m}$
$M_{\text {heel_bear }}=(2 \times$ pheel_f + pstem_mid_f $) \times(\text { lheel }+ \text { twall } / 2)^{2} / 6=0.6 \mathrm{kNm} / \mathrm{m}$
$M_{\text {heel_wt_base }}=\left(\gamma_{f} \mathrm{~d} \times \gamma_{\text {base }} \times \mathrm{t}_{\text {base }} \times\left(I_{\text {heel }}+\mathrm{t}_{\text {wall }} / 2\right)^{2} / 2\right)=0.8 \mathrm{kNm} / \mathrm{m}$
$M_{\text {neel_wt_m }}=W_{m _w-f} \times\left(I_{\text {heel }}+t_{\text {wall }}\right) / 2=4.9 \mathrm{kNm} / \mathrm{m}$
$M_{\text {neel }}=-$ Mneel_bear + Mheel_wt_base + Mneel_wt_m $=5 \mathrm{kNm} / \mathrm{m}$

Check heel in bending

Width of heel;
Depth of reinforcement;
Constant;
$\mathrm{b}=1000 \mathrm{~mm} / \mathrm{m}$
$\mathrm{d}_{\text {heel }}=\mathrm{t}_{\text {base }}-$ Cheel $-($ 中heel $/ 2)=\mathbf{3 0 2 . 0} \mathrm{mm}$

Lever arm;

Area of tension reinforcement required;
Minimum area of tension reinforcement;
Area of tension reinforcement required;
Reinforcement provided;
Area of reinforcement provided;
$K_{\text {heel }}=M_{\text {heel }} /\left(b \times d_{\text {heel }}{ }^{2} \times f_{c u}\right)=0.002$
$\begin{aligned} & K_{\text {heel }}=M_{\text {heel }} I\left(\mathrm{~b} \times \mathrm{d}_{\text {heel }}{ }^{2} \times \mathrm{f}_{\mathrm{cu}}\right)=0.002 \\ & \text { Compression reinforcement is not required }\end{aligned}$
$Z_{\text {heel }}=\min \left(0.5+\sqrt{ }\left(0.25-\left(\min \left(K_{\text {heel }}, 0.225\right) / 0.9\right)\right), 0.95\right) \times d_{\text {heel }}$
$Z_{\text {heel }}=\mathbf{2 8 7} \mathbf{~ m m}$
As_heel_des $=M_{\text {heel }} /\left(0.87 \times \mathrm{fy}_{\mathrm{y}} \times \mathrm{Z}\right.$ heel $)=\mathbf{4 0} \mathrm{mm}^{2} / \mathrm{m}$
$A_{s_{_} \text {heel_min }}=\mathrm{k} \times \mathrm{b} \times$ tbase $=\mathbf{4 5 5} \mathrm{mm}^{2} / \mathrm{m}$
$A_{s_{-} \text {heel_req }}=\operatorname{Max}\left(A_{s_{_}}\right.$heel_des, $A_{s_{-}}$heel_min $)=455 \mathrm{~mm}^{2} / \mathrm{m}$
16 mm dia.bars @ 150 mm centres
$A_{\text {s_heel_prov }}=1340 \mathrm{~mm}^{2} / \mathrm{m}$
PASS - Reinforcement provided at the retaining wall heel is adequate

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Section				Sheet no./rev.47	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:

Calculations

Output

Check shear resistance at heel
Design shear stress;
$V_{\text {heel }}=V_{\text {heel }} /\left(\mathrm{b} \times \mathrm{d}_{\text {heel }}\right)=0.061 \mathrm{~N} / \mathrm{mm}^{2}$
Allowable shear stress;
$V_{\text {adm }}=\min \left(0.8 \times V\left(f_{c u} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5\right) \times 1 \mathrm{~N} / \mathrm{mm}^{2}=4.382 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum shear stress
From BS8110:Part 1:1997 - Table 3.8
Design concrete shear stress;
$v_{c_{_} \text {heel }}=0.550 \mathrm{~N} / \mathrm{mm}^{2}$
$v_{\text {heel }}<v_{\text {chneel }}-$ No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Characteristic strength of concrete;
Characteristic strength of reinforcement;

Wall details

Minimum area of reinforcement;
Cover to reinforcement in stem;
Cover to reinforcement in wall;
Factored horizontal at-rest forces on stem
Moist backfill above water table;
Calculate shear for stem design
Shear at base of stem;
Calculate moment for stem design
Moist backfill above water table;
Total moment for stem design;
$\mathrm{f}_{\mathrm{cu}}=30 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{f}_{\mathrm{y}}=500 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{k}=0.13 \%$
$\mathrm{C}_{\text {stem }}=\mathbf{4 0} \mathrm{mm}$
$\mathrm{C}_{\text {wall }}=40 \mathrm{~mm}$

Fs_m_a_f $=0.5 \times \gamma_{f} \mathrm{e} \times \mathrm{K}_{0} \times \gamma_{\mathrm{m}} \times\left(\mathrm{h}_{\text {eff }}-\mathrm{t}_{\text {base }}-\mathrm{dds}-\mathrm{h}_{\text {sat }}\right)^{2}=\mathbf{8 9 . 1} \mathrm{kN} / \mathrm{m}$
$V_{\text {stem }}=F_{\text {s_m_a }^{\prime} f}-F_{\text {prop_f }}=\mathbf{2 6 . 8} \mathbf{~ k N} / \mathrm{m}$
$M_{s_{-} __a}=F_{s_{-} __ \text {_ } _f} \times\left(2 \times h_{\text {sat }}+h_{\text {eff }}-d_{d s}+t_{\text {base }} / 2\right) / 3=119.6 \mathrm{kNm} / \mathrm{m}$
$M_{\text {stem }}=M_{s_{-} \mathrm{m}_{-} a}=119.6 \mathrm{kNm} / \mathrm{m}$

\mid - $150 \longrightarrow$

Check wall stem in bending

Width of wall stem;
Depth of reinforcement;
Constant;
$\mathrm{b}=1000 \mathrm{~mm} / \mathrm{m}$
$d_{\text {stem }}=t_{\text {wall }}-c_{\text {stem }}-\left(\phi_{\text {stem }} / 2\right)=\mathbf{3 0 0 . 0} \mathbf{m m}$
$K_{\text {stem }}=M_{\text {stem }} /\left(b \times d_{\text {stem }}{ }^{2} \times f_{\text {cu }}\right)=0.044$

Lever arm;

Area of tension reinforcement required;
Minimum area of tension reinforcement;
Area of tension reinforcement required;

Compression reinforcement is not required
$Z_{\text {stem }}=\min \left(0.5+\sqrt{ }\left(0.25-\left(\min \left(K_{\text {stem }}, 0.225\right) / 0.9\right)\right), 0.95\right) \times d_{\text {stem }}$
$z_{\text {stem }}=\mathbf{2 8 4} \mathbf{~ m m}$
$A_{s_{\text {_stem_des }}}=M_{\text {stem }} /\left(0.87 \times f_{y} \times Z_{\text {stem }}\right)=966 \mathrm{~mm}^{2} / \mathrm{m}$
$A_{s_{\text {_stem_min }}}=k \times b \times t_{\text {wall }}=455 \mathrm{~mm}^{2} / \mathrm{m}$

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel-0161 6521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				$\begin{array}{rr}\text { Job Ref. } \\ & \\ & \text { C23.07.32 }\end{array}$	
	Section				Sheet no./rev 48	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Reinforcement provided;
Area of reinforcement provided;
Calculations
Output
20 mm dia.bars @ 150 mm centres
As_stem_prov $=2094 \mathrm{~mm}^{2} / \mathrm{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress;
Allowable shear stress;

From BS8110:Part 1:1997 - Table 3.8
Design concrete shear stress;

Check retaining wall deflection
Basic span/effective depth ratio;
Design service stress;
ratiobas $=7$
$\mathrm{f}_{\mathrm{s}}=2 \times \mathrm{f}_{\mathrm{y}} \times \mathrm{A}_{\mathrm{s}_{-} \text {stem_req }} /\left(3 \times \mathrm{A}_{\mathrm{s} \text { _stem_prov }}\right)=153.8 \mathrm{~N} / \mathrm{mm}^{2}$
Modification factor;
factortens $=\min \left(0.55+\left(477 \mathrm{~N} / \mathrm{mm}^{2}-\mathrm{f}_{\mathrm{s}}\right) /\left(120 \times\left(0.9 \mathrm{~N} / \mathrm{mm}^{2}+\left(\mathrm{M}_{\text {stem }} /\left(\mathrm{b} \times \mathrm{d}_{\text {stem }}{ }^{2}\right)\right)\right)\right), 2\right)=1.76$
Maximum span/effective depth ratio;
Actual span/effective depth ratio;
$V_{\text {stem }}=V_{\text {stem }} /\left(b \times d_{\text {stem }}\right)=0.089 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{V}_{\text {adm }}=\min \left(0.8 \times \sqrt{ }\left(\mathrm{f}_{\mathrm{cu}} / 1 \mathrm{~N} / \mathrm{mm}^{2}\right), 5\right) \times 1 \mathrm{~N} / \mathrm{mm}^{2}=4.382 \mathrm{~N} / \mathrm{mm}^{2}$
PASS - Design shear stress is less than maximum shear stress
$\mathrm{v}_{\mathrm{c} \text { _stem }}=0.640 \mathrm{~N} / \mathrm{mm}^{2}$
$v_{\text {stem }}<\boldsymbol{v}_{\text {c_stem }}$ - No shear reinforcement required
ratio $_{\text {max }}=$ ratiobas \times factortens $^{=} \mathbf{1 2 . 3 1}$
ratio $_{\text {act }}=h_{\text {stem }} / d_{\text {stem }}=11.67$

PASS - Span to depth ratio is acceptable

Gamble, King and Noone Limited Consulting Structural Engineers \& Building Surveyors 5 Queen Street, Oldham. OL1 1RD. Tel - 01616521183 www.gknltd.co.uk	Project New Dwelling at Gerrards Hollow, Gee Cross. SK14 5DT				Job Ref.C23.07.32	
	Structural Calculations				Sheet no./rev.49	
	Calc. by S.King	Date Nov. 2023	Chk'd by	Date	App'd by	Date

Ref:
Calculations
Output
Indicative retaining wall reinforcement diagram

Toe bars - 16 mm dia.@ 150 mm centres - ($1340 \mathrm{~mm}^{2} / \mathrm{m}$)
Heel bars - 16 mm dia.@ 150 mm centres - $\left(1340 \mathrm{~mm}^{2} / \mathrm{m}\right)$
Stem bars - 20 mm dia.@ 150 mm centres - $\left(2094 \mathrm{~mm}^{2} / \mathrm{m}\right)$

RETAINING WALL CONSTRUCTION (WALL B) :

350 mm Thick R.C Wall

Wall to be reinforced with T20 Bars to inner face @ 150mm c/c,
T16 Bars to outer face @ 150mm c/c
(Distribution steel to be T12 bars at 150mm c/c)
Starter bars as per wall reinforcement.

